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Abstract. We interpret the log-Brunn–Minkowski conjecture of Böröczky–Lutwak–Yang–Zhang
as a spectral problem in centro-affine differential geometry. In particular, we show that the Hilbert–
Brunn–Minkowski operator coincides with the centro-affine Laplacian, thus obtaining a new avenue
for tackling the conjecture using insights from affine differential geometry. As every strongly con-
vex hypersurface in Rn is a centro-affine unit sphere, it has constant centro-affine Ricci curvature
equal to n � 2, in stark contrast to the standard weighted Ricci curvature of the associated metric-
measure space, which will in general be negative. In particular, we may use the classical argument
of Lichnerowicz and a centro-affine Bochner formula to give a new proof of the Brunn–Minkowski
inequality. For origin-symmetric convex bodies enjoying fairly generous curvature pinching bounds
(improving with dimension), we are able to show global uniqueness in the Lp- and log-Minkowski
problems, as well as the corresponding global Lp- and log-Minkowski conjectured inequalities.
As a consequence, we resolve the isomorphic version of the log-Minkowski problem: for any
origin-symmetric convex body NK in Rn, there exists an origin-symmetric convex body K with
NK � K � 8 NK such that K satisfies the log-Minkowski conjectured inequality, and such that K is

uniquely determined by its cone-volume measure VK . If NK is not extremely far from a Euclidean
ball to begin with, an analogous isometric result, where 8 is replaced by 1C ", is obtained as well.

Keywords. Uniqueness in Lp-Minkowski problem, log-Brunn–Minkowski inequality,
centro-affine differential geometry, Hilbert–Brunn–Minkowski operator

1. Introduction

A central question in contemporary Brunn–Minkowski theory is that of existence and
uniqueness in the Lp-Minkowski problem for p 2 .�1; 1/: given a finite non-negative
Borel measure � on the Euclidean unit sphere S� D Sn�1, determine conditions on �
which ensure the existence and/or uniqueness of a convex body K in Rn such that

SpK WD h
1�p
K SK D �: (1.1)
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Here hK and SK denote the support function and surface-area measure ofK, respectively
– we refer to Section 2 for the standard definitions. When hK 2 C 2.S�/,

SK D det.D2hK/m;

where m is the induced Lebesgue measure on S�, D2hK D
S�r2hK C hKı

S� and S�r

is the Levi-Civita connection on S� with its standard Riemannian metric ıS� . Conse-
quently, (1.1) is a Monge–Ampère-type equation. It describes self-similar solutions to the
(anisotropic) ˛-power-of-Gauss-curvature flow for ˛ D 1

1�p
[4–6,8,22,33,35,102,103].

The case p D 1 above corresponds to the classical Minkowski problem of finding
a convex body with prescribed surface-area measure; when � is not concentrated on any
hemisphere and its barycenter is at the origin, existence and uniqueness (up to translation)
of K were established by Minkowski, Alexandrov and Fenchel–Jessen (see [96]), and
regularity of K was studied by Lewy [64], Nirenberg [84], Cheng–Yau [31], Pogorelov
[90], Caffarelli [23, 24] and many others. The extension to general p was put forth and
publicized by E. Lutwak [73] as an Lp-analog of the Minkowski problem for the Lp

surface-area measure SpK D h
1�p
K SK which he introduced. Existence and uniqueness

in the class of origin-symmetric convex bodies, when the measure � is even and not
concentrated in a hemisphere, was established for n¤p >1 by Lutwak [73] and for pD n
by Lutwak–Yang–Zhang [78]. A key tool in the range p � 1 is the prolific Lp-Brunn–
Minkowski theory, initiated by Lutwak [73, 74] following Firey [41], and developed by
Lutwak–Yang–Zhang (e.g. [76, 77, 79]) and others, which extends the classical p D 1

case. Further existence, uniqueness and regularity results in the range p > 1 under various
assumptions on � were obtained in [34, 44, 48, 51, 75, 108].

The case p < 1 turns out to be more challenging because of the lack of an appropriate
Lp-Brunn–Minkowski theory. Existence, (non-)uniqueness and regularity under various
conditions on � were studied by numerous authors when p < 1 (from either side of the
critical exponent p D �n), especially after the important work by Chou–Wang [34]; see
e.g. [10, 11, 15, 16, 27–29, 45, 53, 70, 82, 98–100, 105–107, 109]. The case p D 0 is of
particular importance as it corresponds to the log-Minkowski problem for the cone-volume
measure

VK WD
1

n
hKSK D

1

n
S0K;

described next. Note that VK is obtained as the push-forward of the cone measure on @K
onto S� via the Gauss map, and that the total mass of VK is V.K/, the volume ofK. Being
a self-similar solution to the isotropic Gauss curvature flow, the case p D 0 and � D m

of (1.1) describes the ultimate fate of a worn stone in a model proposed by Firey [42] and
further studied in [5, 8, 22, 33, 57].

Let K denote the collection of convex bodies in Rn containing the origin in their
interior, and let Ke denote the subset of origin-symmetric elements. In [19], Böröczky–
Lutwak–Yang–Zhang showed that an even measure � is the cone-volume measure VK
of an origin-symmetric convex body K 2 Ke if and only if it satisfies a certain sub-
space concentration condition, thereby completely resolving the existence part of the
even log-Minkowski problem. As put forth by Böröczky–Lutwak–Yang–Zhang in their
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influential work [18, 19] and further developed in [61], the uniqueness question is inti-
mately related to the validity of a conjectured L0- (or log-)Brunn–Minkowski inequality
for origin-symmetric convex bodies K; L 2 Ke , which would constitute a remarkable
strengthening of the classical p D 1 case. The restriction to origin-symmetric bodies is
natural, and necessitated by the fact that no Lp-Brunn–Minkowski inequality nor unique-
ness in the Lp-Minkowski problem can hold for general convex bodies when p < 1

[7, 28, 29, 34, 45, 52, 61, 66, 67, 82, 99].

The following equivalence may be shown by following the arguments of [18,19] (see
Section 2.4 for a more general statement and further details). We denote by K

2;˛
C;e the

subset of Ke having C 2;˛-smooth boundary and strictly positive curvature, and refer to
Section 2 for the definition of the Lp-Minkowski sum .1 � �/ �K Cp � � L.

Theorem 1.1 (after Böröczky–Lutwak–Yang–Zhang). The following statements are
equivalent for any fixed p 2 .�n; 1/:

(1) For any q 2 .p; 1/, uniqueness holds in the even Lq-Minkowski problem for any
K 2K

2;˛
C;e:

8L 2Ke; SqL D SqK H) L D K: (1.2)

(2) The even Lp-Brunn–Minkowski inequality holds:

8� 2 Œ0; 1� 8K;L 2Ke;

V ..1 � �/ �K Cp � � L/ �
�
.1 � �/V.K/

p
n C �V.L/

p
n

� n
p : (1.3)

The case p D 0, called the even log-Brunn–Minkowski inequality, is interpreted in
the limiting sense as

V..1 � �/ �K C0 � � L/ � V.K/
1��V.L/�:

(3) The even Lp-Minkowski inequality holds:

8K;L 2Ke

1

p

Z
S�
h
p
L dSpK �

n

p
V.K/1�

p
n V.L/

p
n : (1.4)

The case p D 0, called the even log-Minkowski inequality, is interpreted in the limit-
ing sense as:

1

V.K/

Z
S�

log
hL

hK
dVK �

1

n
log

V.L/

V.K/
:

Using Jensen’s inequality in formulation (1.4) (or (1.3)), it is immediate to check that
the above (equivalent) statements become stronger as p decreases (i.e. that their validity
for p1 implies their validity for p2 whenever p1 < p2 < 1).

Conjecture (Böröczky–Lutwak–Yang–Zhang, “Even log-Brunn–Minkowski Conjec-
ture”). Any .and hence all/ of the above statements hold for origin-symmetric convex
bodies in the “logarithmic case” p D 0 .and hence for all p 2 Œ0; 1/ as well/.
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A confirmation of this conjecture would constitute a dramatic improvement over the
classical Brunn–Minkowski theory for the subfamily of origin-symmetric convex bodies,
which had gone unnoticed for over a century. The importance of this conjecture to the
Brunn–Minkowski theory for general measures has been further expounded in several
subsequent works [46, 57, 58, 69, 93, 94]; see below for additional information and partial
results. The even log-Brunn–Minkowski conjecture (also called the log-Minkowski con-
jecture) is known to hold in the plane [18] (see also [43,80,91,98,104]), but remains open
in general for n � 3.

It is easy to show that (1.3) or (1.4) are false for any p < 0 (see e.g. [61]). Moreover,
uniqueness in (1.2) does not hold for generalK;L 2Ke and q D 0, as may be verified by
testing two different centered parallelepipeds with appropriately chosen parallel facets.
The latter example is known to be the only exception to uniqueness in the log-Minkowski
problem in the plane [18], but in higher dimension there are additional conjectured (non-
smooth) cases of equality in (1.2) when q D 0 [14, 17]. In particular, when K 2 K

2;˛
C;e ,

the (somewhat stronger) conjecture is that (1.2) should hold not only for q 2 .0; 1/ but
for q D 0 as well – we will refer to this as the “uniqueness in the even log-Minkowski
problem” conjecture.

1.1. Main results

We now turn to describe the main results of this work. As our first main result, we obtain
the following uniqueness result for the even Lp-Minkowski problem, with correspond-
ing even Lp-Minkowski inequality, under a fairly generous curvature bound assumption
on K. We denote by II@K the second fundamental form on @K � Rn.

Theorem 1.2. Let K 2 K
2;˛
C;e have a centro-affine image QK such that the following cur-

vature pinching bounds hold:

1

R
jX j2 � II@ QK.X;X/ �

1

r
jX j2 8X 2 T @ QK; (1.5)

for some R � r > 0; in other words, all radii of curvature of QK are bounded between r
and R. Then for any p with

3 �
n � 1

2

r2

R2
< p < 1; (1.6)

the even Lp-Minkowski problem for K has a unique solution:

8L 2Ke; SpL D SpK H) L D K; (1.7)

and the even Lp-Minkowski inequality holds:

8L 2Ke;
1

p

Z
S�
h
p
L dSpK �

n

p
V.K/1�

p
n V.L/

p
n ; (1.8)

with equality if and only if L D cK for some c > 0.
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The term “centro-affine image” above is synonymous with “(non-degenerate) linear
image”, but we prefer to use the former to emphasize the centro-affine differential geom-
etry underlying our results. Of course, the case p D 0 above is interpreted in the limiting
sense as follows:

Corollary 1.3. With the same conditions as above, whenever

R2

r2
<
n � 1

6
;

the even log-Minkowski problem for K has a unique solution:

8L 2Ke; VL D VK H) L D K; (1.9)

and the even log-Minkowski inequality holds:

8L 2Ke;
1

V .K/

Z
S�

log
hL

hK
dVK �

1

n
log

V.L/

V.K/
; (1.10)

with equality if and only if L D cK for some c > 0.

Remark 1.4. It is well-known that the measures SpK and in particular VK are weakly
continuous (i.e. in duality with C.S�/) with respect to convergence of K in the Haus-
dorff metric [96, pp. 212–215]. Consequently, for the purpose of deducing (1.8) or (1.10)
without characterization of equality cases, it is enough to assume that K 2 Ke can be
approximated in the Hausdorff metric by Ki 2K

2;˛
C;e as above.

In fact, we will prove a strengthening of Theorem 1.2, involving two-sided bounds on
II@ QK=h QK.n

@ QK/, and producing a linear dependence on these bounds (instead of quadratic
as above) – see Theorem 6.4. Using this strengthened version, we can give a positive
answer to the isomorphic versions of the uniqueness question for the even log-Minkowski
problem and the even log-Minkowski inequality (curiously, we do not know how to
establish these isomorphic results using the weaker formulation of Theorem 1.2 – see
Remark 7.2). Our isomorphic nomenclature stems from Banach-space theory, where two
Banach spaces are called isomorphic if, up to a linear bijection, their corresponding norms
are equivalent up to constants. To better quantify this in the finite-dimensional geometric
context, it is convenient to introduce the following distances for pairs of origin-symmetric
convex bodies K;L 2Ke – the geometric distance

dG.K;L/ WD inf
²
ab > 0 I

1

b
K � L � aK

³
;

and the Banach–Mazur distance

dBM.K;L/ WD inf ¹dG.K; T .L// I T 2 GLnº:

Clearly dG.K; L/; dBM.K; L/ � 1. Note that the classical John’s theorem [96, Sec-
tion 10.12] asserts that dBM.K; B

n
2 / �

p
n for any K 2 Ke , where Bn2 denotes the

Euclidean unit ball in Rn.
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Theorem 1.5 (Isomorphic Lp-Minkowski). Let NK 2Ke , and denoteD WD dBM. NK;B
n
2 /.

Given  > 0, define

p;D WD
7

3
�
n � 1

24

2

D2
: (1.11)

Then for any 8 �  � D=2, there exists QK 2K1C;e such that

dG. NK; QK/ � ;

and such that for any p 2 .p;D; 1/ and for any T 2GLn, the evenLp-Minkowski problem
for K D T . QK/ has a unique solution (1.7), and the even Lp-Minkowski inequality (1.8)
holds for K, with equality if and only if L D cK for some c > 0.

The above theorem agrees with the intuition that the smaller the Banach–Mazur dis-
tance D from NK to Bn2 is, the smaller  we can select (controlling the distance between
the original NK and the modified QK) in order to hit a particular value of p;D . Note that for
 D D, we can simply select QK to be the John ellipsoid E of NK (so that dG. NK;E/ D D),
for which it is known (see the next subsection) that the above conclusion holds with
p;D D �n. At the other extreme, when NK D Œ�1; 1�n (so that D D

p
n), it follows

from the results of [61] that for any fixed p < 0 there is no uniqueness in the even Lp-
Minkowski problem for any QK with  D dG. NK; QK/ close enough to 1, so one cannot
expect an estimate for p1;pn better than 0. In this sense, formula (1.11) for p;D captures
the correct order of magnitude (proportional to �n and to 1) when D= is of the order of
1 and

p
n, respectively.

Of particular interest is the logarithmic case. Specializing to p D 0 above, we resolve
the isomorphic version of the conjecture regarding uniqueness in the even log-Minkowski
problem:

Corollary 1.6 (Isomorphic log-Minkowski). For any NK 2 Ke , there exists QK 2 K1C;e
with

dG. NK; QK/ � 8;

such that for any T 2 GLn, the even log-Minkowski problem forK D T . QK/ has a unique
solution (1.9), and the even log-Minkowski inequality (1.10) holds for K, with equality if
and only if L D cK for some c > 0.

This is an immediate corollary of Theorem 1.5 sinceD �
p
n by John’s theorem, and

so when n � 64 we can simply use QK D E , John’s ellipsoid (for whichD D dG. NK;E/ �
p
n � 8), and when n � 65 formula (1.11) ensures that p8;pn < 0.

The constant 8 obtained in the isomorphic version above is the worst case behavior
for a general NK 2 Ke , when D D dBM. NK; B

n
2 / may be as large as John’s upper bound

p
n. However, whenever D �

p
n, a slightly finer analysis yields an isometric version

of the above results, where one only perturbs NK by at most  D 1C ". We only state the
p D 0 case below:
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Theorem 1.7 (Isometric log-Minkowski). Let NK 2 Ke , and denote D WD dBM. NK;B
n
2 /.

There exists QK 2K1C;e satisfying the conclusion of Corollary 1.6 such that

dG. NK; QK/ � 1C C

p
D
4
p
n
;

where C > 1 is a universal constant.

1.2. Comparison with previous work

As already mentioned, the validity of the log-Minkowski inequality (1.10) for allK 2Ke ,
including characterization of its equality cases, as well as the uniqueness in the even
log-Minkowski problem (1.9) for K 2 Ke which is not a parallelogram, was established
when nD 2 by Böröczky–Lutwak–Yang–Zhang [18] (see also [80,91,104] for alternative
derivations).

In our previous joint work with A. Kolesnikov [61], following the work of [37],
we embarked on a systematic study of the validity of the local Lp-Brunn–Minkowski
inequality for origin-symmetric convex bodies and p < 1; by “local” we mean on an
infinitesimal scale, or equivalently, for pairs of bodies which are close enough to each
other in an appropriate sense. To that end, we introduced an elliptic second-order differ-
ential operator on C 2.S�/, called the Hilbert–Brunn–Minkowski operator �K , defined
for K 2 K2

C, which up to gauge transformations coincides with the operator introduced
by Hilbert in his proof of the Brunn–Minkowski inequality (see [13]). Here Km

C denotes
the subset of K consisting of elements having Cm-smooth boundary and strictly posi-
tive curvature, and Km

C;e denotes the subset of origin-symmetric elements. The operator
��K is symmetric and positive semi-definite on L2.VK/, admitting a unique self-adjoint
extension with compact resolvent. Its spectrum thus consists of a countable sequence of
eigenvalues of finite multiplicity starting with 0 and tending to1. It was shown in [61]
that �K enjoys a remarkable centro-affine equivariance property, stating that for any
T 2GLn,�T.K/ and�K are conjugates modulo an isometry of Hilbert spaces; in particu-
lar, the spectrum �.��T.K// is the same for all T . One way to define .�K C .n� p/Id/z
is by linearizing log.h1�pK det.D2hK// appearing in the left-hand-side of (1.1) under a
logarithmic variation hK" D hK.1C "z/. Consequently, understanding whether n � p is
in the spectrum of ��K is of fundamental importance to the uniqueness question in the
Lp-Minkowski problem.

It was Hilbert who realized that the classical Brunn–Minkowski inequality (the case
p D 1) [96] is equivalent to the statement that �.��K/\ .0; n� 1/D ;, and proved that
indeed �1.��K/ D n� 1 where �1 denotes the first non-zero eigenvalue [13]. Similarly,
given K 2 K2

C;e , we denote the first non-zero even eigenvalue of ��K (corresponding
to an even eigenfunction) by �1;e.��K/. It was shown in [61] that for any p < 1, the
statement �1;e.��K/ � n � p is equivalent to the local Lp-Brunn–Minkowski inequal-
ity for origin-symmetric perturbations ofK, and implies the local uniqueness for the even
Lq-Minkowski problem for any q > p. The fact that a local verification of these prob-
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lems is enough to imply the global one was subsequently shown by Chen–Huang–Li–Liu
[27] for the uniqueness of the Lp-Minkowski problem and by Putterman [91] for the
Lp-Brunn–Minkowski inequality. We conjecture that �1;e.��K/ > n for all K 2 K2

C;e ,
which would confirm for all p 2 Œ0; 1/ the Lp-Brunn–Minkowski and Lp-Minkowski
inequalities on Ke and the uniqueness in the Lp-Minkowski problem on K2

C;e .
Our main result in [61] was showing that �1;e.��K/ � n � p0 for p0 WD 1 � c

n3=2

and all K 2 K2
C;e , where c > 0 is a universal constant, yielding local uniqueness in the

even Lp-Minkowski problem for all p 2 .p0; 1/. In [27], Chen–Huang–Li–Liu estab-
lished their local-to-global principle for the uniqueness question, and deduced (1.7) and
(1.8) for all K 2 K

2;˛
C;e and p 2 .p0; 1/. In fact, thanks to recent progress on the KLS

conjecture due to Y. Chen [30], our estimate from [61, Corollary 6.8 and Theorem 6.9]
immediately improves to p0 D 1 � c"

n1C"
for any " > 0, which together with the results

of [27] yields the presently best known range of p’s for which (1.7) and (1.8) are known
to hold. Furthermore, Chen–Huang–Li–Liu established in [27] the validity of (1.9) and
(1.10) for the class H"n WD ¹K 2 K2

C;e I khK � 1kL1 � "nº and a sufficiently small
"n > 0, employing a corresponding local uniqueness result for H"n established in [61];
in fact, the same argument applies to any centro-affine image K D T . QK/, T 2 GLn and
QK 2 H"n .

As already mentioned, it is known that for any p < 0 there exist K 2K2
C;e for which

(1.7) and (1.8) are false (see [82] for additional information, and [7, 34, 45, 52, 61, 66, 67]
for previously known non-uniqueness results). Consequently, the logarithmic case p D 0
is precisely the conjectured threshold between the range p 2 Œ0; 1/ where (1.7) and (1.8)
are expected to hold for all K 2 K2

C;e , and the range p < 0 where it is known that they
fail in general.

However, for a specific K 2 K2
C;e , it is certainly possible for (1.7) and (1.8) to hold

with p < 0. For example, it is possible to show that these statements hold for all cen-
tered ellipsoids K and for all p 2 .�n; 1/. Even in the simplest case when K D Bn2 , the
Euclidean unit ball, uniqueness in the Lp-Minkowski problem (1.7) was until recently a
major open problem in the latter range of p’s. As already eluded to above, this particular
case is especially important because it describes self-similar solutions to the isotropic ˛-
power-of-Gauss-curvature flow (for ˛ D 1

1�p
), a model proposed by Firey [42] for ˛ D 1

(p D 0). In the general anisotropic model, x W S� � Œ0; T /! Rn evolves according to

@x

@t
D �.�.n@Ltx /�@Ltx /˛n@Ltx ; � WD

dSpK

dm
;

where n@Lt is the outer unit normal to @Lt WD x.S�; t / and �@Lt is the corresponding
Gauss curvature. Following contributions in [5,8,33,35,42,47], uniqueness in (1.7) for the
general isotropic case K D Bn2 (without origin-symmetry, only assuming L 2 K) in the
full range p 2 .�n; 1/ was resolved by Brendle–Choi–Daskalopoulos [22]. In the origin-
symmetric case, an extension of their uniqueness result from Bn2 to arbitrary centered
ellipsoids E may be shown by following the arguments of [27,61] – see Remark 2.7. Our
uniqueness result of Theorem 1.2 thus extends the results of [22] in the origin-symmetric
setting, from Euclidean balls (the isotropic case) to centro-affine images of convex bod-
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ies K enjoying a curvature pinching condition (pinched anisotropic case). Specializing to
ellipsoids E , while our general formula (1.6) does not recover the sharp exponent p >�n,
we obtain the right order of magnitude (p > 3 � n�1

2
). Note that uniqueness no longer

holds below the critical exponent p D �n due to the SLn equivariance of the centro-
affine Gauss curvature h1CnK det.D2hK/ [34, 101]; in particular, the centro-affine Gauss
curvature of any centered ellipsoid E in Rn is constant and depends only on its volume:
S�nE D cnV.E/

2m.
Strictly speaking, we are not aware of any other results establishing (1.7) or (1.8) for

a givenK 2Ke , p < 1 and all L 2Ke . Various additional results establish (1.7), (1.8) or
the corresponding Lp-Brunn–Minkowski inequality for particular pairs of convex bodies
K; L 2 Ke , which are typically perturbations of a well-understood example, or which
enjoy certain symmetries [14,17,36,37,46,61,92–94]. Of particular historical significance
was the case when K;L 2 K2

C;e are perturbations of Bn2 (C 2-perturbations of particular
form in [36,37], and centro-affine images of generalC 2- and evenC 0-perturbations ofBn2
in [61]). However, the extent of these admissible C 2-perturbations was non-explicit and
deteriorated with the dimension n. In contrast, note that the C 2-perturbations allowed by
Theorem 1.2 and Corollary 1.3 are entirely explicit and in fact improve with the dimension
– e.g. Corollary 1.3 applies to any K 2K

2;˛
C;e with R2=r2 < n�1

6
.

As for the isomorphic and isometric results of Theorems 1.5 and 1.7, we are not aware
of any prior results of this nature regarding the even Lp-Minkowski problem. The best
comparison comes from a totally different yet equally fundamental problem posed by
J. Bourgain [20] regarding a volumetric property of convex bodies – the Slicing Problem
(see [21, 83]). The Slicing Problem has been confirmed for numerous families of con-
vex bodies, and there has been recent dramatic advancement in the best known estimates
for general convex bodies (obtained by combining the recent results of Chen [30] on
the Kannan–Lovász–Simonovits conjecture [54] with the results of Eldan–Klartag [39]).
While the Slicing Problem remains open in general, the isomorphic version of the Slicing
Problem was fully resolved by B. Klartag [55]. Our results in Corollary 1.6 and Theo-
rem 1.7 can be seen as the log-Minkowski analogues of Klartag’s results for the Slicing
Problem (despite the two problems being very different, and having no apparent relation
between our corresponding proofs). Note that we are not aware of an analogous result for
the (also spectral) KLS conjecture (apart from an isometric quantitative stability result
established in [81]).

1.3. Centro-affine differential geometry

Perhaps more important than our main results described above is our rediscovery of
the significance of affine differential geometry to the Brunn–Minkowski theory, and our
apparently new observation about the crucial role played by the centro-affine normaliza-
tion (we refer to [85, 96] for more background, and to Section 3 for an introduction to
affine differential geometry). Historically, the Brunn–Minkowski theory of convex sets
was initiated by Brunn and subsequently Minkowski towards the end of the 19th century,
and further developed by Blaschke, Berwald, Kubota, Favard, Alexandrov, Bonnesen,
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Fenchel and others in the first third of the 20th century (a singular but especially rel-
evant contribution to the theory was also made by Hilbert at the turn of the century).
In parallel, the origins of affine differential geometry are often attributed to the works
of Tzitzéica [101] circa 1908, following the axiomatization of affine geometry in Felix
Klein’s Erlangen program. A systematic study of affine differential geometry was sub-
sequently undertaken between 1916 and 1923 by Blaschke in collaboration with Pick,
Radon, Berwald and Thomsen, among others, and this was followed up in the work by
Cartan, Kubota, Süss, Ślebodziński, Salkowski and others in the late 1920s and 1930s.
It is apparent from the large overlap in mathematicians working on both theories during
those formative years that these theories interacted quite significantly.

However, after this initial period, each theory developed along its own respective tra-
jectory, with little to no overlap with the other. Some notable exceptions include the study
of the affine surface area and affine isoperimetric inequality, initiated by Blaschke and
further developed and extended by Deicke, Hug, Leichtweiss, Ludwig, Lutwak, Meyer,
Petty, Reitzner, Santaló, Schütt, Werner, Ye and others (see [49, 50, 63, 71, 72, 74] and the
references therein), the early work by R. Schneider in the 1960s on global affine differ-
ential geometry [95], and a more recent work of Klartag on convex affine hemispheres
[56]; all of these works pertain to the affine differential geometry obtained by equip-
ping a convex set with Blaschke’s equiaffine normal, which is equivariant with respect to
volume-preserving affine transformations. The equiaffine normalization is the most preva-
lent one used in affine differential geometry, and some of the highlights of the resulting
theory include the works by Calabi (see [25, 26]) and Cheng–Yau [32] on classification
of equiaffine spheres. However, we will make the case in this work that a much more
natural normalization for studying the Brunn–Minkowski theory is the centro-affine nor-
malization, which is equivariant with respect to centro-affine transformations (fixing the
origin). In contrast to Blaschke’s equiaffine normalization, where the classification of
non-compact equiaffine spheres has proven to be a major challenge, the centro-affine nor-
malization is in a sense trivial, since the boundary of every K 2 K2

C is a centro-affine
sphere. However, it is precisely this property that makes the centro-affine normalization
so useful for our purposes.

Before describing the relevance and usefulness of the centro-affine normalization to
our setting, one should note that it has already been utilized in convex geometry through
the notion of centro-affine surface area �n.K/, which coincides with the Lp-affine sur-
face area for p D n [49, 50, 74] – see Section 4.6. As is well-known, the centro-affine
surface area is self-dual �n.K/ D �n.Kı/, and furthermore, the centro-affine metric of
a hypersurface is isometric to that of the polar (or dual) hypersurface – see Sections 4.2
and 4.6 for additional self-duality properties enjoyed by the centro-affine normalization,
and for suggestions regarding further research in this direction. In addition, the crit-
ical case p D �n of the Lp-Minkowski problem (1.1) was interpreted in [34] as the
Minkowski problem for the centro-affine Gauss curvature. However, we are not aware of
any other previously known connections between the centro-affine normalization and the
Brunn–Minkowski inequality or any its variants – this appears to be a novel observation,
which is the main insight we would like to put forth and emphasize in this work.
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Our first observation is that the Hilbert–Brunn–Minkowski operator �K precisely
coincides with the centro-affine Laplacian associated with K 2 K2

C. We provide all the
relevant details in Sections 3 and 4, and for now only explain what the latter notion
entails. Any selection of a normal vector field on @K defines a Riemannian metric gK
and a torsion-free affine connection rK which in general is not the Levi-Civita connec-
tion for gK . The Laplacian associated with the given normalization �rK ;gKf is then
defined as the connection divergence divrK of the metric gradient gradgK f (the vec-
tor field obtained by identification with the covector df via the metric gK). In addition,
any (relative) normalization produces a volume measure �K , which in general does not
coincide with the Riemannian volume measure �gK , but is parallel with respect to rK
(rK�K D 0); this allows us to integrate by parts:Z

.��rK ;gKf /h d�K D

Z
gK.gradgK f; gradgK h/ d�K D

Z
f .��rK ;gKh/ d�K :

(1.12)

It turns out that for the centro-affine normalization of @K, defining x itself to be the
normal to @K at x 2 @K, the above objects boil down to some familiar ones from the
Brunn–Minkowski theory (after parametrizing @K on S� via the Gauss map): the centro-
affine volume measure �K coincides (up to constants) with the cone-volume measure VK ,
the Riemannian volume measure �gK for the centro-affine metric gK coincides (up to con-
stants) with the centro-affine surface area measure �n;K , and the centro-affine Laplacian
�rK ;gK coincides with the Hilbert–Brunn–Minkowski operator �K .

In [61, Section 5.1], we had originally (implicitly) identified the metric gK D D2hK
hK

> 0 on S� by starting with the Hilbert–Brunn–Minkowski operator�K , performing inter-
gration by parts in (1.12) with respect to VK and computing the corresponding Dirichlet
form, thereby interpreting �K as the weighted Laplacian on .S�; gK ; VK/. However, it
was not entirely clear whether the choice of measure VK and thus the construction of the
metric gK were canonical, or what was the direct relation between these two objects; we
now finally have a satisfactory answer coming from the centro-affine normalization. In
addition, this gives a satisfactory explanation for the centro-affine equivariance property
of the Hilbert–Brunn–Minkowski operator, originally observed in [61, Section 5.2] fol-
lowing a lengthy computation. Furthermore, we deduce the centro-affine equivariance of
all of the above differential objects (gK , rK , �K , etc.), as well as their behavior under
duality. In particular, we deduce (the known fact) that .S�; gK/ and .S�; gKı/ are iso-
metric, and so any quantity derived from gK is the same for K and Kı (for example,
�n.K/ D

1
n
k�gKk D

1
n
k�gKı k D �n.K

ı/).
One of the key takeaways of our work is that in the context of Brunn–Minkowski the-

ory (and perhaps in other geometric problems), it is actually beneficial to use a calculus
based on a well-suited non-Levi-Civita connection, instead of the usual weighted Levi-
Civita calculus. As already mentioned, the boundary of any K 2 K2

C is a centro-affine
(.n � 1/-dimensional) unit sphere, and so in particular its centro-affine Ricci curvature
is constant and equal to n � 2. We stress that this is in stark contrast to the weighted
Ricci curvature of .S�; gK ; VK/, which will depend on third derivatives of hK and so will
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not be positive in general. A classical theorem of Lichnerowicz [68] states that having
a positive lower bound on the Ricci curvature of the Levi-Civita connection implies a
lower bound on the first non-trivial eigenvalue of the associated Laplace–Beltrami oper-
ator. Lichnerowicz’s proof is an immediate consequence of the L2-method and an inte-
grated Bochner formula for the Levi-Civita connection. It is possible to extend Bochner’s
formula to completely general affine connections, deriving an “asymmetric Bochner for-
mula”. Applying this to the centro-affine connection rK , integrating with respect to �K ,
and using that the centro-affine Ricci curvature is n � 2, we obtain in Section 5 the fol-
lowing centro-affine Bochner formula:Z

.�Kf /
2 d�K �

Z
kHess�K f k

2
gK
d�K D .n � 2/

Z
jgradgK f j

2 d�K

(here Hess�K f denotes the Hessian with respect to the conjugate connection to rK – see
Sections 3 and 4). As an immediate consequence, by verbatim repeating Lichnerowicz’s
argument, we obtain a new proof of the Brunn–Minkowski inequality (in its equivalent
infinitesimal form) �1.��K/D n� 1, including the more delicate characterization of the
corresponding n-dimensional eigenspace (originally due to Hilbert).

Using the centro-affine Bochner formula, it easily follows that the conjectured even
log-Brunn–Minkowski / log-Minkowski inequalities for K 2 K2

C;e are equivalent to the
following new inequality, which should hold for all even test functions f :Z

kHess�K f k
2
gK
d�K � 2

Z
jgradgK f j

2 d�K : (1.13)

A particularly attractive feature of this new formulation is that the above inequality always
holds for any K 2K2

C and (not necessarily even) test function f with constant 1 instead
of 2 above, in which case it becomes equivalent to the usual (infinitesimal) Brunn–Min-
kowski inequality:Z
z d�K D 0 H)

Z
.��Kz/z d�K D

Z
jgradgK zj

2 d�K � .n � 1/

Z
jzj2 d�K

(1.14)

(see Remark 5.6). Consequently, the challenge is to use the evenness of the data in (1.13)
to get a two-fold increase in the “trivial” estimate, a factor which seems less mysteri-
ous than our previous local formulation from [61], where the goal was to pass from
the known �1.��K/ D n � 1 to the conjectured �1;e.��K/ � n. This is now very
reminiscent of the challenge in the resolution of the B-conjecture by Cordero-Erausquin–
Fradelizi–Maurey [38], where the evenness of the data was used to gain a factor of 2
in the corresponding even eigenvalue estimate. In some sense, the centro-affine normal-
ization allows us to implement the strategy from [38], but we are still missing the final
ingredient (1.13). Roughly speaking, the difficulty lies in the incompatibility between the
centro-affine and Euclidean metrics, and so in contrast to the Euclidean setting of [38],
applying (1.14) to zv D df .v/ for some fixed vector v 2 S and averaging over v does
not yield the expressions appearing in (1.13). We are however able to verify (1.13) under
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the assumptions of Corollary 1.3 (and more generally, Theorem 6.3). To this end, the
centro-affine geometric interpretation plays a crucial role.

The rest of this work is organized as follows. In Section 2 we begin with some notation
and required preliminaries, establishing in particular Theorem 1.1. In Section 3, we pro-
vide the required background from affine differential geometry. In Section 4, we specialize
the general theory to the centro-affine normalization for several useful parametrizations
of @K, and compute various differential objects of interest. In Section 5, we derive the
centro-affine Bochner formula, the equivalent local formulation (1.13), and a proof of the
classical Brunn–Minkowski à la Lichnerowicz. In Section 6 we provide a proof of Theo-
rem 1.2. In Section 7, we obtain our isomorphic and isometric Theorems 1.5 and 1.7.

2. Preliminaries

We begin with some preliminaries, referring to [61, 96] and the references therein for
additional information.

2.1. Notation

Let E D En denote an n-dimensional vector space over R, which we will often iden-
tify with Rn via a fixed basis. The dual space to E is E� D .Rn/�, which we iden-
tify with E via a fixed isomorphism i W E ! E�. By abuse of notation, we also use
i W E� ! E to denote the inverse isomorphism, and use h�; �i to denote both the natural
pairing between E� and E and the induced Euclidean scalar product on E and E� via i
(so that hi.v/; i.w/i D hi.v/; wi D hv; wi for all v; w 2 E). We denote the Euclidean
norm by jxj D

p
hx; xi. The Euclidean unit spheres in .Rn; h�; �i/, E and E� are denoted

by Sn�1, S and S�, respectively; they are equipped with their induced Lebesgue measures
m, mS and mS� (or simply m).

A convex body in Rn is a convex, compact set with non-empty interior. We denote by
K D K.E/ the collection of convex bodies in E having the origin in their interior. The
support function hK W E� ! RC of K 2K.E/ is defined as

hK.x
�/ WD max

x2K
hx�; xi; x� 2 E�:

It is easy to see that hK is continuous, convex and positive outside the origin. Clearly, it
is 1-homogeneous, so we will mostly consider its restriction to S�. Conversely, a convex
1-homogeneous function h W E�! RC which is positive outside the origin is necessarily
a support function of someK 2K . The dual bodyK� 2K.E�/ ofK 2K.E/ is defined
as the convex body inE� given by the level set ¹hK � 1º; duality implies that .K�/�DK.
The Minkowski gauge function of K 2K.E/ is defined as

kxkK WD inf ¹t > 0 I x 2 tKº; x 2 E:

Note that hK D k � kK� on E� and hK� D k � kK on E. Given K 2K.E/, we define the
polar body Kı 2K.E/ by identifying it with K� 2K.E�/ via i , i.e. i.Kı/ D K�. The
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Minkowski sum K1 CK2 of two convex bodies is defined as ¹x1 C x2 I xi 2 Kiº. Note
that this operation is additive on the level of support functions: hK1CK2 D hK1 C hK2 .

We denote by C k.Sn�1/ and C k;˛.Sn�1/, k D 0; 1; 2; : : : and ˛ 2 .0; 1/, the space
of k-times continuously and ˛-Hölder differentiable functions on Sn�1, respectively,
equipped with their usual topologies. When k D 0, we simply write C.Sn�1/ and
C ˛.Sn�1/. It is known [96, Section 1.8] that convergence of elements of K in the Haus-
dorff metric is equivalent to convergence of the corresponding support functions in the
C.S�/ norm.

Given a smooth differentiable manifold M , the tangent and cotangent bundles are
denoted by TM and T �M , respectively, and �k.TM/ and �k.T �M/ denote the col-
lection of C k-smooth vector and covector fields on M . We use X i and !j to denote
X 2 �k.TM/ and ! 2 �k.T �M/ in a local frame, and similarly for higher order con-
travariant and covariant tensors. A metric .0; 2/ tensor g is denoted by gij , and its inverse
.2; 0/ tensor by gij , so that gijgjk D ıik , the Kronecker delta. Given a C 1-smooth func-
tion f on M , we use fj to denote the 1-form .df /j in a local frame.

The standard flat affine connection on Rn is denoted by ND. Given a Euclidean struc-
ture h�; �i on Rn and a closed smooth hypersurface H with outer unit normal nH in
.Rn; h�; �i/, we denote by Hr the induced Euclidean connection on H and by IIH the
corresponding second fundamental form, given by the Gauss equation

NDUV D
H
rUV � IIH .U; V /nH ; U 2 TH; V 2 �1.TH/: (2.1)

The induced Euclidean metric ıH on H is given by ıHp .u; v/ D hu; vi for u; v 2 TpH .
As usual, the (non-tensorial) Christoffel symbols associated to a local coordinate frame
¹e1; : : : ; en�1º are defined via

H
rei ej D

H�kij ek ;

and for any smooth function f on H we have

H
r
2
ijf D @

2
ijf �

H�kij @kf:

In addition, for any smooth extension of f to a neighborhood of H ,

ND2f .u; v/ D H
r
2f .u; v/C IIH .u; v/nHp .f /; u; v 2 TpH: (2.2)

Given h 2 C 2.S�/, we extend h as a 1-homogeneous function on E�, and define the
symmetric 2-tensor D2h on S� as the restriction of ND2h onto TS�. Recalling (2.2) and
using Euler’s identity for 1-homogeneous functions nS�.h/ D h NDh;nS�i D h, it follows
that in a local frame ¹e1; : : : ; en�1º on S�,

D2
ijh D

ND2h.ei ; ej / D
S�
r
2
ijhC hı

S�
ij ; i; j D 1; : : : ; n � 1:

Denoting by C k>0.S
�/ the subset of positive functions in C k.S�/, note that h 2 C 2>0.S

�/

is the support function of K 2K if and only if D2hK � 0.
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We denote by Km
C the subset of K of convex bodies with Cm-smooth boundary and

strictly positive curvature. By [96, pp. 115–116, 120–121], form� 2,K 2Km
C if and only

if hK 2 Cm>0.S
�/ and D2hK > 0. Similarly, K

m;˛
C denotes the subset of Km

C of convex
bodies with Cm;˛-smooth boundary (˛ 2 .0; 1�), and form � 2,K 2K

m;˛
C if and only if

hK 2 C
m;˛
>0 .S

�/ andD2hK > 0. Consequently, by identifying elements of Km
C and K

m;˛
C

with their support functions whenever m � 2, we equip these spaces with their Cm and
Cm;˛ topologies, respectively. It is well-known that K1C is dense in K with respect to
the Hausdorff metric (e.g. [96, pp. 184–185]).

A convex body K is called origin-symmetric if K D �K. We will always use Se to
denote the origin-symmetric (or even) members of a set S , e.g. Ke and K2

C;e denote the
subsets of origin-symmetric bodies in K and K2

C, respectively, and C 2e .S
�/ denotes the

subset of even functions in C 2.S�/.
We use GL.E/ to denote the group of non-singular linear (or centro-affine) transfor-

mations on E, and SL.E/ to denote the subgroup of volume and orientation preserving
elements. When E D Rn, we simply write GLn.

2.2. Brunn–Minkowski theory

Given a convex body K in Euclidean space .En; h�; �i/, its surface-area measure SK is
defined as the push-forward under the Gauss map n@K W @K! S� of Hn�1j@K . Recall that
n@K denotes the outer unit normal to K and Hn�1 is the .n � 1/-dimensional Hausdorff
measure. When K 2K2

C, we have

SK D det.D2hK/m:

More generally, Lutwak [73] introduced the Lp surface-area measure of K as

SpK WD h
1�p
K SK :

The cone-volume measure VK on S� is defined as

VK D V
S�
K WD

1

n
hKSK I

it is obtained by first pushing forward the Lebesgue measure on K via the cone map
K 3 x 7! x=kxkK 2 @K, and then pushing forward the resulting cone measure V @KK on
@K via the Gauss map n@K W @K ! S�. For completeness, note that if we instead push
forward the Lebesgue measure on K via the radial-projection map K 3 x 7! x=jxj 2 S,
we obtain

V S
K WD

1

n

1

k�knK
m.d�/:

Given two convex bodies K0; K1 in En, the classical Brunn–Minkowski inequality
states that

V.K0 CK1/
1
n � V.K0/

1
n C V.K1/

1
n ; (2.3)



E. Milman 16

where V denotes volume (Lebesgue measure) and K0 CK1 denotes the Minkowski sum
of K0 and K1. The Lp-Minkowski sum a �K0 Cp b �K1 of K0; K1 2 K (a; b � 0) was
defined by Firey for p � 1 [41], and extended by Böröczky–Lutwak–Yang–Zhang [18,19]
to all p 2 R, as the largest convex body L (with respect to inclusion) such that

hL � .ah
p
K0
C bh

p
K1
/1=p

(with the case p D 0 interpreted as haK0h
b
K1

when a C b D 1). Note that for p � 1 one
has equality above, that the case p D 1 coincides with the usual Minkowski sum, and that
for p < 1 the resulting convex body a �K0 Cp b �K1 is the Alexandrov body associated
to the continuous function on the right-hand side.

As a consequence of the Brunn–Minkowski and Jensen inequalities, Firey showed that
for any K0; K1 2K and p � 1,

8� 2 Œ0; 1�; V ..1 � �/ �K0 Cp � �K1/
p
n � .1 � �/V.K0/

p
n C �V.K1/

p
n : (2.4)

It is not hard to show that the above statement for any p<1 is false for generalK0;K12K .
However, it was conjectured by Böröczky–Lutwak–Yang–Zhang [18] that for origin-
symmetric K0; K1 2Ke , (2.4) does in fact hold for all p 2 Œ0; 1/ – we refer to this as the
(even) Lp-Brunn–Minkowski conjecture. The validity of (2.4) for all K0; K1 2Ke and a
given p implies the validity for all K0; K1 2 Ke and any q > p, and so the case p D 0,
called the (even) log-Brunn–Minkowski conjecture, is the strongest in this hierarchy. As
described in Theorem 1.1 from the Introduction, the even Lp-Brunn–Minkowski conjec-
ture is intimately related to the evenLp-Minkowski inequality (1.4) and to the uniqueness
question in the even Lp-Minkowski problem (1.2). It turns out that the conjecture is also
related to a certain spectral problem, described next.

2.3. Hilbert–Brunn–Minkowski operator

Following the work of [37], the local version of the Lp-Brunn–Minkowski inequality
(2.4) was studied in our previous work with Kolesnikov [61]. GivenK 2K2

C, the Hilbert–
Brunn–Minkowski operator �K W C 2.S�/! C.S�/ was defined in [61] as

�Kz D �
S�
K z WD ..D2hK/

�1/ijD2
ij .zhK/ � .n � 1/z

D ..D2hK/
�1/ij .hK

S�
r
2
ij z C .hK/izj C .hK/j zi /:

Note that we are using a slightly different normalization than in [61], where the Hilbert–
Brunn–Minkowski operator (denotedLK) was defined asLK WD 1

n�1
�K . Introducing the

following Riemannian (positive-definite) metric on S�:

gK D g
S�
K WD

D2hK

hK
> 0; (2.5)

we may also write

�Kz D g
ij
K .

S�
r
2
ij z C .log hK/izj C .log hK/j zi /: (2.6)
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Clearly, �K is an elliptic second order differential operator with vanishing zeroth order
term, and in particular �K1 D 0. Up to gauge transformations, �K coincides with the
operator defined by Hilbert in his proof of the Brunn–Minkowski inequality [13].

It was shown in [61] that the following integration-by-parts formula holds:Z
S�
.��Kz/w dVK D

Z
S�
gK.rz;rw/dVK D

Z
S�
.��Kw/z dVK 8z;w 2 C 2.S�/:

We use the notation gK.rz;rw/ D g
ij
Kziwj and jrzj2gK D gK.rz;rz/. It follows that

we may interpret �K as the weighted Laplacian on the weighted Riemannian manifold
.S�; gK ; VK/ (see e.g. [59,60]). Consequently,��K is a symmetric positive semi-definite
operator on L2.VK/. It uniquely extends to a self-adjoint positive semi-definite opera-
tor with Sobolev domain H 2.S�/ and compact resolvent, which we continue to denote
by ��K . Its (discrete) spectrum is denoted by �.��K/, and its first non-zero eigenvalue
is denoted by �1.��K/.

As already known to Minkowski, the Brunn–Minkowski inequality (2.3) is equivalent
to its local form (when K1 is an infinitesimal perturbation of K0). This local form was
interpreted by Hilbert in a spectral language as

�1.��K/ � n � 1;

or equivalentlyZ
S�
z dVK D 0 H)

Z
S�
.��Kz/z dVK � .n � 1/

Z
S�
z2 dVK 8z 2 C 2.S�/:

Hilbert showed that in fact �1.��K/ D n� 1, characterizing in addition the correspond-
ing eigenspace (see [61, Section 5] or Sections 4.5 and 5.3 for more information).

Now assume in addition thatK is origin-symmetric, i.e.K2K2
C;e . Denote byH 2

e .S
�/

the even elements of the Sobolev space H 2.S�/ and by 1? those elements f for whichR
f dVK D 0. The first non-trivial even eigenvalue of ��K is defined as

�1;e.��K/ WD min �.��K jH2e .S�/\1?/

D inf
²R

S� jrzj
2
gK
dVKR

S� z
2 dVK

I 0 ¤ z 2 C 2e .S
�/;

Z
S�
z dVK D 0

³
: (2.7)

It was shown in [61] that the validity of the local form of the even Lp-Brunn–Minkowski
inequality (2.4) for K 2K2

C;e is equivalent to the validity of the statement

�1;e.��K/ � n � p:

That the validity of the local form for all K 2 K2
C;e implies the validity of the global

form (2.4) for allK0;K1 2Ke is trivial for p � 1 but not obvious at all when p < 1. The
latter was conjectured in [61] and proved by Putterman [91], after a prior local-to-global
result for the uniqueness question in the even Lp-Minkowski problem by Chen–Huang–
Li–Liu [27].
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2.4. Proof of Theorem 1.1

We can now finally formulate an expanded version of Theorem 1.1 from the Introduction,
utilizing the full array of results from [18,19,22,27,61], which we will require to establish
our results.

Theorem 2.1. For a fixed p 2 .�n; 1/, statements (1)–(3) of Theorem 1.1 are equivalent
to each other and to the following additional statements .with the usual interpretation
when q D 0/:

(2b) For all q 2 .p; 1/ and K;L 2Ke , the even Lq-Brunn–Minkowski inequality holds:

8� 2 Œ0; 1�; V ..1 � �/ �K Cq � � L/ �
�
.1 � �/V.K/

q
n C �V.L/

q
n

�n
q ; (2.8)

with equality for some � 2 .0; 1/ if and only if L D cK for some c > 0.

(3b) For all q 2 .p; 1/ and K 2K
2;˛
C;e , the even Lq-Minkowski inequality holds:

8L 2Ke;
1

q

Z
S�
h
q
L dSqK �

n

q
V.K/1�

q
nV.L/

q
n ; (2.9)

with equality if and only if L D cK for some c > 0.

(4) For all K 2K
2;˛
C;e , �1;e.��K/ � n � p.

Moreover, let F �K
2;˛
C;e be any subfamily containing Bn2 which is path-connected in

the C 2;˛ topology. Namely, for any K 2 F , there exists Œ0; 1� 3 t 7! Kt 2 F , a contin-
uous path in the C 2;˛ topology such that K0 D Bn2 and K1 D K. Then the implications
(4))(1))(3b) remain valid if we replace K

2;˛
C;e in these statements by F .

Before providing a proof of Theorem 2.1, we need to first collect several known ingre-
dients from the literature. First, as explained in [82, Section 6], the standard regularity
theory of the Monge–Ampère equation implies that any solution L 2K to

SpL D fm; f 2 C ˛.S�/; f > 0; (2.10)

necessarily satisfies L 2 K
2;˛
C (note that without a priori assuming that L 2 K , so

that hL > 0 on S�, the asserted regularity is false and L may not be C 2-smooth [34,
Section 6]). In our context, this means that whenever K 2 K

2;˛
C;e , uniqueness in the Lp-

Minkowski problem
SpL D SpK

is the same when considering solutions L in either of the classes Ke or K
2;˛
C;e .

Next, we need the following local uniqueness statement from [61, Theorem 11.2]:

Theorem 2.2 (Kolesnikov–Milman). Assume that the local even Lp-Brunn–Minkowski
inequality (5.11) holds for K 2 K2

C;e and some p0 < 1. Then for any p 2 .p0; 1/, the
even Lp-Minkowski problem has a locally unique solution in a neighborhood of K in the
following sense: there exists a C 2e -neighborhood NK;p of K in K2

C;e such that

8L1; L2 2 NK;p; SpL1 D SpL2 H) L1 D L2: (2.11)
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The next ingredient we need was obtained in [42] (for p D 0 and L 2 K1e ), [8] (for
p 2 Œ0; 1/ and L 2Ke) and finally completely resolved in [22] (see also [5,33,35,47] for
additional contributions):

Theorem 2.3 (Firey, Andrews–Guan–Ni, Brendle–Choi–Daskalopoulos). Let�n<p<1
and c > 0. Then the Lp-Minkowski problem

L 2K; SpL D c �m

has a unique solution L given by a centered Euclidean ball.

An additional crucial ingredient is the following theorem, which is the main new
ingredient in the results of [27]; as it is not explicitly stated in the manner formulated
below, we sketch its proof for completeness.

Theorem 2.4 (Chen–Huang–Li–Liu). Let p < 1, and let Œ0; 1� 3 t 7! Kt 2 K
2;˛
C;e be a

continuous path in the C 2;˛ topology. Assume that the even Lp-Minkowski problem has
a globally unique solution for K0:

8L 2K
2;˛
C;e; SpL D SpK0 H) L D K0:

Assume that for all t 2 Œ0; 1�, the even Lp-Minkowski problem has a locally unique
solution in a C 2;˛e -neighborhood NKt ;p of Kt in the sense of (2.11). Then the even Lp-
Minkowski problem has a globally unique solution for K1:

8L 2K
2;˛
C;e; SpL D SpK1 H) L D K1:

Sketch of proof. Let K 2K
2;˛
C;e , and assume that there exists a C 2;˛e -neighborhood NK;p

of K such that (2.11) holds. It was shown in [27, Lemma 3.1] that if the equation SpL D
SpK has a globally unique solutionLDK among allL 2K

2;˛
C;e , then the equation SpLD

Sp QK has a globally unique solution L D QK for all QK in a C 2;˛e sub-neighborhood of K
inNK;p . On the other hand, as explained in the proof of [27, Theorem 1.4], it follows from
[27, Lemmas 3.2–3.4] that if the equation SpL D SpK has multiple distinct solutions
L 2K

2;˛
C;e , then the equation SpL D Sp QK also has multiple distinct solutions for all QK in

a C 2;˛e sub-neighborhood of K in NK;p .
Now apply the method of continuity following [27]: Define I � Œ0; 1� to be the subset

of t ’s for which SpLD SpKt has a globally unique solutionLDKt among allL 2K
2;˛
C;e .

The results above imply that I is both relatively open and closed in Œ0; 1�, and hence I
is either empty or the entire Œ0; 1�. But our assumption was that 0 2 I , and consequently
I D Œ0; 1�.

Finally, we will use the existence of a global minimizer in the following optimization
problem [34, Section 5]. Once it is shown that a global minimum is attained, a very general
variational argument [73, Theorem 3.3], [19, Lemma 4.1] ensures that any local minimizer
satisfies the corresponding Euler–Lagrange equation (2.12) (compare with the original
argument of [34, Theorem D]):



E. Milman 20

Theorem 2.5 (Chou–Wang, Lutwak, Böröczky–Lutwak–Yang–Zhang). Let f 2 C ˛e .S
�/

be a strictly positive even density, and denote � D fm. Given �n < p < 1, consider the
0-homogeneous functional

Ke 2 L 7! F�;p.L/ WD

8̂̂̂<̂
ˆ̂:

1
p

R
h
p
L d�

V.L/p=n
; p ¤ 0;

exp.
R

log hL d Q�/
V.L/1=n

; p D 0;

where Q� denotes the normalized measure �=k�k. Then F�;p attains a global minimum.
Moreover, any local minimizer L of F�;p .in the Hausdorff topology/ satisfies

SpL D c � � (2.12)

for some c > 0. In particular, by (2.10), necessarily L 2K
2;˛
C;e .

Remark 2.6. Without the origin-symmetry assumption above, it is imperative to incor-
porate an additional maximization over all possible translations of L so that the origin
remains in L, rendering the analysis much more delicate [11, 28, 29, 34]. Nevertheless,
one can still guarantee the existence of a global minimizer under even more general con-
ditions on � than the ones stated above: this was shown in [34] for densities f satisfying
0 < c � f � C , in [11] for densities f 2 L

n
nCp .m/ when �n < p < 0, and in [28,29] for

finite Borel measures � which are not concentrated on any hemisphere when p 2 .0; 1/
or which satisfy the subspace concentration condition when p D 0.

We can now finally provide a proof of Theorem 2.1.

Proof of Theorem 2.1. Statement (1) implies (3b) for each individual q 2 .�n; 1/ and
K 2 K

2;˛
C;e . To see this, denote � D SqK, and note that � D fm with a positive density

f 2 C ˛e .S
�/. Recall from Theorem 2.5 that a global minimizer of Ke 3 L 7! F�;q.L/

always exists, and that any global minimizer L must satisfy SqL D c � SqK and is there-
fore in K

2;˛
C;e . Consequently, if statement (3b) regarding the Lq-Minkowski inequality or

its cases of equality were wrong, it would follow that there exists a global minimizer
L 2 K

2;˛
C;e which is different from K such that (after rescaling) SqL D SqK, in contra-

diction to the uniqueness in the even Lq-Minkowski problem asserted in (1).
The converse implication (3b))(1) also holds for each individual q and both pairs

.K; L/ and .L; K/, for any fixed K; L 2 Ke . While we do not require this here, we
provide a quick proof for completeness following Lutwak [73]. Let q ¤ 0; the case q D 0
is treated in an identical manner. Assume that (3b) holds for both pairs .K;L/ and .L;K/
and that SqK D SqL. Denote Vq.K;L/ WD 1

q

R
S� h

q
L dSqK. Then by (3b),

Vq.K;L/ � Vq.K;K/ D Vq.L;K/ � Vq.L;L/ D Vq.K;L/:

Consequently, equality holds throughout, and since n
q
V.L/ D Vq.L; L/ D Vq.K;K/ D

n
q
V.K/, it follows that we have equality in (2.9), and hence L D cK for some c > 0. But

since V.L/ D V.K/, we conclude that L D K, as asserted in (1).
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Statement (3b) obviously implies (3) for generalK;L2Ke after recalling Remark 1.4
and taking the limit as q& p. Similarly, statement (2b) trivially implies (2) by taking the
limit q& p. The equivalence of statements (3) and (2) was shown by Böröczky–Lutwak–
Yang–Zhang [18]. That the global statement (2) implies the local one in (4) was shown in
[61]. The local-to-global converse direction was established by Putterman [91], and also
follows by the implications (4))(1))(3b))(3))(2).

That (3) implies (3b) for any q > p is a simple consequence of Jensen’s inequality
(after rescaling K for convenience so that Vol.K/ D 1):�

1

n

Z
S�
h
q
L dSqK

�1=q
D

�Z
S�

�
hL

hK

�q
dVK

�1=q
�

�Z
S�

�
hL

hK

�p
dVK

�1=p
D

�
1

n

Z
S�
h
p
L dSpK

�1=p
: (2.13)

To establish the characterization of equality in (3b), one may argue as in the proof of [18,
Theorem 1.8]. Indeed, by (2.13) and (3) we have, for allK 2K

2;˛
C;e (say with Vol.K/D 1)

and L 2Ke ,�
1

n

Z
S�
h
q
L dSqK

�1=q
�

�
1

n

Z
S�
h
p
L dSpK

�1=p
� Vol.L/1=n:

Consequently, if equality holds between the leftmost and rightmost terms, we must have
equality in Jensen’s inequality (2.13), and hence hL and hK must be proportional VK-a.e.
But as K 2 K2;˛ , VK is absolutely continuous with respect to m, and so by continuity
hL.�/ D chK.�/ for some c > 0 and all � 2 S�.

Similarly, it is well-known and easy to check (see [41, Theorem 2]) that (2)
implies (2b), after rescaling K and L by homogeneity so that Vol.K/ D Vol.L/ D 1

and noting that by Jensen’s inequality, whenever q > p,

.1 � �/ �K Cq � � L � .1 � �/ �K Cp � � L; (2.14)

with equality for some � 2 .0; 1/ if and only if K and L are dilates of each other. If
equality holds in (2b) for some �0 2 .0; 1/ and K0; L0 2Ke , then after rescaling K0; L0
into K; L such that Vol.K/ D Vol.L/ D 1, it follows by homogeneity that there exists
� 2 .0; 1/ so that equality holds in (2b) for �, K and L. By (2.14) and (2) we know that

Vol..1 � �/ �K Cq � � L/ � Vol..1 � �/ �K Cp � � L/ � 1;

and as equality holds between the leftmost and righmost terms, we must have equality in
(2.14) (up to null-sets, and as the corresponding compact sets have non-empty interior,
pointwise equality). It follows that K and L must be dilates of each other, and hence so
are K0 and L0.

It remains to show that statement (4) implies (1) for a path-connected F �K
2;˛
C;e con-

taining Bn2 . Given K 2 F , there exists a continuous path in F (equipped with the C 2;˛

topology), denoted Œ0;1� 3 t 7!Kt , such thatK0DBn2 andK1DK. Fix q 2 .p;1/. State-
ment (4) and Theorem 2.2 imply that for all t 2 Œ0; 1�, the even Lq-Minkowski problem
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has a locally unique solution in a neighborhood ofKt in the sense of (2.11). Consequently,
as K0 D Bn2 satisfies the global uniqueness in the even Lq-Minkowski problem by The-
orem 2.3, it follows by Theorem 2.4 that K1 D K also satisfies the global uniqueness
in the even Lq-Minkowski problem in the class K

2;˛
C;e . As explained at the beginning of

this subsection, the regularity theory for (2.10) implies that the uniqueness extends to the
entire Ke , thereby establishing (1).

Remark 2.7. An immediate corollary of Theorem 2.1 is that uniqueness in the even Lp-
Minkowski problem (1.7) holds for all p 2 .�n; 1/ wheneverK is a centered ellipsoid E .
Indeed, it is well-known that �1;e.��Bn

2
/D 2n, as�Bn

2
coincides with the usual Laplace–

Beltrami operator on S� (see e.g. [61]). As the spectrum of��K is invariant under centro-
affine transformations [61, Section 5], it follows that �1;e.��E/ D 2n for all centered
ellipsoids E . Hence, applying Theorem 2.1 to the family F D ¹Eº �K

2;˛
C;e of all centered

ellipsoids, the implication (4))(1) concludes the proof.

3. Affine differential geometry

In this section, we collect facts from affine differential geometry which we will need for
this work; note that our sign choices in various places may be different from the standard
ones. We refer to [12,85] for a detailed exposition and further information regarding affine
differential geometry. For a development of the theory from the point of view of relative
normalizations, we refer to [65,86,97], and from the point of view of statistical structures,
we refer to [87, 88].

3.1. Normalization and structure equations

Recall that E D En denotes an n-dimensional linear vector space over R. More general
treatments assume thatE is an n-dimensional affine space and distinguish betweenE and
its tangent spaces, but for simplicity we will not require this here and identify TxE withE.
The space E is equipped with its standard flat affine connection ND and a determinant
volume form Det (note that all determinant volume forms coincide up to a scalar multiple).

LetM DM n�1 denote a smooth connected .n� 1/-dimensional differentiable mani-
fold. In our context,M will always be orientable and closed, i.e. compact without bound-
ary. Let x WM n�1!En be a smooth immersion, that is, a smooth map such that dpx is of
maximal rank for all p 2M . In our context, x WM !E will always be an embedding of a
convex hypersurface with strictly positive curvature .“strongly convex”/. Let � WM ! E

denote a smooth transversal normal field to x, meaning that rank.dpx; �.p// D n for all
p 2M . The transversal normal � induces a volume form �� on M :

��.e1; : : : ; en�1/ WD Det.dx.e1/; : : : ; dx.en�1/; �/; ei 2 TpM:

It also induces a connection r D r� and a bilinear form g D g� on M via the Gauss
structure equation:

NDUdx.V / D dx.r
�
UV / � g

�.U; V /�; U 2 TM; V 2 �1.TM/: (3.1)
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It turns out that r� is always a torsion-free affine connection, and that g� is a symmetric
.0; 2/ tensor, which is called the second fundamental form. In our context, since x is
strongly convex, g� is always definite, and so multiplying � by �1, we can always make
sure that g� is positive-definite, and hence defines a Riemannian metric on M .

In addition, � induces a .1; 1/ tensor S D S� W TM ! TM called the shape operator
and a 1-form �� on M via the Weingarten structure equation:

d�.V / D dx.S�.V //C ��.V /�; V 2 TM: (3.2)

3.2. Conormalization and structure equations

The dual space toE is denoted byE�, and h�; �i WE� �E!R denotes the corresponding
pairing. E� is equipped with the same standard flat connection ND and the dual volume
form Det�, uniquely defined by requiring that:

Det�.w1; : : : ; wn/Det.v1; : : : ; vn/ D det..hwi ; vj i/ij / 8wi 2 E�; vj 2 E;

where det is the usual n by n determinant.
A conormal field �� W M ! E� is a smooth vector field such that h��; dxi D 0. We

will always normalize �� so that in addition h��; �i D 1; since rank.dx; �/ D n, we see
that � determines �� uniquely.

Observe that
g�.u; v/ D hd��.u/; dx.v/i 8u; v 2 TpM I

in particular, the right-hand side is symmetric in u; v. Indeed, using that h��; dxi D 0

twice and (3.1), we have, for U 2 TM; V 2 �1.TM/,

hd��.U /; dx.V /i D U.h��; dx.V /i/ � h��; NDUdx.V /i

D �h��; dx.r
�
UV / � g

�.U; V /�i D h��; �ig�.U; V /:

The conormal field �� induces a volume form ��
�

on M :

��� .e1; : : : ; en�1/ WD Det�.d��.e1/; : : : ; d��.en�1/; ��/; ei 2 TpM:

Since we assume that x is strongly convex, it follows that �� WM ! E� is an immersion,
and that �� is transversal to ��.M/; in particular, ��

�
is non-trivial.

Repeating the same construction as before, �� induces a torsion-free affine connection
r� D .r�/� and a symmetric .0; 2/ tensor OS D OS� called the Weingarten form, via the
Gauss structure equation:

NDUd�
�.V / D d��..r�/�UV / �

OS�.U; V /��; U 2 TM; V 2 �1.TM/:

The Weingarten form and the shape operator are related by

OS.U; V / D g.S.U /; V /:
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3.3. Affine and equiaffine invariance

.M; �; ��/ is called a normalization of the hypersurface x WM ! E.
Let ˛ W E ! E be a regular affine transformation given by ˛z D Az C b. Then the

hypersurface x with normalization .�; ��/ and the hypersufrace ˛x with normalization
.A�;A����/ induce the following exact same structures onM : r, r�, g, � , S and OS . We
will say that these structures are affine-invariant.

Note that the volume forms � and �� are invariant under the above transformations
only when detA D 1, i.e. when ˛ belongs to the unimodular (or equiaffine) group – we
will say in this case that they are equiaffine-invariant.

3.4. Relative normalization

The transversal normal � is called a relative normal, and .M;�/ is called a relative normal-
ization, if the 1-form �� from the Weingarten equation (3.2) vanishes identically: �� D 0.
The following statements are easily shown to be equivalent:

(1) � is a relative normal:

d�.V / D dx.S�.V //; 8V 2 TM: (3.3)

(2) � is equiaffine, meaning that
r
��� D 0:

Note that in general one always has r��� D ���� . We will not use the term equiaffine
in this context, since it may be confused with Blaschke’s notion of affine normal,
which is a particular choice of relative normalization described below.

(3) The cubic formA WD �1
2
r�g� is a totally symmetric .0; 3/ tensor. Since g� is already

symmetric, it is enough to verify the symmetry with respect to the first two variables:

.r
�
Xg

�/.Y;Z/ D .r
�
Y g

�/.X;Z/ 8X; Y;Z 2 TpM: (3.4)

A torsion-free affine connection r on a Riemannian manifold .M; g/ satisfying the
Codazzi equation (3.4) is called a statistical connection for g, and .g;r/ is called
a statistical structure on M . This nomenclature is derived from the influential work
of Amari (see e.g. [2, 3]) regarding applications of such structures in statistics, but is
otherwise highly misleading, and so we will mostly avoid using it here.

For a strongly convex hypersurface there are inifinitely many different relative nor-
malizations. As for the conormal ��, it turns out that we always have

.r�/���� D 0;

i.e. the conormal always gives rise to a relative (or equiaffine) conormalization .M; ��/.
Recall that h��; dxi D 0. For a relative normalization, we also have the important

property
hd��; �i D 0:

Indeed, this follows by differentiating h��; �i D 1 and using d� D dx ı S� .
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From now on we assume that .M; �; ��/ is a relative normalization of the hypersur-
face x.

3.5. Conjugation via the metric

The connections r D r� and r� D .r�/� are conjugate connections with respect to
g D g� , i.e. they satisfy

Ug.V1; V2/ D g.rUV1; V2/C g.V1;r
�
UV2/ 8U 2 TM 8V1; V2 2 �

1.TM/:

In a local frame, it is straightforward to check that this is equivalent to

r
�
i V

j
D gjari .gabV

b/; r�i !j D gjari .g
ab!b/: (3.5)

Denoting by rg the Levi-Civita connection associated to the metric g, namely the unique
torsion-free affine connection which is metric (rgg D 0), it easily follows that

r
g
D

1
2
.r C r�/:

In addition, the volume forms � D �� and �� D ��
�

are conjugate with respect to the
Riemannian volume form �g :

�.e1; : : : ; en�1/�
�.e1; : : : ; en�1/ D det..g�.ei ; ej //ij / D �2g.e1; : : : ; en�1/: (3.6)

Here and elsewhere, �g denotes the Riemannian volume form associated to the metric g.

3.6. Differential calculus

Recall that the divergence of a vector field X on M relative to an affine connection r is
defined as

divr X WD tr¹Y 7! rYXº D riX i ;

and that the Hessian of a function f 2 C 2.M/ is defined as

Hessr f .X; Y / WD r2X;Y f D .rXdf /.Y / D X.Y.f // � .rXY /.f /:

The Hessian Hessr f is a .0;2/ tensor, which is in addition symmetric if the connectionr
is torsion-free. By definition rXf WD X.f / D df .X/.

Assume that a volume form � satisfies r� D 0. The divergence theorem implies thatR
M

divr X d� D 0, and so we have the integration-by-parts formulaZ
M

f divr X d� D �
Z
M

rXf d� 8X 2 �1.TM/ 8f 2 C 1.M/:

While an affine connection is the only structure needed to define the above differential
operators, this is not the case whenever a trace over two simultaneouesly covariant or
contravariant coordinates is required; in particular, there is no intrinsic definition of the
Laplacian of f 2 C 2.M/ as the trace of its Hessian. To make sense of this, one needs an
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extra metric structure g on M . In that case, we denote by gradg f 2 �
1.TM/ the unique

vector field satisfying

g.gradg f;X/ D X.f / 8X 2 TM;

and define
�r;gf WD divr gradg f:

In particular, we have the following integration-by-parts formula for all f; h 2 C 2.M/:Z
M

.�r;gf /h d� D �

Z
M

.gradg f /.h/ d� D �
Z
M

g.gradg f; gradg h/ d�

D

Z
M

f .�r;gh/ d�:

In our setting, all of the above applies to both pairs .r� ; ��/ and ..r�/�; ��
�
/.

In a local frame

.gradg f /
i
D gijfj ; �r;gf D ri .g

ijfj /:

Using (3.5), we see that

�r;gf D ri .g
ijfj / D g

ij
r
�
i fj D trg Hessr

�

f;

where r� is the connection g-conjugate to r. In our setting, this applies to our g� -
conjugate connection pair r� and .r�/�.

3.7. Curvature

Recall that the curvature R of an affine connection r on M is defined as the following
.1; 3/ tensor:

R.X; Y /Z D rXrYZ � rYrXZ � rŒX;Y �Z;

and that the Ricci .0; 2/ tensor Ric is defined by tracing:

Ric.Y;Z/ D tr¹X 7! R.X; Y /Zº:

We denote the curvature and Ricci tensors of r D r� and r� D .r�/� by R;Ric and
R�; Ric�, respectively. We subsequently omit the superscripts � and �� in our various
differential structures.

The Gauss equations for R and R� are

R.X; Y /Z D g.Y;Z/SX � g.X;Z/SY;

R�.X; Y /Z D OS.Y;Z/X � OS.X;Z/Y:

In particular, r� is always projectively flat, and we have

g.R.X; Y /Z;W / D �g.R�.X; Y /W;Z/:
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Note that the usual symmetries of the Riemann curvature tensor need not hold for the
curvature tensor R of a general torsion-free affine connection, and that in general the
Ricci tensor will not be symmetric; however, in our context, Ric; Ric� turn out to be
always symmetric:

Ric.Y;Z/ D trS g.Y;Z/ � OS.Y;Z/; Ric�.Y;Z/ D .n � 2/ OS.Y;Z/:

It easily follows that R D R� iff Ric D Ric� iff S D �Id, i.e. the hypersurface x W
M ! E is a relative affine sphere; a particular instance of this is when x is a Blaschke
(equi)affine sphere – see below. In the context of statistical structures, if R D R� then
.g;r;r�/ is called a conjugate symmetric statistical structure.

3.8. Structure equations in a local frame

Recall that in a local frame ¹e1; : : : ; en�1º onM , we use xi to denote theE-valued 1-form
.dx/i , and similarly for theE- andE�-valued �i and ��i . Let us stress that xi should not be
confused with the i -th coordinate of x inE (especially sinceE is not .n� 1/-dimensional
and since no coordinate system has been introduced on E). We summarize the (vector-
valued) structure equations for a relative normalization in a local frame [65, p. 33]:

Hessr
�

ij x D r
�
j xi D �g

�
ij � .Gauss equation for x/;

Hess.r
� /�

ij �� D .r�/�j �
�
i D �

OS
�
ij �
� .Gauss equation for ��/;

�i D .S
�/ki xk .Weingarten equation for �/:

We also have

g
�
ij D h�

�
j ; xi i D hd�

�.ej /; dx.ei /i;

OS
�
ij D g

�

ik
.S�/kj :

3.9. Blaschke’s equiaffine normalization

The fundamental theorem of affine differential geometry states that there exists a unique
relative normal �0 such that the Riemannian volume measure �g�0 associated to the met-
ric g�0 coincides with the induced volume measure ��0 . Equivalently (up to orientation),
this is the same as requiring that j��0 j D j�

�
�0
j. This unique �0 is called the Blaschke affine

normal, g�0 is called the Blaschke metric (or second fundamental form), and .M; �0/ or
.M; g�0 ;r�0/ are called a Blaschke hypersurface. Clearly, the Blaschke normalization is
equiaffine invariant, and is sometimes called the equiaffine normalization. There are var-
ious natural geometric and analytic ways to explicitly define the Blaschke affine normal
[56, 65, 85, 86], and various related problems such as characterizing all Blaschke affine
spheres have been an extremely active avenue of research [25, 26, 32]. However, in this
work, we focus on a different natural relative normalization.
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3.10. Centro-affine normalization

Recall that x WM ! E is assumed to be strongly convex, and we assume further that the
origin of E lies on the inside of x.M/ (i.e. in the interior of the bounded component of
E n x.M/). The centro-affine normalization of the hypersurface x is given by

� WD x;

which is a transversal normal field thanks to our assumptions. The induced centro-affine
metric is denoted by gD gx . Clearly, this normalization is centro-affine invariant, namely,
invariant under regular linear transformations (but not affine ones). Furthermore, inspect-
ing (3.3), it is clearly a relative normalization with identity shape operator, and conse-
quently

S D Id; OS D g:

This means that any strongly convex hypersurface x W M ! E is always a centro-affine
sphere. In particular, the centro-affine sectional and Ricci curvatures are always constant:

R.X; Y /Z D R�.X; Y /Z D g.Y;Z/X � g.X;Z/Y;

Ric D Ric� D .n � 2/g:

If �� is the associated conormal field, we define

x� WD ��:

Note that
hx�; xi D 1; hx�; dxi D 0; hdx�; xi D 0: (3.7)

The symmetry between x and x� immediately implies that the dual and primal centro-
affine normalizations are related by conjugation (cf. [62], [86, Proposition 7.2.1]). By this
we mean the following: Denote the metric and pairs of conjugate connections and volume
forms onM for the hypersurface x WM ! E equipped with the normalization .M;x;x�/
by gx , rx , .rx/�, �x and ��x , and for the hypersurface x� WM ! E� equipped with the
normalization .M; x�; x/ by gx

�

, rx
�

, .rx
�

/�, �x� and ��x� , respectively. Then

gx D gx
�

; rx D .rx
�

/�; .rx/� D rx
�

; �x D �
�
x� ; ��x D �x� : (3.8)

Note that the induced metric remains invariant under duality.
The structure equations for the centro-affine normalization in a local frame ¹e1; : : : ;

en�1º are

Hessr
x

ij x D rxj xi D �g
x
ijx .Gauss equation for x/;

Hessr
x�

ij x� D rx
�

j x�i D �g
x�

ij x
� .Gauss equation for x�/;

(3.9)

where
gxij D g

x�

ij D hx
�
j ; xi i D hdx

�.ej /; dx.ei /i:
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4. Centro-affine differential geometry of convex bodies

Fix a smooth convex body K with strictly positive curvature in E having the origin in
its interior, K 2 K1C . Recall that we use a fixed isomorphism i to identify between
E and E�, and use h�; �i to denote both the natural pairing between E� and E and
the induced Euclidean scalar product on E and E� via i . Having fixed i and thus the
Euclidean structures on E and E�, we uniquely select the determinant form Det on E so
that Det.v1; : : : ; vn/D

p
det.hvi ; vj i/ and thus Det�.w1; : : : ;wn/D

p
det.hwi ; wj i/ for

all vi 2 E and wj 2 E�.
Recall that K� � E� denotes the dual body to K, and that Kı � E is the corre-

sponding polar body given via i.Kı/ D K�. Also recall that ND denotes the standard flat
covariant derivative on E and E�.

We equip the strongly convex hypersurface @K with the centro-affine normalization.

4.1. Parametrizations

It will be instructive to consider a parametrization xMK WM ! @K � E for several natural
manifolds M :

M 2MK WD ¹S
�; @K;S; @K�º:

We denote the induced metric and pairs of conjugate connections and volume forms onM
by

gMK ;r
M
K ; .r

M
K /
�; �MK ; .�

M
K /
�: (4.1)

We will not distinguish between the above volume forms � and the corresponding volume
measures j�j, using � to denote both. We will sometimes write OM �K instead of .OMK /

�

for O 2 ¹g;r; �º, especially when concatenating with another operation.
The above parametrizations of @K are naturally obtained by appropriately compos-

ing the Gauss maps on @K; @K� and their inverses with the radial spherical projection
v 7! v=jvj in E and E�. Formally, for all Mi ; Mj 2MK , we specify diffeomorphisms
T
Mi!Mj
K WMi !Mj so that

T
M1!M3
K D T

M2!M3
K ı T

M1!M2
K : (4.2)

They are obtained by composing the following diffeomorphisms:

S� ! @K ! S ! @K� ! S�

2 2 2 2 2

�� 7! x D NDhK.�
�/ 7! � D x

jxj
7! x� D NDk�kK 7! �� D x�

jx�j
:

It will be useful to also explicitly specify the inverse diffeomorphisms:

S� ! @K� ! S ! @K ! S�

2 2 2 2 2

�� 7! x� D ��

hK .��/
7! � D

NDhK .x
�/

j NDhK .x�/j
7! x D �

k�kK
7! �� D

NDkxkK
j NDkxkK j

:
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It is well-known and straightforward to check that the above cycles close up, so that indeed
TM!MK D Id for all M and (4.2) holds. Note that T @K!S�

K and T @K
�!S

K are the Gauss
maps for @K and @K�, respectively.

It should already be clear (and will be verified below) that our parametrizations are
understood in the following natural sense: x 2 @K is both the hypersurface and the centro-
affine normal, �� 2 S� is the unit outer normal, x� 2 @K� is the centro-affine conormal
(the dual point to x on @K�), and � 2 S is the unit outer normal to @K� at x�, pointing in
the direction of x and thereby closing the cycle.

Setting
xMK WD T

M!@K
K ;

our definitions ensure that the following diagram commutes:

M1

M2 @K � E

T
M1!M2
K

x
M1
K

x
M2
K

Consequently, TM1!M2K induces an isomorphism between the objects OMiK defined on
Mi 2MK for each O 2 ¹g;r;r�; �; ��º, and so for each of these, it is enough to calcu-
lateOM1K on a single convenient parametrizationM1, thereby obtainingOM2K for all other
M2 2MK by pushing forward:

O
M2
K D .T

M1!M2
K /�O

M1
K :

Our main object of interest will be OK , regardless of the parametrization M , and so we
will often omit the superscript M .

4.2. Duality

Our parametrizations are compatible with the natural duality operation DK . For every
M 2 MK , denote by M � 2 MK its obvious dual counterpart (e.g. .@K/� D @K� and
.S�/� D S). Note that for M 2 ¹S; S�º, M � D i.M/ but not in general. By abuse of
notation, we use the same notation DK (omitting the reference to M ) to denote the dif-
feomorphism

DK WD T
M!M�

K WM !M �; M � D DK.M/:

It is worthwhile to note that

DK W @K 3 x 7! x� 2 @K�; x� D DKx D NDkxkK :

To quickly see this, note that NDkxkK is clearly perpendicular to @K, and that

hx�; xi D h NDkxkK ; xi D kxkK D 1 8x 2 @K; (4.3)
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by Euler’s identity for the 1-homogeneous function kxkK . Hence

hK. NDkxkK/ D h NDkxkK ; xi D 1 8x 2 @K;

and we confirm that DK maps @K onto @K�. Similarly,

DK W @K
�
3 x� 7! x 2 @K; x D DKx

�
D NDhK.x

�/;

DK W S
�
3 �� 7! � 2 S; � D DK�

�
D
NDhK

j NDhK j
.��/:

Next, we tautologically extend our construction to strongly convex bodies in E� (and
not just in E). Recall that Kı � E and K� � E� are related by i.Kı/ D K�, and hence
i.@K/ D @.Kı/� D .@Kı/�. We consequently define

MK� WDM�K D i.MKı/;

and set
T
M1!M2
K� D i ı T

i.M1/!i.M2/
Kı ı i 8M1;M2 2MK� :

In particular,
xMK� D i ı x

i.M/
Kı ı i:

As the identification between E and E� via i is tautological and does not change any
differential structure, we have, for every M 2MK ,

g
i.M/
Kı D i�g

M
K� ; r

i.M/
Kı D i�r

M
K� ; .r

i.M/
Kı /� D i�.r

M
K�/
�;

�
i.M/
Kı D i��

M
K� ; .�

i.M/
Kı /� D i�.�

M
K�/
�;

where i� denote the push-forward via i . In addition, we see that our construction is com-
patible with the duality operator DK , in the sense that the following diagram commutes:

M @K

M � @K�

xM
K

xM
K�

DK DK

xM
�

K�

xM
�

K

(4.4)

As discussed in Section 3.10, the duality operation is important in view of its conjuga-
tion role for the centro-affine normalization. Observe that the conormal .xMK /

� WM !E�

corresponding to the centro-affine normal xMK W M ! E of the hypersurface @K is pre-
cisely given by

.xMK /
�
WD DK ı x

M
K D x

M
K� :

This follows immediately by verifying the validity of the defining equations (3.7); indeed,
as already explained in (4.3), x� DDKx is perpendicular to @K and satisfies hx�; xi D 1.
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Consequently, it follows from (3.8) that the induced structures on M via xMK W
M ! @K and via xMK� WM ! @K� are conjugate to each other:

gMK D g
M
K� ;r

M
K D .r

M
K�/
�; .rMK /

�
D r

M
K� ; �

M
K D .�

M
K�/
�; .�MK /

�
D �MK� :

Note that the induced centro-affine Riemannian metric gMK is self-dual, as is well-known
[50,62,86]. We emphasize several equivalent alternative forms of the above duality, which
follow immediately from the commutation in (4.4):

g
i.M�/
Kı D i�g

M�

K� D i�g
M�

K D .i ıDK/�g
M
K ;

r
i.M�/
Kı D i�r

M�

K� D i�.r
M�

K /�D .i ıDK/�.r
M
K /
�;

.r
i.M�/
Kı /�D i�.r

M�

K� /
�D i�r

M�

K D .i ıDK/�r
M
K ;

�
i.M�/
Kı D i��

M�

K� D i�.�
M�

K /� D .i ıDK/�.�
M
K /
�;

.�
i.M�/
Kı /� D i�.�

M�

K� /
� D i��

M�

K D .i ıDK/��
M
K :

In other words, up to conjugation, i WM � ! i.M �/ pushes forward OM
�

K onto O i.M
�/

Kı ,
and i ıDK WM ! i.M �/ pushes forward OMK onto O i.M

�/
Kı , for O 2 ¹g;r;r�; �; ��º.

The latter is particularly useful when M 2 ¹S;S�º since then i.M �/ DM .
It is a good exercise to verify directly that, e.g., i ıDK pushes forward gS�

K onto gS�
Kı .

4.3. Centro-affine invariance

Let A 2 GL.E/. The centro-affine invariance of the centro-affine normalization immedi-
ately implies that A pushes forward O@KK onto O@A.K/

A.K/
for all O 2 ¹g;r;r�º, as well as

O 2 ¹�; ��º whenever A 2 SL.E/. As A.K/� D A��.K/, it is also easy to see that A��

pushes forward O@K
�

K onto O@A.K/
�

A.K/
in the same manner as above.

The situation with our other parametrizationsM 2 ¹S;S�º requires a bit more thought.
While these parametrizations are very natural from a geometric perspective, they are not
centro-affine co- or contra-variant, e.g. it is not true that xS

A.K/
D A ı xS

K . Consequently,
the centro-affine invariance from Section 3.3 only holds after a suitable change of vari-
ables:

Proposition 4.1. Given A 2 GL.E/, denote

A.0/ W S! S; A.0/.�/ D
A�

jA� j
;

.A��/.0/ W S� ! S�; .A��/.0/.��/ D
A����

jA����j
:

Then
xS
A.K/ D A ı x

S
K ı .A

.0//�1; xS�

A.K/ D A
�
ı xS�

K ı ..A
��/.0//�1: (4.5)

Consequently:

(1) A.0/ pushes forward OS
K onto OS

A.K/
for all O 2 ¹g;r;r�º, and for O 2 ¹�; ��º

whenever A 2 SL.E/.
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(2) .A��/.0/ pushes forwardOS�
K ontoOS�

A.K/
for allO 2 ¹g;r;r�º, and forO 2 ¹�;��º

whenever A 2 SL.E/.

Proof. Recall that xS
K.�/ D

�
k�kK

, which is 0-homogeneous on E. Hence

xS
A.K/.�/ D

�

k�kA.K/
D

�

kA�1�kK
D A

A�1�

kA�1�kK
D A ı xS

K.A
�1�=jA�1� j/;

and the first identity in (4.5) follows. Also recall that xS�
K .��/ D NDhK.�

�/, which is
0-homogeneous on E�. Hence

xS�

A.K/.�
�/ D NDhA.K/.�

�/ D ND.hK.A
���// D A� NDhK.A

���/

D A� NDhK.A
���=jA���j/;

and the second identity in (4.5) follows.
As for the second part of the proposition, let us only verify (2) (as the verification

of (1) is identical). Denoting xS�
aux WD x

S�
K ı ..A

��/.0//�1, it follows by usual centro-affine
invariance (as in Section 3.3) that the two hypersurfaces xS�

aux; x
S�

A.K/
W S� ! E (equipped

with the centro-affine normalization) induce exactly the same metric, normal and conor-
mal connections g;r;r� on S�, and also the same volume measures �; �� whenever
A 2 SL.E/. It remains to note that the two hypersurfaces xS�

K ; xS�
aux W S

�!E are identical,
up to reparametrization of S� via .A��/.0/; consequently, whenever these two hypersur-
faces are equipped with the same normalization (as in context), their induced differential
structures are isomorphic via .A��/.0/.

It is a good exercise to verify directly that, e.g., A.0/� pushes forward gS�
K onto gS�

A.K/
.

4.4. Explicit formulas

We now calculate the centro-affine differential structures (4.1). As explained above, it is
enough to perform the calculation on a convenient parametrization M 2MK . The most
convenient choice for us is M D S�, but we also provide the corresponding expressions
in other parametrizations. Recall from Section 2 the definitions of V S�

K , V @KK and V S
K , that

D2hK denotes the restriction of ND2hK onto TS�, and the discussion regarding induced
Euclidean structures.

4.4.1. M D S�. We work on M D S� and omit the superscript S� (and often the sub-
script K as well) in our expressions. Recall that

x D xK W S
�
! @K; x.��/ D NDhK.�

�/;

x� D .xK/
�
D xK� W S

�
! @K�; x�.��/ D

��

hK.��/
:

We perform all calculations at a fixed �� 2 S�. Then

dx W T��S
�
! Tx@K; dx.u/ D NDu NDhK ;
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dx� W T��S
�
! Tx�@K

�; dx�.v/ D
1

hK
.v � v.log hK/��/:

Since hK is 1-homogeneous, it follows that ND�� NDhK D 0. Consequently,

gS�
K .u; v/ D hdx�.v/; dx.u/i D

ND2hK.u; v/

hK
D
D2hK.u; v/

hK
; u; v 2 T��S

�: (4.6)

For a Euclidean orthonormal basis e1; : : : ; en�1 in T��S�, we have

d�K

dmS�
D �K.e1; : : : ; en�1/ D Det.dx.e1/; : : : ; dx.en/; x/

D hK Det.dx.e1/; : : : ; dx.en�1/; ��/ D hK det.D2hK/ D n
dV S�

K

dmS�
;

where we have used the fact that P.T @K/?x D h�
�; xi�� D hK�

�. Similarly,

d��K
dmS�

D ��K.e1; : : : ; en�1/ D Det�.dx�.e1/; : : : ; dx�.en/; x�/

D
1

hnK
Det�.e1 � e1.log hK/��; : : : ; en�1 � en�1.log hK/��; ��/

D
1

hnK
D n

di�V
S
Kı

dmS�
:

By the Gauss equation for x we have, for U 2 TS�; V 2 �1.TS�/,

NDUdx.V / D dx.rUV / � gK.U; V /x:

Consequently,

ND2
U;V
NDhK C ND NDUV

NDhK D NDrUV
NDhK � gK.U; V /x:

It follows that

ND2hK.rUV � NDUV; �
�/ D ND3hK.U; V; �

�/C gK.U; V /h�
�; xi 8�� 2 E�:

Recalling that gK D
ND2hK
hK

, x D NDhK , NDUV D S�rUV � IIS�.U;V /�� and ND2hK � �
�

D 0, it follows that

gK.rUV �
S�
rUV;�

�/D
ND3hK.U; V; �

�/

hK
CgK.U;V /h�

�; ND.loghK/i 8�� 2 T��S�:

Introducing a local frame ¹e1; : : : ; en�1º on S�, it follows that

.rUV �
S�
rUV /

i
D g

ij
K

�
ND3hK.U; V; ej /

hK
C gK.U; V /.log hK/j

�
:

As expected, this expression depends on third derivatives of hK .
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A much more useful expression is obtained for the conjugate connection. By the Gauss
equation for x� (recall that OS D g in the centro-affine normalization),

NDUdx
�.V / D dx�.r�UV / � gK.U; V /x

�;

i.e.

NDU

�
V

hK
�
V.hK/

h2K
��
�
D

1

hK
.r�UV � .r

�
UV /.log hK/��/ � gK.U; V /

��

hK.��/
:

Consequently, applying the Leibniz rule and multiplying by hK , we have

�
1

hK
U.hK/V C NDUV � hKU.V.hK/=h

2
K/�

�
� V.log hK/ NDU ��

D r
�
UV � .r

�
UV /.log hK/�� � gK.U; V /��:

Recall thatU 2 T��S� so that NDU ��DU . Orthogonally projecting onto .��/?, we obtain

�U.log hK/V C S�
rUV � V.log hK/U D r�UV:

In particular, we see that the conjugate connection only depends on first derivatives of hK ,
which is already reassuring. By projecting onto �� and recalling (2.1), one rederives (4.6);
for completeness, let us verify this:

gK.u; v/ D IIS�.U; V /C hKU.V.hK/=h
2
K/ � .r

�
UV /.log hK/

D IIS�.U; V /C

S�r2U;V hK

hK
C

S�rUV.hK/

hK
� 2

U.hK/V .hK/

h2K

C 2U.log hK/V .log hK/ � S�
rUV.log hK/

D IIS�.U; V /C

S�r2U;V hK

hK
D
ND2hK.U; V /

hK
;

where in the last transition we have used (2.2) and the fact that hK is 1-homogeneous so
that ��.hK/ D hK .

We summarize all of these computations in the following:

Proposition 4.2. The differential structures (4.1) for the centro-affine normalization ofK
are given on S� by

gS�
K D

D2hK

hK
;

�S�
K D hKSK D hK det.D2hK/m

S�
D nV S�

K ;

.�S�
K /� D

1

hnK
mS�

D ni�V
S
Kı ;

..rS�
K /UV /

i
D .S

�

rUV /
i
C .gS�

K /ij
�
ND3hK.U; V; ej /

hK
C gS�

K .U; V /.log hK/j

�
;

.rS�
K /�UV D

S�
rUV � U.log hK/V � V.log hK/U
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. for anyU 2 TS�;V 2�1.TS�/ and local frame ¹e1; : : : ; en�1º on S�/. In particular, the
centro-affine metric gS�

K coincides with the metric (2.5) introduced in Section 2, and up
to normalization, the centro-affine volume measure �S�

K coincides with the cone-volume
measure V S�

K .

In addition, recall that the following useful properties hold, regardless of parametriza-
tion:

� rK�K D r
�
K�
�
K D 0.

� K is a centro-affine unit sphere; in particular, the Ricci curvatures of rK and r�K are
constant and equal to n � 2.

In our opinion, it is quite remarkable that the Ricci curvature turns out to even just
be positive, let alone constant, for the centro-affine connection, in view of the fact that it
involves three derivatives of hK . It is a good but tedious exercise to verify this for both
our connections directly from the associated Christoffel symbols on S�:

r�
K�kij D

S��kij � ı
k
i .log hK/j � ıkj .log hK/i (4.7)

rK�kij D
S��kij C g

kp
K

� ND3
ijphK

hK
C .gK/ij .log hK/p

�
:

Another good exercise is to verify that our connections are indeed gK-conjugates using
(3.5).

4.4.2. Other parametrizations. It will be convenient to also work on the parametrization
M D @K (we henceforth omit the corresponding superscript in our notation). Recall that

x D xK W @K ! @K; x D Id;

x� D .xK/
�
D xK� W @K ! @K�; x�.x/ D NDkxkK D NDhK�.x/:

We fix a point on @K, which by abuse of notation we denote by x (there should be no
confusion with the map x). Hence

dx W Tx@K ! Tx@K; dx D Id;

dx� W Tx@K ! Tx�@K
�; dx�.v/ D NDv NDhK� :

Hence
g@KK .u; v/ WD hdx�.v/; dx.u/i D ND2

xhK�.u; v/; u; v 2 Tx@K:

Note that ND2
xhK� � x D 0, whereas u; v ? ��; to emphasize this point, we write

g@KK D P.��/?
ND2
xhK�P.��/? ; (4.8)

where PH denotes orthogonal projection onto the corresponding subspace H . A more
convenient expression is derived in

Lemma 4.3. For all x 2 @K,

g@KK .x/ D jx�j II@Kx D
II@Kx
hK.��/

:
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Proof. It is well-known (e.g. [96, (2.48)]) that II@Kx D .D2
��
hK/

�1 D
1
jx�j

.D2
x�hK/

�1

(naturally identifying between the corresponding tangent spaces); using this and the dual-
ity between K and K�, it is a nice exercise to derive the assertion from (4.8) by verifying
that

P.��/? ND
2
xhK�P.��/? D .D

2
x�hK/

�1:

Alternatively, it is simpler to pull back gS�
K D

D2
��
hK

hK .��/
via the Gauss map @K 3 x 7!

�� 2 S� since d��xDD2
��
hK . Probably the simplest argument is to recall that the centro-

affine conormalization of @K by x� coincides with the Euclidean conormalization by ��

up to a multiplicative factor of jx�j, and hence the corresponding induced second funda-
mental forms g@KK .x/ and II@Kx also coincide up to this factor [65, Proposition 1.23 (ii)].
Note that jx�jhK.��/ D jx�jh��; xi D hx�; xi D 1.

We leave the rest of the computations of our structures for the reader, as they will not
be needed, and only state them. One can use all of the tools developed in the previous
subsections to transfer the information from S� to any other M 2 MK : direct compu-
tation, pushing forward via our diffeomorphisms T S�!M

K , conjugation and duality. See
also [65, Proposition 1.23].

Proposition 4.4. The differential structures (4.1) for the centro-affine normalization ofK
are given on @K at x 2 @K by

g@KK D P.��/?
ND2
xhKıP.��/? D jx

�
j II@Kx D

II@Kx
hK.��/

;

�@KK D h�
�; xiHn�1

j@K.dx/ D nV
@K
K ;

.�@KK /� D
�@Kx
h��; xin

Hn�1
j@K.dx/ DW nV

@K
Kı ;

.r@KK /UV D
@K
rUV C g

@K
K .U; V /P.��/?x;

..r@KK /�UV /
i
D .@KrUV /

i
C .g@KK /ij

�
ND3hK�.U; V; ej /C g

@K
K .U; V /.hK�/j

�
. for any U 2 Tx@K; V 2 �1.T @K/ and local frame ¹e1; : : : ; en�1º on @K/. Here �@Kx D
det II@Kx D 1=det.D2

��
hK/ denotes the Gauss curvature of @K at x.

Proposition 4.5. The differential structures (4.1) for the centro-affine normalization ofK
are given on S at � 2 S by

gS
K D g

S
K� D i�g

S�
Kı D

D2hK�

hK�
;

�S
K D .�

S
K�/
�
D i�.�

S�
Kı/
�
D

1

hnK�
mS
D

1

k � knK

mS
D nV S

K ;

.�S
K/
�
D �S

K� D i��
S�
Kı D hK�SK� D hK� det.D2hK�/m

S
D ni�V

S�
Kı ;

.rS
K/UV D .r

S �
K� /UV D .i�r

S� �
Kı /UV

D
S
rUV � U.log hK�/V � V.log hK�/U;
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..rS
K/
�
UV /

i
D ..rS

K�/UV /
i
D ..i�r

S�
Kı/UV /

i

D .SrUV /
i
C .gS

K�/
ij

�
ND3hK�.U; V; ej /

hK�
C gK�.U; V /.log hK�/j

�
. for any U 2 TS; V 2 �1.TS/ and local frame ¹e1; : : : ; en�1º on S/.

Proposition 4.6. The differential structures (4.1) for the centro-affine normalization ofK
are given on @K� at x� 2 @K� by

g@K
�

K D g@K
�

K� D i�g
@Kı

Kı D P�?
ND2
x�hKP�? D jxj II@K

�

x� D
II@K

�

x�

hK�.�/
;

�@K
�

K D .�@K
�

K� /
�
D i�.�

@Kı

Kı /
�
D

�@K
�

x�

hx�; �in
Hn�1

j@K�.dx
�/ D ni�V

@Kı

K ;

.�@K
�

K /� D �@K
�

K� D i��
@Kı

Kı D hx
�; �iHn�1

j@K�.dx
�/ D ni�V

@Kı

Kı ;

..r@K
�

K /UV /
i
D ..r@K

�

K� /
�
UV /

i
D ..i�r

@Kı �
Kı /UV /

i

D .@K
�

rUV /
i
C .g@K

�

K /ij
�
ND3hK.U; V; ej /C g

@K�

K .U; V /.hK/j
�
;

.r@K
�

K /�UV D .r
@K�

K� /UV D .i�r
@Kı

Kı /UV D
@K�
rUV C g

@K�

K .U; V /P�?x
�

. for any U 2 Tx�@K�; V 2 �1.T @K�/ and local frame ¹e1; : : : ; en�1º on @K�/. Here
�@K

�

x� D det II@K
�

x� D 1=det.D2
�
hK�/ denotes the Gauss curvature of @K� at x�.

4.5. Differential calculus and the Hilbert–Brunn–Minkowski operator

We denote the centro-affine divergence and Hessian operators by

divMK WD divr
M
K ; .divMK /

�
D div.r

M
K
/�

HessMK WD Hessr
M
K ; .HessMK /

�
D Hess.r

M
K
/� ;

omitting the superscript M when the context is clear.

Lemma 4.7. In a local frame on S� we have, for any f 2 C 2.S�/,

.Hess�K/ijf D
S�
r
2
ijf C .log hK/ifj C .log hK/jfi :

Proof. Recall that
.Hess�K/ijf D @

2
ijf �

r�
K�kij @kf:

Plugging the expression for the Christoffel symbols on S� derived in Proposition 4.2 and
recorded in (4.7), the assertion immediately follows.

Recalling the discussion in Section 3.6, we denote the corresponding centro-affine
Laplacian operators by

�MK WD divMK gradgM
K
D trgM

K
.HessMK /

�; .�MK /
�
WD .divMK /

� gradgM
K
D trgM

K
HessMK :
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Recall that the Hilbert–Brunn–Minkowski operator on S� was introduced in Sec-
tion 2 as the weighted Laplacian on .S�; gS�

K ; V S�
K /, and was denoted by �S�

K . While
the reader may be concerned that there will be some ambiguity due to our identical nota-
tion for the Hilbert–Brunn–Minkowski and centro-affine Laplacian operators, our most
important observation in this section is that there is no ambiguity. We omit the particular
parametrization M , as it is irrelevant in the statement below.

Theorem 4.8. The centro-affine Laplacian �K coincides with the Hilbert–Brunn–Min-
kowski operator.

Proof. We verify the claim on S�. By Lemma 4.7,

�S�
K f D g

ij
K .Hess�K f /ij D g

ij
K

�
S�
r
2
ijf C .log hK/ifj C .log hK/jfi

�
:

Recalling that centro-affine metric gK D gS�
K coincides with the metric (2.5), we confirm

that the right-hand side coincides with the Hilbert–Brunn–Minkowski operator (2.6).

Theorem 4.8 finally gives a satisfactory explanation for the centro-affine equivari-
ance property of the Hilbert–Brunn–Minkowski operator, originally observed in [61, Sec-
tion 5.2] following a lengthy computation, but now an immediate consequence of Propo-
sition 4.1.

Recall from Section 3.6 that (regardless of the parametrization M )Z
.��Kf /h d�K D

Z
gK.gradgK f; gradgK h/ d�K D

Z
f .��Kh/ d�K (4.9)

for all f; h 2 C 2.M/. Recall from Proposition 4.2 that on S�, �S�
K coincides (up to nor-

malization) with the cone-volume measure V S�
K . In [61, Section 5.1], we had originally

(implicitly) identified the metric gS�
K by performing integration by parts in (4.9) with

respect to VK and computing the Dirichlet form, thereby interpreting the Hilbert–Brunn–
Minkowski operator as the weighted Laplacian on .S�; gS�

K ; V S�
K /. However, it was not

entirely clear whether the choice of measure V S�
K and thus the construction of the met-

ric gS�
K were canonical, or what was the direct relation between these two objects (as

in general VK is not the Riemannian volume measure for gK); we now finally have a
satisfactory answer coming from the centro-affine normalization.

Consequently, regardless of the parametrization M , ��K uniquely extends to a self-
adjoint positive semi-definite operator on L2.�K/ with domain H 2 (the Sobolev space
on M ), as explained in [61, Section 5.1]. Its spectrum �.��K/ is thus inherently centro-
affine invariant, and may be studied regardless of parametrization. The spectrum is dis-
crete, consisting of a countable sequence of eigenvalues of finite multiplicity starting
with 0 and tending to1. The first (trivial) eigenvalue �0.��K/ is zero, corresponding to
the constant eigenfunctions. As shown by Hilbert [13, 61], the next eigenvalue �1.��K/
is n � 1, and this fact is equivalent to the classical Brunn–Minkowski inequality; more-
over, Hilbert showed that the multiplicity of the eigenvalue n � 1 is precisely n. We will
give a new proof of both of these statements in the next section using Lichnerowicz’s
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method and Bochner’s formula, utilizing the fact that @K is a centro-affine sphere having
constant centro-affine Ricci curvature equal to n � 2.

In Hilbert’s original definition of his differential operator, the eigenfunctions corre-
sponding to the first non-trivial eigenvalue �1 D n � 1 on S� were (the restriction to S�

of) linear functionals on E�. However, with our definition of �K , originating in [61] and
further studied in [82], the corresponding eigenfunctions are the K-adapted linear func-
tions

linS�

K;� WD h�; �i=hK ; � 2 E:

When K is a centered Euclidean ball (or ellipsoid), these coincide with the usual linear
functionals, but not in general. While this originally appeared to us to be a caveat of our
definition (compared to the one used by Hilbert), we now observe that this is in fact very
natural. Indeed, the natural extension from a Euclidean ball to a general K should be
to restrict the linear functionals on E� to @K� instead of S�. In a parametrization-free
language this means using the conormal x�K (which on @K� is just the identity map, and
so hx�K ; �i are just linear functions on @K�):

Proposition 4.9.
linS�

K;� D h.x
S�
K /�; �i 8� 2 E; (4.10)

and regardless of parametrization,

Hess�K x
�
K D �x

�
KgK ; (4.11)

��Khx
�
K ; �i D .n � 1/hx

�
K ; �i 8� 2 E: (4.12)

Proof. Recalling that .xS�
K /�.��/ D ��=hK.�

�/ and the definition of linS�

K;� , (4.10) is
immediate. The property (4.11) is a direct consequence of our centro-affine structure
equations (3.9). Tracing with respect to gK immediately yields

�Kx
�
K D trgK Hess�K x

�
K D �g

ijgijx
�
K D �.n � 1/x

�
K :

We will see in Theorem 5.4 that (4.12) is in fact equivalent to the a priori stronger
property (4.11). One can also easily calculate expressions such as �K.x

�
K/
p and

jgradgK .x
�
K/
pj2 using the above calculus, which is what originally led us to the key cal-

culation in [82] (the calculation there was derived without referring to the centro-affine
normalization).

4.6. Self-duality

We conclude this section by reflecting a bit more on the remarkable self-duality property
of the centro-affine metric gK :

g
i.M�/
Kı D i�g

M�

K� D i�g
M�

K D .i ıDK/�g
M
K 8M 2MK :

Since i.M �/DM forM 2 ¹S;S�º, we see that i ıDK is an isometry between .S�; gS�
K /

and .S�; gS�
Kı/. Consequently, any geometric quantity which is encoded by the centro-

affine metric is the same for K and Kı. Below are a few examples and many questions;
we omit the reference to the parametrization M when it is irrelevant.
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� The Riemannian volume measure �S�
gK

is (up to a constant) the well-known centro-affine
surface-area measure �S�

n;K [50, 62], which coincides with the Lp-affine surface-area
measure of Lutwak [74] for p D n:

d�S�
gK

dmS�
D
p

detgK D
p

det.D2hK=hK/ D

p
detD2hK

h
.n�1/=2
K

DW n
d�S�

n;K

dmS�
:

This can also be seen from (3.6):�
d�S�
gK

dmS�

�2
D

d�S�
K

dmS�

d.�S�
K /�

dmS�
D
ndV S�

K

dmS�

ndi�V
S
Kı

dmS�

D
hK dSK

dmS�
1

hnK
D

detD2hK

hn�1K

: (4.13)

By Section 4.3, the centro-affine surface-area measure is indeed centro-affine invariant,
i.e. A��@KgK D �

@A.K/
gA.K/ for all A 2 GL.E/. Since i ıDK W S�! S� pushes forward �S�

gK

onto �S�
gKı

, both measures have the same total mass, which up to normalization is the
centro-affine surface area �n:

�n.K/ D
1

n
k�gKk D

1

n
k�gKı k D �n.K

ı/:

Note that (4.13) and the Cauchy–Schwarz inequality immediately yield

�n.K/
2
� V.K/V.Kı/: (4.14)

Unfortunately, �n.Ki / converges to 0 whenever Ki converges in the Hausdorff metric
to a polytope, and so this cannot be used to effectively lower bound the volume product
on the right-hand side. All of this is of course well-known.

� Let dgK be the induced geodesic distance on .S�; gK/. Given p > �nC 1, define

Wp.K/ WD

�Z
S�

Z
S�
dgK .x; y/

p �gK .dx/ �gK .dy/

�1=p
:

Then Wp.K/ D Wp.Kı/ for all p > �nC 1.

� W1.K/ WD diam.S�; dgK / also satisfies W1.K/ D W1.Kı/. What is the geometric
meaning of this quantity? Is this related to the resolution of Schäffer’s conjecture by
Álvarez-Paiva [1] (see also Faifman [40]), identifying the girths of K and Kı? This
seems unlikely, since the girth is a Finslerian notion. Note that it is not hard to show
that W1.K C L/ � W1.K/CW1.L/.

� Set †.K/ WD �.��gK /, the spectrum of the Laplace–Beltrami operator on .S�; gK/.
Then †.K/ D †.Kı/. Is there a geometric meaning to (at least the first) eigenvalues?

� Let FgK denote any non-trivial real-valued function of the Riemann curvature tensor
RgK and the metric tensor gK – such as the scalar curvature sgK , the Hilbert–Schmidt
norm of the Ricci tensor, or some other function of the sectional curvatures. Define
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Fp.K/ D .
R
jFgK j

p d�gK /
1=p . Then Fp.K/ D Fp.K

ı/. Of particular interest is the
average scalar curvature

S.K/ D

Z
sgK d�gK :

Does this quantity have a natural geometric meaning? One can show that sgK �

.n � 1/.n � 2/ in the centro-affine normalization [87, formula (39)], and so S.K/ �

.n � 1/.n � 2/�n.K/. It would be interesting to lower bound the volume product
V.K/V.Kı/ by a function of S.K/2 D S.K/S.Kı/, in view of (4.14).

� Is it true that if .S�; gK1/ and .S�; gK2/ are isometric thenK1 andK2 are congruent up
to a centro-affine transformation and polarity? It is not hard to show that if gK1 D gK2
then necessarily K2 D cK1 for some c > 0.

5. Bochner formula

5.1. Asymmetric Bochner formula

The classical Bochner formula [89, Chapter 9] states that if f is a smooth function on a
Riemannian manifold .M; g/ then

1

2
�g jgradg f j

2
D g.gradg f; gradg �gf /C Ricg.gradg f; gradg f /C kHessg f k2g :

In this formula, all higher order differential objects are computed with respect to the
Levi-Civita connection rg (which, recall, is the unique torsion-free connection which is
in addition metric, i.e.rggD 0); namely,�g D divr

g

gradg , Hessg f Drgdf and Ricg
denotes the Ricci curvature of rg . We use the notation

jX j2 D g.X;X/; kAk2g D g.A;A/ D hA;Aig D g
ijAjkg

klAli

for the (squared) Riemannian length of a vector field X and Riemannian Hilbert–Schmidt
norm of a symmetric .0; 2/ tensor A, respectively.

The Bochner formula is local, and applies to arbitrary vector fields X such that rgX
is a g-symmetric .1; 1/ tensor:

g.r
g
YX;Z/ D g.r

g
ZX; Y / 8Y;Z 2 TpM 8X 2 �

1.TM/

(and hence, locally,X D gradg f for some function f ). After polarization, it is equivalent
to the following version, valid for any vector fields X; Y such that rgX and rgY are g-
symmetric .1; 1/ tensors:

�g g.X; Y / D X.divr
g

Y /C Y.divr
g

X/C 2Ricg.X; Y /C 2 tr.rgX ı rgY /; (5.1)

where rX ı rY denotes the composition of .1; 1/ tensors, so that in local coordinates,

tr.rX ı rY / D rjX iriY j :
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An inspection of the proof of the Bochner formula confirms that it makes use of both the
torsion-free and metric properties of the Levi-Civita connection.

However, it is possible to give a version of Bochner’s formula which does not rely on
any of these properties, holds for all vector fields, and in fact does not require a Rieman-
nian metric g at all.

Proposition 5.1 (Asymmetric Bochner formula). For any affine connection r on M and
.smooth/ vector fields X; Y ,

divr.rXY / D X.divr Y /C Ric.Y;X/C tr.rX ı rY /: (5.2)

A proof may be found in [87, Lemma 2.2]. For completeness, we provide a simple
proof using local coordinates.

Proof. Denoting, as is customary, the components of the curvature tensors R and Ric by

R.@k ; @l /@j D Rijkl@i ; Ricjk D Ric.@j ; @k/;

so that Ricjk D Ri
kij

, we have in local coordinates

rj .X
i
riY

j / D rjX
i
riY

j
CX irjriY

j

D rjX
i
riY

j
CX irirjY

j
CX iRj

ijl
Y l

D rjX
i
riY

j
CX irirjY

j
C RicliX iY l :

Our “asymmetric” nomenclature stems from the fact that the formula is no longer
symmetric in X; Y , and moreover does not assume any symmetry – neither of rX;rY
(these are mixed tensors so in any case symmetry does not make any sense), nor of the
affine connection r. The classical Bochner formula (5.1) is obtained from Proposition 5.1
by applying it to the Levi-Civita connection and symmetrizing (i.e. interchanging the roles
of X; Y and summing). Indeed, note that by the metric property of rg and as rgX and
rgY in (5.1) are assumed to be g-symmetric, we have

r
g
Z g.X; Y / D g.r

g
ZX; Y /C g.X;r

g
ZY / D g.r

g
YX;Z/C g.r

g
XY;Z/;

and hence
gradg g.X; Y / D r

g
XY Cr

g
YX:

The torsion-free property ensures that Ricg is symmetric, and (5.1) immediately follows.

5.2. Centro-affine Bochner formula

Just as with the classical Bochner formula, integrating the asymmetric Bochner formula
(5.2) with respect to an invariant measure � yields an integrated Bochner identity [87,
Theorem 9.9]. Applying this to our centro-affine differential structures, we immediately
deduce
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Theorem 5.2 (Centro-affine Bochner formula). Let K 2 K1C be a smooth convex body
with strictly positive curvature which contains the origin in its interior. LetK be equipped
with the centro-affine normalization. Then, regardless of a parametrizationM 2MK , for
any function f 2 C 2.M/,Z

.�Kf /
2 d�K �

Z
kHess�K f k

2
gK
d�K D .n � 2/

Z
jgradgK f j

2 d�K : (5.3)

Proof. By approximation, it is enough to prove the identity for smooth functions f . We
abbreviate r D rK . Recall that

ri .gradgK f /
j
D ri .g

jk
K fk/ D g

jk
K r

�
i fk D g

jk
K .Hess�K/kif;

and hence
tr.r gradgK f ı r gradgK f / D kHess�K f k

2
gK
:

Let RicK denote the Ricci curvature of the centro-affine connection. Recall that @K is
always a centro-affine (.n � 1/-dimensional) unit sphere and thus

RicK D .n � 2/gK :

Setting X D Y D gradgK f and applying the asymmetric Bochner formula (5.2) for
r D rK , we deduce that

divrK .rXX/ D gradgK f .�Kf /C .n � 2/jgradgK f j
2
C kHess�K f k

2
gK
:

Finally, recall that rK�K D 0 (since the centro-affine normalization is a relative normal-
ization). Consequently, integrating with respect to �K as in Section 3.6, the integral on
left-hand side above vanishes, and the first term on the right integrates by parts, yielding
the asserted:

0 D �

Z
.�Kf /

2 d�K C .n � 2/

Z
jgradgK f j

2 d�K C

Z
kHess�K f k

2
gK
d�K :

It may also be insightful to give an alternative proof of the centro-affine Bochner
formula, not relying on centro-affine differential geometry, which is how we originally
discovered it (thus realizing that there must be some underlying Bochner formula and
constant Ricci curvature). We were informed by Bo’az Klartag and by Ramon van Handel
that they also observed (unpublished argument) a similar, ultimately equivalent, formula,
without any explicit reference to gK , VK , Hess�K , RicK , nor their centro-affine geometric
interpretation.

Alternative proof of Theorem 5.2. Given a smooth f on S�, extend it as a 0-homogeneous
function on E� n ¹0º and define the following .1; 1/ tensor in a local frame on S�:

Aik WD ..D
2hK/

�1/ijD2
jk.f hK/ D g

ij
K

D2
jk
.f hK/

hK
:



Centro-affine differential geometry and the log-Minkowski problem 45

By the Leibniz rule,

D2
jk
.f hK/

hK
D D2

jkf C .log hK/jfk C .log hK/kfj C f .gK/jk ; (5.4)

and since D2
jk
f D S�r2

jk
f as f is 0-homogeneous, it follows by Lemma 4.7 that

Aik D g
ij
K .Hess�K f /jk C f ı

i
k : (5.5)

From now on, we can use (5.5) as the definition of Hess�K f on S�.
SetmD n� 1. Denoting by �D .�1; : : : ;�m/ the eigenvalues of the symmetric matrix

B WD .D2hK/
�1=2D2.f hK/.D

2hK/
�1=2

at a fixed point �� 2 S�, we clearly have

tr.A2/ D tr.B2/ D
mX
iD1

�2i D m
2e21.�/ �m.m � 1/e2.�/; (5.6)

where e1.�/ WD
1
m

Pm
iD1 �i and e2.�/ WD

1
m.m�1/

P
1�i¤j�m �i�j are the first two nor-

malized symmetric polynomials in �. Note that

e1.�/ D
1

m
tr.B/ D

1

m
tr.A/ D

1

m
.�Kf Cmf / DW QLKf:

In addition (see e.g. [9, formula (6)])

e2.�/ D Dm.B;B; Id; : : : ; Id/ D
Dm.D

2.f hK/;D
2.f hK/;D

2hK ; : : : ;D
2hK/

detD2hK

DW
SK.f; f /

SK
I

here Dm denotes the mixed discriminant of an m-tuple of m by m matrices, and we use
the notation SK.f;f /D SK.f I2/, SK.f /D SK.f I1/ and SK D SK.f I0/D detD2hK ,
where

SK.f Ip/ D Dm.D
2.f hK/; : : : ;D

2.f hK/„ ƒ‚ …
p times

;D2hK ; : : : ;D
2hK„ ƒ‚ …

m� p times

/:

By [61, Section 5.1], QLKf D SK.f /=SK , and by [61, Lemma 4.1] we can integrate by
parts: Z

S�

SK.f; f /

SK
dVK D

1

n

Z
S�
hKSK.f; f / dm D

1

n

Z
S�
f hKSK.f / dm

D

Z
S�
f
SK.f /

SK
dVK D

Z
S�
f . QLKf / dVK :

We now compute
R

S� tr.A2/dVK in two different manners. On the one hand, by (5.5),Z
S�

tr.A2/ dVK D
Z

S�
kHess�K f k

2
gK
dVK C 2

Z
S�
f .�Kf / dVK Cm

Z
S�
f 2 dVK :
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On the other hand, by (5.6) and the subsequent calculations,Z
S�

tr.A2/ dVK D
Z

S�
.�Kf Cmf /

2 dVK �m.m � 1/

Z
S�
f . QLKf / dVK

D

Z
S�
.�Kf /

2 dVK C 2m

Z
S�
f .�Kf / dVK Cm

2

Z
S�
f 2 dVK

� .m � 1/

Z
S�
.f�Kf Cmf

2/ dVK :

Comparing the two expressions, we obtainZ
S�
.�Kf /

2 dVK �

Z
S�
kHess�K f k

2
gK
dVK D �.m � 1/

Z
S�
f .�Kf / dVK

D .m � 1/

Z
S�
jgradgK f j

2 dVK :

5.3. Proof of the Brunn–Minkowski inequality à la Lichnerowicz

A classical theorem of Lichnerowicz [68] (see also [59]) states that the first non-zero
eigenvalue �1.��g/ of the Laplace–Beltrami operator ��g on a closed connected
.n � 1/-dimensional Riemannian manifold .M n�1; g/ with Ricg � �g (as .0; 2/ tensors)
and � > 0 satisfies

�1.��g/ �
n � 1

n � 2
�:

The proof is immediate after applying the integrated Bochner formula to the first eigen-
function '1, and using Cauchy–Schwarz to relate kHessg f k2g and .�gf /2.

Repeating the same argument verbatim for the centro-affine normalization on @K
immediately gives a new proof of the Brunn–Minkowski inequality (note that in our case
� D n � 2). By approximation and translation, it is enough to consider smooth strictly
convex bodies in Rn having the origin in their interior K 2 K1C , and as observed by
Minkowski and Hilbert, it is enough to derive the inequality in its infinitesimal (or local)
form (see [61, Section 5]):Z

z d�K D 0 H)

Z
jgradgK zj

2 d�K D

Z
.��Kz/z d�K

� .n � 1/

Z
z2 d�K 8z 2 C 2; (5.7)

which exactly means that
�1.��K/ � n � 1: (5.8)

It is well-known that (5.7) is equivalent to its dual form (via z D �Kf )Z
.�Kf /

2 d�K � .n � 1/

Z
jgradgK f j

2 d�K

D .n � 1/

Z
.��Kf /f d�K 8f 2 C 2: (5.9)
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This may be seen by either testing with the first eigenfunction '1 and using ��K'1 D
�1'1, or by using the spectral theorem for��K � 0 (which is self-adjoint onL2.�K/) and
noting that (5.9) is equivalent to P2.��K/� 0 for the polynomial P2.t/D t2 � .n� 1/t .

Theorem 5.3 (Local Brunn–Minkowski inequality). For all K 2 K1C , the local Brunn–
Minkowski inequality (5.9) holds.

Proof à la Lichnerowicz. Given f 2 C 2, by Cauchy–Schwarz we have

kHess�K f k
2
gK
�

1

n � 1
.trgK Hess�K f /

2
D

1

n � 1
.�Kf /

2: (5.10)

Plugging this into the centro-affine Bochner formula (5.3), we obtain

n � 2

n � 1

Z
.�Kf /

2 d�K �

Z
.�Kf /

2 d�K �

Z
kHess�K f k

2
gK
d�K

D .n � 2/

Z
jgradgK f j

2 d�K ;

yielding (5.9).

The above proof also immediately reveals the corresponding equality conditions,
yielding a characterization of the eigenspace of ��K corresponding to �1 D n � 1, a
result due to Hilbert.

Theorem 5.4 (Equality in local Brunn–Minkowski inequality). For all K 2 K1C , the
eigenspace of��K corresponding to the first non-zero eigenvalue �1 D n� 1 is precisely
n-dimensional, spanned by ¹hx�K ; �i I � 2 Eº.

Proof. We have already seen in Proposition 4.9 that hx�K ; �i are eigenfunctions corre-
sponding to �1 D n � 1. To show the converse, let ��K'1 D .n � 1/'1, and hence
equality holds in (5.9). Inspecting the proof of Theorem 5.3, it follows that we must
have equality in the Cauchy–Schwarz inequality (5.10) �K-a.e., and hence by continuity
(as �K is of full support) at every point. It follows that at every point p, Hess�K '1 must
be a multiple of gK :

Hess�K '1 D c.p/gK D
trgK Hess�K '1

n � 1
gK D

�K'1

n � 1
gK

D �'1gK :

It is now convenient to use the parametrization on M D S�. It follows by (5.4) and
Lemma 4.7 that if we extend '1 as a 0-homogeneous function on E� n ¹0º, we have

ND2.'1hK/

hK
D Hess�K '1 C '1gK D 0:

Consequently, '1hK must be an affine function onE�. But since hK is 1-homogeneous, it
vanishes at the origin, and we deduce that '1hK must be a linear function h�; �i for some
� 2 E. Hence '1 D linK;� D hx�K ; �i, as asserted.
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5.4. Equivalent formulations of the Lp-Brunn–Minkowski conjecture

Armed with the centro-affine Bochner formula, we can now give several equivalent for-
mulations of the even localLp-Brunn–Minkowski inequality, which is conjectured to hold
for allK 2K1C;e and p 2 Œ0; 1/ (and the validity of which for allK 2K1C;e is equivalent
to the validity of the global Lp-Brunn–Minkowski inequality (2.4) by [91]).

Theorem 5.5. The following statements are equivalent for a givenK 2K1C;e and p � 1:

(1) The even local Lp-Brunn–Minkowski conjectured inequality:Z
f d�K D 0 H)

Z
jgradgK f j

2 d�K D

Z
.��Kf /f d�K

� .n � p/

Z
f 2 d�K 8f 2 C 2e : (5.11)

(2)
Z
.�Kf /

2 d�K � .n � p/

Z
jgradgK f j

2 d�K

D .n � p/

Z
.��Kf /f d�K 8f 2 C 2e :

(3)
Z
kHess�K f k

2
gK
d�K �

2 � p

n � p

Z
.�Kf /

2 d�K 8f 2 C 2e :

(4)
Z
kHess�K f k

2
gK
d�K � .2 � p/

Z
jgradgK f j

2 d�K 8f 2 C 2e :

When p D 0, these are equivalent to

(5)
Z
kHess�K f C fgKk

2
gK
d�K � .n � 1/

Z
f 2 d�K 8f 2 C 2e :

Proof. The duality (say, via the spectral theorem) between (1) and (2) was already
explained. The equivalence of (2)–(4) is then immediate by using the centro-affine
Bochner formula (5.3). When p D 0, (4) is readily seen to be equivalent to (5) after
noting thatZ

hHess�K f; fgKigK d�K D
Z
f�K.f / d�K D �

Z
jgradgK f j

2 d�K :

Remark 5.6. As we have already seen in (5.10), formulation (3) holds trivially for any
K 2 K1C with p D 1 by an application of the Cauchy–Schwarz inequality, regardless
of evenness of f , and is actually equivalent to the local formulations of the Brunn–
Minkowski inequality (5.7) and (5.9). It follows by the centro-affine Bochner formula
as in Theorem 5.5 that the same applies to formulation (4).

Formulation (5) is rather appealing since by (4.11), we have Hess�K x
�
K D�x

�
KgK , and

by Theorem 5.4, the left-hand side vanishes if and only if f D hx�K ; �i for some � 2 E,
the (odd) eigenfunction of �K corresponding to �1.��K/ D n � 1; unfortunately, we
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do not know how to exploit this. Arranging the other conjectured inequalities above as
follows: Z

kHess�K f k
2
gK
d�K �‹

2 � p

n � p

Z
.�Kf /

2 d�K

�‹ .2 � p/

Z
jgradgK f j

2 d�K 8f 2 C 2e ;

we see that formulation (4) relating the left most and right most terms is formally the
weakest, and so we will concentrate on establishing it, at least for some rich class of
convex bodies K.

5.5. A possible strategy

In view of Remark 5.6, we see that the remaining challenge is to exploit the evenness of f
and origin-symmetry of K to turn the trivial constant 1 in (4) into the conjectured con-
stant 2, corresponding to p D 0. This is very reminiscent of the challenge in the resolution
of the B-conjecture in [38]. As in [38], a natural idea for deriving (4) is to apply (1) to
some partial derivative z of f (which will necessarily be odd and hence integrate to zero
as required in (1)), and then sum over all partial derivatives, thereby gaining one order of
differentiation. However, in order to obtain jgradgK f j

2 D g
ij
Kfifj on the right-hand side

of (4), we would need to incorporate the square-root of the metric gK into the definition
of z – an inherent complication in our non-Euclidean setting. Despite having the elegant
representation gK D hdx�; dxi, we do not know how to effectively take the square-root
of gK (without introducing additional parameters we have no control over). Although we
will not use this here, we mention the following additional equivalent formulation, which
gives us some more flexibility:

Theorem 5.7. Given K 2 K1C;e and p � 1, the even local Lp-Brunn–Minkowski con-
jectured inequality (5.11) holds if and only if for all f 2 C 2e , there exists h 2 C 2 such
that Z

f h d�K > 0;Z
hHess�K f;Hess�K higK d�K � .2 � p/

Z
gK.gradgK f; gradgK h/ d�K :

(5.12)

Proof. The “only if” direction follows by using hD f in the implication (4))(1) in The-
orem 5.5. For the “if” direction, simply polarize the centro-affine Bochner formula (5.3):Z

.�Kf /.�Kh/ d�K �

Z
hHess�K f;Hess�K higK d�K

D .n � 2/

Z
gK.gradgK f; gradgK h/ d�K (5.13)

for all f; h 2 C 2. By elliptic regularity, the first non-constant even eigenfunction f
of ��K corresponding to the eigenvalue �1;e satisfies f 2 C1e . Let h 2 C 2 be the
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function from our assumption. Note thatZ
gK.gradgK f; gradgK h/ d�K D �

Z
.�Kf /h d�K D �1;e

Z
f h d�K > 0: (5.14)

Combining (5.12) and (5.13) and integrating by parts, we obtain

�1;e

Z
gK.gradgK f; gradgK h/ d�K � .n � p/

Z
gK.gradgK f; gradgK h/ d�K :

Using the positivity of (5.14), we deduce �1;e � n � p, which is equivalent to (5.11).

6. Curvature pinching implies even Lp-Minkowski uniqueness

We are now ready to reap the fruits of the insight gained from recasting our problem in
the centro-affine differential language and establish the main results of this paper. First, it
will be useful to record

Lemma 6.1. Let K 2K2
C. Then for all 0 < A � B:

(1) 1
B
ı@K � II@K � 1

A
ı@K if and only if AıS� � D2hK � Bı

S� .

(2) 1
B
ı@K � g@KK �

1
A
ı@K if and only if AıS� � hKD

2hK � Bı
S� .

Recall that ı@K denotes the induced Euclidean structure on @K (i.e. the first funda-
mental form), and that g@KK .x/ D II@Kx =hK.�

�/ by Proposition 4.4.

Proof. Let us pull back the assertions onto S� using the inverse Gauss map x W S� 3
�� 7! NDhK.�

�/ 2 @K. Note that dx.��/ D D2hK.�
�/, and so the pull-back of ı@Kx

is .D2hK.�
�//2. Recalling that II@Kx D .D2hK.�

�//�1 under the natural identification
between Tx@K and T��S�, the pull-back of II@Kx is therefore D2hK.�

�/. Consequently,

(1) 1
B
ı@K � II@K � 1

A
ı@K if and only if

1

B
.D2hK.�

�//2 � D2hK.�
�/ �

1

A
.D2hK.�

�//2:

(2) 1
B
ı@Kx � II@Kx =hK.�

�/ � 1
A
ı@Kx if and only if

1

B
.D2hK.�

�//2 � D2hK.�
�/=hK.�

�/ �
1

A
.D2hK.�

�//2:

Lemma 6.2. Let K 2K2
C;e and assume that

1

R
ı@K � II@K �

1

r
ı@K : (6.1)

Then
rBn2 � K � RB

n
2 ; (6.2)

and consequently
1

R2
ı@K � g@KK �

1

r2
ı@K :
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Proof. By Blaschke’s rolling ball theorem [96, Theorem 2.5.4/3.2.12], the assumption
(6.1) implies that the Euclidean ball rBn2 rolls freely inside K and that K moves freely
inside the Euclidean ball RBn2 . Convexity and origin-symmetry of K then imply (6.2)
since Bn2 � conv..v C Bn2 / [ .�v C B

n
2 // and Bn2 � .v C B

n
2 / \ .�v C B

n
2 / for all

v 2 E. Recalling that g@KK .x/ D II@Kx =hK.�
�/, the final assertion follows.

6.1. Curvature pinching implies local even Lp-Brunn–Minkowski inequality

Theorem 6.3. Let K 2K1C;e have a centro-affine image QK such that

1

B
ı@
QK
� g@

QK
QK
�
1

A
ı@
QK ; QK � RBn2 ; (6.3)

for someA;B;R > 0. Then �1;e.��K/� n�p, i.e.K satisfies the local evenLp-Brunn–
Minkowski inequality (5.11) with

p D 2 �

n�1
2
A �R2

B
: (6.4)

In particular, if K has a centro-affine image for which (6.1) holds, then K satisfies the
local even Lp-Brunn–Minkowski inequality (5.11) with

p D 3 �
n � 1

2

r2

R2
:

In particular, whenever .R
r
/2 � n�1

6
, K satisfies the local even log-Brunn–Minkowski

inequality.

Proof. As the spectrum �.��K/ is centro-affine invariant, it is enough to prove the claim
for QK D K.

Let e1; : : : ; en denote a fixed orthonormal basis of .E; h�; �i/. Recall that xK W M !
@K is our centro-affine parametrization of @K on M . We abbreviate g D gK , x D xK ,
r D rK , r� D r�K and Hess� D Hess�K . We also denote

xk WD hek ; xi WM ! R; xki WD .x
k/i D dx

k.ei /

(for some local frame e1; : : : ; en�1 on M ). Define the following .0; 2/ tensor on M :

ıij D hdx.ei /; dx.ej /i D

nX
kD1

xki x
k
j : (6.5)

Note that when M D @K, as dx@KK D Id, ı is precisely the induced Euclidean metric ı@K

on @K, ensuring that our notation is consistent. We deduce that, regardless of parametriza-
tion, we have

1

B
ı � g �

1

A
ı: (6.6)
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Given f 2 C 2e .M/ and k D 1; : : : ; n, introduce the function F k 2 C 1.M/ given by

F k WD .gradg f /.x
k/ D xki f

i ; f i WD gipfp:

SinceK is origin-symmetric and f is even, F k is clearly odd, and in particular
R
F k d�K

D 0. Consequently, applying the local (L1-)Brunn–Minkowski inequality (5.7) to each
F k and summing (it is clearly enough that F k 2 C 1), we obtain

nX
kD1

Z
jgradg F

k
j
2 d�K � .n � 1/

nX
kD1

Z
.F k/2 d�K :

Using (6.6), we first estimate from below:

nX
kD1

Z
.F k/2 d�K D

Z nX
kD1

xki x
k
j f

if j d�K D

Z
ıijf

if j d�K

� A

Z
gijf

if j d�K D A

Z
jgradg f j

2 d�K :

Next, note that by (3.5) and (3.9),

@a.x
k
i f

i / D @a.x
k
i g

ipfp/ D .rax
k
i /f

i
C xki g

ip
r
�
afp

D �gaix
kf i C xki g

ip Hess�ap f D �x
kfa C x

k
i g

ip Hess�ap f

DW P ka CQ
k
a : (6.7)

Using (6.7), (6.5), (6.6) and (6.2), we now estimate from above:

nX
kD1

Z
jgradg F

k
j
2 d�K

D

nX
kD1

Z
gab@a.x

k
i f

i /@b.x
k
j f

j / d�K

D

nX
kD1

Z
gab.P ka CQ

k
a/.P

k
b CQ

k
b / d�K

� 2

nX
kD1

Z
gab.P ka P

k
b CQ

k
aQ

k
b / d�K

D 2

Z � nX
kD1

.xk/2gabfafb C
� nX
kD1

xki x
k
j

�
gabgipgjq Hess�ap f Hess�bq f

�
d�K

D 2

Z �
jxj2jgradg f j

2
C ıijg

abgipgjq Hess�ap f Hess�bq f
�
d�K

� 2

Z
.R2jgradg f j

2
C BkHess� f k2g/ d�K ;
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where in the last inequality we have used the well-known fact that SijT ij � 0 whenever
S; T � 0.

Combining the three inequalities derived above, we obtain

2

Z
.R2jgradg f j

2
C BkHess� f k2g/ d�K � .n � 1/A

Z
jgradg f j

2 d�K :

Rearranging, we deduce that for every f 2 C 2e ,Z
kHess� f k2g d�K �

n�1
2
A �R2

B

Z
jgradg f j

2 d�K :

By Theorem 5.5, this is equivalent to the local Lp-Brunn–Minkowski inequality (5.11)
with p given by (6.4).

Lastly, the “in particular” part of Theorem 6.3 follows immediately by Lemma 6.2.

6.2. Uniqueness in the even Lp-Minkowski problem

We can now translate Theorem 6.3 into a global uniqueness result for the even Lp-
Minkowski problem and an even Lp-Minkowski inequality. We obtain the following
strengthened version of Theorem 1.2, which we will require for the isomorphic results
of the next section.

Theorem 6.4. Let K 2K
2;˛
C;e have a centro-affine image QK � RBn2 so that the following

curvature pinching bounds hold:

1

B
ı@
QK
�

II@ QK

h QK.n
@ QK/
�
1

A
ı@
QK (6.8)

for some B � A > 0 and R > 0. Then for any p with

2 �

n�1
2
A �R2

B
< p < 1; (6.9)

the even Lp-Minkowski problem for K has a unique solution:

L 2Ke; SpL D SpK H) L D K; (6.10)

and the even Lp-Minkowski inequality holds:

8L 2Ke;

1
p

R
h
p
L dSpK

V.L/p=n
�

1
p

R
h
p
K dSpK

V.K/p=n
D
n

p
V.K/1�p=n; (6.11)

with equality if and only if L D cK for some c > 0.

As usual, the case p D 0 above is interpreted in the limiting sense as in (1.10). Note
that Theorem 6.4 immediately implies Theorem 1.2, since the assumption (1.5) implies
(6.8) with A D r2 and B D R2 by Lemma 6.2.
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Proof of Theorem 6.4. As Theorem 6.3 was formulated forK 2K1C;e , let us first assume
that this is the case. Denote by T 2 GLn the linear map such that K D T . QK/ with

rBn2 �
QK � RBn2 (6.12)

satisfying (6.8). Without loss of generality, we may assume that r; R are best possible in
(6.12), and by scaling, we may assume that rR D 1, so that in particular r � 1 � R. By
Lemma 6.2, since r

B
ı@
QK � II@ QK � R

A
ı@
QK , we have R � B=r and r � A=R, and hence

A � 1 � B .
Define, for t 2 Œ0; 1�,

rt WD .1 � t /C t r; Rt WD .1 � t /C tR;

and let QKt ; Kt 2K1C;e be defined via

h QKt WD .1 � t /C th QK ; Tt WD .1 � t /IdC tT; Kt WD Tt . QKt /;

so that K0 D Bn2 and K1 D K.
By Lemma 6.1, the assumption (6.8) is equivalent to

AıS�
� h QKD

2h QK � Bı
S� on S�.

Denote by At ; Bt > 0 the best corresponding constants for QKt :

Atı
S�
� h QKtD

2h QKt D ..1 � t /C th QK/..1 � t /ı
S�
C tD2h QK/ � Btı

S� on S�.

We claim that
At � A and Bt � B 8t 2 Œ0; 1�: (6.13)

Indeed, by fixing �� and diagonalizing D2h QK.�
�/ > 0, it is enough to find the extremal

values of the quadratic polynomial Q.t/ WD ..1 � t /C tp/..1 � t /C tq/ on the interval
Œ0;1�when p;q > 0. A simple calculation verifies that this polynomial is always monotone
(either increasing or decreasing) on Œ0; 1�, or equivalently, that the mid-point between its
two roots lies outside the interval .0; 1/:

�
1
q�1
�

1
p�1

2
D

1 � pCq
2

1C pq � .p C q/

²
�

�

³
1 � pCq

2

1C .pCq
2
/2 � .p C q/

D
1

1 � pCq
2

´
� 1; 0 < pCq

2
< 1;

� 0; pCq
2
� 1:

Consequently, the minimum and maximum of Q on Œ0; 1� are attained at the end points.
Since A � 1 � B , (6.13) immediately follows.

Now, since clearly Rt � R, it follows that for all t 2 Œ0; 1�,

2 �

n�1
2
At �R

2
t

Bt
� 2 �

n�1
2
A �R2

B
DW p0:
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We may assume that p0 < 1, otherwise there is nothing to prove. It follows by Theo-
rem 6.3 that for all t 2 Œ0; 1�, Kt satisfies the local Lp0 -Brunn–Minkowski inequality
(5.11). Note that it always holds that p0 > �n because A � B .

We now claim that the exact same conclusion also holds wheneverK 2K2
C;e . Indeed,

recall that Kt satisfies (5.11) if and only if �1;e.��Kt / � n � p0. It was shown in [61,
Theorem 5.3] that the eigenvalues of ��L are continuous in L with respect to the C 2

topology. Consequently, if we approximateK by ¹Kiº �K1C;e in C 2, sinceKit obviously
tends toKt in C 2 as i !1 as well, it follows that �1;e.��Kit /! �1;e.��Kt /. We thus
deduce that �1;e.��Kt / � n � p0 for all t 2 Œ0; 1� whenever K 2K2

C;e .
We now assume that K 2 K

2;˛
C;e , to ensure that Œ0; 1� 3 t 7! Kt 2 K

2;˛
C;e is a continu-

ous deformation in the C 2;˛ topology. The implications (4))(1))(3b) of Theorem 2.1
for F WD ¹Ktºt2Œ0;1� � K

2;˛
C;e now immediately establish the asserted uniqueness in the

even Lp-Minkowski problem for K (6.10), as well as the corresponding Lp-Minkowski
inequality (6.11) along with its equality case, for any p 2 .p0; 1/.

7. Isomorphic and isometric Lp-Minkowski problem

We conclude this work by deducing Theorems 1.5 and 1.7. To this end, we require the
following:

Proposition 7.1. Let K 2 Ke , and set D D dBM.K; B
n
2 /. Then for any ˛; ˇ > 0, there

exists QK 2K1C;e such that

dBM.K; QK/ � .1C ˇ/
p
1C ˛2; (7.1)

rBn2 �
QK � RBn2 ; (7.2)

1

B
ı@
QK
�

II@ QK

h QK.n
@ QK/
�
1

A
ı@
QK ; (7.3)

with A;B; r; R > 0 given by

r WD ˇ C
1p

1C ˛2=D2
; R WD

D
p
1C ˛2

C ˇ; (7.4)

A WD ˇr; B WD
D2

˛2

�
1C ˇ

p
1C ˛2=D2

�
C ˇR: (7.5)

Remark 7.2. It is natural to conjecture that with the above assumptions, for any  2 Œ1;D�
there should exist QK 2K1C;e such that

dBM.K; QK/ � C

and
ı@
QK
� II@ QK �

CD

F./
ı@
QK ;
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for some universal constantC >1 and some increasing functionF W Œ1;D�! Œ1;D� (prob-
ably F./ D  ). This would enable us to deduce the isomorphic results of this section
directly from Theorem 1.2, without going through the stronger Theorem 6.4. Unfortu-
nately, we do not see a simple argument for showing the above. The crux of the problem
is that 1

B
ı@
QK � II@ QK � 1

A
ı@
QK does not imply (in general) Aı@ QK

ı

� II@ QK
ı

� Bı@
QKı , as

the curvature of the polar body picks up additional factors depending on D.

Proof of Proposition 7.1. By applying a linear transformation, we may assume that K is
in John’s position, so that

Bn2 � K � DB
n
2 : (7.6)

Furthermore, by standard arguments (such as mollifying hK , Minkowski adding a small
Euclidean ball, and rescaling [96, pp. 184–185]), we may assume that K 2K1C;e without
altering (7.6), and only incurring an extra (arbitrarily small) " > 0 in the final estimate for
dBM.K; QK/, as described below.

We now construct the required body QK 2K1C;e by defining

QK WD LC ˇBn2 ; L WD

�
Kı C2

�
˛

D
Bn2

��ı
:

Here AC2 B denotes the L2-Minkowski sum of two convex bodies A;B 2 K , defined
via

h2AC2B WD h
2
A C h

2
B :

In other words,

kxk2L D kxk
2
K C

˛2

D2
jxj2:

As
1

D
jxj � kxkK � jxj;

we have�
1C

˛2

D2

�
kxk2K ;

1C ˛2

D2
jxj2 � kxk2L � .1C ˛

2/kxk2K ;

�
1C

˛2

D2

�
jxj2;

or equivalently

1
p
1C ˛2

K;
1p

1C ˛2=D2
Bn2 � L �

1p
1C ˛2=D2

K;
D

p
1C ˛2

Bn2 : (7.7)

Consequently,�
1

p
1C ˛2

C
ˇ

D

�
K; rBn2 �

QK �

�
1p

1C ˛2=D2
C ˇ

�
K;RBn2 ; (7.8)
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with r; R > 0 given by (7.4). Hence, reinserting the extra "-error due to the smoothing of
the original K, by choosing " > 0 sufficiently small we may ensure

dBM.K; QK/ �

1p
1C˛2=D2

C ˇ

1p
1C˛2

C
ˇ
D

C " � .1C ˇ/
p
1C ˛2:

Next, defining f .x/ WD kxk2K C
˛2

D2
jxj2, note that @L D ¹x I kxkL D 1º D ¹f D 1º.

Consequently, the unit outer normal to @L is n@L.x/ D
NDf.x/

j NDf.x/j
. A standard computation

then verifies that

II@Lx D
P.n@L/?

ND2f P.n@L/?

j NDf.x/j
:

As kxk2K is convex on E, and as

j NDf.x/jhL.n
@L.x// D h NDf.x/; xi D 2f .x/ D 2 8x 2 @L;

by Euler’s identity and the 2-homogeneity of f , it follows that

II@Lx �
2 ˛

2

D2
ı@Lx

2=hL.n@L.x//
D
˛2

D2
hL.n

@L.x//ı@Lx :

Recalling that D2hL.n
@L.x// D .II@Lx /

�1 and applying the same argument as in Lemma
6.1, we deduce

D2hL �
D2

˛2
1

hL
ıS� :

As h QK D hL C ˇ on S�, it follows that

ˇıS�
� D2h QK �

�
D2

˛2
1

hL
C ˇ

�
ıS� ;

and hence

ˇh QKı
S�
� h QKD

2h QK �

�
D2

˛2

�
1C

ˇ

hL

�
C ˇh QK

�
ıS� :

Recalling (7.7) and (7.8), we deduce that

AıS�
� h QKD

2h QK � Bı
S� ;

with A;B > 0 given by (7.5). A final application of Lemma 6.1 concludes the proof.

We are now ready to complete the proofs of Theorems 1.5 and 1.7.

Proof of Theorems 1.5 and 1.7. Given NK 2Ke and  > 0 where D WD dBM. NK;B
n
2 /, we

construct QK 2 K1C;e as in Proposition 7.1 with a certain choice of ˛; ˇ > 0 to be deter-
mined later. Recall that dBM. NK; QK/ � .1 C ˇ/

p
1C ˛2 and that QK satisfies (7.2) and
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(7.3), where r;R;A;B > 0 are parameters depending on ˛;ˇ;D which are given by (7.4)
and (7.5). By Theorem 6.4, for any p in the range

p˛;ˇ;D WD 2 �

n�1
2
A �R2

B
< p < 1;

QK satisfies the conclusion of Theorem 1.5. Consequently, our task is to show that p˛;ˇ;D
� p;D for some choice of ˛; ˇ > 0 with .1 C ˇ/

p
1C ˛2 D  , where p;D is given

by (1.11).
Denote

b WD
ˇ

1C ˇ
:

We will ensure that the parameters ˛; ˇ;  satisfy

b D ˇ
p
1C ˛2 � D.

p
2 � 1/; ˛ � D: (7.9)

Plugging in the expressions for r; R;A;B , we have

r > ˇ; R �

p
2D

p
1C ˛2

;
p
1C ˛2=D2 �

p
2:

We now estimate

n�1
2
A �R2

B
D

n�1
2
ˇr �R2

ˇRC D2

˛2
.1C ˇ

p
1C ˛2=D2/

>

n�1
2
ˇ2 � 2D2

1C˛2

ˇ
p
2D

p
1C˛2

C
D2

˛2
.1C

p
2 ˇ/

D

n�1
2
b22 � 2D2

p
2 bD CD2 1C˛2

˛2
.1C

p
2 ˇ/

: (7.10)

Let us start with the isomorphic result of Theorem 1.5. It is apparent that in order to
maximize the latter expression given  and D, it is preferable to choose ˇ of the order of
a constant. To obtain an aesthetically pleasing expression, we set

ˇ D 1C
p
2 ” b D

1
p
2
;

yielding
n�1
2
A �R2

B
�

n�1
4
2 � 2D2

D CD2 1C˛2

˛2
.3C

p
2/
:

Recalling our guarantee that

 �

p
2 � 1

b
D D .2 �

p
2/D;

it follows by also ensuring that ˛2 � 3C
p
2 that

p˛;ˇ;D D 2 �

n�1
2
A �R2

B
< 2 �

n�1
4
2 � 2D2

6D2
D
7

3
�
n � 1

24

2

D2
D p;D :
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It remains to conveniently summarize our restrictions on  D .1C ˇ/
p
1C ˛2:

 � .2C
p
2/

q
4C
p
2 ' 7:95;  � .2 �

p
2/D ' 0:58D:

This concludes the proof of Theorem 1.5.
As for the isometric result of Theorem 1.7, one just notes that in order to have

p;D < 0, it is enough to have the expression in (7.10) greater than or equal to 2, i.e.

n � 1

2
ˇ2.1C ˛2/ �

p
2 2ˇ

p
1C ˛2D C 2D2 1C ˛

2

˛2
.1C

p
2 ˇ/C 2D2:

We set ˛ D
p
D= 4
p
n and ˇ D Cˇ˛ for an appropriate universal constant Cˇ > 1 to be

determined, and recall that D �
p
n and hence ˛ � 1 and ˇ � Cˇ . It is therefore enough

to have
n � 1

2
C 2ˇ

D
p
n
� 4CˇD C 4

p
nD.1C

p
2 ˇ/C 2D2:

A sufficient condition for that is

p
nD

�
1

4
C 2ˇ � 4

p
2Cˇ � 4

Cˇ
p
n

�
� 4
p
nD C 2D2;

and in turn, a sufficient condition for that is

1

4
C 2ˇ � 4

p
2Cˇ � 4

Cˇ
p
n
� 6:

Clearly, this holds for a sufficiently large constant Cˇ > 1. Finally, it follows that

 D .1C ˇ/
p
1C ˛2 � 1C C

p
D
4
p
n
; (7.11)

for another universal constant C > 1.
There is still one last point to take care of – we need to guarantee that the assumptions

(7.9) hold. Since ˛ � 1 � D, we just need to make sure that
p
2Cˇ � D.

p
2� 1/. Since

we only ever used D as an upper bound on dBM. NK; B
n
2 /, it follows that we should use

max.D;
p
2Cˇp
2�1

/ in place of D, which simply translates into using a different value for the
constant C > 1 in (7.11). This concludes the proof of Theorem 1.7.
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