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Abstract. Using non-Archimedian integration over spaces of arcs of algebraic varieties,
we define stringy Euler numbers associated with arbitrary Kawamata log-terminal pairs.
There is a natural Kawamata log-terminal pair corresponding to an algebraic Wdriety
having a regular action of a finite gro@ In this situation we show that the stringy Euler
number of this pair coincides with the physicists’ orbifold Euler number defined by the
Dixon-Harvey-Vafa-Witten formula. As an application, we prove a conjecture of Miles Reid
on the Euler numbers of crepant desingularizations of Gorenstein quotient singularities.

1. Introduction

Let X be a normal irreducible algebraic variety of dimensiowover C,
Zn_1(X) the group of Weil divisors oiX, Div(X) C Z,_1(X) the subgroup
of Cartier divisors onX, Z,_1(X) ® Q the group of Weil divisors oiX with
coefficients inQ, Kx € Z,_1(X) a canonical divisor oK.

Recall several definitions from the Minimal Model Program [14-16]
(see also [17,18]):

Definition 1.1. Let Ax € Zn_1(X) ® Q be aQ-divisor on a normal irre-
ducible algebraic varietyX. A resolution of singularitiep : Y — X is
called alog-resolution of (X, A) if the union of thep-birational transform
p~Y(Ax) of Ay with the exceptional locus @fis a divisor D consisting of
smooth irreducible componeni, . .. , Dy, having only normal crossings.

Definition 1.2. Letp : Y — X be a log-resolution of a paitX, Ax). We
assume thaKy + Ay is aQ-Cartier divisor and write

m
Ky = p"(Kx + Ax) + Y_a(Di, Ax)D;,
i=1

whereD; runs through all irreducible components Bfanda(D;, Ax) =
—d; if Dj is a p-birational transform of an irreducible componen\; of
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SuppAx of multiplicity d;. Then the number rational numbe(D;, Ax)
(resp.a (Di, Ax) := a(Dj, Ax) + 1) is called thediscrepancy (resp.log-
discrepancy) of D;.

Definition 1.3. A pair (X, Ay) is called Kawamata log-terminal if the
following conditions are satisfied:

() Ax = diAg + -+ + dkAg, WhereAq, ..., Ag are irreducible Weil
divisors andd; < 1foralli € {1,...,k};

(i) Kx + Ax is aQ-Cartier divisor;

(i) for any log-resolution of singularitiese : Y — X, we have
a(Dj, Ax) > Oforalli e {1,... ,m},

Now we introduce a new invariant of Kawamata log-terminal pairs:

Definition 1.4. Let(X, Ax) be a Kawamata log-terminal pais, : Y — X
a log-resolution of singularities as above. We put {1, ..., m} and set
for any subsetl C |

[NLDjifIEs
DJ,:{YJEJ =g D3 :== Dy \ Ujecary Di>

e(D9) := (topological Euler number oD9).
We call the rational number
ex(X, Ax) ==Y eD)]]a(Dj, A0
Jcl jed

the stringy Euler number of the Kawamata log-terminal paitX, Ax) (in
the above formula, we assurhg_; = 1if J = ¢).

Using non-Archimedian integrals, we show that the stringy Euler number
est(X, Ax) is well-defined:

Theorem 1.5. In the above definitiongs(X, Ax) does not depend on the
choice of a log-resolutiop : Y — X.

We expect that the stringy Euler numbers have the following natural
connections with log-flips in dimension 3 (see [21,22]):

Conjecture 1.6.Let X be a normal 3-dimensional variety amdy is an
effective Q-divisor such that(X, A) is Kawamata log-terminal, and :
(X, Ax) --» (XT, Ax+) alog-flip with respect t& x + Ax. Then one has
the following inequality:

eSt(Xv AX) > eSt(X+’ AX*)'

Remark 1.7.In 4.11 we show that the above conjecture is true for toric
log-flips in arbitrary dimensiom.
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Recall now a definition from the string theory [10] (see also [20]):

Definition 1.8. LetV be a smooth complex algebraic variety together with
a regular action of a finite grous: G x V — V. For any elemeng) € G
we set

V9:={xeV :gx=x}.

Then the number

eV, G) ;= Z e(VInvh

(9,h)eGxG
gh=hg

Gl

is called thephysicists’ orbifold Euler number of V.
Our main result of this paper is the following:

Theorem 1.9. Let V be as in 1.8,X := V/G the geometric quotient,
A1, ..., A¢x C V/Gthe set of all irreducible components of codimension
in the ramification locus of the Galois coverigg: V — X. We denote by
v; the order of a cyclic inertia subgrou@®; ¢ G corresponding ta\; and
set

K fu—1

— I — .

Ax _Z< . )A,.
i=1

Then the pail( X, Ax) is Kawamata log-terminal and the following equality

holds

eSt(Xv AX) = e(V, G)

As corollary of 1.9, we obtain the following statement conjectured by
Miles Reid in [20]:

Theorem 1.10. LetG c SL(n, C) be a finite subgroup acting ovi := C".
Assume that there exists a crepant desingularizatiolX o= V/G, i.e.,
a smooth varietyy together with a projective birational morphism :
Y — X such that the canonical claséy is trivial. Then the Euler number
of Y equals the number of conjugacy classe&in

The paper is organized as follows. In Sect. 2 we review a construction
of a non-Archimedian measure on the space of dig6X) of a smooth
algebraic varietyX overC. This measure associate to a measurable subset
C C J(X) an elemenioly(X) of a 2-dimensional noetherian rin§1
which is complete with respect to a non-Archimedian topology defined by
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powers of a principal idealp) C As. In Sect. 3 we define exponentially
integrable measurable functions and their exponential non-Archimedian
integrals. Our main interest are measurable functiBpsassociated with
Q-divisorsD € Div(X)®Q. We prove Theorem 1.5 using a transformation
formula for the exponential integral under a birational proper morphism.

In Sect. 4 we consider Kawamata log-terminal paixs Ax), where
X is a toric variety andAx is a torus invariantQ-divisor. We give an
explicit formula foreg (X, Ax) using aX-piecewise linear functioy
corresponding to the torus invarig@@tCartier divisorK x +Ax. In Sect. 5we
investigate quotients of smooth algebraic varie¥ienodulo regular actions
of finite groupsG. We define canonical sequences of blow ups of smooth
G-invariant subvarieties i which allow us to construct in a canonical way
a smoothG-variety V' such that stabilizers of all points M’ are abelian.

This construction is used in Sect. 6 where we prove Theorem 1.9. In Sect. 7
we apply our results to a cohomological McKay correspondence in arbitrary
dimension (this extends oyradic ideas from [2]).

We note that Sects. 2 and 3 are strongy influenced by the idea of “motivic
integral” proposed by Kontsevich [19]. Its different versions are containend
in the papers of Denef and Loeser [6—9]. The case of divisors on surfaces
was considered by Veys in [23, 24].

2. Non-Archimedian measure on spaces of arcs

Recall definitions of jets and spaces of arcs (see [11], Part A).

Definition 2.1. Let X be a smootim-dimensional complex manifold,e X
an arbitrary point. Agerm of a holomorphic curve atx is a germ of
a holomorphic mapy of a small ball{|z] < ¢} ¢ C to X such that
y(0) = Xx.
Letl be a nonnegative integer. Two germs v, of holomorphic curves
at x are calledl-equivalentif the derivatives of; andy», at O coincide up
to orderl. The set of-equivalent germs of holomorphic curves is denoted
by J (X, x) and called thget space of orderl at x. The union

300 =[J 3X. %)
xeX
is a complex manifold of dimensigh+ 1)n which is a holomorphic affine
bundle overX. The complex manifold (X) is called thget space of order
| of X.

Definition 2.2. Consider canonical mappings : J1(X) = J(X) (I >
0) whose fibers are isomorphic to affine spa€8sWe denote by, (X) the
projective limit ofJ, (X) and by, the canonical projectiod,, (X) — J(X).
The spacel,,(X) is called thespace of arcs ofX.



Integrals and Euler numbers of log-terminal pairs 9

Remark 2.3.Let R be the formal power series ririgj[t]] considered as the
inverse limit of finite dimensionalC-algebrasR := C[t]/(t'*Y). If X is
n-dimensional smooth quasi-projective algebraic variety @ethen the
set of points inly, (X) (resp.J (X)) coincides with the set dR-valued (resp.
R -valued) points ofX.

From now on we shall consider only the spacks(X), where X is
a smooth algebraic variety. In this casg,X) is a smooth algebraic variety
foralll > 0.

Definition 2.4. A setC C J(X) is called cylinder set if there exists
a positive integel such thatC = nfl(B| (C)) for some constructible subset
B/ (C) c J(X). Such a constructible subsBt(C) will be called thd-base
of C. By definition, the empty set J..(X) is a cylinder set and itb-base
in J(X) is assumed to be empty for &l 0.

Remark 2.5.Let C C J,.(X) be a cylinder set with alrbaseB, (X).

(i) It is clear thatB,,1(C) := jfl(B| (©) € J1(X)isthe(l + 1)-base
of C andB,,1(X) is a Zariski locally trivial affine bundle oveB, (C) whose
fibers are isomorphic t€".

(i) Using (i), it is a standard exercise to show that finite unions, interse-
ctions and complements of cylinder sets are again cylinder sets.

The following property of cylinder sets will be important:

Theorem 2.6. Assume that a cylinder s&& c J,.(X) is contained in
a countable union_J°, C; of cylinder set<C;. Then there exists a positive
integerm such thatC c ™, Ci.

Proof. The proof of theorem 2.6 is based on a classical property of constru-
ctible sets (see [12], Cor. 7.2.6). For details see Theorem 6.6 in [3]. Another
version of the same statement is contained in [8] (see Lemma 2.4).00

Definition 2.7. Let Z[t*!] be the Laurent polynomial ring in variable
with coefficients inZ, A the group algebra of Q, +) with coefficients
in Z[t*']. We denote by® € A the image ofs € Q under the natural
homomorphismQ, +) — (A*, -), whereA* is the multiplicative group of
invertible elements ir\ (the elemeng € Ais transcendental oveZ[r*1]).
For this reason, we write

A= Z[t 09

and identifyAwith the direct limit of the subringéy := Z[tﬂ][e%z] C A
whereN runs over all positive integers.
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Definition 2.8. We consider a topology oA defined by thanon-Archi-
median norm

-1 A= Reo

which is uniquely characterised by the properties:

(i) llabll = [lall - [[bll, Va,b € A;

(i) lla+ bl = maxial. [Ibll}, va, b e Aif Jlall # [[bll;

(ii) llal = 1, Va € Z[*1\ {0};

(i) 6% = esifse Q.
Thecompletion of A (resp. of Ay) with respect to the nornj - || will be
denoted byA (resp. byAy). We set

/Aoo2= U/ANC/A-

NeN

Remark 2.9.The noetherian ringAAN consists of Laurent power series in
variable#N with coefficients inZ[t*!]. The ring A consists consists of
formal infinite sums

Y ats, a eZr*],
i=1

wheres;, < s, < --- is an ascending sequence of rational numbers having
the property limML, .o § = +o0.

Definition 2.10. Let W be an arbitrary algebraic variety. Using a natural
mixed Hodge structure in cohomology groUﬁé(W, C),(0<i < 2d), we
define the numben™ (HL (W, C)) to be the dimension of thep, o)-type
Hodge component ikl (W, C). We set

ePIW) := > (=D'hPI (Hy (W, ©))
i>0
and call
E(W: U, v) = Zepﬂ(\/\/)upvq,
p.q

the E-polynomial of W. By theusual Euler number of W we always mean
eW) := EW; 1,1).

Remark 2.11.Forour purpose, it will be very important thBtpolynomials
have properties which are very similar to the ones of usual Euler numbers:
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@ if W=W,U---UWis a disjoint union of Zariski locally closed
subsetdVy, ... , W, then

k
E(W; u,v) = ) " E(W; U, v);
i=1

(i) if W =W, x W5 is a product of two algebraic varieti®®, andW,,
then

E(W; u,v) = E(Wy; u,v) - E(\WL; U, v);

(iii) if W admits a fibering oveZ which is locally trivial in Zariski
topology such that each fiber of the morphidm W — Z is isomorphic
to the affine spac€", then

E(W;u,v) = E(C"; u,v) - E(Z; u, v) = (U)"E(Z; u, v).

Definition 2.12. LetV C W is a constructible subset in a complex alge-
braic varietyV. We writeV as a union

V=W U-UW

of pairwise nonintersecting Zariskilocally closed sub&#is. .. , Wi. Then
the E-polynomial of V is defined as follows:

k
E(V;u,v) = Z E(W: U, v).
i=1

Remark 2.13.Using 2.11(i), it is easy to check that the above definition
does not depend on the choice of the decomposion iofo a finite union
of pairwise nonintersecting Zariski locally closed subsets.

Now we define anon-Archimedian cylinder set measureon J..(X).

Definition 2.14. C C J(X) be a cylinder set. We define then-Archi-
median volumeVolyx (C) € A; of C by the following formula:

Volx(C) := E(B|(C); 1072, t 7297 1)p2+Dn ¢ A,

whereC = 71|_1(B|(C)) and E(B;(C); u, v) is the E-polynomial of the
[-baseB|(C) C J(X).If C =, we setVolx(C) := 0.
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Remark 2.15.Using 2.5(i) and 2.11, one immediately obtains tHaly (C)
does not depend on the choice ofldmseB, (C) and

Vol (C)|| = e2imB(©-20+1n

In particular, one has the following properties
(i) If C; andC, are two cylinder sets such th@i c C,, then

[Volx (Cy) || < [[Volx(Co)]l.

(i) If Cq,...,Cyare cylinder sets, then
k
[Volx(C1 U -+ U G| = max|| Volx (C)]|.

(iii) if a cylinder setC is a finite disjoint union of cylinder se@, . . . , Cy,
then

Volx (C) = Volx(Cy) + - - - 4+ VoIx (Cy).

Definition 2.16. We say that a subsé&t C J.,(X) is measurableif for any
positive real numbest there exists a sequence of cylinder &), Cy(e),
Cs(g), - - - such that

(CUCo(e)) \ (CN Co(e)) C | JCice)

i>1
and||Volx(Ci(g))|| < eforall i > 1. If C is measurable, then the element

Volx(C) := lim Co(e) € A
will be called thenon-Archimedian volume of C.

Theorem 2.17.1f C C J(X) is measurable, thelim,_, o Cy(¢) exists and
does not depend on the choice of sequeigés), C1(¢), Co(e), - - -.

Proof. The property 2.6 plays a crucial role in the proof of this theorem.
For details see [3], Theorem 6.18. O

The proof of the following statement is a standard exercise:

Proposition 2.18. Measurable sets possess the following properties:
(i) Finite unions, finite intersections of measurable sets are measurable.
(i) If Cis a disjoint union of nonintersecting measurable $gfs. .. ,

Cn, then

Vle(C) = Vle(Cl) + .-+ VoIx(Cy).
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(iii) If C is measurable, then the compleménht= J..(X) \ C is mea-
surable.

(iv) If C1,Cy,...,Ch, ... is an infinite sequence of nonintersecting
measurable sets having the property

lim [|Volx(Cj)| =0,
|—00

then

is measurable and

Voly(C) = Z Voly (Cy).

i=1

The next example shows that our non-Archimedian measure does not
have all properties of the standard Lebesgue measure:

Example 2.19.LetC C R = C[[t]] be the set consisting of all power series
Y i-oait suchthas # Oforalli > 0. Foranyk € Z-o, we defineCy C R

to be the set consisting of all power serjs. ,at' such thatg # 0 for

all 0 < i < k. We identify R with J.(C). Then everyCy C J(C) is

a cylinder set anolc(Cy) = (1 — 621, Moreover, we have

CooC;DC,D---, and C=ﬂck.
k>0

However, the sequence
Vol (Co), Volc(Cy), Vol (Cy), ...
does not converge iA,.

Definition 2.20. We shall say that a subs€tc J,.(X) hasmeasure zero

if for any positive real numbet there exists a sequence of cylinder sets
Ci(e), Cy(e), - - - such thatC C | ;. Ci(e) and||Volx(Ci(¢e))|l < ¢ for all

i > 1 N

Definition 2.21. Let Z ¢ X be a Zariski closed subvariety. For any point
X € Z, we denote by  the ring of germs of holomorphic functionsat
Letlzx C Oxx be the ideal of germs of holomorphic functions vanishing
on Z. We set

J(Z.X) ={ye J(X,x) : gy) =0 Vgelzy =1
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Joo(Z,X) i={y € Joo(X,X) : 9(y) =0 Vg€ lzyx}

and

Jo(2) := U Joo(Z, X).

xeZ
The spacel,.(Z) C J.(X) will be calledspace of arcs with values inZ.

Proposition 2.22. Let Z be an arbitrary Zariski closed subset in a smooth
irredicible algebraic varietyX. ThenJy (X, Z) C J(X) is measurable.
Moreover, one has

o if Z#X
Volx (Jxo(2)) = {VO|X(JOO(X)) if Z=X.

Proof. If Z # X, then the sefl.(Z) can be obtained as an intersection of
cylinder set<C, such that| Vol (Cy)|| < e % (see Theorem 6.22 in [3] and
3.2.2in[8]). O

3. Non-Archimedian integrals

Definition 3.1. By ameasurable functionF on J,,(X) we mean a function
F: M- Q, whereM C J(X) is a subset such thai,,(X) \ M has
measure zero an —1(s) is measurable for als € Q. Two measurable
functionsF; : Mj — Q (i = 1, 2) on J(X) are calledequal if Fi(y) =
Fz()/) for all y € M; N M.

Definition 3.2. A measurable functior : M — Q is called exponen-
tially integrable if the series

> lIVolx (F~(9) e
seQ

converges. IF is exponentially integrable, then the sum
f e f = ZVOIX(F*(S))GZS cA
Joo(X) 50

will be called theexponential integral of F over J,,(X).
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Definition 3.3. Let D ¢ Div(X) be a subvariety of codimensidnx € D
a point, andg € Ox x the local equation forD at x. We setM(D) :=
Jo(X)\ J(Supp D. Foranyy € M(D), we denote byD, y) the order
of the holomorphic functiog(y(t)) att = 0. The numbeKD, )y will be
called theintersection numberof D andy atx € X. We define the function
Fp : M(D) — Z as follows:

0 if 7o(y) = X & D

Foly) = { (D.y)e i 70(y) € D

Remark 3.4.Using the property(D’ + D”, y)x = (D', v)x + (D", ¥)x,
we extend the definition ofp to an arbitraryQ-Cartier divisor D: if
D =>",aD; € Div(X) ® Q is aQ-linear combination of irreducible

subvarietiedy, ... , Dy, then we set
m

Fp = Z aj FDi .
i=1

Itis easy to show that measurable functions for@reector space and C
Div(X) ® Q can be identified with it§)-subspace, sindép : M(D) - Q
is mesurable for alD c Div(X) ® Q

The following theorem describes a transformation law for exponential
integrals under proper birational morphisms:

Theorem 3.5. Letp : Y — X be a proper birational morphism of smooth
complex algebraic varietied) = >"_, d D; € Div(Y) the Cartier divisor
defined by the equality

r
Ky = p*Kx +Zdi D;.
i—1

Denote byp,, : J(Y) = J(X) the mapping of spaces of arcs induced
by p. Then a measurable functidhis exponentially integrable if an only if
F o poo + Fp is exponentially integrable. Moreover, if the latter holds, then

/ e F — / e Fors—Fo_
Jno(X) Joo(Y)

Proof. The proof of theorem 3.5 is based on the equalityly(C) =
Vol (ps(C))6%, whereC is a cylinder set inl,(Y) such thatFp(y) = a
for all y € C (see for details Theorem 6.27 in [3] and Lemma 3.3 in [8]).
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Theorem 3.6. LetD := a;D;+- - - +anDn € Div(X) ® Q be aQ-divisor.
AssumeSu pp Dis a normal crossing divisor. TheRp is exponentially
integrable if and onlygy > —1 for all i € {1,..., m}. Moreover, if the
latter holds, then

92(l+aj)

—Fp _ o..n-1 _—1n-1\/n—2 1J]|
e = E(Dy; 07, 17707 )(0 =1 A
/Joo(X) ; 111 1 gaa

Proof. The setM(D) C J,.(X) splits into a countable union of pairwise
nonintersecting cylinder sets whose non-Archimedian volume can be com-
puted viaE-polynomials of the stratdd (see for details Theorem 6.28
in [3] and Theorem 5.1 in [8]).

]

Definition 3.7. Let (X, Ax) be a Kawamata log-terminal pair. Consider
a log-resolutionp; : Y — X and write

m
Ky = p"(Kx+ Ax) + Y _a(Di, Ax)D;.
i=1

Using the notations from 1.4, we define

uv—1
(uv)@@j-ax) _ 17

Eq«(X, Ax; u,v) := Z E(D%; u, v) 1_[

Jcl jed

The functiorEq (X, Ax; u, v) will be calledstringy E-function of (X, Ax).

Theorem 3.8. Let (X, Ax) be a Kawamata log-terminal pair. Then the
stringy E-function of (X, A) does not depend on the choice of a log-
resolution.

Proof. Let p1 : Y1 —> X andp, : Yo, — X be two log-resolutions of
singularities such that

Ky, = p1(Kx + Ax) + D1, Ky, = p5(Kx + Ax) + D>

where
Iy r2
D1=) a(D, Ax)D] and Dz = a(D/, Ax)D/
i=1 i=1
and all discrepanciea(D;, Ax), a(D{’, Ax) are> —1. Choosing a resolu-

tion of singularitiesog : Yo — X which dominates both resolutiops and
02, we obtain two morphisma; : Yo — Yy anda, : Yo — Y, such that
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0o = proay = proap. We setF .= FDO,WhereDO = KYO—/)S(K)(-FA)().
Since

Ky, — 0o(Kx + Ax) = (Ky, — o Ky) + o' Dj, (i =1,2),

we obtain

/ o For _ / e Foo — / e (see 3.5)
Joo(Yl) Joo(YO) Joo(YZ)

It follows from 3.6 that

/ e o = Eq(X, Ax; 97, t707Y), i e€{0,1,2).
Joo (Yi)

Making the substitutionsi = 0~1, v = t716~1, we obtain that the defi-
nition of the stringyE-function Eg(X, Ax; u, v) does not depend on the
choice of log-resolutiong,; and p,. O

Proof of Theorem 1.5The statement immediately follows from 3.8 using
the equality

est(X, Ax) = ”ml Est(X, Ax; u, v).
u,v—

4. Log-pairs on toric varieties

Let X be a normal toric variety of dimensiamassociated with a rational
polyhedral fan¥ ¢ Nr = N ® R, where N is a free abelian group
of rank n. Denote byX(o) the torus orbit inX corresponding to a cone
o € ¥ (codimyX, = dimo). Let X(o) be the Zariski closure oK (o).

Then the torus invariarf@-divisors areQ-linear combinations of the closed

strataX(a.”), ..., X(o\"), wherez® := {0V, ... P} is the set of
all 1-dimensional cones iB. We denote b, ... , & the primitive lattice
generators of the cones”, ... , 0" and setr; := X(5\”)i € {1,... ,k}.

Definition 4.1. Letgx Ao : Nr — R be a continious function satisfying
the conditions

() pk.a(N) C Q;

(il) ¢k A Is linear on each cone € %;

(i) k. a(p) > Oforall pe N\ {0}.
Then we define &-divisor Ax € Z,_1(X) associated withgk A as fol-
lows:

k
Ax =Y (1—gka(@)) A

i=1
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Remark 4.2.1t is well-known that the canonical clagsy of a toric variety
Xis equal to— (A1 + --- + Ag). The above definition ofA x implies that
Kx + Ay is aQ-Cartier divisor onX corresponding to th&-piecewise
linear function—gx a.

The following statement is well-known in toric geometry (see e.g. [16]
§5-2):

Proposition 4.3. Letp : X’ — X be a toric desingularization o, which
is defined by a subdivision’ of the fanx. Denote by{Dy, ... , Dy} the set
of all irreducible torus invariant strata olY corresponding to primitive lat-
tice generators,, ... , €, of 1-dimensional cones’ € ¥'. Then} ", D;
is a normal crossing divisor and one has

m

i=1

wherea(D;, Ax) = ¢k a(€) —1Vi e {1,...,m}.

Corollary 4.4. Letgk A be aX-piecewise linear function as in 4.1. Then
the pair (X, Ax) is Kawamata log-termial.

Denote byo° the relative interior ot (we pute® = 0, if o = 0). We
give the following explicit formula for the functios (X, Ax; u, v):

Theorem 4.5.
Est(X, Ax; u,v) = (uv — )" Z Z (up) kAP
oeX peoc°NN
= (uv—1" Z(uv)ffﬂK,A(p)'
peN

Proof. LetT ¢ Xbeanalgebraictorus acting2noX := X\T its comple-
ment. Choose an isomorphigfh= Z" and writep = (py, ..., pn) € Z".
Denote byK := C((t)) the field of Laurent power series and define a cylin-
der subseC, C J(X) as follows:

Cp = {(Xa(1), ..., Xa(t)) € K" : OrdioXi(t) = pi, 1 <i <n}.

Consider the subséfl(9X) C J.(X) consisting of all arcs which are not
contained inJ,, (8X). ThenM(aX) splits into a disjoint union

M(9X) = U Cp.

peN



Integrals and Euler numbers of log-terminal pairs 19

Letp : X' — X be atoric desingularization of, and

m
Kx = p"(Kx + Ax) + ) _a(Di, Ax)Di.
i=1

By definition, we have
Ea(X, Ax; 071, 77107 = / e o,
Joo (X')

where

m
D= a(D;, Ax)D;.
i=1

Now we notice thaFp is constant on each cylinder & (p € N) and
Vol(Cp)0?7CP = (972 — 1)"g2ek.a(P,

Summing overp € N and making the substitutiom = 6~%, v = t71971,
we come to the required formula. O

Definition 4.6. Let X be an arbitaryn-dimensional normal toric variety
defined by a fark, and X + Ax a torus invariantQ-Cartier divisor cor-
responding to a=-piecewise linear functiopy . Denote byx™ the set
of all n-dimensional cones . Leto € ™ be a cone. DefinaA-shed of
o to be the pyramid

shedo =0 N{ye N®R : ¢gi a(y) <1}.

Furthermore, define\-shed ofX to be

shed ¥ = U shed,o.

oex(

Definition 4.7. Leto € =™ be an arbitrary cone. Defineol , (o) to be the
volume ofshed\ o with respect to the latticd ¢ Nr multiplied byn!. We
set

V0I5 (D) 1= Z 0l 5 (0).

oexm

Definition 4.8. Let X,, X, X* be n-dimensional normal projective toric
varieties. Denote by (resp. byX ™) the fan definingX (resp. X*). Let
(X, Ax) (resp. (X", Ax+)) be a torus invariant Kawamata log-terminal
pair defined by a:-piecewise linear (respz*-piecewise linear) function
VK. A (resp.<p§) A). Assume that we are given two equivariant projective
birational toric morphismsx : X — XpandpB : Xt — Xg such that



20 Victor V. Batyrev

—(Kx + Ay) is a-ample ,Kx+ + Ax+ is g-ample, and botlw and 8 are

isomorphisms in codimensidh Then the birational rational mag, :=

B loa : (X, Ax) --» (XT, Ax+) is called atoric log-flip with respect to
a Q-Cartier divisor Ky + Ax.

Proposition 4.9. Lety : (X, Ax) --» (X*, Ax+) be a toric log-flip with
respect toKx + Ay as above. Then

V0IA (Z) > vola (ET).

Proof. Using a toric interpretation of ampleness via a combinatorial con-
vexity, one obtains from the definition of toric log-flips that A(p) <
@i A(p) for all p € N and there exists a-dimensional cone € =™
such thatpk A (p) < ¢;,A(p) for all interior lattice pointsp € o N N. This
implies the statement (cf. [3], Prop. 4.9). O

Proposition 4.10. Let X be an arbitaryn-dimensional normal toric variety
defined by a fanz, and Kx + Ay a torus invariantQ-Cartier divisor
corresponding to &-piecewise linear functiopk ». Then

est(x’ AX) = UOIA(E).

Proof. The statement follows from the formula in 4.5 using the same argu-
ments as in the proof of Prop. 4.10 in [3]. O

Corollary 4.11. Let(X, A) --» (XT, Ax+) be a toric log-flip. Then

eSt(Xa AX) > eSt(XJr’ AX'*')'

5. Canonical abelianization

Let G be a finite groupyY a smootm-dimensional algebraic variety ovér
having a regular effective action @. If x € V is an arbitrary point, then
by St (x) we denote the stabilizer afin G. For any elemeng € G we set
V9:={xeV :gx=x}

Definition 5.1. Let D = >, diD; € Div(V)® ® Q an effectiveG-
invariant Q-divisor on aG-manifold V. A pair (V, D) will be called G-
normal if the following conditions are satisfied:

(i) Supp Dis a union of normal crossing divisoi3y, ... , Dy;

(ii) for any elementg € G and any irredicible componerd; of D,
the divisor D; is St (X)-invariant for all x € V9N D; (i.e., h(D;) = Dj
vV h e Sz(x), but theSi5 (x)-action onD; itself may be nontrivial).
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Theorem 5.2. Let (V, D) be aG-normal pair. Then, using a canonically
determined sequence of blow upsZfnvariant submanifolds, one obtains
a G-normal pair (V#, D) and a projective birationalG-morphismy :
V@b _ V having the properties:

(i) D = (Kya — ¥*Ky) + ¥*D;

(i) for any pointx e V& the stabilizerSiz(x) is an abelian subgroup
in G.

Proof. LetZ(V, G) C V bethe setof all points € V such thaSi; (X) is not
abelian. IfZ(V, G) is empty, then we are done. Assume tAaY, G) # @.
We set

S(V.G) = max [St(x).

Consider a Zariski closed subset
Zmax(V, G) := {x € Z(V, G) : |St(X)| =s(V,G)} C Z(V, G).

We claim that the seZna(V, G) C V is a smoothG-invariant subvariety
of codimension at least 2. By definitiodmax(V, G) is a union of smooth
subvarieties

F(H):={xeV : gx=x Vge H},

whereH runs over all nonabelian subgroups@®@such thatH| = s(V, G).
This implies thatZnax(V, G) is G-invariant. Since th&-action is effective
anddim KH) = n — 1 is possible only for cyclic subgrougd c G, we
obtaindim Zna(V, G) < n — 2. It remains to observe that any two subva-
rietiesF(H,y), F(H2) C V must either coincide, or have empty intersection.
Indeed, ifx € F(H1) N F(Hy), thenH,, Hy C Sts(X). Since|Hy|, |H,| are
maximal, we obtairH; = H, = St5(x); i.e., F(Hy) = F(H)).

We setVy := V, Dg := D and defineV, to be theG-equivariant blow-up
of Vp with centerZyax(V, G). Denote byy, : Vi — V the corresponding
projective birationalG-morphism. It is obvious that the support bf, =
Kv, — ¢i(Ky — D) is a normal crossing divisor. ik € Vf’ N E, where
E is a connected component of ap-exceptional divisor, theB(X) C
Stz (¢(X)). Sinceg(E) is a connected component of a smooth subvariety
Zmax(V, G), ¢(E) must beSt(¢(X))-invariant. Hence, we conclude that
(V1, Dy) is aG-normal pair. IfZ(V1, G) = ¢, then we are done. Otherwise
we apply the same procedure to Benormal pair(Vy, D1), whereD; =
¢7 Do, and construct in the same way a n&dequivariant blow-upp, :
V, — V... etc.

It remains to show that the above procedure terminates. For this purpose,
it suffices to show thas(V;, G) < s(Vy, G) for somei > 0. Assume that
s(Vo, G) = s(V;, G) for all i > 0. Then there exist pointg € V; (i > 0)
such thaty; (xj) = Xi_1 and Stz (X)) = Sts(Xj_1) (i > 1). Let S(x;) be the
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set of those irreducible componentsSif pp [ which areSi; (x;)-invariant
and contairx;. We denote byn(x;) the cardinality ofS(x;) and denote by
D(x) c V; the intersection of all divisors fror(x;). ThenF(Stz (X)) C
D(x). If F(S (X)) # D(X), then the poinh(X; 1) = n(Xj)+ 1 (we obtain
one more component from thg-exceptional divisor ovelF(Si;(xi))).
Sincen(x) < nfor alli > 0, there exists a positive numblersuch that
N(Xx) = N(Xkyj) for all j > 0. So we obtairF(Siz (Xk+j)) = D(Xkj) for
all j > 0. The latter means that the actionSi§ (xx) on the tangent space to
Xk in Vi splits into a direct sum afi(x) 1-dimensional representations and
a(n—n(xy))-dimensional trivial representation. Since the actio®gi{x)

is effective, the groufsis (xx) must be abelian. Contradiction. O

Definition 5.3. Let (V, D) be aG-normal pair. Then thes-normal pair
(V& Da) obtained in 5.2 will be calledcanonical abelianization of a
G-normal pair(V, D).

Remark 5.4.1f the stabilisatorSi;(x) ¢ G of every pointx € V is al-

ready abelian, then one can't expect t@aequivariant blow ups of smooth

subvarietiesZ c V could simplify singularities of the quotient-spavgG.
Here is the following simplest example: L¥t:= C2 andG = (g) is

a cyclic group of order 5 whose generatpacts by the diagonal matrix

with the eigenvalues?v~1/5, é#v=1/5 et V' be the blow up ofC2 at 0.

ThenV’ has a natural covering by two open subséfsand V; such that

V] =V, = C? and theG-action on one of these subsets coincides with the

original G-action onV.

6. Orbifold E-functions

Definition 6.1. LetD = Z’j“:l d; D; be aG-invariant effective divisor on
a smooths-varietyV such that'V, G) is aG-normal pair. Take an arbitrary
elementg € G and a connected componeW of V9. Choose a point
X € W and localg-invariant coordinateg;, . .. , z, at x so that irreducible
components oBu p p Dcontainingx are defined by local equatiorss = 0
forsomei € {1,...,n}. Let§i(1 <i < n) be the multiplicity ofD along
{zi =0} ({81, ... .80} C {0,d, ..., dm)), ande®V=14 (1 < i < n) the
eigenvalue of thg-action onz ({1, ... ,an} € QNIO, 1)). We define the
D-weightof gat W as

n
wt(g, W, D) := Y e (8 + D).
i=1
If D=0, then

wt(g, W) := wt(g, W, 0) = Zai
i=1
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will be called simply thaveight of g at W. Let |9 be the subset af-fixed
elementsin :={1,..., m}. For any subsetl C |9 we set

R uv—1
F(g, W, Dj; u,v) := HWE(WJ; u, v),
jed

where W; is the geometric quotient oV N D3 modulo the subgroup
C(g, W, J) c C(g) consisting of those elements in the centralizergof
which leave the componeW c V¢ and the subsel c 19 invariant.

Remark 6.2.We note thatwt(g, W, D) does not depend on the choice of
a pointx € W. Moreover, ifth € C(g) is an element in the centralizer gf
andW’ = hWis another connected componeniM, thenwt(g, W', D) =
wt(g, W, D).

Definition 6.3. We define therbifold E-function of a G-normal pair
(V, D) by the formula:

Eon(V, D, G; U, v) = ) )~ (un)”¢™P % " F(g, W, D5; u, v),

{9} (W} Jcl9

where{g} runs over all conjugacy classes @&, and{W} runs over the set
of representatives of all(g)-orbits in the set of connected components of
Ve,

In the caseD = 0O, we call

Eon(V, G; U, v) : = Eoip(V, 0, G; U, v)
=) ()" W EW/C(g, Wy; u, v),

{g} {W}

theorbifold E-function of a G-manifoldV (hereC(g, W) is the subgroup
of all elements irC(g) which leave the componew c V9 invariant).

Remark 6.4.Using the equalities

= Z Y evinvh) = Z e(veinvh

geG heC(g) (g)| heC(g)

= Z e(V9/C(g)),

{g}cG

one immediately obtains th&,,(V, G; 1, 1) equals the physicists’ orbifold
Euler numbee(V, G) (see 1.8).
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Example 6.5.Let G := uq a cyclic group of orded acting by roots of
unity onV := C. Then the corresponding orbifolg-function equals
d-1

Eon(V. G; U, v) = uv + »_(un)*
k=1

= W)Y+ W+ - 4 ()T 4 .

Lemma6.6. LetV := C" andg € GL(r,C) a linear authomorphism
of finite order. Denote by’ the blow up ofV at 0. LetD = P! be the
exceptional divisor ity and{W, ... , Wy} the set of connected components
of D9. Then

Z(uv)“’“gw'm (l:“’) JEOW UL D) = () V),
v)’

Proof. Let {e2™V=1%} (1 < i < n) be the set of the eigenvaluesgpfiction.
Without loss of generality, we assume<Qa; < --- < ap < 1. We write
the number as a sum o$ positive integer&; + - - - + ks where the numbers
ki, ..., ks are defined by the conditions
oj = qjy1 < djef{l, ..., s}: k1+---+kj <i< k1+---+kj +kj+1
and

o < Ujy1 & dje{l,...,s} : i+l=k1+---+kj.

Then D9 is a union ofs projectives linear subspac#¥, ... , Ws, where
W; =Ph-1(j e {1,...,s}). By definition, we havest(g, V9 = > | o;.
By direct computations, one obtaingt(g, Wj, D) = ky + --- + kj_1 +
> i_; . Hence,

S
()" G OB U, v) = ()" VDY ()t ERN 0, )
W cD9 j=1

s
— (UU)wt(SlVg) Z(Uv)lirerkj_l(l + (Uv) + -+ + (Uv)kj*l)
=1

r—1
— (Uv) wt(g,V9) Z (UU)I

=0

_ outgve (Uo)' —1
= (U _—
(L) uv—1

This completes the proof. O
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Lemma 6.7. LetV and W be two smooth algebraic varieties having a re-
gular action of a finite grougs. Assume thaV is a Zariski locally trivial
P'-bundle overW such that the canonical projection : V — W is
G-equivariant. Then

E(V/G;u,v) = %E(W/G; u, v).

Proof. Let H C G be a subgroup and/(H) := {x € W : Sit(X) = H}.
ThenW c W is a locally closed subvariety, anf admits aG-invariant
stratification by locally closed strata

W =[_JW({H}),

{H}

where {H} runs over the conjugacy classes of all subgroup&imnd
W({HY = Uy WH). Denote V({H}) := 7~}(W({H})). Then
V({H}) is a G-equivariantP'-bundle overW({H}) and we have isomor-
phisms V({H})/G = V(H)/N(H), W({H})/G = WI(H)/N(H), where
W(H) := 7~YX(W(H)) and N(H) is the normalizer oH in G. SinceV(H)

is a N(H)-equivariantP'-bundle overW(H), it suffices to prove our sta-
tement for the cas& = N(H), W = W(H), andV = V(H). Further-
more, we can restrict ourselves to the case wki¢éns irreducible and
N(H) leavesW invariant. The last conditions implM(H) = H. Therefore,
W/G = W and theH-action on leaves each fiber af invariant. Hence,
E(V/G;u,v) = E(P'/H; u, v)E(W; u, v). Since all cohomology groups
of P' have rank 1 and they are generated by an effective algebraic cycle,
we getE(P'/H; u, v) = E(P"; u, v). Thus, we have obtained the required
formula for E(P" /H; u, v). O

Theorem 6.8. Let(V, G) be aG-normal pair,Z C V asmooths-invariant
subvariety such that after the-equivariant blow upy : V' — V with

center inZ one obtains a-normal pair (V’, D), whereD’ the effective
divisor defined by the equality

Ky = ¢*(Ky — D) + D'
Then

Eorb(V, D’ G, u’ v) = Eorb(V/, D/, G, u’ v)‘
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Proof. Let Z4, ..., Z¢ be the set of connected components zbfand
Ds, ..., Dmthe setofirreducible components®fipp D ThenSupp D =
Y 1(Supp DUDm;1U- - -UDmyk, WhereD, 1, . . . , Dk are irreducible
y-exceptional divisors ovez,, ... , Zy. It suffices to prove the equality

VgeG: Y (u)"OWD 3" Fg W, DS u,v) =
(W) Jcl9

Z(UU)wt(g,W/)D/) Z F(g, W/, (D/)Cj]/; u, U),

W} Jce

wherel” = TU{m+1, ..., m+k}. We note that th&-equivariant mapping
¥ (V)9 — VYis surjective. Therefore, it suffices to prove the equality

(uv)wt(gsws D) Z F(g, W, D?], u, v) =

Jcl9
|
D ()WDY N (g, W, (D)5 U, v),
i=1 Je(l’)
whereW is a given connected component\8¥ and Wy, ... , W are all

connected components 0¥')¢ such thaty(W) ¢ W (1 < i < k).
Sincevy is an isomorphism oveWw \ W N Z and theyr-exceptional divi-
sorsDm.1, ... , Dmik @re pairwise nonintersecting, it suffices to prove the
equality

(V)" ¢MOF(g,WN Zj, D53 U, v) =

I
> ()" @MPIF(g W N D (D) U, ),
i=1

wherej € | andJ' = J U {j + m}. The last equality follows from Lem-
mas 6.6 and 6.7 using the fact that eahN D is a locally trivial
Pk-bundle ovelW N Z;. O

7. Main theorems

Let V be a smootm-dimensional algebraic variet a finite group acting
by regular authomorphism o, X := V/G it geometric quotient, and
¢ : V — X the corresponding finite morphism. Th@nhacts on the set
of irreducible components of the ramification divistron V. Denote by
{A1, ..., Ag} the set of representatives Gforbits in the set of irreducible
components ofSuppA. Letv, — 1,..., v — 1 be the multiplicities of
A1, ..., A¢ in A (the numbery; equals the order of the cyclic intertia
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subgroupSiz(Aj) € G). Since¢ : V — X is a Galois covering, the
multiplicity v; — 1 of A; depends only on th&-orbit of A; in SuppA. We
setA; := ¢(Aj) (1 <i < k) and consider the paitX, Ax), where

K
Ay = Z <VI — 1) Aj € Zn-1(X) ® Q.

"
i=1 !

By the ramification formula, we have
¢"(Kx + Ax) = ¢"Kx + A = Ky.
Proposition 7.1. The pair(X, Ax) is Kawamata log-terminal.
Proof. Letp : Y — X be a log-resolution of singularities ¢K, Ax) and

Ky = p"(Kx + Ax) + Y _a(Di, Ax)D;.
i

We consider the fiber produsf; := V xx Y. ThenV; has a natural finite
Galois morphism¢, : Vi — Y and a natural birationaG-morphism
o1 . Vi — V. We write

m
Ky, = p1Kv + Za(Ej,o)Ej,

j=1

whereE; runs over irreducible exceptional divisors @f
By definition, the multiplicity of any irreducible componenj of A is

equal to(v; — 1)/vi < 1. Thereforea(D;, Ax) = —(v; — D/v; > =1
if p(D;) coincides with an irreducible component; of SuppA. Now
consider the case wher{D;) is not an irreducible component &u p pA.
Denote byE; an irreducible divisor ofv; such thaip,(E;) = D; C Y. Let
r; be the ramification index ap, along E;. By the ramification formula,
one hasa(Ej, 0) + 1 = rj(a(D;, Ax) + 1). SinceV is smooth, we have
a(E;,0) > 1forall j € {1,..., m}. Thereforea(D;, Ax) = a(E;, 0) +
/rj—1> -1. ]

Definition 7.2. LetV be a smooth algebraic variety having a regular action
of a finite groupG, and (X, Ax) the pair constructed above. Then we call
(X, Ax) theKawamata log-terminal pair associated with (V, G).

Example 7.3.Let G := uq a cyclic group of orded acting by roots of
unity onV := C. ThenX = V/G = C andAx = %tx,, wherex, € X is
the zero point. The stringi-function of (X, Ax) equals

uv—1
(uy)d —1
= )Y+ W)+ 4 )Y+ u.

Est(X, Ax;u,v) = (uv —1) +

Thus, it coincides with the orbifol&-function from Example 6.5.
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Our next statements show the last phenomenon in more general situa-
tions:

Lemma 7.4. Let G ¢ GL(n, C) be a finite abelian subgroup acting by
diagonal matrices or'V := C", and (X, A) the Kawamata log-terminal
pair associated witl{V, G). Then

Est(X, Ax; U, v) = Eon(V, G; U, v).

Proof. First, we remark that the ramification loc8sI p pA is contained in
the union of the coordinate hyperplanks:= {z =0} c C" (1 <i < n).
Therefore, we can write\ = Zi”:l viAi, wherey; > 1 (1 <i < n).
Second, we note that is a normal affine toric variety corresponding to the
coneo := R", and the lattice

N:=Z"+ ) Z(ax(@), ... . an(9)),
geG

whereezV-1m@ e7/~1n©® gre the eigenvalues @ {x1(Q), ...,
an(g)} € Q N[O, 1). Moreover,Ayx is a torus invariant divisor oiX. Let
us denote byey, ... , e} the standard basis &". Then theQ-divisor
Kx 4+ Ax corresponds to a linear functi@n_» which has value 1 on each
g (1 <i<n).By4.4,(X, Ax)is atorus invariant Kawamata log-terminal
pair. By 4.5, we obtain

Est(X, Ax; u,v) = (uv — 1)" Z (Uv) =9

peNNo

We setfi := (1/v))e (1 <i < n). Then the system of vectofd,, ... , f,}

C N generates a sublatticd” ¢ N containingZ". Denote byR :=
{vi,..., v} C N the set of representatives b/ N’, where each element
v € R has a formv = Zir‘:lxi(v) fi (0 < Aj < 1). Then, by summing
a multidimensional geometric series, we obtain

—D" Y (U)K
pe(v+N)No
n

— (U —1)" ((UU)fZLlAi(v)/vi) I

i=1

1
1— (uv)~2/

(we used the propertyx A (fi) = 1/vi, 1 <i < n). Thus, we have

Est(Xy AX’ u, U) — (Z(UU)_ZPlM(v))/Vi) l_[ 1 (u:u;)li/w =

veER i=1
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(UU)n (Z(Uv)z"inl)‘i (v))/vi> 1_[ (1+ (UU)fl/ui +ee gt (U'U)ih}il)/vi) _

veER i=1

)"y (uw) "X @ = Egp(V, G u, v).
geG

Now we come to our main theorem:

Theorem 7.5. Let G be a finite group acting regularly on a smooth al-
gebraic varietyV and (X, A) the Kawamata log-terminal pair associated
with (V, G). Then

Est(X, Ax; u,v) = Egn(V, G; U, v).

Proof. Let (V&, D) be the canonical abelianization of t@normal pair
(V,0), D = Kyan—9¥*Ky = Y, d; D;. Denote by the finite morphism
Vva Y := Va/G. Theny induces a birational proper morphisgn :
Y — X which can be considered as a partial desingularizatioX.dfet
Wi, ..., W berepresentatives &f-orbits inthe setD4, ..., D} (I < m),
andWi, ... , W, theirgp?*-images irY. By the ramification formula, we have

n kg B
Ky = @)* (Kx+Ax)+Z(——1)W > (—_— )w
J i=l+1 Vi

whereW,; is thep?®-image ofy ~(A;) C V&inY, andr | isthe order of the
ramification ofW, overV_Vj.We setly :={1,...,},l,:={l+1,...,1+k}
andl := 1, Ul,. Forany subsel c | wesetd; =1,nJandJ, = I,N J.
Denote byG(J) the G-stabilizer of a poink € V& such thap®®(x) € W
and set

SJ;u,v) = Z (UU)wt(g,x,D)'

geG(J)

It is easy to see that ¥ € V2 is another point such thg®(x) ¢ W},
then Siz (X)) is conjugate toS(X), i.e., G(J) depends only onJ, but not
on the choice of a poink € (¢®)~1(W)). Let G'(J) be the subgroup
in G(J) generated by the cyclic inertia subgroupe(W;) (j € Ji) and
St 1 (Aj) (j € J);ie., we haveG'(J) = [Ty, ir; [1jes, iv;» @and

dj+1 _ _
S(J;u,v) = Z (Up)PUexD) — l—[ (Uv).’ . 1 l_[ uv . 1
je

di+1/r; _ /v _
0o J.EJl(uv)J i—-1 J2(Uv) i—-1

1)




30 Victor V. Batyrev

By 6.8, we have
Eon(V, G; U, v) = Eorb(Vab D, G; u, v)
_ZS(J u, v)l_[ )le E(WJ,u V).
Jcl jeh

Since the singularities alorig/; are toroidal (cf. [5]), in follows from 7.4
that

Est(X, Ax; u,v)

uv—l —o0
=Y S, v)l_[ )(dj+l)/,1 _1]_[ oy =1 EWsi U,

Jcl

whereS(J; u, v)S(J; u, v) = J; u, v). It remains to apply (2). ]

Proof of Theorem 1.9The statement immediately follows from 6.4 and 7.5
by taking limits:

eSt(Xa AX) = Ilml ESt(Xa AX, u, U) = Ilml Eorb(V, Ga u, U) = e(v’ G)
TR u,v—

O

Corollary 7.6. Let X be a normal complex algebraic surface with at worst
log-terminal singularities. Then

et(X) = &(X\ Xsing) + Y Cx,

Xexsing

wherec, is the number of conjugacy classes in the local fundamental group
of X'\ {x}. In particular, ex(X) is always an integer.

Proof. Itis well-known that a germ of a singular poirte Xsjng iS isomor-
phic to a germ of 0 irC?/Gy whereG, c GL(2, C) is a finite subgroup
(the suggroupgGy is the local fundamental group of \ {x}). Therefore,
we havel, (X, X) = J,.(C?/Gy, 0). Letp : Y — X be a log-resolution
of singularities. Denote bp,(X), ... , Dm(X) the exceptional divisors over
X € Xsing and by{ai(x), ... ,an(X)} their discrepancies. By 1.5 and 1.9,
we have

&st(X) = &(X\ Xsing) + Y Cx,
X€& Xsing
where the number
m l 1
N D° JE— Di D:
6 =2 SN0 3T + 2 D00 N D100 e e o

does not depend on the choice of a resolution and equals the number of
conjugacy classes iGy. O
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8. Cohomological McKay correspondence

Definition 8.1. Let G c SL(n, C) be a finite subgroup acting linearly on
V :=C"and X := V/G. Aresolution of singularitiep : Y — Xis called
crepant if the canonical clasKy is trivial.

Proposition 8.2. LetC* x X — X be the regularC*-action onX induced
by the action of scalar matrices dii". Assume that there exists a crepant
resolution of singularitieso : Y — X. Then theC*-action on X extends
uniquely to a regularfC*-action onY.

Proof. SinceY is birational toX, the C*-action onX extends uniquely to

a rationalC*-actionC* x Y --» Y. It remains to show that it is regular. Let
{D1, ..., Dn} be the set of all irreducible divisors ofin the exceptional
locus ofp. It was shown in [13] that the corresponding discrete valuations
Vb, --- » Vb, Of the field of rational functions olY are determined uni-
guely. Since the algebraic group* is connected, every such a valuation
Vb, --- » Vb, Must be invariant under the ration@l-action onY. The-
refore, the rationalC*-action onY can be extended to a regular action on
some Zariski dense open subdd{sC Dj (j = 1,...,m),i.e., the rational
C*-action onY is regular outside some Zariski closed subset

m
Z:=|Jj\up Y. codimz=>2
i=1

LetTY be the tangent vector bundle oneBy the extension theorem of Har-
togs, the restriction mapping on global sectidh®, TY) — I'(Y \ Z, TY)

is bijective. Hence, the regular vector fiejce T'(Y \ Z, TY) corresponding
to the regularC*-action onY \ Z extends to a regular vector field on the
whole varietyY. The latter shows that th€*-action onY \ Z extends to
a regular action on the wholé. O

Lemma 8.3. LetV be a smooth algebraic variety, aMil = J; W; a stra-
tification of W by locally closed irreducible subvarieties. Assume that the
Hodge structure in the cohomology with compact suppbiéter,Q) is
pure for alli, j. Then the Hodge structure IH(‘:(W, Q) is pure for alli.

Proof. The statement follows by induction using tha fact that for any closed
subvariety\W' ¢ W the long exact cohomology sequence

— HIHW) = HUW A\ W) — HUW) — HI(W) — HPEW A\ W) —
respects the Hodge structure. O

The following statement was conjectured in [1] (see also [13]):
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Theorem 8.4. Let G C SL(n, C) be a finite subgroup. Assume that there
exists a crepant desingularizatign : Y — X := C"/G. Then the Hodge
structure in the cohomologht* (Y, C) is pure. MoreoverH?*1(Y, C) = 0,

H2 (Y, C) has the Hodge typé, i) for all i, and the dimension ¢4 (Y, C)

is equal to the number of conjugacy clas$gs C G having the weight
wt(g) = 1.

Proof. Let Y™ be the fixed point set of thig*-action onY, Y& = (J|_, Y|
a decomposition o¥“ in its connected component; := p~1(Xg) C X,
wherexg is the image of Oe C" modulo G. SinceY; is the fiber over
the uniqueC*-fixed pointxy, € X, we haveY® c Y,. ThereforeY® is
compact. Since the fixed point subvarit§’ is smooth and compact, the
cohomology of every connected compon#gt. .. , Yy of YE have pure
Hodge structure. Consider the Bialynicki-Birula cellular decomposition [4]:
Y = Uj W, whereW; = {y € Y : lim,_o2(y) € Yj, z€ C*}. Since
everyWi is a vector bundle ove;, the groupH (W;, C) have pure Hodge
structures for ali, j. By 8.3, the Hodge structure iH(‘:(Y, C) is pure for
alli.

Denote byC;(G) the number of conjugacy classég} ¢ G having
the weightwt(g) = i. SinceG is contained in Skn, C), the ramification
divisors A andAy are zero. By 3.6 and 7.5, we have

E(Yv u’ U) - ESt(X’ 07 uv U) == EOrb(Cnv Gv u’ U)'
Using the purity oﬂ—I(‘:(Y, C) and the fact that the Poincaré duality
H2"7(Y, C) ® H'(Y, C) = H2(Y,C) = C(n)

respects the Hodge structure, it remains to show that

Eon(C", G; U, v) = Y Ci(G)(un)"". 2
{9}

Indeed, we haveEon(V, G: U, v) = Y4 Un)" @VIE(VI/C(Q): U, v),
whereV := C". Since V9 is a linear subspace of dimensidg) :=
dim Ker(g — id), we obtainE(V9/C(g); u, v) = (uv)*9. Hence,

(UU)wt(g,vg) E(Vg/C(g); u,v) = (uU)nfwt(gfl)Vg).
The summing over all conjugacy clasggs'} implies (2). O

Proof of Theorem 1.1MWow it follows immediatelly from 8.4. O
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