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Abstract. We establish a comparison isomorphism between prismatic cohomology and derived
de Rham cohomology respecting various structures, such as their Frobenius actions and filtrations.
As an application, when X is a proper smooth formal scheme over OK withK being a p-adic field,
we improve Breuil–Caruso’s theory on comparison between torsion crystalline cohomology and
torsion étale cohomology.
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1. Introduction

Let k be a perfect field of characteristic p > 0 and K a totally ramified degree e field
extension of W.k/Œ1=p�. Fix an algebraic closure xK of K, denote its p-adic completion
by C, and use OC to denote its ring of integers. Let X be a smooth proper formal scheme
over OK with (rigid analytic) geometric generic fiber Xx� . Write Xn WD X �Z Z=pnZ.
Starting from [17] and [21], much effort has been put into investigating the relation-
ship between the crystalline cohomology (and other variants) and the étale cohomology
attached to X .

When e D 1, it was proved by Fontaine–Messing [17] and Kato [21] that if
X is a proper1 smooth scheme over OK D W.k/, then Hicrys.Xn=Wn.k// admits
a Fontaine–Laffaille module structure when i � p � 1 and the functor Tcrys on
the category of Fontaine–Laffaille modules (from Fontaine–Laffaille theory) satisfies
Tcrys.Hicrys.Xn=Wn.k/// ' Hi

Ket.Xx�;Z=p
nZ/ as GK-modules when i � p � 2.

When e > 1, a more complicated base ring has to be introduced. Fix a uniformizer
� of K and E D E.u/ 2 W.k/Œu� the Eisenstein polynomial of � . Let S be the p-adic
completion of the PD envelope of W.k/Œu� for the ideal .E/. Note that S admits:

� a Frobenius action ' W S ! S which extends the Frobenius ' on W.k/ and satisfies
'.u/ D up;

� a filtration Fili S which is the p-complete i -th PD ideal;

� a monodromy operator N W S ! S via N.f .u// D df
du
.�u/.

In [10], Breuil introduced the notion of a Breuil module to describe the structure of
Hicrys.Xn=Sn/, and constructed a functor Tst;? from the category of Breuil modules to
the category of Zp-representations of GK . Here, a Breuil module is a datum consisting of
a finite S -module M together with a one-step filtration Filh M �M, a “divided Frobe-
nius” 'h W Filh M !M, and a monodromy operator N WM !M which satisfies some
conditions given in Section 6.3.

Following the ideas of Breuil, Caruso proved the following.

1Projective in Kato’s paper.
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Theorem 1.1 ([13]). Let X be a proper semistable scheme over OK . Then its log-crys-
talline cohomology Hilog-crys.Xn=Sn/ has a Breuil module structure and

Tst;?.Hilog-crys.Xn=Sn// ' Hi
Ket.Xx�;Z=p

nZ/.i/ as GK-modules

for e.i C 1/ < p � 1 if n > 1, and for ei < p � 1 if n D 1.

As new cohomology theories have been introduced in [7–9], it is natural to ask
whether in these new cohomology theories one can recover the aforementioned results due
to Fontaine–Messing, Breuil, and Caruso, and hopefully even improve them. In this paper,
we use these new cohomology theories, in particular, prismatic cohomology and derived
de Rham cohomology, to study torsion crystalline cohomology, torsion étale cohomology,
and their relationship. We obtain the following result:

Theorem 1.2. Let X be a smooth proper formal scheme over OK with geometric generic
fiber Xx� , and let i be an integer satisfying ei < p � 1. Then Hicrys.Xn=Sn/ has the struc-
ture of a Breuil module and

Tst;?.Hicrys.Xn=Sn// ' Hi
Ket.Xx�;Z=p

nZ/.i/ as ZpŒGK �-modules.

Here the additional data of the Breuil module structure is roughly given by the follow-
ing:

� the filtration is given by the cohomology of the PD powers of a natural PD ideal sheaf
Icrys on the crystalline site Hicrys.Xn=Sn; I

Œh�
crys/;

� the N is a disguise of the connection given by the crystal nature of crystalline coho-
mology;

� the divided Frobenius is induced by a natural map of (quasi)syntomic sheaves.

From now on, when we talk about Hicrys.Xn=Sn/, we always implicitly think of it carrying
these additional data.

Remark 1.3. (1) Let us highlight the difference between Caruso’s results and our theorem
above.

(a) The X in our theorem is a smooth proper formal scheme over OK , whereas the X in
[13] is a semistable OK-model of a smooth proper K-variety.

(b) Our restriction on e and i is ei < p � 1 for any n, while the restriction in [13] is
ei < p � 1 for n D 1 and e.i C 1/ < p � 1 for n > 1.

(2) We actually use another functor TS relating torsion crystalline and étale cohomol-
ogy in the above theorem. But TS and Tst;? are essentially the same; see Section 8.2.

Now let us discuss the strategy of this paper to see how prismatic cohomology and
(derived) de Rham cohomology come into the picture. Let S D W.k/JuK equipped with
the Frobenius morphism ' extending the (arithmetic) Frobenius ' on W.k/ and '.u/
D up . Then .S; .E// is the so-called Breuil–Kisin prism. Classically, an .étale/ Kisin
module of height h is a finite u-torsionfree S-module M together with a semilinear map



S. Li, T. Liu 4

'M WM !M such that the cokernel of 1 ˝ 'M W S ˝';S M !M is killed by Eh.
By definition, '�M WD S ˝';S M admits a Breuil–Kisin (BK) filtration Filh '�M WD

.1˝ 'M/
�1.EhM/, which plays an important technical role later. It is well-known that

Kisin module theory is a powerful tool in abstract integral p-adic Hodge theory: the study
of Zp-lattices in crystalline (semistable) representations and their mod pn representations,
which can been seen as the arithmetic counterpart of Hn

Ket.Xx�;Zp/ and Hi
Ket.Xx�;Z=p

nZ/.
Also the relationships between Kisin modules, Galois representations and Breuil modules
are known in the abstract theory. In particular, the functor M WM 7!M.M/ WD S ˝';S M

sends a Kisin module M of height h � p � 1 to a Breuil module (without N -structures)
where

Filh M.M/ WD ¹x 2M.M/ j .1˝ 'M/.x/ 2 Filh S ˝S Mº �M.M/

and 'h W Filh M.M/
1˝'M
����! Filh S ˝S M

'h˝1
���! S ˝';S M D M.M/ where 'h W

Filh S ! S is defined by 'h.x/ D '.x/=ph. See Section 6.3 for more details.
It turns out that prismatic cohomology Hi∆.X=S/ gives geometric realizations of Kisin

modules, in the sense that Hi∆.X=S/ modulo its u1-torsion submodule is an étale Kisin
module of height i (see Sections 6.2 and 7.1 and the discussion below for more details).
As suggested by the functor M in the abstract theory, one naturally expects the following
comparison between Breuil–Kisin prismatic cohomology and crystalline cohomology:

R�∆.X=S/˝
L
S;' S ' R�crys.X=S/: (1.4)

This comparison follows from [9, Theorem 5.2] and base change of prismatic cohomol-
ogy. This has been pointed out to us by Koshikawa.

Inspired by the above discussion, we show the following comparison result:

Theorem 1.5 (see Theorems 3.5 and 3.11). Let .A; I / be a bounded prism, and let X
be a smooth proper .p-adic/ formal scheme over Spf.A=I /. Then we have a functorial
isomorphism

R�∆.X=A/˝
L
A;'A

A˝L
A dR^.A=I/=A Š R�.X; dR^

�=A/;

which is compatible with base change in the prism .A; I /.

Here dR^
�=A denotes the (relative to A) p-adic derived de Rham complex introduced

by Illusie [19, Chapter VIII] and studied extensively by Bhatt [3]. In fact, when A=I is
p-torsionfree, this is known due to [9, Theorem 5.2]. Our proof follows closely the proof
of crystalline comparison in [9].

As a consequence, the above gives several comparison results, all of which were
known due to work of Bhatt, Morrow, and Scholze [7–9].

Example 1.6. By [3, Theorem 3.27], when A=I is p-torsionfree, the derived de Rham
complex appearing above is given by certain crystalline cohomology. With this, we can
explain what the above comparison gives in concrete situations.
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(1) BMS2/Breuil–Kisin prism: When .A; I /D .S; .E//, the above comparison becomes
equation (1.4), which, as mentioned above, was obtained in [9]. As a consequence,
Breuil’s crystalline cohomology groups Hicrys.X=S/ are finitely presented S -modules;
see Proposition 7.19. To the best of our knowledge, coherence of S is unknown, and
we are unaware of any other means showing that these cohomology groups are finitely
presented. We thank Bhatt for pointing out this application to us.

(2) BMS1: When .A; I / D .Ainf; ker.�// is the perfect prism associated with OC, then
the above comparison says

R�∆.X=Ainf/˝
L
Ainf;'

Ainf ˝
L
Ainf

Acrys Š R�crys.X=Ainf/:

Recall that [9, Theorem 17.2] states that the first base change of the left hand side
gives the Ainf-cohomology theory constructed in [7]. Then our comparison here
becomes the one established by [7, Theorem 1.8 (iii)] (see also [35]).

(3) PD prism: Suppose I � A admits a PD structure  . Then our comparison implies

R�∆.X=A/˝
L
A;'A

A Š R�crys.X=.A; I; //:

When I D .p/, then the above is nothing but the crystalline comparison established
in [9, Theorem 1.8 (1)]. Notice here the left hand side does not depend on the choice
of  , consequently neither does the right hand side. Another class of potentially inter-
esting PD prisms consists of .W.S/; V .1// for any bounded p-complete ring S .

(4) De Rham comparison: There is a natural map gr0 W dR^R=A ! R^ given by “quoti-
enting out” the first Hodge filtration. Our comparison result above, after composing
with this further base change, gives

R�∆.X=A/˝
L
A;'A

A˝L
A A=I Š R�dR.X=.A=I //

^
I

here, we have used [18, Proposition 3.11] to identify the result of the right hand
side under this base change. This is the de Rham comparison given by [9, Theorem
1.8 (3)].

In (1)–(3) above, the crystalline comparison [9, Theorem 5.2] also yields comparison
isomorphisms. Note that there are at least two comparison isomorphisms in the above
discussion, and we have just claimed that they give rise to commutative diagrams, which
might worry some readers. To reassure those readers, we establish the following rigidity
of p-adic derived de Rham cohomology theory.

Theorem 1.7 (see Theorem 3.14 and Remark 3.15). Let .A; I / be a prism such that
A=I is p-torsionfree. Then the functor R 7! dR^R=A from the category of smooth .A=I /-
algebras to CAlg.D.dR^.A=I/=A// has no automorphism. A similar statement holds for the
functor R 7! dR^R=.A=I/.

Therefore, whenever one has a diagram of functorial comparisons between various
cohomology theories and p-adic derived de Rham cohomology, the diagram is always
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forced to be commutative. Our method of proving such rigidity is largely inspired by
[6, Sections 10.3 and 10.4] and [9, Section 18]. In view of rigidity aspects of p-adic
derived de Rham complexes, we would like to mention a recent result of Mondal [31]:
roughly speaking, there is a unique deformation of de Rham cohomology from character-
istic p to Artinian local rings given by crystalline cohomology (cf. [6, Theorem 10.1.2] for
the case of deformation over Zp). Let us mention that in a recent collaboration between
Mondal and the first named author [25], endomorphisms of p-adic derived de Rham coho-
mology are computed in various p-adic settings.

Next, we discuss compatibility of additional structures on both sides being compared
in Theorem 1.5, most notably the Frobenius action and filtration. In Section 2.3 we define
a natural Frobenius action on the p-adic derived de Rham complex assuming the base
ringA is a p-torsionfree ı-ring. Therefore the right hand side is equipped with a Frobenius
action. The left hand side admits a Frobenius action as well, by extending the Frobenius
action on prismatic cohomology, as A! dR^.A=I/=A is compatible with Frobenii on them.
The two Frobenii on the two sides in Theorem 1.5 agree when A is p-torsionfree; see
Remark 3.6. Let us remark that these p-torsionfree conditions can most likely be relaxed,
with extra work in developing the theory of “derived ı-rings”. We expect the above theo-
retical results to hold verbatim.

The story of comparing filtrations is our main new contribution to this theory and it is
quite involved. Let us rewrite the comparison:

'�R�∆.X=A/˝
L
A dR^.A=I/=A Š R�.X; dR^

�=A/:

There are three natural filtrations here:

� the Nygaard filtration Fil�N.∆
.1/

�=A
/ on '�R�∆.X=A/ (see [9, Section 15]);

� the I -adic filtration on A;

� the Hodge filtration Fil�H.dR^
�=A/ on dR^.A=I/=A and R�.X; dR^

�=A/.

They are related in the following fashion.

Theorem 1.8 (see Corollary 4.23). Let .A; I / be a prism such that A=I is p-torsionfree,
and let X be a smooth proper .p-adic/ formal scheme over Spf.A=I /.

(1) The isomorphism in Theorem 1.5 refines to a filtered isomorphism�
R�.X;Fil�N.∆

.1/

�=A
//
�
y̋
L
.A;I�/ .A; I

Œ��/ Š R�.X;Fil�H.dR^
�=A//;

where the left hand side denotes the p-complete derived tensor product of filtered
objects over the filtered ring .A;I �/ provided by the lax symmetric monoidal structure
on the filtered derived infinity category.

In particular, we obtain a graded isomorphism between graded algebras

gr�N R�.X;∆.1/
�=A

/ y̋
L
Sym�

A=I
.I=I2/ �

�
A=I .I=I

2/ Š gr�H R�.X; dR^
�=A/:

(2) The isomorphism in Theorem 1.5 induces natural isomorphisms

R�.X;∆.1/
�=A

=FiliN/ Š R�.X; dR^
�=A=FiliH/ for all i � p.

Moreover, these isomorphisms are functorial in X and A.
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Here A denotes the p-adic PD envelope of A ↠ A=I , and I� denotes the filtration
of PD powers of the ideal ker.A ↠ A=I/. For a (somewhat) concrete description of the
filtration on '�R�∆.X=A/ ˝

L
A dR^.A=I/=A appearing in the above theorem, we refer the

readers to [18, Construction 3.9]. Note that by combining the aforementioned result of
Bhatt [3, Theorem 3.27] and a classical result of Illusie [19, Corollaire VIII.2.2.8], there
is a natural filtered isomorphism .dR^.A=I/=A;Fil�H/ Š .A; I

�/.
In [20, Section 2], a comparison of Nygaard and Hodge filtrations is established for a

crystalline base prism .A; I / D .W.k/; .p//, in particular his A=I is entirely p-torsion.
It seems reasonable to expect the comparison of filtrations holds for general base prisms.
Both Bhatt and Illusie have sketched to us an approach of resolving base prism by prisms
.A; I / such that A=I is p-torsionfree, to reduce the general comparison to our theorem
above. We do not pursue that direction further in this paper, as our final application only
uses the comparison when the base is the Breuil–Kisin prism.

With the above general preparation, we are ready to show

M.Hi∆.X=S// ' Hicrys.X=S/

(when Hi∆.X=S/ is u-torsionfree). In order to treat pn-torsion cohomologies in
Theorem 1.2, we consider the derived mod pn variants of the aforementioned coho-
mology theories. For example, we denote the pn-torsion prismatic cohomology as
R�∆.Xn=An/ WDR�∆.X=A/˝

L
Z Z=pnZ. As pointed out by Warning 7.1, such pn-torsion

prismatic cohomology does not only depend on Xn D X �Zp
Z=pnZ. But it is enough

for our purpose to understand the pn-torsion crystalline cohomology Hicrys.Xn=Sn/ and
its relation to étale cohomology Hi

Ket.Xx�;Z=p
nZ/.

Note that the cohomology groups of R�∆.Xn=Sn/ do fit in our setting of generalized
Kisin module M of height h (discussed in Section 6.1), i.e. a finitely generated S-module
M together with a 'S-semilinear map 'M WM!M and an S-linear map WM! '�M

such that ı .1˝ 'M/DE
h id'�M and .1˝ 'M/ ı DE

h idM. The generalized Kisin
module is a natural extension of the classical (étale) Kisin module discussed above allow-
ing u-torsion. In particular, an étale Kisin module M of height h is a generalized Kisin

module of height h without u-torsion, where  is just defined by M ' EhM
.1˝'M/�1

'

FilhBK '
�M� '�M, and similarly the BK filtration can be extended to a generalized Kisin

module by defining FilhBK '
�M WD Im. WM! '�M/. Most importantly, Hi∆.Xn=Sn/

is a generalized Kisin module of height i , and the BK filtration on '�Hi∆.Xn=Sn/ exactly
matches the image of the Nygaard filtration HiqSyn.X; FiliN ∆.1/n /! HiqSyn.X;∆

.1/
n / where

FiliN ∆.1/n D FiliN ∆.1/
�=S
˝L

Z Z=pnZ and ∆.1/n D ∆.1/
�=S
˝L

Z Z=pnZ; see Proposition 7.2 and
Corollary 7.11. One can apply many methods in the study of étale Kisin modules to treat
Hi∆.Xn=Sn/ as well. As a consequence, we prove the following:

Theorem 1.9. Let AD .S;E/ be the Breuil–Kisin prism and write Mi
n WD Hi∆.Xn=An/.

Let i � p � 2 be an integer. Then Hicrys.Xn=Sn/ has a Breuil module structure if and

only if M
j
n has no u-torsion for j D i; i C 1. In that case, M.Mi

n/ ' Hicrys.Xn=Sn/ and
TS .Hicrys.Xn=Sn// ' Hi

Ket.Xx�;Z=p
nZ/.i/ as GK-modules.
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Finally, by using Caruso’s Theorem 1.1 for n D 1, we can show that MiC1
n has no

u-torsion if ei < p � 1, hence deducing Theorem 1.2.
To end this introduction, let us report what we know now, a year since writing this

paper, slightly beyond the case of ei < p � 1. Recall that Breuil asked [11, Question 4.1]
whether, assuming i < p � 1, it is true that Hicrys.Xn=Sn/ always supports a Breuil module
structure with associated Galois representation given by Hi

Ket.Xx�;Z=p
nZ/. In view of our

Theorem 1.9, what Breuil asked for is really some module-theoretic structure of prismatic
cohomology of X : whether prismatic cohomology never has u-torsion when i < p. In a
sequel to this paper, among other things, we study u1-torsion in prismatic cohomology.
We obtain some results in the boundary case, that is, ei D p � 1. Let us restrict ourselves
further to the two extremes of the boundary case; our relevant findings are summarized
below:

� When i D 1, Breuil’s question amounts to vanishing of u-torsion in the first and sec-
ond prismatic cohomology. The first prismatic cohomology is always u-torsionfree.
The second prismatic cohomology having u-torsion is showed to be equivalent to the
failure of having Albanese abelian (formal) scheme of X , by which we mean a map
X ! A with both central and generic fibers being the Albanese map. This was studied
by Raynaud [32] and we extend some of his results using this prismatic perspective. We
generalize a construction in [7, Section 2.1] to produce counterexamples to Breuil’s
question with e D p � 1 > 1. In fact, the module structure of H1crys.Xn=Sn/ of this
example is so pathological that it cannot possibly support a Breuil module structure. In
particular, in hindsight, our Theorem 1.2 is sharp.

� When eD 1, this is what Fontaine–Messing [17] and Kato [21] studied. In the boundary
case i D p � 1, we are able to show that the Galois representation �p�1 attached to the
Fontaine–Laffaille structure on the .p � 1/-st crystalline cohomology is not far from
the .p � 1/-st étale cohomology of the geometric generic fiber.

The case of ei > p � 1 remains mysterious to us. We believe the first step of investigation
would be a better understanding of u1-torsion in prismatic cohomology, extending our
results so far.

We arrange our paper as follows: after collecting rudiments on prismatic cohomology
and derived de Rham cohomology in Section 2, we establish our comparison isomorphism
between the two cohomologies in Section 3, together with Frobenius structures. We dis-
cuss various filtrations in Section 4 and establish a filtered comparison. We remark that
the theory in Sections 2–4 accommodates quite general classes of prisms, which opens the
possibilities to develop, for example, Breuil–Caruso theory for more general base rings.
We hope to report the generalization in this direction in future work. Starting from Sec-
tion 5, we restrict ourselves to the Breuil–Kisin prism .S; .E// and focus on structures
of torsion prismatic cohomology and torsion crystalline cohomology for a proper smooth
formal schemeX over OK . In Section 5 we construct a connection r on derived de Rham
cohomology and hence on crystalline cohomology. Section 6 recalls classical theory of
Kisin modules, Breuil modules, functors to Galois representations and the functor M
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connecting Kisin modules and Breuil modules. Finally, Section 7 assembles all previous
preparations to prove Theorem 1.9.

2. Preliminaries

From this section until Section 4, unless stated otherwise, all completions and (completed)
tensor products are derived.

2.1. Transversal prisms

Lemma 2.1. Let .A; I / be an oriented prism with I D .d/. The following are equivalent:

(1) the sequence .p; d/ is Koszul regular;

(2) the sequence .p; d/ is regular;

(3) the morphism ZpJT K! A sending T to d is flat.

Proof. (3))(1): Because (3) implies that A˝ZpJT K ZpJT K=.p; T / is discrete.
(1))(2): (1) implies that the p-torsion in A is uniquely d -divisible, and A=p has no

d -torsion. On the other hand, we know that the p-torsion in A is derived d -complete,
hence must vanish. Therefore .p; d/ is a regular sequence.

(2))(3): It suffices to show that for any prime ideal p � ZpJT K the derived tensor
product A˝ZpJT K ZpJT K=p is discrete. When p is the unique maximal ideal, this follows
immediately from (2). So we only have to deal with height 1 primes which are always
generated by a polynomial of the form

f D T n C p � .lower order terms/;

and we need to show that A is f -torsionfree. Suppose a 2 A is an f -torsion element;
modulo p we see that xa 2A=p is dn-torsion, and (2) implies that xaD 0 2A=p. Therefore
f -torsion in A is divisible by p. As (2) also implies that A is p-torsionfree, f -torsion in
A is uniquely p-divisible. Since A is derived p-complete, we see that A must in fact be
f -torsionfree.

We can globalize to nonoriented prisms .A; I /. The following easily follows from
Lemma 2.1.

Lemma 2.2. Let .A; I / be a prism. The following are equivalent:

(1) there is a .p; I /-completely faithfully flat cover by an oriented prism .A0; IA0/, which
satisfies the equivalent conditions in Lemma 2.1;

(2) the ideal I is p-completely regular;

(3) Zariski locally, .p; I / is a regular sequence;

(4) the natural morphism Spf.A/! ŒSpf.ZpJT K/=.Gm/Zp
� classified by I is flat.
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Let us explain the morphism in (4) above: Zariski locally, I is generated by a non-
zerodivisor d , hence Zariski locally we get a map Spf.A/! Spf.ZpJT K/, and on overlap
these generators differ by a unit in A, hence globally we have a morphism to the quotient
stack. Alternatively, we can understand this map as the composition of the universal map
Spf.A/! † introduced by Drinfeld [15, Section 1.2], and †! ŒSpf.ZpJT K/=.Gm/Zp

�

induced by Wprim ! Spf.ZpJT K/ sending a Witt vector .x0; x1; : : :/ to x0.

Definition 2.3. A prism .A; I / is said to be transversal if it satisfies the equivalent con-
ditions in Lemma 2.2.

For the remainder of this subsection, we assume that .A; I / is a transversal prism.
Denote the p-completed PD envelope of A ↠ A=I by A, and denote the kernel of
A ↠ A=I by I.

Example 2.4. Let us list some examples of transversal prisms.

(1) The universal oriented prism is transversal.

(2) The Breuil–Kisin prism [9, Example 1.3 (3)] is transversal. We have A D S and A is
classically denoted by S in the classical literature concerning Breuil modules.

(3) Let C be an algebraically closed complete non-Archimedean field extension of Qp .
Then the perfect prism associated with OC is transversal. We have A D Ainf and
A D Acrys.

Although A is usually not flat over A, it has p-completely finite Tor dimension. In the
next subsection we shall see that this is a general phenomenon about the derived de Rham
complex and regularity of I .

Lemma 2.5. Let .A; I / be a transversal prism. Then A! A has p-complete amplitude
in Œ�1; 0�, in particular p-complete base change along A ! A commutes with taking
totalizations in D�0.A/.

Proof. It suffices to check the statement Zariski locally on Spf.A/, hence we may assume
the prism is oriented, say I D .d/. Then we may base change to A=p. So we need to
check that given an Fp-algebra R, and a nonzerodivisor d 2 R, the divided power algebra
S D DR.d/ has Tor amplitude in Œ�1; 0� over R. This follows from the fact that dp D 0
in S and S is a free R=.dp/-module. The commutation of tensoring and totalization now
follows from [9, Lemma 4.20].

2.2. Envelopes and derived de Rham cohomology

Let .A;I / be a bounded prism. In this subsection we review the derived de Rham complex
of simplicial A-algebras relative to A.

First we want to spell out explicitly the process of freely adjoining divided powers or
delta powers of elements mentioned in [9, Sections 2.5–2.6 and 3].

Construction 2.6. (0) Recall I is locally generated by a nonzerodivisor inA. LetAi be an
affine open cover of Spf.A/ such that I � Ai D .di / where di 2 I . There is an A-algebra
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AŒI � x� obtained by glueing Ai Œxi �’s via xi D
di

dj
xj ; it has a surjection AŒI � x� ↠ A

obtained by glueing the maps xi 7! di . Alternatively one may directly define

AŒI � x� WD
M
n�0

I n

with the evident surjection being the natural inclusion on each factor. It can also be seen
as the ring of functions on the total space of the line bundle I�1 on Spec.A/.

Similarly there is a ı-A-algebra A¹I � xº obtained by glueing Ai¹xiº’s via

Ai¹xiº ˝Ai
Aij

xi 7!
di
dj
xj

�������! Aj ¹xj º ˝Aj
Aij

with a surjection A¹I � xº↠ A obtained by glueing the maps xi 7! di . Alternatively one
may directly define

A¹I � xº WD
O

A
m�1

�M
n�0

.ım.I //n
�

with the evident surjection being the natural map on each tensor factor. This can also
be seen as the ring of functions on the total space of an infinite rank vector bundle on
Spec.A/.

Note that the above construction can be generalized to the case where I is replaced
by a line bundle L on Spec.A/. In particular, one can make sense of A¹I�1 � xº and
A¹'.I / � xº. We remark that there is a natural map A¹xº ! A¹I�1 � yº obtained by
glueing the maps x 7! diyi , which we shorthand as x 7! y.

(1) Let B be an A-algebra, and let f1; : : : ; fr be a finite set of elements in B . The
simplicial B-algebra obtained by freely adjoining divided powers of fi is denoted by
Bhhfi ii and defined to be the derived tensor product of

ZŒx1; : : : ; xr �
xi 7!fi //

��

B

DZŒx1;:::;xr �.x1; : : : xr /

The simplicial A-algebra obtained by freely adjoining divided powers of I is denoted by
AhhI ii and defined to be the derived tensor product of

AŒI � x�
xi 7!di //

��

A

DAŒI �x�.ker.AŒI � x�↠ A//

Alternatively one may define it as the glueing of the simplicial A-algebras Ai ˝x 7!di ;AŒx�

DAŒx�.x/.
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The simplicial B-algebra obtained by freely adjoining divided powers of I; fi ,
denoted by BhhI; fi ii, is defined as the derived tensor product of the above two algebras
over A.

(2) Let B be a ı-A-algebra, and let f1; : : : ; fr be a finite set of elements in B . We
define B¹fi

p
º as the derived pushout of the following diagram of simplicial algebras:

A¹x1; : : : ; xrº
xi 7!fi //

xi 7!p�yi

��

B

A¹y1; : : : ; yrº

We define A¹'.I /=pº as the derived pushout of

A¹I � xº
'
//

x 7!p�y

��

A

A¹I � yº

Alternatively one may define it as the glueing of the simplicial ı-A-algebras Ai¹
'A.di /
p
º.

Analogously B¹'.I/
p
; fi

p
º is defined by derived tensoring the above two algebras

over A.
(3) Given a sequence .f1; : : : ; fr / of elements inside a ring B , we write

dRB.f1; : : : ; fr /^ WD dR^Kos.BIf1;:::;fr /=B

to denote the p-completed derived de Rham complex of Kos.BI f1; : : : ; fr /, viewed as a
simplicial B-algebra, over B .

Similarly when B is an A-algebra, we denote

dRB.I /^ WD dR^.B˝A.A=I//=B
;

dRB.I; fi /^ WD dR^.Kos.BIf1;:::;fr /˝A.A=I//=B
:

Let J be an ideal in B . Then we denote

dRB.J /^ WD dR^.B=J /=B :

Here all the completions are derived p-completions.

Remark 2.7. (1) Let B WD A¹xº^. Note that x is .p; I /-completely regular relative
to A. Using [9, Proposition 3.13], we can get a B-algebra C WD B¹x

I
º^ which is locally

(on Spf.A/ as one needs to trivialize the line bundle I ) given by C D A¹yº^ together
with the B-algebra structure x 7! d � y where d is the local generator of I . One checks
immediately that, in our notation, C Š A¹I�1 � yº^ with the B-structure given by (the
.p; I /-completion of) x 7! y.



Comparison of prismatic cohomology and derived de Rham cohomology 13

In fact, by examining the proof of [9, Proposition 3.13], one finds that in the situation
described there, the algebra B¹J

I
º^ is the derived .p; I /-complete pushout of the diagram

A¹x1; : : : ; xrº //

xi 7!yi

��

B

A¹I�1 � yiº

(2) We warn the readers that when J D .f1; : : : ; fr / is an ideal inside B , the two
simplicial B-algebras dRB.J /^ and dRB.f1; : : : ; fr /^ are usually different. They agree
when .fi / is a p-completely Koszul regular sequence.

Below we shall see the relation between the derived de Rham complex, divided power
envelopes, and prismatic envelopes, which directly follows from [9, Section 2.5].

Lemma 2.8. (1) Let B be an A-algebra, and let ¹f1; : : : ; frº be a finite set of elements
of B . Then we have the following identification of derived p-complete simplicial B-
algebras:

dRB.f1; : : : ; fr /^ Š Bhhfi ii
^:

Similarly we have an identification

dRB.I /^ Š BhhI ii
^:

(2) Let B be a ı-A-algebra, and let ¹f1; : : : ; frº be a finite set of elements of B . Then we
have the following identification of derived p-complete simplicial B-algebras:

Bhhfi ii
^
Š B

²
'.fi /

p

³^
:

Similarly we have an identification

BhhI ii^ Š B

²
'.I /

p

³^
:

Proof. By the base change property of the constructions, we reduce ourselves to the case
where B D A¹x1; : : : ; xrº with fi D xi . Again by base change we may assume A is
the initial oriented prism, in particular it is flat over Zp and I D .d/ is generated by a
nonzerodivisor. So we can focus on the case concerning a finite set of elements of B , and
we may further reduce to the case where the set is a singleton.

Now the identification in (1) follows from (the limit version of) [3, Theorem 3.27] and
[2, Théorème V.2.3.2]. The identification in (2) follows from [9, Lemma 2.36].

We deduce a consequence concerning the Tor amplitude of dRA.I /^ over A, general-
izing Lemma 2.5.

Lemma 2.9. Let .A; I / be a prism. Then A! dRA.I /^ has p-complete amplitude in
Œ�1; 0�, in particular p-completely base changing along A! dRA.I /^ commutes with
taking totalizations in D�0.A/.
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Proof. We may check this statement locally on Spf.A/, hence we may assume I D .d/.
Next, by base change, we may assumeA is the initial oriented prism, in particular we may
assume it is transversal. Using Lemma 2.8 (1), we see now dRA.I /^ is the p-completion
of the divided power envelope DA.I /^. This reduces the lemma to Lemma 2.5.

We also have a prototype base change formula which will be used in the next section
to establish a general comparison.

Lemma 2.10. Let .A; I / be a prism, and denote by f the composition

A¹xº
'A;x 7!'.z/
�������! A¹zº ! dRA¹zº.I /^:

Then we have a base change formula

A¹I�1 � xº y̋A¹xº;f dRA¹zº.I /^ Š dRA¹zº.I; z/^:

Here the completion on the left hand side is derived p-completion. As '.I / D .p/

inside �0.dRA¹zº.I /^/, it is the same as derived .p; I /-completion when viewed as an
A-complex via 'A W A! dRA.I /^.

Proof of Lemma 2.10. Note that by Lemma 2.8 we have identifications dRA¹zº.I /^ Š
A¹zº¹'.I/

p
º^ as p-complete simplicial A¹zº-algebras. Similarly we can identify

dRA¹zº.I; z/^ with A¹zº¹'.z/
p
; '.I/
p
º^.

Now we look at the following diagram:

A¹xº //

��

A¹zº //

��

A¹zº¹'.I/
p
º

��

A¹I�1 � xº // A¹zº¹ '.z/
'.I/
º // A¹zº¹'.z/

p
; '.I/
p
º

The left square is a pushout diagram by definition. Hence it suffices to show that the right
square, after derived p-completion, is also a pushout diagram of p-complete simplicial
A¹zº-algebras.

To that end, we may work Zariski locally on A, so we can assume I D .d/ is gener-
ated by one element. This square is the base change of the same diagram when A is the
initial oriented prism, so we have reduced the task to that case. Now every ring in sight is
discrete, and the p-completed square is a pushout diagram because '.d/ and p differ by
a unit inside A¹'.d/

p
º^ Š DA.d/

^.

In [3, Proposition 3.25], for any p-complete A-algebra B , Bhatt constructed a natural
map

CompB=A W dR^B=A ! R�crys.B=A/:

Here the right hand side denotes the p-complete crystalline cohomology defined using PD
thickenings of B relative to .A; .p/; /with i .p/D pi=iŠ. This natural map is functorial
in A ! B and agrees with Berthelot’s de Rham-crystalline comparison [2, Théorème
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IV.2.3.2] when it is formally smooth (viewed as a map between p-adic algebras). It is
known that when bothA andB are flat over Zp andA!B is a p-complete local complete
intersection, then the natural map above is an isomorphism [3, Theorem 3.27].

For our purpose we shall be interested in the situation where B is formally smooth
over A=I , so we cannot summon the above theorem [3] to say that the natural map in this
situation is an isomorphism. In fact, when B D A=I the left hand side is dRA.I /^ and
the right hand side is the classical p-adic completion of the PD envelope of A along I
(compatible with the natural PD structure on .A; .p//), denoted as A.2 These two need
not be the same, e.g. if A D Zp and I D .p/, then dRA.I /^ D ZpŒT i=iŠ�^=.T � p/ but
A D Zp . However. this turns out to be the only problem.

Proposition 2.11. Let B be an A=I -algebra.

(1) If B is formally smooth over A=I , then we have a natural identification

R�crys.B=A/ Š R�crys.B=A/;

where the right hand side is the usual crystalline cohomology of Spf.B/ over the PD
base A.

(2) There is a natural map

CompB=A W dR^B=A y̋ dRA.I /^ A! R�crys.B=A/;

which is functorial in A=I ! B .

(3) If B is formally smooth over A=I , then the above is an isomorphism.

Proof. (1) is an easy consequence of the fact that B is an A=I -algebra. In fact, we only
need A=I ! B to be a local complete intersection. Indeed, we use the Čech–Alexander
complex to compute both crystalline cohomologies, and one reduces to the following: Let
P be a polynomial A-algebra with a surjection P ↠ B of A-algebras. Then there is a
naturally induced surjection P ˝A A ↠ B of A-algebras, and we have an identification
of PD envelopes

D.A;.p/;/.P ↠ B/ D D.A;I;/.P ˝A A ↠ B/:

(2) The functoriality of Bhatt’s CompB=A asserts that the map is compatible with the
natural map dRA.I /^ ! A, hence we get our natural map CompB=A.

(3) Choose a formal lift zB overA (note thatA is .p;I /-complete). By the functoriality
of Bhatt’s CompB=A, we get the following commutative diagram:

dR^
zB=A
y̋A A //

��

R�crys. zB=A/ y̋A A

��

dR^B=A y̋ dRA.I /^ A // R�crys.B=A/

2This notation agrees with the previous subsection as we assumed .A; I / to be a transversal
prism there.
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The top horizontal arrow is an isomorphism by Berthelot’s de Rham-crystalline compar-
ison. The left vertical arrow is an isomorphism by the Künneth formula for the derived
de Rham complex: dR^

zB=A
y̋A dRA.I /^ Š dR^B=A. The right vertical arrow is an isomor-

phism by the base change formula for crystalline cohomology. Therefore we conclude that
the bottom horizontal arrow, which is our CompB=A, must also be an isomorphism.

The above proposition and Bhatt’s results discussed before suggest that the derived
de Rham complex is a substitute of crystalline cohomology. Inspired by this philosophy,
we show that the derived de Rham complex only “depends on the reduction mod p of
the input algebra”. We need to introduce some notations first. Denote the p-adic derived
de Rham complex dR^Fp=Zp

by D. Bhatt’s result implies that the natural map Zp ! D

admits a retraction D ! Zp . In Example 2.16 (1) below, one finds a detailed description
of D.

Remark 2.12. In fact, one can show that D is the p-complete PD envelope of Zp along
the ideal .p/. Moreover, under this identification one can easily see that the retraction
above is unique, and is given by the fact that there is a unique PD structure on .Zp; .p//
(as Zp has no p-torsion). Notice that when taking a PD envelope, one has to fix a PD
base ring, and we always take it to be the trivial PD ring .Zp; .0/; triv/ when we say PD
envelope without mentioning a PD base ring.

Proposition 2.13. Let R be a ring with derived p-completion R^, and let B be a simpli-
cial R-algebra. Then there is a natural isomorphism

dR^Kos.BIp/=R
y̋D Zp Š dR^B=R;

which is functorial in R! B .

Here the map D ! dR^Kos.BIp/=R is induced by the natural diagram

Fp // Kos.BIp/ D B ˝Z Fp

Z //

OO

R

OO

Proof of Proposition 2.13. This follows from the Künneth formula for the derived
de Rham complex,

dR^Kos.BIp/=R Š dR^B=R y̋R dRR.p/^;

and the base change formula

dRR.p/^ Š D y̋ Zp
R^

as Kos.RIp/ D R˝Z Fp .

2.3. Frobenii

Let A be a p-torsionfree ı-ring. Using Proposition 2.13 we can define a Frobenius action
on dR^B=A which is functorial in .A; 'A/ and the A-algebra B .
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Construction 2.14. Let A be a p-torsionfree ı-ring and B a simplicial A-algebra. Recall
there is a functorial endomorphism on simplicial Fp-algebras given by left Kan exten-
sion of the usual Frobenius on polynomial Fp-algebras; see [29, Construction 2.2.6]. For
discrete Fp-algebras, it is just the usual Frobenius. We may view B=p D B ˝A A=p,
and using the fact that 'A on A is a lift of the Frobenius on A=p we get the following
commutative diagram:

B=p
'B=p

// B=p

A
'A //

OO

A

OO

It induces a Frobenius map z' W dR^Kos.BIp/=A ! dR^Kos.BIp/=A which is functorial in
.A! B; 'A/.

A similar diagram for Z! Fp (where AD B D Zp) induces the identity onD, hence
we have a commutative diagram

dR^Kos.BIp/=A
z'

// dR^Kos.BIp/=A

D

ee ::

Finally, we define a Frobenius map 'B=A W dR^Kos.BIp/=A
y̋DZp Š dR^B=A

z' y̋ idD
idZp

�������! dR^B=A
which is functorial in .A! B; 'A/.

Remark 2.15. (1) It is conceivable that the above works for general ı-rings. In a private
communication we learned from Bhatt that a ı-structure on a ring A is equivalent to
specifying a commutative diagram as follows:

A=p
'A=p

// A=p

A
'A //

OO

A

OO

Note that here A=p is a simplicial Fp-algebra that has nontrivial �1 when A is not p-
torsionfree. Hence for any simplicial A-algebra B , one can also define a Frobenius on
dR^B=A as above. However, we do not work out the full story here as we do not need this
great generality for our intended applications later.

(2) By letting n!1 in [3, Proposition 3.47], one gets another construction of Frobe-
nius on dR^A=Zp

for any Zp-algebra A. However, we shall see in Remark 3.15 that there is
only one Frobenius that is functorial enough (in a suitable sense) on p-completed derived
de Rham complexes when the base algebra is a p-torsionfree ı-algebra. In particular, our
construction above agrees with Bhatt’s whenever both are defined (i.e., when the base
is Zp).

Let us work out some examples.
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Example 2.16. (1) As an illustrative example, let us consider A D Zp and B D Fp . We
have a derived pushout square of rings

Zp // B

ZpŒT �

T 7!p

OO

T 7!0 // A

OO

The bottom map is a map of ı-rings if we give ZpŒT � a ı-structure with '.T / D T p .
Then we get a pushout diagram of the derived de Rham complex which says D Š
dR^Zp=Zp ŒT �

y̋ Zp ŒT � Zp . The latter is the same as ZphhT ii^=.T / where we have used the
fact that p has divided powers in Zp (hence adjoining divided powers of T � p is the
same as adjoining divided powers of T ). It is easy to see that the Frobenius defined on
dR^Zp=Zp ŒT �

Š ZphhT ii is induced by T 7! T p because it has to be compatible with the
Frobenius on ZpŒT �. Therefore the induced Frobenius on dR^B=A is not the identity. This
might be surprising as one would naïvely think that the Frobenius on the pair .Zp;Fp/ is
the identity, hence must induce the identity on the derived de Rham complex. However,
the Frobenius on Fp ˝Zp

Fp is not the identity (as Frobenius always kills cohomology
classes in negative degrees [29, Remark 2.2.7]), and it is this Frobenius that induces a
map on the derived de Rham complex. On a related note, Bhatt has pointed out to us that
the identity map is also not a lift of the Frobenius on D Š ZphhT ii^=.T /.

(2) Let J � A be an ideal which is Zariski locally on Spec.A/ a colimit of ideals
generated by a p-completely regular sequence. Then by Lemma 2.8 (1), we have an iden-
tification dRA.J /^ Š DA.J /^. Since the Frobenius map obtained is compatible with 'A
and DA.J /^ is p-torsionfree, we see that this pins down the Frobenius on dRA.J /^: any
n.f / with f 2 J must be sent to 'A.f /n=nŠ. Note that f p is divisible by p inDA.J /^,
hence 'A.f / is divisible by p in DA.J /^.

(3) Let A be p-complete, and let B D AhX1=p
1

i. Since A! B is relatively perfect
modulo p, there is a unique lift of the Frobenius 'B on B covering the Frobenius on A
and it is given by 'B.X i / D X i �p . By [18, Proposition 3.4 (1)], we see that the natural
map to the 0-th graded piece of the Hodge filtration induces an isomorphism dR^B=A Š B .
Applying the functoriality of Construction 2.14 to the map of triples .A ! B; 'A/ !

.B ! B; 'B/, we see that the Frobenius on dR^B=A Š B must be 'B .

When the map A! B is a surjection with good regularity properties, we have seen in
Lemma 2.8 that one can express dR^B=A in terms of prismatic envelopes. Since prismatic
envelopes are ı-rings, they possess a Frobenius map by design. We can use this to give
an alternative construction of the Frobenius for derived de Rham cohomology of certain
regular A-algebras relative to A. To that end, we need to first establish a sheaf property
for derived de Rham cohomology.

Proposition 2.17. Let S be an R-algebra. Assume:

� the cotangent complex LS=R 2 D.S/ has p-complete Tor amplitude in Œ�1; 0�;

� the Frobenius twist of S=p .relative to R=p/ is in D��m.Fp/.
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Consider the category C consisting of triangles R ! P ! S with P being an ind-
polynomial R-algebra, equipped with a nondiscrete topology. Let dR^S=� be the sheaf
that associates any triangle R! P ! S with dR^S=P . Then:

(1) For any R! P ! S , dR^S=P is in D��m.R/.

(2) The natural map dR^S=R ! limC dR^S=P is an isomorphism.

(3) For anyR! P ! S with P ↠ S surjective, the natural map dR^S=R! lim� dR^S=P�
is an isomorphism. Here

Pn WD P
˝R.nC1/ for any Œn� 2 �,

with induced maps Pn ↠ S .

Proof. We shall prove this by reduction modulo p. Hence we may assume R and S are
simplicial Fp-algebras.

For (1) we use the conjugate filtrations on the derived de Rham complex. Since LS=R
has Tor amplitude in Œ�1; 0�, so is LS.1;P /=P where S .1;P / is the Frobenius twist of S
(relative to P ). The above estimate shows that the graded pieces of the conjugate filtration
has Tor amplitude at least 0 over S .1;P /. Since S .1/ is assumed to be in D��m.Fp/ and
the relative Frobenius for P is flat, we see that all the graded pieces of the conjugate
filtration live in D��m.R/.

Note that P ↠ S is surjective if and only if R! P ! S is weakly final in C . Since
these dR^S=P are cohomologically uniformly bounded below, [5, Lecture V, Lemma 4.3]
(see also [34, Tag 07JM]) reduces (2) to (3).

Lastly, to show (3) we appeal to the conjugate filtration again. Since the graded pieces
of the conjugate filtration are cohomologically uniformly bounded below by our proof
of (1) above, it suffices to show LS.1/=R ! lim� LS.1;�/=P�

is an isomorphism, where
S .1;n/ is the Frobenius twist of S (relative to Pn). This follows easily from the fact that
lim� LP�=R Š 0.

The above proposition gives us a way to describe the Frobenius action of the p-
completed derived de Rham complex in more cases than those listed in Example 2.16.

Proposition 2.18. Let A be a p-torsionfree p-complete ı-algebra, and let I � A be an
ideal which is Zariski locally on Spec.A/ generated by a p-completely regular element.
Let B be a p-completely smooth A=I -algebra.

(1) For any .p; I /-completely ind-polynomialA-algebra P with a surjection P ↠B , the
kernel J is Zariski locally on Spf.P / a colimit of ideals generated by a p-completely
regular sequence.

(2) For any A! P ! B as in .1/, dR^B=P is an ordinary algebra.

(3) For any .p; I /-completely free ı-A-algebra F with a surjection F ↠ B , there is
a unique ı-algebra structure on dR^B=F compatible with that on F . With this ı-
structure, we have an identification

dR^B=F Š F
²
'F .J /

p

³^
:

https://stacks.math.columbia.edu/tag/07JM
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(4) Consider the category C of all triples A! F ↠ B as in .3/. Then

dR^B=A Š lim
C

dR^B=F :

In fact, it suffices to take the limit over the Čech nerve of one such F ↠ B . Together
with .3/ we get a natural Frobenius action on dR^B=A.

(5) The Frobenius on dR^B=A obtained in .4/ agrees with the one in Construction 2.14.

The notation F ¹'F .J /
p
º^ is defined analogously to [9, Corollary 3.14]. Using the

fact that J is Zariski locally given by an ind-p-completely regular ideal, we may define
F ¹'F .J /

p
º^ as the glueing of the colimit of F ¹'F .fi /

p
º^, where .fi / is the ind-regular

sequence generating J on a Zariski open set.

Proof of Proposition 2.18. (1) follows easily from the fact thatB is formally smooth over
A=I and I is Zariski locally generated by a p-completely regular element.

(2) follows from the argument of Proposition 2.17 (1). Indeed, we set R D A and
S D B . The Frobenius twist of B=p is smooth over A=.'A.I /; p/ D A=.Ip; p/, and the
latter is an ordinary algebra. Hence in our situation, we havemD 0 in the assumptions of
Proposition 2.17. This shows that dR^B=P is in D�0. Using the conjugate filtration again,
it is easy to see that the p-completed derived de Rham complex of any surjection must be
in D�0. Hence our dR^B=P must in fact be an ordinary algebra.

(3) essentially follows from (1) and Lemma 2.8. Indeed, by description of J , we see
that

dR^B=F Š DF .J /
^:

Since J is Zariski locally an ind-p-completely regular ideal, we see that DF .J /^ is p-
torsionfree, hence having a ı-structure is equivalent to having a lift of Frobenius. The
argument in Example 2.16 (2) tells us that there is at most one Frobenius structure on it
compatible with that on F . Lastly, Lemma 2.8 shows that we can put a ı-structure on it
by identifying

dR^B=F Š DF .J /
^
Š F

²
'F .J /

p

³
:

(4) follows from Proposition 2.17 (2, 3).
As for (5), it suffices to notice that for any of these A! F ↠ B the two Frobenii

defined on dR^B=F agree and they are both functorial in A! F ↠ B .

The following is similar to Proposition 2.17, and will be used in the next section.

Proposition 2.19. Let .A; I / be a bounded prism. Let R be a formally smooth A=I -
algebra. Let C be the category of all triples A ! P ↠ R where P is a p-completed
polynomial algebra over A. Associated with such a triple is the diagram

A //

��

P //

��

F

��

A=I // R // S
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where F is the p-completed free ı-A-algebra associated with P , and S is the p-com-
pleted tensor product R y̋P F .

(1) Choose an object A! P ↠ R, and consider the n-th self-fiber product A! P n WD

P
Ő

An ↠ R for any positive integer n. Then the associated p-completed free ı-A-
algebra is F n WD F ŐAn, and we have

R y̋Pn F n Š S
Ő

Rn;

which we shall denote by Sn below.

(2) Choose an object A! P ↠ R. Then the natural map

dR^R=A ! lim
Œn�2�

dR^Sn=F n

is an isomorphism.

(3) The natural map
dR^R=A ! lim

C
dR^S=F

is an isomorphism.

Notice that we do not need to assume that A is p-torsionfree here.

Proof. For (1), if P is p-completely adjoining a set T of variables, then F is p-com-
pletely adjoining the set

`
N T of variables, where t in the i -th component represents

ıi .xt /. The statement on the fiber product and the associated F n is clear. As for the state-
ment about Sn, just notice that we have the pushout diagrams

P n //

��

Rn WD R
Ő

An

��

// R

��

F n // S
Ő

An // Sn WD S
Ő

Rn

To prove (2), we may reduce modulo p. Note that A! F and R ! S are p-com-
pletely faithfully flat. In a similar manner to the proof of Proposition 2.17 (3), using the
conjugate filtration, plus the distinguished triangle of the cotangent complex, and fpqc
descent of the cotangent complex (see [8, Theorem 3.1]), one can show that this natural
map is an isomorphism.

(3) follows from (2) in the same way as Proposition 2.17 (2) follows from Proposi-
tion 2.17 (3).

Remark 2.20. Similar to Proposition 2.18, assume A is p-torsionfree. Then the dR^S=F
appearing above are discrete rings, and we can equip them with a natural ı-structure. By
the same proof of Proposition 2.18 the induced Frobenius on dR^R=A agrees with the one
provided by Construction 2.14.

We shall see in Remark 3.15 (1) that if .A; I / is a transversal prism, then there is only
one Frobenius in a strong sense. So all these different constructions must give rise to the
same map.
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2.4. Naïve comparison

Consider the composition f W A
'A
�! A! A; it induces a morphism of prisms which we

still denote by f W .A; I /! .A; .p//. Let X be a p-completely smooth affine formal
scheme over Spf.A=I /. Now by the base change formula of prismatic cohomology [9,
Theorem 1.8 (5)], we have

R�∆.X=A/ y̋A;f A Š R�∆.Y=A/;

where Y D X �Spf.A=I/;f Spec.A=p/.
Then the crystalline comparison of prismatic cohomology [9, Theorem 1.8 (1)] gives

'�A.R�∆.X=A/ y̋A;f A/ Š '�A.R�∆.Y=A// Š R�crys.Y=A/

Š '�A.R�crys.X=A//: ( )

Here the last isomorphism comes from the commutative diagram

A

'A

��

// // A=.I; p/

f

��

A // // A=p

In the following, we aim at getting a Frobenius descent of the isomorphism obtained
in ( ); see Remark 3.8.

3. Comparing prismatic and derived de Rham cohomology

Let .A; I / be a bounded prism. Let X be a p-adic formal scheme which is formally
smooth over Spf.A=I /. In this section we shall establish a functorial comparison between
the prismatic cohomology R�∆.X=A/ and the derived de Rham cohomology dR^X=A.

3.1. The comparison

First we need to comment on an error in the construction of Čech–Alexander complex
in [9, Construction 4.16]. We learned this subtlety from Bhatt who was informed by
Koshikawa. The issue is as follows, with notation as in loc. cit.: SupposeD!D=ID R

is an object in .R=A/∆. Then one needs to exhibit a morphism .B¹J
I
º^!D/ in .R=A/∆.

The argument was along the following lines: by the universal property it suffices to exhibit
a mapB!D sending J into ID, which amounts to filling in the dotted arrow (of ı-rings)

R // D=ID

B

OO

// D

OO
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that makes the diagram commutative. At first sight this seems easy, as B is a free ı-ring
in a set of variables: we just lift images of those variables under B ! R! D=ID to D
to get a map of ı-rings. But there is no way a general lift will make the above diagram
commutative for the ı’s of those variables.

Below we describe a fix that we learned from Bhatt. Recall that the forgetful functor
from ı-A-algebras to A-algebras admits a left adjoint [9, Remark 2.7]. One checks the
following easily:

� Given a derived .p; I /-completed polynomial A-algebra P which is freely generated
by a set of variables, apply this left adjoint to get a derived .p; I /-completed free ı-A-
algebra F generated by the same set of variables.

� This left adjoint commutes with completed tensor product.

In particular, the natural map P ! F is .p; I /-completely ind-smooth.

Construction 3.1 (Čech–Alexander complex for prismatic cohomology). Let R be a p-
completely smooth A=I -algebra. Let P be a derived .p; I /-completed polynomial A-
algebra along with a surjection P ↠ R, and let J be the kernel. Associated with the triple
A! P ↠ R is a ı-A-algebra F ¹JF

I
º^, obtained by applying [9, Corollary 3.14]. We

make three claims about this construction.

Claim 3.2. (1) The ı-A-algebra F ¹JF
I
º^ is naturally an object in .R=A/∆;

(2) as such, it is weakly initial in .R=A/∆;

(3) if there is a set of triplesA!Pi ↠R, then the coproduct of the associatedFi¹
JiFi

I
º^

in .R=A/∆ is given by the ı-A-algebra associated with the triple A! y
N
A Pi ↠ R

where the second map is given by the completed tensor product of those Pi ↠ R

maps.

Let us postpone the verification of these claims and continue with the construction.
At this point we may simply follow the rest of [9, Construction 4.16]. Form the derived
.p; I /-completed Čech nerve P � of A! P , and let J � � P � be the kernel of the aug-
mentation map P � ! P ! R. By the first claim above, we get a cosimplicial object
.F �¹J

�F �

I
º^/ in .R=A/∆. The third claim above shows that this is the Čech nerve of

F ¹JF
I
º^ in .R=A/∆, and according to the second claim the object F ¹JF

I
º^ covers the

final object of the topos Shv..R=A/∆/. Therefore ∆R=A is computed by F �¹J
�F �

I
º^.

This construction commutes with base change of the prism .A; I /. When .A; I / is
fixed, this construction can be carried out in a way which is strictly functorial in R, by
setting P to be the completed polynomialA-algebra generated by the underlying set ofR.

Proof of Claim 3.2. (1) Form the pushout diagram

R // S

P

OO

// F

OO
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Denote F ¹JF
I
º^ by C 0; by its defining property there is a natural map S Š F=JF !

C 0=IC 0. Hence C 0 gives rise to a diagram .C 0 ! C 0=IC 0  S  R/ which is an
object in .R=A/∆.

(2, 3) These follow from chasing through universal properties. Let .D!D=ID R/

be an object in .R=A/∆. We have the following chain of equivalences:

F

²
JF

I

³^
! D in .R=A/∆

” a map F ! D of ı-A-algebras such that JF is mapped into ID

” a map P ! D of A-algebras such that J is mapped into ID:

It is easy to see that the last statement is equivalent to filling in the dotted arrow in the
diagram

R // D=ID

P

OO

// D

OO

of A-algebras, making the diagram commutative. Note that there is no requirement from
ı-ring considerations here. Now one checks claims (2) and (3) easily.

With the above preparatory discussion, we are ready to compare prismatic cohomol-
ogy and derived de Rham cohomology. The key computation we need is the following.

Lemma 3.3 (Comparing prismatic and PD envelopes for regular sequences). Let B be a
.p; I /-completely flat ı-A-algebra, and let f1; : : : ; fr 2 B be a .p; I /-completely regular
sequence. Write J D .I; f1; : : : ; fr / � B . Then we have a natural identification of p-
completely flat dRA.I /^-algebras:

B

²
J

I

³^
y̋B;'B

B y̋A dRA.I /^ Š dRB.J /^:

Here the B¹J
I
º^ is as in [9, Proposition 3.13], which is .p; I /-completely flat over A.

Let us clarify the various completions involved in the left hand side. First we take the
derived .p; I /-complete tensor product, and then we take the derived .p; '.I //-complete
tensor product, which is the same as the derived p-complete tensor product since '.I / D
.p/ in �0.dRA.I /^/.

Proof of Lemma 3.3. Recall that in the proof of [9, Proposition 3.13], as also explained
in Remark 2.7, B¹J

I
º^ is constructed as the p-complete pushout of the diagram

A¹x1; : : : ; xrº
xi 7!fi //

��

B

A¹x1; : : : ; xrº¹
xi

I
º
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The left hand side in this lemma is therefore given by pushing out the above diagram
further along

fB W B
'B
��! B ! B y̋A dRA.I /^:

The composition

A¹x1; : : : ; xrº
xi 7!fi
����! B

fB
��! B y̋A dRA.I /^

can now be factored as

A¹x1; : : : ; xrº
'A;xi 7!'.zi /
���������! A¹z1; : : : ; zrº ! dRA¹z1;:::;zr º.I /

^
! B y̋A dRA.I /^;

where the last map sends zi to fi ˝ 1. Hence the left hand side becomes the p-complete
outer pushout of the following diagram with solid arrows:

A¹x1; : : : ; xrº //

��

dRA¹z1;:::;zr º.I /
^ //

��

B y̋AdRA.I /^

��

A¹x1; : : : ; xrº¹
xi

I
º // dRA¹z1;:::;zr º.I; z1; : : : ; zr /

^ // dRB y̋AdRA.I /^
.fi˝1/

^ŠdRB.J /^

Using (the multi-variable version of) Lemma 2.10 we see that the left square above is
a p-complete pushout. The base change property of the derived de Rham complex now
shows that the right square is also a p-complete pushout. Here the isomorphism of the
right bottom corner follows from the fact that .I; f1; : : : ; fr / is a Koszul regular sequence
in B .

Just like [9, Proposition 3.13] implies [9, Corollary 3.14], our Lemma 3.3 gives the
following.

Lemma 3.4. Let R be a p-completely smooth A=I -algebra. Let P be a p-completed
polynomial algebra over A, and let P ↠ R be a surjection of A-algebras with kernel J .
Consider the diagram

A=I // R // S

A //

OO

P //

OO

F

OO

where F is the p-completed free ı-A-algebra associated with P , and S is the p-com-
pleted tensor product R y̋P F . Then we have a natural identification of p-completely flat
dRA.I /^-algebras:

F

²
J � F

I

³
y̋ F;'F

F y̋A dRA.I /^ Š dR^S=F :

Proof. Zariski locally on Spf.P / and Spf.F /, the kernel J and J � F are colimits of the
form considered in Lemma 3.3. Also note that F=J � F Š S , so by definition we have
dRF .J � F /^ Š dR^S=F .
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Since formation of the p-complete derived de Rham complex commutes with taking
p-complete colimit (of the algebra over A) and descends from p-completely flat covers,
we may glue the local isomorphisms obtained in Lemma 3.3 and take a colimit to get our
identification here.

Using this comparison of the prismatic envelope and the derived de Rham complex,
we get a comparison between prismatic and derived de Rham cohomology as follows.

Theorem 3.5. Let .A; I / be a bounded prism. For any p-completely smooth A=I -
algebra R, there is a natural isomorphism

R�∆.R=A/ y̋A;'A
A y̋A dRA.I /^ Š dR^R=A in CAlg.A/;

which is functorial in A=I ! R and satisfies base change in .A; I /.

Let us emphasize again that when .A; I / is transversal, this follows from [9, Theo-
rem 5.2].

Proof of Theorem 3.5. Let us first construct the desired natural morphism

R�∆.R=A/ y̋A;'A
A y̋A dRA.I /^ ! dR^R=A :

Given any tripleA! P ↠R as in the setting of Lemma 3.4, we have a natural morphism

R�∆.R=A/ y̋A;'A
A y̋A dRA.I /^ ! F

²
J � F

I

³^
y̋ F;'F

F y̋A dRA.I /^ Š dR^S=F ;

which is functorial inA!P ↠R. By Proposition 2.19 (3), the limit of the right hand side
over all triples A! P ↠ R is just dR^R=A, hence we get the desired natural morphism. It
is functorial in A=I ! R and satisfies base change in .A; I /.

Now we need to show the natural arrow constructed above is a natural isomorphism.
Let us make more reductions. It suffices to check this is an isomorphism after a faithfully
flat cover, and since both sides commute with base change in A, we may Zariski localize
onA, hence we may first reduce to the case whereA is oriented, i.e., I D .d/. Observe that
both sides are the left Kan extensions of their restrictions to the category of polynomialA-
algebras, so it suffices to show that the above arrow is a natural isomorphism for algebras
of the form R D A=I ŒX1; : : : ;Xn�

^, which is the base change of p-complete polynomial
algebras over the universal oriented prism. Hence we can reduce further to the case that
A is the universal oriented prism. In particular, we may assume that .A; I / is transversal
and that 'A is flat.

Lastly, we shall prove the statement under the assumption that .A;I / is transversal and
that 'A is flat. Choose a .p; I /-completely polynomial A algebra P with a surjection of
A-algebrasP ↠R, and form the cosimplicial object .F �¹J

�F �

I
º^/ in .R=A/∆ computing

∆R=A as in Construction 3.1. Notice that we have an identification of cosimplicial .p; I /-
complete algebras A

'
�! F �.

Since we have reduced ourselves to the case where .A; I / is transversal and that 'A is
flat, using Lemma 2.5, the natural morphism considered above gives rise to the following



Comparison of prismatic cohomology and derived de Rham cohomology 27

identification:

R�∆.R=A/ y̋A;'A
A y̋A dRA.I /^ Š lim

�

��
F �
²
F � � J �

I

³^�
y̋A;'A

A y̋A dRA.I /^
�

Š lim
�

��
F �
²
F � � J �

I

³^�
y̋ F �;'F�

F � y̋A dRA.I /^
�
Š lim
Œn�2�

dR^
S
Ő

Rn=F n
Š dR^R=A

( )

as desired. Let us comment on the identifications above. Here we have used the cosim-
plicial replacement .A; 'A/

'
�! .F �; 'F �/ in the second identification. The second-to-last

identification is provided by Lemma 3.4, and the last identification is because of Proposi-
tion 2.19.

Remark 3.6. In this paper we have only defined the Frobenius action on dR^
�=A under

the assumption that A is a p-torsionfree ı-ring. Now suppose .A; I / is a p-torsionfree
prism; by Remark 2.20, we see that the chain of identifications in ( ) is compatible with
the Frobenius. Consequently, the identification in Theorem 3.5 is compatible with the
Frobenius in a functorial manner.

We expect however that one can remove the p-torsionfree condition with additional
work, developing the framework of “derived ı-rings”. However, since the primary interest
of this paper is in the case of p-torsionfree prisms, we do not pursue that level of generality
here.

Below we deduce two consequences from Theorem 3.5.

Corollary 3.7. Let .A; I / be a bounded prism. For any p-completely smooth A=I -al-
gebra R, there is a natural isomorphism

R�∆.R=A/ y̋A;'A
A y̋A A Š R�crys.R=A/ in CAlg.A/;

which is functorial in A=I ! R and satisfies base change in .A; I /.

Proof. This follows from Theorem 3.5: simply base change along the morphism
dRA.I /^ ! A, and by Proposition 2.11 we have

dR^R=A y̋ dRA.I /^A Š R�crys.R=A/:

Remark 3.8. By diagram chasing, one verifies that the diagram of isomorphisms

'�
A
.R�∆.R=A/ y̋A;'A

A y̋A A/
˛ //

ˇ

��

'�
A
.R�crys.R=A//

�

��

'�
A
.R�∆..R y̋A;'A

A/=A//

// R�crys..R=p ˝A=.p;I/;'A

A=.p; I //=A/

is commutative, since all comparisons here are expressed in terms of various explicit
envelopes. Here the arrows are as follows:
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(1) ˛ is the Frobenius pullback of the arrow in Corollary 3.7;

(2) ˇ is the base change of prisms 'A W .A; I /! .A; p/;

(3)  is the crystalline comparison for crystalline prisms [9, Theorem 5.2];

(4) � is the base change of crystalline cohomology.

A bounded prism .A; I / is called a PD prism if there is a PD structure  on I , com-
patible with the canonical one on .p/.

Corollary 3.9. Let .A; I; / be a bounded PD prism. Then for any p-completely smooth
A=I -algebra R, there is a natural isomorphism

R�∆.R=A/ y̋A;'A
A Š R�crys.R=.A; I; // in CAlg.A/;

which is functorial in A=I ! R and satisfies base change in .A; I /.

Here R�crys.�=.A; I; // denotes the crystalline cohomology with respect to the p-
adic PD base .A; I; /.

Proof. The additional PD structure gives us a section A! A, which makes the compo-
sition

A! dRA.I /^ ! A! A

the identity. Take the functorial isomorphism in Corollary 3.7, and base change further
along A! A to get

R�∆.R=A/ y̋A;'A
A Š R�crys.R=A/ y̋A AI

the latter is naturally isomorphic to R�crys.R=.A; I; // due to base change in crystalline
cohomology.

Remark 3.10. (1) Any derived p-complete ı-ring A with bounded p-torsion together
with the ideal .p/ is a PD prism. In this situation, our Corollary 3.9 is simply the crys-
talline comparison in [9, Theorem 1.8 (1)].

(2) The left hand side of this comparison does not depend on the PD structure  on I ,
whereas the right hand side a priori does. Therefore this comparison tells us that the right
hand side does not depend on the PD structure  either.

We can “globalize” these comparisons to general quasicompact quasiseparated
smooth formal schemes over Spf.A=I /.

Theorem 3.11. Let .A; I / be a bounded prism. Let X ! Spf.A=I / be a quasicompact
quasiseparated smooth morphism of formal schemes. Then we have natural isomorphisms
in CAlg.A/:

R�∆.X=A/ y̋A;'A
A y̋A dRA.I /^ Š R�.X; dR^

�=A/;

R�∆.X=A/ y̋A;'A
A y̋A A Š R�crys.X=A/:
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If .A; I; / is a PD prism, then we have a natural isomorphism in CAlg.A/:

R�∆.X=A/ y̋A;'A
A Š R�crys.X=.A; I; //:

All the isomorphisms above satisfy base change in .A; I /. Moreover, if X is also
proper over Spf.A=I /, then all the completed tensor products above may be replaced by
tensor products.

Proof. Since X is assumed to be quasicompact and quasiseparated, these cohomologies
are computed as finite limits of the corresponding cohomologies of affine opens of X .
Because completed tensor product commutes with finite limit, the comparisons here fol-
low from Theorem 3.5, Corollary 3.7, and Corollary 3.9.

To justify the replacement of completed tensor products with tensor products, just note
that R�∆.X=A/ is a perfect complex of A-modules for smooth proper X ! Spf.A=I /;
see the last sentence of [9, Theorem 1.8].

3.2. Functorial endomorphisms of the derived de Rham complex

Throughout this subsection, we assume that .A; I / is a transversal prism, in particular
dRA.I /^ ŠA and dR^R=A Š R�crys.R=A/ where R is any p-adic formally smooth A=I -
algebra (see Proposition 2.11).

In this subsection, we aim at understanding all functorial endomorphisms of the
derived de Rham complex functor, under this transversality assumption.

In particular, we shall see that the functorial isomorphism

R�∆.R=A/ y̋A;'A
A y̋A dRA.I /^ ! dR^R=A

appearing in Theorem 3.5 is unique if we assume that .A; I / is a transversal prism. In
order to show this, we need to first extend the natural isomorphism to a larger class of
A=I -algebras.

Construction 3.12 (cf. [9, Construction 7.6] and [8, Example 5.12]). Fix a bounded
prism .A; I /, and consider the functor R 7! dR^R=A on p-completely smooth A=I -al-
gebrasR valued in the category of commutative algebras in the1-category of p-complete
objects in D.A/. Left Kan extend it to all derived p-complete simplicial A=I -algebras,
which results in nothing other than the p-adic derived de Rham complex relative to A,
still denoted by dR^R=A. Let us record some properties of this construction:

(1) Since R is an A=I -algebra, dR^R=A is naturally a dR^.A=I/=A-algebra. Hence we may
actually view the functor as taking values in the category CAlg.dRA.I /^/.

(2) The formation of dR^R=A commutes with base change in A.

(3) Below we shall see that, following the reasoning of [8, Theorem 3.1 and Ex-
ample 5.12], the assignmentR 7! dR^R=A defines a sheaf on the relative quasisyntomic
site qSynA=I .
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(4) By left Kan extending the natural isomorphism obtained in Theorem 3.5, we get an
isomorphism of sheaves

∆.1/
R=A
y̋A dRA.I /^ Š dR^R=A;

which is compatible with base change inA. Here ∆.1/
R=A
WD∆R=A y̋A;'A

A is the Frobe-
nius pullback of the derived prismatic cohomology.

(5) Moreover, if we assume that .A; I / is a transversal prism, then for any R which is
large quasisyntomic over A=I , the value dR^R=A is p-completely flat over A and lives
in cohomological degree 0.

Let us justify claim (3) above.

Proposition 3.13. The assignment R 7! dR^R=A defines a sheaf on the relative quasisyn-
tomic site qSynA=I .

Proof. Let R! S be a quasisyntomic cover of objects in qSynA=I , with Čech nerve S�.
Our task is to show dR^R=A D lim�op dR^S�=A. Since both sides are p-complete, we may
check this after taking the derived complex modulo p. Below we shall always use �=p to
denote “derived modulo p”.

Now we closely follow the argument in [8, Example 5.12], correcting a typo
thereof. First, there is a functorial exhaustive increasing N-index filtration, i.e., the
conjugate filtration, on dRR=A=p Š dR.R=p/=.A=p/ with graded pieces given by
.
Vi
.R=p/.1/ L.R=p/.1/=.A=p//Œ�i � (and similarly for dR^.S�=p/=.A=p/). Here .�=p/.1/

denotes the base change along the Frobenius on A=p, and the loc. cit. has a typo of not
adding this Frobenius twist. For a discussion of p-complete derived de Rham complex and
conjugate filtration in the realm of animated rings, we refer the readers to [23, pp. 33–35].

Let us look at the following diagram (with its S� analogs in mind):

R // R=p
'A=p

// .R=p/.1/

A=I

OO

// .A=I /=p

OO

'A=p
// ..A=I /=p/.1/ Š .A=Ip/=p

OO

A

OO

// A=p

OO

'A=p
// A=p

OO

Note that every square above is Cartesian. The base change property of the cotangent com-
plex implies that the graded pieces .

Vi
.R=p/.1/ L.R=p/.1/=.A=p//Œ�i � (and their S� analogs)

can be identified with either

(1)
Vi
R LR=AŒ�i �˝R 'A=p;�.R=p/.1/, or

(2)
Vi
R LR=A ˝A 'A=p;�.A=p/,

where the A-module (resp. R-module) structure on 'A=p;�.A=p/ (resp. 'A=p;�.R=p/.1/)
is given by the top and bottom row of the above diagram.
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The identification (1) above implies that all these graded pieces live inD��1. Indeed,Vi
R LR=AŒ�i � as an R-module has Tor-amplitude in Œ0; i �, and .R=p/.1/ is flat over

..A=I /=p/.1/ Š .A=Ip/=p which lives in Œ�1; 0�, so .R=p/.1/ lives in D��1. Simi-
lar statements for S� hold as well. Hence it remains to check that these graded pieces
satisfy the descent property; here we are using the reasoning of [8, last sentence of
Example 5.12]. Now using the identification (2) above, we are reduced to flat descent
for “tensored” wedge powers of the cotangent complex; see [25, Proposition 3.2] (which
is itself a generalization of [8, Theorem 3.1]).

Recall that an A=I -algebra is called large quasisyntomic over A=I (see [9, Definition
15.1]) if

� A=I ! R is quasisyntomic;

� there is a surjection A=I hX1=p
1

j j j 2 J i↠ R where J is a set.

The following is inspired by [6, Sections 10.3 and 10.4], and our proof is a modifica-
tion of the reasoning there.

Theorem 3.14. Let .A; I / be a transversal prism, and assume that Spf.A=I / is con-
nected.

(1) The mapping space

EndShv.qSynA=I ;CAlg.A//.dR^
�=A; dR^

�=A/

has contractible components given by a submonoid in N. In particular, the automor-
phism space has only one contractible component given by the identity.

(2) The automorphism space

AutShv.qSynA=I ;CAlg.A=I//.dR^
�=.A=I/; dR^

�=.A=I//

has only one contractible component given by the identity.

Since A=p ! A=.I; p/ is a locally nilpotent thickening, we see that Spf.A/ is also
connected. In particular, the only idempotents in A are 0 and 1. It is easy to see that
the statements concerning automorphism spaces for these functors hold true without the
connectedness assumption, as on each connected component the automorphism must be
the identity.

Proof of Theorem 3.14. The assertion that all components are contractible follows from
the fact that on the basis of large quasisyntomic A=I -algebras, the sheaves dR^

�=A and
dR^
�=.A=I/ are discrete.
All we need to check is that there are not many functorial endomorphisms (resp. auto-

morphisms) for these two sheaves. Since (2) has the same proof as (1), let us only present
the proof of (1) here. To simplify notation, let us denote the set of functorial endomor-
phisms by End.dR^

�=A/. By restriction, any functorial endomorphism induces a functo-
rial endomorphism of the functor restricted to the subcategory of A=I -algebras of the
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form A=I hX
1=p1

h
j h 2 H i for some set H . We denote the latter monoidal space by

End.dR^
�=A jperf/; all of its components are also contractible by the same reasoning. By

definition there is a natural map

res W End.dR^
�=A/! End.dR^

�=Ajperf/

of monoids.
Now we make the following three claims:

� the natural map res is injective;

� the monoid End.dR^
�=Ajperf/ is a submonoid of Z;

� the image of res is contained in N.

To show that res is injective, we need to show that any functorial endomorphism of
dR^
�=A is determined by its restriction to the algebras of the form A=I hX

1=p1

h
j h 2 H i

for some set H . To see this, notice that qSynA=I has a basis given by large quasisyntomic
A=I -algebras. Any large quasisyntomicA=I -algebra S , by definition, admits a surjection
from an algebra of the form A=I hX

1=p1

l
j l 2 Li for some set L. By choosing a set ¹fj j

j 2 J º of generators of the kernel, we may form a surjection (cf. [9, proof of Proposition
7.10])

S 0 WD A=I hX
1=p1

l
; Y

1=p1

j j l 2 L; j 2 J i=.Yj � fj j j 2 J /
^ ↠ S W Y mj 7! 0:

This induces a surjection LS 0=AŒ�1�↠ LS=AŒ�1� of shifted cotangent complexes, there-
fore it induces a surjection dR^S 0=A ↠ dR^S=A of p-adic derived de Rham complexes. For
any such S 0, we have

dR^S 0=A Š DAhX
1=p1

l
;Y

1=p1

j
jl2L; j2J i

.Yj � fj j j 2 J /
^;

i.e., p-completely adjoining divided powers of Yj �fj for all j 2J to AhX
1=p1

l
;Y

1=p1

j j

l 2 L; j 2 J i. Since A is p-torsionfree, any endomorphism of dR^S 0=A is determined by

its restriction to AhX
1=p1

l
; Y

1=p1

j j l 2 L; j 2 J i. Lastly, we know that applying dR^
�=A

to the map
A=I hX

1=p1

l
; Y

1=p1

j j l 2 L; j 2 J i ! S 0

exactly induces the natural map

AhX
1=p1

l
; Y

1=p1

j j l 2 L; j 2 J i ! dRS 0=A :

Therefore we know that any functorial endomorphism of dR^
�=A must be determined by

its restriction to algebras of the form A=I hX
1=p1

h
j h 2 H i.

Next, let us show that End.dR^
�=Ajperf/ is a submonoid of integers. Consider a func-

torial endomorphism f . It is determined by its restriction to the one-variable “perfect”
A=I -algebra R D A=I hX1=p

1

i. We know dR^R=A Š AhX1=p
1

i. Suppose f .x/ DP
i2NŒ1=p� aiX

i 2 AhX1=p
1

i. Consider the map R ! S WD A=I hY 1=p
1

; Z1=p
1

i

sending X i to Y iZi . This map induces the corresponding map AhX1=p
1

i !
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AhY 1=p
1

;Z1=p
1

i which also sends X i to Y iZi . Now the functoriality of the endomor-
phism tells us that f .YZ/ D f .Y / � f .Z/. We immediately get a2i D ai and ai � aj D 0
for any pair of distinct indices i; j 2 NŒ1=p�. By the connectedness of Spf.A=I /, there is
at most one index i 2 NŒ1=p� with nonzero ai D 1. To see there is at least one nonzero ai ,
we use the map R! A=I given by X i 7! 1 for all i 2 NŒ1=p�.

We want to show that the i 2 NŒ1=p� obtained in the previous paragraph, defin-
ing the functorial endomorphism f , must in fact lie in pZ. Assume i D `=pN where
` is an integer coprime to p. Now we consider the map R ! S given by X 7!

limn .Y
1=pn
C Z1=p

n
/p

n
. It induces a map of dR^

�=A with the image of X given by the
same formula. Functoriality of f implies that�

lim
n
.Y 1=p

n

CZ1=p
n

/p
n�N

�`
D lim

n
.Y `=p

n�N

CZ`=p
n�N

/p
n

:

Reduction modulo p yields

.Y 1=p
N

CZ1=p
N

/` D Y `=p
N

CZ`=p
N

2 FpŒY 1=p
1

; Z1=p
1

�;

forcing ` D 1. Therefore we see that End.dR^
�=Ajperf/ � p

Z, i.e., it is a submonoid in Z.
Finally, let us prove the image of res lands in pN. We want to rule out negative powers

of p. To that end consider R ! R=.X/, which induces the map of the p-adic derived
de Rham complex:

zR WD AhX1=p
1

i ! zS WD DAhX1=p1 i.X/
^:

Here the latter denotes the p-complete PD envelope of the former along the ideal X , and
this is the natural map. Take a positive integer j ; we need to argue that X 7! X1=p

j

on zR does not extend to an endomorphism of zS . Suppose otherwise; then the extended
endomorphism of zS must send Xp to Xp

1�j
, but Xp is divisible by p in zS whereas

Xp
1�j

is not (here we use the fact that j > 0), hence we get a contradiction.
The only invertible element in the additive monoid N is 0, corresponding to X 7!

X .p
0/ D X , hence the only functorial automorphism of dR^

�=A is the identity.

Remark 3.15. Let .A; I / be a transversal prism.

(1) By the same argument, there are not many functorial homomorphisms from '�A dR^
�=A

to dR^
�=A. Similarly, these are determined by restriction to R D A=I hX1=p

1

i. If we
require that the restriction sends X to Xp , then there is a unique one given by the
Frobenius constructed in Section 2.3. Therefore in a strong sense, there is a unique
Frobenius.

(2) Due to the previous remark, we see that the comparison in Theorem 3.5 must be
compatible with the Frobenius.

(3) It is unclear which positive integer i , corresponding toX 7!Xp
i
, can occur as a func-

torial endomorphism. If A=.p; I / has transcendental (relative to Fp) elements, then
none of these can occur. This can be seen by considering the map R! R=.X � a/

for some lift a of the transcendental element xa 2 A=.p; I /.
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Consequently, we get the following uniqueness of the functorial comparison estab-
lished in Theorem 3.5; the readers should compare it with [9, Section 18].

Corollary 3.16. Fix a transversal prism .A; I /. There is a unique natural isomorphism
of p-complete commutative algebra objects in D.A/:

R�∆.R=A/ y̋A;'A
A y̋A A! R�crys.R=A/;

which is functorial in the p-completely smooth A=I -algebra R.

Proof. The existence part is given by Theorem 3.5; we need to show uniqueness. Suppose
there are two such functorial isomorphisms. Composing one with the inverse of the other,
we get a natural automorphism of the functor dR�=A Š R�crys.�=A/ on smooth A=I -
algebras. By left Kan extension, this will induce a natural automorphism of the functor
dR�=A on quasisyntomic A=I -algebras. By Theorem 3.14, this automorphism must be
the identity.

Corollary 3.17. Let C be an algebraically closed complete non-Archimedean field exten-
sion of Qp , and let .A; I / be the associated perfect prism .denoted by .Ainf; ker.�// in
the literature/. Then the comparison in Theorem 3.5 is compatible with the crystalline
comparison over A D Acrys of the A�-theory obtained in [7]. Concretely, the following
diagram of isomorphisms is commutative:

R�∆.R=A/ y̋A;'A
A y̋A A //

��

R�crys.R=A/

��

A�.R/ y̋A A // R�crys..R=p/=A/

where the left vertical arrow is given by [9, Theorem 17.2] and the bottom horizontal
arrow is given by [7, Theorem 12.1] or [35].

Proof. This follows from the uniqueness statement in Corollary 3.16.

Both sides of the isomorphism obtained in Theorem 3.5 after completely tensoring
A=I Š A=I over A, are naturally isomorphic to dR^R=.A=I/. For the left hand side this
follows from the de Rham comparison of (the Frobenius pullback of) the prismatic coho-
mology:

∆.1/
R=A
y̋A A y̋A A=I Š ∆.1/

R=A
y̋A A=I Š dR^R=.A=I/;

where the last equality follows from [9, Theorem 6.4 or Corollary 15.4]. For the right
hand side this is just the base change of the derived de Rham complex (or base change
of crystalline cohomology and the comparison of de Rham and crystalline cohomology
for smooth morphisms). We observe that a similar argument forces these natural isomor-
phisms to be compatible with each other.
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Corollary 3.18. Let .A; I / be a transversal prism. The following triangle of natural iso-
morphisms is commutative:

dR^R=.A=I/

∆.1/
R=A
y̋A A y̋A A=I

Š

66

Š // dR^R=A y̋AA=I

Š

ff

Proof. Observe that all three natural isomorphisms are functorial in R, hence going
around the circle produces a functorial automorphism of dR^R=.A=I/.

Now we argue as in the proof of Corollary 3.16: by Theorem 3.14 this functorial
automorphism must be the identity, so the above diagram commutes functorially.

4. Filtrations

Throughout this section, we assume that .A; I / is a transversal prism and let .A; I/ be
the p-adic PD envelope of A along I . By Theorem 3.5, for any p-completely smooth
A=I -algebra R we have a functorial isomorphism

'�.R�∆.R=A// y̋A A Š dR^R=A :

All objects involved here have interesting filtrations: the Nygaard filtration on
'�.R�∆.R=A//, the I -adic filtration on A, the PD ideal filtration IŒ�� on A, and the
Hodge filtration on dR^R=A. In this section, we discuss how these filtrations are related.

Unless otherwise specified, R will denote a general A=I -algebra, and S a large qua-
sisyntomic A=I -algebra (see the discussion right after Construction 3.12).

Let us briefly recall how these filtrations are defined and their properties.

4.1. Hodge filtration on dR^R=A

Recall that R�crys.R=A/ is the cohomology of the structure sheaf Ocrys on the (absolute)
crystalline site .R=A/crys. The crystalline structure sheaf admits a natural surjection to
the Zariski structure sheaf, whose kernel is an ideal sheaf Icrys admitting divided pow-
ers. Concretely, given a PD thickening .U; T / with U a p-adic formal Spf.A/-scheme
with an Spf.A/-map U ! Spf.R/ and U ,! T a p-completely nilpotent PD thickening,
we have Ocrysj.U;T / D OT and Icrysj.U;T / D ker.OT ↠ OU /, which is a PD ideal sheaf
inside Ocrys. For any integer r � 0, we get a natural filtration on R�crys.R=A/ given by
R�crys.R=A; I

Œr�
crys/. Results of Bhatt [3, Section 3.3] and Illusie [19, Section VIII.2] help

us to understand this natural filtration in terms of the p-adic derived de Rham complex
and its Hodge filtrations.
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Theorem 4.1 (see [3, Proposition 3.25 and Theorem 3.27] and [19, Corollaire VIII.2.2.8];
see also [18, Theorem 3.4 (4)]). Let R be a p-completely locally complete intersection
A=I -algebra. Then there is a natural identification of filtered E1-A-algebras

.dR^R=A;FilrH/
Š
�! .R�crys.R=A/;R�crys.R=A; I

Œr�
crys//:

Here Fil�H denotes the (derived p-completed) Hodge filtration on dR^R=A, whose
graded pieces are given by

gr�H.dR^R=A/ Š �
�
R.L

^
R=AŒ�1�/;

where �� denotes the derived divided power algebra construction and L^
R=A

denotes the
derived p-completed cotangent complex of R over A. The triangle A! A=I ! R now
gives us a triangle relating various p-completed cotangent complexes:

R y̋A=I I=I
2Œ1� Š R y̋A=I L^.A=I/=A ! L^R=A ! L^R=.A=I/;

where the (shifted) map R y̋A=I I=I 2 ! L^
R=A

Œ�1� comes from the A-algebra structure
on dR^R=A. Indeed, the multiplicativity of the Hodge filtrations and the fact that I=I 2 Š
I=IŒ2� Š gr1H.dR^.A=I/=A/ naturally sits inside gr1H.dR^R=A/ give rise to

gr0H.dR^R=A/ y̋ gr0H.dR^
.A=I/=A

/ gr1H.dR^.A=I/=A/! gr1H.dR^R=A/;

which is identified with the shifted map R y̋A=I I=I 2 ! L^
R=A

Œ�1�.
The above discussion naturally extends to allA=I -algebras via left Kan extension. We

restrict ourselves to those algebras that are quasisyntomic over A=I so that everything in
sight is a sheaf with respect to the quasisyntomic topology. Recall that a basis of the
quasisyntomic site is given by algebras that are large quasisyntomic over A=I (see [9,
Definition 15.1]). Below we shall show that, on this basis, all these sheaves have values
living in cohomological degree 0. The proof is inspired by [9, Section 12.5].

Lemma 4.2. Let B be an Fp-algebra and let S be a B-algebra which is relatively
semiperfect with LS=B Œ�1� given by a flat S -module. Then dRS=B and its Hodge filtra-
tions all live in cohomological degree 0.

Proof. Using the conjugate filtration and the Cartier isomorphism, we see that dRS=B
(being its 0-th Hodge filtration) lives in degree 0. On the other hand, we also know that
the graded pieces of the Hodge filtrations are given by divided powers ��S .LS=B Œ�1�/,
hence all the graded pieces live in degree 0 as well. In order to prove the statement about
the Hodge filtrations, we need to show that the natural map dRS=B ! dRS=B =FilrH is
surjective (note that both sides live in degree 0 by the last sentence).

To this end, we proceed by mimicking [9, proof of Theorem 12.2]. First we may
replace B by the relative perfection of S , as the relevant cotangent complexes LS=B and
LS.1/=B are unchanged. Hence we may assume B! S is a surjection, as S=B is assumed
to be relatively semiperfect. Next, by choosing the surjection FpŒXb j b 2 B�↠ B and
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base change along the fully faithful map FpŒXb j b 2 B�! FpŒX1=p
1

b
j b 2 B�, we may

further assume that B is semiperfect (as surjectiveness of a map can be tested after a fully
faithful base change). In particular, any element in the kernel ofB! S admits compatible
p-power roots in B .

Now if the kernel is generated by a regular sequence, then the map dRS=B !
dRS=B=FilrH is identified as DB.S/! DB.S/=J

Œr� where DB.S/ denotes the PD enve-
lope and J Œr� is the r-th divided power ideal of J D ker.DB.S/ ↠ S/. Therefore
dRS=B ! dRS=B=FilrH is surjective by this concrete description.

Lastly, given any such surjection B ↠ S , denote by I the underlying set of its kernel.
Then we look at the surjection of B-algebras

zS WD BŒX
1=p1

i j i 2 I �=.Xi j i 2 I /↠ S;

where X1=p
1

i is sent to (the image of) a compatible p-power root of the corresponding
element fi 2 I in S . The induced map L zS=B Œ�1�! LS=B Œ�1� sends Xi to fi , hence is

a surjection. Therefore the map gr�H.dR zS=B/! gr�H.dRS=B/ is also a surjection. Since zS
is a quotient of a relatively perfect algebra over B by an ind-regular sequence, applying
(a filtered colimit of) what we proved in the previous paragraph we find that dR zS=B !
dR zS=B=FilrH is also a surjection. Looking at the commutative diagram

dR zS=B //

����

dRS=B

��

dR zS=B=FilrH // // dRS=B=FilrH

we conclude that the right arrow must be surjective, which is what we need to show.

Lemma 4.3. Let S be a large quasisyntomic A=I -algebra. Then all of the Hodge filtra-
tions on dR^S=A and dR^S=.A=I/ are given by submodules, equivalently all the filtrations
and their graded pieces are cohomologically supported in degree 0. Moreover, the Hodge
filtrations of dR^S=.A=I/ are p-completely flat over A=I .

Proof. Derived modulo p, we see that the first claim follows from Lemma 4.2. Also we
see that dR^S=.A=I/ ! dR^S=.A=I/=FilrH is surjective. So the statement about p-complete
flatness of dR^S=.A=I/ and its Hodge filtrations now follows from p-completeness of
dR^S=.A=I/ and of the graded pieces of its Hodge filtrations. Using the conjugate filtra-
tion and the Cartier isomorphism, the last two instances of p-complete flatness follow
from the fact that L^

S=.A=I/
Œ�1� is p-completely flat over S , and S is p-completely flat

over A=I (as S is large quasisyntomic over A=I ).

Since dR^R=A is naturally an A-algebra for any A=I -algebra R, the filtration on A by
the divided powers of I gives rise to another functorial decreasing filtration on dR^R=A:

FilrI.dR^R=A/ WD dR^R=A y̋A IŒr�:
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We caution the readers that this is not the I-adic filtration, as we are using divided powers
of I instead of symmetric powers. A basic understanding of these filtrations is provided
by the following:

Lemma 4.4. All of these FilrI.dR^R=A/ are quasisyntomic sheaves, whose values on large
quasisyntomic A=I -algebras are supported in degree 0. The graded pieces are given by

grrI Š dR^R=.A=I/ y̋A=I IŒr�=IŒrC1�:

Proof. The statement about graded pieces follows from the following chain of identifica-
tions:

grrI Š dR^R=A y̋A IŒr�=IŒrC1� Š dR^R=A y̋A A=I y̋A=I IŒr�=IŒrC1�

Š dR^R=.A=I/ y̋A=I IŒr�=IŒrC1�;

where the last identification comes from dR^R=A y̋A A=I Š dR^R=.A=I/ (cf. [18, Propo-
sition 3.11]) and A=I Š A=I . In particular, these graded pieces are given by dR^R=.A=I/
twisted by a rank 1 locally free sheaf on Spf.A=I /, hence are quasisyntomic sheaves
themselves.

Since dR^R=A and all these graded pieces are quasisyntomic sheaves, so is each FilrI .
If S is large quasisyntomic over A=I , then dR^S=A and all these graded pieces are

supported in cohomological degree 0 by Lemma 4.3. By induction, in order to show the
filtrations are in degree 0, it suffices to show dR^S=A y̋A IŒr�! dR^S=A y̋A IŒr�=IŒrC1� is
surjective for any r , which follows from the right exactness of p-complete tensoring.

The filtration Fil�I.dR^R=A/ is a disguise of the Katz–Oda filtration Fil�KO.dRC=A/ dis-
cussed in [18], applied to the triple .A! B ! C/ D .A! A=I ! R/. More precisely,

FiliI dR^R=A Š Fil�KO.dRR=A/^:

We refer the readers to Section 3.2 of loc. cit. for a general discussion of additional struc-
tures on the derived de Rham complex ofA!C when it factorizes throughA!B!C .

Let R be an A=I -algebra. By p-completing the double filtrations obtained in [18,
Construction 3.12], we see that dR^R=A can be naturally equipped with a decreasing filtra-
tion indexed by N � N:

Fili;j .dR^R=A/ WD .FiliKO FiljH.dRR=A//^

The following proposition will describe Fili;j .dR^R=A/ and declare its relation to the two
systems of filtrations Fil�H dR^R=A and Fil�I dR^R=A.

Proposition 4.5. Let R be an A=I -algebra.

(1) For any j , we have an identification Fil0;j .dR^R=A/ Š FiljH.dR^R=A/.

(2) For each pair 0 � j � i , we have an identification

Fili;j .dR^R=A/ Š FiliI.dR^R=A/:
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(3) For each pair 0 � i � j , we have a natural identification

Cone
�
FiliC1;j .dR^R=A/! Fili;j .dR^R=A/

�
Š Filj�iH dR^R=.A=I/ y̋A=I�

i
A=I .I=I

2/:

Moreover, this identification is compatible with

Cone
�
FiliC1;j .dR^R=A/! Fili;j .dR^R=A/

�
��

Š // Filj�iH dR^R=.A=I/ y̋A=I�
i
A=I

.I=I 2/

��

Cone
�
FiliC1;0.dR^R=A/! Fili;0.dR^R=A/

� Š // dR^R=.A=I/ y̋A=I�
i
A=I

.I=I 2/:

(4) The assignment R 7! Fili;j .dR^R=A/ defines a sheaf on the quasisyntomic site of A=I
for any .i; j /.

Proof. (1) follows from [18, Construction 3.12]. Indeed, Fil0;j is the p-completed j -th
filtration on dRR=A˝dRA.I / Fil0H.dRA.I // Š dRR=A. Since this is a filtered isomorphism,
we see that this is nothing other than the p-completed j -th Hodge filtration on dRR=A,
hence it is FiljH.dR^R=A/.

(2) follows from [18, Construction 3.9]. Indeed, the inequality j � i implies that Filj

of each term appearing in [18, Construction 3.9] is the whole term. Hence the colimit just
gives dRR=A˝dRA.I / FiliH.dRA.I // back. After p-completing, we see that by definition
we have Fili;j .dR^R=A/ Š FiliI.dR^R=A/.

(3) follows by p-completing [18, Proposition 3.13 (1)].
For (4), we first claim that the assignments R 7! FilmH .dR^R=A/ and R 7!

FilnH.dR^R=.A=I// define sheaves for all m and n. For m D 0 this is Proposition 3.13, and
for n D 0 this is [8, Example 5.12]. Induction onm and n reduces the task to showing the
sheaf property of graded pieces, which are given by

Vi
R L^

R=A
Œ�i � and

Vi
R L^

R=.A=I/
Œ�i �.

p-Completing [8, Theorem 3.1] gives the desired sheaf property of these graded pieces.
Fix a natural number j ; then by (1) we see that Fil0;j is a quasisyntomic sheaf. Each

graded piece with respect to i , by (2) and (3), is also a sheaf. Therefore by induction on i ,
each Fili;j defines a sheaf.

To understand these sheaves more concretely, we look at their value on the basis of
large quasisyntomic A=I -algebras.

Proposition 4.6. Let S be a large quasisyntomic A=I -algebra.

(1) For any pair .i; j / 2 N � N, the Fili;j .dR^S=A/ is concentrated in degree 0, and the
natural map Fili;j .dR^S=A/! dR^S=A is injective.

(2) For any j , the natural map

FiljH.dR^S=A/! FiljH.dR^S=.A=I//

is surjective.
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(3) For each pair 0 � i � j , we have

Fili;j .dR^S=A/ D
jX
rDi

.Filj�rH dR^S=A � I
Œr�/;

where Filj�rH dR^S=A � I
Œr� denotes the image of Filj�rH dR^S=A y̋A IŒr�! dR^S=A, and

the sum is taken in the algebra dR^S=A.

(4) We have another description:

Fili;j .dR^S=A/ D .FiljH dR^S=A/ \ .FiliI dR^S=A/;

where the intersection is taken in the algebra dR^S=A.

Proof. (1) We argue by decreasing induction on i . When j � i , by Proposition 4.5 (2) we
see that Fili;j .dR^S=A/ Š FiliI.dR^S=A/, which is concentrated in degree 0 by Lemma 4.4.
By Proposition 4.5 (3), the graded pieces with respect to i are all concentrated in degree 0
by Lemma 4.3. This in turn implies that

� all of Fili;j .dR^S=A/ are in degree 0 for any .i; j /;

� we have short exact sequences

0! FiliC1;j .dR^S=A/! Fili;j .dR^S=A/! Filj�iH dR^R=.A=I/ y̋A=I�
i
A=I .I=I

2/! 0:

In particular, FiliC1;j .dR^S=A/! Fili;j .dR^S=A/ is injective. Using Proposition 4.5 (1) and

Lemma 4.3, we see that the map Fil0;j .dR^S=A/Š FiljH.dR^S=A/! dR^S=A is also injective.
Therefore the composition Fili;j .dR^S=A/! dR^S=A is injective as well for any .i; j /.

(2) follows from the short exact sequence obtained in the previous paragraph, special-
izing to i D 0.

(3) follows from the combination of (2), Proposition 4.5 (3), and the fact that p-
completed tensoring is right exact.

For (4): first notice that this is true for i D 0, due to Proposition 4.5 (1). Next let us
look at the commutative diagram in Proposition 4.5 (3). Since the right vertical map is an
injection, we see that the map

Fili;j .dR^S=A/=FiliC1;j .dR^S=A/! Fili;0.dR^S=A/=FiliC1;0.dR^S=A/

is injective. Therefore, by Proposition 4.5 (2), we know that

FiliC1;j .dR^S=A/ D .Fili;j .dR^S=A// \ .FiliC1
I

dR^S=A/:

By increasing induction on i , we may assume

Fili;j .dR^S=A/ D .FiljH dR^S=A/ \ .FiliI dR^S=A/:

Hence

FiliC1;j .dR^S=A/ D .FiljH dR^S=A/ \ .FiliI dR^S=A/ \ .FiliC1
I
.dR^S=A//

D .FiljH dR^S=A/ \ .FiliC1
I

dR^S=A/:
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Let us draw a table to summarize these filtrations on dR^R=A:

::: R L^
R=.A=I/

Œ�1� .
V2
R LR=.A=I//^Œ�2� � � �

:::

A=I
::: M0 y̋A=I N0 M0 y̋A=I N1 M0 y̋A=I N2 � � �

:::

I=IŒ2�
::: M1 ˝A=I N0 M1 y̋A=I N1 M1 y̋A=I N2 � � �

:::

IŒ2�=IŒ3�
::: M2 y̋A=I N0 M2 y̋A=I N1 M2 y̋A=I N2 � � �

:::
:::

:::
:::

In the diagram above,Mi D IŒi�=IŒiC1� andNj D .
Vj
RLR=.A=I//^Œ�j � for i; j 2N. Here

rows indicate graded pieces of the filtration FilrI , and each term in the i -th row indicates
the graded piece of the induced filtration on dR^R=.A=I/ y̋A=I �

i
A=I

.I=I 2/. The skewed
dotted lines indicate the Hodge filtration on dR^R=A (given by things below the dotted
line). See also [18, p. 10].

As a consequence we get a structural result on the graded algebra associated with the
Hodge filtration on dR^R=A.

Lemma 4.7. There is a functorial increasing exhaustive filtration Filvi on the graded
algebra gr�H.dR^R=A/ by graded .gr�

I
A Š ��

A=I
.I=I 2//-submodules with graded pieces

given by
grvi .gr�H.dR^R=A// Š .

Vi
R LR=.A=I//^Œ�i � y̋A=I ��A=I .I=I

2/:

Here .
Vi
R LR=.A=I//^Œ�i � has degree i and the above is a graded isomorphism.

We refer to this filtration Filvi on gr�H.dR^R=A/ as the vertical filtration from now on
(cf. [18, Construction 3.14]). This choice of name is because the Filvi is literally the filtra-
tion given by the columns in the table before this lemma.

Proof of Lemma 4.7. Using the above table one can see this directly. Equivalently, we
may use

gr�H.dR^R=A/ Š .�
�
R.L

^
R=AŒ�1�//

^
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and the triangle
R y̋A=I I=I

2
! L^R=AŒ�1�! L^R=.A=I/Œ�1�:

Remark 4.8. Let .A; I / be a general bounded prism, and let S be a large quasisyntomic
A=I -algebra. Combining Theorem 3.5, Construction 3.12 (4), and [9, Theorem 15.2 (1)],
we can see that dR^S=A is p-completely flat over dRA.I /^.

The remark below has been suggested to us by Bhatt. Using the conjugate filtration
and the same argument of Lemma 4.7, we can give an alternative proof of this fact. Indeed,
we can check this mod p, hence we shall assume A is p-torsion. Next we want to appeal
to the conjugate filtrations on both algebras. We have the following pushout diagram:

A // A=Ip // R.1/

A

'A

OO

// A=I //

OO

R

OO

There is a similar functorial increasing exhaustive filtration on the graded algebra of the
conjugate filtered dRS=A, with graded pieces given by

.
Vi
R.1/ LR.1/=.A=Ip//Œ�i �˝A=Ip ��

A=Ip .I
p=I 2p/:

It is flat over ��
A=Ip .I

p=I 2p/, which is the conjugate graded algebra of dRA.I /. Lastly,
we conclude by recalling that an increasingly exhaustive filtered module of an increas-
ingly exhaustive filtered algebra is flat if the graded counterpart is flat.

4.2. Nygaard filtration

Recall that in [9, Section 15], there is a natural decreasing filtration of quasisyntomic
subsheaves on ∆.1/

�=A
, called the Nygaard filtration, with the following properties:

Theorem 4.9 (see [9, Theorems 15.2 and 15.3] and proofs therein). Let S be a large
quasisyntomic A=I -algebra.

(1) The Nygaard filtrations Fil�N on ∆.1/
S=A

are given by p-completely flat A-submodules

in ∆.1/
S=A

.

(2) We have an identification of algebras ∆.1/
S=A

=I Š dR^S=.A=I/, under which the image
of the Nygaard filtration becomes the Hodge filtration.

(3) For each i � 0, we have a short exact sequence

0! FiliN ∆.1/
S=A
˝A I ! FiliC1N ∆.1/

S=A
! FiliC1H dR^S=.A=I/ ! 0:

Let R be a general quasisyntomic A=I -algebra. On ∆.1/
R=A

there is also an I -adic fil-

tration FilrI ∆.1/
R=A
WD ∆.1/

R=A
˝A I

r ; by Theorem 4.9 (2), we identify the graded pieces as

grrI Š ∆.1/
R=A

=I ˝A=I I
r=I rC1 Š dR^R=.A=I/˝A=I Symr

A=I .I=I
2/:
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The I -adic filtration and the Nygaard filtration are related as follows. For any .i; j / 2
N � N, we define

Fili;j ∆.1/
R=A
WD Filj�iN ∆.1/

R=A
˝A I

i ;

where we adopt the convention that FillN ∆.1/
R=A
D ∆.1/

R=A
if l � 0. One checks easily that

this puts a decreasing filtration on ∆.1/
R=A

indexed by N�N. This filtration has very similar
behavior to the Fili;j .dR^R=A/ studied in the previous subsection. The following is an
analogue of Proposition 4.5.

Proposition 4.10. Let R be an A=I -algebra.

(1) For any j , we have Fil0;j ∆.1/
R=A
Š FiljN ∆.1/

R=A
.

(2) For each pair 0 � j � i , we have

Fili;j ∆.1/
R=A
Š FiliI ∆.1/

R=A
:

(3) For each pair 0 � i � j , we have a natural identification

Cone.FiliC1;j ∆.1/
R=A
! Fili;j ∆.1/

R=A
/ Š Filj�iH .dR^R=.A=I//˝A=I Symi

A=I .I=I
2/:

Moreover, these identifications fit in the following commutative diagram:

Cone.FiliC1;j ∆.1/
R=A
! Fili;j ∆.1/

R=A
/
Š //

��

Filj�iH .dR^R=.A=I//˝A=I Symi
A=I .I=I

2/

��

Cone.FiliC1;0 ∆.1/
R=A
! Fili;0 ∆.1/

R=A
/

Š // dR^R=.A=I/˝A=I Symi
A=I .I=I

2/

(4) The assignment R 7! Fili;j ∆.1/
R=A

defines a sheaf on qSynA=I for any .i; j /.

Proof. (1) and (2) follow from the definition; (3) follows from Theorem 4.9 (3); and (4)
follows from (3).

Proposition 4.11. Let S be a large quasisyntomic A=I -algebra.

(1) We have

Fili;j ∆.1/
S=A
D

jX
rDi

.Filj�rN .∆.1/
S=A

/ � I r /;

where the sum is taken in the algebra ∆.1/
S=A

.

(2) We have
Fili;j ∆.1/

S=A
D .FiljN ∆.1/

S=A
/ \ .FiliI ∆.1/

S=A
/;

where the intersection is taken in the algebra ∆.1/
S=A

.

Proof. The proof is similar to that of Proposition 4.6 (3, 4). Notice that FiljN ∆.1/
S=A
!

FiljH.dR^R=.A=I// is surjective by Theorem 4.9 (2).
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We can collect all these structures on ∆.1/
R=A

in the following graph similar to one in
the previous subsection. One observes that the distinction is just that divided powers of
I=I 2 get replaced by symmetric powers of I=I 2.

::: R L^
R=.A=I/

Œ�1� .
V2
R LR=.A=I//^Œ�2� � � �

:::

A=I
::: M0 y̋A=I N0 M0 y̋A=I N1 M0 y̋A=I N2 � � �

:::

I=I 2
::: M1 ˝A=I N0 M1 y̋A=I N1 M1 y̋A=I N2 � � �

:::

I 2=I 3
::: M2 y̋A=I N0 M2 y̋A=I N1 M2 y̋A=I N2 � � �

:::
:::

:::
:::

Here rows indicate graded pieces of the filtration FilrI , and each term in each row
indicates the graded piece of the Hodge filtration on dR^R=.A=I/. The skewed dotted lines

indicate the Nygaard filtration on ∆.1/
R=A

(given by things below the dotted line).
Also as a consequence we get a structural result on the graded algebra associated with

the Nygaard filtration on ∆.1/
R=A

.

Lemma 4.12. There is a functorial increasing exhaustive filtration Filvi on the graded
algebra gr�N.∆

.1/

R=A
/ by graded .gr�I A Š Sym�A=I .I=I

2//-submodules with graded pieces
given by

grvi .gr�N.∆
.1/

R=A
// Š .

Vi
R LR=.A=I//^Œ�i � y̋A=I Sym�A=I .I=I

2/:

Here .
Vi
R LR=.A=I//^Œ�i � has degree i and the above is a graded isomorphism.

We also call the filtration Filvi on gr�N.∆
.1/

R=A
/ the vertical filtration from now on.

Proof of Lemma 4.12. This follows from Theorem 4.9 (3); see also the proof of Lem-
ma 4.7.

4.3. Promoting to a filtered map

Recall that we use .A; I / to denote a transversal prism. For the rest of this section, we
shall use .B; J / to denote a general bounded prism. By Theorem 3.5, we have a map



Comparison of prismatic cohomology and derived de Rham cohomology 45

∆.1/
R=B
! dR^R=B functorial in B=J ! R. The goal of this subsection is to show that this

map can be promoted to a filtered map where the source is equipped with the Nygaard
filtration and the target is equipped with the Hodge filtration. Our plan is to:

� show a certain rigidity of the map being filtered;

� show the map is filtered when the base prism .A; I / is transversal;

� show the map is filtered when the algebra R is large quasisyntomic over B=J of a
particular type;

� show the map is functorially filtered when R is a p-completely smooth B=J -algebra,
and hence finish the argument by left Kan extension.

Fix a natural number i . The main diagram that we shall look at in this subsection is

FiliN //

gi

��

∆.1/ //

��

Q1;i

fi

��

FiliH // dR // Q2;i

( )

viewed as a commutative diagram of sheaves on qSynB=J . Here Q1;i and Q2;i are the
cones of the natural maps, so both rows are distinguished triangles of quasisyntomic
sheaves. All the solid arrows are defined: for instance, the middle vertical arrow is given
by Theorem 3.5. Our main task is to show that one can fill in the dotted arrows fi and gi
making the diagram commute.

We first need a few lemmas to illustrate that the situation is pretty rigid and there is at
most one choice of these dotted arrows.

Lemma 4.13. Let S be a large quasisyntomic B=J -algebra. Then the values of

FiliN; ∆.1/; Q1;i ; and Q2;i

at S are concentrated in cohomological degree 0.

Proof. The first three follow from how they are defined: see [9, Section 15.1]. The claim
for Q2;i follows from the fact that L^

S=B
Œ�1� lives in cohomological degree 0.

Lemma 4.14. Let S be a large quasisyntomic B=J -algebra.

(1) There is at most one choice of fi making the right square of ( ) commute.

(2) If S! T is a morphism of large quasisyntomic B=J -algebras, and the fi are defined
on both of them, then the diagram

Q1;i .S/ //

fi .S/

��

Q1;i .T /

fi .T /

��

Q2;i .S/ // Q2;i .T /

is commutative.
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(3) The existence of fi .S/ is equivalent to the existence of gi .S/ making the left square
of ( ) commute.

(4) gi .S/, if it exists, must be unique.

Proof. (1) Suppose there are two of them, and take their difference. Since precomposing

this difference with ∆.1/ ! Q1;i is the zero map ∆.1/
0
�! Q2;i due to commutativity, the

difference must factor through FiliNŒ1�. But Hom.FiliNŒ1�; Q2;i / D ¹0º by cohomological
considerations in Lemma 4.13. Hence the difference must be zero.

(2) The argument is similar to (1). The difference of the two arrows from Q1;i .S/ to
Q2;i .T / will again factor through FiliN.S/Œ1�, hence must again be zero.

(3) Just apply TR3, noticing that the two rows of ( ) are exact triangles.
(4) This is similar to (1). The difference of two possible gi .S/’s factors through an

arrow FiliN.S/!Q2;i Œ�1�.S/, which is again zero by cohomological considerations.

Knowing the rigidity of our situation, we start proving the existence of fi following
the plan outlined above.

Proposition 4.15. Let .A; I / be a transversal prism, and let

S D A=I hX
1=p1

1 ; : : : ; X1=p
1

n i=.f1; : : : ; fr /;

where .fi / is a p-completely regular sequence. Then FiliN ∆.1/
S=A
� FiliH dR^S=A.

Proof. When i D 0, there is nothing to prove, and when i D 1, the triangle in Corollary
3.18 gives us a commutative diagram

S

∆.1/
S=A

>> >>

// dR^S=A

aaaa

Since the kernels of these two surjections define the first Nygaard and Hodge filtrations
respectively, we see the containment for i D 1. For general i , we argue by induction. Let
us look at the induced map g W FiliN ∆.1/

S=A
! dR^S=A=FiliH. We first notice that by induction

and since I � I, the submodule I � Fili�1N ∆.1/
S=A

is sent to zero under g. By multiplicativity

and the containment for i D 1, we see that Symi .Fil1N ∆.1/
S=A

/ is also sent to zero under g.
Now we use Theorem 4.9 (3) to see that FiliN =I � Fili�1N is identified with FiliH dR^S=.A=I/
and the image of Symi .Fil1N ∆.1/

S=A
/ becomes Symi .Fil1H dR^S=.A=I//, so we get an induced

map
xg W FiliH dR^S=.A=I/ =Symi .Fil1H dR^S=.A=I//! dR^S=A=FiliH :

But the source of this map has its p-power torsion submodule being p-adically dense and
the target of this map is p-torsionfree and p-adically complete, so the map xg must in fact
be zero. This proves the containment FiliN � FiliH as claimed.
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The following is inspired by [9, Section 12.4].

Proposition 4.16. Let .A; I / be a transversal prism. Then for any p-completely smooth
A=I -algebra R, the map ∆.1/

R=A
! dR^R=A can be promoted to a map of filtered algebras.

Moreover, this lift is functorial in the A=I -algebra R, hence left Kan extends to all ani-
mated A=I -algebras.

Proof. For any surjection A=I hX1; : : : ; Xni ! R, the ring

zR D A=I hX
1=p1

1 ; : : : ; X1=p
1

n i ˝A=I hX1;:::;Xni R

is large quasisyntomic overA=I and Zariski locally of the form considered in the previous
proposition. Therefore the map ∆.1/

zR=A
! dR^

zR=A
is canonically filtered: (Zariski locally)

existence follows from the previous proposition, while Zariski glue as well as uniqueness
are provided by Lemma 4.14. The same applies to all terms of the Čech nerve zR� of
R! zR.

The filtered cosimplicial rings ∆.1/
zR�=A

and dR^
zR�=A

compute the filtered rings ∆.1/
zR=A

and

dR^
zR=A

respectively. By Lemma 4.14, we get a map of filtered cosimplicial rings.
This construction is independent of the choice of the surjection A=I hX1; : : : ; Xni

! R: adding extra variables to the Xi , one gets a square of maps between filtered cosim-
plicial algebras, and we use Lemma 4.14 to see the maps commute for each term associ-
ated with Œm� 2 �. Note that the category of such surjections admits pairwise coproducts,
it is therefore sifted, in particular, this category has weakly contractible nerve. Hence we
have obtained a weakly contractible space worth of ways to promote the map ∆.1/

R=A
!

dR^R=A to a filtered map. The naturality in R follows from exactly the same argument.
This way we get the desired functorial map.

Now we turn to the general situation where the base prism .B; J / is not necessarily
transversal. We bootstrap the previous two propositions.

Proposition 4.17. Let S D B=J hX1=p
1

1 ; : : : ; X
1=p1

n i=.f1; : : : ; fr / where .fi / is a p-
completely regular sequence. Then there exist fi .S/ and gi .S/ making the diagram ( )
commute.

Proof. We shall utilize the knowledge of when the base prism is transversal. Without loss
of generality, let us assume .B; J / D .B; .d// is oriented: Zariski locally it is oriented,
and the locally defined fi .S/ and gi .S/ will necessarily glue due to Lemma 4.14.

Following a private communication with Illusie, let us define a transversal prism
.A; .a// together with a surjection of prisms .A; .a//↠ .B; .d// as follows. Let

A WD Zp¹xb j b 2 Bº¹ı.xd /�1º^.xd ;p/

be given by first adjoining a free ı-variable corresponding to each element in B to Zp
together with an inverse of the ı of the variable corresponding to d 2 B , completed at
the end with respect to .p; xd /. Denote a WD xd . Then .A; .a// is a transversal prism, and
there is an evident surjection of prisms .A; .a//↠ .B; .d//.
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Consider the surjection A=ahX1=p
1

1 ; : : : ;X
1=p1

n i ! B=J hX
1=p1

1 ; : : : ;X
1=p1

n i and
lift the elements fi to zfi . Let

zS WD Kos.A=ahX1=p
1

1 ; : : : ; X1=p
1

n iI zf1; : : : ; zfr /:

We have S D zS ˝L
.A=a/

B=d . We know the analogous map for zS=.A=a/ exists, thanks to
Proposition 4.16. Since both the Nygaard and Hodge filtrations satisfy base change, we
may base change the maps for zS=.A=a/ to obtain the desired maps for S=.B=b/.

Following the same reasoning as in the proof of Proposition 4.16, one obtains the
following:

Proposition 4.18. For any p-completely smooth B=J -algebra R, the map ∆.1/
R=B

! dR^R=B can be promoted to a map of filtered algebras. Moreover, this lift is functo-
rial in the B=J -algebra R, hence left Kan extends to all animated B=J -algebras.

Proof. The argument is exactly the same as for Proposition 4.16; note that Lemma 4.14
applies to general bounded base prisms .B; J /.

Remark 4.19. Fix a bounded base prism .B; J /. Any such functorial filtered map is
determined by its effect on p-complete polynomial algebras, by left Kan extension. Then
by quasisyntomic descent, such a functorial filtered map is determined by its effect on a
basis of qSynB=J , such as the full subcategory generated by large quasisyntomic B=J -
algebras. Therefore Lemma 4.14 implies that there is at most one such functorial filtered
map. Combining this with the above proposition, we have both its existence and unique-
ness.

Remark 4.20. Following the way these filtered maps are constructed, we have certain
compatibility with base change: LetR be an animatedB=J -algebra, let .B;J /!.C;JC /
be a map of bounded prisms and denote R0 WD R ˝L

B=J
C=JC . Then the filtered map

for R0=C arises as the filtered map for R=B base changed along B ! C . Indeed, it
suffices to prove this when R=.B=J / is p-completely smooth. Then one simply notices
that a surjection B=J hX1; : : : ; Xni ! R base changed along B ! C will give rise to a
surjection C=JC hX1; : : : ; Xni ! R0.

4.4. Comparing Hodge and Nygaard filtrations

We again use .A; I / to denote a transversal prism, and use .B; J / to denote a gen-
eral bounded prism. All sheaves referred to in this subsection are viewed as objects in
Shv.qSynA=I / or Shv.qSynB=J / depending on the context. Combining Theorem 3.5 and
Proposition 4.18, we get a natural map of sheaves of filtered rings

.∆.1/
�=B

;Fil�N/ y̋ .B;J �/ .dR^.B=J /=B ;Fil�H/! .dR^
�=A;Fil�H/;

which is an isomorphism on the underlying sheaf of rings. Our objective in this subsection
is to show that the above map is an isomorphism of sheaves of filtered rings.
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Our plan is again to first understand the case of a transversal base prism, and then
bootstrap to general base prisms.

Theorem 4.21. Let S be a large quasisyntomic A=I -algebra.

(1) The map ∆.1/
S=A
! dR^S=A is injective.

(2) We have
FilrI ∆.1/

S=A
D .FilrI dR^S=A/ \ .∆

.1/

S=A
/:

(3) We have
FiliN ∆.1/

S=A
D .FiliH dR^S=A/ \ .∆

.1/

S=A
/:

(4) For any i , the natural map ∆.1/
S=A

=FiliN ! dR^S=A=FiliH is an injection of p-torsionfree
modules, whose cokernel is .i � 1/Š-torsion. Hence multiplying by .i � 1/Š gives a
natural map backward and composing the two maps in either direction is the same as
multiplying by .i � 1/Š. In particular, the natural map

∆.1/
S=A

=FiliN ! dR^S=A=FiliH

is an isomorphism for any i � p.

(5) The induced map gr�N ∆.1/
S=A
! gr�H dR^S=A is compatible with the vertical filtrations

on both sides, and the induced map on the graded pieces of the vertical filtrations
.
Vi
S LS=.A=I//^Œ�i � y̋A=I Sym�A=I .I=I

2/!.
Vi
S LS=.A=I//^Œ�i � y̋A=I ��A=I .I=I

2/

is given by id˝A=I .gr�I A! gr�
I

A/.

Taking R D A=I suggests that our estimate in (4) is sharp.
Before the proof, let us remark that p-completed tensor product over A with an A-

module is the same as .p; I /-completed tensor product. This is because IpA � pA.

Proof. (1) The map is given by .p; I /-completely tensoring the inclusion A ,! A with
∆.1/
S=A

over A. Since ∆.1/
S=A

is .p; I /-completely flat over A (see Remark 4.8), we get the

injectivity of ∆.1/
S=A
! dR^S=A.

(2) Clearly I r∆.1/
S=A

is contained in IŒr� dR^S=A. To check the equality of intersection,

it suffices to show the induced map ∆.1/
S=A

=I r ! dR^S=A =I
Œr� is injective. But this map is

given by .p; I /-completely tensoring ∆.1/
S=A

with the inclusion A=I r ,! A=IŒr� over A,

so we get the desired injectivity again by .p; I /-complete flatness of ∆.1/
S=A

over A.

(3) It suffices to show that the induced map zg W ∆.1/
S=A

=FiliN! dR^S=A=FiliH is injective.
The I -adic and IŒ��-filtrations on each side induce maps of graded pieces as

dR^S=.A=I/=FiljH y̋A=I I
i�j =I i�jC1 ! dR^S=.A=I/=FiljH y̋A=I IŒi�j �=IŒi�jC1�:

Here we have used Propositions 4.5 (3) and 4.10 (3). We conclude that the map zg is injec-
tive as dR^S=.A=I/=FiljH is p-completely flat over A=I for any j and the natural map
I i�j =I i�jC1 ! IŒi�j �=IŒi�jC1� is injective.
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(4) Injectivity follows from the previous paragraph. Let S DA=I hX1=p
1

l
j l 2Li=M ,

with each element m 2 M corresponding to a series fm. Below we shall not distinguish
m and fm. Consider

S 0DA=I hX
1=p1

l
;Y 1=p

1

m j l 2L; m2M i=.Ym � fmIm2M/DW zS=.Ym � fmIm2M/:

There is a surjection S 0 ↠ S of A=I -algebras, sending powers of Ym to 0. This induces
a surjection on L^

�=A
, hence also a surjection on dR^

�=A. Therefore it suffices to prove the
statement for S 0.

Now we know dR^S 0=A is given by p-completely adjoining divided powers of I and
Ym � fm to zS , and the i -th Hodge filtration is given by the ideal p-completely generated
by those degree-at-least-i divided monomials. Since the image of ∆.1/

S 0=A
already con-

tains zS , it suffices to show that .i � 1/Š times those degree-less-than-i divided monomials
lie in zS , which follows from the definition.

(5) Since the generating factor .
Vi
S LS=.A=I//^Œ�i � of both vertical filtrations comes

from the i -th graded piece of the Hodge filtration on dR^S=.A=I/ (modulo I and I respec-
tively), our statement follows from the commutative triangle in Corollary 3.18.

The above statements can be immediately extended to the desired statement via sev-
eral reduction steps.

Corollary 4.22. Let R be a B=J -algebra. The natural map of filtered algebras

.∆.1/
R=B

;Fil�N/ y̋ .B;J �/ .dR^.B=J /=B ;Fil�H/! .dR^R=A;Fil�H/

is a filtered isomorphism. In particular, the filtrations on the left hand side define qua-
sisyntomic sheaves.

We refer the readers to [18, Sections 3.8–3.10] for a discussion of the filtration on a
tensor product of filtered modules over a filtered algebra. Here we use y̋ to mean that we
take the derived p-completion of [18, Construction 3.9].

Proof of Corollary 4.22. We make a few reduction steps. First of all, both sides are left
Kan extended from the case of p-complete polynomial algebras, so it suffices to show the
map is a filtered isomorphism whenRD B=J hX1; : : : ;Xni. Secondly, it suffices to prove
the statement Zariski locally on Spf.B=J /, hence we may assume .B; J / is oriented.
Now we look at the universal map from the universal oriented prism .Auniv; I / to .B; J /.
Let Runiv be the corresponding p-complete polynomial algebra over the reduction of the
universal oriented prism. By Remark 4.20, one sees that the filtered map for R is the base
change of the analogous map forRuniv. Therefore we are finally reduced to the case where
the base prism .A; I / is transversal and R is a p-completely smooth A=I -algebra.

Since the underlying algebra is an isomorphism by Theorem 3.5, it suffices to show
the induced map of graded algebras is an isomorphism. By derived p-completing of [18,
Lemma 3.10], we see that the graded algebra of the left hand side becomes

gr�N.∆
.1/

R=A
/ y̋ Sym�

A=I
.I=I2/ �

�
A=I .I=I

2/:
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Now we invoke the vertical filtrations on graded algebras of both sides; see Lemma 4.7
and Lemma 4.12. The vertical filtration on gr�N.∆

.1/

R=A
/ induces an increasing filtration by

.�/ y̋ Sym�
A=I

.I=I2/ �
�
A=I

.I=I 2/, and our morphism induces identifications

grvi
�
gr�N.∆

.1/

R=A
/ y̋ Sym�

A=I
.I=I2/ �

�
A=I .I=I

2/
�
Š grvi .gr�H.dR^R=A//

for all i . Here we have used Theorem 4.21 (5). Since these vertical filtrations are increas-
ing, exhaustive, and uniformly bounded below by 0, we conclude that the natural map

gr�N.∆
.1/

R=A
/ y̋ Sym�

A=I
.I=I2/ �

�
A=I .I=I

2/! gr�H.dR^R=A/

is also an isomorphism.

In particular, we can specialize to the case of quasicompact quasiseparated smooth
formal schemes over Spf.B=J /.

Corollary 4.23 (cf. [20, Theorem 2.9]). LetX be a quasicompact quasiseparated smooth
formal scheme over Spf.B=J /. Then we have a natural filtered isomorphism�

R�.X;Fil�N.∆
.1/

�=B
//
�
y̋ .B;J �/ .dR^.B=J /=B ;Fil�H/

Š
�! R�.X;Fil�H.dR^

�=B//I

they are furthermore naturally filtered isomorphic to R�crys.X;I
Œ��
crys/ if .B;J / is transver-

sal. Similarly, whenever i � p, we also have natural isomorphisms

R�.X;∆.1/
�=A

=FiliN/
Š
�! R�.X; dR^

�=A =FiliH/I

these are furthermore naturally isomorphic to R�crys.X;Ocrys=I
i
crys/ if .B; J / is transver-

sal. These isomorphisms are functorial in X , and satisfy the base change property as in
Remark 4.20.

Proof. These functorial isomorphisms are provided by Corollary 4.22 and Theo-
rem 4.21 (4) respectively. The “furthermore” equality, when the base prism is transversal,
follows from Theorem 4.1.

Remark 4.24. Back to the transversal base prism case. A posteriori the filtration on the
left hand side of Corollary 4.22 is a quasisyntomic sheaf, hence we may define it as the
unfolding of its restriction to the basis of large quasisyntomic A=I -algebras. Also a pos-
teriori, we know the value on such an algebra S must be concentrated in cohomological
degree 0, so they have to be the image of the augmentation map

Fili .∆.1/
S=A
y̋ Zp

A/! dR^S=A;

where the filtration on the left hand side is given by the usual Day convolution. This
implies

FilnH.dR^S=A/ D
nX
iD0

.FiliN.∆
.1/

S=A
/ � IŒn�i�/;
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which also follows from combining Proposition 4.5 (1), Proposition 4.6 (3), and Theo-
rem 4.9 (2).

Therefore, for any 0 � r � p � 1, we see that the Frobenius on the derived de Rham
complex when restricted to the r-th Hodge filtration,

FilrH.dR^S=A/
'
�! dR^S=A;

factors through multiplication by pr . Since for large quasisyntomic A=I -algebras S , the
dR^S=A is p-completely flat over A (see Remark 4.8) which is p-torsionfree, we may
uniquely divide the restriction ' by pr . By unfolding, this gives rise to divided Frobenii
as maps of sheaves on qSynA=I :

'r W FilrH.dR^
�=A/! dR^

�=A :

By definition, they also satisfy 'r jFilrC1
H
D p'rC1 when r � p � 2. Following the same

argument of Theorem 3.14 (see also Remark 3.15), such a functorial divided Frobenius is
unique for each 0 � r � p � 1.

When .A; I / is the Breuil–Kisin prism, this gives rise to an alternative definition of
the divided Frobenii appearing in [10, p. 532].

5. Connection on dR^
�=S

and structure of torsion crystalline cohomology

From this section onward, we focus on the Breuil–Kisin prism A D .S; E/ and crys-
talline cohomology over S D dR^OK=S

. Let k be a perfect field with characteristic p, and
letK be a finite totally ramified extension overK0 DW.k/Œ1=p� with a fixed uniformizer
� 2 OK . Fix an algebraic closure xK ofK and let C be the p-adic completion of xK. Write
GK WD Gal. xK=K/ and e D ŒK WK0�. LetE D E.u/ 2W.k/Œu� be the Eisenstein polyno-
mial of � with constant term a0p; recall S WD W.k/JuK is equipped with a Frobenius '
naturally extending that onW.k/ defined by '.u/D up . Pick �n 2O xK so that �0D � and
�
p
nC1 D p. Then � WD .�n/n�0 2O[

C. We embed S ,!Ainf via u 7! Œ��which is a map of
prisms. LetK1 WD

S1
nD0K.�n/ and G1 WD Gal. xK=K1/. It is clear that the embedding

S � Ainf is compatible with the G1-actions. We extend ' from S to S and let Film S be
the p-adic closure of the ideal generated by i .E/ WDEi=iŠ; i �m. We embed S ,!Acrys

also via u 7! Œ��. Form � p � 1, '.Film S/ � pmS . We set 'm WD '=pm W Film S ! S .
Similar notation also applies toAcrys. Write c1 WD

'.E/
a0p
2 S�. Finally, there exists aW.k/-

linear derivation rS W S ! S defined by rS .f .u// D f 0.u/.
For n � 1, if M is a Zp-module then we always use Mn to denote M=pnM . Similar

notation applies to (p-adic formal) schemes: i.e., Xn WD X �Spf.Zp/ Spec.Z=pnZ/. Write
W D W.k/ and reserve i .�/ for the i -th divided power.

5.1. Connection on dR^
�=S

According to the philosophy that derived de Rham cohomology behaves a lot like crys-
talline cohomology, one expects there to be a connection on dR^

�=S. We explain it in this
section.
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Lemma 5.1. Let R be an OK-algebra. Then the natural morphism dR^R=W Œu� ! dR^R=S
is an isomorphism, where R is regarded as an S- and W Œu�-algebra via W Œu�! S!

OK ! R.

Proof. Just notice the following p-complete pushout diagram:

S // OK // R

W Œu� //

OO

OK

OO

// R

OO

and appeal to the p-complete base change formula for derived de Rham complexes to get

dR^R=W Œu� y̋W Œu� S
Š
�! dR^R=S :

Next we observe that dR^R=W Œu� is an S D dR^OK=W Œu�
-complex and S y̋W Œu� S D S ,

hence the base change on the left hand side gives dR^R=W Œu� back.

Construction 5.2 (see also [22]). For any W Œu�-algebra R, by (p-completely) applying
[18, Lemma 3.13 (4)] to the triple W ! W Œu� ! R, we see that there is a functorial
triangle in the filtered derived1-category of W -modules,

dR^R=W Œu� y̋W Œu� �
1
W Œu�=W Œ�1�! dR^R=W ! dR^R=W Œu� :

Here �1
W Œu�=W

Œ�1� is completely put in the first filtration. By choosing the generator
du 2 �1

W Œu�=W
, the above becomes

dR^R=W ! dR^R=W Œu�
r
�! dR^R=W Œu�.�1/;

where .�1/ indicates the shift of filtrations: Fili .dR^R=W Œu�.�1// D Fili�1H .dR^R=W Œu�/. If
R is smooth over W Œu�, then r is given by the Lie derivative with respect to @

@u
:

r.!/ D L @
@u
.!/:

Lemma 5.3. Let R be an OK-algebra. Then we have a functorial triangle in the filtered
derived1-category,

dR^R=W ! dR^R=S
r
�! dR^R=S.�1/:

Moreover,
pup�1 � ' ı r D r ı ';

where ' W dR^R=S ! dR^R=S is the Frobenius defined in Section 2.3.

Proof. The first statement follows from Construction 5.2 and Lemma 5.1.
To check the equality, by left Kan extension it suffices to check it for polynomials.

Then by quasisyntomic descent, it suffices to check the equality for large quasisyntomic
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OK-algebras. Following the proof of Corollary 3.16, we reduce the problem to showing
the equality for algebras of the form

R D OKhX
1=p1

i ; Y
1=p1

j j i 2 I; j 2 J i=.Yj � fj j j 2 J / DW zR=.Yj � fj j j 2 J /:

Now the map zR! R induces a map between dR^
�=S given by

ShX
1=p1

i ; Y
1=p1

j j i 2 I; j 2 J i DW T 7! DT .Yj � fj I j 2 J /
^:

Here S is the p-complete PD envelope of S along .E/ and the latter denotes p-completely
adjoining divided powers of .Yj � fj / in T . Since DT .Yj � fj I j 2 J /^ is p-complete
and p-torsionfree, it suffices to check the identity on T . On T , the Frobenius ' acts
by sending variables X; Y; u to their p-th power, and r acts via @

@u
. Finally, the task is

reduced to checking the equality

pup�1 � '

�
@

@u
.F.u;X; Y //

�
D

@

@u
.'.F.u;X; Y ///

for any F.u;X; Y / 2 T .

Consequently, for any OK-algebra R, we always have a long exact sequence

� � � ! Hi .dR^R=W /! Hi .dR^R=S/
r
�! Hi .dR^R=S.�1//

C1
��! � � � ( )

and its r-th filtration analogues for all r 2 N. In special situations, these will break into
short exact sequences. Let us introduce some more notation. Let L be a perfectoid field
extension of K containing all p-power roots of � . For instance, L could be the p-adic
completion of K1 or it could be C. Let Ainf.L/ WD W.O

[
L/ be Fontaine’s Ainf-ring asso-

ciated with L, and recall there is a natural map � WD Ainf.L/! OL. Fixing a compatible
system of p-power roots of � , we obtain a map S! Ainf.L/ with u 7! Œ�� compatible
with � and the inclusion OK ! OL.

Proposition 5.4. With notation as above, let R be a quasisyntomic OL-algebra.

(1) The natural map dR^R=W ! dR^R=Ainf.L/
is a filtered isomorphism.

(2) The sequence . / and its r-th filtration analogues break into short exact sequences

0! Hi .FilrH dR^R=W /! Hi .FilrH dR^R=S/
r
�! Hi .Filr�1H dR^R=S/! 0

for all i and r . In particular, dR^R=S
r
�! dR^R=S.�1/ is surjective on each Hi , and

Hi .dR^R=W / D Hi .dR^R=S/
rD0:

Proof. (1) is [18, Theorem 3.4 (2)].
As for (2), it suffices to show that the maps Hi .FilrH dR^R=W /! Hi .FilrH dR^R=S/ are

injective for all i and r . By functoriality, we have maps of filtered algebras

dR^R=W ! dR^R=S ! dR^R=Ainf.L/

whose composition is a filtered isomorphism by (1). Therefore the first morphism fac-
torizing isomorphism induces the injection in cohomology. This explains why the long
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exact sequence ( ) breaks into short exact sequences. The last statement follows easily
by letting r D 0.

5.2. Structures of torsion crystalline cohomology

Let X be a proper smooth formal scheme over OK . Let us summarize the structures on
Hicrys.X=S/ WD Hicrys.X=S;Ocrys/ constructed in the previous sections.

By Corollary 4.22 and Theorem 4.1, we obtain the commutative diagram

R�qSyn.X;∆
.1/

�=S
/ // R�crys.X=S;Ocrys/ S ˝L

';S R�∆.X=S/

R�qSyn.X;FilmN ∆1
�=S

/

OO

// R�crys.X=S; I
Œm�
crys/

OO

(5.5)

Here the second isomorphism of the top row follows from the canonical isomorphism
R�qSyn.X;∆�=S/ ' R�∆.X=S/ and the fact that ' W S! S is flat.

For m � p � 1, Remark 4.24 allows us to define a '-semilinear map 'm W

Hicrys.X=S; I
Œm�
crys/ ! Hicrys.X=S/ so that the following diagram commutes for m C 1

� p � 1:
Hicrys.X=S; I

Œm�
crys/

'm // Hicrys.X=S/

Hicrys.X=S; I
ŒmC1�
crys /

OO
p'mC1

77

We abbreviate the above diagram by writing 'mjHi
crys.X=S;I

ŒmC1�
crys /

D p'mC1. It is also clear

that for any s 2 Film S and x 2 Hicrys.X=S/ we have

'm.sx/ D .c1/
�m'm.s/'h.E.u/

mx/:

Finally, the above subsection constructs a connection r W Hicrys.X=S/! Hicrys.X=S/. By
Proposition 5.4 and Lemma 5.3, we conclude that

(1) r W Hicrys.X=S/! Hicrys.X=S/ is a W.k/-linear derivative satisfying

r.f .u/x/ D f 0.u/x C f .u/r.x/:

(2) (Griffiths transversality) r.Hicrys.X=S; I
Œm�
crys// factors through Hicrys.X=S; I

Œm�1�
crys /.

(3) The following diagram commutes:

Hicrys.X=S; I
Œm�
crys/

E.u/r

��

'm // Hicrys.X=S/

c1r

��

Hicrys.X=S; I
Œm�
crys/

up�1'm // Hicrys.X=S/

The last diagram follows from the equality pup�1' ı r D r ı ' of Lemma 5.3 and from
'.E/ D pc1.
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Now consider the pn-torsion crystalline cohomology Hicrys.Xn=Sn/ together

with the filtration Hicrys.Xn=Sn; I
Œm�
crys/. We claim that Hicrys.Xn=Sn/ admits all the

above structures 'm W Hicrys.Xn=Sn; I
Œm�
crys/ ! Hicrys.Xn=Sn/ for m � p � 1 and r W

Hicrys.Xn=Sn/ ! Hicrys.Xn=Sn/ satisfying all the above properties. To see this,

note that R�crys.Xn=Sn; I
Œm�
crys/ ' R�crys.X=S; I

Œm�
crys/ ˝

L
Z Z=pnZ where I

Œ0�
crys D Ocrys,

thus all the above properties follow by taking ˝L
Z Z=pnZ, except diagram (5.5)

which requires torsion quasisyntomic cohomology. For this, we define the follow-
ing torsion cohomologies: For m � 0, R�dR.Xn=Sn; FilmH / WD R�dR.X=S; FilmH / ˝

L
Z

Z=pnZ, R�qSyn.Xn=Sn;FilmN ∆.1// WD R�qSyn.X=S;FilmN ∆.1/
�=S

/˝Z Z=pnZ, and finally
R�∆.Xn=Sn/ WD R�∆.X=S/ ˝Z Z=pnZ. Then the derived modulo pn version of dia-
gram (5.5) still holds by taking the original diagram and taking the derived complexes
modulo pn.

5.3. Galois action on torsion crystalline cohomology

Keep the notations as above. Set X to be the base change ofX to SpfOC and Xn WDX˝Z
Z=pnZ. Then Hicrys.Xn=Sn/ has an S -linear GK-action when we define the GK-action
on S to be trivial. Note that Hicrys.Xn=Acrys;n/ also has an Acrys-semilinear GK-action
which is induced by the GK-actions on X and Acrys. By Proposition 5.4 and its proof, we
see that the natural map W.k/! S! Ainf induces the commutative diagram

Hicrys.Xn=Wn.k//

�

ˇ

((

� � ˛ // Hicrys.Xn=Sn/

�

��

Hicrys.Xn=Sn/
? _z̨oo

� _

Q�

��

Hicrys.Xn=Acrys;n/ Hicrys.Xn=Sn/˝Sn
Acrys;n

Note that the bottom row is an isomorphism because X DX �Spec.S/ Spec.Acrys/ and that
Acrys;n is flat over Sn. Thus Q� is an injection. So is z̨. Also we note that ˛ and ˇ are both
compatible with the GK-actions because both the mapsW.k/! S andW.k/! Ainf are
GK-compatible. But � is not, because S � Ainf is only stable under the G1-action. It is
also clear that Hicrys.Xn=Sn/ � .H

i
crys.Xn=Sn//

GK via z̨, and z̨ is also compatible with
connections on both sides.

Now we claim the GK-action on Hicrys.Xn=Acrys;n/ is given by the following formula:
For any � 2 GK , any x ˝ a 2 Hicrys.Xn=Sn/˝S Acrys ' Hicrys.Xn=Acrys;n/,

�.x ˝ a/ D

1X
iD0

r
i .x/˝ i .�.Œ��/ � Œ��/�.a/: (5.6)

To see this, for any x 2Mi WD Hicrys.Xn=Sn/, set

xr WD

1X
mD0

r.x/m.Œ�� � u/ 2 Hicrys.Xn=Sn/:
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Then we immediately see that xr 2 Hicrys.Xn=Wn.k// D Hicrys.Xn=Sn/
rD0. Now we

claim that Hicrys.Xn=Wn.k// is generated by ¹xr j x 2Hicrys.Xn=Sn/º as anAcrys-module.
If so then (5.6) follows from the fact that ˇ is GK-equivariant and the construction of xr

(note that both x and u are GK-invariants).
To prove the claim, for any y 2 Hicrys.Xn=Wn.k//, suppose that ˇ.y/ D

P
j aj Q�.xj /

with aj 2 Acrys and xj 2 Hicrys.Xn=Sn/. Then we see that yr WD
P
j ajx

r
j 2

Hicrys.Xn=Wn.k//. It suffices to that check y D yr . Since ˇ is an isomorphism, it suffices
to show that ˇ.y/ D ˇ.yr/. This follows from ˇ.xr/ D �.x/ for x 2 Hicrys.Xn=Sn/ as
�.Œ�� � u/ D Œ�� � Œ�� D 0.

6. Torsion Kisin module, Breuil module and associated Galois representations

In this section, we set up the theory of generalized torsion Kisin modules which extends
the theory of Kisin modules, which is discussed, for example, in [26, Section 2]. The
key point for the generalized Kisin modules is that they may have u-torsion, and they are
classical torsion Kisin modules when taken modulo u-torsion.

6.1. (Generalized) Kisin modules

Let .S; E.u// be the Breuil–Kisin prism over OK with d D E.u/ D E the Eisenstein
polynomial of fixed uniformizer � 2OK . A '-module over S is an S-module M together
with a 'S-semilinear map 'M WM!M. Write '�MDS˝';S M. Note that 1˝ 'M W

'�M!M is an S-linear map. A .generalized/ Kisin module of height h is a '-module
M of finite S-type such that there exists an S-linear map  W M ! '�M such that
 ı .1˝ '/ D Eh id'�M and .1˝ '/ ı  D Eh idM. Maps between generalized Kisin
modules are given by S-linear maps which are compatible with ' and  . We denote by
Mod';hS the category of (generalized) Kisin modules of height h.

In [26], a Kisin module of height h is defined to be an étale '-module M of finite S-
type such that coker.1˝ '/ is killed by Eh. Here étale '-module means that the natural
map M ! ŜŒ1=u� ˝S M is injective. Since E.u/ is a unit in ŜŒ1=u�, we easily see
that the étale assumption implies that 1˝ ' W '�M!M is injective. Then existence and
uniqueness of WM! '�M, in the definition of (generalized) Kisin modules of height h,
follows. That is, the Kisin module M of height h defined classically is a (generalized)
Kisin module of height h. So in the following, we drop “generalized” when we mention
an object in Mod';hS . If we need to emphasize that M is also a Kisin module of height m
classically defined, we will mention that it is étale.

Lemma 6.1. (1) Mod';hS is an abelian category.

(2) M is étale if and only if M has no u-torsion.

(3) MŒ1=p� is finite SŒ1=p�-free.

Proof. (1) is easy to check because ' W S! S is faithfully flat.
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(2) It is clear from the definition that if M is étale then it has no u-torsion. Conversely,
let MŒp1� WD ¹x 2M j pnx D 0 for some n > 0º and M0 WDM=MŒp1�. We get the
short exact sequence 0!MŒp1�!M!M0 ! 0. It is clear that both MŒp1� and
M0 are objects in Mod';hS and if M has no u-torsion then neither MŒp1� nor M0 has
u-torsion. Since MŒp1� is killed by some p-power, M˝ ySŒ1=u�DMŒ1=u�. So MŒp1�

has no u-torsion if and only if MŒp1� is étale. Now since M0 has no p-torsion, we
claim that M0Œ1=p� is finite SŒ1=p�-free, which will imply (3) and étaleness of M0. By
[16, Section 1.2.1], M0Œ1=p� '

L
SŒ1=p�=P

ai

i with Pi 2 W.k/Œu� monic irreducible
and Pi � ubi mod p, or Pi D 0. Without loss of generality, we may assume that Pi 6D 0
and show such M0 does not exist when M0 2 Mod';hS . Consider the wedge product N of
M0Œ1=p�. Then N ' SŒ1=p�=f with f D

Q
P
ai

i and write '� WD 1˝ '. We also obtain
'� W '�N!N and WN! '�N so that ı '�DE.u/h id'�N and '� ı DE.u/h idN

for some h. Since '�N ' SŒ1=p�='.f /, we can write the above maps explicitly as

SŒ1=p�='.f /
'�

�! SŒ1=p�=f
 
�! SŒ1=p�='.f /:

Write x D '�.1/ and y D  .1/. We have '.f /x D f z0 and fy D '.f /w0 for some
z0; w0 2 SŒ1=p�. The condition  ı '� D E.u/h id'�N and '� ı D E.u/h idN implies
that '.f /E.u/h D f z and fE.u/h D '.f /w with z; w 2 SŒ1=p�. So E.u/2h D zw.
Since E.u/ is an Eisenstein polynomial, z D z0E.u/

l with z0 a unit in SŒ1=p�. Then
'.f /D z0fE.u/

l�h. We easily see z0 2S� as both f andE.u/ are monic. So l � h > 0
by reducing mod p on both sides. Let a0 D f .0/ be the constant term of f .u/. Since
'.f /.0/ D '.a0/ D z0.0/a0p

l�h, comparing the p-adic valuation on both sides, we see
that a0 D 0. Then we may write f D umg with g.0/ 6D 0. But then

upm�m'.g/ D z0gE.u/
l�h;

which is impossible by comparing the constant terms on both sides. In summary, such an
M0 cannot exist and M0Œ1=p� is finite SŒ1=p�-free.

Let M be a Kisin module of height h and set MŒu1� WD ¹x 2M julxD 0 for some lº.
Then both .1 ˝ 'M/.'

�MŒu1�/ � MŒu1� and  .MŒu1�/ � '�MŒu1�. The above
lemma shows that MŒu1� �MŒp1� and M=MŒu1� is étale.

Lemma 6.2. We have the following short exact sequence in Mod';hS :

0!MŒu1�!M!M=MŒu1�! 0

with M=MŒu1� being étale.

It turns out that an étale Kisin module enjoys many nice properties. Let Mod';hS;tor

denote the full subcategory of Mod';hS whose objects M are torsion, i.e., killed by pn for
some n. The following lemma is a part of [26, Proposition 2.3.2].

Lemma 6.3. The following statements are equivalent for a torsion Kisin module M 2

Mod';hS;tor:

(1) M is étale.
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(2) M can be written as a successive quotient of Mi so that Mi 2 Mod';hS;tor and Mi is
finite kJuK-free.

(3) M D N=N0 where N0 � N are Kisin modules of height h and N0 and N are finite
free S-modules.

Corollary 6.4. Given an étale Kisin module M2Mod';hS , there exists an étale Kisin mod-
ule Mn 2Mod';hS killed by pn satisfying M=pnMŒ1=u�DMnŒ1=u� and MD lim

 �n
Mn.

Proof. Let M D M ˝S ŜŒ1=u�. Consider the exact sequence 0 ! pnM ! M
q
�!

M=pnM ! 0. Since M is étale, the natural map M!M is injective. Set MnD q.M/�

M=pnM . It is easy to check that MnŒ1=u� DM=pnMŒ1=u� DM=pnM , Mn has no u-
torsion and M D lim

 �n
Mn (since M is p-adically closed in M ). We just need to check

that Mn has height h. This was proved in [16, Proposition B 1.3.5].

In general, the category of étale Kisin modules is not abelian but under some restric-
tions it could be abelian. Given M 2 Mod';hS;tor, let M DMŒu1; p� WD ¹x 2MŒu1� j

px D 0º.

Lemma 6.5. If eh < p � 1 then M D 0 and if eh < 2.p � 1/ then M '
L
k or 0.

Proof. We have  WM ! '�M such that  ı .1˝ '/ D dh id'�M . We can write M DLm
jD1 kJuK=u

aj with aj � 1, and then '�M '
Lm
jD1 kJuK=u

paj . Assume that a D
maxj aj and let x 2 '�M be such that upax D 0 but upa�1x 6D 0. Since  ı .1˝ '/ D
ueh id'�M , we conclude that uehx 2 .M/. Noting that uaM D ¹0º and is kJuK-linear,
we have uaCehx D 0. This forces aC eh � pa, that is, a � eh

p�1
. Hence such an a cannot

exist if eh < p � 1. If eh < 2.p � 1/ then a D 1 or 0. This proves the lemma.

Proposition 6.6. If eh < p � 1 then Mod';hS is an abelian category.

Proof. By Lemma 6.5, MŒu1� D 0.

Example 6.7. Let E.u/ D u � p, M D k ' kJuK=u and '.1/ D 1. Let  W kJuK=u!
kJuK=up by  .1/ D up�1. Then M 2 Mod';p�1S;tor .

Let M 2 Mod';hS . Define the Breuil–Kisin filtration on '�M by

FilhBK '
�M WD Im. WM! '�M/:

If M is étale then  is injective as explained above, and we have an identification

FilhBK '
�M Š ¹x 2 '�M j .1˝ '/.x/ 2 E.u/hMº (6.8)

of submodules in '�M. Since there is only one filtration considered for Kisin modules
in this section, we drop BK from the notation in this section. Finally, there is a 'S-semi-
linear map ' WD ' ˝ ' W '�M! '�M. It is clear that '.Fili '�M/ � '.E.u//i'�M.
If M is étale, then we define 'i W Fili '�M! '�M by

'i .x/ WD
'.x/

'..a�10 E.u//i /
; where a0p D E.0/.
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Lemma 6.9. Suppose that 0!M0 !M!M00 ! 0 is an exact sequence in Mod';hS

and all modules are étale. Then the following sequence is exact:

0! Filh '�M0
! Filh '�M! Filh '�M00

! 0:

Proof. This easily follows from the fact that '� W Filh '�M! EhM is bijective.

Remark 6.10. The above lemma fails in general if i < h or if the modules are not étale.

6.2. Galois representation attached to étale Kisin modules

Recall that we fix �n 2 xK so that � WD .�n/ 2 O[
C and �0 D � ; moreover, we setK1 WDS

n�0K.�n/ andG1 WDGal. xK=K1/. We embed S!Ainf via u 7! Œ��. This embedding
is compatible with ', but not with the GK-action. We have S � AG1inf .

To a Kisin module M 2 Mod';hS , we can associate a representation of G1 via

TS.M/ WD .M˝S W.C[//'D1 D .M=MŒu1�˝S W.C[//'D1:

So the Galois representation attached to M is insensible to u-torsion parts because 1=u 2
W.C[/. It is well-known that TS is exact and there exists a W.C[/-linear isomorphism

M˝S W.C[/ ' TS.M/˝Zp
W.C[/;

which is compatible with ' and with the G1-actions.
For many purposes, we define another variant T hS of TS: For an étale M 2Mod';hS , we

can naturally extend 'h W Filh '�M! '�M to 'h W Filh '�M˝S Ainf! '�M˝S Ainf.
We set

T hS.M/ WD .Filh '�M˝S Ainf/
'hD1

D ¹x 2 Filh '�M˝S Ainf j '.x/ D '.a
�1
0 E.u/h/xº:

Lemma 6.11. Assume that M 2 Mod';hS is étale. Then:

(1) T hS.M/ ' TS.M/.h/.

(2) The following sequence is exact:

0! T hS.M/! Filh '�M˝S Ainf
'h�1
���! '�M˝S Ainf ! 0:

Proof. First it is clear that TS.M/ D .'�M ˝S W.C[//'D1 because ' on W.C[/
is bijective. Recall that pa0 D E.0/. Let " D .�pn/n�0 2 O[

C with �pn satisfying
�1 D 1, �ppn D �pn�1 and �p 6D 1. By [28, Example 3.2.3], there exists nonzero
t 2 Ainf such that t 6D 0 mod p, '.t/ D a�10 E.u/t and t WD logŒ"� D c'.t/ with c DQ1
nD1 '

n.a�10 E.u/=p/ 2 A�crys. Write ˇ D '.t/. Consider the map � W T hS.M/! TS.M/

defined by x 7! x=ˇh for any x 2 Filh '�M ˝S Ainf. Since '.ˇ/ D '.a�10 E.u//ˇ,
and ˇ 2 W.C[/ is invertible as t 6D 0 mod p, the definition of � makes sense. Note
that c 2 .Acrys/

G1 . So g.ˇ/=ˇ D g.t/=t is a cyclotomic character for any g 2 G1. So
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� W T hS.M/! TS.M/.h/ is a map compatible with the G1-actions. We claim that T hS
is an exact functor. If so then since TS is also exact, to show that � is an isomorphism,
we can reduce to the case that M is killed by p by Corollary 6.4. In this case, M is finite
kJuK-free. If e1; : : : ; ed is a basis of M, then 'M.e1; : : : ; ed /D .e1; : : : ; ed /Awith a kJuK-
matrix A so that there exists a kJuK-matrix B satisfying AB D BA D .a�10 E.u//hId .
Let us still regard ¹eiº as a basis of '�M. Then it is easy to check that .e1; : : : ; ed /B
is a basis of Filh '�M. Now for any x D

P
i ei ˝ ai 2 '

�M ˝kJuK C[, the equation
'.x/ D x is equivalent to '.X/ D '.A/�1X where X D .a1; : : : ; ad /T . The latter gives
'.ˇhX/ D '.a�h0 E.u/hA�1/.ˇhX/ D '.B/.ˇhX/, which implies that Y D ˇhX is
in .O[

C/
d . That is, y D ˇhx 2 '�M ˝kJuK O[

C. Furthermore, consider Z D B�1ˇhX .
Since '.Z/D'.a�h0 B�1A�1E.u/h/BZDBZ, we conclude thatZ has all entries in O[

C.
Then ˇhx D .e1; : : : ; ed /BZ is in Filh '�M˝O[

C. This proves that � is surjective. Since
� is clearly injective, it is an isomorphism.

Now we prove the claim that T hS is exact. For this, it suffices to show that 'h � 1
is surjective and we once again reduce to the case that M is killed by p. By writing
the kJuK-basis of M as above, we need to solve the equation '.X/ � BX D Y for any
Y D .a1; : : : ; ad /

T for ai 2 O[
C. Since C[ is algebraically closed, we see X exists with

entries in C[. By comparing the valuation of each entry of both sides of the equation
'.X/ D BX C Y , it is easy to show that all entries of X must be in O[

C.

6.3. Torsion Breuil modules

We fix 0 � h � p � 2 for this subsection. Recall that S D A is the p-adically completed
PD envelope of � W S ↠ OK ; u 7! � , and for i � 1 write Fili S � S for the (closure of
the) ideal generated by ¹n.E/ D En=nŠºn�i . For i � p � 1, one has '.Fili S/ � piS ,
so we may define 'i W Fili S ! S by 'i WD p�i'. We have c1 WD '.E.u//=p 2 S�.

Let 0Mod';hS denote the category whose objects are triples .M;FilhM; 'h/, consisting
of

(1) an S -module M;

(2) an S -submodule Filh M �M containing Filh S �M;

(3) a '-semilinear map 'h W FilhM!M such that for all s 2 Filh S and x 2M we have

'h.sx/ D .c1/
�h'h.s/'h.E.u/

hx/I

and such that

(4) 'h.Filh M/ generates M as an S -module.

Morphisms are given by S -linear maps preserving Filh’s and commuting with 'h.
A sequence is defined to be short exact if it is short exact as a sequence of S -modules,
and induces a short exact sequence on Filh’s. Let Mod';hS;tor denote the full subcategory of
0Mod';hS so that M is killed by a p-power and M can be written as a successive quotient
of Mi in 0Mod'S and each Mi '

L
S1 where Sn WD S=pnS .
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For each object M 2 Mod';hS , we can extend 'h and Filh to Acrys ˝S M in the
following way: Since Acrys=p

nAcrys is faithfully flat over S=pn by [12, Lemma 5.6],
Acrys ˝S Filh M ! Acrys ˝M is injective and so we can define Filh.Acrys ˝S M/ WD

Acrys ˝S Filh M and then 'h extends to Acrys ˝S M. This allows us to define a represen-
tation of G1 via

TS .M/ WD .Filh.Acrys ˝S M//'hD1:

Now let us recall the relation of classical torsion Kisin modules to objects in Mod';hS;tor

and their relationship to torsion Galois representations. Let Mod';h
S;tor Ket denote the category

of étale torsion Kisin modules of height h. In this subsection, all torsion Kisin modules
are étale torsion Kisin modules, i.e., M is u-torsionfree. For each such M, we construct
an object M 2 Mod';hS;tor as follow: M WD S ˝';S M and

Filh M WD ¹x 2M j .1˝ '/.x/ 2 Filh S ˝S MºI

and 'h W Filh M!M is defined as the composite

Filh M
1˝'M
����! Filh S ˝S M

'h˝1
���! S ˝';S M DM:

We write M.M/ for M 2Mod';hS;tor built from the Kisin module M 2Mod';h
S;tor Ket as above.

Note that Acrys ˝S M.M/ D Acrys ˝';S M.

Proposition 6.12. The above functor induces an exact equivalence between Mod';h
S;tor Ket

and Mod';hS;tor. Furthermore, there exists a short exact sequence

0! TS .M/! Acrys ˝S Filh M
'h�1
���! Acrys ˝S M! 0 (6.13)

and an isomorphism of G1-representations

TS .M.M// ' TS.M/.h/:

Proof. The equivalence together with exactness is [14, Theorem 2.2.1], which builds on
Breuil and Kisin’s results (see [27, Proposition 3.3.1]). Consider an exact sequence in
Mod';hS;tor,

0!M00 !M!M0 ! 0:

Then we have the diagram

0 // TS .M
00/ //

��

TS .M/ //

��

TS .M
0/

��

// 0

0 // Acrys ˝S Filh M00 //

'h�1

��

Acrys ˝S Filh M //

'h�1

��

Acrys ˝S Filh M0 //

'h�1

��

0

0 // Acrys ˝S M00 // Acrys ˝S M // Acrys ˝S M0 // 0
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By the definition of exactness in Mod';hS;tor and since Acrys=p
n is flat over S=pn, we see

that the last two rows of the diagram are exact. So to show 'h � 1 is surjective on M, we
reduce to the situation that M is killed by p. Also the surjectivity of 'h � 1 implies that
the functor TS is exact from the above diagram. So let us first take for granted that 'h � 1
is surjective and postpone the proof.

Now let us construct a natural map � W T hS.M/! TS .M.M//. Write M WDM.M/.
It is clear that Filh '�M � Filh M.M/ is compatible with the injection '�M ,!M. But
'h defined on Kisin modules is slightly different from that on Breuil modules. By chasing
definitions, we see that for any x 2 Filh '�M, 'h;M.x/ D .a�10 c1/

h'h;'�M.x/. Recall
c D

Q1
nD1 '

n.a�10 E.u/=p/ 2 A�crys in the proof Lemma 6.11. Since '.c/ D a�10 c1c, the
map � W Ainf ˝S '

�M! Acrys ˝S M given by �.x/ D chx induces a map � W T hS.M/!

TS .M/.
To show that � is an isomorphism, since TS, TS and M are all exact, we reduce to

the case that M is killed by p when M is finite kJuK-free. By the same argument as
in Lemma 6.11, there exists a basis e1; : : : ; ed of '�M such that Filh '�M has basis
.e1; : : : ; ed /B , '.e1; : : : ; ed / D .e1; : : : ; ed /'.A/ and AB D BA D .a�10 E.u//hId . So
any x 2 T hS.M/ corresponds to a solution of '.X/ D BX . Since M D M.M/, it is
straightforward to compute that M also has S1-basis e1; : : : ; ed , and Filh M is gener-
ated by .e1; : : : ; ed /B and Filp S1M. Note that a�10 c1 � 1 mod .p; Filp S/. So TS .M/

corresponds to solutions of '.X/ D BX mod Filp Acrys;1 where Acrys;1 D Acrys=pAcrys.
Now it suffices to show the following map is bijective:

¹X j '.X/ D BX; xi 2 O[
Cº ! ¹X j '.X/ D BX mod Filp Acrys;1; xi 2 Acrys;1º:

Let v denote the valuation on O[
C normalized by v.ue/ D 1. Suppose that X is in the

kernel; thenX 2E.u/pO[
C. So v.xj /�p for all j . Let xi be the entry with least valuation.

Note that v.'.xj // D pv.xj / for any j and A'.X/ D uehX . The minimal possible left
side valuation is pv.xi /, while for the right side it is hC v.xi /. This is impossible when
v.xi / � p because h � p � 2. So this implies that X D 0. Indeed, if v.xi / � 2 then the
same proof shows that X D 0. That is, if X1; X2 are two solutions in the left side and
X1 � X2 mod E.u/2 then X1 D X2.

Conversely, let Z be the vector in Acrys;1 such that '.Z/ D BZ mod Filp Acrys;1.
Then there exists Z0 with entries in O[

C such that '.Z0/ D BZ0 C E.u/pC where C is
a vector with entries in O[

C. Note that E.u/p D E.u/p�hBA. So we may write '.Z0/ D
B.Z0CE.u/

p�hAC/. LetZ1DZ0CE.u/p�hAC . Then '.Z1/DBZ1Cupe.p�h/C1
withC1D�'.AC/. Note that pe.p� h/>pe >he. We can writeBZ1Cupe.p�h/C1D
B.Z1 C u

˛AC/ with ˛ D pe.p � h/ � h. Set Z2 D Z1 C u
˛AC . Then '.Z2/ D

Z2 C u
p˛C2. Continuing, we see that Zn converges in O[

C to Z0 such that '.Z0/ D BZ0

with Z0 � Z0 mod E.u/p�h. This settles the bijection of these two sets and completes
the proof.

It remains to show that 'h � 1 W Filh M ˝S Acrys ! M ˝S Acrys is surjective and
we may assume that M D M.M/ with M killed by p. Note that M ˝S Acrys D

'�M˝kJuK O[
CC '

�M˝kJuK FilpAcrys;1:By Lemma 6.11 (2), it suffices to show that for
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y D m˝ a withm 2 '�M and a 2 Filp Acrys;1 there exists an x 2 FilhM˝S Acrys such
that 'h.x/� x D y. Since 'h.a/D 0 for a 2 FilpAcrys;1, we have y D�x as required.

Remark 6.14. If we consider the isomorphism � W TS.M/.h/! T hS.M/! TS .M.M//

defined by x 7! ˇhx 7! .ˇc/hx D thx, then � W TS.M/.h/ ' TS .M.M// is natural in
the following sense: Suppose that M˝S Ainf has a GK-action that is semilinear in the
GK-action on Ainf and commutes with 'M. Then this GK-action induces a GK-action
on M.M/˝S Acrys compatible with Filh and '. Then both TS.M/.h/ and TS .M/ have
GK-actions and � is a GK-compatible isomorphism.

Regard S as a subring of K0JuK. Define ICS D S \ uK0JuK and IC D uS. Clearly
we have a natural map q WM=IC !M.M/=ICS . By dévissage to the situation that M

is killed by p, we obtain

Corollary 6.15. Let M 2 Mod';h
S;tor Ket. Then

lengthW.k/.M.M/=ICS/ D lengthW.k/.M=uM/ D lengthZ TS .M.M//

D lengthZ TS.M/:

Now let us add an extra structure to Mod';hS;tor to make TS .M/ a GK-representation.

Let Mod';h;rS;tor denote the category of objects .M;Filh M; 'h;r/ where

(1) .M;Filh M; 'h/ is an object in Mod';hS;tor;

(2) r WM!M is a connection satisfying

(a) Er.Filh M/ � Filh M;

(b) the following diagram commutes:

Filh M

E.u/r
��

'h //M

c1r

��

Filh M
up�1'h//M

(6.16)

Let us explain the relationship between objects in Mod';h;rS;tor and Breuil modules stud-
ied by Breuil and Caruso. Let NS W S ! S be a W.k/-linear differentiation such that
NS .u/ D u. An object M in Mod';hS;tor is called a Breuil module if M admits a W.k/-
linear morphism N WM!M such that

(1) for all s 2 S and x 2M, N.sx/ D NS .s/x C sN.x/;

(2) E.u/N.Filh M/ � Filh M;

(3) the following diagram commutes:

Filh M

E.u/N
��

'h //M

c1N

��

Filh M
'h //M

(6.17)
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Remark 6.18. Breuil and Caruso use the conventionNS .u/D�u. In fact, there is almost
no difference for the entire theory when using NS .u/ D u, except that in formula (6.20)
one has to change sign compared to the similar formula in [27, (5.1.1)].

Let Mod';h;NS;tor denote the category of Breuil modules. There is a natural functor

Mod';h;rS;tor ! Mod';h;NS;tor defined by NM D ur. It is easy to chase the diagram to see

this functor makes sense. So we also call objects in Mod';h;rS;tor Breuil modules.
Now we can define a GK-action on M ˝S Acrys: for any � 2 GK and any x ˝ a 2

M ˝S Acrys, define

�.x ˝ a/ D

1X
iD0

r
i .x/˝ i .�.Œ��/ � Œ��/�.a/: (6.19)

We can also define aGK-action on M˝S Acrys as in [28, Section 5.1]: for any � 2GK ,
recall ".�/ D �.Œ��/

Œ��
2 Ainf. For any x ˝ a 2M ˝S Acrys, define

�.x ˝ a/ D

1X
iD0

N i .x/˝ i .log.".�///�.a/; (6.20)

where i .x/D xi=iŠ is the standard divided power. We claim that (6.19) and (6.20) are the
same formula. Let us postpone the proof to Section 8.1 as it is just a long combinatorial
calculation.

Note that if � 2 G1, then log.".�// D 0 and �.x ˝ a/ D x ˝ �.a/. Thus the
GK-action defined above (if well-defined) is compatible with the natural G1-action on
M ˝S Acrys.

Lemma 6.21. The above action is a well-defined Acrys-semilinear GK-action on
M ˝S Acrys, compatible with Filh.M ˝S Acrys/ and 'h.

Proof. The proof of [28, Section 5.1] essentially applies here. It is standard to check that
(6.19) is well-defined; it is Acrys-semilinear on M ˝S Acrys and compatible with the GK-
action on Acrys; and G1 acts on M ˝ 1 trivially. It is clear that log.".�// 2 Fil1 Acrys.
Since E.u/N.Filh M/ � Filh M, we see that

�.Filh.M ˝S Acrys// � Filh.M ˝S Acrys/:

The only thing left to check is that 'h commutes with the GK-action, which can be
reduced to checking the following: Write a D � log.".�// and pick x 2 Filh M; then

'h.i .a/˝N
i .x// D i .a/˝N

i .'h.x//:

It is clear that '.a/ D pa. So '.i .a// D i .a/c�i1 '.E.u/
i /. So the proof of the above

equality is reduced to checking c�i1 'h.E.u/
iN i .x// D N i .'h.x//, which can be done

by induction on i .

Corollary 6.22. If M 2 Mod';h;NS;tor is a Breuil module, then TS .M/ .as a G1-represen-
tation/ extends to a GK-representation.
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To summarize this section, we return to the situation of Section 5.2 where
Mi WD Hicrys.Xn=Sn/ is proved to admit structures Fili Mi D Hicrys.Xn=Sn; I

Œi�
crys/; 'i W

Fili Mi ! Mi and r W Mi ! Mi . Obviously, our axioms of Mod';h;rS;tor are aimed at
describing these structures of Hicrys.Xn=Sn/.

Definition 6.23. For i � p � 2, we say that Hicrys.Xn=Sn/ is a Breuil module if the quad-
ruple �

Hicrys.Xn=Sn/;H
i
crys.Xn=Sn; I

Œi�
crys/; 'i ;r

�
constructed in Section 5.2 is an object in Mod';i;rS;tor , which is equivalent to the triple�

Hicrys.Xn=Sn/;H
i
crys.Xn=Sn; I

Œi�
crys/; 'i

�
being an object in Mod';iS;tor.

Our main theorem shows that Hicrys.Xn=Sn/ together with these structures is indeed a
Breuil module when ei < p � 1.

7. Torsion cohomology and comparison with étale cohomology

In this section, we collect our previous preparations to understand the structures of tor-
sion crystalline cohomology and its relationship to étale cohomology via torsion prismatic
cohomology. In the end, we show that if ei < p � 1 then pn-th torsion crystalline
cohomology Hicrys.Xn=Sn/ has the structure of a torsion Breuil module to compare to
Hi
Ket.Xx�;Z=p

nZ/ via TS , where Xx� is a geometric generic fiber of X .

7.1. Prismatic cohomology and (generalized) Kisin modules

Let .A;I / be any prism. As at the end of Section 5.2, for any n� 1, we define torsion pris-
matic cohomology R�∆.Xn=An/ WD R�∆.X=A;O∆=p

nO∆/ D R�∆.X=A/ ˝
L
Z Z=pnZ.

We have R�∆.Xn=An/ ' R�qSyn.X;∆�=A=pn/ ' R�qSyn.X;∆�=A/˝L
Z Z=pnZ.

Warning 7.1. We warn the readers that the notation R�∆.Xn=An/ is misleading, as it
might suggest that this cohomology theory only depends on the mod pn reduction of X ,
which is not true. See [7, Remark 2.4] for a counterexample.

Proposition 7.2. Assume that .A; I / is transversal and ' W A ! A is flat. Then
Hi∆.Xn=An/ has height i .

Proof. We follow the idea of [9, Corollary 15.5] where it is proved that Hi∆.X=A/
has height i . Examining the proof, it suffices to show that '�R�∆.Xn=An/ '

L�IR�∆.Xn=An/whenX D Spf.R/ is an affine smooth p-adic formal scheme overA=I .
By Theorem 15.3 of loc. cit., we have '�R�∆.X=A/' L�IR�∆.X=A/. Since ' W A! A

is flat, it suffices to show that

.L�IR�∆.X=A//˝
L
Z Z=pnZ ' L�I

�
R�∆.X=A/˝

L
Z Z=pnZ

�
: (7.3)
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Now we may apply [4, Lemma 5.16] to the above by g D pn and f D d . So we need to
check that H�.R�∆.X=A/˝

L
A A=d/ has no pn-torsion. This follows from the Hodge–Tate

comparison
Hi .R�∆.X=A/˝

L
A A=I/ ' �

i
X=.A=I/¹iº:

Corollary 7.4. For n 2 N[ ¹1º, the '-module Hi∆.Xn=Sn/ is an object of Mod';iS , i.e.,
a .generalized/ Kisin module of height i and TS.Hi∆.Xn=Sn// ' Hi

Ket.Xx�;Z=p
nZ/.

Proof. It suffices to prove that TS.Hi∆.Xn=Sn// ' Hi
Ket.Xx�; Z=p

nZ/. Write Mi
n WD

Hi∆.Xn=Sn/ and X WD Spf OC �Spf OK
X . For n 6D 1, by [9, Theorem 1.8 (4, 5)], we

have

Hi
Ket.Xx�;Z=p

nZ/ '
�

Hi .R�∆.X=Ainf/=p
n/

�
1

E.u/

��'D1
D .Mi

n ˝S Wn.O
[
C/Œ1=u�/

'D1
D .Mi

n ˝S Wn.C[//'D1;

which is just TS.M
i
n/. The case of n D1 easily follows by taking inverse limits.

Remark 7.5. The G1-action on TS.M
i
n/ discussed in Section 6.2 naturally extends to

a GK-action by the isomorphism Mi
n ˝S Ainf ' Hi∆.X=Ainf/, which admits a natural

GK-action that commutes with '. In this way TS.Hi∆.Xn=Sn// ' Hi
Ket.Xx�;Z=p

nZ/ is an
isomorphism of GK-actions.

Let Xk WD X �Spf.OK / Spf.k/ be the closed fiber of X .

Lemma 7.6. If lengthW.k/ Hicrys.Xk=Wn.k// D lengthZ Hi
Ket.Xx�; Z=p

nZ/ then M
j
n has

no u-torsion for j D i; i C 1.

Proof. We claim that R�∆.Xn=Sn/ ˝
L
S W.k/ ' R�crys.Xk=Wn.k//: To see this, first

note that .S; E/! .W.k/; p/ taken mod u is a map of prisms. So [9, Theorem 1.8 (5)]
proves that R�∆.X=S/˝

L
S W.k/ ' R�∆.Xk=W.k//. Then Theorem 1.8 (1) of loc. cit.

shows that R�∆.X=S/˝
L
S W.k/ ' R�crys.Xk=W.k//, and the claim follows by taking

˝L
Z Z=pnZ on both sides.

The claim immediately yields the exact sequence

0!Mi
n=uMi

n ! Hicrys.Xk=Wn.k//!MiC1
n Œu�! 0: (7.7)

So lengthW.k/.M
i
n=uMi

n/ � lengthW.k/ Hicrys.Xk=Wn.k//. On the other hand, consider
the exact sequence in Lemma 6.2 with M WDMi

n,

0!MŒu1�!M!M=MŒu1�! 0:

Write MKet WD M=MŒu1�. Since MKet has no u-torsion, the above exact sequence
remains exact modulo u. So we have lengthW.k/.M

Ket=uMKet/ � lengthW.k/.M=uM/

and equality holds only when MŒu1� D ¹0º. Since TS.M/ D TS.M
Ket/, and TS.M/ '

Hi
Ket.Xx�;Z=p

nZ/ by Corollary 7.4, Corollary 6.15 proves the following inequalities:

lengthZ Hi
Ket.Xx�;Z=p

nZ/ D lengthW.k/.M
Ket=uMKet/ � lengthW.k/.M=uM/:
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Combining this with the exact sequence (7.7), we conclude that

lengthZ Hi
Ket.Xx�;Z=p

nZ/ � lengthW.k/ Hicrys.Xk=Wn.k//;

and equality holds only if all the above inequalities become equalities and Mi
n and MiC1

n

have no u-torsion.

7.2. Nygaard filtration and Breuil–Kisin filtration

By Corollary 7.4, Mi
n WD Hi∆.Xn=Sn/ is a Kisin module of height i . Then '�Mi

n '

HiqSyn.X; ∆
.1/

�=S
˝L

Z Z=pnZ/ admits two filtrations: the Breuil–Kisin filtration defined in

(6.8) and the Nygaard filtration HiqSyn.X; FiliN ∆.1/
�=S
˝L

Z Z=pnZ/. The aim of this subsec-
tion is to compare these two filtrations.

This theme can be put in a more general setting for a bounded prism .A; I /. Recall
that in [9, Section 15] the authors studied ∆�=A and ∆.1/

�=A
WD A y̋

L
';A ∆�=A as sheaves

on qSynA=I . Also constructed in loc. cit. is the so-called Nygaard filtration FiljN ∆.1/
�=A

,

also discussed in Section 4.2. For any n 2 N [ ¹1º, set ∆.1/n WD ∆.1/
�=A
˝L

Z Z=pnZ and

FiljN ∆.1/n WD FiljN ∆.1/
�=A
˝L

Z Z=pnZ. Here and below, we adopt the convention that n D1
means we do not perform any base change.

Lemma 7.8. Let .A; I / be a bounded prism. Let X be a smooth .p-adic/ formal scheme
over Spf.A=I / of relative dimension n.

(1) The Nygaard filtration R�.XqSyn;Fil�N/ on R�.XqSyn;∆
.1/

�=A
/ is complete.

(2) The natural map
FiliN˝AI

j
! FiliCjN

of quasisyntomic sheaves induces a morphism

Hl .XqSyn;FiliN/˝A I
j
! Hl .XqSyn;FiliCjN /

which is an isomorphism when l � i and injective when l D i C 1. When i � n this
map induces an isomorphism

R�.XqSyn;FilnN/˝A I
j
Š R�.XqSyn;FilnCjN /:

(3) The natural map
' W FiliN ! ∆�=A ˝A I

i

induces a map on cohomology

Hl .XqSyn;FiliN/! Hl .XqSyn;∆�=A/˝A I
i

which is an isomorphism when l � i and injective when l D i C 1.

Moreover, their derived mod pm counterparts hold true as well.
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We thank Bhargav for pointing out statement (3) above, which we did not realize can
be proved so easily. This significantly simplifies an earlier draft.

Proof of Lemma 7.8. (1) follows from (2). Indeed, (2) implies the Nygaard filtration on
R�.XqSyn;FiliN/ is simply the I -adic filtration, hence it is complete.

(2) follows from the following exact triangle of quasisyntomic sheaves:

FiliN˝AI ! FiliC1N ! FiliC1H dR^
�=.A=I/ :

Observe that

R�.XqSyn;FillH dR^
�=.A=I// Š R�.X;FillH dR^

�=.A=I//

lives in D�l .A=I /, and vanishes when l > n. An easy induction gives what we want.
As for (3), we look at the map of filtered complexes

R�.XqSyn;FiliN/
'
�! R�.XqSyn;∆�=A ˝A I

i /

where the former is equipped with the Nygaard filtration R�.XqSyn;FiliC�N / and the latter
is equipped with the I -adic filtration R�.XqSyn;∆�=A ˝A I iC�/. Notice that both filtra-
tions are complete. Now [9, Theorem 15.2 (2)] implies that the cone of the .i C �/-th
graded piece lives in D>.iC�/.A=I /. Hence we conclude that the cone of ' lives
in D>i .A/. Therefore the induced maps of degree at most i cohomology groups are iso-
morphisms, and the induced map in degree i C 1 is injective.

Their derived mod pm counterparts are proved in exactly the same way.

Now let us return to the situation of the Breuil–Kisin prism A D S. Recall that

∆.1/n WD ∆.1/
�=S
˝Z Z=pnZ and FiliN ∆.1/n WD FiliN ∆.1/

�=S
˝Z Z=pnZ:

Also, recall that Mi
n WD Hi∆.Xn=Sn/ and that the Breuil–Kisin filtration on '�Mi

n Š

HiqSyn.X;∆
.1/
n / is defined as the image of  WMi

n ! '�Mi
n.

Corollary 7.9. For any i 2 N and any n 2 N [ ¹1º, there is a functorial commutative
diagram

HiqSyn.X;FiliN ∆.1/n /
'i //

''

Mi
n

 
||

'�Mi
n

with 'i an isomorphism.

Proof. First let us justify the existence of the functorial commutative diagram. We may
work with affine formal schemes Y D Spf.R/. In this case, by the proof of [9, Theo-
rem 15.3 and Corollary 15.5], we see that  is constructed by the (right part of the)
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following diagram:

��iR�qSyn.Y;FiliN ∆.1//

��

// ��iR�qSyn.Y;∆/˝ .E/i

 
uu ��

��iR�qSyn.Y;∆.1//
� //

'

11
��iL�ER�qSyn.Y;∆/ // ��iR�qSyn.Y;∆/

Here the top row is the (� i truncation of the) morphism

R�.XqSyn;FiliN/
'
�! R�.XqSyn;∆�=A ˝A I

i /

appearing in Lemma 7.8. Taking the derived complex mod pn gives the desired functorial
commutative diagram. By Lemma 7.8 (3) we know that 'i is an isomorphism.

Remark 7.10. In the context of filtered derived infinity categories, a filtration is nothing
but an arrow. Hence one could define two “quasi-filtrations”:3 one being the Breuil–

Kisin quasi-filtration Mi
n

 
�! '�Mi

n; another being the i -th Nygaard quasi-filtration
HiqSyn.X; FiliN ∆.1/n / ! '�Mi

n. Then the above says that these two quasi-filtrations are
canonically identified via 'i .

Let us consider the map

�i;jn W H
i
qSyn.X;FiljN ∆.1/n /! FiljBK HiqSyn.X;∆

.1/
n /

for any pair of natural numbers .i; j / and any n 2 N [ ¹1º. We have the following
information about the image of �i;jn when i � j .

Corollary 7.11. Let i � j . Then we have an identification

Im.�i;jn / Š Im. WMi
n ! '�Mi

n/ �E
j�i :

In particular, defining gMi
n WDMi

n=Œu
1� and '̃�Mi

n WD '
�Mi

n=Œu
1�, we have an identi-

fication

Im.Q�i;jn W H
i
qSyn.X;FiliN ∆.1/n /! FiliBK '̃

�Mi
n/ Š ¹x 2 '̃

�M j .1˝ '/.x/ 2 E.u/jgMi
nº:

Proof. The first statement follows from combining Lemma 7.8 (2) and Corollary 7.9. The
second statement follows from the first and the fact that Mi

n has height i .

Below we make some initial investigations of what happens without assuming i � j .

Proposition 7.12. LetADS be the Breuil–Kisin prism. For any triple .i; j;n/, the kernel
and cokernel of �i;jn above are finite.

3This terminology was suggested by S. Mondal.
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Proof. Note that the kernel and cokernel of �i;jn are finitely generated modules over
S=.pn/. We have the containment

E.u/j � ∆.1/ � FiljN ∆.1/ � ∆.1/

of sheaves on qSynA=I . This shows that the map �i;jn admits a section up to multiplication
by E.u/j , therefore the kernel and cokernel of �i;jn are annihilated by E.u/j . If n 2 N,
the kernel and cokernel of �i;jn are finitely generated modules over S=.pn; E.u/j /, hence
finite.

If n D1, denote the map by �i;j ; then we make the following

Claim 7.13. The map �i;j W HiqSyn.X; FiljN ∆.1//Œ1=p�! FiljBK '
�Mi Œ1=p� is an isomor-

phism.

Granting this claim, the kernel and cokernel of �i;j are finitely generated modules over
S=.E.u/j / annihilated by a power of p, hence finite.

Proof of Claim 7.13. First let us show injectivity, which is the same as the injectivity of

HiqSyn.X;FiljN ∆.1//Œ1=p�! HiqSyn.X;∆
.1//Œ1=p�:

To this end, we use the filtration Fili;j discussed in Section 4.2. We will prove a slightly
stronger statement: the maps

HmqSyn.X;Fili;j ∆.1//Œ1=p�! HmqSyn.X;Fili;0 ∆.1//Œ1=p�

are injective for all i � 0. The case of i � j is trivial due to Proposition 4.10 (2). For the
other i , we use descending induction on i . By the Five Lemma and Proposition 4.10 (3),
it suffices to show that the maps

Hm.X;Filj�iH dRX=OK
/Œ1=p�! Hm.X; dRX=OK

/Œ1=p�

are injective. This injectivity is equivalent to the degeneration of the Hodge-to-de Rham
spectral sequence for the rigid space XK , which is a result due to Scholze [33, Theo-
rem 1.8].

Next we show surjectivity by induction on j , the case of j D 0 being trivial. All we
need to show is that the induced map

Coker
�
HiqSyn.X;FiljC1N ∆.1//Œ1=p�! HiqSyn.X;FiljN ∆.1//Œ1=p�

� x'
�!

E.u/jMi

E.u/jC1Mi
Œ1=p�

is injective. By the injectivity of �i;j Œ1=p� proved in the previous paragraph, we can
rewrite the left hand side as HiqSyn.X; grjN ∆.1//Œ1=p�. Recall that Mi Œ1=p� is finite
free over SŒ1=p� (see Lemma 6.1 (3)), so the right hand side can be rewritten as
HiqSyn.X;

x∆/Œ1=p�¹j º, the j -th Breuil–Kisin twist of the i -th Hodge–Tate cohomology of
XK . By [9, Theorem 15.2], we can identify the left hand side further as the j -th conjugate
filtration of the right hand side. Now it follows from the degeneration of the Hodge–Tate
spectral sequence [7, Theorem 13.3] that x' is always injective.
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Below we exhibit an example illustrating the necessity of the i � j assumption in
Corollary 7.11.

Example 7.14 (see [24, Section 4]). Let K be a ramified quadratic extension of Qp and
let G be a lift of p̨ over OK . Denote by BG the classifying stack of G. Below we
summarize the previous study of various cohomologies ofBG as documented in [24, 4.6–
4.10], following the notation thereof.

(1) The Breuil–Kisin prismatic cohomology ring of BG is given by

H�∆.BG=S/ Š SŒzu�=.p � zu/;

where zu has degree 2.

(2) The Hodge–Tate spectral sequence does not degenerate on the E2 page, but does
degenerate on the E3 page, giving rise to short exact sequences

0! HiC1.BG;
Vi�1 LBG=OK

/ ' Fp ! H2iHT.BG=OK/ ' OK=.p/

! Hi .BG;
Vi LBG=OK

/ ' Fp ! 0

for all i > 0.

(3) The Hodge-to-de Rham spectral sequence does not degenerate on the E1 page, but
does degenerate on the E2 page, giving rise to short exact sequences

0! H2i�1.BG;LBG=OK
/ ' Fp ! H2idR.BG=OK/ ' OK=.p/

! H2i .BG;OBG/ ' Fp ! 0

for all i > 0.

By [9, Theorem 15.2], we have the commutative diagram

R�qSyn.BG=S;∆.1//
'

//

��

R�qSyn.BG=S;∆/

��

R�dR.BG=OK/ // R�.BG;OBG/ // R�HT.BG=OK/

where ' is the Frobenius on prismatic cohomology, the vertical maps are derived mod-
ulo E.u/ reductions, the two arrows on the bottom row are natural arrows appearing in
the Hodge-to-de Rham and Hodge–Tate spectral sequences respectively. Looking at the
degree 2 cohomology together with (2) and (3) above, we see that ' on H2∆.BG=S/ is
given by, up to a unit in S=p, multiplication by u 2 S=p. Since ' is a map of E1-
algebras, using (1) we see that ' on H4∆.BG=S/ is given by, up to a unit in S=p,
multiplication by u2DE.u/2S=p. In particular, we see that Fil1BK H4qSyn.BG=S;∆

.1//D

H4qSyn.BG=S;∆
.1// is the whole cohomology group.

On the other hand, we claim that the map

H4qSyn.BG=S;Fil1N ∆.1//! H4qSyn.BG=S;∆
.1//
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is not surjective. Indeed, we have a long exact sequence coming from the exact triangle
Fil1N ∆.1/ ! ∆.1/ ! OBG with the second arrow being the composition of taking the
derived complex modulo E.u/ followed by projection modulo the first Hodge filtration.
Hence (3) above shows that the cokernel is exactly of length 1. This shows that BG is a
smooth proper stack counterexample for .i; j; n/D .4; 1;1/. Since all these cohomology
groups are p-torsion, we see that this also provides a stacky counterexample for .i; j;n/D
.3; 1; 1/.

Finally, let us use an approximation of BG to get a smooth proper scheme counterex-
ample. By [24, Section 4.3] there is a smooth projective fourfold X over OK together
with a map f W X ! BG such that the induced pullback map of Hodge cohomology is
injective when the total degree is no larger than 4. By functoriality of the formation of
Breuil–Kisin filtrations, we know that

Im
�
f � W H4qSyn.BG=S;∆

.1//! H4qSyn.X=S;∆
.1//

�
� Fil1BK H4qSyn.X=S;∆

.1//:

Lastly, we claim f �.zu2/2H4qSyn.X=S;∆
.1// is not in the image of H4qSyn.X=S;Fil1N ∆.1//.

To see this, it suffices to compare two exact sequences:

H4qSyn.BG=S;Fil1N ∆.1// //

��

H4qSyn.BG=S;∆
.1// //

��

H4qSyn.BG;OBG/

f �

��

H4qSyn.X=S;Fil1N ∆.1// // H4qSyn.X=S;∆
.1// // H4qSyn.X;OX /

and invoke the fact that f � is injective by our choice ofX . This gives us a smooth projec-
tive fourfold over OK , violating the conclusion of Corollary 7.11 for .i; j; n/ D .4; 1;1/
or .i; j; n/ D .3; 1; 1/.

7.3. Torsion crystalline cohomology

Now we are ready to discuss the structure of Hicrys.Xn=Sn/ via prismatic cohomology.
First, we provide an application of the comparison R�∆.X=S/˝S;' S Š R�crys.X=S/,
which concerns the module structure of the cohomology of the latter. We need some
preparations.

Lemma 7.15. The rings S=pn are coherent for all n 2 N.

We do not know if the ring S itself is coherent.

Proof of Lemma 7.15. We use induction on n. The base case n D 1: since S is given by
p-completely adjoining the divided powers of the Eisenstein polynomial E.u/ to S, we
see that S=p is obtained by adjoining the divided powers of E.u/ � ue to S=p D kJuK.
It is well-known that the result is S=p Š kŒu�=upe ˝k kŒu1; u2; : : :�=.u

p
i / where ui is

the image of the pi -th divided powers of E.u/. One checks that this explicit algebra is
coherent by noting that any finitely generated ideal is generated by polynomials involving
only finitely many variables.
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Now we do induction, which largely relies on [7, Lemma 3.26]. Indeed, the cited
lemma reduces our task to showing that the ideal .pn/=.pnC1/ in S=pnC1, when viewed
as an S=p-module, is finitely presented. But in fact S is p-torsionfree, hence the ideal
.pn/=.pnC1/ is free when viewed as an S=p-module with generator pn.

Lemma 7.16. Suppose that C � is a perfect Sn-complex. Then there exists an exact
sequence of S -modules

0! Hi .C �/˝S S ! Hi .C � ˝L
S S/! TorS

1 .H
iC1.C �/; S/! 0:

In particular, S has Tor-amplitude 1 over S and the functor M 7! TorS
1 .M; S/ is left

exact.

Proof. For the first claim, see [12, before the proof of Theorem 5.4] and replace Ainf

(resp. Acrys) there by S (resp. S ). The fact that S has Tor-amplitude 1 over S follows
from the Auslander–Buchsbaum formula and torsionfreeness of S .

Proposition 7.17. Let M be a finitely generated Kisin module. Then TorS
1 .M; '�S/ is a

finitely presented S -module.

Proof. DenoteN WDMŒu1�, which is the maximal finite length S-submodule insideM .
We first show TorS

1 .N; '�S/ ! TorS
1 .M; '�S/ is an isomorphism. Since S has

Tor-amplitude 1 over S by Lemma 7.16, it suffices to show the vanishing of
TorS

1 .M=N; '�S/. Noting that M=N is an étale Kisin module, we have a sequence

0! .M=N/tor !M=N ! .M=N/tf ! 0;

where .M=N/tor is a successive extension of kJuKDS=p asM=N is étale, and .M=N/tf
is torsionfree. Next observe that both these structures are preserved under base change
along the Frobenius on S. Therefore it suffices to show TorS

1 .�; S/ D 0 whenever the
input S-module is S=p or torsionfree. In the former case, we apply the fact that S has
no p-torsion. In the latter, consider the reflexive hull M 0__ of the input module M 0 �
M 0__, which is finite free as S is regular Noetherian of dimension 2. Finally, the desired
vanishing of TorS

1 .M
0; S/ follows from the left exactness of Tor1 against S over S: see

Lemma 7.16.
It suffices to show TorS

1 .N
0; S/ is finitely presented for any finite length S-module,

which is the content of the next lemma.

Lemma 7.18. Let N be a finite length S-module. Then N ˝S S and TorS
1 .N; S/ are

finitely presented S -modules.

Proof. When N D k Š S=.p; u/, the statement for k ˝S S D S=.p; u/ D .S=p/=u

and TorS
1 .k; S/ Š S=pŒu� follows from the fact that S=p is coherent (Lemma 7.15) and

[34, Tag 05CW (3)].

https://stacks.math.columbia.edu/tag/05CW
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Next we use induction on the length of N . By considering N ↠ N=.p; u/' k˚r , we
have a short exact sequence 0!N 0!N ! k! 0, which induces a long exact sequence

0!TorS
1 .N

0;S/!TorS
1 .N;S/!TorS

1 .k;S/!N 0˝S S!N ˝S S! k˝S S! 0:

Induction hypotheses imply that all terms except N ˝S S and TorS
1 .N; S/ are finitely

presented S -modules. Note that the finite length assumption implies all modules are
S=pN -modules for some sufficiently large N . The coherence of S=pN (Lemma 7.15)
and [34, Tag 05CW (3)] show the boundary map TorS

1 .k; S/ ! N 0 ˝S S has finitely
presented kernel and cokernel. Now we use [34, Tag 0519] to finish the proof.

Proposition 7.19. Let X be a smooth proper p-adic formal scheme over Spf.OK/. The
S=pn-module Hicrys.Xn=Sn/ is finitely presented for any integer i and any n 2 N[ ¹1º.

Let us stress again that this already follows from [9, Theorem 5.2].

Proof of Proposition 7.19. The case of finite n follows from Lemma 7.15: the prismatic
cohomology complex is a perfect complex, hence the comparison [9, Theorem 5.2] or
Theorem 3.5 shows the crystalline cohomology complex is also perfect over the coherent
ring S=pn. Therefore all of its cohomology modules are finitely presented as S=pn-
modules.

Now we turn to the case n D1. By Lemma 7.16 there is a short exact sequence

0! Hi∆.X=S/˝S;' S ! Hicrys.X=S/! TorS
1 .H

iC1
∆ .X=S/; '�S/! 0:

Since the prismatic cohomology complex is perfect and the ring S is Noetherian, the
term Hi∆.X=S/ ˝S;' S is finitely presented. Using [34, Tag 0519] we are reduced to
showing that TorS

1 .H
iC1
∆ .X=S/; '�S/ is finitely presented. This in turn follows from

Proposition 7.17 and the fact that HiC1∆ .X=S/ is a Kisin module: see Corollary 7.4.

Now we turn to the main result of our paper, which concerns the Breuil-module struc-
ture of crystalline cohomology. Write M

j
n WD Hj∆.Xn=Sn/ and M

j
n WD Hjcrys.Xn=Sn/.

Lemma 7.20. The sequence

0!Mi
n=uMi

n !Mi
n=I
CS ! TorS

1 .M
iC1
n ; '�S/=I

CS ! 0

is exact.

Proof. From the derived mod pn version of Theorem 3.11, we deduce that S ˝L
';S

R�∆.Xn=Sn/ ' R�crys.Xn=Sn/. So Lemma 7.16 yields an exact sequence

0! S ˝';S Mi
n !Mi

n ! TorS
1 .M

iC1
n ; '�S/! 0 (7.21)

as ' on S is finite flat.

https://stacks.math.columbia.edu/tag/05CW
https://stacks.math.columbia.edu/tag/0519
https://stacks.math.columbia.edu/tag/0519
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We only need to show that the above exact sequence remains exact after reduction
modulo ICS . To see this, note that R�crys.Xk=Wn.k// ' R�∆.Xn=Sn/ ˝

L
S W.k/ '

R�crys.Xn=Sn/ ˝
L
S W.k/, where in the last identification we use the fact that the

Frobenius on W.k/ is an isomorphism. Using the exact sequence (7.7), we have the com-
mutative diagram

S=ICS ˝';S Mi
n

o

��

//Mi
n=I
CS

��

// TorS
1 .M

iC1
n ; '�Sn/=I

CS //

��

0

0 //Mi
n=uMi

n
// Hi .Xk=Wn.k// //MiC1

n Œu� // 0

Since the left column is an isomorphism, we conclude that the top row is left exact as
desired.

Recall in Definition 6.23, Hicrys.Xn=Sn/ is defined to be a Breuil module if the quad-
ruple �

Hicrys.Xn=Sn/;H
i
crys.Xn=Sn; I

Œi�
crys/; 'i ;r

�
constructed in Section 5.2 is an object of Mod';i;rS;tor . This condition is equivalent to the
triple �

Hicrys.Xn=Sn/;H
i
crys.Xn=Sn; I

Œi�
crys/; 'i

�
being an object of Mod';iS;tor.

Theorem 7.22. Let n 2 N and assume i � p � 2. Then Hj∆.Xn=Sn/ has no u-torsion
for j D i; i C 1 if and only if Hicrys.Xn=Sn/ is a Breuil module. In that case we have

M.Hi∆.Xn=Sn// ' Hicrys.Xn=Sn/ inside Mod';iS;tor.

Proof. Write M
j
n WD Hj∆.Xn=Sn/. Suppose that it has no u-torsion for j D i; i C 1.

So Mi
n is an étale Kisin module of height i by Proposition 7.2. By the discussion of

Section 6.3, we know Mi
n WDM.Mi

n/ is an object of Mod';iS;tor. By the derived mod pn

version of Theorem 3.11, we have S ˝L
';S R�∆.Xn=Sn/ ' R�crys.Xn=Sn/. So Lemma

7.16 yields

0!S ˝';S Hi∆.Xn=Sn/!Hicrys.Xn=Sn/!TorS
1 .H

iC1
∆ .Xn=Sn/; '�Sn/!0: (7.23)

Our assumption that MiC1
n has no u-torsion gives an isomorphism

� W S ˝';S Hj∆.Xn=Sn/ ' Hicrys.Xn=Sn/:

Now we claim that � induces a natural map �i W Fili M.Mi
n/! Hicrys.Xn=Sn; I

Œi�
crys/ and

both the source and target are natural submodules of Hicrys.Xn=Sn/. In particular, �i is an
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injection. To see this, we note that � is induced by the natural map '�Mi
n !Mi

n, which
we still denote by �. By Theorem 4.21, we have the commutative diagram

Hi�1qSyn.Xn;∆
.1/

�=S
=FiliN ∆.1/

�=S
/

˛ //

o

��

HiqSyn.Xn;FiliN ∆.1/
�=S

/
ˇ
//

��

HiqSyn.Xn;∆
.1/

�=S
/! � � �

�

��

Hi�1qSyn.Xn; dR^
�=S =FiliH dR^

�=S/
˛0 // HiqSyn.Xn;FiliH dR^

�=S/
ˇ 0
// HiqSyn.Xn; dR^

�=S/! � � �

with both rows being exact. By Theorem 4.21 (4), the left column is an isomorphism. As
Mi
n is assumed to have no u-torsion, Corollary 7.11 shows that ˇ is an injection. Thus

˛ and hence ˛0 are zero maps. So ˇ0 is an injection. Therefore, Theorem 4.1 gives the
commutative diagram

FiliBK '
�Mi

n
� � //

��

'�Mi
n

�

��

Hicrys.Xn=Sn; I
Œi�
crys/
� � // Hicrys.Xn=Sn/

Since � W M.Mi
n/
'
�! Mi

n D Hicrys.Xn=Sn/ is an isomorphism and Fili M.Mi
n/ is the

S -submodule of Mi
n generated by the image of Fili '�Mi

n and Fili S �Mi
n, we see

that Fili M.Mi
n/ � Hicrys.Xn=Sn; I

Œi�
crys/ via �. This shows that � induces an injection

� W Fili M.Mi
n/ ,! Hicrys.Xn=Sn; I

Œi�
crys/.

Next we claim that �i is an isomorphism. After a faithfully flat base change along
Sn ! Acrys;n WD Acrys=p

n, we are now working with X WD XOC . We need some facts
about the sheaf Zp.h/ on XqSyn defined in [8, Section 7.4]. First by [8, Theorem 10.1],
we have Z=pnZ.h/ ' ��hR �.Z=pnZ.h//, where  W .XC/Ket ! XKet is the natural map
of étale sites. By [1, Theorem F], when h � p � 2 we have

Zp.h/ ' fib.'h � 1 W FilhH dR^
�=Zp

! dR^
�=Zp

/:

Now Proposition 5.4 implies

Zp.h/ ' fib.'h � 1 W FilhH dR^
�=Ainf

! dR^
�=Ainf

/:

Since fib commutes with taking the derived mod pn version, we may apply˝L
ZZ=pnZ to

this equation. Finally, by Theorem 4.1, for i � h � p � 2, we get the exact sequence

� � � ! Hi�1crys .Xn=Acrys;n/! Hi
Ket.XC;Z=pnZ.h//! Hicrys.Xn=Acrys;n; I

Œh�
crys/

'h�1
���! Hicrys.Xn=Acrys;n/: (7.24)
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By (7.24) and Proposition 6.12, we obtain the commutative diagram

0 // TS .M.Mi
n//

˛

��

// Acrys ˝S Fili M.Mi
n/! Acrys ˝S M.Mi

n/

1˝�i

��

o

��

// 0

Hi
Ket.XC;Z=pnZ/.i/

s // Hicrys.Xn=Acrys;n; I
Œi�
crys/! Hicrys.Xn=Acrys;n/

with both rows being exact. Since 1 ˝ �i is an injection, so is ˛. Then ˛ must be an
isomorphism because TS .M.Mi

n// ' TS.M
i
n/.i/ ' Hi

Ket.XC;Z=pnZ/.i/ due to Propo-
sition 6.12 and [9, Theorem 1.8 (4)]. Therefore s is also injective. Now by the snake
lemma, coker.1˝ �/ D 0 as required.

Conversely, assume that Mi
n WDHicrys.Xn=Sn/ is an object in Mod';iS;tor with Fili Mi

n D

Hicrys.Xn=Sn; I
Œi�
crys/. As before, we consider the base change X WD XOC and we still have

a commutative diagram

0 // TS .M
i
n/

˛

��

// Acrys ˝S Fili Mi
n ! Acrys ˝S Mi

n

o

��

o

��

// 0

Hi
Ket.XC;Z=pnZ/.i/

s // Hicrys.Xn=Acrys;n; I
Œi�
crys/! Hicrys.Xn=Acrys;n/

The difference here is that the middle column is now an isomorphism, whereas the first
column ˛ is not known to be an isomorphism.

First it is easy to see that ˛ is an injection by chasing the diagram. Now by Corol-
lary 6.15, we have

lengthW.k/.M
i
n=I
CS/ D lengthZ TS .M

i
n/ � lengthZ Hi

Ket.XC;Z=pnZ/:

On the other hand, by the proof of Lemma 7.6 and Lemma 7.20, we see that

lengthZ Hi
Ket.XC;Z=pnZ/ � lengthW.k/.M

i
n=uMi

n/ � lengthW.k/.M
i
n=I
CS/:

Combining the above two inequalities, we see that

lengthZ Hi
Ket.XC;Z=pnZ/ D lengthW.k/.M

i
n=uMi

n/ D lengthW.k/.M
i
n=I
CS/:

Now the proof of Lemma 7.6 implies that Mi
n has no u-torsion. By the length equality,

the injection Mi
n=uMi

n ,! Mi
n=I
CS in Lemma 7.20 is in fact an isomorphism. and

hence TorS
1 .M

iC1
n ; '�S/=I

CS D 0. It is easy to see that TorS
1 .M

iC1
n ; '�S/ is a finitely

generated S -module, and applying Nakayama’s lemma yields TorS
1 .M

iC1
n ; '�S/ D 0.

Therefore MiC1
n has no u-torsion by the following claim.

Claim. If M is a pn-torsion S-module and TorS
1 .M;'�S/D 0 then M has no u-torsion.

To prove this, we first note that TorS
1 .�; '�S/ is a left exact functor by Lemma 7.16.

Secondly, note that M has no u-torsion if and only if it has no .u; p/-torsion. Let
M0 � M be the .u; p/-torsion submodule in M. The above discussion implies that
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TorS
1 .M

0; '�S/D 0. Now by definition, we have M0 Š
L
ƒ k as an S-module, whereƒ

is an indexing set. One computes directly that

TorS
1 .M

0; '�S/ D
M
ƒ

Tor1S.S=.p; u/; '�S/ D
M
ƒ

Tor1S.S=.p; u
p/; S/

D

M
ƒ

ker.S=p
�up

��! S=p/:

Since ker.S=p
�up

��! S=p/ is nonzero (upe D 0 in S=p), the above computation implies
ƒ D ;, as claimed.

Corollary 7.25. If ei < p � 1 then Hj∆.Xn=Sn/ has no u-torsion for j D i; i C 1, and
Hicrys.Xn=Sn/ is a Breuil module.

Proof. By Lemma 6.5 and Proposition 7.2, we know that Hi∆.Xn=Sn/ has no u-torsion.
To show that HiC1∆ .Xn=Sn/ has no u-torsion, we first consider the case n D 1. The main
theorem of [13] shows that Hicrys.X1=S1/ is a Breuil module when nD 1 and ei < p � 1.
Then Theorem 7.22 shows that HiC1∆ .X1=S1/ has no u-torsion.

Let us prove by induction that MiC1
n WD HiC1∆ .Xn=Sn/ has no u-torsion. We use the

long exact sequence relating various MiC1
n WD HiC1∆ .Xn=Sn/:

� � � !Mi
n�1

f
�!MiC1

1 !MiC1
n !MiC1

n�1 ! � � � :

By induction, we may assume that MiC1
n�1 has no u-torsion. It suffices to prove that

MiC1
1 =f .Mi

n�1/ has no u-torsion. To that end, write N WD f .Mi
n�1/ which has height i ,

M WDMiC1
1 which has height i C 1, and L WDMiC1

1 =N. By construction we have the
exact sequence

0! N
f
�!M

g
�! L! 0:

Let M0 D g�1.LŒu1�/. Then we obtain two exact sequences

0! N!M0
! LŒu1�! 0 and 0!M0

!M! L=LŒu1�! 0:

The second sequence has all terms being étale Kisin modules. Since M have height i C 1,
we conclude that both M0 and L=LŒu1� have height i C 1. Since both N and M0 are étale,
they are finite free over kJuK. This allows us to choose a basis e1; : : : ; ed of N and a basis
e01; : : : ; e

0
d

of M0 so that .e1; : : : ; ed /D .e01; : : : ; e
0
d
/ƒ, whereƒD diag.ua1 ; : : : ; uad / is

a diagonal matrix such that a1 � � � � � ad . Let A and A0 be the matrices of the Frobenius
for the corresponding basis. We easily see that

ƒA D A0'.ƒ/:

Hence the last column of A0'.ƒ/ is divisible by upad . Consequently, the last column of
A is divisible by u.p�1/ad . But N has height i , which means that there exists a matrix B
with entries in kJuK such that AB D BA D ueiId . But this is impossible as ei < p � 1
unless ad D 0. This forces that ƒ D Id and hence a posteriori L has no u-torsion as
desired.
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Remark 7.26. Let T be the largest integer satisfying Te < p � 1, and let n 2 N. It is
a result of Min [30, Lemma 5.1] that Hi∆.X=S/ has no u-torsion when 0 � i � T C 1.
By a similar argument, one can also show that Hi∆.Xn=Sn/ has no u-torsion for 0 �
i � T . The slight improvement along this direction in Corollary 7.25 is the statement that
HTC1∆ .Xn=Sn/ is also u-torsionfree. This would imply Min’s result. As far as we can tell,
Min’s strategy does not give u-torsionfreeness of HTC1∆ .Xn=Sn/.

Proposition 7.27. Let i � p � 2 be an integer. Suppose that Hicrys.Xn=Sn; I
Œi�
crys/ !

Hicrys.Xn=Sn/ DWM
i
n is injective, and denote its image by Fili Mi

n. Assume furthermore
that Mi

n together with

.Fili Mi
n D Hicrys.Xn=Sn; I

Œi�
crys/; 'i ;r/

is an object of Mod';i;rS;tor . Then TS .Mi
n/ ' Hi

Ket.Xx�;Z=p
nZ/.i/ as GK-representations.

Proof. Theorem 7.22 together with Proposition 6.12 already yield the isomorphisms

TS .Hicrys.Xn=Sn//
�1
' TS.Hi∆.Xn=Sn//.i/

�2
' Hi

Ket.Xx�;Z=p
nZ/.i/:

The main point here is to check that �1; �2 are compatible withGK-actions. Let X WDXOC .
First, Ainf ˝S Mi

n ' Hi∆.Xn=Ainf;n/, which admits a natural GK-action. Since Ainf is
a perfect prism, [9, Theorem 1.8 (4)] proves that

TS.M
i
n/ D .H

i
∆.Xn=Ainf;n//

'D1
' Hi

Ket.Xx�;Z=p
nZ/

is compatible with the GK-action, as explained in Remark 7.5. This implies that �2 is
compatible with the GK-actions.

Now Theorem 3.11 shows that the comparison isomorphism

x� W Hi∆.Xn=Ainf;n/˝Ainf;' Acrys ' Hicrys.Xn=Acrys;n/

is functorial. Sox� is compatible with the natural GK-actions on both sides. Alsox� is com-
patible with the isomorphism � WM.Mi

n/ ' Hicrys.Xn=Sn/. Applying Remark 6.14 then
implies that

�1 W TS .Hicrys.Xn=Sn//'TS.Hi∆.Xn=Sn//.i/

is compatible with the GK-actions if we define the GK-action on Hicrys.Xn=Sn/˝S Acrys

via the identification Hicrys.Xn=Sn/˝S Acrys D Hicrys.Xn=Acrys;n/. Recall the GK-action
on Hicrys.Xn=Sn/ ˝S Acrys is defined by (6.19), and we have shown in Section 5.3 that
these two GK-actions are the same. This proves that �1 is also compatible with the GK-
actions.

To end this subsection, we explain how our results are related to Fontaine–Messing
theory [17] (see also [21]) for a proper smooth formal scheme X over W.k/. For any
n� 1, the schemeXn is smooth proper over Spec.Wn.k//. So when 0� j � i �p� 1, the
triple M i WD .Hicrys.Xn=Wn.k//;H

i
crys.Xn=Wn.k/;I

Œj �
crys/; 'j / is known to be a Fontaine–

Laffaille data.
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Now let i � p � 2; one wants to show that Tcrys.M
i /'Hi

Ket.Xx�;Z=p
nZ/.i/. We recall

the construction of Tcrys.M
i /: Write Filj M i WD Hicrys.Xn=Wn.k/; I

Œj �
crys/ and let

Fili .Acrys ˝W.k/M
i / D

iX
jD0

Filj Acrys ˝W.k/ Fili�j M i
� Acrys ˝W.k/M

i :

Then one can define 'i W Fili .Acrys ˝W.k/M
i /! Acrys ˝W.k/M

i by

'i WD

iX
jD0

'j jFilj Acrys
˝ 'i�j jFili�j M i ;

and Tcrys.M
i / WD .Fili .Acrys ˝M

i //'iD1.
Let Mi WD Hicrys.Xn=Sn/, which is an object of Mod';i;rS;tor by Corollary 7.25. It is clear

that the base change map � W S ˝W.k/M i !Mi is an isomorphism asW.k/! S is flat.
Define

Fili .S ˝W.k/M i / WD

iX
jD0

Filj S ˝W.k/ Fili�j M i
� S ˝W.k/M

i :

Since Filj M i is a direct summand of Filj�1M i , the natural map Fili .S ˝W.k/M i /!

Hicrys.Xn=Sn; I
Œi�
crys/ induced by � is injective. Therefore, we obtain the commutative dia-

gram

0 // Tcrys.M
i / //

� _

��

Fili .Acrys ˝W.k/M
i /

'i�1 //
� _

��

Acrys ˝W.k/M
i

o

��

0 // TS .M
i / // Fili .Acrys ˝S Mi /

'i�1 // Acrys ˝S Mi

It is well-known from Fontaine–Laffaille theory that lengthZ Tcrys.M
i /D lengthW.k/M

i .
By Corollary 6.15, lengthZ TS .M

i / D lengthW.k/.M
i=ICS/ D lengthW.k/M

i . There-
fore, the left column must be bijective. By Proposition 7.27, it remains to check that the
isomorphism Tcrys.M

i / ! TS .M
i / is compatible with the GK-actions. Since the GK-

action on TS .Mi / is the GK-action on Acrys ˝S Mi via (6.19), it suffices to show that
M i � .Mi /rD0, which follows from Proposition 5.4 (1).

Corollary 7.28. Fontaine–Messing theory [17] and [21] accommodate X being a proper
smooth formal scheme over W.k/.

8. Some calculations on TS

8.1. Identification of (6.20) and (6.19)

In this section, we show that (6.20) and (6.19) are the same.
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Lemma 8.1. If we writeN nD
Pn
iD1Ai;nu

iri thenAi;nC1DAi�1;nC iAi;n andA1;nD
An;n D 1.

Proof. Easy induction on n using N D ur.

Recall that i .t/ denotes the i -th divided power of t .

Lemma 8.2.
P
n�i Ai;nn.t/ D i .e

t � 1/:

Proof. It suffices to show that Taylor’s t -expansions of both sides are equal. It is clear
that the coefficients of tn, the first nonzero term, coincide on both sides. If we write
i .e

t � 1/ D
P
n�i Bi;nn.t/ then it suffices to show that Bi;n satisfies the recursive

formula Bi;nC1 D Bi�1;n C iBi;n for n � i . Note that

i .e
t
� 1/ D

1

iŠ

� iX
mD0

�
i

m

�
.�1/i�memt

�
:

Therefore,

Bi;n D
1

iŠ

� iX
mD0

�
i

m

�
.�1/i�mmn

�
:

So Bi�1;n C iBi;n D Bi;nC1 is equivalent to

1

.i � 1/Š

� i�1X
mD0

�
i � 1

m

�
.�1/i�1�mmn C

iX
mD0

�
i

m

�
.�1/i�mmn

�
D
1

iŠ

iX
mD0

�
i

m

�
.�1/i�mmnC1;

which follows from i
��
i
m

�
�
�
i�1
m

��
D
�
i
m

�
m:

Now by the above lemmas,

1X
nD0

N n.x/n.log.".�// D
1X
nD0

r
n.x/unn.e

log.".�//
� 1/ D

1X
nD0

r
n.x/n.u.".�/ � 1//

D

1X
nD0

r
n.x/n.�.u/ � u/:

This proves that (6.20) and (6.19) are the same.

8.2. TS and Tst;?

In this subsection, we explain that our functor TS and the functor Tst;? used in [13] are
the same. For this purpose, we have to review the period ring yAst from [13]. Let yAst D

AcryshXi be the p-adic completion of the PD algebra of Acrys. We extend the Frobenius '
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and the filtration of Acrys to yAst as follows: Let '.X/ D .1CX/p � 1 and

Fili yAst WD

° 1X
jD0

aj j .X/
ˇ̌̌
aj 2 Filmax¹i�j;0ºAcrys; lim

j!1
aj D 0 p-adically

±
:

It is easy to see that we can define 'r W Filr yAst ! yAst similar to that for Acrys. To extend
the GK-action to yAst; for any g 2 GK ; recall that ".g/ D g.Œ��/

Œ��
2 Ainf defined before

(6.20). Set g.X/ D ".g/X C ".g/� 1. Finally, define an Acrys-linear monodromy by set-
ting N.X/ D �.1C X/. We embed S in yAst via u 7! Œ��.1C X/�1. At this point, we
have two embeddings S ! yAst: the embedding �1 W S ,! Acrys � yAst via u 7! Œ�� 2 Ainf,
and �2 W S ,! yAst via u 7! Œ� �.1 C X/�1. We will use both. Notice that there is an
Acrys-linear projection q W yAst ! Acrys sending i .X/ to 0. It is easy to check that q is
compatible with the filtration, Frobenius,GK-actions, and both embeddings �i W S ,! yAst.
Set ˇ WD log.1CX/ 2 yAst.

Remark 8.3. Breuil–Caruso’s theory has N.1C X/ D 1C X . Our setting has a minus
sign to fit r.u/ D 1. There is no difference between these two settings apart from some
signs.

Given a Breuil module M 2Mod';N;hS;tor , we extend filtration, 'h, monodromy andGK-
actions to yAst ˝�2;S M as follows:

Filh yAst ˝�2;S M D yAst ˝�2;S Filh M C Filh yAst ˝�2;S M:

For a ˝ m 2 yAst ˝�2;S Filh M, set 'h.a ˝ m/ D '.a/ ˝ 'h.m/, and for a ˝ m 2

Filh yAst ˝�2S M, set 'h.a ˝ m/ D 'h.a/ ˝ 'h.E
hm/: It is easy to check that these

'h are compatible with intersection so that 'h extends to yAst ˝�2;S M. We extend
the GK-action from yAst to yAst ˝�2;S M by acting on M trivially, and N.a ˝ m/ D
N.a/˝mC a˝N.m/ for all a 2 yAst and m 2M. Now set

Tst.M/ WD .Filh. yAst ˝�2;S M//'hD1;ND0:

Proposition 8.4. There is an isomorphism TS .M/ ' Tst;?.M/ as GK-representations.

Proof. For m 2 M � yAst ˝�2;S M, set mr WD
P1
iD0 N

i .m/i .ˇ/ and Mr D

¹mr j m 2Mº � yAst ˝�2;S M: To understand the map ˛ WM !Mr , consider the fol-
lowing diagram induced by q W yAst ↠ Acrys:

Mr

˛0

��

� s

j

%%

M
� � //

˛

>> >>

yAst ˝�2;S M

q

����

M
� � // Acrys ˝S M
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where ˛0 WMr! q.M/DM is induced by q. By definition of ˛, it is easy to show that ˛
and ˛0 are bijective. Also ˛ is an isomorphism of S -modules in the sense that ˛.�2.s/m/D
�1.s/˛.m/ for s 2 S and m 2M. Using the fact that N satisfies Griffiths transversality
and diagram (6.17) together with the facts that ˇ 2 Fil1 yAst and '.ˇ/ D pˇ, a similar
argument to that in Lemma 6.21 (replacing a with ˇ) shows that for any m 2 Filh M we
have mr 2 Filh. yAst ˝�2;S M/ and 'h.mr/ D .'h.m//r . In summary, ˛ WM !Mr is

an isomorphism in Mod';hS;tor and the injections M
˛
'Mr � yAst ˝�2;S M are compatible

with the filtrations and 'h.
Now consider the natural map Acrys ˝S Mr 2 yAst ˝�2;S M induced by inclusion

j WMr � yAst˝�2;S M which is still denoted by zj . Since q ı zj is an isomorphism (because
Acrys˝S .q ı ˛/ is), we conclude thatAcrys˝S Mr is anAcrys-submodule of yAst˝�2;S M

which is compatible with the filtration and 'h.
As N.ˇ/ D �1, we easily see that Mr � . yAst ˝S M/ND0. In particular, we have an

injection zj W Acrys ˝S M
r ! . yAst ˝�2;S M/ND0 compatible with the filtration and 'h.

Therefore zj induces an injection

TS .M/ D .Filh.Acrys ˝S M//'hD1

˛
' .Filh.Acrys ˝S Mr//'hD1 � .Filh. yAst ˝�2;S M//'hD1;ND0 D Tst;?.M/:

To see that this injection is an isomorphism, by dévissage we can reduce to the case that
M is killed by p because both TS and Tst;? are exact functors [13, Corollary 2.3.10].
In this case, it is also well-known that dimFp

Tst;? D rankS1
M D dimFp

TS .M/. This
establishes the isomorphism TS .M/ ' Tst;?.M/. Finally, we check this isomorphism is
compatible with GK-actions. Note that TS .M/ has GK-action via (6.20), while Tst;? has
GK-action from that on yAst ˝�2;S M with trivial GK-action on M. We have to show
that Acrys ˝S Mr has GK-action as the subspace of yAst ˝�2;S M is the same as that
defined in (6.20). But this easily follows from the formulas mr WD

P1
iD0 N

i .m/i .ˇ/

and g.ˇ/ D log.".g//C ˇ.
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