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Abstract. In this paper, for a totally real number fieldwe show the ideal class group
of K(Un=oun) ™ is trivial. We also study the-component of the ideal class group of the
cyclotomicZ p-extension.

1. Introduction

For a positive integen > 0, 1, denotes the group af-th roots of unity.
Iwasawa studied the ideal class groups of number fields containing
Upe = Un=oupn With a prime numbemp, and established a theory which
clarifies their deep arithmetical meaning. One of the motivation lay in an
analogy between a number field containpag~ and a function field over
an algebraically closed field, so it is natural to ask how is the ideal class
group of a field containing all roots of unity.
For an algebraic extensidt/Q, Cx = Pic(Ok) denotes the ideal class
group of the integer rin@y, namely the group of isomorphism classes of
invertible Ok -submodules oK. So we haveCx = IiLn Cx wherek ranges

over all intermediate fields witfk : Q] < oc.

For a totally real number field, let k,, = Un-ok(un) be the field
obtained fromk by adjoining all the roots of unity. For exampl®,, is the
maximal abelian extensio@?® of Q. The class grou,,, was studied by
Brumer [1], and Horie [6] (cf. also [15]), but the following result does not
seem to be known.

Theorem 1.1. Letk be a totally real number field. We denote(by,)* the
maximal real subfield df.,. Then, we have

Ciyr = 0.

In particular, C qgav+ = 0.
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On the other hand, we know that the Pontrjagin dual of the minus part
C,, = CokernC,)+ — Cx,) is generated by infinitely many elements

even as & [[Gal(ks/k)]]-module (for example, cf. [11]).

After some preparation in Sect. 2, we will prove this theorem in Sect. 3.
For the proof, we only need class field theory. Using the same method, in
Sect. 4 we will study theg-primary component of the ideal class group of
the cyclotomicZ ,-extension of a real abelian field. For a number figld
Ar denotes theg-primary component-Sylow subgroup) of the ideal class
groupCe. Lety be an even Dirichlet character of the first kind, &pdresp.
K,.00,p ) D€ the real abelian field corresponding to the kernel gsp. the
cyclotomic Z ,-extension ok,). Letk; be the subfield ok, ., , such that
(ki : k,] = p', and consideXy, .. , = IiLn Ay, where the projective limit is
taken with respect to the norm maps. We denotXbyhe ¢-component of
Xi,0.p- We will see in Sect. 4 that there are magly such thatX? is finite
(in other words, such tha&im = 0) (cf. Propositions 4.3, 4.4, 4.6, 4.1).

I would like to express rriy'lpﬂearty thanks to Professor K. Iwasawa for his
warm encouragement. | learned a lot from his papers [8,9] on the relation
betweenAx and A, for a p-extensionL /K.

Notation. For an abelian groug and an integen > 0, the cokernel (resp.
kernel) of the multiplication by is denoted byA/n (resp.A[n]). (Even in
the caseA is multiplicative, we useA/n instead ofA/A".) For a number
field F, its integer ring is denoted b®g. For an integen > 0, u, denotes
the group ofn-th roots of unity.

2. Some lemmas

In this section, we assume thHt is a totally real number field of finite
degree ove@, andp is a prime number.

Let ¢ be a prime number which is different from, andn > 0 be
a positive integer. In the following lemma, we consider a finite extension
L /K of totally real fields such thdt /K is cyclic of degreep”, and that
L /K is unramified outsidé, and totally ramified at all primes & lying
overe.

For a placew of L, let L,, be the completion of. at w. We denote by
E. (resp.E_,) the unit group of the integer ring af (resp.L,,). (If wis an
infinite place, we defin&_, = L.) We have an exact sequence

0— E|_—>1_[E|_w—>C|_—>C|_—>O
whereCy (resp.Cy) is the idele class group (resp. ideal class group). ¢¥/e
fix a generator of Gal /K) and identify H(L /K, M) with H?(L/K, M)
for any GalL /K)-moduleM. Here,H? is the Tate cohomology.
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Lemma 2.1. The above exact sequence yields an exact sequence

— HO(L/K, C) — HO(L/K, EL) — (B, HO(Lw/Ky, EL,)°
—> HY(L/K,CL) — HYL/K,EL) — @, H'(Lw/K,. EL,)

—

The notation is as followsy ranges over all primes oK lying over ¢,
and w is the unique prime ot lying overv. We define an isomorphism
HO(Lw/KUv ELu,) = Z/pn by

HO(L./Ky, EL,) = HO(L,/Ky, L) = HA(L,/Ky, L)) = Z/p"

where the last map is the invariant map of local class field theory. (The first
two groups are isomorphic becauke /K, is totally ramified.) The group
(B, H(L,/K,, EL,))° denotes the kernel of

P A°(Lu/K EL) = Pz/p" > 2/p°
v|e v[¢

whereX is the map defined by the sum.

Remark 2.2.1t is well known that the kernel of the map

HY(L/K, EL) — @D H (L.u/K,. EL,)
v|l
in Lemma 2.1 coincides with the kernel of the canonical map
iL/K . CK —> C|_.

In fact, let D, (resp.P.) be the divisor group of (resp. the group of
principal divisors ofL). From a commutative diagram of exact sequences

0 0
) 0
HYL/K,EL) — D, Z/p"
) 0
0 — HO%L/K, P) — HO%L/K, D) — HOL/K,C))
) ) 0
HO(L/K, LX) — Dk —> Ck —0,
T
0

we have an exact sequence
0 — Ker(i k) — HYL/K.E)) — P z/p"
w|l

(wherew ranges over all primes df lying over ¢). Here, the last map
coincides withHY(L/K, E.) — DB HY(L,/K,, EL,), so its kernel
coincides with Kefi k).
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Proof of Lemma 2.1Let A be the kernel o€, — C,. We will simply
denoteH9(L /K, M) by H9(M). First of all, sincel /K is unramified out-
side £, we haveﬂq(HwELw) = I:Iq(l'lww EL,). Consider a commutative
diagram of exact sequences

0

I

z/p" = A%cy)

Tz

o AOELD) — @y A%Lw/Ky EL,) — AOA) — HYEL) — ..

[

(B¢ HO(Lw /Ky, EL, )% — HLCL)

1;

Here, we used*(C.) = 0, and the canonical map

P HOL./K,. EL,) — HOCL)

v|l

coincides with the suné@,, Z/p" BN Z/p". Hence, we have an exact
sequence

.. — H%EL) — (@ H(L./K,, EL,)°
v|l
—s HY(C,) — HYE)) — ...
On the other hand, from the above commutative diagnaH(A) —

IE|O(CL) is surjective. This fact together withl*(C.) = 0 implies that
HO(C_.) — H(A) is bijective. Thus,

HYEL) — @D HY(Lw/K,. EL,) — HOCL) — H(EL)
v|l
is exact. This completes the proof of Lemma 2.1. O

We fix a prime numbep, and denote byAr the p-primary component
(p-Sylow subgroup) of the ideal class groGp for a number field~. We
also need the following lemma (cf. [1, Lemma 6]).

Lemma 2.3. Let K be a totally real number field, and > 0 a positive
integer. We assumk containsQ(uzpn) ™. Letc € A be any element of
Ak . Then there exist infinitely many rational primésuch that

i (C) € pn AK(MK)+

wherei : Ak — Ak )+ is the canonical homomorphism.
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In fact, let H be the Hilbert class field oK, namelyH/K is the unra-
mified extension such that Ga&l/K) ~ Cx. We consider an abelian ex-
tensionH(uopn) /K whose Galois group is Ga(uop) /K) = Ck x {£1}
where{£1} = Gal(K(uzpn)/K). By Tschebotareff density, there exist in-
finitely many primes\ of K, of degree 1, whose Frobenius coincides with
(€, 1) € Ck x {£1} = Gal(H(u2p)/K). We denote by the prime number
which is belowx. We may supposé is unramified inK. Our assumption
implies that? splits completely irQ (o), and that the class afin Ck isc.
Hence,l = 1 (mod 2p"), andK(u,)/K is totally ramified ath. Let w be
the prime ofK ()™ lying overi. Then, we have. = w*~1/2in K(u,)*,
hence the imaggc) of the class oh in Ak,,)+ belongs top" Ak ,,)+.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We will use the same notation as
in Sect. 2. In particularp denotes a prime number, a@ (resp. Ar)
denotes the ideal class group@f (resp. thep-Sylow subgroup o€g) for

a number fieldF. Let k be a totally real number field. In this section, we
call an extensiorK /k an rcf extension (a real cyclotomic finite extension) if

K C (Kso)™ and[K : k] < oo. We will show that for any rcf extensioki /k,

and any elemernt € Cg, there is an rcf extension/k such thakk ¢ L and

that the image o€ vanishes irC, .

3.1. ltis clear that we may assunfle : Q] is finite. We will first see that

we may assumk/Q is Galois. Letk/Q be the Galois closure ¢/Q, and
putm = [k : K]. In order to show the above statement, we may assume the
order ofcis a power ofp for some prime numbep. By Lemma 2.3 there is

an rcf extensiorK’/k such that’ € m A¢ wherec' is the image ot in Ax:.

So we can tak€ € A, i such thatN(C) = ¢’ whereN : A — Ax is

the norm map. Assume that there is an rcf extenkighsuch that. > K’k

and the image of is zero inA;. We may supposé = Lk whereL /k is

an rcf extension. Then, the imageoin A_ is zero. In the following, we
assume/Q is a finite Galois extension.

3.2. Inthis subsection, we will define two homomorphisiande,. Let
p be a prime number, and I&t/k be an rcf extension. Note th#t/Q is
a finite Galois extension by our assumption.

For a ringR and a groupG, we defineR[G]° = Ker(R[G] — R)
(Za,0 — Xa,) the augmentation ideal. L&y be the unit group oDx.
By Dirichlet’s unittheorenEx ®R ~ R[Gal(K/Q)1°, Ex ®Q s isomorphic
to Q[Gal(K/Q)1° (cf. for example [14, Cor to Th 30 in Sect. 13]), so we
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can take a G&K/Q)-homomorphism
®:Ex ®Z, — Zp[GalK/Q)]°

with finite cokernel. We take suchd&and fix it.

For a finite place of K, Ex, denotes the unit group of the integer ring
Ok, of the completionK,, atv, and«(v) denotes the residue field of For
a prime numbet, we have a canonical homomorphism

Ex — EB Ex, — @K(U)X.

v|l v|l

We assume thadtsplits completely irK, and tha? = 1 (mod 2p"). Fixing
a primeuvg of K overe, we identify@vw k(v)*/p"withZ/p"[Gal(K/Q)]®
(F;/p"). Fixing also agenerator &f and anisomorphisia, /p" ~ Z/p",
we have a G&K/Q)-homomorphism

¢0 - Ex — (@ k)*)/p" = Z/p[GalK/Q)].

v|l

Our assumption ohimplies that the canonical mdg, = {+1} — F,/p"
is zero, hence the image ¢f is in (Z/p"[Gal(K/Q)])°.

3.3. Let K/k be an rcf extension, andbe any element ilCx. We will
show that there is an rcf extensiank such thatK c L and that the image
of cvanishes irC, .

We may assume that the order @is a power ofp for some prime
numberp, namelycis in Ax. We may assumg is big enough, so we may
assumeK (up)*/K is totally ramified at all primes oK lying over p.
Further, by Lemma 2.3 we may assume 2Ag.

Wefixd: Ex ® Zp — Zp[Gal(K/Q)]0 as in 3.2. We take a positive
integern such that

p" > (#AK)? - #(Cokerdd : Ex ® Z, — Zp[Gal(K/Q)1%).

We choose a prime numbérsuch that

(i) ¢ splits completely irK

(i) £=1 (mod 2p")

(iii) There is a primevg of K lying over ¢ such that the class af in Ag
is C.

(iv) Image, : Ex — @D, «()*/p" =~ Z/p"[Gal(K/Q)]) coincides
with Imagg4®) mod p" in Z/p"[Gal(K/Q)].
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We can find infinitely many suctis by Tschebotareff density theorem,
by the same method as in [13, Theorem 3dddd), and [5, Theorem 3.7]
(p = 2). In fact, putF = K(uzp), andF’ = F(EY™). Let H be the
Hilbert p-class field ofK. By our assumption thd* /K is totally ramified
at every prime lying ovep, we haveF N H = K, and we identifyAx with
Gal(HF/F). Since 2GalHF N F'/F) = 0 andc € 2A, ¢ can be regarded
as an element of GAHF/HF N F’). We choose a primitiv@"-th root¢» of
unity, and define : Z/p"[Gal(K/Q)] — up byi(o) = 1if o # lgak/Q)
(for (S GaI(K/Q)), andt(leaKK/Q)) = {pn. Then, 40 ® : Ex — Kpn
corresponds to an elemeptof Gal(F'/HF N F’) by Kummer theory. We
choose a prime. of F, of degree 1, such thatiF'/Q is unramified at’
which is the prime of below, and that the Frobenius afin Gal(HF/F)
coincides withc, and that the Frobenius afin Gal(F’/F) coincides withy .

If we definel (resp.vg) to be the prime of (resp.K) belowa, the properties
()-(iv) are satisfied.

Let L be the totally real subfield dK(u,) such thatL /K is cyclic of
degreep". We denote by, k : Ck —> C_ the canonical homomorphism.
We will show thati| k (c) = 0.

Suppose that_k (c) # 0. L/K is totally ramified aty, and we denote
by wg the prime ofL lying overuvg. Let [wg] (resp.[vg]) be the class oivg
in C_ (resp.vo in Ck). Fromw{ = voin L, we have[wo] € AP /K et
p" be the order ofwg] in

HO(L/K,CpL) = AO(L/K, A) = AP0 A

and « be a class inAx such thatp'[wo] = ik (). By our assump-
tion, ik (P" ") = p"[wo] = i k([vo]) = iLk(C) # 0in C., hence
p" "« is not in the kernel of k. In particular, the order oAk is grea-
ter thanp"". This implies thatp" > p"/#Ax > #Ax# Coker 4b. Since
#HO(L/K,CL) > p', we have

#HO(L/K, CL) = #HY(L /K, C) > #Ak# Coker 4b. 1)
Now we apply Lemma 2.1 ta /K.
Firstof all, @,, H(L./K,, EL,) = @, k(v)*/p" = Z/p"[Gal(K/Q)],
andHO(L/K, EL) — @, H%(L /K., EL,) is induced fromp,. On the
other hand, as we mentioned in Remark 2.2, the kerrigl f: Ck — C,_
coincides with the kernel oH(L /K, E.) — DB, HY(L,/K,, EL,).
Hence by Lemma 2.1, we have an exact sequence

0 —> Coken¢, : Ex — Z/p"[Gal(K/Q)]°) —

— HY(L/K,CL) — Ker(i k) — O. (2

Since the image of, coincides with the image of®& mod p", the in-
equality (1) implies that # Ker_ k) = #Ker(Ax — A_) > #Ax, which
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is a contradiction. Henck k() = 0. This completes the proof of Theo-
rem 1.1.

4. Remarks on cyclotomic Z,-extensions of real abelian fields

In this section, we consider a simple situation, and asspim@n odd prime
number. We also use the notation that is the p-primary component
(p-Sylow subgroup) of the ideal class gro@x for a number fieldK.
K, p/K denotes the cyclotomiz ,-extension, and for > 0, K; denotes
the intermediate field of degrge. We define

XK:)o,p = lim AKi
where the projective limit is taken with respect to the norm maps. Note that
AKoo,p = lim AKi .

For a Dirichlet charactep of the first kind whose values are in an algebraic
closure ofQ, k, denotes the abelian field corresponding to the kerng) of
and putG,, = Gal(k,/Q) (sog : G, < Q). For aZ ,[G,]-moduleM, we
define

M? =M ®ZD[G</J] OW

where we regard, = Z,[Imagep] as aZy[G,]-module viap, namely
ox = g(o)x for anyo € G, and anyx € O,. We simply denote?, by A?.
From Galk,, «, p/Q) = G, xGal(k,, ~,p/K,), we regards,, as a subgroup of
Gal(ky,, 0, p/Q), and consideb({f(mp = Xkyno.p ®z,06,1 Op Which becomes
anO,[[Gal(k,, «, p/K,)11-module. We simply denotxﬁp_w by X?. We will
see in this section that there are many eyisrwith #X% < co.

We assume that is an even Dirichlet character of order primegsuch

that x(p) # 1.

4.1. In this subsection, we assume th&t = 0. Then we haveX* = 0
since x(p) # 1 (cf. [9, Lemma 3]). We begin with the following simple
observation.

Proposition 4.1. Let x be an even character of order prime posatisfying
x(p) # 1Land Ax = 0. For anyn > 0, there exist infinitely many even
Dirichlet charactersy of order p” with conductor a prime number such
that X*¥ = 0.

PutK = k,. In fact, by Tschebotareff density, we can take infinitely
many ¢ such that¢ splits completely inK, ¢ = 1 (mod p"), and that
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(Ek®Z/pM* — (@M Ek, ®Z/p")*is surjective. LeL be the subfield
of K(u) such thafL : K] = p".

For anyZ ,[Gal(L /Q)]-module M, we regardM as aZ ,[G, ]-module
by regardingG, as a subgroup of Gdl/Q) by the decomposition
GallL/Q) = G, x Gal(L/K). We considerM* = M ®z,,; O, which
is an O, [Gal(L /K)]-module.

By Lemma 2.1, the above conditions @nimply H(L/K, A )X =
HY(L/K, Al) = 0 (cf. (2) in 3.3), henceA! = 0. For X{_ ey =
XLoc » ®z,i6,1 Oy, by the standard argument (cf. [9, Lemma 3]) we have
(XLOC p)Gal(Lw,p/L) = Al'. In fact, lety be a generator of Gél p/L)
and H = Ker (X, — AL). Sincex(p) # 1, (B, pZp)* = 0 where
w ranges over all primes of ., , over p, so (H/(y — D)X, )* =0,
which |mpI|es(XL )GakLoo o/L) = Al HenceXX op = = 0 by Nakayama’s
lemma, soX*V = 0 for a charactery of Gal(L/K). O

Concerning the finiteness ¥V for a charactet of conductor? and of
order p under the assumptioA* = 0, by studying the group of cyclotomic
units, we can easily see the following.

Proposition 4.2. Let x be an even character of order prime posatisfying
x(p) # Land A* = 0. For a charactery of order p and of conductor,
X*¥ is finite if and only if

#HO(Li /K, EL)" = #(FpllGal(Kwo, p/Q)11/(Frob, — 1))*
for some > 0 whereFroby is the Frobenius at in Gal(K p/Q).

Concerning this kind of criterion, more general case is treated by Fukuda
et al. [3].

If (Ex ® Zp)* — (D, Ex, ® Zp)* is surjective as in the proof of
Proposition 4.1, then the condition &t in Proposition 4.2 is satisfied for
alli > 0. As an example, fop = 3, K = Q(ﬁ), nontrivial character
x of K, and a prime numbef which splits completely irK, and which
satisfie = 1 (mod p) with £ < 200,(Ex ® Z,)* —> (QBWZ Ek, ®Zp)*
is surjective (soX*¥ = 0 by Proposition 4.1) except = 79, 103 . For
¢ =179, and 103, by a table in [12] we knovw:I#(L/K, EL )X = 3, hence
by Proposition 4.2X*¥ is finite (and nonzero).

4.2. Next we consider the casé >~ O, /p.

Proposition 4.3. Let x be an even character of order prime { such
that x(p) # 1, and AXx >~ O,/p. If pX* # 0, then for anyn > O there
exist infinitely many even Dirichlet characteysof order p” with a prime
conductor such thak*¥ is finite.
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This proposition says that & ~ O, /p, there is at least one character
¥ (v is of order 1 orp") such thatX*¥ is finite.

We will prove Proposition 4.3. We use the same notation as in the proof
of Proposition 4.1. LeK = k,, andc be a generator ok; . We take? which
satisfies the conditions théatsplits completely irK, £ = 1 (mod p"), and
that(Ex ®Z/p"* — (D, Ex, ®Z/p")* is surjective, and thdbo] = ¢
whereuvg is a prime lying ovef. Tschebotareff density asserts the existence
of infinitely many¢ satisfying these conditions.

LetL bethe subfield oK (u,) suchthatL : K] = p". By the surjectivity
of (Ex ® Z/p"* — (D,, Ex, ® Z/pM*, Lemma 2.1 implies that

HY(L/K, AD)* = Ker(ipk : A, — A)) (3)

(cf. (2) in 3.3). On the other hand, the primgy, of L lying over
vo yields a nontrivial class inA%(L/K, A )x. So #O(L/K, A )X =
#HY(L/K, AL)* # 1, hence by (3) we gét /k(c) = 0.

The isomorphism (3) also implies the&{)caL k) >~ Af. (Note that
Al = AL ®z,6,1 Oy and notA. ®z,carLq) Oy.) SO Al is genera-
ted by [wo]. We have Al =~ O,/p by induction onn. In fact, let K’
be the subfield oL such that{K’ : K] = p"~1. Since the inclusion in-
duces an isomorphisrt®,, Ex, ® Z/p)* = (D, Ex, ® Z/p*, the
map (Ex: ® Z/p)*¥ —> (EBU/\@ EK;, ® Z/p)* is also surjective, hence
the same argument as above implies that ([vy]) = 0 wherey is the
prime of K’ lying abovevy. From p[wg] = i,k ([vg]) = 0, we have
Al ~0O,/p.

PutG = Gal(L/K). Fixing a generatoy of Gal(K, ,/K) and iden-
tifying y with 1 + T, we write A = O, [[Gal(Ky, ,/K)]] =~ O,[[T]],
and

AL = Oy[Gal(L o, p/K)T = O TIIIG] = A[G].

Let o be a generator o6 = Gal(L /K). We take a charactef of G such
that (o) = ¢{pr Wheregy is a primitive p"-th root of unity. We define
«: AL — Ag = OL[[T]] (resp.y : AL —> AV = O, [[T]]) to be
a ring homomaorphism defined loy+— 1 (resp.o +— ¥(0)).

As in the proof of Proposition 4.1, we ha\(e(fm’p)ea“x,p/u ~ Af
from our assumptiorny(p) # 1. So Xfoo_p is cyclic as aA-module by
Nakayama’s lemma. We writ¥{ _ o= AL/l From (X{ _ )eaiLe /L) =~
A /1, T) = 0O,/p, | contains element&(T) = o —1+ 'in andH(T) =
p+ Thfor someg,h € A,.

We assume&X*¥ is infinite. Sincey(G(0)) = ¢y — 1is a prime element
of O,y andu = 0[2], ¥(G(T))* is an Eisenstein polynomial, so irreducible
wherey/(G(T))* is the polynomial obtained fromr(G(T)) by Weierstrass
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preparation theorem. From the assumptioti¥ = oo, this implies that
¥w(G(T)) generategs(1). Hencey/(G(T)) dividesy(H(T)).

Putdy(9 = (sP" — 1)/(8"”_1 — 1) the p"-th cyclotomic polyno-
mial. Then, we can writetH(T) = G(T)A(T) + @ (0)B(T) for some
A(T), B(T) € A_. Sincep = a(H(0)) = px(B(0)), «(B(0)) = 1 and
B(T) isaunitinA. So®y(o) isin I, which impliesp € «(l). Since we
have a surjective homomorphis@(fw)e = Ala(l) — Xﬁm = XX,
this impliespX* = 0, which contradicts our assumption. ' ]

For example, by the same method, we have

Corollary 4.4. Let K be a real quadratic field, ang be an odd prime
number. We assume thatdoes not decompose KK, and#Ax = p. If
PXk.., # 0, for anyn > 0O, there exist infinitely many real cyclic fields
L’ of degreep" with a prime conductor such that, _  /i(Xk,,,) is finite
whereL = L’'K andi : Xk, — X, is the canonical map.

Proof. Let xo be the trivial characteryy = 1), and x be the nontrivial
character ofK. Let K; be the subfield oK, , such thafK; : K] = p.
We take a prime numbef such that?¢ splits completely inK,, £ = 1
(mod p"), and that both Ex, ® Z/p")"* — [(D,, Ek,, ® Z/p")0xo
and(Ex ® Z/p"* — (EBWZ Ek, ® Z/p")* are surjective, and thébo]
is a generator o whereu is a prime ofK lying over £. Tschebotareff
density asserts the existence of infinitely many stichhen, by the method
in the proof of Proposition 4.3 we get the conclusion. O

Remark 4.5.For p = 3, 5, 7, there are a lot of examples of quadratic
fields K such thatAx >~ Z/p, pXk,,, # 0, and thatXx_, , is finite (for
example,K = Q(v/254), Q(+/473) for p = 3, cf. [7,10]). For thes& , by
Corollary 4.4 we can find infinitely many real cyclic fields(C K(u,) for
somet) of degree " such that

AL -+~ 0 and #(Loo,p < 00.

We remark that in [9] Iwasawa constructed infinitely maKysuch that
[K: Q] = p, Ak # 0, and &, , < oo for arbitrary odd prime numbep.

4.3. We will give one more Proposition which has the same nature as
Proposition 4.3.

Proposition 4.6. Let x be an even character of order prime posuch that
x(p) # 1. We assume tha{t” is isomorphic to a quotient @, [[T]]/( f(T))

as anO, [[Gal(k, « p/k, )1l = O,[[T]]- module wheref(T) € O,[[T]] is

an irreducible polynomial. Then at least eith¥ is finite, or for anyn > 0

there exist infinitely many even Dirichlet charactefsof order p" with

a prime conductor such that*¥ is finite.
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We use the same notation as in the proof of Proposition 4. X P4k, ,
and supposé; ~ O, /p™ # 0. We take as in the proof of Proposition 4.3
and takeL c K(u,) such thafL : K] = p". By the same argument, we
haveAf ~ O, /p™.

Let ¢ be a faithful character o0& = Gal(L /K). Assume bothX* and
X are infinite. Our assumption implies thxt ~ O, [[T1l/(f(T)). We
write X{mp ~ A /| asinthe proof of Proposition 4.3. Sing¢ ~ O, /p™,
| containsG(T) = o — 1+ TgandH(T) = p™ + Thfor someg,h € A,.
Leto andy, be the homomorphisms defined in the proof of Proposition 4.3.
Sincex(H(0)) = f(0) = p™, a(H(T)) generatesf(T)). Sox(H(T)) divides
a(G(T)). On the other hand/(G(T)) divides¥(H(T)) as in the proof of
Proposition 4.3.

In general, for a discrete valuation rifigwith maximal idealmg, and
a power seriesf € R[[T]], we definer(f) = ordr(f modmg) where
ordr is the normalized additive valuation 6R/mg)[[T]] defined byT.
The above divisibility ange = 0 [2] imply that

Ma(H(M)) = Ma(G(M)) = AY(G(M))
= AY(HM)) = A(a(H(D)) < oo.

This implies bothx(H(T)) anda(G(T)) generate the same ideal@ [[T]].
This is a contradiction becaus€H(0)) # a(G(0)) = 0. |

Appendix

After this paper was accepted to be published, | was suggested by John
Coates to study abo@,.» by the same method whekeis an imaginary
quadratic field an#?” is the maximal abelian extensionloin an algebraic
closure ofk. Further | was informed by Nguyen Quang Do and R. Schoof
of a paper by G. Gras [4]. | would like to express my hearty thanks to John
Coates for his suggestion, and to Nguyen Quang Do and R. Schoof for
telling me about [4].

By the same method as in Sect. 3, we can prove

Theorem A.1. Letk be an imaginary quadratic field, arkd® its maximal
abelian extension in an algebraic closure. For any algebraic extensitg
we have

CKkab = 0

whereKk? is the compositum df andka®.

For the maximal abelian extensid?® of a number fieldK, Gras [4,
Conjecture 0.5] conjecturésyan = 0 for K which is not totally real. From
Theorem A.1, we obtain
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Corollary A.2. For a number fieldK which contains an imaginary qua-
dratic field, we have

CKab = 0

Proof of Theorem A.1lln principle, instead ofu,, we can use division
points of an elliptic curve with complex multiplication. For an ideabf
Ok, k(a) denotes the ray class field mod@of k. Note thatik(a) : k(1)] =
#(Ok/a) * wa/wy Wherewy (resp.w,) denotes the number of roots of unity
(resp. the number of roots of unity congruent to 1 modaldVe will apply
the method in Sect. 3. Ld€/k be a finite Galois extension. For any ideal
classc € Ak, we will show the existence of an abelian extendiotk such

that the image o€ vanishes inAxy.
Supposeu px (K) = Mﬁil(K(“pm)/K) = ppm. We may assumen is big

enough. By the method of Lemma 2.3, for amy- 0 we can show that

i(c)ep" AKKG1-.ohr)

for some primes,,... A of degree 1, so we may assume p™Ag. Further,
we may assume that contains the Hilbert class field &f

We taked : Ex ® Z, —> Zp[Gal(K/k)]° as in Sect. 3, and take> 0
such that

p" > (#Ak)? - #(Coker2p™®)).

Asin 3.3, by Tschebotareff density theorem, we can choose a prime number
£ such that splits completely irk, £ = 1 (mod 120"), ¢ = [vg] Whereug
is a prime ofK lying over¢, and that ifz is a prime ofk below vy,

Image(¢; : Ex — @) x(1)*/p" ~ Z/p"[Gal(K/k)])

v|A

= Image2p™® modp").

In the notation of 3.3 we havp™ Gal(HF N F’/F) = 0, so this is possible.
We defineL to be the subfield oKk()x) such thatilL : K] = p", and
apply an exact sequence

o — FOL/K, EL) — (@D RO(Lu/Ko. EL,))° —

v[A

—HYL/K,C) — ...,

which is obtained by the same method as Lemma 2.1. Then we have
iL/k (c) = 0 by the same method as in 3.3.
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Remark A.3.In [4], Gras studied the capitulation of ideals of number fields,
and gave some examples. A¢ér= Q(+/79), he showed the elements of
Ck (~ Z/3) become trivial inCy whereM is the compositum oK and

the cubic field of conductor 97. Our method in this paper shows that we
can take a field of smaller conductor for the capitulation. For example, the
ideals ofK become principal in the compositum léfand the cubic field of
conductor 7, namely

Ck —> Ck(cox2r/7)

is zero. (This can be also checked from a numerical calcul@iQBs2-/7)) =~

Z /3. Our method in this paper shows that the third and the fifth conditions
in [4, page 421] can be replaced by a simpler condition that a primefover
is not principal.)

In general, we can show the following by the method in the proof of
Proposition 4.3. We use the notation in Sect. 4.).be a Dirichlet character
with order prime top, andK = k, be the field corresponding to the kernel
of x. Assume thatA} ~ O,/p". If ¢ is a prime number which splits
completely inK, and satisfie¢ = 1 (mod 2p"), and if A% is generated
by a prime aboves, and if (Ex ® Z/p")* —> (P, k(v)* ® Z/pMH*
is surjective, then the canonical maf — A is zero wherel is the
subfield ofK(u,)™ such thafL : K] = p".
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