

On the ideal class groups of the maximal real subfields of number fields with all roots of unity

Received January 15, 1998 / final version received July 31, 1998

Abstract. In this paper, for a totally real number field k we show the ideal class group of $k(\bigcup_{n>0}\mu_n)^+$ is trivial. We also study the *p*-component of the ideal class group of the cyclotomic \mathbb{Z}_p -extension.

1. Introduction

For a positive integer n > 0, μ_n denotes the group of *n*-th roots of unity.

Iwasawa studied the ideal class groups of number fields containing $\mu_{p^{\infty}} = \bigcup_{n>0} \mu_{p^n}$ with a prime number p, and established a theory which clarifies their deep arithmetical meaning. One of the motivation lay in an analogy between a number field containing $\mu_{p^{\infty}}$ and a function field over an algebraically closed field, so it is natural to ask how is the ideal class group of a field containing all roots of unity.

For an algebraic extension K/\mathbf{Q} , $C_K = \operatorname{Pic}(O_K)$ denotes the ideal class group of the integer ring O_K , namely the group of isomorphism classes of invertible O_K -submodules of K. So we have $C_K = \lim_{\to} C_k$ where k ranges over all intermediate fields with $[k : \mathbf{Q}] < \infty$.

For a totally real number field k, let $k_{\infty} = \bigcup_{n>0} k(\mu_n)$ be the field obtained from k by adjoining all the roots of unity. For example, \mathbf{Q}_{∞} is the maximal abelian extension \mathbf{Q}^{ab} of \mathbf{Q} . The class group $C_{k_{\infty}}$ was studied by Brumer [1], and Horie [6] (cf. also [15]), but the following result does not seem to be known.

Theorem 1.1. Let k be a totally real number field. We denote by $(k_{\infty})^+$ the maximal real subfield of k_{∞} . Then, we have

$$C_{(k_{\infty})^+} = 0.$$

In particular, $C_{(\mathbf{O}^{ab})^+} = 0$.

M. Kurihara: Department of Mathematics, Tokyo Metropolitan University, Hachioji, Tokyo 192-03, Japan

Mathematics Subject Classification (1991): 11R23, 11R29,11R18

On the other hand, we know that the Pontrjagin dual of the minus part $C_{k_{\infty}}^{-} = \operatorname{Coker}(C_{(k_{\infty})^{+}} \longrightarrow C_{k_{\infty}})$ is generated by infinitely many elements even as a $\hat{\mathbf{Z}}[[\operatorname{Gal}(k_{\infty}/k)]]$ -module (for example, cf. [11]).

After some preparation in Sect. 2, we will prove this theorem in Sect. 3. For the proof, we only need class field theory. Using the same method, in Sect. 4 we will study the *p*-primary component of the ideal class group of the cyclotomic \mathbb{Z}_p -extension of a real abelian field. For a number field F, A_F denotes the *p*-primary component (*p*-Sylow subgroup) of the ideal class group C_F . Let φ be an even Dirichlet character of the first kind, and k_{φ} (resp. $k_{\varphi,\infty,p}$) be the real abelian field corresponding to the kernel of φ (resp. the cyclotomic \mathbb{Z}_p -extension of k_{φ}). Let k_i be the subfield of $k_{\varphi,\infty,p}$ such that $[k_i : k_{\varphi}] = p^i$, and consider $X_{k_{\varphi,\infty,p}} = \lim_{\leftarrow} A_{k_i}$ where the projective limit is taken with respect to the norm maps. We denote by X^{φ} the φ -component of $X_{k_{\varphi,\infty,p}}$. We will see in Sect. 4 that there are many φ 's such that X^{φ} is finite (in other words, such that $A_{k_{\varphi,\infty,p}}^{\varphi} = 0$) (cf. Propositions 4.3, 4.4, 4.6, 4.1).

I would like to express my hearty thanks to Professor K. Iwasawa for his warm encouragement. I learned a lot from his papers [8,9] on the relation between A_K and A_L for a *p*-extension L/K.

Notation. For an abelian group *A* and an integer n > 0, the cokernel (resp. kernel) of the multiplication by *n* is denoted by A/n (resp. A[n]). (Even in the case *A* is multiplicative, we use A/n instead of A/A^n .) For a number field *F*, its integer ring is denoted by O_F . For an integer n > 0, μ_n denotes the group of *n*-th roots of unity.

2. Some lemmas

In this section, we assume that K is a totally real number field of finite degree over \mathbf{Q} , and p is a prime number.

Let ℓ be a prime number which is different from p, and n > 0 be a positive integer. In the following lemma, we consider a finite extension L/K of totally real fields such that L/K is cyclic of degree p^n , and that L/K is unramified outside ℓ , and totally ramified at all primes of K lying over ℓ .

For a place w of L, let L_w be the completion of L at w. We denote by E_L (resp. E_{L_w}) the unit group of the integer ring of L (resp. L_w). (If w is an infinite place, we define $E_{L_w} = L_w^{\times}$.) We have an exact sequence

$$0 \longrightarrow E_L \longrightarrow \prod_w E_{L_w} \longrightarrow \mathcal{C}_L \longrightarrow \mathcal{C}_L \longrightarrow 0$$

where C_L (resp. C_L) is the idele class group (resp. ideal class group) of L. We fix a generator of Gal(L/K) and identify $\hat{H}^0(L/K, M)$ with $H^2(L/K, M)$ for any Gal(L/K)-module M. Here, \hat{H}^0 is the Tate cohomology.

Lemma 2.1. The above exact sequence yields an exact sequence

The notation is as follows. v ranges over all primes of K lying over ℓ , and w is the unique prime of L lying over v. We define an isomorphism $\hat{H}^0(L_w/K_v, E_{L_w}) \simeq \mathbb{Z}/p^n$ by

$$\hat{H}^0(L_w/K_v, E_{L_w}) \simeq \hat{H}^0(L_w/K_v, L_w^{\times}) \simeq H^2(L_w/K_v, L_w^{\times}) \simeq \mathbf{Z}/p^n$$

where the last map is the invariant map of local class field theory. (The first two groups are isomorphic because L_w/K_v is totally ramified.) The group $(\bigoplus_{v \mid \ell} \hat{H}^0(L_w/K_v, E_{L_w}))^0$ denotes the kernel of

$$\bigoplus_{v|\ell} \hat{H}^0(L_w/K_v, E_{L_w}) \simeq \bigoplus_{v|\ell} \mathbb{Z}/p^n \xrightarrow{\Sigma} \mathbb{Z}/p^n$$

where Σ is the map defined by the sum.

Remark 2.2. It is well known that the kernel of the map

$$H^1(L/K, E_L) \longrightarrow \bigoplus_{v|\ell} H^1(L_w/K_v, E_{L_w})$$

in Lemma 2.1 coincides with the kernel of the canonical map

$$i_{L/K}: C_K \longrightarrow C_L.$$

In fact, let D_L (resp. P_L) be the divisor group of L (resp. the group of principal divisors of L). From a commutative diagram of exact sequences

$$0 \qquad 0 \qquad 0 \qquad \uparrow \qquad H^{1}(L/K, E_{L}) \longrightarrow \bigoplus_{w|\ell} \mathbb{Z}/p^{n} \qquad \uparrow \qquad 0 \qquad \to H^{0}(L/K, P_{L}) \longrightarrow H^{0}(L/K, D_{L}) \longrightarrow H^{0}(L/K, C_{L}) \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad H^{0}(L/K, L^{\times}) \longrightarrow D_{K} \qquad \to \qquad \uparrow \qquad \uparrow \qquad 0 ,$$

we have an exact sequence

$$0 \longrightarrow \operatorname{Ker}(i_{L/K}) \longrightarrow H^1(L/K, E_L) \longrightarrow \bigoplus_{w|\ell} \mathbb{Z}/p^n$$

(where w ranges over all primes of L lying over ℓ). Here, the last map coincides with $H^1(L/K, E_L) \longrightarrow \bigoplus_{v|\ell} H^1(L_w/K_v, E_{L_w})$, so its kernel coincides with Ker $(i_{L/K})$. *Proof of Lemma 2.1.* Let *A* be the kernel of $C_L \longrightarrow C_L$. We will simply denote $\hat{H}^q(L/K, M)$ by $\hat{H}^q(M)$. First of all, since L/K is unramified outside ℓ , we have $\hat{H}^q(\Pi_w E_{L_w}) = \hat{H}^q(\Pi_w |_{\ell} E_{L_w})$. Consider a commutative diagram of exact sequences

$$\begin{array}{c} 0 \\ \uparrow \\ \mathbf{Z}/p^{n} & \xrightarrow{\simeq} \hat{H}^{0}(\mathcal{C}_{L}) \\ \uparrow \Sigma & \uparrow \\ \vdots \\ \dots \longrightarrow \hat{H}^{0}(E_{L}) \longrightarrow \bigoplus_{v|\ell} \hat{H}^{0}(L_{w}/K_{v}, E_{L_{w}}) & \longrightarrow \hat{H}^{0}(A) \longrightarrow H^{1}(E_{L}) \longrightarrow \dots \\ (\bigoplus_{v|\ell} \hat{H}^{0}(L_{w}/K_{v}, E_{L_{w}}))^{0} \longrightarrow H^{1}(C_{L}) \\ \uparrow \\ 0 & \downarrow \\ 0 & \vdots \\ 0 & \vdots \\ \end{array}$$

Here, we used $H^1(\mathcal{C}_L) = 0$, and the canonical map

$$\bigoplus_{v|\ell} \hat{H}^0(L_w/K_v, E_{L_w}) \longrightarrow \hat{H}^0(\mathcal{C}_L)$$

coincides with the sum $\bigoplus_{v|\ell} \mathbb{Z}/p^n \xrightarrow{\Sigma} \mathbb{Z}/p^n$. Hence, we have an exact sequence

$$\dots \longrightarrow \hat{H}^{0}(E_{L}) \longrightarrow (\bigoplus_{v|\ell} \hat{H}^{0}(L_{w}/K_{v}, E_{L_{w}}))^{0}$$
$$\longrightarrow H^{1}(C_{L}) \longrightarrow H^{1}(E_{L}) \longrightarrow \dots$$

On the other hand, from the above commutative diagram, $\hat{H}^0(A) \longrightarrow \hat{H}^0(\mathcal{C}_L)$ is surjective. This fact together with $H^1(\mathcal{C}_L) = 0$ implies that $\hat{H}^0(\mathcal{C}_L) \longrightarrow H^1(A)$ is bijective. Thus,

$$H^1(E_L) \longrightarrow \bigoplus_{v|\ell} H^1(L_w/K_v, E_{L_w}) \longrightarrow \hat{H}^0(C_L) \longrightarrow \hat{H}^0(E_L)$$

is exact. This completes the proof of Lemma 2.1.

We fix a prime number p, and denote by A_F the p-primary component (p-Sylow subgroup) of the ideal class group C_F for a number field F. We also need the following lemma (cf. [1, Lemma 6]).

Lemma 2.3. Let K be a totally real number field, and n > 0 a positive integer. We assume K contains $\mathbf{Q}(\mu_{2p^n})^+$. Let $\mathbf{c} \in A_K$ be any element of A_K . Then there exist infinitely many rational primes ℓ such that

$$i(\mathbf{c}) \in p^n A_{K(\mu_\ell)^+}$$

where $i : A_K \longrightarrow A_{K(\mu_\ell)^+}$ is the canonical homomorphism.

In fact, let *H* be the Hilbert class field of *K*, namely *H*/*K* is the unramified extension such that $\operatorname{Gal}(H/K) \simeq C_K$. We consider an abelian extension $H(\mu_{2p^n})/K$ whose Galois group is $\operatorname{Gal}(H(\mu_{2p^n})/K) = C_K \times \{\pm 1\}$ where $\{\pm 1\} = \operatorname{Gal}(K(\mu_{2p^n})/K)$. By Tschebotareff density, there exist infinitely many primes λ of *K*, of degree 1, whose Frobenius coincides with $(\mathbf{c}, 1) \in C_K \times \{\pm 1\} = \operatorname{Gal}(H(\mu_{2p^n})/K)$. We denote by ℓ the prime number which is below λ . We may suppose ℓ is unramified in *K*. Our assumption implies that ℓ splits completely in $\mathbf{Q}(\mu_{2p^n})$, and that the class of λ in C_K is \mathbf{c} . Hence, $\ell \equiv 1 \pmod{2p^n}$, and $K(\mu_\ell)/K$ is totally ramified at λ . Let *w* be the prime of $K(\mu_\ell)^+$ lying over λ . Then, we have $\lambda = w^{(\ell-1)/2}$ in $K(\mu_\ell)^+$, hence the image $i(\mathbf{c})$ of the class of λ in $A_{K(\mu_\ell)^+}$ belongs to $p^n A_{K(\mu_\ell)^+}$.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We will use the same notation as in Sect. 2. In particular, p denotes a prime number, and C_F (resp. A_F) denotes the ideal class group of O_F (resp. the p-Sylow subgroup of C_F) for a number field F. Let k be a totally real number field. In this section, we call an extension K/k an rcf extension (a real cyclotomic finite extension) if $K \subset (k_{\infty})^+$ and $[K : k] < \infty$. We will show that for any rcf extension K/k, and any element $\mathbf{c} \in C_K$, there is an rcf extension L/k such that $K \subset L$ and that the image of \mathbf{c} vanishes in C_L .

3.1. It is clear that we may assume $[k : \mathbf{Q}]$ is finite. We will first see that we may assume k/\mathbf{Q} is Galois. Let \tilde{k}/\mathbf{Q} be the Galois closure of k/\mathbf{Q} , and put $m = [\tilde{k} : k]$. In order to show the above statement, we may assume the order of \mathbf{c} is a power of p for some prime number p. By Lemma 2.3 there is an rcf extension K'/k such that $\mathbf{c}' \in mA_{K'}$ where \mathbf{c}' is the image of \mathbf{c} in $A_{K'}$. So we can take $\tilde{\mathbf{c}} \in A_{K'\tilde{k}}$ such that $N(\tilde{\mathbf{c}}) = \mathbf{c}'$ where $N : A_{K'\tilde{k}} \longrightarrow A_{K'}$ is the norm map. Assume that there is an rcf extension \tilde{L}/\tilde{k} such that $\tilde{L} \supset K'\tilde{k}$ and the image of $\tilde{\mathbf{c}}$ is zero in $A_{\tilde{L}}$. We may suppose $\tilde{L} = L\tilde{k}$ where L/k is an rcf extension. Then, the image of \mathbf{c} in A_L is zero. In the following, we assume k/\mathbf{Q} is a finite Galois extension.

3.2. In this subsection, we will define two homomorphisms Φ and ϕ_{ℓ} . Let *p* be a prime number, and let K/k be an rcf extension. Note that K/\mathbf{Q} is a finite Galois extension by our assumption.

For a ring *R* and a group *G*, we define $R[G]^0 = \text{Ker}(R[G] \longrightarrow R)$ $(\Sigma a_\sigma \sigma \mapsto \Sigma a_\sigma)$ the augmentation ideal. Let E_K be the unit group of O_K . By Dirichlet's unit theorem $E_K \otimes \mathbf{R} \simeq \mathbf{R}[\text{Gal}(K/\mathbf{Q})]^0$, $E_K \otimes \mathbf{Q}$ is isomorphic to $\mathbf{Q}[\text{Gal}(K/\mathbf{Q})]^0$ (cf. for example [14, Cor to Th 30 in Sect. 13]), so we can take a $Gal(K/\mathbf{Q})$ -homomorphism

$$\Phi: E_K \otimes \mathbf{Z}_p \longrightarrow \mathbf{Z}_p[\operatorname{Gal}(K/\mathbf{Q})]^0$$

with finite cokernel. We take such a Φ and fix it.

For a finite place v of K, E_{K_v} denotes the unit group of the integer ring O_{K_v} of the completion K_v at v, and $\kappa(v)$ denotes the residue field of v. For a prime number ℓ , we have a canonical homomorphism

$$E_K \longrightarrow \bigoplus_{v|\ell} E_{K_v} \longrightarrow \bigoplus_{v|\ell} \kappa(v)^{\times}$$

We assume that ℓ splits completely in K, and that $\ell \equiv 1 \pmod{2p^n}$. Fixing a prime v_0 of K over ℓ , we identify $\bigoplus_{v \mid \ell} \kappa(v)^{\times}/p^n$ with $\mathbb{Z}/p^n[\operatorname{Gal}(K/\mathbb{Q})] \otimes (\mathbb{F}_{\ell}^{\times}/p^n)$. Fixing also a generator of $\mathbb{F}_{\ell}^{\times}$ and an isomorphism $\mathbb{F}_{\ell}^{\times}/p^n \simeq \mathbb{Z}/p^n$, we have a $\operatorname{Gal}(K/\mathbb{Q})$ -homomorphism

$$\phi_{\ell}: E_K \longrightarrow (\bigoplus_{v|\ell} \kappa(v)^{\times})/p^n \simeq \mathbb{Z}/p^n [\operatorname{Gal}(K/\mathbb{Q})].$$

Our assumption on ℓ implies that the canonical map $E_{\mathbf{Q}} = \{\pm 1\} \longrightarrow \mathbf{F}_{\ell}^{\times}/p^n$ is zero, hence the image of ϕ_{ℓ} is in $(\mathbf{Z}/p^n[\operatorname{Gal}(K/\mathbf{Q})])^0$.

3.3. Let K/k be an rcf extension, and **c** be any element in C_K . We will show that there is an rcf extension L/k such that $K \subset L$ and that the image of **c** vanishes in C_L .

We may assume that the order of **c** is a power of *p* for some prime number *p*, namely **c** is in A_K . We may assume *K* is big enough, so we may assume $K(\mu_{p^{\infty}})^+/K$ is totally ramified at all primes of *K* lying over *p*. Further, by Lemma 2.3 we may assume $\mathbf{c} \in 2A_K$.

We fix $\Phi : E_K \otimes \mathbb{Z}_p \longrightarrow \mathbb{Z}_p[\operatorname{Gal}(K/\mathbb{Q})]^0$ as in 3.2. We take a positive integer *n* such that

$$p^n > (\#A_K)^2 \cdot \#(\operatorname{Coker}(4\Phi : E_K \otimes \mathbf{Z}_p \longrightarrow \mathbf{Z}_p[\operatorname{Gal}(K/\mathbf{Q})]^0)).$$

We choose a prime number ℓ such that

- (i) ℓ splits completely in *K*
- (ii) $\ell \equiv 1 \pmod{2p^n}$
- (iii) There is a prime v_0 of K lying over ℓ such that the class of v_0 in A_K is **c**.
- (iv) Image $(\phi_{\ell} : E_K \longrightarrow \bigoplus_{v \mid \ell} \kappa(v)^{\times} / p^n \simeq \mathbb{Z} / p^n[\operatorname{Gal}(K/\mathbb{Q})])$ coincides with Image $(4\Phi) \mod p^n$ in $\mathbb{Z} / p^n[\operatorname{Gal}(K/\mathbb{Q})]$.

We can find infinitely many such ℓ 's by Tschebotareff density theorem, by the same method as in [13, Theorem 3.1] (p odd), and [5, Theorem 3.7] (p = 2). In fact, put $F = K(\mu_{2p^n})$, and $F' = F(E_K^{1/p^n})$. Let H be the Hilbert p-class field of K. By our assumption that F^+/K is totally ramified at every prime lying over p, we have $F \cap H = K$, and we identify A_K with Gal(HF/F). Since $2 \operatorname{Gal}(HF \cap F'/F) = 0$ and $\mathbf{c} \in 2A_K$, \mathbf{c} can be regarded as an element of Gal($HF/HF \cap F'$). We choose a primitive p^n -th root ζ_{p^n} of unity, and define $\iota : \mathbb{Z}/p^n[\operatorname{Gal}(K/\mathbb{Q})] \longrightarrow \mu_{p^n}$ by $\iota(\sigma) = 1$ if $\sigma \neq 1_{\operatorname{Gal}(K/\mathbb{Q})}$ (for $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$), and $\iota(1_{\operatorname{Gal}(K/\mathbb{Q})}) = \zeta_{p^n}$. Then, $4\iota \circ \Phi : E_K \longrightarrow \mu_{p^n}$ corresponds to an element γ of Gal($F'/HF \cap F'$) by Kummer theory. We choose a prime λ of F, of degree 1, such that HF'/\mathbb{Q} is unramified at ℓ which is the prime of \mathbb{Q} below λ , and that the Frobenius of λ in Gal(HF/F) coincides with \mathbf{c} , and that the Frobenius of λ in Gal(F'/F) coincides with γ . If we define ℓ (resp. v_0) to be the prime of \mathbb{Q} (resp. K) below λ , the properties (i)-(iv) are satisfied.

Let *L* be the totally real subfield of $K(\mu_{\ell})$ such that L/K is cyclic of degree p^n . We denote by $i_{L/K} : C_K \longrightarrow C_L$ the canonical homomorphism. We will show that $i_{L/K}(\mathbf{c}) = 0$.

Suppose that $i_{L/K}(\mathbf{c}) \neq 0$. L/K is totally ramified at v_0 , and we denote by w_0 the prime of L lying over v_0 . Let $[w_0]$ (resp. $[v_0]$) be the class of w_0 in C_L (resp. v_0 in C_K). From $w_0^{p^n} = v_0$ in L, we have $[w_0] \in A_L^{\text{Gal}(L/K)}$. Let p^r be the order of $[w_0]$ in

$$\hat{H}^{0}(L/K, C_{L}) = \hat{H}^{0}(L/K, A_{L}) = A_{L}^{\text{Gal}(L/K)}/i_{L/K}A_{K},$$

and α be a class in A_K such that $p^r[w_0] = i_{L/K}(\alpha)$. By our assumption, $i_{L/K}(p^{n-r}\alpha) = p^n[w_0] = i_{L/K}([v_0]) = i_{L/K}(\mathbf{c}) \neq 0$ in C_L , hence $p^{n-r}\alpha$ is not in the kernel of $i_{L/K}$. In particular, the order of A_K is greater than p^{n-r} . This implies that $p^r > p^n/\#A_K > \#A_K \#$ Coker 4 Φ . Since $\#\hat{H}^0(L/K, C_L) \geq p^r$, we have

$$#\hat{H}^{0}(L/K, C_{L}) = #\hat{H}^{1}(L/K, C_{L}) > #A_{K}# \text{Coker } 4\Phi.$$
(1)

Now we apply Lemma 2.1 to L/K.

First of all, $\bigoplus_{v|\ell} \hat{H}^0(L_w/K_v, E_{L_w}) = \bigoplus_{v|\ell} \kappa(v)^{\times}/p^n \simeq \mathbb{Z}/p^n[\operatorname{Gal}(K/\mathbb{Q})],$ and $\hat{H}^0(L/K, E_L) \longrightarrow \bigoplus_{v|\ell} \hat{H}^0(L_w/K_v, E_{L_w})$ is induced from ϕ_ℓ . On the other hand, as we mentioned in Remark 2.2, the kernel of $i_{L/K} : C_K \longrightarrow C_L$ coincides with the kernel of $H^1(L/K, E_L) \longrightarrow \bigoplus_{v|\ell} H^1(L_w/K_v, E_{L_w}).$ Hence by Lemma 2.1, we have an exact sequence

$$0 \longrightarrow \operatorname{Coker}(\phi_{\ell} : E_{K} \longrightarrow \mathbb{Z}/p^{n}[\operatorname{Gal}(K/\mathbb{Q})]^{0}) \longrightarrow$$
$$\rightarrow H^{1}(L/K, C_{L}) \longrightarrow \operatorname{Ker}(i_{L/K}) \longrightarrow 0.$$
(2)

Since the image of ϕ_{ℓ} coincides with the image of $4\Phi \mod p^n$, the inequality (1) implies that $\# \operatorname{Ker}(i_{L/K}) = \# \operatorname{Ker}(A_K \longrightarrow A_L) > \# A_K$, which

is a contradiction. Hence $i_{L/K}(\mathbf{c}) = 0$. This completes the proof of Theorem 1.1.

4. Remarks on cyclotomic Z_p -extensions of real abelian fields

In this section, we consider a simple situation, and assume p is an odd prime number. We also use the notation that A_K is the p-primary component (p-Sylow subgroup) of the ideal class group C_K for a number field K. $K_{\infty,p}/K$ denotes the cyclotomic \mathbb{Z}_p -extension, and for $i \ge 0$, K_i denotes the intermediate field of degree p^i . We define

$$X_{K_{\infty,v}} = \lim A_{K_i}$$

where the projective limit is taken with respect to the norm maps. Note that

$$A_{K_{\infty,p}} = \lim A_{K_i}.$$

For a Dirichlet character φ of the first kind whose values are in an algebraic closure of \mathbf{Q}_p , k_{φ} denotes the abelian field corresponding to the kernel of φ , and put $G_{\varphi} = \text{Gal}(k_{\varphi}/\mathbf{Q})$ (so $\varphi : G_{\varphi} \hookrightarrow \overline{\mathbf{Q}}_p^{\times}$). For a $\mathbf{Z}_p[G_{\varphi}]$ -module M, we define

$$M^{\varphi} = M \otimes_{\mathbf{Z}_p[G_{\varphi}]} O_{\varphi}$$

where we regard $O_{\varphi} = \mathbf{Z}_{p}[\text{Image }\varphi]$ as a $\mathbf{Z}_{p}[G_{\varphi}]$ -module via φ , namely $\sigma x = \varphi(\sigma)x$ for any $\sigma \in G_{\varphi}$ and any $x \in O_{\varphi}$. We simply denote $A_{k_{\varphi}}^{\varphi}$ by A^{φ} . From Gal $(k_{\varphi,\infty,p}/\mathbf{Q}) = G_{\varphi} \times \text{Gal}(k_{\varphi,\infty,p}/k_{\varphi})$, we regard G_{φ} as a subgroup of Gal $(k_{\varphi,\infty,p}/\mathbf{Q})$, and consider $X_{k_{\varphi,\infty,p}}^{\varphi} = X_{k_{\varphi,\infty,p}} \otimes_{\mathbf{Z}_{p}[G_{\varphi}]} O_{\varphi}$ which becomes an $O_{\varphi}[[\text{Gal}(k_{\varphi,\infty,p}/k_{\varphi})]]$ -module. We simply denote $X_{k_{\varphi,\infty,p}}^{\varphi}$ by X^{φ} . We will see in this section that there are many even φ 's with $\#X^{\varphi} < \infty$.

We assume that χ is an even Dirichlet character of order prime to *p* such that $\chi(p) \neq 1$.

4.1. In this subsection, we assume that $A^{\chi} = 0$. Then we have $X^{\chi} = 0$ since $\chi(p) \neq 1$ (cf. [9, Lemma 3]). We begin with the following simple observation.

Proposition 4.1. Let χ be an even character of order prime to p, satisfying $\chi(p) \neq 1$ and $A^{\chi} = 0$. For any n > 0, there exist infinitely many even Dirichlet characters ψ of order p^n with conductor a prime number such that $X^{\chi\psi} = 0$.

Put $K = k_{\chi}$. In fact, by Tschebotareff density, we can take infinitely many ℓ such that ℓ splits completely in K, $\ell \equiv 1 \pmod{p^n}$, and that

 $(E_K \otimes \mathbb{Z}/p^n)^{\chi} \longrightarrow (\bigoplus_{v \mid \ell} E_{K_v} \otimes \mathbb{Z}/p^n)^{\chi}$ is surjective. Let *L* be the subfield of $K(\mu_\ell)$ such that $[L:K] = p^n$.

For any $\mathbb{Z}_p[\operatorname{Gal}(L/\mathbb{Q})]$ -module M, we regard M as a $\mathbb{Z}_p[G_{\chi}]$ -module by regarding G_{χ} as a subgroup of $\operatorname{Gal}(L/\mathbb{Q})$ by the decomposition $\operatorname{Gal}(L/\mathbb{Q}) = G_{\chi} \times \operatorname{Gal}(L/K)$. We consider $M^{\chi} = M \otimes_{\mathbb{Z}_p[G_{\chi}]} O_{\chi}$ which is an $O_{\chi}[\operatorname{Gal}(L/K)]$ -module.

By Lemma 2.1, the above conditions on ℓ imply $H^1(L/K, A_L)^{\chi} = H^1(L/K, A_L^{\chi}) = 0$ (cf. (2) in 3.3), hence $A_L^{\chi} = 0$. For $X_{L_{\infty,p}}^{\chi} = X_{L_{\infty,p}} \otimes_{\mathbb{Z}_p[G_{\chi}]} O_{\chi}$, by the standard argument (cf. [9, Lemma 3]), we have $(X_{L_{\infty,p}}^{\chi})_{\text{Gal}(L_{\infty,p}/L)} = A_L^{\chi}$. In fact, let γ be a generator of $\text{Gal}(L_{\infty,p}/L)$ and $H = \text{Ker}(X_{L_{\infty,p}} \longrightarrow A_L)$. Since $\chi(p) \neq 1$, $(\bigoplus_{w \mid p} \mathbb{Z}_p)^{\chi} = 0$ where w ranges over all primes of $L_{\infty,p}$ over p, so $(H/(\gamma - 1)X_{L_{\infty,p}})^{\chi} = 0$, which implies $(X_{L_{\infty,p}}^{\chi})_{\text{Gal}(L_{\infty,p}/L)} = A_L^{\chi}$. Hence $X_{L_{\infty,p}}^{\chi} = 0$ by Nakayama's lemma, so $X^{\chi\psi} = 0$ for a character ψ of Gal(L/K).

Concerning the finiteness of $X^{\chi\psi}$ for a character ψ of conductor ℓ and of order p under the assumption $A^{\chi} = 0$, by studying the group of cyclotomic units, we can easily see the following.

Proposition 4.2. Let χ be an even character of order prime to p, satisfying $\chi(p) \neq 1$ and $A^{\chi} = 0$. For a character ψ of order p and of conductor ℓ , $X^{\chi\psi}$ is finite if and only if

$$#\hat{H}^{0}(L_{i}/K_{i}, E_{L_{i}})^{\chi} = #(\mathbf{F}_{p}[[\mathrm{Gal}(K_{\infty, p}/\mathbf{Q})]]/(Frob_{\ell} - 1))^{\chi}$$

for some $i \geq 0$ where $Frob_{\ell}$ is the Frobenius at ℓ in $Gal(K_{\infty,p}/\mathbb{Q})$.

Concerning this kind of criterion, more general case is treated by Fukuda et al. [3].

If $(E_K \otimes \mathbf{Z}_p)^{\chi} \longrightarrow (\bigoplus_{v|\ell} E_{K_v} \otimes \mathbf{Z}_p)^{\chi}$ is surjective as in the proof of Proposition 4.1, then the condition on \hat{H}^0 in Proposition 4.2 is satisfied for all $i \ge 0$. As an example, for p = 3, $K = \mathbf{Q}(\sqrt{2})$, nontrivial character χ of K, and a prime number ℓ which splits completely in K, and which satisfies $\ell \equiv 1 \pmod{p}$ with $\ell < 200$, $(E_K \otimes \mathbf{Z}_p)^{\chi} \longrightarrow (\bigoplus_{v|\ell} E_{K_v} \otimes \mathbf{Z}_p)^{\chi}$ is surjective (so $X^{\chi\psi} = 0$ by Proposition 4.1) except $\ell = 79$, 103. For $\ell = 79$, and 103, by a table in [12] we know $\#\hat{H}^0(L/K, E_L)^{\chi} = 3$, hence by Proposition 4.2, $X^{\chi\psi}$ is finite (and nonzero).

4.2. Next we consider the case $A^{\chi} \simeq O_{\chi}/p$.

Proposition 4.3. Let χ be an even character of order prime to p such that $\chi(p) \neq 1$, and $A^{\chi} \simeq O_{\chi}/p$. If $pX^{\chi} \neq 0$, then for any n > 0 there exist infinitely many even Dirichlet characters ψ of order p^n with a prime conductor such that $X^{\chi\psi}$ is finite.

This proposition says that if $A^{\chi} \simeq O_{\chi}/p$, there is at least one character ψ (ψ is of order 1 or p^n) such that $X^{\chi\psi}$ is finite.

We will prove Proposition 4.3. We use the same notation as in the proof of Proposition 4.1. Let $K = k_{\chi}$, and **c** be a generator of A_{K}^{χ} . We take ℓ which satisfies the conditions that ℓ splits completely in K, $\ell \equiv 1 \pmod{p^n}$, and that $(E_K \otimes \mathbb{Z}/p^n)^{\chi} \longrightarrow (\bigoplus_{v|\ell} E_{K_v} \otimes \mathbb{Z}/p^n)^{\chi}$ is surjective, and that $[v_0] = \mathbf{c}$ where v_0 is a prime lying over ℓ . Tschebotareff density asserts the existence of infinitely many ℓ satisfying these conditions.

Let *L* be the subfield of $K(\mu_{\ell})$ such that $[L : K] = p^n$. By the surjectivity of $(E_K \otimes \mathbb{Z}/p^n)^{\chi} \longrightarrow (\bigoplus_{v \mid \ell} E_{K_v} \otimes \mathbb{Z}/p^n)^{\chi}$, Lemma 2.1 implies that

$$H^{1}(L/K, A_{L})^{\chi} = \operatorname{Ker}(i_{L/K} : A_{K}^{\chi} \longrightarrow A_{L}^{\chi})$$
(3)

(cf. (2) in 3.3). On the other hand, the prime w_0 of L lying over v_0 yields a nontrivial class in $\hat{H}^0(L/K, A_L)^{\chi}$. So $\#\hat{H}^0(L/K, A_L)^{\chi} = \#H^1(L/K, A_L)^{\chi} \neq 1$, hence by (3) we get $i_{L/K}(\mathbf{c}) = 0$.

The isomorphism (3) also implies that $(A_L^{\chi})_{\text{Gal}(L/K)} \simeq A_K^{\chi}$. (Note that $A_L^{\chi} = A_L \otimes_{\mathbb{Z}_p[G_{\chi}]} O_{\chi}$, and not $A_L \otimes_{\mathbb{Z}_p[\text{Gal}(L/Q)]} O_{\chi}$.) So A_L^{χ} is generated by $[w_0]$. We have $A_L^{\chi} \simeq O_{\chi}/p$ by induction on *n*. In fact, let K' be the subfield of *L* such that $[K' : K] = p^{n-1}$. Since the inclusion induces an isomorphism $(\bigoplus_{v|\ell} E_{K_v} \otimes \mathbb{Z}/p)^{\chi} \simeq (\bigoplus_{v'|\ell} E_{K'_{v'}} \otimes \mathbb{Z}/p)^{\chi}$, the map $(E_{K'} \otimes \mathbb{Z}/p)^{\chi} \longrightarrow (\bigoplus_{v'|\ell} E_{K'_{v'}} \otimes \mathbb{Z}/p)^{\chi}$ is also surjective, hence the same argument as above implies that $i_{L/K'}([v'_0]) = 0$ where v'_0 is the prime of K' lying above v_0 . From $p[w_0] = i_{L/K'}([v'_0]) = 0$, we have $A_L^{\chi} \simeq O_{\chi}/p$.

Put G = Gal(L/K). Fixing a generator γ of $\text{Gal}(K_{\infty,p}/K)$ and identifying γ with 1 + T, we write $\Lambda = O_{\chi}[[\text{Gal}(K_{\infty,p}/K)]] \simeq O_{\chi}[[T]]$, and

$$\Lambda_L = O_{\chi}[[\operatorname{Gal}(L_{\infty,p}/K)]] \simeq O_{\chi}[[T]][G] = \Lambda[G].$$

Let σ be a generator of G = Gal(L/K). We take a character ψ of G such that $\psi(\sigma) = \zeta_{p^n}$ where ζ_{p^n} is a primitive p^n -th root of unity. We define $\alpha : \Lambda_L \longrightarrow \Lambda_K = O_{\chi}[[T]]$ (resp. $\psi : \Lambda_L \longrightarrow \Lambda_L^{\psi} = O_{\chi\psi}[[T]]$) to be a ring homomorphism defined by $\sigma \mapsto 1$ (resp. $\sigma \mapsto \psi(\sigma)$).

As in the proof of Proposition 4.1, we have $(X_{L_{\infty,p}}^{\chi})_{\text{Gal}(L_{\infty,p}/L)} \simeq A_L^{\chi}$ from our assumption $\chi(p) \neq 1$. So $X_{L_{\infty,p}}^{\chi}$ is cyclic as a Λ_L -module by Nakayama's lemma. We write $X_{L_{\infty,p}}^{\chi} = \Lambda_L/I$. From $(X_{L_{\infty,p}}^{\chi})_{\text{Gal}(L_{\infty,p}/L)} \simeq \Lambda_L/(I, T) = O_{\chi}/p$, *I* contains elements $G(T) = \sigma - 1 + Tg$ and H(T) = p + Th for some $g, h \in \Lambda_L$.

We assume $X^{\chi\psi}$ is infinite. Since $\psi(G(0)) = \zeta_{p^n} - 1$ is a prime element of $O_{\chi\psi}$ and $\mu = 0$ [2], $\psi(G(T))^*$ is an Eisenstein polynomial, so irreducible where $\psi(G(T))^*$ is the polynomial obtained from $\psi(G(T))$ by Weierstrass preparation theorem. From the assumption $\#X^{\chi\psi} = \infty$, this implies that $\psi(G(T))$ generates $\psi(I)$. Hence, $\psi(G(T))$ divides $\psi(H(T))$.

Put $\Phi_{p^n}(S) = (S^{p^n} - 1)/(S^{p^{n-1}} - 1)$ the p^n -th cyclotomic polynomial. Then, we can write $H(T) = G(T)A(T) + \Phi_{p^n}(\sigma)B(T)$ for some $A(T), B(T) \in \Lambda_L$. Since $p = \alpha(H(0)) = p\alpha(B(0)), \alpha(B(0)) = 1$ and B(T) is a unit in Λ_L . So $\Phi_{p^n}(\sigma)$ is in I, which implies $p \in \alpha(I)$. Since we have a surjective homomorphism $(X_{L_{\infty,p}}^{\chi})_G = \Lambda/\alpha(I) \longrightarrow X_{K_{\infty,p}}^{\chi} = X^{\chi}$, this implies $pX^{\chi} = 0$, which contradicts our assumption.

For example, by the same method, we have

Corollary 4.4. Let K be a real quadratic field, and p be an odd prime number. We assume that p does not decompose in K, and $\#A_K = p$. If $pX_{K_{\infty,p}} \neq 0$, for any n > 0, there exist infinitely many real cyclic fields L' of degree p^n with a prime conductor such that $X_{L_{\infty,p}}/i(X_{K_{\infty,p}})$ is finite where L = L'K and $i : X_{K_{\infty,p}} \longrightarrow X_{L_{\infty,p}}$ is the canonical map.

Proof. Let χ_0 be the trivial character ($\chi_0 = 1$), and χ be the nontrivial character of K. Let K_1 be the subfield of $K_{\infty,p}$ such that $[K_1 : K] = p$. We take a prime number ℓ such that ℓ splits completely in K_1 , $\ell \equiv 1 \pmod{p^n}$, and that both $(E_{K_1} \otimes \mathbb{Z}/p^n)^{\chi_0} \longrightarrow [(\bigoplus_{v \mid \ell} E_{K_{1,v}} \otimes \mathbb{Z}/p^n)^0]^{\chi_0}$ and $(E_K \otimes \mathbb{Z}/p^n)^{\chi} \longrightarrow (\bigoplus_{v \mid \ell} E_{K_v} \otimes \mathbb{Z}/p^n)^{\chi}$ are surjective, and that $[v_0]$ is a generator of A_K where v_0 is a prime of K lying over ℓ . Tschebotareff density asserts the existence of infinitely many such ℓ . Then, by the method in the proof of Proposition 4.3 we get the conclusion.

Remark 4.5. For p = 3, 5, 7, there are a lot of examples of quadratic fields *K* such that $A_K \simeq \mathbb{Z}/p$, $pX_{K_{\infty,p}} \neq 0$, and that $X_{K_{\infty,p}}$ is finite (for example, $K = \mathbb{Q}(\sqrt{254})$, $\mathbb{Q}(\sqrt{473})$ for p = 3, cf. [7,10]). For these *K*, by Corollary 4.4 we can find infinitely many real cyclic fields $L (\subset K(\mu_\ell)$ for some ℓ) of degree $2p^n$ such that

$$A_L \neq 0$$
 and $\#X_{L_{\infty,n}} < \infty$.

We remark that in [9] Iwasawa constructed infinitely many *K* such that $[K : \mathbf{Q}] = p, A_K \neq 0$, and $\#X_{K_{\infty,p}} < \infty$ for arbitrary odd prime number *p*.

4.3. We will give one more Proposition which has the same nature as Proposition 4.3.

Proposition 4.6. Let χ be an even character of order prime to p, such that $\chi(p) \neq 1$. We assume that X^{χ} is isomorphic to a quotient of $O_{\chi}[[T]]/(f(T))$ as an $O_{\chi}[[Gal(k_{\chi,\infty,p}/k_{\chi})]] = O_{\chi}[[T]]$ -module where $f(T) \in O_{\chi}[[T]]$ is an irreducible polynomial. Then at least either X^{χ} is finite, or for any n > 0 there exist infinitely many even Dirichlet characters ψ of order p^n with a prime conductor such that $X^{\chi\psi}$ is finite.

We use the same notation as in the proof of Proposition 4.3. Put $K = k_{\chi}$, and suppose $A_K^{\chi} \simeq O_{\chi}/p^m \neq 0$. We take ℓ as in the proof of Proposition 4.3 and take $L \subset K(\mu_{\ell})$ such that $[L : K] = p^n$. By the same argument, we have $A_L^{\chi} \simeq O_{\chi}/p^m$.

Let ψ be a faithful character of G = Gal(L/K). Assume both X^{χ} and $X^{\chi\psi}$ are infinite. Our assumption implies that $X^{\chi} \simeq O_{\chi}[[T]]/(f(T))$. We write $X_{L_{\infty,p}}^{\chi} \simeq \Lambda_L/I$ as in the proof of Proposition 4.3. Since $A_L^{\chi} \simeq O_{\chi}/p^m$, I contains $G(T) = \sigma - 1 + Tg$ and $H(T) = p^m + Th$ for some $g, h \in \Lambda_L$. Let α and ψ be the homomorphisms defined in the proof of Proposition 4.3. Since $\alpha(H(0)) = f(0) = p^m, \alpha(H(T))$ generates (f(T)). So $\alpha(H(T))$ divides $\alpha(G(T))$. On the other hand, $\psi(G(T))$ divides $\psi(H(T))$ as in the proof of Proposition 4.3.

In general, for a discrete valuation ring R with maximal ideal m_R , and a power series $f \in R[[T]]$, we define $\lambda(f) = \operatorname{ord}_T(f \mod m_R)$ where ord_T is the normalized additive valuation of $(R/m_R)[[T]]$ defined by T. The above divisibility and $\mu = 0$ [2] imply that

$$\lambda(\alpha(H(T))) \le \lambda(\alpha(G(T))) = \lambda(\psi(G(T)))$$
$$\le \lambda(\psi(H(T))) = \lambda(\alpha(H(T))) < \infty.$$

This implies both $\alpha(H(T))$ and $\alpha(G(T))$ generate the same ideal in $O_{\chi}[[T]]$. This is a contradiction because $\alpha(H(0)) \neq \alpha(G(0)) = 0$.

Appendix

After this paper was accepted to be published, I was suggested by John Coates to study about $C_{k^{ab}}$ by the same method where k is an imaginary quadratic field and k^{ab} is the maximal abelian extension of k in an algebraic closure of k. Further I was informed by Nguyen Quang Do and R. Schoof of a paper by G. Gras [4]. I would like to express my hearty thanks to John Coates for his suggestion, and to Nguyen Quang Do and R. Schoof for telling me about [4].

By the same method as in Sect. 3, we can prove

Theorem A.1. Let k be an imaginary quadratic field, and k^{ab} its maximal abelian extension in an algebraic closure. For any algebraic extension K/k, we have

$$C_{Kk^{ab}}=0$$

where Kk^{ab} is the compositum of K and k^{ab} .

For the maximal abelian extension K^{ab} of a number field K, Gras [4, Conjecture 0.5] conjectures $C_{K^{ab}} = 0$ for K which is not totally real. From Theorem A.1, we obtain

Corollary A.2. For a number field K which contains an imaginary quadratic field, we have

$$C_{K^{ab}}=0.$$

Proof of Theorem A.1. In principle, instead of μ_n , we can use division points of an elliptic curve with complex multiplication. For an ideal **a** of O_k , $k(\mathbf{a})$ denotes the ray class field modulo **a** of k. Note that $[k(\mathbf{a}) : k(1)] = #(O_k/\mathbf{a})^{\times} w_{\mathbf{a}}/w_k$ where w_k (resp. $w_{\mathbf{a}}$) denotes the number of roots of unity (resp. the number of roots of unity congruent to 1 modulo **a**). We will apply the method in Sect. 3. Let K/k be a finite Galois extension. For any ideal class $\mathbf{c} \in A_K$, we will show the existence of an abelian extension k'/k such that the image of **c** vanishes in $A_{Kk'}$.

Suppose $\mu_{p^{\infty}}(K) = \mu_{p^{\infty}}^{\text{Gal}(K(\mu_{p^{\infty}})/K)} = \mu_{p^{m}}$. We may assume *m* is big enough. By the method of Lemma 2.3, for any n > 0 we can show that

$$i(\mathbf{c}) \in p^n A_{Kk(\lambda_1 \cdot \ldots \cdot \lambda_r)}$$

for some primes $\lambda_1, ..., \lambda_r$ of degree 1, so we may assume $\mathbf{c} \in p^m A_K$. Further, we may assume that *K* contains the Hilbert class field of *k*.

We take $\Phi : E_K \otimes \mathbb{Z}_p \longrightarrow \mathbb{Z}_p[\operatorname{Gal}(K/k)]^0$ as in Sect. 3, and take n > 0 such that

$$p^n > (\#A_K)^2 \cdot \#(\operatorname{Coker}(2p^m \Phi)).$$

As in 3.3, by Tschebotareff density theorem, we can choose a prime number ℓ such that ℓ splits completely in K, $\ell \equiv 1 \pmod{12p^n}$, $\mathbf{c} = [v_0]$ where v_0 is a prime of K lying over ℓ , and that if λ is a prime of k below v_0 ,

Image
$$(\phi_{\lambda} : E_K \longrightarrow \bigoplus_{v \mid \lambda} \kappa(\lambda)^{\times} / p^n \simeq \mathbb{Z} / p^n [\operatorname{Gal}(K/k)])$$

= Image $(2p^m \Phi \mod p^n).$

In the notation of 3.3 we have $p^m \operatorname{Gal}(HF \cap F'/F) = 0$, so this is possible.

We define *L* to be the subfield of $Kk(\lambda)$ such that $[L : K] = p^n$, and apply an exact sequence

$$\dots \longrightarrow \hat{H}^{0}(L/K, E_{L}) \longrightarrow (\bigoplus_{v|\lambda} \hat{H}^{0}(L_{w}/K_{v}, E_{L_{w}}))^{0} \longrightarrow$$
$$\longrightarrow H^{1}(L/K, C_{L}) \longrightarrow \dots,$$

which is obtained by the same method as Lemma 2.1. Then we have $i_{L/K}(\mathbf{c}) = 0$ by the same method as in 3.3.

Remark A.3. In [4], Gras studied the capitulation of ideals of number fields, and gave some examples. For $K = \mathbf{Q}(\sqrt{79})$, he showed the elements of $C_K (\simeq \mathbf{Z}/3)$ become trivial in C_M where M is the compositum of K and the cubic field of conductor 97. Our method in this paper shows that we can take a field of smaller conductor for the capitulation. For example, the ideals of K become principal in the compositum of K and the cubic field of conductor 7, namely

$$C_K \longrightarrow C_{K(\cos(2\pi/7))}$$

is zero. (This can be also checked from a numerical calculation $C_{K(\cos(2\pi/7))} \simeq \mathbb{Z}/3$. Our method in this paper shows that the third and the fifth conditions in [4, page 421] can be replaced by a simpler condition that a prime over ℓ is not principal.)

In general, we can show the following by the method in the proof of Proposition 4.3. We use the notation in Sect. 4. Let χ be a Dirichlet character with order prime to p, and $K = k_{\chi}$ be the field corresponding to the kernel of χ . Assume that $A_K^{\chi} \simeq O_{\chi}/p^n$. If ℓ is a prime number which splits completely in K, and satisfies $\ell \equiv 1 \pmod{2p^n}$, and if A_K^{χ} is generated by a prime above ℓ , and if $(E_K \otimes \mathbb{Z}/p^n)^{\chi} \longrightarrow (\bigoplus_{v|\ell} \kappa(v)^{\chi} \otimes \mathbb{Z}/p^n)^{\chi}$ is surjective, then the canonical map $A_K^{\chi} \longrightarrow A_L^{\chi}$ is zero where L is the subfield of $K(\mu_{\ell})^+$ such that $[L:K] = p^n$.

References

- 1. A. Brumer: The class group of all cyclotomic integers. J. Pure Appl. Alg. **20**, 107–111 (1981)
- 2. B. Ferrero, L.C. Washington: The Iwasawa invariant μ_p vanishes for abelian number fields. Ann. Math. **109**, 377–395 (1979)
- T. Fukuda, K. Komatsu, M. Ozaki, H. Taya: On Iwasawa λ_p-invariants of relative real cyclic extensions of degree p. Tokyo J. Math. 20(2), 475–480 (1997)
- G. Gras: Principalisation d'idéaux par extensions absolument abéliennes. J. Num. Theory 62, 403–421 (1997)
- 5. C. Greither: Class groups of abelian fields, and the main conjecture. Ann. Inst. Fourier **42**(3), 449–499 (1992)
- 6. K. Horie: CM fields with all roots of unity. Compos Math. 74, 1–14 (1990)
- H. Ichimura, H. Sumida: On the Iwasawa invariants of certain real abelian fields. Tohoku Math. J. 49, 203–215, (1997). II. Int. J. Math. 7(6), 721–744 (1996)
- K. Iwasawa: Riemann-Hurwitz formula and *p*-adic Galois representations for number fields. Tohoku Math. J. 33, 263–288 (1981)
- K. Iwasawa: A note on capitulation problem for number fields. II. Proc. Jpn. Acad. 65A, 183–186 (1989)
- J.S. Kraft, R. Schoof: Computing Iwasawa modules of real quadratic number fields, Compos Math. 97, 135–155 (1995)
- 11. M. Kurihara: On the structure of the ideal class groups of cyclotomic \mathbf{Z}_p -extensions of abelian fields (preprint)

- 12. S. Mäki: The determination of units in real cyclic sextic fields. Lect. Notes Math. 797. Springer, Berlin Heidelberg New York 1980
- K. Rubin: The main conjecture. Appendix to S. Lang: Cyclotomic Fields, second edn. Springer, Berlin Heidelberg New York 1990
 J.-P. Serre: Représentations linéaires des groupes finis, deuxième édition. Hermann,
- Paris 1971
- 15. K. Uchida: Galois groups of unramified solvable extensions. Tôhoku Math. J. 34, 311-317 (1982)