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Abstract. Using non-Archimedian integration over spaces of arcs of algebraic varieties,
we define stringy Euler numbers associated with arbitrary Kawamata log-terminal pairs.
There is a natural Kawamata log-terminal pair corresponding to an algebraic varietyV
having a regular action of a finite groupG. In this situation we show that the stringy Euler
number of this pair coincides with the physicists’ orbifold Euler number defined by the
Dixon-Harvey-Vafa-Witten formula. As an application, we prove a conjecture of Miles Reid
on the Euler numbers of crepant desingularizations of Gorenstein quotient singularities.

1. Introduction

Let X be a normal irreducible algebraic variety of dimensionn overC,
Zn−1(X) the group of Weil divisors onX, Div(X) ⊂ Zn−1(X) the subgroup
of Cartier divisors onX, Zn−1(X)⊗Q the group of Weil divisors onX with
coefficients inQ, KX ∈ Zn−1(X) a canonical divisor ofX.

Recall several definitions from the Minimal Model Program [14–16]
(see also [17,18]):

Definition 1.1. Let1X ∈ Zn−1(X) ⊗ Q be aQ-divisor on a normal irre-
ducible algebraic varietyX. A resolution of singularitiesρ : Y → X is
called alog-resolution of(X,1X) if the union of theρ-birational transform
ρ−1(1X) of1X with the exceptional locus ofρ is a divisorD consisting of
smooth irreducible componentsD1, . . . , Dm having only normal crossings.

Definition 1.2. Letρ : Y→ X be a log-resolution of a pair(X,1X). We
assume thatKX +1X is aQ-Cartier divisor and write

KY = ρ∗(KX +1X)+
m∑

i=1

a(Di ,1X)Di ,

whereDi runs through all irreducible components ofD anda(Di ,1X) =
−dj if Di is a ρ-birational transform of an irreducible component1 j of
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Su pp1X of multiplicity dj . Then the number rational numbera(Di ,1X)

(resp.al(Di ,1X) := a(Di ,1X)+ 1) is called thediscrepancy(resp.log-
discrepancy) of Di .

Definition 1.3. A pair (X,1X) is called Kawamata log-terminal if the
following conditions are satisfied:

(i) 1X = d111 + · · · + dk1k, where11, . . . ,1k are irreducible Weil
divisors anddi < 1 for all i ∈ {1, . . . , k};

(ii) KX +1X is aQ-Cartier divisor;
(iii) for any log-resolution of singularitiesρ : Y → X, we have

al(Di ,1X) > 0 for all i ∈ {1, . . . ,m},
Now we introduce a new invariant of Kawamata log-terminal pairs:

Definition 1.4. Let(X,1X) be a Kawamata log-terminal pair,ρ : Y→ X
a log-resolution of singularities as above. We putI = {1, . . . ,m} and set
for any subsetJ ⊂ I

DJ :=
{⋂

j∈J D j if J 6= ∅
Y if J = ∅ , D◦J := DJ \⋃ j∈(I \J) Dj ,

e(D◦J) := (topological Euler number ofD◦J).

We call the rational number

est(X,1X) :=
∑
J⊂I

e(D◦J)
∏
j∈J

al (Dj ,1X)
−1

thestringy Euler number of the Kawamata log-terminal pair(X,1X) (in
the above formula, we assume

∏
j∈J = 1 if J = ∅).

Using non-Archimedian integrals, we show that the stringy Euler number
est(X,1X) is well-defined:

Theorem 1.5. In the above definition,est(X,1X) does not depend on the
choice of a log-resolutionρ : Y→ X.

We expect that the stringy Euler numbers have the following natural
connections with log-flips in dimension 3 (see [21,22]):

Conjecture 1.6.Let X be a normal 3-dimensional variety and1X is an
effectiveQ-divisor such that(X,1) is Kawamata log-terminal, andϕ :
(X,1X) 99K (X+,1X+) a log-flip with respect toKX +1X. Then one has
the following inequality:

est(X,1X) > est(X
+,1X+).

Remark 1.7.In 4.11 we show that the above conjecture is true for toric
log-flips in arbitrary dimensionn.
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Recall now a definition from the string theory [10] (see also [20]):

Definition 1.8. Let V be a smooth complex algebraic variety together with
a regular action of a finite groupG: G× V → V. For any elementg ∈ G
we set

Vg := {x ∈ V : gx= x}.
Then the number

e(V,G) := 1

|G|
∑

(g,h)∈G×G

gh=hg

e(Vg ∩ Vh)

is called thephysicists’ orbifold Euler number of V.

Our main result of this paper is the following:

Theorem 1.9. Let V be as in 1.8,X := V/G the geometric quotient,
11, . . . ,1k ⊂ V/G the set of all irreducible components of codimension1
in the ramification locus of the Galois coveringφ : V → X. We denote by
νi the order of a cyclic inertia subgroupGi ⊂ G corresponding to1i and
set

1X :=
k∑

i=1

(
νi − 1

νi

)
1i .

Then the pair(X,1X) is Kawamata log-terminal and the following equality
holds

est(X,1X) = e(V,G).

As corollary of 1.9, we obtain the following statement conjectured by
Miles Reid in [20]:

Theorem 1.10. LetG ⊂ SL(n,C) be a finite subgroup acting onV := Cn.
Assume that there exists a crepant desingularization ofX := V/G, i.e.,
a smooth varietyY together with a projective birational morphismρ :
Y→ X such that the canonical classKY is trivial. Then the Euler number
of Y equals the number of conjugacy classes inG.

The paper is organized as follows. In Sect. 2 we review a construction
of a non-Archimedian measure on the space of arcsJ∞(X) of a smooth
algebraic varietyX overC. This measure associate to a measurable subset
C ⊂ J∞(X) an elementVolX(X) of a 2-dimensional noetherian rinĝA1

which is complete with respect to a non-Archimedian topology defined by
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powers of a principal ideal(θ) ⊂ Â1. In Sect. 3 we define exponentially
integrable measurable functions and their exponential non-Archimedian
integrals. Our main interest are measurable functionsFD associated with
Q-divisorsD ∈ Div(X)⊗Q. We prove Theorem 1.5 using a transformation
formula for the exponential integral under a birational proper morphism.

In Sect. 4 we consider Kawamata log-terminal pairs(X,1X), where
X is a toric variety and1X is a torus invariantQ-divisor. We give an
explicit formula forest(X,1X) using a6-piecewise linear functionϕK,1

corresponding to the torus invariantQ-Cartier divisorKX+1X. In Sect. 5 we
investigate quotients of smooth algebraic varietiesV modulo regular actions
of finite groupsG. We define canonical sequences of blow ups of smooth
G-invariant subvarieties inV which allow us to construct in a canonical way
a smoothG-variety V ′ such that stabilizers of all points inV ′ are abelian.
This construction is used in Sect. 6 where we prove Theorem 1.9. In Sect. 7
we apply our results to a cohomological McKay correspondence in arbitrary
dimension (this extends ourp-adic ideas from [2]).

We note that Sects. 2 and 3 are strongy influenced by the idea of “motivic
integral” proposed by Kontsevich [19]. Its different versions are containend
in the papers of Denef and Loeser [6–9]. The case of divisors on surfaces
was considered by Veys in [23,24].

2. Non-Archimedian measure on spaces of arcs

Recall definitions of jets and spaces of arcs (see [11], Part A).

Definition 2.1. Let X be a smoothn-dimensional complex manifold,x ∈ X
an arbitrary point. Agerm of a holomorphic curve at x is a germ of
a holomorphic mapγ of a small ball {|z| < ε} ⊂ C to X such that
γ(0) = x.

Let l be a nonnegative integer. Two germsγ1, γ2 of holomorphic curves
at x are calledl-equivalent if the derivatives ofγ1 andγ2 at 0 coincide up
to order l . The set ofl-equivalent germs of holomorphic curves is denoted
by Jl(X, x) and called thejet space of orderl at x. The union

Jl(X) =
⋃
x∈X

Jl(X, x)

is a complex manifold of dimension(l + 1)n which is a holomorphic affine
bundle overX. The complex manifoldJl(X) is called thejet space of order
l of X.

Definition 2.2. Consider canonical mappingsjl : Jl+1(X)→ Jl (X) (l ≥
0)whose fibers are isomorphic to affine spacesCn. We denote byJ∞(X) the
projective limit ofJl (X)and byπl the canonical projectionJ∞ (X)→ Jl(X).
The spaceJ∞(X) is called thespace of arcs ofX.
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Remark 2.3.Let R be the formal power series ringC[[t]] considered as the
inverse limit of finite dimensionalC-algebrasRl := C[t]/(tl+1). If X is
n-dimensional smooth quasi-projective algebraic variety overC, then the
set of points inJ∞(X) (resp.Jl(X)) coincides with the set ofR-valued (resp.
Rl -valued) points ofX.

From now on we shall consider only the spacesJ∞(X), where X is
a smooth algebraic variety. In this case,Jl(X) is a smooth algebraic variety
for all l ≥ 0.

Definition 2.4. A set C ⊂ J∞(X) is called cylinder set if there exists
a positive integerl such thatC = π−1

l (Bl(C)) for some constructible subset
Bl(C) ⊂ Jl(X). Such a constructible subsetBl(C) will be called thel-base
of C. By definition, the empty set⊂ J∞(X) is a cylinder set and itsl-base
in Jl(X) is assumed to be empty for alll ≥ 0.

Remark 2.5.Let C ⊂ J∞(X) be a cylinder set with anl-baseBl(X).
(i) It is clear thatBl+1(C) := j−1

l (Bl(C)) ⊂ Jl+1(X) is the(l + 1)-base
of C andBl+1(X) is a Zariski locally trivial affine bundle overBl(C) whose
fibers are isomorphic toCn.

(ii) Using (i), it is a standard exercise to show that finite unions, interse-
ctions and complements of cylinder sets are again cylinder sets.

The following property of cylinder sets will be important:

Theorem 2.6. Assume that a cylinder setC ⊂ J∞(X) is contained in
a countable union

⋃∞
i=1 Ci of cylinder setsCi . Then there exists a positive

integerm such thatC ⊂ ⋃m
i=1 Ci .

Proof. The proof of theorem 2.6 is based on a classical property of constru-
ctible sets (see [12], Cor. 7.2.6). For details see Theorem 6.6 in [3]. Another
version of the same statement is contained in [8] (see Lemma 2.4).ut
Definition 2.7. Let Z[τ±1] be the Laurent polynomial ring in variableτ
with coefficients inZ, A the group algebra of(Q,+) with coefficients
in Z[τ±1]. We denote byθs ∈ A the image ofs ∈ Q under the natural
homomorphism(Q,+)→ (A∗, ·), whereA∗ is the multiplicative group of
invertible elements inA (the elementθ ∈ A is transcendental overZ[τ±1]).
For this reason, we write

A := Z[τ±1][θQ ]
and identifyAwith the direct limit of the subringsAN := Z[τ±1][θ 1

NZ] ⊂ A,
whereN runs over all positive integers.
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Definition 2.8. We consider a topology onA defined by thenon-Archi-
median norm

‖ · ‖ : A→ R≥0

which is uniquely characterised by the properties:
(i) ‖ab‖ = ‖a‖ · ‖b‖, ∀a,b ∈ A;
(ii) ‖a+ b‖ = max{‖a‖, ‖b‖}, ∀a,b ∈ A if ‖a‖ 6= ‖b‖;
(ii) ‖a‖ = 1, ∀a ∈ Z[τ±1] \ {0};
(iii) ‖θs‖ = e−s if s ∈ Q.

Thecompletion of A (resp. ofAN) with respect to the norm‖ · ‖ will be
denoted bŷA (resp. bŷAN). We set

Â∞ :=
⋃
N∈N

ÂN ⊂ Â.

Remark 2.9.The noetherian rinĝAN consists of Laurent power series in
variableθ1/N with coefficients inZ[τ±1]. The ring Â consists consists of
formal infinite sums

∞∑
i=1

aiθ
si , ai ∈ Z[τ±1],

wheres1 < s2 < · · · is an ascending sequence of rational numbers having
the property limi→∞ si = +∞.

Definition 2.10. Let W be an arbitrary algebraic variety. Using a natural
mixed Hodge structure in cohomology groupsHi

c(W,C), (0≤ i ≤ 2d), we
define the numberhp,q

(
Hi

c(W,C)
)

to be the dimension of the(p,q)-type
Hodge component inHi

c(W,C). We set

ep,q(W) :=
∑
i≥0

(−1)i hp,q
(
Hi

c(W,C)
)

and call

E(W;u, v) :=
∑
p,q

ep,q(W)upvq,

theE-polynomial of W. By theusual Euler number of W we always mean
e(W) := E(W;1,1).

Remark 2.11.For our purpose, it will be very important thatE-polynomials
have properties which are very similar to the ones of usual Euler numbers:



Integrals and Euler numbers of log-terminal pairs 11

(i) if W = W1 ∪ · · · ∪Wk is a disjoint union of Zariski locally closed
subsetsW1, . . . ,Wk, then

E(W;u, v) =
k∑

i=1

E(Wi ;u, v);

(ii) if W = W1×W2 is a product of two algebraic varietiesW1 andW2,
then

E(W;u, v) = E(W1;u, v) · E(W2;u, v);
(iii) if W admits a fibering overZ which is locally trivial in Zariski

topology such that each fiber of the morphismf : W→ Z is isomorphic
to the affine spaceCn, then

E(W;u, v) = E(Cn;u, v) · E(Z;u, v) = (uv)nE(Z;u, v).

Definition 2.12. Let V ⊂ W is a constructible subset in a complex alge-
braic varietyV. We writeV as a union

V = W1 ∪ · · · ∪Wk

of pairwise nonintersecting Zariski locally closed subsetsW1, . . . ,Wk. Then
the E-polynomial of V is defined as follows:

E(V;u, v) :=
k∑

i=1

E(Wi ;u, v).

Remark 2.13.Using 2.11(i), it is easy to check that the above definition
does not depend on the choice of the decomposion ofV into a finite union
of pairwise nonintersecting Zariski locally closed subsets.

Now we define anon-Archimedian cylinder set measureon J∞(X).

Definition 2.14. C ⊂ J∞(X) be a cylinder set. We define thenon-Archi-
median volumeVolX(C) ∈ A1 of C by the following formula:

VolX(C) := E(Bl(C); τθ−1, τ−1θ−1)θ2(l+1)n ∈ A1,

where C = π−1
l (Bl(C)) and E(Bl(C);u, v) is the E-polynomial of the

l-baseBl(C) ⊂ Jl (X). If C = ∅, we setVolX(C) := 0.
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Remark 2.15.Using 2.5(i) and 2.11, one immediately obtains thatVolX(C)
does not depend on the choice of anl-baseBl(C) and

‖VolX(C)‖ = e2dim Bl (C)−2(l+1)n.

In particular, one has the following properties
(i) If C1 andC2 are two cylinder sets such thatC1 ⊂ C2, then

‖VolX(C1)‖ ≤ ‖VolX(C2)‖.
(ii) If C1, . . . ,Ck are cylinder sets, then

‖VolX(C1 ∪ · · · ∪ Ck)‖ = k
max
i=1
‖VolX(Ci )‖.

(iii) if a cylinder setC is a finite disjoint union of cylinder setsC1, . . . ,Ck,
then

VolX(C) = VolX(C1)+ · · · + VolX(Ck).

Definition 2.16. We say that a subsetC ⊂ J∞(X) is measurableif for any
positive real numberε there exists a sequence of cylinder setsC0(ε),C1(ε),

C2(ε), · · · such that

(C ∪ C0(ε)) \ (C ∩ C0(ε)) ⊂
⋃
i≥1

Ci (ε)

and‖VolX(Ci (ε))‖ < ε for all i ≥ 1. If C is measurable, then the element

VolX(C) := lim
ε→0

C0(ε) ∈ Â1

will be called thenon-Archimedian volume of C.

Theorem 2.17. If C ⊂ J∞(X) is measurable, thenlimε→0 C0(ε) exists and
does not depend on the choice of sequencesC0(ε),C1(ε),C2(ε), · · · .
Proof. The property 2.6 plays a crucial role in the proof of this theorem.
For details see [3], Theorem 6.18. ut

The proof of the following statement is a standard exercise:

Proposition 2.18. Measurable sets possess the following properties:
(i) Finite unions, finite intersections of measurable sets are measurable.
(ii) If C is a disjoint union of nonintersecting measurable setsC1, . . . ,

Cm, then

VolX(C) = VolX(C1)+ · · · + VolX(Cm).
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(iii) If C is measurable, then the complementC := J∞(X) \ C is mea-
surable.

(iv) If C1,C2, . . . ,Cm, . . . is an infinite sequence of nonintersecting
measurable sets having the property

lim
i→∞ ‖VolX(Ci )‖ = 0,

then

C =
∞⋃

i=1

Ci

is measurable and

VolX(C) =
∞∑

i=1

VolX(Ci ).

The next example shows that our non-Archimedian measure does not
have all properties of the standard Lebesgue measure:

Example 2.19.Let C ⊂ R= C[[t]] be the set consisting of all power series∑
i≥0 ai ti such thatai 6= 0 for all i ≥ 0. For anyk ∈ Z≥0, we defineCk ⊂ R

to be the set consisting of all power series
∑

i≥0 ai ti such thatai 6= 0 for
all 0 ≤ i ≤ k. We identify R with J∞(C). Then everyCk ⊂ J∞(C) is
a cylinder set andVolC (Ck) = (1− θ2)k+1. Moreover, we have

C0 ⊃ C1 ⊃ C2 ⊃ · · · , and C =
⋂
k≥0

Ck.

However, the sequence

VolC (C0), VolC (C1), VolC (C2), . . .

does not converge in̂A1.

Definition 2.20. We shall say that a subsetC ⊂ J∞(X) hasmeasure zero
if for any positive real numberε there exists a sequence of cylinder sets
C1(ε),C2(ε), · · · such thatC ⊂ ⋃i≥1 Ci (ε) and‖VolX(Ci (ε))‖ < ε for all
i ≥ 1.

Definition 2.21. Let Z ⊂ X be a Zariski closed subvariety. For any point
x ∈ Z, we denote byOX,x the ring of germs of holomorphic functions atx.
Let I Z,x ⊂ OX,x be the ideal of germs of holomorphic functions vanishing
on Z. We set

Jl(Z, x) := {y ∈ Jl(X, x) : g(y) = 0 ∀ g ∈ I Z,x}, l ≥ 1,
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J∞(Z, x) := {y ∈ J∞(X, x) : g(y) = 0 ∀ g ∈ I Z,x}

and

J∞(Z) :=
⋃
x∈Z

J∞(Z, x).

The spaceJ∞(Z) ⊂ J∞(X) will be calledspace of arcs with values inZ.

Proposition 2.22. Let Z be an arbitrary Zariski closed subset in a smooth
irredicible algebraic varietyX. ThenJ∞(X, Z) ⊂ J∞(X) is measurable.
Moreover, one has

VolX(J∞(Z)) =
{

0 if Z 6= X
VolX(J∞(X)) if Z = X.

Proof. If Z 6= X, then the setJ∞(Z) can be obtained as an intersection of
cylinder setsCk such that‖VolX(Ck)‖ ≤ e−2k (see Theorem 6.22 in [3] and
3.2.2 in [8]). ut

3. Non-Archimedian integrals

Definition 3.1. By ameasurable functionF on J∞(X)we mean a function
F : M → Q, whereM ⊂ J∞(X) is a subset such thatJ∞(X) \ M has
measure zero andF−1(s) is measurable for alls ∈ Q. Two measurable
functionsFi : Mi → Q (i = 1,2) on J∞(X) are calledequal if F1(γ) =
F2(γ) for all γ ∈ M1 ∩ M2.

Definition 3.2. A measurable functionF : M → Q is called exponen-
tially integrable if the series∑

s∈Q
‖VolX(F

−1(s))‖e−2s

converges. IfF is exponentially integrable, then the sum∫
J∞(X)

e−F :=
∑
s∈Q

VolX(F
−1(s))θ2s ∈ Â

will be called theexponential integral of F over J∞(X).
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Definition 3.3. Let D ⊂ Div(X) be a subvariety of codimension1, x ∈ D
a point, andg ∈ OX,x the local equation forD at x. We setM(D) :=
J∞(X) \ J∞(Su pp D). For anyγ ∈ M(D), we denote by〈D, γ 〉x the order
of the holomorphic functiong(γ(t)) at t = 0. The number〈D, γ 〉x will be
called theintersection numberof D andγ at x ∈ X. We define the function
FD : M(D)→ Z as follows:

FD(γ) =
{

0 if π0(γ) = x 6∈ D
〈D, γ 〉x if π0(γ) ∈ D

Remark 3.4.Using the property〈D′ + D′′, γ 〉x = 〈D′, γ 〉x + 〈D′′, γ 〉x,
we extend the definition ofFD to an arbitraryQ-Cartier divisor D: if
D = ∑m

i=1 ai Di ∈ Div(X) ⊗ Q is aQ-linear combination of irreducible
subvarietiesD1, . . . , Dm, then we set

FD :=
m∑

i=1

ai FDi .

It is easy to show that measurable functions form aQ-vector space andD ⊂
Div(X)⊗Q can be identified with itsQ-subspace, sinceFD : M(D)→ Q
is mesurable for allD ⊂ Div(X)⊗Q

The following theorem describes a transformation law for exponential
integrals under proper birational morphisms:

Theorem 3.5. Letρ : Y→ X be a proper birational morphism of smooth
complex algebraic varieties,D =∑r

i=1 di Di ∈ Div(Y) the Cartier divisor
defined by the equality

KY = ρ∗KX +
r∑

i=1

di Di .

Denote byρ∞ : J∞(Y)→ J∞(X) the mapping of spaces of arcs induced
byρ. Then a measurable functionF is exponentially integrable if an only if
F ◦ ρ∞+ FD is exponentially integrable. Moreover, if the latter holds, then∫

J∞(X)
e−F =

∫
J∞(Y)

e−F◦ρ∞−FD .

Proof. The proof of theorem 3.5 is based on the equalityVolY(C) =
VolX(ρ∞(C))θ2a, whereC is a cylinder set inJ∞(Y) such thatFD(γ) = a
for all γ ∈ C (see for details Theorem 6.27 in [3] and Lemma 3.3 in [8]).ut
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Theorem 3.6. Let D := a1D1+· · ·+amDm ∈ Div(X)⊗Q be aQ-divisor.
AssumeSu pp Dis a normal crossing divisor. ThenFD is exponentially
integrable if and onlyai > −1 for all i ∈ {1, . . . ,m}. Moreover, if the
latter holds, then∫

J∞(X)
e−FD =

∑
J⊂I

E(D◦J; τθ−1, τ−1θ−1)(θ−2− 1)|J|
∏
j∈J

θ2(1+aj )

1− θ2(1+aj )

Proof. The setM(D) ⊂ J∞(X) splits into a countable union of pairwise
nonintersecting cylinder sets whose non-Archimedian volume can be com-
puted viaE-polynomials of the strataD◦J (see for details Theorem 6.28
in [3] and Theorem 5.1 in [8]).

ut
Definition 3.7. Let (X,1X) be a Kawamata log-terminal pair. Consider
a log-resolutionρ1 : Y→ X and write

KY = ρ∗(KX +1X)+
m∑

i=1

a(Di ,1X)Di .

Using the notations from 1.4, we define

Est(X,1X;u, v) :=
∑
J⊂I

E(D◦J;u, v)
∏
j∈J

uv− 1

(uv)al (D j ,1X) − 1
.

The functionEst(X,1X;u, v)will be calledstringy E-function of (X,1X ).

Theorem 3.8. Let (X,1X) be a Kawamata log-terminal pair. Then the
stringy E-function of (X,1) does not depend on the choice of a log-
resolution.

Proof. Let ρ1 : Y1 → X andρ2 : Y2 → X be two log-resolutions of
singularities such that

KY1 = ρ∗1(KX +1X)+ D1, KY2 = ρ∗2(KX +1X)+ D2

where

D1 =
r1∑

i=1

a(D′i ,1X)D
′
i and D2 =

r2∑
i=1

a(D′′i ,1X)D
′′
i

and all discrepanciesa(D′i ,1X), a(D′′i ,1X) are> −1. Choosing a resolu-
tion of singularitiesρ0 : Y0→ X which dominates both resolutionsρ1 and
ρ2, we obtain two morphismsα1 : Y0 → Y1 andα2 : Y0→ Y2 such that
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ρ0 = ρ1◦α1 = ρ2◦α2. We setF := FD0, whereD0 = KY0−ρ∗0(KX+1X).
Since

KY0 − ρ∗0(KX +1X) = (KY0 − α∗i KYi )+ α∗i Di , (i = 1,2),

we obtain∫
J∞(Y1)

e−FD1 =
∫

J∞(Y0)

e−FD0 =
∫

J∞(Y2)

e−FD2 (see 3.5).

It follows from 3.6 that∫
J∞(Yi )

e−FDi = Est(X,1X; τθ−1, τ−1θ−1), i ∈ {0,1,2}.

Making the substitutionsu = τθ−1, v = τ−1θ−1, we obtain that the defi-
nition of the stringyE-function Est(X,1X;u, v) does not depend on the
choice of log-resolutionsρ1 andρ2. ut
Proof of Theorem 1.5.The statement immediately follows from 3.8 using
the equality

est(X,1X) = lim
u,v→1

Est(X,1X;u, v).
ut

4. Log-pairs on toric varieties

Let X be a normal toric variety of dimensionn associated with a rational
polyhedral fan6 ⊂ NR = N ⊗ R, where N is a free abelian group
of rank n. Denote byX(σ) the torus orbit inX corresponding to a cone
σ ∈ 6 (codimX Xσ = dimσ ). Let X(σ) be the Zariski closure ofX(σ).
Then the torus invariantQ-divisors areQ-linear combinations of the closed
strata X(σ(1)1 ), . . . , X(σ(1)k ), where6(1) := {σ(1)1 , . . . , σ

(1)
k } is the set of

all 1-dimensional cones in6. We denote bye1, . . . ,ek the primitive lattice
generators of the conesσ(1)1 , . . . , σ

(1)
k and set1i := X(σ(1)i ) i ∈ {1, . . . , k}.

Definition 4.1. LetϕK,1 : NR → R≥0 be a continious function satisfying
the conditions

(i) ϕK,1(N) ⊂ Q;
(ii) ϕK,1 is linear on each coneσ ∈ 6;
(iii) ϕK,1(p) > 0 for all p ∈ N \ {0}.

Then we define aQ-divisor 1X ∈ Zn−1(X) associated withϕK,1 as fol-
lows:

1X :=
k∑

i=1

(
1− ϕK,1(ei )

)
1i .
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Remark 4.2.It is well-known that the canonical classKX of a toric variety
X is equal to−(11 + · · · +1k). The above definition of1X implies that
KX + 1X is aQ-Cartier divisor onX corresponding to the6-piecewise
linear function−ϕK,1.

The following statement is well-known in toric geometry (see e.g. [16]
§5-2):

Proposition 4.3. Letρ : X′ → X be a toric desingularization ofX, which
is defined by a subdivision6′ of the fan6. Denote by{D1, . . . , Dm} the set
of all irreducible torus invariant strata onY corresponding to primitive lat-
tice generatorse′1, . . . ,e

′
m of 1-dimensional conesσ ′ ∈ 6′. Then

∑m
i=1 Di

is a normal crossing divisor and one has

KX′ = ρ∗(KX +1X)+
m∑

i=1

a(Di ,1X)Di ,

wherea(Di ,1X) = ϕK,1(e′i )− 1 ∀i ∈ {1, . . . ,m}.
Corollary 4.4. Let ϕK,1 be a6-piecewise linear function as in 4.1. Then
the pair(X,1X) is Kawamata log-termial.

Denote byσ◦ the relative interior ofσ (we putσ◦ = 0, if σ = 0). We
give the following explicit formula for the functionEst(X,1X;u, v):
Theorem 4.5.

Est(X,1X;u, v) = (uv − 1)n
∑
σ∈6

∑
p∈σ◦∩N

(uv)−ϕK,1(p)

= (uv − 1)n
∑
p∈N

(uv)−ϕK,1(p).

Proof. LetT ⊂ X be an algebraic torus acting onX,∂X := X\T its comple-
ment. Choose an isomorphismN ∼= Zn and writep = (p1, . . . , pn) ∈ Zn.
Denote byK := C((t)) the field of Laurent power series and define a cylin-
der subsetCp ⊂ J∞(X) as follows:

Cp := {(x1(t), . . . , xn(t)) ∈ Kn : Ordt=0xi (t) = pi , 1≤ i ≤ n}.
Consider the subsetM(∂X) ⊂ J∞(X) consisting of all arcs which are not
contained inJ∞(∂X). ThenM(∂X) splits into a disjoint union

M(∂X) =
⋃
p∈N

Cp.
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Let ρ : X′ → X be a toric desingularization ofX, and

KX′ = ρ∗(KX +1X)+
m∑

i=1

a(Di ,1X)Di .

By definition, we have

Est(X,1X; τθ−1, τ−1θ−1) =
∫

J∞(X′)
e−FD,

where

D =
m∑

i=1

a(Di ,1X)Di .

Now we notice thatFD is constant on each cylinder setCp (p ∈ N) and

Vol(Cp)θ
2F(Cp) = (θ−2 − 1)nθ2ϕK,1(p).

Summing overp ∈ N and making the substitutionu = τθ−1, v = τ−1θ−1,
we come to the required formula. ut
Definition 4.6. Let X be an arbitaryn-dimensional normal toric variety
defined by a fan6, and X +1X a torus invariantQ-Cartier divisor cor-
responding to a6-piecewise linear functionϕK,1. Denote by6(n) the set
of all n-dimensional cones in6. Letσ ∈ 6(n) be a cone. Define1-shed of
σ to be the pyramid

shed1σ = σ ∩ {y ∈ N ⊗ R : ϕK,1(y) ≤ 1}.
Furthermore, define1-shed of6 to be

shed16 =
⋃
σ∈6(n)

shed1σ.

Definition 4.7. Letσ ∈ 6(n) be an arbitrary cone. Definevol1(σ) to be the
volume ofshed1σ with respect to the latticeN ⊂ NR multiplied byn!. We
set

vol1(6) :=
∑
σ∈6(n)

vol1(σ).

Definition 4.8. Let X0, X, X+ be n-dimensional normal projective toric
varieties. Denote by6 (resp. by6+) the fan definingX (resp. X+). Let
(X,1X) (resp. (X+,1X+)) be a torus invariant Kawamata log-terminal
pair defined by a6-piecewise linear (resp.6+-piecewise linear) function
ϕK,1 (resp.ϕ+K,1). Assume that we are given two equivariant projective
birational toric morphismsα : X → X0 and β : X+ → X0 such that
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−(KX +1X) is α-ample ,KX+ +1X+ is β-ample, and bothα andβ are
isomorphisms in codimension1. Then the birational rational mapψ :=
β−1 ◦ α : (X,1X) 99K (X+,1X+) is called atoric log-flip with respect to
aQ-Cartier divisor KX +1X.

Proposition 4.9. Letψ : (X,1X) 99K (X+,1X+) be a toric log-flip with
respect toKX +1X as above. Then

vol1(6) > vol1(6
+).

Proof. Using a toric interpretation of ampleness via a combinatorial con-
vexity, one obtains from the definition of toric log-flips thatϕK,1(p) ≤
ϕ+K,1(p) for all p ∈ N and there exists an-dimensional coneσ ∈ 6(n)
such thatϕK,1(p) < ϕ

+
K,1(p) for all interior lattice pointsp ∈ σ ∩ N. This

implies the statement (cf. [3], Prop. 4.9). ut
Proposition 4.10. Let X be an arbitaryn-dimensional normal toric variety
defined by a fan6, and KX + 1X a torus invariantQ-Cartier divisor
corresponding to a6-piecewise linear functionϕK,1. Then

est(X,1X) = vol1(6).

Proof. The statement follows from the formula in 4.5 using the same argu-
ments as in the proof of Prop. 4.10 in [3]. ut
Corollary 4.11. Let (X,1) 99K (X+,1X+) be a toric log-flip. Then

est(X,1X) > est(X
+,1X+).

5. Canonical abelianization

Let G be a finite group,V a smoothn-dimensional algebraic variety overC
having a regular effective action ofG. If x ∈ V is an arbitrary point, then
by StG(x) we denote the stabilizer ofx in G. For any elementg ∈ G we set
Vg := {x ∈ V : gx= x}.
Definition 5.1. Let D = ∑m

i=1 di Di ∈ Div(V)G ⊗ Q an effectiveG-
invariant Q-divisor on aG-manifold V. A pair (V, D) will be called G-
normal if the following conditions are satisfied:

(i) Su pp Dis a union of normal crossing divisorsD1, . . . , Dm;
(ii) for any elementg ∈ G and any irredicible componentDi of D,

the divisor Di is StG(x)-invariant for all x ∈ Vg ∩ Di (i.e., h(Di ) = Di

∀ h ∈ StG(x), but theStG(x)-action onDi itself may be nontrivial).
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Theorem 5.2. Let (V, D) be aG-normal pair. Then, using a canonically
determined sequence of blow ups ofG-invariant submanifolds, one obtains
a G-normal pair (Vab, Dab) and a projective birationalG-morphismψ :
Vab→ V having the properties:

(i) Dab= (KVab − ψ∗KV)+ ψ∗D;
(ii) for any pointx ∈ Vab the stabilizerStG(x) is an abelian subgroup

in G.

Proof. Let Z(V,G) ⊂ V be the set of all pointsx ∈ V such thatStG(x) is not
abelian. IfZ(V,G) is empty, then we are done. Assume thatZ(V,G) 6= ∅.
We set

s(V,G) := max
x∈Z(V,G)

|StG(x)|.

Consider a Zariski closed subset

Zmax(V,G) := {x ∈ Z(V,G) : |StG(x)| = s(V,G)} ⊂ Z(V,G).

We claim that the setZmax(V,G) ⊂ V is a smoothG-invariant subvariety
of codimension at least 2. By definition,Zmax(V,G) is a union of smooth
subvarieties

F(H) := {x ∈ V : gx= x ∀g ∈ H},
whereH runs over all nonabelian subgroups ofG such that|H| = s(V,G).
This implies thatZmax(V,G) is G-invariant. Since theG-action is effective
anddim F(H) = n − 1 is possible only for cyclic subgroupsH ⊂ G, we
obtaindim Zmax(V,G) ≤ n− 2. It remains to observe that any two subva-
rietiesF(H1), F(H2) ⊂ V must either coincide, or have empty intersection.
Indeed, ifx ∈ F(H1) ∩ F(H2), thenH1, H2 ⊂ StG(x). Since|H1|, |H2| are
maximal, we obtainH1 = H2 = StG(x); i.e., F(H1) = F(H2).

We setV0 := V, D0 := D and defineV1 to be theG-equivariant blow-up
of V0 with centerZmax(V,G). Denote byϕ1 : V1→ V0 the corresponding
projective birationalG-morphism. It is obvious that the support ofD1 =
KV1 − ϕ∗1(KV − D) is a normal crossing divisor. Ifx ∈ Vg

1 ∩ E, where
E is a connected component of anϕ1-exceptional divisor, thenStG(x) ⊂
StG(ϕ(x)). Sinceϕ(E) is a connected component of a smooth subvariety
Zmax(V,G), ϕ(E) must beStG(ϕ(x))-invariant. Hence, we conclude that
(V1, D1) is aG-normal pair. IfZ(V1,G) = ∅, then we are done. Otherwise
we apply the same procedure to theG-normal pair(V1, D1), whereD1 =
φ∗1 D0, and construct in the same way a nextG-equivariant blow-upϕ2 :
V2→ V1 . . . etc.

It remains to show that the above procedure terminates. For this purpose,
it suffices to show thats(Vi ,G) < s(V0,G) for somei > 0. Assume that
s(V0,G) = s(Vi ,G) for all i > 0. Then there exist pointsxi ∈ Vi (i ≥ 0)
such thatϕi (xi ) = xi−1 andStG(xi ) = StG(xi−1) (i ≥ 1). Let S(xi ) be the
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set of those irreducible components ofSu pp Di which areStG(xi )-invariant
and containxi . We denote byn(xi ) the cardinality ofS(xi ) and denote by
D(xi ) ⊂ Vi the intersection of all divisors fromS(xi ). ThenF(StG(xi )) ⊂
D(xi ). If F(StG(xi )) 6= D(xi ), then the pointn(xi+1) = n(xi )+1 (we obtain
one more component from theϕi -exceptional divisor overF(StG(xi ))).
Sincen(xi ) ≤ n for all i ≥ 0, there exists a positive numberk such that
n(xk) = n(xk+ j ) for all j ≥ 0. So we obtainF(StG(xk+ j )) = D(xk+ j ) for
all j ≥ 0. The latter means that the action ofStG(xk) on the tangent space to
xk in Vk splits into a direct sum ofn(xk) 1-dimensional representations and
a(n−n(xk))-dimensional trivial representation. Since the action ofStG(xk)

is effective, the groupStG(xk) must be abelian. Contradiction. ut
Definition 5.3. Let (V, D) be a G-normal pair. Then theG-normal pair
(Vab, Dab) obtained in 5.2 will be calledcanonical abelianization of a
G-normal pair(V, D).

Remark 5.4.If the stabilisatorStG(x) ⊂ G of every pointx ∈ V is al-
ready abelian, then one can’t expect thatG-equivariant blow ups of smooth
subvarietiesZ ⊂ V could simplify singularities of the quotient-spaceV/G.

Here is the following simplest example: LetV := C2 andG = 〈g〉 is
a cyclic group of order 5 whose generatorg acts by the diagonal matrix
with the eigenvaluese2π

√−1/5, e4π
√−1/5. Let V ′ be the blow up ofC2 at 0.

Then V ′ has a natural covering by two open subsetsV ′1 and V ′2 such that
V ′1 ∼= V ′2 ∼= C2 and theG-action on one of these subsets coincides with the
original G-action onV.

6. Orbifold E-functions

Definition 6.1. Let D = ∑m
j=1 dj D j be aG-invariant effective divisor on

a smoothG-varietyV such that(V,G) is aG-normal pair. Take an arbitrary
elementg ∈ G and a connected componentW of Vg. Choose a point
x ∈ W and localg-invariant coordinatesz1, . . . , zn at x so that irreducible
components ofSu pp Dcontainingx are defined by local equationszi = 0
for somei ∈ {1, . . . ,n}. Let δi (1 ≤ i ≤ n) be the multiplicity ofD along
{zi = 0} ({δ1, . . . , δn} ⊂ {0,d1, . . . ,dm}), ande2π

√−1αi (1 ≤ i ≤ n) the
eigenvalue of theg-action onzi ({α1, . . . , αn} ⊂ Q∩ [0,1)). We define the
D-weight of g at W as

wt(g,W, D) :=
n∑

i=1

αi (δi + 1).

If D = 0, then

wt(g,W) := wt(g,W,0) =
n∑

i=1

αi
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will be called simply theweight of g at W. Let I g be the subset ofg-fixed
elements inI := {1, . . . ,m}. For any subsetJ ⊂ I g we set

F(g,W, D◦J;u, v) :=
∏
j∈J

uv − 1

(uv)dj+1− 1
E(WJ;u, v),

where WJ is the geometric quotient ofW ∩ D◦J modulo the subgroup
C(g,W, J) ⊂ C(g) consisting of those elements in the centralizer ofg
which leave the componentW ⊂ Vg and the subsetJ ⊂ I g invariant.

Remark 6.2.We note thatwt(g,W, D) does not depend on the choice of
a pointx ∈ W. Moreover, ifh ∈ C(g) is an element in the centralizer ofg
andW′ = hW is another connected component ofVg, thenwt(g,W′, D) =
wt(g,W, D).

Definition 6.3. We define theorbifold E-function of a G-normal pair
(V, D) by the formula:

Eorb(V, D,G;u, v) =
∑
{g}

∑
{W}
(uv)wt(g,W,D)

∑
J⊂I g

F(g,W, D◦J;u, v),

where{g} runs over all conjugacy classes inG, and{W} runs over the set
of representatives of allC(g)-orbits in the set of connected components of
Vg.

In the caseD = 0, we call

Eorb(V,G;u, v) : = Eorb(V,0,G;u, v)
=
∑
{g}

∑
{W}
(uv)wt(g,Wi )E(W/C(g,W);u, v),

theorbifold E-function of a G-manifoldV (hereC(g,W) is the subgroup
of all elements inC(g) which leave the componentW ⊂ Vg invariant).

Remark 6.4.Using the equalities

1

|G|
∑
g∈G

∑
h∈C(g)

e(Vg ∩ Vh) =
∑
{g}⊂G

1

|C(g)|
∑

h∈C(g)

e(Vg ∩ Vh)

=
∑
{g}⊂G

e(Vg/C(g)),

one immediately obtains thatEorb(V,G;1,1) equals the physicists’ orbifold
Euler numbere(V,G) (see 1.8).
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Example 6.5.Let G := µd a cyclic group of orderd acting by roots of
unity onV := C. Then the corresponding orbifoldE-function equals

Eorb(V,G;u, v) = uv +
d−1∑
k=1

(uv)k/d

= (uv)1/d + (uv)2/d + · · · + (uv)d−1/d + uv.

Lemma 6.6. Let V := Cr and g ∈ GL(r,C) a linear authomorphism
of finite order. Denote byV ′ the blow up ofV at 0. Let D ∼= Pr−1 be the
exceptional divisor inV ′ and{W1, . . . ,Ws} the set of connected components
of Dg. Then

s∑
i=1

(uv)wt(g,Wi ,D)
uv − 1

(uv)r − 1
E(Wi ;u, v) = (uv)wt(g,Vg).

Proof. Let {e2π
√−1αi } (1≤ i ≤ n) be the set of the eigenvalues ofg-action.

Without loss of generality, we assume 0≤ α1 ≤ · · · ≤ αn < 1. We write
the numberr as a sum ofspositive integersk1+· · ·+ks where the numbers
k1, . . . , ks are defined by the conditions

αi = αi+1 ⇔ ∃ j ∈ {1, . . . , s} : k1+ · · · + kj ≤ i < k1+ · · · + kj + kj+1

and

αi < αi+1 ⇔ ∃ j ∈ {1, . . . , s} : i + 1= k1+ · · · + kj .

Then Dg is a union ofs projectives linear subspacesW1, . . . ,Ws, where
Wj
∼= Pki−1 ( j ∈ {1, . . . , s}). By definition, we havewt(g,Vg) =∑n

i=1 αi .
By direct computations, one obtainswt(g,Wj , D) = k1 + · · · + kj−1 +∑r

i=1 αi . Hence,∑
Wi⊂Dg

(uv)wt(g,Wi ,D)E(Wi ;u, v)=(uv)wt(g,Vg)

s∑
j=1

(uv)k1+···+kj−1 E(Pkj−1;u, v)

= (uv)wt(g,Vg)

s∑
j=1

(uv)k1+···+kj−1(1+ (uv)+ · · · + (uv)kj−1)

= (uv)wt(g,Vg)

r−1∑
l=0

(uv)l

= (uv)wt(g,Vg) (uv)
r − 1

uv − 1
.

This completes the proof. ut
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Lemma 6.7. Let V andW be two smooth algebraic varieties having a re-
gular action of a finite groupG. Assume thatV is a Zariski locally trivial
Pr -bundle overW such that the canonical projectionπ : V → W is
G-equivariant. Then

E(V/G;u, v) = (uv)r − 1

uv − 1
E(W/G;u, v).

Proof. Let H ⊂ G be a subgroup andW(H) := {x ∈ W : StG(x) = H}.
ThenW ⊂ W is a locally closed subvariety, andW admits aG-invariant
stratification by locally closed strata

W =
⋃
{H}

W({H}),

where {H} runs over the conjugacy classes of all subgroups inG and
W({H}) := ⋃

H ′∈{H}W(H
′). Denote V({H}) := π−1(W({H})). Then

V({H}) is a G-equivariantPr -bundle overW({H}) and we have isomor-
phisms V({H})/G ∼= V(H)/N(H), W({H})/G ∼= W(H)/N(H), where
W(H) := π−1(W(H)) andN(H) is the normalizer ofH in G. SinceV(H)
is a N(H)-equivariantPr -bundle overW(H), it suffices to prove our sta-
tement for the caseG = N(H), W = W(H), and V = V(H). Further-
more, we can restrict ourselves to the case whenW is irreducible and
N(H) leavesW invariant. The last conditions implyN(H) = H. Therefore,
W/G = W and theH-action on leaves each fiber ofπ invariant. Hence,
E(V/G;u, v) = E(Pr/H;u, v)E(W;u, v). Since all cohomology groups
of Pr have rank 1 and they are generated by an effective algebraic cycle,
we getE(Pr/H;u, v) = E(Pr ;u, v). Thus, we have obtained the required
formula for E(Pr/H;u, v). ut

Theorem 6.8. Let(V,G) be aG-normal pair,Z ⊂ V a smoothG-invariant
subvariety such that after theG-equivariant blow upψ : V ′ → V with
center inZ one obtains aG-normal pair (V ′, D′), whereD′ the effective
divisor defined by the equality

KV′ = ψ∗(KV − D)+ D′.

Then

Eorb(V, D,G;u, v) = Eorb(V
′, D′,G;u, v).
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Proof. Let Z1, . . . , Zk be the set of connected components ofZ and
D1, . . . , Dm the set of irreducible components ofSu pp D. ThenSu pp D′ =
ψ−1(Su pp D)∪Dm+1∪· · ·∪Dm+k, whereDm+1, . . . , Dm+k are irreducible
ψ-exceptional divisors overZ1, . . . , Zk. It suffices to prove the equality

∀g ∈ G :
∑
{W}
(uv)wt(g,W,D)

∑
J⊂I g

F(g,W, D◦J;u, v) =

∑
{W′}
(uv)wt(g,W′,D′)

∑
J′⊂(I ′)g

F(g,W′, (D′)◦J′;u, v),

whereI ′ = I ∪{m+1, . . . ,m+k}. We note that theG-equivariant mapping
ψ (V ′)g→ Vg is surjective. Therefore, it suffices to prove the equality

(uv)wt(g,W,D)
∑
J⊂I g

F(g,W, D◦J;u, v) =
l∑

i=1

(uv)wt(g,W′i ,D′)
∑

J′⊂(I ′)g
F(g,W′i , (D

′)◦J′;u, v),

whereW is a given connected component ofVg and W′1, . . . ,W
′
l are all

connected components of(V ′)g such thatψ(W′i ) ⊂ W (1 ≤ i ≤ k).
Sinceψ is an isomorphism overW \W ∩ Z and theψ-exceptional divi-
sorsDm+1, . . . , Dm+k are pairwise nonintersecting, it suffices to prove the
equality

(uv)wt(g,W,D)F(g,W ∩ Zj , D◦J;u, v) =
l∑

i=1

(uv)wt(g,W′i ,D′)F(g,W′i ∩ Dm+ j , (D
′)◦J′;u, v),

where j ∈ I and J′ = J ∪ { j +m}. The last equality follows from Lem-
mas 6.6 and 6.7 using the fact that eachW′i ∩ Dm+ j is a locally trivial
Pki -bundle overW ∩ Zj . ut

7. Main theorems

Let V be a smoothn-dimensional algebraic variety,G a finite group acting
by regular authomorphism onV, X := V/G it geometric quotient, and
φ : V → X the corresponding finite morphism. ThenG acts on the set
of irreducible components of the ramification divisor3 on V. Denote by
{31, . . . ,3k} the set of representatives ofG-orbits in the set of irreducible
components ofSu pp3. Let ν1 − 1, . . . , νk − 1 be the multiplicities of
31, . . . ,3k in 3 (the numberνi equals the order of the cyclic intertia
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subgroupStG(3i ) ⊂ G). Sinceφ : V → X is a Galois covering, the
multiplicity νi − 1 of3i depends only on theG-orbit of3i in Su pp3. We
set1i := φ(3i ) (1≤ i ≤ k) and consider the pair(X,1X), where

1X :=
k∑

i=1

(
νi − 1

νi

)
1i ∈ Zn−1(X)⊗Q.

By the ramification formula, we have

φ∗(KX +1X) = φ∗KX +3 = KV .

Proposition 7.1. The pair(X,1X) is Kawamata log-terminal.

Proof. Let ρ : Y→ X be a log-resolution of singularities of(X,1X) and

KY = ρ∗(KX +1X)+
∑

i

a(Di ,1X)Di .

We consider the fiber productV1 := V ×X Y. ThenV1 has a natural finite
Galois morphismφ1 : V1 → Y and a natural birationalG-morphism
ρ1 : V1→ V. We write

KV1 = ρ∗1KV +
m∑

j=1

a(Ej ,0)Ej ,

whereEj runs over irreducible exceptional divisors ofρ1.
By definition, the multiplicity of any irreducible component1i of 1 is

equal to(νi − 1)/νi < 1. Therefore,a(Di ,1X) = −(ν j − 1)/ν j > −1
if ρ(Di ) coincides with an irreducible component1 j of Su pp1. Now
consider the case whenρ(Di ) is not an irreducible component ofSu pp1.
Denote byEj an irreducible divisor onV1 such thatφ1(Ej ) = Di ⊂ Y. Let
r j be the ramification index ofφ1 along Ej . By the ramification formula,
one hasa(Ej ,0) + 1 = r j (a(Di ,1X) + 1). SinceV is smooth, we have
a(Ej ,0) ≥ 1 for all j ∈ {1, . . . ,m}. Therefore,a(Di ,1X) = a(Ej ,0) +
1/r j − 1> −1. ut
Definition 7.2. LetV be a smooth algebraic variety having a regular action
of a finite groupG, and(X,1X) the pair constructed above. Then we call
(X,1X) theKawamata log-terminal pair associated with (V,G).

Example 7.3.Let G := µd a cyclic group of orderd acting by roots of
unity on V := C. ThenX = V/G ∼= C and1X = d−1

d x0, wherex0 ∈ X is
the zero point. The stringyE-function of(X,1X) equals

Est(X,1X;u, v) = (uv − 1)+ uv− 1

(uv)1/d − 1

= (uv)1/d + (uv)2/d + · · · + (uv)d−1/d + uv.

Thus, it coincides with the orbifoldE-function from Example 6.5.
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Our next statements show the last phenomenon in more general situa-
tions:

Lemma 7.4. Let G ⊂ GL(n,C) be a finite abelian subgroup acting by
diagonal matrices onV := Cn, and (X,1) the Kawamata log-terminal
pair associated with(V,G). Then

Est(X,1X;u, v) = Eorb(V,G;u, v).

Proof. First, we remark that the ramification locusSu pp3 is contained in
the union of the coordinate hyperplanes3i := {zi = 0} ⊂ Cn (1≤ i ≤ n).
Therefore, we can write3 = ∑n

i=1 νi3i , whereνi ≥ 1 (1 ≤ i ≤ n).
Second, we note thatX is a normal affine toric variety corresponding to the
coneσ := Rn

≥0 and the lattice

N := Zn +
∑
g∈G

Z(α1(g), . . . , αn(g)),

wheree2π
√−1α1(g), . . . ,e2π

√−1αn(g) are the eigenvalues ofg, {α1(g), . . . ,
αn(g)} ∈ Q ∩ [0,1). Moreover,1X is a torus invariant divisor onX. Let
us denote by{e1, . . . ,en} the standard basis ofZn. Then theQ-divisor
KX +1X corresponds to a linear functionϕK,1 which has value 1 on each
ei (1≤ i ≤ n). By 4.4,(X,1X) is a torus invariant Kawamata log-terminal
pair. By 4.5, we obtain

Est(X,1X;u, v) = (uv − 1)n
∑

p∈N∩σ
(uv)−ϕK,1 .

We set fi := (1/νi )ei (1≤ i ≤ n). Then the system of vectors{ f1, . . . , fn}
⊂ N generates a sublatticeN′ ⊂ N containingZn. Denote byR :=
{v1, . . . , vr } ⊂ N the set of representatives ofN/N′, where each element
v ∈ R has a formv = ∑n

i=1 λi (v) fi (0 ≤ λi < 1). Then, by summing
a multidimensional geometric series, we obtain

(uv − 1)n
∑

p∈(v+N′)∩σ
(uv)−ϕK,1

= (uv − 1)n
(
(uv)−

∑n
i=1 λi (v)/νi

) n∏
i=1

1

1− (uv)−1/νi

(we used the propertyϕK,1( fi ) = 1/νi , 1≤ i ≤ n). Thus, we have

Est(X,1X;u, v) =
(∑
v∈R

(uv)−
∑n

i=1 λi (v))/νi

)
n∏

i=1

(uv − 1)

1− (uv)−1/νi
=
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(uv)n
(∑
v∈R

(uv)−
∑n

i=1 λi (v))/νi

)
n∏

i=1

(
1+ (uv)−1/νi + · · · + (uv)−(ν−1)/νi

) =
(uv)n

∑
g∈G

(uv)−
∑n

i=1 αi (g) = Eorb(V,G;u, v).

ut
Now we come to our main theorem:

Theorem 7.5. Let G be a finite group acting regularly on a smooth al-
gebraic varietyV and (X,1) the Kawamata log-terminal pair associated
with (V,G). Then

Est(X,1X;u, v) = Eorb(V,G;u, v).

Proof. Let (Vab, D) be the canonical abelianization of theG-normal pair
(V,0), D = KVab−ψ∗KV =∑m

i=1 di Di . Denote byφab the finite morphism
Vab → Y := Vab/G. Thenψ induces a birational proper morphismψ :
Y → X which can be considered as a partial desingularization ofX. Let
W1, . . . ,Wl be representatives ofG-orbits in the set{D1, . . . , Dm} (l ≤ m),
andW1, . . . ,Wl theirφab-images inY. By the ramification formula, we have

KY = (ψ)∗(KX +1X)+
l∑

j=1

(
dj + 1

r j
− 1

)
Wj +

l+k∑
i=l+1

(
1

νi
− 1

)
Wi ,

whereWl+i is theφab-image ofψ−1(3i ) ⊂ Vab in Y, andr j is the order of the
ramification ofWj overWj . We setI1 := {1, . . . , }, I2 := {l+1, . . . , l+k}
andI := I1∪ I2. For any subsetJ ⊂ I we setJ1 = I1∩ J andJ2 = I2∩ J.
Denote byG(J) theG-stabilizer of a pointx ∈ Vab such thatφab(x) ∈ W

◦
J

and set

S(J;u, v) :=
∑

g∈G(J)

(uv)wt(g,x,D).

It is easy to see that ifx′ ∈ Vab is another point such thatφab(x′) ∈ W
◦
J,

then StG(x′) is conjugate toStG(x), i.e., G(J) depends only onJ, but not
on the choice of a pointx ∈ (φab)−1(W

◦
J). Let G′(J) be the subgroup

in G(J) generated by the cyclic inertia subgroupsStG(Wj ) ( j ∈ J1) and
StG(ψ−1(3 j−l)) ( j ∈ J2); i.e., we haveG′(J) ∼=∏ j∈J1

µr j

∏
j∈J2

µν j , and

S′(J;u, v) :=
∑

g∈G′(J)
(uv)wt(g,x,D) =

∏
j∈J1

(uv)dj+1− 1

(uv)(dj+1)/r j − 1

∏
j∈J2

uv− 1

(uv)1/ν j − 1

(1)
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By 6.8, we have

Eorb(V,G;u, v) = Eorb(V
ab, D,G;u, v)

=
∑
J⊂I

S(J;u, v)
∏
j∈J1

uv− 1

(uv)dj+1− 1
E(W

◦
J;u, v).

Since the singularities alongW
◦
J are toroidal (cf. [5]), in follows from 7.4

that

Est(X,1X;u, v)
=
∑
J⊂I

S(J;u, v)
∏
j∈J1

uv − 1

(uv)(dj+1)/r j − 1

∏
j∈J2

uv− 1

(uv)1/ν j − 1
E(W

◦
J;u, v),

whereS(J;u, v)S′(J;u, v) = S(J;u, v). It remains to apply (1). ut
Proof of Theorem 1.9.The statement immediately follows from 6.4 and 7.5
by taking limits:

est(X,1X) = lim
u,v→1

Est(X,1X;u, v) = lim
u,v→1

Eorb(V,G;u, v) = e(V,G).

ut
Corollary 7.6. Let X be a normal complex algebraic surface with at worst
log-terminal singularities. Then

est(X) = e(X \ Xsing)+
∑

x∈Xsing

cx,

wherecx is the number of conjugacy classes in the local fundamental group
of X \ {x}. In particular, est(X) is always an integer.

Proof. It is well-known that a germ of a singular pointx ∈ Xsing is isomor-
phic to a germ of 0 inC2/Gx whereGx ⊂ GL(2,C) is a finite subgroup
(the suggroupGx is the local fundamental group ofX \ {x}). Therefore,
we haveJ∞(X, x) ∼= J∞(C2/Gx,0). Let ρ : Y → X be a log-resolution
of singularities. Denote byD1(x), . . . , Dm(x) the exceptional divisors over
x ∈ Xsing and by{a1(x), . . . ,am(x)} their discrepancies. By 1.5 and 1.9,
we have

est(X) := e(X \ Xsing)+
∑

x∈Xsing

cx,

where the number

cx =
m∑

i=1

e(D◦i (x))
1

ai (x)+ 1
+
∑
i< j

e(Di (x) ∩ Dj (x))
1

(ai (x)+ 1)(aj (x)+ 1)

does not depend on the choice of a resolution and equals the number of
conjugacy classes inGx. ut
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8. Cohomological McKay correspondence

Definition 8.1. Let G ⊂ SL(n,C) be a finite subgroup acting linearly on
V := Cn andX := V/G. A resolution of singularitiesρ : Y→ X is called
crepant if the canonical classKY is trivial.

Proposition 8.2. LetC∗ × X→ X be the regularC∗-action onX induced
by the action of scalar matrices onCn. Assume that there exists a crepant
resolution of singularitiesρ : Y → X. Then theC∗-action onX extends
uniquely to a regularC∗-action onY.

Proof. SinceY is birational toX, theC∗-action onX extends uniquely to
a rationalC∗-actionC∗ ×Y 99K Y. It remains to show that it is regular. Let
{D1, . . . , Dm} be the set of all irreducible divisors onY in the exceptional
locus ofρ. It was shown in [13] that the corresponding discrete valuations
VD1, . . . ,VDm of the field of rational functions onY are determined uni-
quely. Since the algebraic groupC∗ is connected, every such a valuation
VD1, . . . ,VDm must be invariant under the rationalC∗-action onY. The-
refore, the rationalC∗-action onY can be extended to a regular action on
some Zariski dense open subsetsUj ⊂ Dj ( j = 1, . . . ,m), i.e., the rational
C∗-action onY is regular outside some Zariski closed subset

Z :=
m⋃

j=1

(Dj \Uj ) ⊂ Y, codimY Z ≥ 2.

LetTYbe the tangent vector bundle overY. By the extension theorem of Har-
togs, the restriction mapping on global sections0(Y, TY)→ 0(Y \ Z, TY)
is bijective. Hence, the regular vector fieldη ∈ 0(Y \ Z, TY) corresponding
to the regularC∗-action onY \ Z extends to a regular vector field on the
whole varietyY. The latter shows that theC∗-action onY \ Z extends to
a regular action on the wholeY. ut
Lemma 8.3. Let V be a smooth algebraic variety, andW = ⋃ j Wj a stra-
tification of W by locally closed irreducible subvarieties. Assume that the
Hodge structure in the cohomology with compact supportsHi

c(Wj ,Q) is
pure for all i, j . Then the Hodge structure inHi

c(W,Q) is pure for all i .

Proof. The statement follows by induction using tha fact that for any closed
subvarietyW′ ⊂ W the long exact cohomology sequence

→ Hi−1
c (W′)→ Hi

c(W \W′)→ Hi
c(W)→ Hi

c(W
′)→ Hi+1

c (W \W′)→
respects the Hodge structure. ut

The following statement was conjectured in [1] (see also [13]):
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Theorem 8.4. Let G ⊂ SL(n,C) be a finite subgroup. Assume that there
exists a crepant desingularizationρ : Y→ X := Cn/G. Then the Hodge
structure in the cohomologyH∗(Y,C) is pure. Moreover,H2i+1(Y,C) = 0,
H2i (Y,C) has the Hodge type(i, i) for all i , and the dimension ofH2i(Y,C)
is equal to the number of conjugacy classes{g} ⊂ G having the weight
wt(g) = i .

Proof. Let YC
∗

be the fixed point set of theC∗-action onY, YC
∗ =⋃l

j=1 Yj

a decomposition ofYC
∗

in its connected components,Y0 := ρ−1(x0) ⊂ X,
wherex0 is the image of 0∈ Cn modulo G. SinceY0 is the fiber over
the uniqueC∗-fixed point x0 ∈ X, we haveYC

∗ ⊂ Y0. ThereforeYC
∗

is
compact. Since the fixed point subvarietyYC

∗
is smooth and compact, the

cohomology of every connected componentY1, . . . ,Yk of YC
∗

have pure
Hodge structure. Consider the Bialynicki-Birula cellular decomposition [4]:
Y = ⋃l

j=1 Wj , whereWj = {y ∈ Y : limz→0 z(y) ∈ Yj , z ∈ C∗}. Since
everyWj is a vector bundle overYj , the groupsHi

c(Wj ,C) have pure Hodge
structures for alli, j . By 8.3, the Hodge structure inHi

c(Y,C) is pure for
all i .

Denote byCi (G) the number of conjugacy classes{g} ⊂ G having
the weightwt(g) = i . SinceG is contained in SL(n,C), the ramification
divisors3 and1X are zero. By 3.6 and 7.5, we have

E(Y;u, v) = Est(X,0;u, v) = Eorb(Cn,G;u, v).
Using the purity ofHi

c(Y,C) and the fact that the Poincaré duality

H2n−i
c (Y,C)⊗ Hi (Y,C)→ H2n

c (Y,C) ∼= C(n)
respects the Hodge structure, it remains to show that

Eorb(Cn,G;u, v) =
∑
{g}

Ci (G)(uv)
n−i . (2)

Indeed, we haveEorb(V,G;u, v) = ∑
{g}(uv)

wt(g,Vg)E(Vg/C(g);u, v),
where V := Cn. Since Vg is a linear subspace of dimensionk(g) :=
dim Ker(g− id), we obtainE(Vg/C(g);u, v) = (uv)k(g). Hence,

(uv)wt(g,Vg)E(Vg/C(g);u, v) = (uv)n−wt(g−1,Vg).

The summing over all conjugacy classes{g−1} implies (2). ut
Proof of Theorem 1.10.Now it follows immediatelly from 8.4. ut

Acknowledgements.It is my pleasure to thank Professors Yujiro Kawamata, Maxim Kont-
sevich, Shigefumi Mori, and Miles Reid for useful discussions.



Integrals and Euler numbers of log-terminal pairs 33

References

1. V.V. Batyrev, D. Dais: Strong McKay Correspondence, String-Theoretic Hodge Num-
bers and Mirror Symmetry. Topology35, 901–929 (1996)

2. V.V. Batyrev: Birational Calabi-Yaun-folds have equal Betti numbers, to appear in
Proc. European Algebraic Geometry Conference (Warwick, 1996), alg-geom/9710020

3. V.V. Batyrev: Stringy Hodge numbers of varieties with Gorenstein canonical singula-
rities. In: Proc. Taniguchi Symposium 1997, “Integrable Systems and Algebraic Geo-
metry, Kobe/Kyoto”, 1–32 (1998)

4. A. Bialynicki-Birula: Some theorems on action of algebraic groups. Ann. Math.98,
480–497 (1973)

5. V.I. Danilov: Geometry of toric varieties. Russ. Math. Surv.33(2), 97–154 (1978)
6. J. Denef: Local zeta functions and Euler characteristics. Duke Math. J.63, 713–721

(1991)
7. J. Denef, F. Loeser: Charactéristiques d’Euler-Poincaré, fonctions zêta locales et mo-

difications analytiques. J. Am. Math. Soc.5, 705–720 (1992)
8. J. Denef, F. Loeser: Germs of arcs on singular algebraic varieties and motivic integration.

Invent. Math.135, 201–232 (1999)
9. J. Denef, F. Loeser: Motivic Igusa zeta functions. J. Algebraic Geometry7, 505–537

(1998)
10. L. Dixon, J. Harvey, C. Vafa, E. Witten: Strings on Orbifolds I,II. Nucl. Phys. B261,

678–686 (1985);274, 285–314 (1986)
11. M. Green, Ph. Griffiths: Two Applications of Algebraic Geometry to Entire Holomor-

phic Mappings. In: The Chern Symposium, Springer 1980, pp. 41–74
12. A. Grothendieck, J.A. Dieudonné: Eléments de Géométrie Algébrique I, Die Grund-

lehren der mathematischen Wissenschaften166. Berlin Heidelberg New York, Springer
IX 1971

13. Y. Ito, M. Reid: The McKay correspondence for finite subgroups ofSL(3, C ). In: Higher
Dimensional Complex Varieties (Trento, June 1994), M. Andreatta, Th. Peternell (eds.).
De Gruyter 1996, pp. 221–246

14. Y. Kawamata: The cone of curves of algebraic varieties. Ann. Math.119, 603–633
(1984)

15. Y. Kawamata: Pluricanonical systems on minimal algebraic varieties. Invent. Math.
79(3), 567–588 (1985)

16. Y. Kawamata, K. Matsuda, K. Matsuki: Introduction to the Minimal Model Program.
Adv. Studies Pure Math.10, 283–360 (1987)

17. J. Kollár (with 14 coauthors): Flips and Abundance for Algebraic Threefolds, Vol.211.
Astérisque 1992

18. J. Kollár: Singularities of Pairs. Proc. Symp. Pure Math.62.1, 221–287 (1997)
19. M. Kontsevich: Lecture at Orsay (December 7, 1995)
20. M. Reid: The McKay correspondence and the physicists’ Euler number. Lect. Notes

given at Univ. of Utah (1992) and MSRI (1992)
21. V.V. Shokurov: 3-fold log flips (with Appendix by Yujiro Kawamata: The minimal

discrepancy coefficients of terminal singularities in dimension three). Russ. Acad. Sci.,
Izv., Math.40(1), 95–202 (1993)

22. V.V. Shokurov: An addendum to the paper “3-fold log flips”. Russ. Acad. Sci., Izv.,
Math.43(3), 527–558 (1994)

23. W. Veys: Zeta functions for curves and log canonical models. Proc. London Math. Soc.
19, 360–378 (1997)

24. W. Veys: The topological zeta function associated to a function on a normal surface
germ (Preprint 1997)


