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Abstract. We prove a sharp stability result for the Brunn–Minkowski inequality for A; B � R2.
Assuming that the Brunn–Minkowski deficit ı D jACBj1=2=.jAj1=2 C jBj1=2/� 1 is sufficiently
small in terms of t D jAj1=2=.jAj1=2 C jBj1=2/, there exist homothetic convex sets KA � A and
KB � B such that jKAnAj

jAj
C
jKBnBj
jBj

� Ct�1=2ı1=2. The key ingredient is to show for every
"; t > 0, if ı is sufficiently small then jco.ACB/ n .ACB/j � .1C "/.jco.A/ nAj C jco.B/ nBj/.

Keywords. Brunn–Minkowski, stability, planar

1. Introduction

Given measurable sets A;B � Rn, the Brunn–Minkowski inequality says

jAC Bj1=n � jAj1=n C jBj1=n;

with equality for homothetic convex sets A D co.A/ and B D co.B/ (less a measure 0
set). Here AC B D ¹aC b j a 2 A; b 2 Bº is the Minkowski sum, and j � j refers to the
outer Lebesgue measure. Stability results for the Brunn–Minkowski inequality quantify
how close A;B are to homothetic convex sets KA; KB in terms of

� ı D ı.A;B/ WD jACBj1=n

jAj1=nCjBj1=n � 1, the Brunn–Minkowski deficit, and

� t D t .A;B/ WD jAj1=n

jAj1=nCjBj1=n , the normalized volume ratio.

Throughout the paper, ı and t will refer to the above quantities.
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The sharp stability question for the Brunn–Minkowski inequality, Question 1.1 below,
is one of the central open problems in the study of geometric inequalities, and has
been studied intensely in recent years by Barchiesi and Julin [1], Carlen and Maggi [3],
Christ [4], Figalli and Jerison [5–7], Figalli, Maggi and Mooney [8], Figalli, Maggi and
Pratelli [9, 10], and the present authors [12]. We provide a more detailed history of the
problem in Section 1.1.

Question 1.1. For n � 1 do there exist exponents an; bn such that the following is true,
and if so what are the optimal exponents (prioritized in this order)? There is a constant Cn
and constants dn.�/ > 0 for � 2 .0; 1

2
� such that whenever A; B � Rn are measurable

sets with t 2 Œ�; 1 � �� and ı � dn.�/, there exist homothetic convex sets KA � A and
KB � B such that

jKA n Aj

jAj
C
jKB n Bj

jBj
� Cn�

�bnıan :

Prioritizing the exponents an; bn in this order means that if the inequality holds for
.an; bn/, then it also holds for .a0n; b

0
n/ whenever an > a0n by taking d 0n.�/ sufficiently

small.
For planar regions, taking A D Œ0; t � � Œ0; t.1 C "/� and B D Œ0; .1 � t /.1 C "/� �

Œ0; 1 � t � shows that a2 � 1
2

and b2 � 1
2

. Our main result, Theorem 1.2, solves the sharp
stability question for planar regions A;B � R2, showing that the optimal exponents are
.a2; b2/ D .

1
2
; 1
2
/.

Theorem 1.2. There are computable constants C; d.�/ > 0 such that if A; B � R2 are
measurable sets with t 2 Œ�; 1 � �� and ı � d.�/, then there are homothetic convex sets
KA � A and KB � B such that

jKA n Aj

jAj
C
jKB n Bj

jBj
� C��1=2ı1=2:

Our key result in proving Theorem 1.2 is a strong generalization to arbitrary sets
A;B of a conjecture [7] of Figalli and Jerison for A D B that jco.A/ n Aj D O.ı/ for ı
sufficiently small. The original conjecture was recently proved by the present authors [12].
The generalization we now prove involves a completely different analysis to [12], and we
are unaware of a similar approach used previously in the literature.

Theorem 1.3. For all "; � > 0 there is a computable constant d� ."/ > 0 such that the
following is true. Suppose that A; B � R2 are measurable sets with t 2 Œ�; 1 � �� and
ı � d� ."/. Then

jco.AC B/ n .AC B/j � .1C "/.jco.A/ n Aj C jco.B/ n Bj/:

Taking A D B D Œ0; 1�2 [ ¹.0; 1 C �/º shows that 1 C o.1/ is optimal. By taking
"D �=2, we will deduce in Section 12 the following corollary, used to prove Theorem 1.2.

Corollary 1.4. There is a constant C 0 such that

jco.A/ n Aj
jAj

C
jco.B/ n Bj
jBj

� C 0��1ı and ıconv WD ı.co.A/; co.B// � ı.A;B/:
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We make a note on how we apply Corollary 1.4 to deduce Theorem 1.2. We will
estimate

jKA n Aj

jAj
C
jKB n Bj

jBj

D
jKA n co.A/j
jco.A/j

�
jco.A/j
jAj

C
jKB n co.B/j
jco.B/j

�
jco.B/j
jBj

C
jco.A/ n Aj
jAj

C
jco.B/ n Bj
jBj

� C 00��1=2ı1=2conv C C
0��1ı � C��1=2ı1=2;

where the first estimate uses [10], and separately [6] to show

jco.A/j jAj�1 ! 1 as ı ! 0:

In particular, the error in approximating A and B with their convex hulls is quadratically
smaller than the error in approximating co.A/ and co.B/ with homothetic convex sets.

In order to deduce Theorem 1.2 from Theorem 1.3, even for � D 1
2

, it is insufficient
to take say 1 C " D 100. In fact, with such a large " the proof of Theorem 1.3 would
be substantially easier. Showing the result for a suitably small " is the primary challenge
which we are able to overcome.

Example 1.5. We note that Theorem 1.3 with R2 replaced with Rn is false for any fixed
" > 0. To do this, we will give an example in R3 with equal volume sets A;B with ı arbi-
trarily small and with jco.A C B/ n .A C B/j > .1 C "/.jco.A/ n Aj C jco.B/ n Bj/.
Let T be the triangle with vertices .0; 0; 0/; .1; 0; 1/; .2; 0; 0/, and let IA; IB be the
intervals connecting .0; 0; 0/ to vA D .��; 1; 0/ and vB D .�; 1; 0/ respectively. Let
T 0 D .T n ¹z � 1 � �º/ [ .1; 0; 1/, and define

A D T 0 C IA; B D T 0 C IB :

Note that ı ! 0 as �; �! 0. Also, AC B D .T 0 C T 0/C .IA C IB/ where T 0 C T 0 D
2T n ¹z � 2 � �º [ .2; 0; 2/ and IA C IB is a parallelogram in the xy-plane determined
by the vectors vA; vB . Then

jco.A/ n Aj C jco.B/ n Bj D 2�2

and
jco.AC B/ n .AC B/j � jIA C IB j � � D 2��:

co.B/co.A/ co.AC B/

Fig. 1
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Therefore, choosing � > .1C "/�, we obtain

jco.AC B/ n .AC B/j D 2�� > .1C "/2�2 D .1C "/.jco.A/ n Aj C jco.B/ n Bj/:

1.1. Background

In the literature, two measures for quantifying how close A;B are to homothetic convex
sets have been introduced. The Fraenkel asymmetry index is defined to be

˛.A;B/ D inf
x2Rn

jA 4 .s � co.B/C x/j
jAj

;

where s satisfies jAj D js � co.B/j. The other measure introduced by Figalli and Jerison
in [6] is

!.A;B/ D min
KA�A;KB�B

KA;KB homothetic convex sets

max
²
jKA n Aj

jAj
;
jKB n Bj

jBj

³
:

Providing an upper bound for ! is stronger than providing an upper bound for ˛ as we
always have ˛ � 2!. We note that in R2 when A; B are both convex and ı is bounded,
there is a reverse inequality (see Appendix A).

In a landmark paper, Figalli and Jerison [6, Theorem 1.3] showed the most general
stability result for the Brunn–Minkowski inequality, with computable suboptimal expo-
nents on � and ı, and with the exponent of ı depending on � (which we rephrase for the
convenience of the reader).

Theorem 1.6 (Figalli and Jerison [6, Theorem 1.3]). There exist computable constants
an.�/; bn such that the following is true. There are computable constants Cn and
dn.�/ > 0 such that whenever A;B � Rn with t 2 Œ�; 1 � �� and ı � dn.�/, there exist
homothetic convex sets KA � A and KB � B such that

jKA n Aj

jAj
C
jKB n Bj

jBj
� Cn�

�bnıan.�/:

This naturally gives rise to Question 1.1, asking for the optimal exponents of ı and � ,
prioritized in this order. This question, with A;B restricted to various subclasses of geo-
metric objects, is the subject of a large body of literature. Our main result, Theorem 1.2,
proves sharp stability in the case n D 2 for arbitrary measurable A;B .

Prior to [6], Christ [4] had proved a non-computable non-polynomial bound involving
ı and � via a compactness argument. When A and B are convex, the optimal inequality
˛�Cn�

�1=2ı1=2 was obtained by Figalli, Maggi, and Pratelli [9,10]. WhenB is a ball and
A is arbitrary, the optimal inequality ˛ � Cn��1=2ı1=2 was obtained by Figalli, Maggi,
and Mooney [8]. We note that this particular case is intimately connected with stability
for the isoperimetric inequality. When just B is convex the (non-optimal) inequality ˛ �
Cn�

�.nC3=4/ı1=4 was obtained by Carlen and Maggi [3]. Finally, Barchiesi and Julin [1]
showed that when just B is convex, we have the optimal inequality ˛ � Cn��1=2ı1=2,
subsuming these previous results.
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Before their general result for distinct sets A; B in [6], Figalli and Jerison [5] had
considered the case AD B and gave a polynomial upper bound ! � Cnıan . Later, in [7],
they conjectured the sharp bound ! � Cnı when A D B , and proved it in dimensions 2
and 3 using an intricate analysis which unfortunately does not extend to higher dimen-
sions. Afterwards, Figalli and Jerison suggested a stronger conjecture that ! � Cn��1ı
for A;B homothetic regions, which was proved by the present authors [12].

Finally, we note that the planar stability inequalities we consider are not Bonneson-
style inequalities relating mixed volumes of planar convex K; L to the L-inradius and
L-circumradius of K. See e.g. [2, Section 5] and separately [11] for an extensive survey
of such inequalities.

1.2. Outline of paper

In Section 2, we give a reformulation of Theorem 1.3, make some simplifications and
general observations, and give definitions which will be used throughout the remainder
of the paper. The simplifications include assuming A; B are finite unions of polygonal
regions so the vertices of @ co.A/; @ co.B/ are contained in A; B respectively, and that
they are translated in a specific way so that co.A/ and co.B/ contain the origin o.

In Section 3, by an averaging argument we show that .1 � 4��1
p
/ co.A C B/ �

AC B , where  D jco.A/ n Aj C jco.B/ n Bj, i.e. for every x 2 @ co.AC B/, we have
.1 � 4��1

p
/ox � AC B .

In Section 4, we introduce a partition of @ co.ACB/ into good arcs and bad arcs. We
think of good arcs as being the parts of the boundary of co.AC B/ which are straight (or
close to straight). We show that a very small part of the boundary @ co.ACB/ is covered
by bad arcs.

In Section 5, we show that for x in a good arc of @ co.AC B/, we can in fact guar-
antee that .1 � �

p
/ox lies in A C B for any small � (provided d� is small). Thus

co.A C B/ n A C B lies in a thickened boundary ƒ of @ co.A C B/, which is thinner
near the good arcs.

In Sections 6 and 7, we set up the following method for proving jco.ACB/n.ACB/j
� .1C "/.jco.A/ nAjC jco.B/ nBj/.

The edges of @ co.A C B/ are precisely the edges of @ co.A/ and @ co.B/ attached
one after the other ordered by slope. Moreover, every edge of @ co.A C B/ is the
Minkowski sum of an edge of @ co.A/ with a vertex of @ co.B/ or vice versa. We sub-
divide @ co.AC B/ into tiny straight arcs J, and partition these arcs into collections A

and B accordingly. We note that the arcs of A can be reassembled to @ co.A/ and the arcs
of B can be reassembled to @ co.B/, in the same orders as they appear in @ co.AC B/.

We erect on each arc q 2 J a parallelogram Rq pointing roughly towards the origin
such that these parallelograms cover the thickened boundary ƒ. We ensure that we use
a constant number of directions (1000 suffices) such that the Rqs with the same direc-
tions occur in contiguous arcs of @ co.AC B/. The heights of the parallelograms will be
roughly on the order of

p
 if q lies in a bad arc, and �

p
 if q lies in a good arc. Each

parallelogram Rq with q 2 A is the Minkowski sum of a parallelogram Rq;A erected on
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the corresponding segment of @ co.A/ with a vertex pq;B 2 @ co.B/ \ B . Similarly for
q 2 B.

This construction allows us to cover the thickened boundary ƒ of @ co.AC B/ with
translates of small regions erected on @ co.A/ and @ co.B/ as follows:

ƒ �
[
q2A

.Rq;A C pq;B/ [
[

q2B

.pq;A CRq;B/:

Therefore, we can cover co.AC B/ n .AC B/ as follows:

co.AC B/ n .AC B/ �
[
q2A

..Rq;A n A/C pq;B/ [
[

q2B

.pq;A C .Rq;B n B//:

If we have subsets A0 � A and B 0 � B such that ¹Rq;Aºq2A0 are disjoint and contained
in co.A/ and analogously ¹Rq;Aºq2B0 are disjoint and contained in co.B/, then we obtain
an inequality

jco.ACB/ n .ACB/j � jco.A/ nAj C jco.B/ nBj C
X

q2AnA0

jRq;Aj C

X
q2BnB0

jRq;B j:

Hence to prove Theorem 1.3, it suffices to show that we can find such A0 and B 0 withX
q2AnA0

jRq;Aj C

X
q2BnB0

jRq;B j � ".jco.A/ n Aj C jco.B/ n Bj/:

In Section 8 we show that bad arcs of @ co.AC B/ are close in angular distance to the
corresponding arcs in @ co.A/ and @ co.B/. This result is crucial for Sections 9 and 10
where we bound the areas of the parallelograms we have to remove to create A0 and B 0.

In Section 9, we use Section 8 to show that parallelogramsRq;A 6�co.A/ andRq;B 6�B

have q on a good arc. This is then used to show that the area of parallelograms not con-
tained in co.A/ or co.B/ is bounded roughly by �2 .

In Section 10 we use Section 8 to show that parallelograms Rq;A and Rr;A that inter-
sect non-trivially have at least one of q and r on a good arc. This allows us to remove only
good parallelograms to ensure disjointness. We conclude that the area of parallelograms
we need to remove is bounded by roughly � .

In Section 11 we complete the proof of Theorem 1.3 by combining our bounds to
deduce the final inequality. In Section 12 we show how Theorem 1.3 implies Theorem 1.2.
Finally, we add an appendix with the proof that the measures ˛ and ! are commensurate
for small ı.

2. Setup

In this section, we collect together the preliminaries we need to start proving Theorem 1.3.
In Section 2.1 we introduce an equal area reformulation of Theorem 1.3. In Section 2.2
we apply a preliminary affine transformation to R2 and collect facts about the result-
ing lengths and areas. In Section 2.3 we collect the main definitions which will be used
throughout the body of the paper. Finally, in Section 2.4 we collect general observations
which we will use frequently throughout.
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2.1. Equal area reformulation

We will primarily work with the equivalent equal area reformulation of Theorem 1.3 in
Theorem 2.2.

Definition 2.1. For A;B � R2 measurable sets and t 2 Œ0; 1�, define

Dt D tAC .1 � t /B:

Theorem 2.2. For � 2 .0; 1
2
�, there are constants d� D d� ."/ > 0 such that the following

is true. Let A; B � R2 be measurable sets with jAj D jBj D V , let t be a parameter
satisfying t 2 Œ�; 1

2
�, and suppose that jDt j � .1C d� ."//

2V . Then

jco.Dt / nDt j � .1C "/.t
2
jco.A/ n Aj C .1 � t /2jco.B/ n Bj/:

In Theorem 2.2, t is a free parameter, which we note is the normalized volume ratio
of tA and .1 � t /B . Given the sets A;B in Theorem 1.3, A=t and B=.1 � t / have equal
volumes, and Theorem 1.3 is equivalent to Theorem 2.2 applied with these equal volume
sets.

In the equal area reformulation, we let K be the smallest convex set such that K con-
tains a translate of A and B . We assume from now on that A;B �K. By approximation,1

we may assume that A;B;K are unions of polygons.

2.2. Preliminary affine transformation

Let T � K be the maximal area triangle, and let o be the barycenter (which we will
always take to be the origin). This maximal area triangle T has the property that T �
K � �2T DW T 0, and by applying an affine transformation, we may assume that T is a
unit equilateral triangle whose vertices are contained in K.

1p
12

o

2p
3

T

T 0

@K

Fig. 2

1It is easy to show that for any fixed d� ."/we must haveA;B bounded. Now, approximateA;B
from the inside by nested sequences of compact subsets A1 � A2 � � � � and B1 � B2 � � � � . Then
for each Ai ; Bi approximate the pair from the outside by finite unions of polygons.
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Observation 2.3. � We have jT j D
p
3
4

, jT 0j D
p
3, jAj; jBj 2 .0;

p
3� and jKj 2

Œ
p
3
4
;
p
3�.

� For p 2 T 0 n T we have jopj 2 Œ 1p
12
; 2p

3
�, and this in particular holds for p 2 @K.

2.3. Definitions

We now collect the definitions we will use for the remainder of the paper.

Definition 2.4. We define

 D t2jco.A/ n Aj C .1 � t /2jco.B/ n Bj:

Definition 2.5. In a convex set C containing o, we say that a point p 2 @C is .�; `/-
bisecting if the unique isosceles triangle Tp.�; `/ with angle � at p and equal sides ` such
that po internally bisects the corresponding angle is contained inside C .

p

Tp.�; `/

o

@C

Fig. 3

Definition 2.6. Given a convex set C and a point p 2 @C , we say that p is .�; `/-good
if there are points q; r 2 C such that jpqj; jpr j � ` and †qpr � 180ı � � . Any point in
@C which is not .�; `/-good is .�; `/-bad.

Definition 2.7. Given a point p and a set E with o 2 co.E/, we denote by pE the inter-
section of the ray op with @ co.E/.

2.4. General observations

Observation 2.8. Suppose we have subsets RA � co.A/; RB � co.B/, and z 2 R2. Let
H D H�.1�t/=t;z denote the negative homothety of ratio �.1 � t /=t through z. Then if
jRA \ H.RB/j > t�2 , or equivalently jH�1.RA/ \ RB j > .1 � t /�2 , then we have
z 2 Dt .2

2Note that t�2 D jco.A/ n Aj C jco.H.B// n H.B/j, so there is at least one x in
RA \ H.RB / � co.A/ \ H.co.B// which is not in .co.A/ n A/ [ .co.H.B// n H.B//. Thus
x 2 A \H.B/, and z D tx C .1 � t /H�1.x/ 2 Dt .
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Observation 2.9. For sets A;B with common volume V , Figalli and Jerison showed .see
Theorem 1.6/ that for fixed � we have jK n AjV �1; jK n BjV �1 ! 0 as jDt jV

�1 ! 1.
In particular, as V 2 .0;

p
3� by Observation 2.3, we have

jK n Aj; jK n Bj; jco.A/ n Aj; jco.B/ n Bj;  ! 0 as d� ! 0:

2.5. Constants and their dependencies

Fix � and ". For the convenience of the reader, we describe roughly our choice of param-
eters throughout. First, we take M D 1000 2 2N to be a universal constant and ˛ D
720ı

M
< 1ı. Next, we take � such that " � .�2 C .1 � �/2/.25��1M�2 C 16000��1M�/.

Next, we take � � 1
2

ı
such that 1

2
�2 sin.28ı/6=sin.4�/ � 1, and we take ` such that

.1440
ı

�
C 3/4.1 C 100t�1/`100

99

p
12 � 180

ı

�
< 1

3
˛. Finally, take d� sufficiently small to

make various statements true along the way.

3. Initial structural results

In this section, we will show three preliminary propositions which quantify how close we
may assume A;B are to K, and how much of co.Dt / we can guarantee is covered by Dt

without resorting to a finer analysis of the boundaries of the various regions.

� In Proposition 3.1 we show that for any constant � 2 .0; 1/, if d� is sufficiently small
in terms of � then

.1 � �/K � co.A/; co.B/; co.Dt / � K:

� In Proposition 3.3 we show that if d� is sufficiently small, then for every z 2 @K the
points z; zA; zB ; zDt

are .59ı; 1
3
/-bisecting.

� Finally, in Proposition 3.5 we show that if d� is sufficiently small, then

.1 � 4t�1
p
/ co.Dt / � Dt :

3.1. Showing co.A/; co.B/; co.Dt / contain a large scaled copy of K

Proposition 3.1. For any fixed � 2 .0; 1/, if d� is sufficiently small in terms of �, then
.1 � �/K � co.A/; co.B/; co.Dt / � K.

To prove Proposition 3.1, we need Lemma 3.2 which guarantees that @K behaves well
under the notion of .�; `/-bisecting from Definition 2.5.

Lemma 3.2. Every point p 2 @K is .60ı; 1
2
/-bisecting.

Proof. Note that the statement is trivially true if p is a vertex of @T (since then Tp.60ı; 1/
D T � K), so assume otherwise. Let x; y; z be the vertices of T and x0 D �2x,
y0 D �2y, z0 D �2z the corresponding vertices of T 0. Let p D pz be in the triangle
xyz0. Let py 2 xy0z and px 2 x0yz be the point pz rotated by 120ı and 240ı clockwise
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x0

y0z0
x

y z

o

p

p0

py

px

Fig. 4

around o respectively. Note that pxpypz is an equilateral triangle with centre o such that
†opzpy D 30

ı. Let p0 be the intersection of the segments xz and pzpy .
Note that pp0 � K. We will show that jpp0j � 1

2
. Note that the points o; p; p0; x are

concyclic as†oxp0D 30ıD†opp0. We have†pxp0 2 Œ60ı; 120ı�, so by the law of sines,
2r D jpp0j

sin†pxp0 �
2p
3
jpp0j, where r is the circumradius of this circle. But 2r � joxj D 1p

3
,

so jpp0j � 1
2

. By showing a similar result for pzpx , we conclude that Tp.60ı; 12 / lies
in K.

Proof of Proposition 3.1. We prove this for co.A/; the identical proof works for co.B/
and then because co.Dt / D t co.A/C .1 � t / co.B/ we deduce the final containments.
By Observation 2.9, we can take d� sufficiently small in terms of � so that jK n Aj <
p
3
36
�2. Let p 2 @K, let p0 2 op be such that jpp0j D �jopj, and suppose for the sake of

contradiction that p0 62 co.A/. Then as jopj 2 Œ 1p
12
; 2p

3
� by Observation 2.3, we have

jpp0j 2 Œ �
p
12
; 2�p

3
� D Œ.2

3
�/h; .8

3
�/h� where h D

p
3
4

is the height of Tp.60ı; 12 /. A line

separating p from co.A/ through p0 cuts off from Tp.60
ı; 1
2
/ an area of at least

min
�
1

2
;

�
2

3
�

�2�ˇ̌
Tp
�
60ı; 1

2

�ˇ̌
D

p
3

36
�2

on the p-side, which lies in K n A, contradicting jK n Aj <
p
3
36
�2.

3.2. Showing points in @K, @ co.A/, @ co.B/, @ co.Dt / are .59ı; 1
3
/-bisecting

Proposition 3.3. For d� sufficiently small, for every z 2 @K the points z; zA; zB ; zDt
are

.59ı; 1
3
/-bisecting.
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Proof. By Proposition 3.1 we can take d� sufficiently small so that

.1 � �/K � co.A/; co.B/ � K

with � D 10�9. Let C be one of K; co.A/; co.B/; co.Dt /. We have Tz.60ı; 12 / � K. Let
x; y denote the other two vertices of the triangle, and let x0 D .1 � �/x, y0 D .1 � �/y.
Note that x0; y0 2 .1 � �/K � C .

x

z

y
x0 y0m0

m

o

Fig. 5

Note Figure 5 is symmetric about oz. Let m be the midpoint of xy and m0 be the
midpoint of x0y0. Then jx0m0j D 1

4
.1 � �/,

jm0zC j � jmzC j C jmm
0
j � jmzj C �jomj �

p
3

4
C �

2
p
3

by Observation 2.3, and similarly jm0zC j � jmzj�jzzC j�jm0mj � jmzj��.jozjCjomj/
�

p
3
4
�2� 2p

3
(these are true even if o is inside the triangle xyz). Thus, by inspecting the

right triangles x0m0zC and y0m0zC , because

tan.29:5ı/
�p

3

4
C �

2
p
3

�
<
1

4
.1 � �/ and

1

cos.29:5ı/

�p
3

4
� 2�

2
p
3

�
>
1

3
;

the vertices of TzC
.59ı; 1

3
/ lie in the triangle x0y0zC � C .

Corollary 3.4. Let C be K; co.A/; co.B/ or co.Dt /. For d� sufficiently small, given
z 2 @C and a supporting line l to C at z, we have †l; zo 2 .29ı; 180ı � 29ı/.

3.3. Showing Dt contains a large scaled copy of co.Dt /

Proposition 3.5. For d� sufficiently small, we have

.1 � 4t�1
p
/ co.Dt / � Dt :

In particular, if z 2 @ co.Dt / and p 2 oz has jpzj � 5t�1
p
 , then p 2 Dt .

To show Proposition 3.5, we need the following lemma.
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Lemma 3.6. For every �2 .0;1/ and d� sufficiently small in terms of �, we have .1� �/K
� Dt .

Proof. We may assume that �� 10�9. We take d� sufficiently small in terms of � such that
1��
1��=2

K � co.A/; co.B/ by Proposition 3.1, and t�2 < �. 1
100
�/2 by Observation 2.9.

First, we show that for every k 2 K we have

B

�
.1 � �/k;

1

100
�

�
� co.A/; co.B/:

We show the co.A/ containment; the other containment’s proof is identical.
Write k D �k0 with k0 2 @K and � 2 Œ0; 1�. Because k0 is .60ı; 1

2
/-bisecting we see

that

B

��
1 �

�

2

�
k0;

�

2
p
12

sin.30ı/
�
� Tk0

�
60ı; 1

2

�
� K;

as jok0j � 1p
12

by Observation 2.3. Thus

B

�
.1 � �/k0;

�

20

�
� B

�
.1 � �/k0;

1 � �

1 � �=2

�

2
p
12

sin.30ı/
�

�
1 � �

1 � �=2
K � co.A/;

and so B..1� �/k; �
20
�/ � co.A/. If � � 1

5
, then B..1� �/k; 1

100
�/ � co.A/, as desired.

Otherwise, assume � < 1
5

. By Observation 2.3 we have jk0j � 2p
3

, so it follows that

j.1 � �/100
99
kj C 1

99
�

1p
12

, the distance from o to @T , and so B..1 � �/100
99
k; 1

99
/ � T .

Hence, B..1 � �/k; 1
100
/ � 99

100
T � co.A/: Thus we always have B..1 � �/k; 1

100
�/ �

co.A/ as desired.
Let k 2 K. To check that z D .1 � �/k D t .1 � �/k C .1 � t /.1 � �/k 2 Dt , in the

notation of Observation 2.8 we takeRADRB DB..1� �/k; 1
100
�/� co.A/;co.B/. Then

jRA \H�.1�t/=t;z.RB/j D jRAj D �.
1
100
�/2 > t�2 . Hence, we conclude by Observa-

tion 2.8 that z 2 Dt .

Proof of Proposition 3.5. Let � D 10�9, and take d� sufficiently small so that Propo-
sition 3.3 and Lemma 3.6 apply, and that  � t2

16
by Observation 2.9. Define

z D tx C .1 � t /y 2 @ co.Dt / where x 2 @ co.A/ and y 2 @ co.B/. We will show that
z0 D .1 � 4�t�1

p
/z lies in Dt for all � 2 Œ1; t

4
p

�.

By Proposition 3.3 the points x; y are .59ı; 1
3
/-bisecting. Define x0; y0 analogously

to z0, and note that tx0C.1�t /y0Dz0 and jxx0j; jyy0j; jzz0j2Œ 4p
12
�t�1
p
; 8p

3
�t�1
p
�,

jozj � 2p
3

by Observation 2.3. Because 1
4
jxx0j; 1

4
jyy0j � jzz0j, if either jxx0j or jyy0j is

at least 1
100

, then jzz0j � 1
25

, which by Lemma 3.6 implies

z0 2

�
1 �
jzz0j

jozj

�
K �

�
1 �

p
3

50

�
K � .1 � �/K � Dt :
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Assume now that jxx0j; jyy0j< 1
100

, so that the altitudes from x (resp. y) of Tx.59ı; 13 /
(resp. Ty.59ı; 13 /) exceed 2jxx0j (resp. 2jyy0j). Because � � 1 we have

jxx0j; jyy0j �
4
p


p
12
�t�1 � 1:001t�1

r


�
=sin.29:5ı/:

Together the last two sentences show that B.x0; 1:001t�1
p
=�/ � Tx.59

ı; 1
3
/ � co.A/,

and B.y0; 1:001t�1
p
=�/ � Ty.59

ı; 1=3/ � co.B/. By applying Observation 2.8 with
RADB.x

0;1:001t�1
p
=�/ andRB DB.y0;1:001t�1

p
=�/, we conclude that z0 2Dt .

x y

x0 y0

z

z0

Fig. 6

Finally, jzz0j D 4t�1
p
 jozj � 8p

3
t�1
p
 < jpzj, so p 2 Dt .

4. Decomposing @ co.Dt/ into good arcs, and bad arcs of small total angular size

Recall that M 2 2N be some universal constant (1000 suffices), and set ˛ D 720ı

M
< 1ı.

Definition 4.1. For any s, we denote by Ibad
s .�; `/ the collection of arcs formed by the

set of all points in @ co.Dt / within Euclidean distance s of a .�; `/-bad point (which
is a union of arcs). We let I

good
s .�; `/ denote the remaining arcs in @ co.Dt /, which we

subdivide into arcs of angular length at most 1
3
˛.

Proposition 4.2. For d� sufficiently small, there exists an increasing function `D `.�/ for
� < 180ı such that the union of arcs

S
Ibad
100t�1`

.�; `/ has total angular size at most 1
3
˛.

Proof. Take d� sufficiently small so that 99
100
K � co.Dt / by Proposition 3.1.

Choose a point on @ co.Dt /, and form a polygon P inscribed in @ co.Dt / by travelling
around clockwise and picking the first vertex at distance ` from the previous vertex, all
the way until the polygon would self-intersect, and then simply join the first and last
vertex with an edge. Then all sides are of length ` except one side of possibly smaller
size. Moreover, each vertex of the polygon is within distance ` of every point of the next
subtended arc of @ co.Dt /.

We let �good be the collection of arcs of co.Dt / which arise as the arc subtended
by m2m3, where m1; m2; m3; m4 are four consecutive vertices of the polygon P , with
jm1m2j D jm2m3j D jm3m4j D ` and †m1m2m3;†m2m3m4 � 180ı � �=2. We claim
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that every point s 2 q 2 �good is .�; `/-good. To see this, note that the angle condition in
particular implies that †m1m2m3;†m2m3m4 > 90ı, so the rays m1m2 and m4m3 meet
at a point r as shown in Figure 7 below.

@ co.Dt /

m1

m2

m3

m4

r
s

Fig. 7

We now show thatm1;m4 realize s as a .�; `/-good point. First, note that jm1sj � `D
jm1m2j because †m1m2s � 90ı. Similarly jm4sj � ` D jm3m4j. Finally, †m1sm4 �
†m1rm4 � 180

ı � � , where the first inequality follows as s lies inside the triangle
m1rm4, and the second as †rm2m3;†rm3m2 � �=2.

Let �bad be the collection of remaining arcs of @ co.Dt / subtended by sides of P
which are not in �good. As the sum of the exterior angles of P is 360ı, the number of
interior angles which are strictly less than 180ı � �=2 is at most 720ı=� . Thus, j�badj �

1440ı=� C 3 (we add 3 for the arc subtended by the last side of the polygon and the two
adjacent arcs). Note that every .�; `/-bad point is contained in an arc in �bad.

For each arc q 2 �bad let xq denote its clockwise starting point and Iq WD @ co.Dt /\

B.xq; .1C 100t
�1/`/ the set of all points of @ co.Dt / within Euclidean distance at most

.1C 100t�1/` of xq. This includes the points within Euclidean distance at most 100t�1`
of q. Let I WD

S
Iq, so that

S
Ibad
100t�1`

.�; `/ � I .
Recall that 99

100
K � co.Dt /, so that @ co.Dt / � T

0 n
99
100
T and thus joxqj �

99
100

1p
12

by Observation 2.3. Because Iq � B.xq; .1C 100t
�1/`/, the angular size of Iq is at most

2 sin�1..1C 100t�1/`/
100

99

p
12 � 4.1C 100t�1/`

100

99

p
12 �

180ı

�
:

We conclude that
S

Ibad
100t�1`

.�; `/ � I has angular size at most�
1440ı

�
C 3

�
4.1C 100t�1/`

100

99

p
12 �

180ı

�
;

which we can make smaller than 1
3
˛ by choosing ` sufficiently small.

Definition 4.3. We will always denote by `D `.�/ the increasing function of � produced
by the lemma above.
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Observation 4.4. Every point in an arc in I
good
s .�; `/ has distance at least s to all .�; `/-

bad points in @ co.Dt /, and we have the partition (up to a finite collection of endpoints)G
Igood
s .�; `/ t

G
Ibad
s .�; `/ D @ co.Dt /:

5. Replacing 5t�1p
 with �p

 on arcs in I
good
2`
.�; `/

This section is devoted to proving the following proposition.

Proposition 5.1. For every � 2 .0; 1/ there exists � > 0 such that for d� sufficiently small
in terms of � the following is true. For every p 2 q 2 I

good
2`

.�; `/ .recalling ` D `.�// and
p0 2 op with jpp0j � �

p
 , we have p0 2 Dt .

We outline the proof of Proposition 5.1. Suppose first that p is the t -weighted average
of points xA and yB 3 which are a distance at most ` apart. Then xDt

, yDt
are both close

enough to p that by definition of I
good
2`

.�; `/, xDt
is .�; `/-good in co.A/ and yDt

is .�; `/-
good in co.B/, which by Lemma 5.4 implies xA; yB are .2�; `=2/-good, yielding certain
angular regions at xA and yB lying in co.A/ and co.B/ respectively.

If instead the distance is at least `, then the triangles oxAyA and oyBxB serve as the
large angular regions at xA and yB respectively.

In either case, the fact that p 2 @ co.Dt / implies the angular regions are in suitable
directions so that Lemma 5.5 applies, showing in either case these regions are suitable for
an application of Observation 2.8, and we conclude.

Lemma 5.2. If we perturb the endpoints of a line segment of length ` each by an amount
r < `=2, then the newly created line segment is rotated by at most sin�1.2r=`/.

Proof. Consider two circles of radius r around the two endpoints of the segment; then the
maximally rotated segment is one of the interior bitangents to these circles.

Lemma 5.3. In a triangle with vertices a; b; c, suppose that †acb 2 .28ı; 180ı � 28ı/.
Then the distance from c to ab is at least sin.14ı/min.jacj; jbcj/:

Proof. Let z be the foot of the perpendicular from c to the line ab. We have either†acz �
90ı � 14ı or †bcz � 90ı � 14ı, say the former. Then

jczj D .cos†azc/jacj � sin.14ı/jacj:

Lemma 5.4. For d� sufficiently small in terms of � , if xDt
.resp. yDt

/ is .�; `/-good in
co.Dt /, then xA is .2�; `=2/-good in co.A/ .resp. yB is .2�; `=2/-good in co.B//.

3Here and in the proofs of Propositions 5.1 and 8.1 we will be writing for example xDt
WD

.xA/Dt
even if no point x has been defined.
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Proof. We prove the statement for xA; the statement for yB is proved identically. Let �D
p
3`
8

sin.�=2/ (recall ` is defined to be a function of � ), and take d� sufficiently small so
that .1� �/K � co.A/; co.B/; co.Dt / � K by Proposition 3.1. Let w; z be the other two
points in co.Dt / realizing xDt

as .�; `/-good. Because .1 � �/K � co.A/; co.Dt / � K,
we have jxDt

xAj � �
2p
3

. Definingw0 D .1� �/w 2 co.A/ and z0 D .1� �/z 2 co.B/ we

have jww0j; jzz0j � � 2p
3

. Thus by Lemma 5.2, as sin�1. 4�p
3`
/ < �=2 we have †w0xAz0 �

180ı � 2� . As jxDt
xAj C jww

0j �
4�
p
3
< `=2, by the triangle inequality jxAw0j � `=2.

Similarly jxAz0j � `=2, so we see that w0; z0 realize xA as .2�; `=2/-good.

Lemma 5.5. Letm;n be two points and let l1m; l
2
m and l1n ; l

2
n be pairs of rays originating at

m;n, respectively and label u; v; x; y as shown in Figure 8. Assume further that †unv D
†ymu � 28ı. Denote †num D � and jmnj D r . Then we have the area lower bound
juvxyj � 1

2
r2 sin.28ı/6=sin.�/:

l1n

n

l2n

m

l2m

l1m
u

v

x

y

r�

� 28ı

� 28ı

Fig. 8

Proof. First, we note that

juvxyj � juvyj D jumnj �
juvj

jumj
�
juyj

junj
:

By the law of sines, jumj D r sin.†unm/=sin.�/ and junj D r sin.†umn/=sin.�/.
We have †unm;†umn � 28ı, so as the sum of the angles of the triangle umn is 180ı,
we have †unm;†umn 2 Œ28ı; 180ı � 28ı�. Therefore

jumnj D 1
2
jumj junj sin.�/ D 1

2
r2 sin.†unm/ sin.†umn/=sin.�/

�
1
2
r2 sin.28/2=sin.�/:

Next, we have

juvj

jumj
D
junvj

junmj
D
jnvj

jnmj

sin.†unv/
sin.†unm/

D
sin.†umn/ sin.†unv/
sin.†nvm/ sin.†unm/

� sin.†umn/ sin.†unv/ � sin.28ı/2;
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and by a symmetric argument, juyj
junj
� sin.28ı/2. Multiplying the bounds, we obtain

juvxyj � 1
2
r2 sin.28ı/6=sin.�/ as desired.

Proof of Proposition 5.1. We choose parameters as follows:

� � � 1
2

ı
such that 1

2
�2 sin.28ı/6=sin.4�/ � 1 and ` D `.�/ � 1

2
.

� Next, take � D
p
3
8
` sin.�/ (with this choice of � we have .1 � �/=

p
12 � `=2).

� Next, take 0 such that 5t�2
p
0 �

`
20

sin.4�/.

� Finally, take d D d� sufficiently small so that

–  � 0 by Observation 2.9,

– .1 � �/K � co.A/; co.B/; co.Dt / � K by Proposition 3.1,

– p0 2 Dt if jpp0j � 5t�1
p
0 by Proposition 3.5,

– Corollary 3.4 and Lemma 5.4 apply.

By our choice of d� we may assume that jpp0j 2 Œ�
p
; 5t�1

p
�. Write p D txA C

.1 � t /yB with xA 2 @ co.A/; yB 2 @ co.B/. Construct

AC D AC��!xAp; B� D B C��!yBp;

oC D oC��!xAp; o� D oC��!yBp:

xA
p

yB

oo� oC

co.A/ co.B/co.B�/ co.AC/
p0 l

Fig. 9

Note that o D toC C .1 � t /o� and hence p0 is a point in the triangle oCpo� such
that jpp0j 2 Œ�

p
; 5t�1

p
�. It is enough to show that for any such p0 we have p0 2

tAC C .1 � t /B�.
Because p 2 @ co.Dt /, there is a supporting line l at p to co.Dt /, and because

co.Dt / is the Minkowski semisum t co.A/ C .1 � t / co.B/, this line also leaves
co.AC/; co.B�/ on this same side as well. By Corollary 3.4 we have †l; poC;†l; po� 2
.29ı; 180ı � 29ı/.

Our goal will be to produce points gC 2 co.AC/; g� 2 co.B�/ with jgCpj; jg�pj �
`=10 as in Figure 10 where the horizontal line is l , the points appear counterclockwise in
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p

gC

oC

p0

o�

g�

l2� 2�

� 28ı
� 28ı

Fig. 10

the order gC; oC; p0; o�; g�, and furthermore pgC is rotated 2� counterclockwise from l

about p, pg� is rotated 2� clockwise from l about p, and †g�; po�;†gC; poC � 28ı.

Claim 5.6. If such points gC; g� exist then p0 2 Dt .

Proof. Note that joCpj D joxAj � .1 � �/=
p
12 � `=2 > `=10 by Observation 2.3, and

similarly jo�pj � `=10. Furthermore, jpp0j � 5t�1
p
0 �

`
20

sin.4�/.
Let S� denote the triangle g�po� and SC denote the triangle gCpoC. Let H denote

the negative homothety H D Hp0;�.1�t/=t of ratio �.1 � t /=t at p0. Note that the inverse
homothety H�1 is a negative homothety with ratio �t=.1 � t / about p0.

First, we show that

jH�1.SC/ \ S�j �
1

2.1 � t /2
jpp0j2 sin.28ı/6=sin.4�/:

This will be seen to follow from Lemma 5.5, applied with angle 4� , m D p,
n D H�1.p/, l1m D pg

�, l2m D po
�, l1n D H

�1.pgC/ and l2n D H
�1.poC/. Let u; v; x

and y be defined as in Lemma 5.5 such that †num D 4� .
In order to apply Lemma 5.5, we need to check that the intersection of the triangles

H�1.SC/ and S� contains the quadrilateral uvxy.
Indeed, we have

junj D sin.†upn/
jmnj

sin.4�/
�

`

20
�

t

1 � t
;

because jmnj D 1
1�t
jpp0j � 5

t.1�t/

p
0 �

sin.4�/`
20
�
t
1�t

, and similarly

jupj �
`

20
�

t

1 � t
:

Then the triangle inequality shows that jnvj; jpyj � `
10
�
t
1�t

as well, and we conclude
from the fact that jH�1.oCp/j; jH�1.o�p/j; jgCpj; jg�pj � `

10
�
t
1�t

.
Next, because jpp0j2 � �2 , by our choice of �0 this implies that

jH�1.SC/ \ S�j > .1 � t /�2:
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H�1.gC/

H�1.p/ D n

H�1.oC/

p D m

o�

g�

S�

H�1.SC/

u

v

x

y

4�
p0

Fig. 11

Thus as

t2

.1 � t /2
jpgCoC n ACj C jpg�o� n B�j �

t2

.1 � t /2
jco.AC/ n ACj C jco.B�/ n B�j

D
t2

.1 � t /2
jco.A/ n Aj C jco.B/ n Bj

D .1 � t /�2 < jH�1.SC/ \ S�j;

a suitable modification of Observation 2.8 shows p0 2 tAC C .1 � t /B� and hence p0 2
tAC .1 � t /B .

Returning to the proof of the proposition, we note that exactly as at the start of the
proof of Claim 5.6 we have jpoCj; jpo�j � `=2. We now distinguish two cases.

Case 1: jxAyB j � `. Recall the definitions of xB and yA from Definition 2.7. By Obser-
vation 2.3, we have jxAxB j; jyAyB j � � 2p

3
� `=4 and hence by the triangle inequality

jxAyAj; jxByB j � `=2.
We also have †xAyA; xByB � sin�1. 8�p

3`
/ � � by Lemma 5.2.

Define yCA WD yA C
��!xAp 2 A

C; x�B D xB C
��!yBp 2 B

�. We have

jpyCA j D jxAyAj; jpx
�
B j D jxByB j;

and these are all� `=2 by the above discussion. Furthermore,†yCA px
�
B D†xAyA; yBxB

� � � � , and the line l through p has yCA ; o
C; p0; o�; x�B on one side, appearing in this
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xA

o

yB

xB

yA

� �

� `

� �

Fig. 12

order counterclockwise above l . To see this, note that as p lies on the segment xAyB ,
ExAp lies on the same side of the line oxA as yA does, so o 62 †yCA po

C

A . In particular, this
implies that †l; pyCA ;†l; px

�
B � � .

p

yC
A

oC

p0

o�

x�
B

l� � � �
� 29ı� 29ı

gCg�

Fig. 13

Because †l; poC;†l; po� � 29ı and 2� < 29ı, we have †l; pyCA � 2� < †l; po
C

and †l; px�B � 2� < †l; po
�. These imply the existence of points

gC 2 yCA o
C
� co.AC/ and g� 2 x�Bo

�
� co.B�/
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such that †l; pgC D †l; pg� D 2�: Because †l; pyCA ;†l; px
�
B � � and 2� � 1ı, we

have
†gCpoC;†g�po� � 29ı � 2� � 28ı:

It is clear from the construction that gC; oC; p0; o�; g� also appear in this order coun-
terclockwise above l . Finally, recall jpoCj � `=2, so by Lemma 5.3 as †oCpyCA 2
.28ı; 180ı � 28ı/ we have

jpgCj � min.jpyCA j; jpo
C
j/ sin.14ı/ � `=10;

and similarly jpg�j � `=10.

Case 2: jxAyB j � `. Then jxApj; jyBpj � `, and we have jxDt
xAj; jyDt

yAj �
2p
3
� � `

4

by Observation 2.3. Thus by the triangle inequality jxDt
pj; jyDt

pj � 5
4
` < 2`. By def-

inition of I
good
2`

.�; `/, since p 2 q 2 I
good
2`

.�; `/, the points xDt
; yDt

are .�; `/-good. By
Lemma 5.4 we see that xA 2 co.A/;yB 2 co.B/ are .2�; `=2/-good. Therefore, there exist

e1; e2 2 co.A/ and f1; f2 2 co.B/

such that

†e1xAe2;†f1yBf2 � 180
ı
� 2� and je1xAj; je2xAj; jf1yB j; jf2yB j � `=2:

Let
eC1 D e1 C

��!xAp; eC2 D e2 C
��!xAp;

f �1 D f1 C
��!yBp; f �2 D f2 C

��!yBp;

p

eC2

oC

p0

o�

f �1
l

gCg�

eC1

f �2

Fig. 14
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such that eC1 ; e
C
2 2 co.AC/ and f �1 ; f

�
2 2 co.B�/. With this notation we find that

†eC1 pe
C
2 ;†f

�
1 pf

�
2 � 180

ı � 2� and jeC1 pj; je
C
2 pj; jf

�
1 pj; jf

�
2 pj � `=2. Recall that

†l; poC;†l; po� 2 .29ı; 180ı � 29ı/.
Notice that the line l through p leaves eC1 ; e

C
2 ; f

�
1 ; f

�
2 o
C; o�; p0 on one side, and

that up to relabelling the points, eC2 ; o
C; p0; o�; f �1 appear in this order counterclockwise

above l . Note that †l; eC2 p;†l; f
�
1 p � 2� . Construct points

gC 2 eC2 o
C
� co.AC/ and g� 2 f �1 o

�
� co.B�/

such that†l;pgC;†l;pg�D 2� and note that†gCpoC;†g�po� � 28ı as 2� � 1ı. We
can see from the construction that the points gC; oC; p0; o�; g� also appear in this order
counterclockwise above l . Finally, recall jpoCj � `=2, so by Lemma 5.3 as †oCpeC2 2
.28ı; 180 � 28ı/, we have

jpgCj � min.jpeC2 j; jpo
C
j/ sin.14ı/ � `=10;

and similarly jpg�j � `=10.

6. Covering @ co.Dt/ with parallelograms

From now on, we let �; ` depend on � 2 .0; 1/ as in Proposition 5.1, and always assume
that d� is sufficiently small so that the conclusion of Proposition 5.1 holds. We will fix
� in terms of ", so when we say to take d� sufficiently small, we implicitly will take it
sufficiently small in terms of our choice of �.

In this section, we construct a partition J.�; `/ of @ co.Dt / into small straight arcs q,
and parallelograms Rq which have one side on q such that

co.Dt / nDt �

[
q2J.�;`/

Rq:

Recall that in Proposition 3.5 we showed that for d sufficiently small, Dt contains
all points at radial distance 5t�1

p
 from @ co.Dt /. Furthermore, in Proposition 5.1 we

improved the bound to �
p
 for points in @ co.Dt / that belong to arcs in I

good
2`

.�; `/.
For the remainder of the paper we will be using I

good
s .�; `/; Ibad

s .�; `/ exclusively for
s D 2`; 3`; 100t�1`. Note that

Ibad
2` .�; `/ � Ibad

3` .�; `/ � Ibad
100t�1`

.�; `/;

I
good
2`

.�; `/ � I
good
3`

.�; `/ � I
good
100t�1`

.�; `/:

Thus Proposition 5.1 also applies to points that belong to arcs in I
good
3`

.�; `/ and
I

good
100t�1`

.�; `/, and Proposition 4.2 also shows that the total angular size of arcs in
Ibad
2`
.�; `/ and Ibad

3`
.�; `/ is at most 1

3
˛. We remark in what follows that we use
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� I
good
3`

.�; `/ [ Ibad
3`
.�; `/ to determine the heights of the Rq, and

� I
good
100t�1`

.�; `/ [ Ibad
100t�1`

.�; `/ to determine directions of the parallelograms Rq.

6.1. Definitions

We first refine the partitions I
good
s .�; `/ [ Ibad

s .�; `/ of @ co.Dt / for s D 2`; 3`; 100t�1`
into small straight segments.

Definition 6.1. Let J.�; `/ be a partition of @ co.Dt / formed as a common refinement to
all of the sets of arcs from the partitions

I
good
2`

.�; `/ [ Ibad
2` .�; `/; I

good
3`

.�; `/ [ Ibad
3` .�; `/; I

good
100t�1`

.�; `/ [ Ibad
100t�1`

.�; `/

of @ co.Dt / into straight line segments of length at most �
p
 . For s 2 ¹2`; 3`; 100t�1`º,

define the partition J
good
s .�; `/ [ Jbad

s .�; `/ of J.�; `/ by setting q 2 J
good
s .�; `/ if and

only if q � q0 2 I
good
s .�; `/.

We will now in Definition 6.2 choose the vectors vq for q 2 J.�; `/ with direction
vectors yvq determined by the partition Ibad

100t�1`
.�; `/ [ I

good
100t�1`

.�; `/, and with lengths

determined by Ibad
3`
.�; `/[ I

good
3`

.�; `/. Then in Definition 6.3 we form parallelogramsRq

with sides q and vq.

Definition 6.2. For an arc q 2 J.�; `/, we define a vector vq as follows.

� We choose the direction vector yvq of vq as follows. Let q � q0 2 Ibad
100t�1`

.�; `/ [

I
good
100t�1`

.�; `/. If q0 is contained inside an angular interval Œm˛; .mC 1/˛�, we take the
direction vector yvq to be the inward pointing direction at angle .mC 1

2
/˛. Otherwise

(recalling that q0 2 Ibad
100t�1`

.�; `/ [ I
good
100t�1`

.�; `/ has angular length at most 1
3
˛),

q0 overlaps a unique angle m˛, and we take yvq to be the inward pointing vector at
angle m˛.

� We choose the length of vq to be

kvqk D

´
15
p
; q 2 Jbad

3`
.�; `/;

3�
p
; q 2 J

good
3`

.�; `/:

For p 2 @ co.Dt /, we denote vp D vq, where p 2 q 2 J.�; `/.

Definition 6.3. For q2J.�;`/, letRq be a parallelogram with one side q and one side vq.

By construction, the directions of each of the vp for p 2 @ co.Dt / are one of M D
4�=˛ directions, and the directions of the vectors are constant on arcs of @ co.Dt / from
Ibad
100t�1`

.�; `/ [ I
good
100t�1`

.�; `/.

Observation 6.4. For every point p 2 @ co.Dt / we have †po; vp < 1
2
˛.
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6.2. Covering @ co.Dt / with parallelograms

Now are able to state the main result of this section.

Proposition 6.5. For d� sufficiently small, we have

co.Dt / nDt �

[
q2J.�;`/

Rq:

We need the following observation about the unit direction vectors yvq of vq.

Lemma 6.6. Let p 2 @ co.Dt /, and p0 2 op. Then there exists r 2 @ co.Dt /, with yvp D yvr
and this is parallel to rp0.

Proof. Let z be the unique point on @ co.Dt / with zo in the direction of yvp . By Observa-
tion 6.4, the angle between yvz and zo (which is in the direction yvp) is strictly less than 1

2
˛.

As the yv angles occur in multiples of 1
2
˛, this implies yvz D yvp .

Let r be the unique point on @ co.Dt / with rp0 in the direction of vp . Then r lies on
the arc pz, so yvp D yvr is parallel to rp0.

Proof of Proposition 6.5. Assume that d� is sufficiently small so that we may apply
Propositions 3.3 and 3.5. Given a point p 2 @ co.Dt /, define the interval

Sp.�; `I �/ D pp
0;

where p0 2 op is such that

jpp0j D

´
5
p
; p 2 q � Ibad

2`
.�; `/;

�
p
; p 2 q � I

good
2`

.�; `/:

By Propositions 3.5 and 5.1 we have .co.Dt / n Dt / \ op � Sp.�; `; �/ for all p 2
@ co.Dt /. Thus denoting by

ƒ.�; `I �/ WD
[

p2@ co.Dt /

Sp.�; `I �/;

we have
co.Dt / nDt � ƒ.�; `I �/:

Fix a point p 2 @ co.Dt /, and let p0 2 Sp.�; `I �/ D op \ ƒ.�; `I �/. It suffices to
show that

p0 2
[

q2J.�;`/

Rq:

Note that by Lemma 6.6 there exists a point r 0 2 @ co.Dt / such that r 0p0 is parallel to
yvr 0 D yvp . Let r be the intersection of the line extended from the segment q and the
ray p0r 0.

Note that †rpp0 2 .29ı; 180ı � 29ı/ by Corollary 3.4, and †pp0r < 1
2
˛ by Observa-

tion 6.4, so †prp0 2 .29ı � 1
2
˛; 180ı � 29ı/. Thus by the law of sines,

jr 0p0j � jrp0j D
sin.†rpp0/
sin.†prp0/

jpp0j � 3jpp0j:
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o

p

r
r 0
� 29ı

< ˛
2

p0

co.Dt /

Fig. 15

If q 2 J
good
2`

.�; `/, then jpp0j � �
p
 , so jr 0p0j � 3�

p
 , and letting r 0 2 r 2 J.�; `/

we have p0 2 Rr �
S

q2J.�;`/Rq.
Alternatively if q 2 Jbad

2`
.�; `/ then jpp0j � 5

p
 . Note that jpr 0j � jpp0j C jrp0j �

4jpp0j � `, so r 0 is in an arc r 2 Jbad
3`
.�; `/. Hence, jr 0p0j � 15

p
 , implying p0 2 Rr �S

q2J.�;`/Rq.

7. Preimages of the Rq associated to A and B

By Proposition 6.5, for d� sufficiently small we have

co.Dt / nDt �

[
q2J.�;`/

.Rq nDt /:

The boundary of co.Dt / is composed of translates of edges from @ co.A/ scaled by a
factor of t and of edges from @ co.B/ scaled by a factor of 1 � t . If an edge of co.A/ is
parallel to an edge of co.B/ then there is an ambiguity in how we do this; we fix one such
decomposition from now on.

Definition 7.1. Let J.�; `/ D A tB be the partition defined as follows. For every arc
q 2 J.�; `/ (which is straight by construction), we let q 2 A if q is on a translated t -
scaled edge from @ co.A/, and we let q 2 B if q is on a translated .1 � t /-scaled edge
from @ co.B/.

Definition 7.2. For q 2 A, let pq;B 2 @ co.B/ and Rq;A � R2 be the parallelogram with
edge qA � @ co.A/ such that

Rq D tRq;A C .1 � t /pq;B :

Similarly, for q 2 B, let pq;A 2 @ co.A/ and Rq;B � R2 be the parallelogram with edge
qB � @ co.B/ such that

Rq D tpq;A C .1 � t /Rq;B :
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Remark 7.3. The parallelogram Rq;A (resp. Rq;B ) may not be entirely contained inside
co.A/ (resp. co.B/), and the various Rq;A with q 2 A (respectively Rq;B with q 2 B)
may not be disjoint.

Proposition 7.4. For d� sufficiently small, we have

jco.Dt / nDt j � t
2
X
q2A

jRq;A n Aj C .1 � t /
2
X
q2B

jRq;B n Bj:

Proof. Assume d� is sufficiently small that the conclusion of Proposition 6.5 holds. Then

co.Dt / nDt �

[
q2J.�;`/

.Rq nDt /:

The result then follows from the fact that

� if q 2 A then jRq nDt j � jRq n .tAC .1 � t /pq;B/j D t
2jRq;A n Aj,

� if q 2 B then jRq nDt j � jRq n .tpq;A C .1 � t /B/j D .1 � t /
2jRq;B n Bj.

From Proposition 7.4, we see that if the preimages in A;B of these regions were dis-
joint and contained in co.A/ and co.B/, then we would immediately obtain jco.Dt / nDt j

� t2jco.A/ n Aj C .1 � t /2jco.B/ n Bj.
Our goal will be to remove certain Rq;A and Rq;B to ensure that all the remaining

parallelograms are disjoint and are entirely contained in co.A/ and co.B/, so that the
total area of the Rq;A with q 2A that were removed is at most "jco.A/ nAj, and the total
area of the Rq;B with q 2 B that were removed is at most "jco.B/ n Bj. This will imply
Theorem 2.2.

8. Far away weighted averages in @ co.Dt/ lie in J
good
3`

.�; `/

We now show that points on the @ co.Dt / which are the t -weighted averages of points
from @ co.A/, @ co.B/ that are at distance at least 20t�1` lie in arcs from J

good
3`

.�; `/.
The main application will be to show that for parallelograms Rq with q 2 Jbad

3`
.�; `/,

we know that the point and parallelogram or parallelogram and point in co.A/ and co.B/
whose t -weighted average gives Rq are close to each other.

Proposition 8.1. For d� sufficiently small, if p 2 @ co.Dt / with p D txA C .1 � t /yB ,
where xA 2 @ co.A/, yB 2 @ co.B/ and jxAyB j � 20t�1`, then p 2 q 2 J

good
3`

.�; `/.

Proof. Let � D min.10
p
3 sin. �

4
/;
p
3
2
`/. Assume d� is sufficiently small so that the con-

clusion of Corollary 3.4 holds, and .1 � �/K � co.A/; co.B/; co.Dt / � K by Proposi-
tion 3.1. We will first show that xDt

and yDt
realize p as a .1

2
�; 19`/-good point.

For the angle, note that by Observation 2.3 we have

†xDt
pxA � sin�1

�
jxAxDt

j

jxApj

�
� sin�1

�
�joxAj

20t�1`

�
� sin�1

�
�

10
p
3 t�1`

�
�
�

4
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o

xDt

xA

yDt

yB
p

l

z2
z1

m1m2

Fig. 16

and similarly †yDt
pyB � sin�1

� jyByDt
j

jyBpj

�
�

�
4

. For the lengths, notice that jxDt
xAj �

�joxAj �
p
3
2
`joxAj � ` and similarly jyDt

yAj � `, so by the triangle inequality we have

jpxDt
j � jpxAj � jxDt

xAj D .1 � t /jxAyB j � jxDt
xAj � 20` � ` D 19`;

jpyDt
j � jpyB j � jyDt

yB j D t jxAyB j � jyDt
yAj � 20` � ` D 19`:

Now, we show that p 2 q 2 J
good
3`

.�; `/ by showing that if p0 2 @ co.Dt / and
jpp0j � 3`, then p0 is .�; `/-good. Denote by l the supporting line to co.Dt / at p,
and note by Corollary 3.4 that †l; op 2 .29ı; 180ı � 29ı/. The line l intersects either
the interior of the angle †xDt

pxA or †yDt
pyB , so since we have already shown that

†xDt
pxA;†yDt

pyB � �=4, we find that xAyB makes an angle of at most �=4 with l . In
particular, †opxA;†opyB 2 .29ı � �=4; 180ı � 29ı C �=4/ � .28ı; 180ı � 28ı/. Thus
we may apply Lemma 5.3 to the triangles xApo and yBpo to conclude that the distance
from p to the lines oxA and oyB is at least

sin.14ı/min.jpxAj; jpoj; jpyB j/ � sin.14ı/20` > 3`:

Because oxDt
pyDt

� co.Dt /, we conclude that p0 lies outside of the angle xDt
pyDt

(and because p0 2 co.Dt /, it lies on the same side of l as xDt
; yDt

).
Let z1 be in the ray xDt

p extended past p such that jz1pj D jz1yDt
j. Note that as

pz1yDt
is isosceles, †pz1yDt

� � � � , and note that †yDt
pz1 � �=2. Analogously

let z2 be the point at pyDt
which has jz2xDt

j D jz2pj, so that †pz2xDt
� � � � and

†xDt
pz2 � �=2. Finally, let m1 be the midpoint of pyDt

, and let m2 be the midpoint of
pxDt

, so that †pm1z1 D †pm2z2 D 90ı.
We claim that p0 2 pm1z1 [ pm2z2. First, note that by the above, p0 lies in either the

angular region†m1pz1 or†m2pz2. Thus as pm1z1;pm2z2 are right triangles, it suffices
to note that jpm1j; jpm2j � 19

2
` > 3`. Therefore, p0 2 pm1z1 [ pm2z2 � pyDt

z1 [

pxDt
z2. Hence, †yDt

p0xDt
� � � � and p0 is .�; `/-good since jp0xDt

j; jp0yDt
j �

19` � 3` > ` by the triangle inequality.
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9. Bound on parallelograms jutting out of co.A/; co.B/

We will now show that the Rq;A and Rq;B which are not entirely contained in co.A/ and
co.B/ have negligible total area.

Proposition 9.1. For d� sufficiently small, we haveX
q2A;Rq;A 6�co.A/

ˇ̌
Rq;A

ˇ̌
� 25t�1M�2;

X
q2B;Rq;B 6�co.B/

ˇ̌
Rq;B

ˇ̌
� 25t�1M�2:

To prove this proposition, we first use Proposition 8.1 to show that for such parallelo-
grams we have q 2 J

good
3`

.�; `/.

Lemma 9.2. For d� sufficiently small, if either q 2 A and Rq;A 6� co.A/, or q 2 B and
Rq;B 6� co.B/, then q 2 J

good
3`

.�; `/.

Proof. The cases q 2 A and q 2 B are proved identically, so we will now suppose that
q 2 A. Assume d� is sufficiently small so that Propositions 3.3 and 8.1 are true. Recall
that we defined pq;B 2 @ co.B/ and qA � co.A/ such that q D tqA C .1 � t /pq;B .

We first show that there exists a point pA 2 qA such that †pAo; vq � 29
ı. Indeed,

by Proposition 3.3 we know that every point in x 2 qA is .59ı; 1
3
/-bisecting in co.A/.

For x 2 qA, let x0 D x C t�1vq, which lies on the opposite side of @Rq;A to x. Note that
jxx0j � 1

10
, so if†ox; vq � 29ı, then xx0 � Tx.58ı; 13 /. Hence, as Rq;A D

S
x2qA

xx0 6�

co.A/ but
S
x2qA

Tx.58
ı; 1
3
/ � co.A/, we find a point pA 2 qA with †pAo; vq � 29

ı.

qA
x

x0

q

o

co.Dt /co.A/

Fig. 17

Let z D tpA C .1� t /pq;B 2 q. By Observation 6.4, †zo; vq �
1
2
˛. Hence †pAoz �

29ı � 1
2
˛ � 28ı, so jpAzj � sin.28ı/jozj > 1

100
, so as z lies on the segment pApq;B ,

we have jpApq;B j >
1
100

. Note that by definition of ` D `.�/ in Definition 4.3, we have
20t�1` � 1

100
. Therefore, by Proposition 8.1 applied with xA D pA and yB D pq;B , we

have z 2 q 2 J
good
3`

.�; `/.

We now know that parallelograms Rq;A and Rq;B which escape co.A/ and co.B/
have small height, since they are supported on arcs from J

good
3`

.�; `/. By showing that such
arcs with a constant direction vp have small total length, we will obtain Proposition 9.1
(recalling M is the number of distinct vp).
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Proof of Proposition 9.1. The proof below works for the co.B/ inequality verbatim, so
we focus on proving the co.A/ inequality. Take d� sufficiently small so that the conclusion
of Proposition 3.3 holds, and so that t�13�

p
 � 1

4
sin.1ı/ by Observation 2.9.

By Lemma 9.2, all q 2 A with Rq;A 6� co.A/ are in J
good
3`

.�; `/. Fix one of the �M
vectors v with jvj D 3�

p
 . It suffices to showX

q2A; vqDv;Rq;A 6�co.A/

jRq;Aj � 25t
�1�2:

Recall that by construction v was chosen not parallel to any edge of co.A/. Let l; l 0 be
the two lines in the direction v which are tangent to co.A/, and let y and y0 be the points
of contact with co.A/. Note that every line in the direction v between y and y0 intersects
each of the arcs @ co.A/ n ¹y; y0º exactly once. As co.A/ is convex, the cross-sectional
slices in the v-direction satisfy unimodality. Hence there are exactly two pairs .x1; x2/
and .x01; x

0
2/ of points in the two different arcs of @ co.A/ n ¹y; y0º such that we have the

equality of vectors x1x2 D x01x
0
2 D t

�1v – we let .x1; x2/ be the pair closer to y.
We will show that the lengths of the two minor arcs in co.A/ between x1x2 and

between x01x
0
2 are both of length at most 24t�1

p
 . We show this for x1x2 as the other

case will be identical.
Note that Ty.56ı; 14 /� Ty.59

ı; 1
3
/� co.A/. Let z 2 oy be such that jyzj D t�13�

p


�
1
4

sin.1ı/ and denote by z1; z2 the intersections of the extensions of the arms of
Ty.56

ı; 1
4
/ with the line through z with direction vector v. We will show that the line

x1x2 is closer to y than the line z1z2 by showing that jz1z2j � jx1x2j and applying uni-
modality.

Note that †z1yz D 28ı and †z1zy 2 .29ı; 180ı � 29ı/. Hence †yz1z 2
.1ı; 180ı � 57ı/ so sin†yz1z � sin.1ı/. Thus by the law of sines,

jyz1j D
sin†z1zy
sin†yz1z

jyzj �
jyzj

sin 1ı
�
1

4
:

Hence z1 2 Ty.56ı; 14 / and by a similar argument we obtain z2 2 Ty.56ı; 14 /.
Now,

jz1z2j � jz1zj D
sin 28ı

sin†yz1z
jyzj � sin.28ı/jyzj D t�13�

p
 D jx1x2j:

Thus by unimodality, the line x1x2 is closer than the line z1z2 to y, so denoting x D
oy \ x1x2 we see that x lies in the segment yz. Hence

jyxj � jyzj D t�13�
p
:

Note that there are up to two arcs qA which contain one of the points x1; x01, and as
each arc in J.�; `/ has length at most �

p
 by construction, the total length of these arcs

is at most 2t�1�
p
 .

If vq D v and Rq;A 6� co.A/, then qA is contained in the arc of @ co.A/ n ¹y; y0º
containing x1; x01, and qA intersects either the minor arc subtended by x1y or the one
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x2x1
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z2z1
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o

x
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subtended by x01y
0. Indeed, let zl be the supporting line of q. Then for any point p 2 q, by

Proposition 3.3 we have †po; zl 2 .29ı; 180ı � 29ı/, and by Observation 6.4, †po; vq �

˛=2. Hence vq lies on the same side of zl as co.Dt /. Therefore vq lies on the same side of
the supporting line zlA to qA as co.A/, so qA lies in the arc of co.A/ n ¹y; y0º that contains
x1; x

0
1. Now, if qA does not intersect the minor arc x1y or x01y

0, then by unimodality, the v
cross-sectional lengths of co.A/ on the arc qA exceed 3�t�1

p
 D kt�1vk, which implies

RqA
is contained inside co.A/.

Hence, the total width (measured in the direction v?) of such parallelograms Rq;A

in direction v which are not contained in co.A/ is at most 2 � t�13�
p
 C 2t�1�

p
 D

8t�1�
p
 .

Because all of the arcs q we are considering lie in J
good
3`

.�; `/, the total area of such
parallelograms is then at most

.8t�1�
p
/.3�

p
/ D 24t�1�2:

10. Bounding overlapping parallelograms

We will now show that theRq;A andRq;B which we remove to guarantee non-overlapping
have negligible area.



Sharp quantitative stability of the planar Brunn–Minkowski inequality 31

Proposition 10.1. For d� sufficiently small, if q; q0 2 Jbad
3`
.�; `/ \ A, then we have

jRq;A \Rq0;Aj D 0, and if q;q0 2 Jbad
3`
.�; `/ \B, then jRq;B \Rq0;B j D 0.

Because of Proposition 10.1, it will suffice to bound overlaps between parallelograms
supported on arcs in J

good
3`

.�; `/ with all other parallelograms.

Proposition 10.2. For d� sufficiently small, we haveX
q2J

good
3`

.�;`/\A and 9q02An¹qº with jRq;A\Rq0;Aj>0

ˇ̌
Rq;A

ˇ̌
� 16000t�1M�

and similarly with B and B.

Proof of Proposition 10.1. The proof we give works verbatim for B and B, so we focus
on A and A. We take d� sufficiently small such that the implications in Proposition 8.1
hold, and such that

p
 � ` by Observation 2.9. Because q; q0 2 Jbad

3`
.�; `/, we have

kvqkDkvq0kD 15
p
 . Consider the arcs r; r0 2 Ibad

100t�1`
.�;`/ such that q� r and q0� r0.

If r D r0 then vq D vq0 so jRq;A \Rq0;Aj D 0.

� 30t�1
p


� 97t�1`
Rq0;Aq0

A

Rq;A

qA

Rq0q0

Rq
q

co.A/

co.Dt /

Fig. 19

Assume now that r¤ r0. In this case, the distance between q and q0 is at least 97t�1`.
Indeed, otherwise there exist points p 2 q and p0 2 q0 such that jpp0j � 97t�1`. Let x
be a .�; `/-bad point such that jxpj � 3`. Then B.x; 100t�1`/ contains p, and by the
triangle inequality it also contains p0. This implies p; p0 are contained in the same arc of
Ibad
100t�1`

.�; `/, so r D r0, a contradiction.
Assume for the sake of contradiction that jRq;A \ Rq0;Aj > 0. Then there exists a

point z 2Rq;A \Rq0;A. Since z is within distance t�1kvqk D 15t
�1p of qA and within

distance t�1kvq0k D 15t
�1p of q0A, we see by the triangle inequality that the distance

between qA and q0A is at most 30t�1
p
 � 30t�1`.

By the above, either there exist p 2 q and zA 2 qA such that jpzAj � 33t�1`, or there
exist p0 2 q0 and z0A 2 q0A such that jp0z0Aj � 33t

�1`. Suppose without loss of generality
the first case holds. Then p D txA C .1 � t /yB for some xA 2 q and yB D pq;B , and
jxAzAj � �t

�1p since this is an upper bound for the length of qA. Therefore,

jxAyB j � jxApj � jpzj � jxAzj � 20t
�1`;

so by Proposition 8.1, p 2 q 2 J
good
3`

.�; `/, a contradiction.
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Proof of Proposition 10.2. The proof we give works verbatim for B and B, so we focus
onA and A. Assume d� is sufficiently small so that the conclusion of Corollary 3.4 is true,
and such that 99

100
K � co.A/; co.B/; co.Dt / � K by Proposition 3.1. Fix one of the M

directions v. Consider all arcs q 2 J.�; `/ \A with direction vector yvq D v. Let rA be
the union of the corresponding arcs qA. Note that rA forms a connected arc of @ co.A/.
Let x and x0 be the endpoints of this arc.

For any point z 2 rA, we claim that jxzj � 9
sin.14ı/ dist.z; ox/. Indeed, by Lemma 5.3,

since jxzj � 9jozj (this follows as the diameter of co.A/ � T 0 is at most 2=
p
3 by

Observation 2.3, and jozj � 99
100

1p
12

) it suffices to show that †ozx 2 .28ı; 180ı � 28ı/.
By Corollary 3.4, we know that the supporting lines lx ; lz to co.A/ at x; z make an
angle of at most 180ı � 29ı with ox; oz respectively. Therefore, we have †ozx; oxz �
180ı � 29ı. By Observation 6.4, ox; oz each make an angle of at most 1

2
˛ with v.

Therefore, †xoz � ˛. Because the sum of the angles in xoz is 180ı, this implies that
†ozx 2 .29ı � ˛; 180ı � 29ı/ � .28ı; 180ı � 28ı/.

Every y outside of rA is either on the opposite side of ox or on the opposite side of
oy to rA. This implies that min.zx; zx0/ � 9

sin.14ı/ jyzj as y lies either on the other side
of ox or on the other side of ox0 to z.

We claim that if Rq;A with qA � rA intersects some Rq0;A in positive area, then
qA; q

0
A � .B.x; 1200t

�1p/ [ B.x0; 1200t�1
p
//. Indeed, first note that if q0A � rA,

then yvq D yvq0 , forbidding a positive area intersection. Hence qA lies outside of rA. Note
that if jRq;A \ Rq0;Aj > 0, then the distance between qA and q0A is at most 30t�1

p
 by

the triangle inequality (as the heights of these parallelograms are each at most 15t�1
p
 ).

From this, we conclude that

min.dist.qA; x/; dist.qA; x0// �
9

sin.14ı/
30t�1

p
 � 1199t�1

p
:

Because
jqAj � �t

�1p � t�1
p
;

the conclusion follows.
The length of @ co.A/ \ .B.x; 1200t�1

p
/ [ B.x0; 1200t�1

p
// is at most

4800�t�1
p
 , the sum of the perimeters of the two balls. Hence for each direction v

we have X
q2J

good
3`

.�;`/\A; yvqDv;

9q02An¹qº with jRq;A\Rq0;Aj>0

jRq;Aj � 4800�t
�1p � �

p
 D 16000t�1�:

11. Proofs of Theorems 1.3 and 2.2

With all the machinery in place, we are now ready to tackle Theorem 2.2. We note that
Theorems 1.3 and 2.2 are formally equivalent by replacing A with 1

t
A and B with 1

1�t
B .
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Proof of Theorem 2.2. Fix " > 0 and choose � such that

" � .t2 C .1 � t /2/.25t�1M�2 C 16000t�1M�/:

Choose � depending on � given by Proposition 5.1. Choose ` depending on � given by
Proposition 4.2. Recall that M; ˛ are universal constants chosen above. Finally, take d�
sufficiently small so that the conclusions of Propositions 4.2, 7.4, 9.1, 10.1 and 10.2 hold.
Recall by Proposition 7.4 that

jco.Dt / nDt j � t
2
X
q2A

jRq;A n Aj C .1 � t /
2
X
q2B

jRq;B n Bj:

We split the first summand on the right into three parts: one for those q such that Rq;A 6�

co.A/ (collect them in a set XA), one for those q 2 J
good
3`

.�; `/ such that Rq;A intersects
non-trivially Rq;A for some q0 ¤ q (collect them in a set YA), and all the other q (collect
them in a set ZA). Note that the Rq;A in the last sum are disjoint by Proposition 10.1 and
contained in co.A/, so

P
q2ZA

jRq;A n Aj � jco.A/ n Aj. Combining Propositions 9.1
and 10.2 we findX

q2A

jRq;A n Aj �
X

q2XA

jRq;Aj C

X
q2YA

jRq;Aj C

X
q2ZA

jRq;A n Aj

� 25t�1M�2 C 16000t�1M� C jco.A/ n Aj:

We similarly obtainX
q2B

jRq;B n Bj � 25t
�1M�2 C 16000t�1M� C jco.B/ n Bj:

Hence, (recalling  D t2jco.A/ n Aj C .1 � t /2jco.B/ n Bj), we have

jco.Dt / nDt j � .t
2
C .1 � t /2/.25t�1M�2 C 16000t�1M�/

C t2jco.A/ n Aj C .1 � t /2jco.B/ n Bj

� .1C "/
�
t2jco.A/ n Aj C .1 � t /2jco.B/ n Bj

�
:

12. Proof that Theorem 1.3 implies Theorem 1.2

Finally, what remains is to deduce Theorem 1.2. Note that we now return to A and B with
unequal areas. Along the way, we will show Corollary 1.4.

Proof that Theorem 1.3 implies Theorem 1.2. By [9, 10] and Appendix A, there is a con-
stant zC such that

jKA n co.A/j
jco.A/j

C
jKB n co.B/j
jco.B/j

� zC��1=2conv

p
ıconv;



P. van Hintum, H. Spink, M. Tiba 34

where ıconv D
jco.ACB/j1=2

jco.A/j1=2Cjco.B/j1=2 � 1; and

tconv D
jco.A/j1=2

jco.A/j1=2 C jco.B/j1=2
2 Œ�conv; 1 � �conv�:

Also, by Theorem 1.6 by taking d� sufficiently small, we may assume that jco.A/j=jAj,
jco.B/j=jBj, and jco.AC B/j=jAC Bj are as close to 1 as we like, so in particular we
may assume that ��1conv � 2�

�1. Thus it suffices to prove that

ıconv � ı and
jco.A/ n Aj
jco.A/j

C
jco.B/ n Bj
jco.B/j

� 5��1ı: (�)

We have

ı � ıconv �
jAj1=2 C jBj1=2

jco.A/j1=2 C jco.B/j1=2
ı � ıconv

D C
�
jco.A/j1=2�jAj1=2Cjco.B/j1=2�jBj1=2�.jco.ACB/j1=2�jACBj1=2/

�
D C

�
jco.A/nAj

jco.A/j1=2CjAj1=2
C

jco.B/nBj
jco.B/j1=2CjBj1=2

�
jco.ACB/n.ACB/j

jco.ACB/j1=2CjACBj1=2

�
� C

�
jco.A/nAj

jco.A/j1=2CjAj1=2
C

jco.B/nBj
jco.B/j1=2CjBj1=2

�
.1C"/.jco.A/nAjCjco.B/nBj/
jco.ACB/j1=2CjACBj1=2

�
with C D 1

jco.A/j1=2Cjco.B/j1=2 . Suppose t � 1=2 and take " D �=2. We can write the last

line as mA
jco.A/nAj
jco.A/j CmB

jco.B/nBj
jco.B/j with

mA D tCA

�
1

jco.A/j1=2

jAj1=2 C 1
�

1

jco.ACB/j1=2

jACBj1=2 C 1
�
.1C "/t

.1C ı/

�
� tCA

�
1

jco.A/j1=2

jAj1=2 C 1
�

1

jco.ACB/j1=2

jACBj1=2 C 1
�
3

4

�
with CA D

jco.A/j
jAj
�

jAj1=2CjBj1=2

jco.A/j1=2Cjco.B/j1=2 , and

mB D .1 � t /CB

�
1

jco.B/j1=2

jBj1=2 C 1
�

1

jco.ACB/j1=2

jACBj1=2 C 1
�
.1C "/.1 � t /

.1C ı/

�
� .1 � t /CB

�
1

jco.B/j1=2

jBj1=2 C 1
�

1

jco.ACB/j1=2

jACBj1=2 C 1
�

�
1 �

�

2

��
:

with CB D
jco.B/j
jBj
�

jAj1=2CjBj1=2

jco.A/j1=2Cjco.B/j1=2 . Both of these are at least 1
5
� assuming d� is suf-

ficiently small. Thus we get

ı � ıconv �
1

5
�

�
jco.A/ n Aj
jco.A/j

C
jco.B/ n Bj
jco.B/j

�
which shows (�).
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Appendix A. Equivalence of the measures ! and ˛

In this appendix, we show that in two dimensions the measures ! and ˛ are commensurate
for convex sets when d� is sufficiently small. Recall from the introduction that we always
have ˛ � 2!.

Proposition A.1. For all � 2 .0; 1
2
�, there exists a d� > 0 such that the following holds.

If E;F � R2 are convex with t .E; F / 2 Œ�; 1 � �� and ı.E; F / � d� , then

!.E; F / � 21˛.E; F /:

Proof. Let d� be sufficiently small so that by [9], ˛.E; F / � 1
10

. We never use any other
property of ı.E; F / or t .E; F /. The quantitites !; ˛ are invariant under affine transfor-
mations of E and F separately, so by applying these transforms we can take E;F to have
equal volumes, translated so that ˛.E;F /D jE 4 F j=jEj. After a further affine transfor-
mation, we may assume that the maximal triangle T �E \F is a unit equilateral triangle.
Note that because T is maximal, we have T � E \ F � �2T . Take K D co.E [ F /.
Note that jE 4 F j � 1

18
jE \ F j � 1

18
j � 2T j � 1

2
.

First, we claim that E; F � 10C . Indeed, if any point x 2 E lies in @10T then
jE 4 F j � jco.x [ T / n .�2T /j � 1, a contradiction.

To show !.E; F / � 11˛.E; F /, it suffices to prove

j.K n .A [ B//j � 10jA4 Bj:

Indeed, if this is true, then

jEj � !.E; F / � jK nEj C jK n F j D 2jK n .E [ F /j C jE 4 F j

� 21jE 4 F j D jEj � 21˛.E; F /:

We consider the triangle opq with p; q consecutive vertices of K. These triangles
partition the area of K, so it suffices to show for each such triangle that

j.K n .E [ F // \ opqj � 10j.E 4 F / \ opqj:

To see this, we note that if p; q 2 E or p; q 2 F then the left-hand side is zero and the
inequality holds. Suppose now that p 2 E and q 2 F (the other case is identical). Then
there must be a point i 2 @ co.A/ \ @ co.F / which lies in the triangle opq. Let q0 be the
intersection of the ray pi with the segment oq, and let p0 be the intersection of the ray
qi with op. Because o; p 2 E we also have p0 2 E, and similarly q0 2 F . We note that
E;F � 10C implies jop0j � 1

10
joqj and joq0j � 1

10
joqj.

If any point x in the strict interior .qiq0/ı lies in E, then i lies in the strict interior of
xpo� E, contradicting that i lies on @E. Also, qiq0 � oqi � F . Thus .qiq0/ı � E 4F .
Similarly .pip0/ı � E 4 F . Finally, we note that .K n .E [ F // \ opq � piq, so it
suffices to show that

jpiqj � 10.jpip0j C jqiq0j/:
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p

o

q
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To show this, suppose without loss of generality that joiqj � joipj. Then jpiqj
joiqj
D

jpip0j
joip0j

, so

jpiqj D jpip0j
joiqj

joip0j
� jpip0j

joipj

joip0j
D jpip0j

jopj

jop0j
� 10jpip0j:

Acknowledgments. The authors would like to thank their respective institutions Clare College, Uni-
versity of Cambridge, Harvard University, and Trinity Hall, University of Cambridge.

The authors would like to thank their supervisor Professor Béla Bollobás for his continuous
support, and the referee for their extremely careful reading of the paper.

References

[1] Barchiesi, M., Julin, V.: Robustness of the Gaussian concentration inequality and the Brunn–
Minkowski inequality. Calc. Var. Partial Differential Equations 56, art. 80, 12 pp. (2017)
Zbl 1378.60042 MR 3646982

[2] Böröczky, K. J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv.
Math. 231, 1974–1997 (2012) Zbl 1258.52005 MR 2964630

[3] Carlen, E., Maggi, F.: Stability for the Brunn–Minkowski and Riesz rearrangement inequal-
ities, with applications to Gaussian concentration and finite range non-local isoperimetry.
Canad. J. Math. 69, 1036–1063 (2017) Zbl 1379.26021 MR 3693147

[4] Christ, M.: Near equality in the Brunn–Minkowski inequality. arXiv:1207.5062 (2012)
[5] Figalli, A., Jerison, D.: Quantitative stability for sumsets in Rn. J. Eur. Math. Soc. 17, 1079–

1106 (2015) Zbl 1325.49052 MR 3346689
[6] Figalli, A., Jerison, D.: Quantitative stability for the Brunn–Minkowski inequality. Adv. Math.

314, 1–47 (2017) Zbl 1380.52010 MR 3658711
[7] Figalli, A., Jerison, D.: A sharp Freiman type estimate for semisums in two and three dimen-

sional Euclidean spaces. Ann. Sci. École Norm. Sup. (4) 54, 235–257 (2021)
Zbl 1482.11139 MR 4245865

[8] Figalli, A., Maggi, F., Mooney, C.: The sharp quantitative Euclidean concentration inequality.
Cambridge J. Math. 6, 59–87 (2018) Zbl 1385.39005 MR 3786098

[9] Figalli, A., Maggi, F., Pratelli, A.: A refined Brunn–Minkowski inequality for convex sets.
Ann. Inst. H. Poincaré C Anal. Non Linéaire 26, 2511–2519 (2009) Zbl 1192.52015
MR 2569906

[10] Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric
inequalities. Invent. Math. 182, 167–211 (2010) Zbl 1196.49033 MR 2672283

[11] Osserman, R.: Bonnesen-style isoperimetric inequalities. Amer. Math. Monthly 86, 1–29
(1979) MR 519520

[12] van Hintum, P., Spink, H., Tiba, M.: Sharp stability of Brunn–Minkowski for homothetic
regions. J. Eur. Math. Soc. 24, 4207–4223 (2022) Zbl 1501.52007 MR 4493623

https://doi.org/10.1007/s00526-017-1169-x
https://doi.org/10.1007/s00526-017-1169-x
https://zbmath.org/?q=an:1378.60042
https://mathscinet.ams.org/mathscinet-getitem?mr=3646982
https://doi.org/10.1016/j.aim.2012.07.015
https://zbmath.org/?q=an:1258.52005
https://mathscinet.ams.org/mathscinet-getitem?mr=2964630
https://doi.org/10.4153/CJM-2016-026-9
https://doi.org/10.4153/CJM-2016-026-9
https://zbmath.org/?q=an:1379.26021
https://mathscinet.ams.org/mathscinet-getitem?mr=3693147
https://arxiv.org/abs/1207.5062
https://doi.org/10.4171/JEMS/527
https://zbmath.org/?q=an:1325.49052
https://mathscinet.ams.org/mathscinet-getitem?mr=3346689
https://doi.org/10.1016/j.aim.2016.12.018
https://zbmath.org/?q=an:1380.52010
https://mathscinet.ams.org/mathscinet-getitem?mr=3658711
https://doi.org/10.24033/asens.2458
https://doi.org/10.24033/asens.2458
https://zbmath.org/?q=an:1482.11139
https://mathscinet.ams.org/mathscinet-getitem?mr=4245865
https://doi.org/10.4310/CJM.2018.v6.n1.a3
https://zbmath.org/?q=an:1385.39005
https://mathscinet.ams.org/mathscinet-getitem?mr=3786098
https://doi.org/10.1016/j.anihpc.2009.07.004
https://zbmath.org/?q=an:1192.52015
https://mathscinet.ams.org/mathscinet-getitem?mr=2569906
https://doi.org/10.1007/s00222-010-0261-z
https://doi.org/10.1007/s00222-010-0261-z
https://zbmath.org/?q=an:1196.49033
https://mathscinet.ams.org/mathscinet-getitem?mr=2672283
https://doi.org/10.2307/2320297
https://mathscinet.ams.org/mathscinet-getitem?mr=519520
https://doi.org/10.4171/jems/1185
https://doi.org/10.4171/jems/1185
https://zbmath.org/?q=an:1501.52007
https://mathscinet.ams.org/mathscinet-getitem?mr=4493623

	1. Introduction
	1.1. Background
	1.2. Outline of paper

	2. Setup
	2.1. Equal area reformulation
	2.2. Preliminary affine transformation
	2.3. Definitions
	2.4. General observations
	2.5. Constants and their dependencies

	3. Initial structural results
	3.1. Showing co(A),co(B),co(D_t) contain a large scaled copy of K
	3.2. Showing points in ∂K, ∂co(A), ∂co(B), ∂co(D_t) are (59∘,13)-bisecting
	3.3. Showing D_t contains a large scaled copy of co(D_t)

	4. Decomposing ∂co(D_t) into good arcs, and bad arcs of small total angular size
	5. Replacing 5t-1γ with ξγ on arcs in Igood_2ℓ(θ,ℓ)
	6. Covering ∂co(D_t) with parallelograms
	6.1. Definitions
	6.2. Covering ∂co(D_t) with parallelograms

	7. Preimages of the R_q associated to A and B
	8. Far away weighted averages in ∂co(D_t) lie in Jgood_3ℓ(θ,ℓ)
	9. Bound on parallelograms jutting out of co(A),co(B)
	10. Bounding overlapping parallelograms
	11. Proofs of Theorems 1.3 and 2.2
	12. Proof that mainthm implies sharpBM
	A. Equivalence of the measures ω and α
	References

