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Abstract. We present a new method for establishing the “gap” property for finitely gene-
rated subgroups of S@), providing an elementary solution of Ruziewicz problem3ras

well as giving many new examples of finitely generated subgroups @2)Stith an explicit

gap. The distribution of the eigenvalues of the elements of the grougR(i8t)(2)] in the

N-th irreducible representation of $2J is also studied. Numerical experiments indicate
that for a generic (in measure) elementRiSU(2)], the “unfolded” consecutive spacings
distribution approaches the GOE spacing law of random matrix theoryN(faren) and the
GSE spacing law (foN odd) asN — oo; we establish several results in this direction. For
certain special “arithmetic” (dRamanujahelements oR[SU(2)] the experiments indicate
that the unfolded consecutive spacing distribution follows Poisson statistics; we provide
a sharp estimate in that direction.

1. Introduction

The irreducible representations ®f= SU(2) are
N = sym'V, N > 0,

whereV is the standard two-dimensional representatiofs ol he dimen-
sion ofry is N + 1 and it may be realized concretely by the linear action

X, y) — (aXx+yy, BX+8Y), [3?] eG Q)

on Wy, 1, the space of homogeneous polynomialny) of degreeN.
The charactejy of ry at
_ [e 0 } i Sln(N+1)oz‘ ?)

0 e™ sina
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This well known character formula is our main tool for studying the
spectra of the elements in the group riRjG]. Let z be such an element,

z=) 20 (3)

geG

with z5 € R andzy = 0O for all but a finite number of € G. Let supfz) =
{g € G|zg # 0} and I, the group generated by su@p. Clearly I'; is
a finitely generated subgroup Gf

Form = 7y as above lek(m) be the(N + 1) x (N + 1) matrix

2m) = ) zgm(Q) 4

geG

We are interested in the spectrum, sf@éey)), of Z(wn) (Which of
course does not depend on the realizatiomr9f asN — oo. This ques-
tion is of interest in analysis (for example the Ruziewicz problem see
[CV,LPS,Lub], and “strongly ergodic actions” [Sch]) as well as in the theory
of quantization (“quantum chaos” [Sa2,Zel2]). The connection to the latter
comes fromI'; acting onS? (using the double cover SB) — SO(3)) as
symplectic maps and aN-th quantization (N = 1/h”) of this classical
action being realized b¥(rry) [Zell]. According to general philosophies
in quantization theory [BGS] one might expect thal'if acts ergodically
on &, specZ(wy)) behaves like the spectrum of a typical member of an
appropriate ensemble of random matrices (cf. [M]). With suitable interpreta-
tions, this expectation is borne out rather well in the numerical experiments
described in Sect. 5. This appears to be one of the simplest examples of this
phenomenon.

We assume further thatis self-adjoint, i.ez* = Y~ z,g~! = z In this
casez(my) is self-adjoint with respect to a suitable inner product/éq, ;.
Hence spe@(my)) is real and is contained in the inteniat||z||, ||z/|1,
where||z|]| = 3 ;. |Zg]- Let |[Z(rn)|| be the norm of the matrig(zy)
with respect to the above inner produc¢i(zy)|| is equal to the maximum
of |Aj(Z(mn))| where

*o(Z(mn)) = M1(Z(n)) = ... = An(Z(TN)) %)

are the eigenvalues @try).
A fundamental question for a positive(i.e. z; > 0 for g € G) is
whether it has gapby which we mean that

iMool 201 < 112 (6)

Constructing any with a gap is apparently rather difficult and was first
achieved by Drinfeld [Dri]. It was used by him to give the final step in
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the resolution of Ruziewicz problem asserting that the Haar me&3tise

the uniquefinitely additive rotation invariant measure defined on Lebesgue
sets. Drinfeld’s method appeals to some sophisticated machinery from the
theory of automorphic representations (namely the Jacquet Langlands cor-
respondence and Deligne’s solution of the Ramanujan conjectures). One of
our aims here is to give a new elementary and perhaps more importantly
robust analytic method for establishing that cer@ghave a gap. In parti-
cular we construct new's with this property and thus in passing provide an
elementary analytic solution of the Ruziewicz problem. The discussion in
Sect. 3reduces the issue of a gap to estimating the number of elemEpts in
(ordered suitably with word length) with trace near 2. This estimation can
be carried out easily far's constructed via integers, on the other hand doing
so for the case of “generi (see below) has thus far eluded us. SAHéX)
denote the ring of Hamilton quaternioas= Xg + X1i 4+ X2J 4+ X3k, X; € Z.

Leta = Xg — X1i — Xo] — xzk andN(«) = aa. Forg > 3 a prime number

let §1, Go, ..., Ok be a subset o6 = {@ € H(Z)|N(@) = q} (it is well
known [HW] that the latter has(§ + 1) elements) satisfying

() Gj, # €0, for j1 # jo ande € {£1, +i, £, £k} a unit.
() 9;, # €0;, for any ji1, j> ande a unit.
The homomorphism ofi(R) into SU(2)
N 1 |:X0+X1i-X2+X3?i|
\/W —X2 + X3l Xo — X1l
gives us the corresponding elemegisg,, ... , gk € G.

Theorem 1.1.Letq > 3,01, 02, ... , gk € Gbeasabove. Ip=2k—1 >
q¥°thenz=gy +g;* + ... + g + g, * has a gap, in fact

lIMNS ool 2N < p? ﬂ+ﬁ < 2
N—>00 NI =P pl3 " g2/3

For example iig = 7,
h=2—-i+j+k o=2—-i—j+k Ge=2+i—j+k
satisfy the hypotheses and denoting the correspormibygz; we have
M ool|Z7(7n) || < 5.83(< 6).
Remark 1.2.

(1) If g= 1(mod4 and we choose a maximal such suliget .. , g of S
above, thenR— 1 = g and we get an elemeatwhich we denotez,
which according to the above theorem satisfies

Mool ZGrw)ll < g¥2 (g3 +q7%) < q+1
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For this element it was shown in [LPS] using automorphic forms and
in particular Deligne’s proof of the Ramanujan Conjectures that

1Zg(n)Il < 2,/ forall N > 1.

This bound is optimal (see Sect. 4). We call a general elemehthe
form gy + 97t + ... + g + gt (wherek > 2) for which |[2(zy)|| <
22k — 1 holds wherN > 1, aRamanujan element

(2) Forz # z4as above (i.ep < @) the existing methods from automorphic

forms do not, as far as we know, apply to show thiaas a gap. In more
detail, it is clear that in genera having a gap is a property df,.

The method of Drinfeld [Dri] for establishing a gap ensures that,if
contains an arithmetic group thehas a gap (by an arithmetic subgroup

A of G we mean a group obtained from a quaternion algebra as follows;
let K/Q be a number field anB/K a quaternion algebra. Assume that

K has an archimedian plaeesuch thatD ® K, is the Hamiltonian
quaternions. In particuldd¥ ® K, where the super 1 denotes elements
of norm 1, is isomorphic to S@2). Let P be a (honempty) set of places
containing the other archimedian placeskofand letI" be the group

of elements oD@ (K) which are integral outsid® and letl™ be the
projection ofl" in D® ® K, ~ SU(2). We callA ¢ SU(2) arithmetic

if it is commensurable with a conjugate of suci'g. Forp < q, I,

does not contain an arithmetic group. The elenigris an example of

the above and as numerical computation shows, see Sect. 5, it is not
Ramanujan. We remark that Shalom [Sha] has given (in another context)
I'-s with the analogue of a gap, which are constructed as commutator
subgroups of arithmetic groups.

Next we discuss the distribution of the eigenvalues (3)las- co. This

requires distinguishing the cadkeeven andN odd, since the corresponding

mn has a different symmetry in each case. As is well known and discussed

in Sect. 2, forN evenmy preserves a symmetric bilinear form &y, 1
while for N odd it preserves a skew-symmetric form. It follows that with

suitable bases fowy. 1, for N evenz(zy) lies in Hyy1 the (real) linear
space of N + 1) x (N + 1) real-symmetric matrices, while fdt oddZ(wy)

lies in the (real) linear space, also denofiéd 1, of (N + 1) x (N + 1)
matricesH satisfying

EO0...0
OE...O
H*=H, JJHI=H" J=| . . . ,E=[01] (7

00...E
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In particular in this latter case the eigenvalueszefy) are of the form
A1, A2, ..., Am WhereM = (N + 1)/2 with each); occuring with multi-
plicity 2.

While our main interest lies in sp&&my)) asN — oo we prove in
Sect. 2, see Proposition 2.1, that if

Z=0i4+0 +... +0+g* (8)

with (g1, ..., g0 € G® chosen at random according to Haar measure,
and ifk andN bothgo to infinity then local statistics of the eigenvalues of
Z(7n) follow GOE statistics foilN even and GSE statistics fof odd (see
Sect. 2 for the definitions of these ensembles).

Returning toz fixed andN — oo we examine the densities of the
eigenvalues oZ(ry). These are described by the sum of point masses

N
1
un(2) = N—'H-J-EOSM(Z\(HN)) 9)

which is a probability measure supported |z||, ||z||].

It is not difficult to show (see Sect. 4 and [LPS], as well as [Sal]
and [Ser] for analogous equidistribution results) that there are measures
V&€N(7) and v°%9(z) which are determined entirely by the abstract group
I', and its generators (that is sugp, such thatu,n(z) — v®"(2) and
pang1(2) = 1°99(2), asN — oco. We callv®®"(z) andv°d(z) thedensities
of states The finer question as to how this equidistribution takes place
depends on sugp) and how it sits inG. We say that,, ... , g« € G are
diophantineif there is aB = B(g1, ..., 0k) > 0 such that fom > 1 and
Rnawording;, ..., gk of lengthm andR,, # +e, we have

lIRmxell = B™. (10)

Here )
ab

‘ [Cd} = [al® + |b|* + cf* + |dI*.
Itis not hard to show (see Proposition 4.3) thagif. . . , g« € M»(Q), thatis
to say they have algebraic number entries, thyen. . , gk are diophantine.
On the other hand, the topologically generic (i.e. in the sense of Baire
category)ds, . .. , g« € G® is not diophantine.

Theorem 1.3. Assume thasuppz) is diophantine and thav®¢"(z) =
f ©en x)dx, v29d(z) = f©dd(x)dx with fE€en f©dd jn | ©°(R), then for
N large

D(uan(2),v™(2) <z @
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and

D(u2n+1(2), v*9(2) < logN
(here D(v, w) is the discrepancy between the measuremnd p, that is
D@, ) = suplv(l) — u(D]: I =[a b] CR}).

Theorem 1.3 is false for the topologically genezie- g; + g;l 4.+
O + gt (01, ... . g0 € GX. On the other hand the numerical results
of Sect. 5 suggest that fde > 2 fixed andzy chosen withg € G®,
generic in the measure sense, the discrepancy should behave like those for
random matrix models, that is it should @&(log N)/N), see Fig. 1 which
displaysun (2) againstv(z) for such a randonz. So for suchz’s the result
in Theorem 1.3 is probably very far from the truth. For the Ramanujan
elementz, (defined in Remark 1) the discrepancy is not small, see Fig. 2
for a similar comparison. Note that it has a very large centraliz&[{@],
in fact thez,'s all commute with each other. So the eigenvalueg;of )
should not be expected to behave like any random matrix ensemble. In
fact experience with numerics for the spectra of Laplacians for arithmetic
hyperbolic surfaces [BGGS,BSS] suggest that spge)) is more likely
to behave like random numbers (i.e. “Poisson”). The following lower bound
confirms this and is the analogue of the lower bounds for the remainder term
in Weyl's law for arithmetic hyperbolic surfaces, see [Hej] and [LS].

Theorem 1.4. Fix q > 3 and z; as above, a Ramanujan element. There is
a sequencéN; — oo such that

1
D(ny, (25,), V(D) > —5———
(u Nj \ESp (2) le/z(log Nj)z
In Sect. 5 we report on numerical experiments concerning the “un-
folded” spacing distribution between the eigenvalues (5Nagets large.
Consider the generic in measuze= zy = g1 + gy~ + ... + Gk + G &,
g=(0gs...,0) € G®. Fork = 2 the centralizer o € R[G] consists
of more than just the polynomial ring in R[z]. Indeed by conjugating
such an element by a suitable membeiGfve can assume that

_ )\.9 i a bl
gl_ 0)\’ ) 92— _b_]_a_]_ .

Putc = (—by/by)Y2. Then
0c
—cO0

commutes withe. That is fork = 2 there is a persistent symmetry of order
2 (note that this symmetry is not broken by passing te x(g; + g[l) +
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y(92 + ggl) with x, y € R). However fork > 3 andg = (g, ..., Ok
generic it appears that the centralizerzah R[G] is no bigger tharR[z].

In particular the generic suchis “desymmetrized” and we examine the
consecutive spacing distribution between the eigenvalueamf). For

such a randonz with k = 3 we found universally that these spacings
followed the GOE spacing law fdd going to infinity through even values
and GSE spacing laws fa¥ odd. Figs. 3 and 4 give typical examples of
this phenomenon. On the other hand the same question for the Ramanujan
elementzs yielded a Poissonian consecutive spacing distribution (after the
obvious symmetries have been taken into account) - see Figs. 5 and 6 in
Sect. 5. The elemerit; (see the example after Theorem 1.1) is special
in that it is formed out of integral quaternion matrices though is not
arithmetic. We found that its spacings (again after a symmetry analysis)
are GOE and GSE depending on the parity. A typical example of this
data is given in Fig. 7. For details about the data and computations see
Sect. 5.

Note that for the randong € G®, I' = (gy, ... , k) acts ergodically
on . These results point to the conjecture that ko 3 fixed and
g € G® given and generic (in measure) the eigenvalues of the quantiza-
tion Zy(ry) follow GOE spacing statistics d¥ goes to infinity through
even values, while they follow GSE statisticsdgjoes to infinity through
odd values. Besides this conjecture (which if true is no doubt difficult to
prove) there are a number of more tractable problems that remain. We
mention some of these:

(1) Prove that fok > 2 andg € G generic in measurey = gy +g; - +
...+ 0 + gt has a gap (see [LPS)).

(2) With our present knowledge it is conceivable thahas a gap as long
asl', acts ergodically or$? (cf. [LW)).

(3) Consider the parameter spagex 2, fixed)G®/ ~, wherez, is as
above andzg ~ zg if 8(g1,..., )8t = (Gu,..., ) with § € G.
What can be said about the Ramanujan elemesG®/ ~? Is this
set finite or infinite? One can show it is closed and nowhere dense
(cf. [LPS, Theorem 1.4]; in fact its intersection with any 1-dimensional
curve is closed and nowhere dense in that curve).

(4) Prove that the generi@s, ... , g) € G* in the sense of measure is
diophantine.

(5) One can ask similar questions fB{G] where G is a more general
compact topological group or fdR[I'] relative to a familyzy of uni-
tary finite dimensional representationsIofarising from geometry or
quantization.
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2. Properties ofmy

With notation as in Sect. 1 l&p, ey, ... ey be the basis ofVy,, given by
g = xlyN T, j=01,...,N. (11)

The bilinear form(, ) on Wy, 1 defined by

N\t
(e, &) = (J) (—1)) 8 n—k (12)

is nondegenerate and is preservedayy That is (mn(Q)v, Tn(QQw) =
(v, w) for g € G andv, w € Wy,1. The form is symmetric foN even and
skew-symmetric foN odd. It follows thatry is orthogonal folN even and
symplectic forN odd. Hence with a suitable basis (o¥&rwe can assume
that thatry preserves

10...0
01...0
Ines = | ... .
00...1
for N even and
EO0...O
OE...O 01
R R E:[—lo]
00...E
for N odd. That is
(rn(@)'n(9) = Ing1, N even;

(n(@)' I n(g) = J, Nodd (13

Furthermore forg € SU(2) we can arrange forry(g) to be unitary
with respect to the standard Hermitian form @h.1. Thus for N even
n(g) € O(N + 1, R) while for N oddzn(g) € USp(N + 1).

If Niseven(my(g)+n(g™))! = 7n(g)+mn(g™Y). Itis also selfadjoint
hencery(g) + mn(g71) is a real symmetric matrix. It follows that for any
z € R[G] which is selfadjointz(rry) lies in the real linear spack ., of
(N + 1) x (N+ 1) real symmetric matrices.

ForN odd, J'(mn(9)+7n(g7H) d = (Tn (@) +7n(g7H)" . Alsorn(9)+
mn(g~Y) is selfadjoint so we see thadry) lies in thereal linear spacé .1
of (N + 1) x (N + 1) complex matrices satisfying

J'HJ = H' and H*=H. (14)



Spectra of elements in the group ring of @Y 59

It is easily seen that anl € Hny1, (N 4+ 1 = 2M) has its eigenvalues
consist ofM eigenvalues each of multiplicity 2 (of course some of thiése
eigenvalues may coincide).

For the generi€g:, O, ... , g) € GX (by which we mean here outside
a countable union of codimension 1 subsekts) 2, z(g1, o, ... , Gk) =
O+0r + 02+ 01 +. ..+ 0+ g has the property th@(ry) has simple
spectrum ifN is even and hatl = (N + 1)/2 distinct eigenvalues each
of multiplicity 2 if N is odd. To see this it suffices from general principles
involving the discriminant of a matrix, to exhibit one su@j, g, ... , Q).
Fora € R and €«) = €% let z(«) € R[G] be given by

ea) O e(—a) 0 01 0-1
2(a) =[ 0 e(_a)i|+|: o e(a)]+(k‘1)<[—10]+[1 o]).

A straightforward calculation yields

spea{z/(\oe)(nN)) = {2cosNu &+ (2k — 2),
2cogN — 2o £ (2k—2),..., 2+ (-HV?(2k - 2)}

if N is even and

specz(a)(7n)) = {2cosNa, 2 cosNa,
2CcosN — 2)a, 2cogN — ), ... , 2COSx, 2 COSx}

if N is odd.

Hence if we choose generically (e.g. take(e) to be transcendental)
thenz(a) will satisfy the claimed property. Note that thigx) fails to have
agap. The support grodfy, is a dihedral group and the densities of states
v&eN(z) andv°%d(z) are easily determined from the explicit description of
the spectrump®(z(«)) = dy/,/4 — y2 on[—2, 2] while v®"(z()) is half
of this measure translated By2(k — 1).

While our interest lies in sp€z(wy)) asN — oo for z fixed, we note
that if we letk go to infinity as well then the spectrum of the generic
2(01, U2, - . . , Ok) (rny) Will follow the GOE laws (see [M] for definitions) if
N is even and the GSE lawsM is odd.

Proposition 2.1. Let vy be the direct image ofigdg, . ..dgc on G®
under the map

1 ~

(01,02, G) — (—=(Q 40 4 ...+ 5+ G D) (Tn)
vk

Thusvyk is a probability measure oft{n.1. ASk — oo, vy converges

in measure to the standard GOE measure?y, ; if N is even and to the

standard GSE measurel¥ is odd.
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Proof. The measurey k on the real vector spack .1 is a sum of i.i.d.
random variables. We may therefore appeal to the general vector valued
central limit theorem. The distribution of the individual summanH{g) =
wn(9) +7n(g™Y), g € G. Thus once we show th,;;(r3 H(g)dg = 0 we know
that the limit ofvy x ask — oo is a Gaussian. The issue is to identify this
Gaussian and where it is supported.

We begin with the case thattis even H(g) = (h;; (9)) is real symmetric
so we can consider théN + 1)(N + 2)/2 dimensional spade;, 1 <i <
] <N+1,ieHni1. We assert that

/ hij(@dg =0 (15)
G
forl<i<j<N+1land
2
/;hij (g)hrs(g) dg = N—+1 (5i55jr +3ir3js) (16)

To see this recall that sincey is irreducible we have from Schur’s
Lemma [H] (assumingN > 1) that

/G 1. 70, )(@dg = 0 (17)
and

- 1 _ 5in5jm
/G i, P@mu(m m(g Hg = T (18)

forany1<i, j,m,n < N+ 1.
Thus (15) follows from (17) while (16) from (18) together with the fact

thatmry (@) is orthogonal and hence
- . Sir O
f (i, )(@mn(r, 9)(g)dg = f an (i, D@mn(s N(gHdg= ==
G G N+1

The equalities (15) and (16) identify the covariance-matrix for the limiting
Gaussian as being:

N+l 2 2 N+l 2
CNe*%(h11+~~~+hN+1,N+1)*%(leiq'5N+1 h) 1_[ dhi; =

1<i<j<N+1
CNE_¥U(H2) 1_[ dhij
i<]
This Gaussian is N + 1) invariant on#H .1 and is exactly the GOE
measure off{n.1, See [M, p. 39].
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The case thalN is odd is a little more complicated. The linear space
overR of (N+1) x (N+1) = 2M x 2M matricesH satisfying (14) takes
the form

X110 Z1p wir... Ziv wim
0 X1 —w127Zp... —Wiv Zim
Xo2 0
H = 0 X2
vt Ww Xum O
| —Wwm1 Zm1 o 0 Xmm |

Air A ... Aim
Aor Ay ... Agum

Ani Awz ... Auwm

Xji O
Ajj:[éjxjji|’ ijER

where

forl<j<Mand

Aj = [_;j)—”%’} zij = Xij + v —1yij, wij = Uij + v —lujj
forl<i<j<M.
HenceH .1 is spanned over the reals by

Xjj» j=1,...,|\/|

and

Xij s Yij» Uij» Vij» 1§i<j§|\/|.
It is therefore of dimensiorM(2M — 1). Again vy is a sum of i.i.d.
random variables ift{\ 1, the individual summand being(g) = 7n(Q) +
7n(g7Y), g € G as before. The equalities (17) and (18) continue to hold
sincerry is irreducible s% H(g)dg = 0. Thusvy k converges to a Gaussian
on #Hn41 and we need to identify the covariance matrix. The relation (13)
yields

a11(9) b11(9) ... am(9) bim(9)
€11(9) di1(9) ... cm(9) dim(9)
(TN (@) = : : (19)
am1(9) bw1(9) ... aum(9) bvum(9)
cm1(9) dv1(Q) ... cum(9) dum(9)
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dir(@h) —cu(g™ ... dim@hH —cm@™d
—bia (@™ an@d ... —bm@H am@?

dMlég_l) —cmi(gh ... dum(@™ _CMl\/;(g_l)
—bwi(@™) awi(@™?) ... —bum(@™H awm(g™)

From (19) one sees easily that the covariance matrik@) € Hyny1 is
diagonal. Its diagonal entries may be computed using (17), (18) and (19):

/G X2 (g) dg = /G (@, (9) +a;, (g, () +a; (g dg

~

= + 2/ a’;(g) dg
G

zZ
N+
'_\

= —— + ZLajj(g)djj(gl) dg

pd
N+
H

Z
+
=

Similarly

/GZij (9)zj(9) dg = NE1

fezﬁmg)dg = fGZZ,-(g)dg = 0.

/(;wlj(gwlj(g g = N+ 1

/Gwizj(g) dg = 0.

Hencefor1<i < j < M,

1
2 _ 2 _ 2 _ 2 _
fG x2 (g)dg = fG y2 (g)dg = fG u? (g)dg = fG Vi (@dg=
while
/GXij (9Yij(9pdg =0

etc.
Thus the Gaussian limit takes the form

Oy &2 (T105 )~ (oo 6456 408 +45)

M
Xl_[dej 1_[ dededeijdvij =

j=1 1<i<j<M



Spectra of elements in the group ring of @Y 63

Cne ““”“"‘”]‘[olxJ [T dx;dy;dudug.

=1 1<i<j<M

This is precisely the USEM) invariant Gaussian oi,y, that is the GSE
measure, see [M, p.41].

3. The gap
In what follows we exhibitz's with a gap. We take’s in R[G] of the form

=g+ ot R+t oot (20)

Assume further thatg:, oo, ... , gk) = I'; is a free group on these genera-
torsandthak > 2. Hausdorff [Hau] in his work on what later became known
as the “Hausdorff-Banach-Tarski” paradox [Wa], exhibits sgshin fact it

is easy to see that the genef@, @, ... , g) € G¥ (in the sense of being
outside a countable union of co-dimension one sets) gives d fredow
such a groupk > 2) being free is Zariski dense in $(C). The representa-
tionsry extend to Sk(C) and are irreducible. Henceiife Wy, satisfies
an(T)v = Av for some|r| = 1 thenan(SLy)v = Av and hence = 0. It
follows that X and—2k are not in spe@(ry)), for if Z(ry)v = +2kv then
mn(gj)v = +v for 1 < j < kand hencery(I")v = +v andv = 0. Thus
for any z with T, free, spe(wn)) C (—2K, 2K). In particular for such a
for which we can establish a gap (fidrlarge) we will have

sup 2] < [12llL = 2k (21)

Let p = 2k — 1 (we do not assume thatis prime) and letJ,(cost) =
sin(n+21)6/ sind for n > 0 be then-th Chebyshev polynomial of the second
kind. In R[G] we have the following relation which is easily established
inductively [LPS]

p"?Un (2/(2VP) Zw (22)

lo|<n

where the sum is over attducedvordsw in gi, g; %, g2, 95 % - . . Ok, Gy - Of
length|w| = m < n with m = n(mod2. The image of this relation under
N Yields

’

PY2Un (2tn)/24P) = ) @) (23)

lw|=n
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Write the eigenvalues; of Z(wry) as

Aj = 2/pcosé;n), j=01...,N (24)
where

0 n € [0, 7], if 2] <2P,

Ojn =1&j N, &N > 0, if A >2/p, (25)

Ojn=7+i& N, Ein >0, if A <-2/P

We call theg; ’s not in [0, ] exceptional Indeed sincé’; is free most of
the@’s are not exceptional dd — oo (cf. Sect. 4).
Eachg € G is conjugate to a diagonal matrix

[e(rg) 0 }
0 e-rg)

with 0 < ry < 7 which is determined from

tr(g) = 2cosry (26)
Taking the trace of both sides of (23) yields

n/2z sinn+1in _ Z sin(N + Dro,

27
sinbj n sinr,, @n

lwl<n

We use (27) to estimate the number of exceptiehal's. To this end
note that ifn is even (which we assume henceforth in this section) then for
exceptionab; n we have

sinn+ 16, n _ sinh(n + 1§ n

. = . 0. 28
sinfj N sinhg; N ~ (28)
Hence (27) becomes
sinh(n + 1)&; n 0 — Sin(N+ Dr,,
—————2>— + O(Nn) = / 29
Z Sil’]héj)N + ONm P Z sinr,, (29)

§jN

O<|w|<n
exce ptional

In order to exploit the cancellation in the sum on the right hand side of
(29) we sum oveN in a rangeN ~ Ny, Ng large. For technical reasons
we do so in a smooth way. Ldt € C>*(1/2,3/2), f > 0 and f(1) = 1.
Summing ovel in (29) we get

N+1 sinhin + D& n

N~Ng

exce ptional
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o N+ 1Y\ sin(N + Dr,,
n/2 e) N2
Z Z (No-i—l) sinr,, + O(Nom)

O<|w|<n N~N

Poisson summation applled to the sumNbileads to the following: For
anyé > 0, A> 1 andr € [0, 7] we have

N+ 1Y\ sin(N + Dr
dof ( ) _ Ls,A (31)
NN No+1 sinr
N3, o rel Ny 1+,
mln{Ng, 2> } , 1 e[Ng* ).
Sincerl’, is free we have G r,, < 7 for any reduced word(|w| > 0).
In fact we assume that there is a const@nt B(ga, ... , gk) such that for
lw| =n,
B"<r, <m—B" (32)

We will verify (32) for any of the choices of;, ... , gk below. SinceA is
arbitrarily large in (31), we conclude from (30) and (31) that

N-+1 sinh(n + 1)&; n
Y1 ( ) yo SMEDSN o @)
N, \No+1 i sinhg; N

exce ptional

Nan + p~"2Ng#{0 < |w| < n:1, € [0, Ny ™1} .

Thus estimating the left hand side above is reduced to estimating the
number fo wordsy’, |@'| < n with small rotation (i.e. sizeNO‘l*“). Before
continuing we contemplate what to expect as far as the number of gach
Going back to (27) we note that fot fixedif we let n — oo and use the
fact that—2k < A; n < 2kfor N > 1, we get

2:/ sin(N + Dr,,

fim P smr

n—o00

=0 (34)

lo|<n

The number ofw| < nis (p + 1) p"* so (34) asserts that the rotations
re, lw| < n become equidistributed with respect to 2¢indd/x, that is
with respect to the Weyl measure which is the image of the Haar measure
on G onto the maximal torus. We might expect at least generically for
(01, ...,00) € G® that this continues to hold approximately for small
intervals. That is that
{w: o] =n}

#{lo| < nlr, € [0, Ng™]} « N
0

+ 1 (35)
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While we don’t know how to establish (35) for the gendidg, . . . , Ok,
we can prove it for some special choices.
Granting (35) we have (using (28) and (33)) that

Z sinh(n 4 1)&; n,

N
NZn+ p2 (Do 1) N2
sinhé;j. g <« Ron+p <N3+ 0

§j,Ng 0

exceptional

and hence fob > 0

n
Z 1« p™ (Ngn + p"2N3 (% + 1))
0

e'iNo > pb
Choosen satisfyingN$ < p" < p?N§ (n even), then

Yo 1« ptAN (36)

eEJ.’NO > pb

If b > 1/3 the right hand side of (36) is less than one and we conclude that
for No large there are no exceptiongly, with €% > p°. That is forNg
large and anyj

hinel < PY2(PY3 4+ p 3 + &, (37)

(¢ sufficiently small).

Sothe explicitgap (36) is what we expect to hold for gen@gic. . . , gk)
and we now exhibig’s satisfying (35) (or sufficiently good approximations
to it).

Let H(Z) be the integral Hamilton quaternions, saxife H(Z) then
o = Xg + Xal + Xgj + Xk with xj; € Z. We leta = xg — Xai — Xo] — X3k
andN(x) = @ € Z. Forq > 3 a prime number we take fa@y, 0o, ... Ok
a subset of the s¢ir| N(e) = g} (as pointed out in the Introduction this set
has &g + 1) elements) which satisfies

() Gj, # €0j, If j1 # Joande e {£1, £i, £j, £k} is a unit.

() @j, # €0;, for any j1, j» ande a unit.

As is well known (see [LPS] for example) different reduced waesds
R(@1, 81, ...0x) In 01, ..., Ok of lengthm > 1 give different quaternions
of normqg™. In particular to each such word corresponds a unique solution
of

X+ +x+x5 =q" xZ#QT (38)
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For anya = Xg + X1i + Xp] + X3k € H(Z) with N(«) equal tot, set

1] o+ xal X+ Xsi
9= ﬁ[—X2+X3iX0—X1i €G
The image under the homomorphism @f,... .« yields a set

01,075 ..., Ok O - in G. According to (38) above(gs, . .. , &) is a free
group. Note that under this correspondence

traceq = 2Xo/+/t (39)

We proceed to estimate the number fowandis gy, . . . , 9[1 oflengthm
withr,, closeto 0 orr. According to (38) and (39) such a wandorresponds
to a solution

XXX +xg =" xg#qT
and
sinr, = /g™ —X3/q
From this (32) is clearly satisfied and also
#{w: ol =m,r, € [0, N"*]}
#{XS + X %5+ x5 = g™ /oqm — xG/q"? < N”‘S} <
}

#{x5 + X+ x5 + x5 =q" ™31 - N*?) < x < q™?

Z ra(@™ — %5),

qV2(1-N2-2)1/2
5x0<qm/2

whererz(m) is the number of representationsnofis a sum of three squares.
From elementary number theory [HW] we have a boug@mn) =
O,(mY?+¢) for any ¢ > 0. Hence the above sum is

<g™ Y =x<d"/i"-x <

qm/2(17 N2§72)1/2
qm/2

< g™ 1+/ Von—t2dt) «
qm/2(1_N26—2)1/2

N—1+6
<< qem <1+qm/
0

< Q™1+ gqm/NT) (40)

Sint 6 d9> <
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Summing this fom < n yields

n
#{w: ol <n,r, € [0,N"]} < " (1+ Nﬂ 35> (41)

Note that if p = g (which is the largest set of sugh’s that we can choose)
then (41) gives the expected bound (35).
Continuing the analysis as above we get

n
Y lesp™ <N0n+ P ZNgg™" <1+ N? 35)) (42)
esj»NOZpb

Now assume thap > g*° and choos& even satisfying

n 2
VP VP
For Ng large enough ang® > g2/ p!/® we will have the right hand side
of (42) being less than 1. It follows that fer> 0 andNg large enough

2 @ne))| < P2 ﬁ+ﬁ + &
i No))| = P pl3 " g3

and sincep > g*° the latter is less thap + 1 = 2k. This completes the
proof of the Theorem 1.1. O

4. Density of states

Letz= ) x40 € R[G] and assume that= z*. Set

2) = —— Sn: Gon
un(2) N+1Z X @2Tn))

Proposition 4.1. There are measures*®"(z) and v°%(z) such that

im un(@ = v"*(2),
N— o0
N even
lim un(2) = v°%@2).
N— oo
N odd

(the convergence being in the sense of integration against any continuous
function).
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Proof. Fix an integemm > 0. Then

7 = > XgXg - XgnO1G2- .- Gm (43)
J1,... ,gmESUPAZ)

Hence

traceZ™(mn)) = XgXgy - - Xgn Xy (0102 - - - Om)
91,---,9m
or
UND ™) = > XgXg - Xgn Xy (G102 Gm)/(N+1)  (44)
g1 Om

Now x,,, (9) = sin(N + Da/(sina) if gis conjugate tc{ e(g) e(E)a) }

In particular

lim X?TN(g) _ 1, if g= ie7
Nooe N+ 1 0, otherwise
1, ifg=e,
fim ﬁ“jgl) — 1.1 ifg=-e
N odd 0, othemwise
Hence
lim 1z, (X" := CH*(2) = > Xy Xg (45)
N even 91,--,9m
g1-.-gm==e
and
lim iz (2™ = CH2) = (46)

N odd

D XgXgn — D Xg.--Xgp
91:----9

O s e Om
g1.--gm=¢€ g1...gm=-¢

Thus for any continuous, un(2)(f) — v®"(f) asN — oo through
even values andy (2)(f) — v°%(f) asN — oo through odd values. Here
v&eN(z) andv°99(z) are the probability measures (whose existence is clear)
and whose moments are given by (45) and (46). ]

Of special interest are elements of the form

Zgrogo = WA O+ @G o+ gt
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In this case the measure§®"(z) and 1v°%(z) can be interpreted as the
spectral measures for the random walkIgnwith respect to the symme-
tric set of generatorgy, g7, 02, 9%, . .. , Ok G, - (See Kesten [Kest]). It

follows from [Kest] that supp®¢"(z) and suppv°®®d(z) are contained in

[—2v/2k — 1, 2\/2k — 1] iff T, is a free group and in this case

/ 1 _12
peeN(z) = 1°%(z) = 2Kk—1-1%/4 dt. (47)

- 27k(1 — (t/2Kk)2)

Moreover Kesten shows that the suppont®$”(z) andv°99(z) are contained
in (—2k, 2k) iff T, is not amenable. Hence it is only farwith I, not
amenable that can have a gap.

We next examine the speed of convergence in Proposition 4.1. This
will depend on the diophantine properties@f ... , gk € G (we use this
terminology to draw an analogy with diophantine approximation).

Definition 4.2. For k > 2, we say thap,, g, ... , gk € G are diophantine
(or satisfy a diophantine condition) if there B = B(gy, ... ,0) > 0

such that for anym > 1 and a wordR, in s, 0y, . . . , gk of lengthm with

Ry # tewe have

[

Note that forg € G we have

IRm+ell = B™

Here
2

= |al® + b + [¢]? + |d|?.

llgL€ell® = 2jtraceg) F 2|. (48)

Forexample if" g, .. g is finite theng,, ... , g are diophantine, howe-
ver we are mainly interested in the case thaf, . 4, is free. In this case it
follows by a pigeon hole argument similar to Dirichlet’s that for amy- 1
there always is a worR # +ein g, gl‘l, cee s Oks g;l of length at mosim
satisfying

10

IR—¢€| < m (49)

(here and elsewhere we assume khat 2). This shows that the exponential
behavior in the definition of diophantine is the appropriate one.
As was first exploited by Hausdorff [Hau] the relation

Rn(01. 011 ... . 06O = e
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whereR is areducedword of lengthm > 1 is not satisfied identically in
G®. Hence the sets

V(Rn) = {(Q1, ..., %IRm(9) =€}

are of codimension at least one@¥. It follows thatUm>1V(Ry) is of zero
measure irG® and also it is of the first Baire category &®. Thus the

generic(gs, ... , g) € G® (in both senses) generates the free group. Now
the set of(gy, ... , g € G® for which (g, ... , g« is not free is clearly
dense inG® so it follows easily that the set @fy, . .. , g0 € G® which

arenot diophantine is of the second (Baire) categon@ff. That is to say
the topologically generi€ga, ... , gk) is free but not diophantine. On the
other hand we expect that in the measure sense the gégeric. , gy) is
diophantine. For elements with algebraic number entries we have:

Proposition 4.3. Letg, ... , g« € G N Mx(Q). Thenga, ... , g are dio-
phantine.

Proof. Since the setg, ... , gq} is finite we haveg; € M, (K) whereK is
a finite extension of) of degread say. We can find a rational integiir> 1
such that

Ngj (S Mz(OK) (50)

whereOy is the ring of integers oK. ChooseM > N large enough so that
for each of thed embedding® of K into C we have

lo(Ng)Il < M, j=1,... .k (51)

R = 0,0, ---9i,
is a word of lengtm in the g’'s then

N"R € My(Ok) (52)

Seth = N"RE+ N"e= N"(R+e),h € My(Ok) and ifh # 0, sayh;; # 0
then
lo(hij)| < [lo(N"R) £ o(N"g)|| < 2M"
Also
hij HO’(hij) e Z
o#ld
and is not zero, so we have

1
|hij| > W
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Hence
1

IR: €| > W

ChooseB = (2M)9N, then Oi1, ... .0k is diophantine with this choice
of B. O

Our main result about the distributigny (2) for diophantinez is Theo-
rem 1.3.

Proof of Theorem 1.3The proof of Proposition 4.1 together with the dio-
phantine condition leads to the following. There exists a congtaatA(z)
such that fom > 1,

un(2) (XM = ve(Z)(x™) + O(A™/N), N even, (53)
pn (2 (X™) = 1°%(z)(x™) + O(A™/N), N odd
the implied constants in (53) being universal (that is independemt arfid
N). The passage from (53) to the discrepancy bounds is a straightforward
analysis of suitable approximation of characteristic functions of intervals
by polynomials; we give the details below.
We choose a large constaitand make a change of variables:

Aj = Kcosy, 0<0; <m.
We next define new measurgg by

N1

E =(8p; +6-4;)- (54)
2

j=0

The corresponding limit measures ls— oo are denoted by®en, podd:
they will both be calle@,,. The definitions insure that all the measures are
evenin 6.

ChoosingK large enough, we may assume that the measugeand
Vs are supported in—3w/4, —m/4) U (/4, 3n/4). Given| C (—m, 7),
we want to estimati iy — Voo ) (1)]. Let x; be the characteristic function of
the intervall . For everym € N there exist trigonometric polynomia$;, ()
and S, (¢) of degreem (which depend o), called Selberg polynomials
such that ([Sel,V])

S0 =10 < SO, | (S30) — S,(0) dd = O(L/m),  (55)

and the constants are independent .oThe degreem of the polynomials
will be chosen later.
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By positivity,

f%(e) ditn < n(xi () < f Sn(6) diin,

and similar inequalities hold far,, in place offiy.
We next remark that since the measuigsandv,, are even ir9,

/ SE(dfin — dif) = / SE cpen(@y — i) (56)

whereS; ., is theeven parbf ;..

We make another substitution= cosf. We denote the measur@s,
(respectively,v,) in the new coordinates by corresponding measures by
&N (respectively,é,,). To prove Theorem 1.3, it suffices to estimate the
discrepancyD (&N, £xo).

The functionssieven(e) become polynomials of degree in y which
we denote byf £ (y). Itis easy to show (cf. [V]) that there exists a constant
B > 0, which does not depend on the interVakuch that the coefficients
of f's grow slower tharB™. That fact and the bounds (53) imply that for
a sufficiently smalc > 0 and form = ciIn N,

f fE(y) (den(y) — dEx(Y)) < 1/(INN).

To finish the proof, it suffices to show that for= cIn N,
/ (F5(y) — £ () En(y) < 1/(NN), (57)
SUPHEco)

By assumptions on®®" andv°d (which remain valid foit,.) it suffices to
establish (57) for the measudg instead ofd ., (y).
We note that

fa(y) — fn(y)

(F(y) — fo(y) dy < f In® = o) 4,
fsupusoo) m m SUPAEso) V1-— y?

(the last integral is well-defined since supp) C {|y| < 1/+/2}). The last
integral by (56) and a change of variables is equal to

(Sn(6) — Sn(6)) db.

Accordingly, the bound (55) implies (57) and finishes the proof of Theo-
rem 1.3. O
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Remark 4.4.As pointed out above the generic (in topolo@y) ... , gk is

not diophantine and so does not satisfy the assumptions of Theorem 1.3. In
fact in view of Kesten's Theorem above about the supporni(af and T,

being free, together with the density @i, ... , g«) which are not free, it
follows by the usual Baire category argument (cf. [LPS]) that Theorem 1.3
fails for topologically generia(g, ... , 9k).

On the other hand the numerical experiments of Sect. 5 indicate that for
the generic in measur@;, ... , g), k > 3, spe€z(wy)) behaves like that

of a member of the corresponding random matrix ensemble. If this is so
then Theorem 1.3 for such a geneziis very far from the true upper bound
which would be of ordeflog N)/N rather than 1log N. For the case of the
specific Ramanujan elemers of Sect. 3 we now establish a lower bound
for D.

Proof of Theorem 1.4A z, as above satisfies sp@g(mn)) C [—2/P,
2,/p] for N > 1. Our aim is to show thaD(un(zp), v(zZp)) is large at
least on a subsequenbg — oo. The measure(zp) is the Kesten measure
defined in (47).

One checks that the discrepancy is invariant under continuous mo-
notone changes of variable in the eigenvalue parameter. Sipgec
[-2/P. 2,/P] is is convenient to use the varialflgy € [0, 7] where

2,/pcostdin = Ajn, O0<j=<N; N>1

Set

N
- 1
uN(Zp) = N—HJX:;SQ]’N (58)

which is a probability measure df, r]. Letv, be the corresponding limit
of thefin(zp) asN — oo. Forn > 3 let

B T /sin(in + Dt _sin(n—l)t -
Iy = (N+1)/0 < - S )duN(t). (59)

Note that

f” sin(n + 1)t B sin(n — 1)t
0 sint psint

)d’ﬁpa) — 0. (60)

Thus an integration by parts in (59) yields

(N+ D7 HIon] = 2n% D(Gin, Vp) (61)
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We will use (61) to give a lower bound fdD(zin, V). According to (27)
we have

_ g2 S|n(N+1)r 5
mN Z sinr,, (62)

lw|=n

For the element, we saw in Sect. 3 that the right hand side of (62) may
be expressed as

iN((N + DBxn

x| <p™/2

wherev(n, x) is the multiplicity of reduced words of lengthwith the trace
equal tox/p"?, that is

COSfyn = ﬁ xeZ, x| <p"2 (64)
From the cas&l = 0 we have
P+ p = ) v (65)
Ix|<p"/2
Now rewrite (63) as
I = 30 A Sin(N + Do) (66)

/ NN
|X|<p”/2 p

Let f € S(R) be even,f >0, f(0) = 0and” f(x)dx = 1. Assume
further that supp c (—1, 1). Consider

2 00
Zf(N”)unm ng%” > f(%)(sinmﬂx,n)2

Mm=—o0

1 (v(X, N)v(X, N') > ( m ) . .
+ 5 f [ — ) sin(mpBy.n) SIN(MBx'n)
2 2 V("= x2)(p" — (X)2) mzzoo No

X#X!
(67)
If x #£ X/,
1 X —x
oz s | | = | COSBx.n — COSBx NI = [BxN — Bx.Nl (68)
while

,BX,N + ng’,N < 21 — 1/ pn/z (69)
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Thus applying Poisson summation in (67) together with fupp(—1, 1)
we see that foNy > 2p"/2 the second term in (67) vanishes while the first

equals
No [ [ (V(X, N))?

That is we have

> (N+1 ,  No (v(x, M)?
NZE)I‘ (N—O>||n,N| =7 EMW (70)
= [X|<p

if p"/?2 < Ng/2. On the other hand from (65) we have

, 12 12
PP Y owxn) < ( > ;n(x)rg) ( > (p”—xz))

|x| < pn/2 Ix| < p/2 [x| < pn/2
Hence
2 n/2
va(X, n
> ( )z P (71)
pn_X2 4
x| <pn/2

That is forp"? < Np/2,
> N+1 Ng p"/2
S I
N=0 0

No N2 No

_— <

2P 2"

1 & N+1
<T)|In,N|2 > Np
0

Choosen so that

We then have

No {25
and hence from (61) that
1 & (N +1

~ ~y2
TO)|D(MN,Vp)| >

-1

0
(log No)* (72)

No {25
In particular this means that there is a subsequéjce> oo such that
-1/2

~ o~ j
D(fin,, Vp) > Tog N2 (73)

This establishes the required lower bound for the discrepancy claimed in
Theorem 1.4. O
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5. Numerical results

We report on some numerical computations of $pegy)) for certainz
and for N of size of about 1000. As pointed out in the Introduction, if
Z=01+ g;l + 0+ ggl and is in generic position there is a nontrivial
h € G commuting withz (as elements dR[G]). This impacts the statistics
of the distributions of the eigenvalueszifry). To avoid this symmetry we
consider in this section elements of the faym-g;* + 02+, -+ 03+ 03 -

For such @ with (g1, gz, g3) generic it appeatshat centralizing subalgebra
of zin R[G] is R[z]. The numerics below also confirm that the generic such
gis “desymmetrized”. The precisgs which we consider are

(D zchosen at random (i.@, g2, g3 chosen at random).
(I) zis the Ramanujan elemeny, that is

. 1[1+2 o 1712
gl—A—ﬁ[ 0 1—2i]92_8_75[—21]’

and 1 _
12
93:(::75[2 1]
(1) zthe element defined after Theorem 1.1 with= 7,
'A—i 2—i 1+i] x_ 1 [2—i-1+i
V7L L2+ T 7+ 240
and
é_i 240 —1+i
_ﬁ 1+i 2—i

In all these caseE, is a free group on 3 generators so that the density
of states is given by (47) witkh = 3.

We first describe the method of computation. A direct computation of the
matrix of Z(wry) using the basis (11) (or variants thereof using orthogonal
polynomials) turn out to be too time consuming and inaccurate vidhén
of size 1000. What is much better is to use matrix exponentiation as follows.
The Lie algebra s2) of SU(2) is spanned by the vectors

i 0 01 Oi
For X € su2) andn a representation db (in particularzy) we have the

relation

m(expX) = exp(dr(X)) (75)

1 This question will be addressed in more detail in a separate paper.
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The matrix ofdmn(Xj), ] = 1,2,3 may be computed explicitly from
the action (1) and the basis ®¥\,.1 normalized according to (12). For
j=01,...,Nlet
JyN=]
& = (76)
JIIN = ]!
Then
drn (X0 (@) = i(2] — N)E§j,
drn(X2) (@) = —vJ(N =+ D& 1+ (N = D(j + D&,

drn(X3) (@) = iV IN—j+De_1+iv(N— D+ D1

(77)

Thusdry(X;) is skew-Hermitian withdry (X1) diagonal anddmry (X2),

dmn(X3) tridiagonal. The exponentials of these matrices were computed
using MATLAB which appeals to the Pade approximation with scaling and
squaring algorithm (see [GV, method 11.3.1]). A nice discussion of the
subtleties of computing such exponentials of matrices is given in [MV].
Once the exponential is computed we use (75) to ofatiaiR ) in this basis.

The eigenvalues of this matrix were then computed, again using MATLAB.

We turn to an analysis of the results and their interpretation. The first
data concerns the density of states. For the randemg; + g[l + 0+
0, 1403405 (that is to say we chosé) = &3 X3 4£, X, +£3 Xz at random
for j = 1,2, 3 and then used these to ggt= exp(X")) the distributions
un(2) were computed for varioubl’s. The graphs all looked alike and in
Fig. 1 the caseN = 1004 with a histogram oft1004(2) is drawn against
the density (47). The fit is excellent and is consistent with the discrepancy
being O((log N)/N).

On the other hand the same experiment was carried out for the Ramanu-
jan elementzs (note thatA, B, C in zs are very conveniently expressed as
exp(EXy), expEXy), exp(éX3) with cosé = 3/5) and the result is displayed
in Fig. 2. The discrepancy is much larger and is consistent with being of
size 1/+/N as proven in Theorem 1.3.

The second set of data concerns the consecutive spacings distribution
between the eigenvalues &fry). As is apparent from Fig. 1 the density
of eigenvalues is essentially constant betweéhand 3. To use more of
the data set one straightens or unfolds the eigenvalues by the change of

variables
/x 6+/20 — t2
F(x) = —
_oy5 27m(36—t?)
which renders the density uniform. The histogram of the distribution for the
resulting consecutive spacings between these straightened numbers (renor-
malized to have mean 1) was then computed.

dt
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Fig. 1. Density for a randonz, N = 1004 k = 3, vs. Kesten’s measure
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Fig. 2. Density for A, B, C of (II), N = 1004, vs. Kesten's measure

For a randonz and 10 values oN in the rangg 700, 1100 the results
were all alike. In Fig. 3 the cadé¢ = 1099 is displayed against the Gaussian
Symplectic Ensemble prediction [M] (actually we used the Wigner surmise
which is a very good approximation to the latter). Note that in the case of
N odd we know that the spectrumfry) comes in doublets and we took
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Fig. 3. Spacings for a random N = 1099, vs. GSE
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Fig. 4. Spacings for a random N = 1004, vs. GOE

one eigenvalue out of each of these. The fit is very good (theoretically we
might expect the discrepancy to be of ordgk/IN).

A similar calculation forN even gave GOE statistics. A typical case
being the histogram in Fig. 4 fdl = 1004 which is compared with the
GOE Wigner surmise.
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For the case ofs the spacings behave very differently. Firstly there
is added multiplicity to the eigenvalues. This may be accounted for by
symmetry. The subgroupl of G which centralizeszs is isomorphic to
the symmetric grougs;. A convenient geometric way of seeing this is to
represent a rotatioR in SO3) asé = (&1, &, £3), Whereé¢ is the axis
of rotation of R and whose length is the angle of rotation. The direction
is chosen so that the rotation is at mastbout the oriented axis. For
A, B, Cin (Il) above, the representations agg = (0, 0, 1), &g = (0, 7, 0)
and & = (1, 0,0) with cost = 3/5. Now if go corresponds t& and
g is in SQ3), then g~1gog corresponds tat. Hence since the vectors
&n, Ea-1, EB, Ep-1, Ec, Ec-1 are the vertices of a regular octahedron, we see
thatH , the rotational symmetry group, is the octahedral gr&up

We decompose the action bf on Wy, ; into irreducible subspaces on
each of whictzacts as ascalar. The irreducible representations and character
table of §; are well known|S;| = 24 and there are five conjugacy classes.
The identity element, 6 transpositiofeh), 3 elements of order @ab)(cd),

8 elementgabo) of order 3 and 6 elements of ordefabcd. There are two
one dimensional irreducible representatiggsande, one two dimensional
representatio® and two three dimensional representatignandsy,. The
character table together with the charagtgt N = 21 of SO(3) (using the
double cover SI2) — SO(3)) is given in Table 1.

Table 1.
1 (ab) (aby(cd) (abo (abcd

X0 1 1 1 1 1

£ 1 -1 1 1 -1

6 2 0 2 -1 0

7 3 1 -1 0 -1
ey 3 -1 -1 0 1
xa | 2+1 | (=D (-1 e3) | eal)

Here
1, ifl =0(mod3,
g = {0, ifl =1(mod3,
-1, ifl =2(mod3,
and

1, ifl =0,1(mod4,

eq(l) = 1, ifl =2, 3(mod4.
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Using the scalar produdtya, x,) we can count the multiplicityn, with
which o appears it ;. We get

Mo = (2 +1+9(—1) 4 8e3(l) + 6e4(1))/24
m. = (A +1—3(=1) + 8e3(l) — 6e4(l)) /24
my = (A +1+3(=1)' — 4e3(1))/12

my = (2 + 1+ (1) — 2e4(1))/8

My = (2 +1—3(=1) + 2¢4(1))/8

Thus if there are no degeneracies in the spectruis@f, 1) beyond
what is forced by the symmetry grottbthen we would haveng+m, simple
eigenvaluesmy eigenvalues of multiplicity two, anah,, 4+ m,,, eigenvalues
of multiplicity three. We checked this for 10 differels and found exactly
those multiplicities in each case. Note that the multiplicity two partis “pure”
and the consecutive spacing distribution for it was computed. The results
were all more or less the same. Fig. 5 gives the pure spectrum for three
values ofN of order 1000 and compares the distribution watttdx (i.e.
“Poissonian”). Several values df were taken because the pure part of the
spectrum forN of that order is rather small (less than 100).

1
0.9 b
0.8f b
0.6 N | b
0.57
0.41
0.3f

0.2

0.1n

O |
0 0.5 1 15 2 25 3

Fig. 5. Spacings forA, B, C of (1), N ~ 1000, vse~Xdx (“pure” part)

Combining all the spectrum fats(7541) (taking one eigenvalue out of
each multiple set) gives a similar distribution, see Fig. 6. Presumably the
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Fig. 6. Spacings forA, B, C of (II), N = 1004, vs.e *dx (“combined”)

1]
2.5

reason being that each “pure” piece is Poissonian and the superposition of
independent Poissonians is again Poissonian.

A similar analysis for the elemeri (cf. (Ill) above) was carried out.
Recall that in Theorem 1.1 we showed thatzy)|| < 5.83 < 6. It turns
out thatz is not a Ramanujan element since for examipngg)|| =
4.5842... > 4.4721. .. = 2/5. Again there are degeneracies in the spec-
trum due to symmetry. This time thevectors corresponding té, B, C

are
[ | |
5(_17 17 1)7 5(_1’ _17 1)7 5(17 _1’ 1)

where cosx = 1/7. The vectorsx, 51, €5, £5-1, &g, £g-1 form the three
diagonals of the cube with barycenter at the origin. The rotation symmetry
group isS; and an analysis as above with its irreducibles (there is one
2-dimensional and two 1-dimensional representations) yields a “pure” part
in W51 of multiplicity two. The dimension of this partig2 +1—e&3(1)) /3

and the rest of the space corresponds to the 1-dimensional pieces. Again
this accounted for all the degeneracy in the spectrum fdrstvee checked.

The consecutive spacing distribution for the pure multiplicity two part is
given in Fig. 7 wherN = 912. Again it was typical of what was found for
otherN'’s. The approximation by GOE is quite good. As for the multiplicity
one part of the spectrum, it is not GOE. The reason is that it consists of
eigenvalues from both of the 1-dimensional representations which are being
superimposed.



84

Alex Gamburd et al.

0.8

o TN |

0.6 b

15 2 25 3

O L
0 0.5

1
Fig. 7. Spacings forA, B, C of (IIl), N = 912, vs. GOE (“pure” part)
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