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Abstract. We present a new method for establishing the “gap” property for finitely gene-
rated subgroups of SU(2), providing an elementary solution of Ruziewicz problem onS2 as
well as giving many new examples of finitely generated subgroups of SU(2)with an explicit
gap. The distribution of the eigenvalues of the elements of the group ringR[SU(2)] in the
N-th irreducible representation of SU(2) is also studied. Numerical experiments indicate
that for a generic (in measure) element ofR[SU(2)], the “unfolded” consecutive spacings
distribution approaches the GOE spacing law of random matrix theory (forN even) and the
GSE spacing law (forN odd) asN→∞; we establish several results in this direction. For
certain special “arithmetic” (orRamanujan) elements ofR[SU(2)] the experiments indicate
that the unfolded consecutive spacing distribution follows Poisson statistics; we provide
a sharp estimate in that direction.

1. Introduction

The irreducible representations ofG = SU(2) are

πN = symNV, N ≥ 0,

whereV is the standard two-dimensional representation ofG. The dimen-
sion ofπN is N + 1 and it may be realized concretely by the linear action

(x, y) → (αx+ γy , βx+ δy),
[
α β

γ δ

]
∈ G (1)

on WN+1, the space of homogeneous polynomials in(x, y) of degreeN.
The characterχN of πN at

g =
[

eiα 0
0 e−iα

]
is

sin(N + 1)α

sinα
. (2)
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This well known character formula is our main tool for studying the
spectra of the elements in the group ring,R[G]. Let z be such an element,

z =
∑
g∈G

zgg (3)

with zg ∈ R andzg = 0 for all but a finite number ofg ∈ G. Let supp(z) =
{g ∈ G|zg 6= 0} and0z the group generated by supp(z). Clearly 0z is
a finitely generated subgroup ofG.

Forπ = πN as above let̂z(π) be the(N + 1)× (N + 1) matrix

ẑ(π) =
∑
g∈G

zgπ(g) (4)

We are interested in the spectrum, spec(̂z(πN)), of ẑ(πN) (which of
course does not depend on the realization ofπN) as N → ∞. This ques-
tion is of interest in analysis (for example the Ruziewicz problem see
[CV,LPS,Lub], and “strongly ergodic actions” [Sch]) as well as in the theory
of quantization (“quantum chaos” [Sa2,Zel2]). The connection to the latter
comes from0z acting onS2 (using the double cover SU(2) → SO(3)) as
symplectic maps and anN-th quantization (“N = 1/h”) of this classical
action being realized bŷz(πN) [Zel1]. According to general philosophies
in quantization theory [BGS] one might expect that if0z acts ergodically
on S2, spec(̂z(πN)) behaves like the spectrum of a typical member of an
appropriate ensemble of random matrices (cf. [M]). With suitable interpreta-
tions, this expectation is borne out rather well in the numerical experiments
described in Sect. 5. This appears to be one of the simplest examples of this
phenomenon.

We assume further thatz is self-adjoint, i.e.z∗ =∑ z̄gg−1 = z. In this
casêz(πN) is self-adjoint with respect to a suitable inner product onWN+1.
Hence spec(̂z(πN)) is real and is contained in the interval[−||z||, ||z||],
where ||z|| = ∑

g∈G |zg|. Let ||̂z(πN)|| be the norm of the matrix̂z(πN)

with respect to the above inner product.||̂z(πN)|| is equal to the maximum
of |λ j (̂z(πN))| where

λ0(̂z(πN)) ≥ λ1(̂z(πN)) ≥ . . . ≥ λN (̂z(πN)) (5)

are the eigenvalues of̂z(πN).
A fundamental question for a positivez (i.e. zg ≥ 0 for g ∈ G) is

whether it has agapby which we mean that

limN→∞||̂z(πN)|| < ||z||. (6)

Constructing anyz with a gap is apparently rather difficult and was first
achieved by Drinfeld [Dri]. It was used by him to give the final step in
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the resolution of Ruziewicz problem asserting that the Haar measureS2 is
the uniquefinitely additive rotation invariant measure defined on Lebesgue
sets. Drinfeld’s method appeals to some sophisticated machinery from the
theory of automorphic representations (namely the Jacquet Langlands cor-
respondence and Deligne’s solution of the Ramanujan conjectures). One of
our aims here is to give a new elementary and perhaps more importantly
robust analytic method for establishing that certainz’s have a gap. In parti-
cular we construct newz’s with this property and thus in passing provide an
elementary analytic solution of the Ruziewicz problem. The discussion in
Sect. 3 reduces the issue of a gap to estimating the number of elements in0z

(ordered suitably with word length) with trace near 2. This estimation can
be carried out easily forz’s constructed via integers, on the other hand doing
so for the case of “generic”z (see below) has thus far eluded us. So letH(Z)
denote the ring of Hamilton quaternionsα = x0+ x1i + x2 j + x3k, xj ∈ Z.
Let ᾱ = x0 − x1i − x2 j − x3k andN(α) = αᾱ. Forq ≥ 3 a prime number
let g̃1, g̃2, . . . , g̃k be a subset ofS = {α ∈ H(Z)|N(α) = q} (it is well
known [HW] that the latter has 8(q+ 1) elements) satisfying

(I) g̃j1 6= εg̃j2 for j1 6= j2 andε ∈ {±1,±i,± j,±k} a unit.
(II) g̃j1 6= εg̃j2 for any j1, j2 andε a unit.

The homomorphism ofH(R) into SU(2)

α → 1√
N(α)

[
x0+ x1i x2+ x3i
−x2 + x3i x0− x1i

]
gives us the corresponding elementsg1, g2, . . . , gk ∈ G.

Theorem 1.1. Letq ≥ 3, g1, g2, . . . , gk ∈ G be as above. Ifp= 2k−1>
q4/5 thenz= g1+ g−1

1 + . . .+ gk + g−1
k has a gap, in fact

lim N→∞||̂z(πN)|| ≤ p1/2

(
q2/3

p1/3
+ p1/3

q2/3

)
< 2k

For example ifq = 7,

g̃1 = 2− i + j + k, g̃2 = 2− i − j + k, g̃3 = 2+ i − j + k

satisfy the hypotheses and denoting the correspondingz by z̃7 we have

limN→∞||̂̃z7(πN)|| ≤ 5.83 (< 6).

Remark 1.2.

(1) If q ≡ 1(mod4) and we choose a maximal such subsetg̃1, . . . , g̃k of S
above, then 2k− 1 = q and we get an elementz which we denotezq

which according to the above theorem satisfies

limN→∞||ẑq(πN)|| ≤ q1/2 (q1/3+ q−1/3) < q+ 1
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For this element it was shown in [LPS] using automorphic forms and
in particular Deligne’s proof of the Ramanujan Conjectures that

||ẑq(πN)|| ≤ 2
√

q for all N ≥ 1.

This bound is optimal (see Sect. 4). We call a general elementz of the
form g1 + g−1

1 + . . . + gk + g−1
k (wherek ≥ 2) for which ||̂z(πN)|| ≤

2
√

2k− 1 holds whenN ≥ 1, aRamanujan element.
(2) Forz 6= zq as above (i.e.p< q) the existing methods from automorphic

forms do not, as far as we know, apply to show thatz has a gap. In more
detail, it is clear that in generalz having a gap is a property of0z.
The method of Drinfeld [Dri] for establishing a gap ensures that if0z

contains an arithmetic group thenzhas a gap (by an arithmetic subgroup
3 of G we mean a group obtained from a quaternion algebra as follows;
let K/Q be a number field andD/K a quaternion algebra. Assume that
K has an archimedian placev such thatD ⊗ Kv is the Hamiltonian
quaternions. In particularD(1)⊗Kv, where the super 1 denotes elements
of norm 1, is isomorphic to SU(2). LetP be a (nonempty) set of places
containing the other archimedian places ofK and let0 be the group
of elements ofD(1)(K) which are integral outsideP and let0v be the
projection of0 in D(1) ⊗ Kv ' SU(2). We call3 ⊂ SU(2) arithmetic
if it is commensurable with a conjugate of such a0v). For p < q, 0z

does not contain an arithmetic group. The elementz̃7 is an example of
the above and as numerical computation shows, see Sect. 5, it is not
Ramanujan. We remark that Shalom [Sha] has given (in another context)
0-s with the analogue of a gap, which are constructed as commutator
subgroups of arithmetic groups.

Next we discuss the distribution of the eigenvalues (5) asN→∞. This
requires distinguishing the caseN even andN odd, since the corresponding
πN has a different symmetry in each case. As is well known and discussed
in Sect. 2, forN evenπN preserves a symmetric bilinear form onWN+1

while for N odd it preserves a skew-symmetric form. It follows that with
suitable bases forWN+1, for N even̂z(πN) lies inHN+1 the (real) linear
space of(N+1)× (N+1) real-symmetric matrices, while forN odd̂z(πN)

lies in the (real) linear space, also denotedHN+1, of (N + 1) × (N + 1)
matricesH satisfying

H∗ = H, Jt HJ = Ht, J =


E 0 . . . 0
0 E . . . 0
...
...
. . .

...

0 0 . . . E

 , E =
[

0 1
−1 0

]
(7)
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In particular in this latter case the eigenvalues ofẑ(πN) are of the form
λ1, λ2, . . . , λM whereM = (N + 1)/2 with eachλ j occuring with multi-
plicity 2.

While our main interest lies in spec(̂z(πN)) as N → ∞ we prove in
Sect. 2, see Proposition 2.1, that if

z = g1+ g−1
1 + . . .+ gk + g−1

k (8)

with (g1, . . . , gk) ∈ G(k) chosen at random according to Haar measure,
and if k andN bothgo to infinity then local statistics of the eigenvalues of
ẑ(πN) follow GOE statistics forN even and GSE statistics forN odd (see
Sect. 2 for the definitions of these ensembles).

Returning toz fixed and N → ∞ we examine the densities of the
eigenvalues of̂z(πN). These are described by the sum of point masses

µN(z) = 1

N + 1

N∑
j=0

δλ j (̂z(πN)) (9)

which is a probability measure supported in[−||z||, ||z||].
It is not difficult to show (see Sect. 4 and [LPS], as well as [Sa1]

and [Ser] for analogous equidistribution results) that there are measures
νeven(z) and νodd(z) which are determined entirely by the abstract group
0z and its generators (that is supp(z)), such thatµ2N(z) → νeven(z) and
µ2N+1(z)→ νodd(z), asN→∞. We callνeven(z) andνodd(z) thedensities
of states. The finer question as to how this equidistribution takes place
depends on supp(z) and how it sits inG. We say thatg1, . . . , gk ∈ G are
diophantineif there is aB = B(g1, . . . , gk) > 0 such that form ≥ 1 and
Rm a word ing1, . . . , gk of lengthm andRm 6= ±e, we have

||Rm ± e|| ≥ B−m. (10)

Here ∣∣∣∣∣∣∣∣[a b
c d

]∣∣∣∣∣∣∣∣2 = |a|2 + |b|2 + |c|2+ |d|2.
It is not hard to show (see Proposition 4.3) that ifg1, . . . , gk ∈ M2(Q), that is
to say they have algebraic number entries, theng1, . . . , gk are diophantine.
On the other hand, the topologically generic (i.e. in the sense of Baire
category)g1, . . . , gk ∈ G(k) is not diophantine.

Theorem 1.3. Assume thatsupp(z) is diophantine and thatνeven(z) =
f (even)(x)dx, νodd(z) = f (odd)(x)dx with f (even), f (odd) in L∞(R), then for
N large

D(µ2N(z), ν
even(z)) �z

1

log N
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and

D(µ2N+1(z), ν
odd(z)) �z

1

log N

(here D(ν, µ) is the discrepancy between the measuresν andµ, that is
D(ν, µ) = sup{|ν(I)− µ(I)| : I = [a,b] ⊂ R}).

Theorem 1.3 is false for the topologically genericz= g1+ g−1
1 + . . .+

gk + g−1
k , (g1, . . . , gk) ∈ G(k). On the other hand the numerical results

of Sect. 5 suggest that fork ≥ 2 fixed andzg chosen withg ∈ G(k),
generic in the measure sense, the discrepancy should behave like those for
random matrix models, that is it should beO((log N)/N), see Fig. 1 which
displaysµN(z) againstν(z) for such a randomz. So for suchz’s the result
in Theorem 1.3 is probably very far from the truth. For the Ramanujan
elementzq (defined in Remark 1) the discrepancy is not small, see Fig. 2
for a similar comparison. Note that it has a very large centralizer inR[G],
in fact thezq’s all commute with each other. So the eigenvalues ofẑq(πN)

should not be expected to behave like any random matrix ensemble. In
fact experience with numerics for the spectra of Laplacians for arithmetic
hyperbolic surfaces [BGGS,BSS] suggest that spec(̂zq(πN)) is more likely
to behave like random numbers (i.e. “Poisson”). The following lower bound
confirms this and is the analogue of the lower bounds for the remainder term
in Weyl’s law for arithmetic hyperbolic surfaces, see [Hej] and [LS].

Theorem 1.4. Fix q ≥ 3 andzq as above, a Ramanujan element. There is
a sequenceNj →∞ such that

D(µπNj
(zSp), ν(z)) �

1

N1/2
j (log Nj )2

In Sect. 5 we report on numerical experiments concerning the “un-
folded” spacing distribution between the eigenvalues (5) asN gets large.
Consider the generic in measurez = zg = g1 + g−1

1 + . . . + gk + g−1
k ,

g = (g1, . . . , gk) ∈ G(k). For k = 2 the centralizer ofz ∈ R[G] consists
of more than just the polynomial ring inz, R[z]. Indeed by conjugating
such an element by a suitable member ofG we can assume that

g1 =
[
λ 0
0 λ̄

]
, g2 =

[
a1 b1

−b̄1 ā1

]
.

Put c= (−b1/b̄1)
1/2. Then [

0 c
−c̄ 0

]
commutes withz. That is fork = 2 there is a persistent symmetry of order
2 (note that this symmetry is not broken by passing toz= x(g1+g−1

1 )+
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y(g2 + g−1
2 ) with x, y ∈ R). However fork ≥ 3 and g = (g1, . . . , gk)

generic it appears that the centralizer ofz in R[G] is no bigger thanR[z].
In particular the generic suchz is “desymmetrized” and we examine the
consecutive spacing distribution between the eigenvalues ofẑ(πN). For
such a randomz with k = 3 we found universally that these spacings
followed the GOE spacing law forN going to infinity through even values
and GSE spacing laws forN odd. Figs. 3 and 4 give typical examples of
this phenomenon. On the other hand the same question for the Ramanujan
elementz5 yielded a Poissonian consecutive spacing distribution (after the
obvious symmetries have been taken into account) - see Figs. 5 and 6 in
Sect. 5. The element̃z7 (see the example after Theorem 1.1) is special
in that it is formed out of integral quaternion matrices though0z̃7 is not
arithmetic. We found that its spacings (again after a symmetry analysis)
are GOE and GSE depending on the parity. A typical example of this
data is given in Fig. 7. For details about the data and computations see
Sect. 5.

Note that for the randomg ∈ G(k), 0 = 〈g1, . . . , gk〉 acts ergodically
on S2. These results point to the conjecture that fork ≥ 3 fixed and
g ∈ G(k) given and generic (in measure) the eigenvalues of the quantiza-
tion ẑg(πN) follow GOE spacing statistics asN goes to infinity through
even values, while they follow GSE statistics asN goes to infinity through
odd values. Besides this conjecture (which if true is no doubt difficult to
prove) there are a number of more tractable problems that remain. We
mention some of these:

(1) Prove that fork ≥ 2 andg ∈ G(k) generic in measure,zg = g1+ g−1
1 +

. . .+ gk + g−1
k has a gap (see [LPS]).

(2) With our present knowledge it is conceivable thatzg has a gap as long
as0zg acts ergodically onS2 (cf. [LW]).

(3) Consider the parameter space (k ≥ 2, fixed) G(k)/ ∼, wherezg is as
above andzg ∼ zg̃ if δ(g1, . . . , gk)δ

−1 = (g̃1, . . . , g̃k) with δ ∈ G.
What can be said about the Ramanujan elementsz ∈ G(k)/ ∼? Is this
set finite or infinite? One can show it is closed and nowhere dense
(cf. [LPS, Theorem 1.4]; in fact its intersection with any 1-dimensional
curve is closed and nowhere dense in that curve).

(4) Prove that the generic(g1, . . . , gk) ∈ G(k) in the sense of measure is
diophantine.

(5) One can ask similar questions forR[G] whereG is a more general
compact topological group or forR[0] relative to a familyπN of uni-
tary finite dimensional representations of0 arising from geometry or
quantization.
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2. Properties ofπN

With notation as in Sect. 1 lete0,e1, . . .eN be the basis ofWN+1 given by

ej = x j yN− j , j = 0,1, . . . , N. (11)

The bilinear form〈, 〉 on WN+1 defined by

〈ej ,ek〉 =
(

N

j

)−1

(−1) j δ j,N−k (12)

is nondegenerate and is preserved byπN. That is 〈πN(g)v, πN(g)w〉 =
〈v,w〉 for g ∈ G andv,w ∈ WN+1. The form is symmetric forN even and
skew-symmetric forN odd. It follows thatπN is orthogonal forN even and
symplectic forN odd. Hence with a suitable basis (overC) we can assume
that thatπN preserves

I N+1 =


1 0 . . . 0
0 1 . . . 0
...
...
. . .

...

0 0 . . . 1


for N even and

J =


E 0 . . . 0
0 E . . . 0
...
...
. . .

...

0 0 . . . E

 , E =
[

0 1
−1 0

]

for N odd. That is{
(πN(g))tπN(g) = IN+1, N even;
(πN(g))t J πN(g) = J, N odd.

(13)

Furthermore forg ∈ SU(2) we can arrange forπN(g) to be unitary
with respect to the standard Hermitian form onWN+1. Thus for N even
πN(g) ∈ O(N + 1,R) while for N oddπN(g) ∈ USp(N + 1).

If N is even(πN(g)+πN(g−1))t = πN(g)+πN(g−1). It is also selfadjoint
henceπN(g) + πN(g−1) is a real symmetric matrix. It follows that for any
z ∈ R[G] which is selfadjoint,̂z(πN) lies in the real linear spaceHN+1 of
(N + 1)× (N + 1) real symmetric matrices.

ForN odd,Jt(πN(g)+πN(g−1))J = (πN(g)+πN(g−1))t . AlsoπN(g)+
πN(g−1) is selfadjoint so we see thatẑ(πN) lies in thereal linear spaceHN+1

of (N + 1)× (N + 1) complex matrices satisfying

Jt HJ = Ht and H∗ = H. (14)
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It is easily seen that anyH ∈ HN+1, (N + 1 = 2M) has its eigenvalues
consist ofM eigenvalues each of multiplicity 2 (of course some of theseM
eigenvalues may coincide).

For the generic(g1, g2, . . . , gk) ∈ Gk (by which we mean here outside
a countable union of codimension 1 subsets),k ≥ 2, z(g1, g2, . . . , gk) =
g1+g−1

1 +g2+g−1
2 + . . .+gk+g−1

k has the property that̂z(πN) has simple
spectrum ifN is even and hasM = (N + 1)/2 distinct eigenvalues each
of multiplicity 2 if N is odd. To see this it suffices from general principles
involving the discriminant of a matrix, to exhibit one such(g1, g2, . . . , gk).
Forα ∈ R and e(α) = e2πiα let z(α) ∈ R[G] be given by

z(α) =
[

e(α) 0
0 e(−α)

]
+
[

e(−α) 0
0 e(α)

]
+(k−1)

([
0 1
−1 0

]
+
[

0−1
1 0

])
.

A straightforward calculation yields

spec(ẑ(α)(πN)) = {2 cosNα ± (2k− 2),

2 cos(N − 2)α ± (2k− 2), . . . ,2+ (−1)N/2(2k− 2)
}

if N is even and

spec(ẑ(α)(πN)) = {2 cosNα,2 cosNα,

2 cos(N − 2)α,2 cos(N − 2)α, . . . ,2 cosα,2 cosα}
if N is odd.

Hence if we chooseα generically (e.g. take e(α) to be transcendental)
thenz(α) will satisfy the claimed property. Note that thisz(α) fails to have
a gap. The support group0z(α) is a dihedral group and the densities of states
νeven(z) andνodd(z) are easily determined from the explicit description of
the spectrum:νodd(z(α)) = dy/

√
4− y2 on[−2,2]whileνeven(z(α)) is half

of this measure translated by±2(k− 1).
While our interest lies in spec(̂z(πN)) as N → ∞ for z fixed, we note

that if we let k go to infinity as well then the spectrum of the generic
ẑ(g1, g2, . . . , gk)(πN) will follow the GOE laws (see [M] for definitions) if
N is even and the GSE laws ifN is odd.

Proposition 2.1. Let νN,k be the direct image ofdg1dg2 . . . dgk on G(k)

under the map

(g1, g2, . . . , gk) → (
1√
k
(g1+ g−1

1 + . . .+ gk + g−1
k ))̂ (πN)

ThusνN,k is a probability measure onHN+1. Ask → ∞, νN,k converges
in measure to the standard GOE measure onHN+1 if N is even and to the
standard GSE measure ifN is odd.
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Proof. The measureνN,k on the real vector spaceHN+1 is a sum of i.i.d.
random variables. We may therefore appeal to the general vector valued
central limit theorem. The distribution of the individual summand isH(g) =
πN(g)+πN(g−1), g ∈ G. Thus once we show that

∫
G H(g)dg= 0 we know

that the limit ofνN,k ask→∞ is a Gaussian. The issue is to identify this
Gaussian and where it is supported.

We begin with the case thatN is even.H(g) = (hi j (g)) is real symmetric
so we can consider the(N + 1)(N + 2)/2 dimensional spacehi j ,1 ≤ i ≤
j ≤ N + 1, i.e.HN+1. We assert that∫

G
hi j (g) dg = 0 (15)

for 1≤ i ≤ j ≤ N + 1 and∫
G

hi j (g)hrs(g) dg = 2

N + 1

(
δisδ jr + δir δ js

)
(16)

To see this recall that sinceπN is irreducible we have from Schur’s
Lemma [H] (assumingN ≥ 1) that∫

G
1 · πN(i, j)(g)dg = 0 (17)

and ∫
G
πN(i, j)(g)πN(m,n)(g

−1)dg = δinδ jm

N + 1
(18)

for any 1≤ i, j,m,n ≤ N + 1.
Thus (15) follows from (17) while (16) from (18) together with the fact

thatπN(g) is orthogonal and hence∫
G
πN(i, j)(g)πN(r, s)(g)dg=

∫
G
πN(i, j)(g)πN(s, r)(g

−1)dg= δir δ js

N + 1
.

The equalities (15) and (16) identify the covariance-matrix for the limiting
Gaussian as being:

CNe−
N+1

4 (h2
11+...+h2

N+1,N+1)− N+1
2 (

∑
1≤i< j≤N+1 h2

i j )
∏

1≤i≤ j≤N+1

dhi j =

CNe−
N+1

4 tr(H2)
∏
i≤ j

dhi j

This Gaussian is O(N + 1) invariant onHN+1 and is exactly the GOE
measure onHN+1, see [M, p. 39].
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The case thatN is odd is a little more complicated. The linear space
overR of (N+ 1)× (N+1) = 2M× 2M matricesH satisfying (14) takes
the form

H =



x11 0 z12 w12 . . . z1M w1M

0 x11 −w12 z12 . . . −w1M z1M

x22 0
0 x22

...
. . .

...

zM1 wM1 xMM 0
−wM1 zM1 . . . 0 xMM



=


A11 A12 . . . A1M

A21 A22 . . . A2M
...

. . .
...

AM1 AM2 . . . AMM


where

Aj j =
[

xj j 0
0 xj j

]
, xj j ∈ R

for 1≤ j ≤ M and

Ai j =
[

zi j wi j

−wi j zi j

]
, zi j = xi j +

√−1yi j , wi j = ui j +
√−1vi j

for 1≤ i < j ≤ M.
HenceHN+1 is spanned over the reals by

xj j , j = 1, . . . ,M

and
xi j , yi j ,ui j , vi j , 1≤ i < j ≤ M.

It is therefore of dimensionM(2M − 1). Again νN,k is a sum of i.i.d.
random variables inHN+1, the individual summand beingH(g) = πN(g)+
πN(g−1), g ∈ G as before. The equalities (17) and (18) continue to hold
sinceπN is irreducible so

∫
G H(g)dg= 0. ThusνN,k converges to a Gaussian

onHN+1 and we need to identify the covariance matrix. The relation (13)
yields

(πN(g))
t =


a11(g) b11(g) . . . a1M(g) b1M(g)
c11(g) d11(g) . . . c1M(g) d1M(g)
...

. . .
...

aM1(g) bM1(g) . . . aMM(g) bMM(g)
cM1(g) dM1(g) . . . cMM(g) dMM(g)


t

(19)
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=


d11(g−1) −c11(g−1) . . . d1M(g−1) −c1M(g−1)

−b11(g−1) a11(g−1) . . . −b1M(g−1) a1M(g−1)
...

. . .
...

dM1(g−1) −cM1(g−1) . . . dMM(g−1) −cMM(g−1)

−bM1(g−1) aM1(g−1) . . . −bMM(g−1) aMM(g−1)

 .
From (19) one sees easily that the covariance matrix ofH(g) ∈ HN+1 is
diagonal. Its diagonal entries may be computed using (17), (18) and (19):∫

G
x2

j j (g) dg =
∫

G
(aj j (g)+ aj j (g

−1))(aj j (g)+ aj j (g
−1)) dg

= 2

N + 1
+ 2

∫
G

a2
j j (g) dg

= 2

N + 1
+ 2

∫
G

aj j (g)dj j (g
−1) dg

= 2

N + 1
.

Similarly ∫
G

zi j (g)zi j (g) dg = 2

N + 1
,∫

G
z2

i j (g) dg =
∫

G
z2

i j (g) dg = 0.∫
G
wi j (g)wi j (g) dg = 2

N + 1
,∫

G
w2

i j (g) dg = 0.

Hence for 1≤ i < j ≤ M,∫
G

x2
i j (g)dg=

∫
G

y2
i j (g)dg=

∫
G

u2
i j (g)dg=

∫
G
v2

i j (g)dg= 1

N + 1

while ∫
G

xi j (g)yi j (g) dg = 0

etc.
Thus the Gaussian limit takes the form

CN e
− N+1

2

(∑M
j=1 x2

j j

)
−(N+1)

(∑
1≤i< j≤M(x

2
i j+y2

i j+u2
i j+v2

i j )
)

×
M∏

j=1

dxj j

∏
1≤i< j≤M

dxi j dyi j dui j dvi j =
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CNe−
N+1

4 tr(H2)

M∏
j=1

dxj j

∏
1≤i< j≤M

dxi j dyi j dui j dvi j .

This is precisely the USp(2M) invariant Gaussian onH2M, that is the GSE
measure, see [M, p. 41].

3. The gap

In what follows we exhibitz’s with a gap. We takez’s in R[G] of the form

z= g1+ g−1
1 + g2+ g−1

2 + . . .+ gk + g−1
k (20)

Assume further that〈g1, g2, . . . , gk〉 = 0z is a free group on these genera-
tors and thatk ≥ 2. Hausdorff [Hau] in his work on what later became known
as the “Hausdorff-Banach-Tarski” paradox [Wa], exhibits suchg’s. In fact it
is easy to see that the generic(g1, g2, . . . , gk) ∈ G(k) (in the sense of being
outside a countable union of co-dimension one sets) gives a free0z. Now
such a group (k ≥ 2) being free is Zariski dense in SL2(C). The representa-
tionsπN extend to SL2(C) and are irreducible. Hence ifv ∈ WN+1 satisfies
πN(0)v = λv for some|λ| = 1 thenπN(SL2)v = λv and hencev = 0. It
follows that 2k and−2k are not in spec(̂z(πN)), for if ẑ(πN)v = ±2kv then
πN(gj )v = ±v for 1 ≤ j ≤ k and henceπN(0)v = ±v andv = 0. Thus
for anyz with 0z free, spec(̂z(πN)) ⊂ (−2k,2k). In particular for such az
for which we can establish a gap (forN large) we will have

sup
N≥1
||̂z(πN)|| < ||z||1 = 2k (21)

Let p= 2k− 1 (we do not assume thatp is prime) and letUn(cosθ) =
sin(n+1)θ/ sinθ for n ≥ 0 be then-th Chebyshev polynomial of the second
kind. In R[G] we have the following relation which is easily established
inductively [LPS]

pn/2Un
(
z/(2
√

p)
) = ′∑

|ω|≤n

ω (22)

where the sum is over allreducedwordsω in g1, g
−1
1 , g2, g

−1
2 , . . . gk, g

−1
k of

length|ω| = m ≤ n with m ≡ n(mod2). The image of this relation under
πN yields

pn/2Un
(̂
z(πN)/(2

√
p)
) = ′∑

|ω|≤n

ω̂(πN). (23)
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Write the eigenvaluesλ j of ẑ(πN) as

λ j = 2
√

pcos(θ j,N), j = 0,1, . . . , N (24)

where 
θ j,N ∈ [0, π], i f |λ j | ≤ 2

√
p,

θ j,N = iξ j,N, ξ j,N > 0, i f λ j > 2
√

p,

θ j,N = π + iξ j,N, ξ j,N > 0, i f λ j < −2
√

p

(25)

We call theθ j,N’s not in [0, π] exceptional. Indeed since0z is free most of
theθ’s are not exceptional asN→∞ (cf. Sect. 4).

Eachg ∈ G is conjugate to a diagonal matrix[
e(rg) 0

0 e(−rg)

]
with 0≤ rg ≤ π which is determined from

tr(g) = 2 cosrg (26)

Taking the trace of both sides of (23) yields

pn/2
N∑

j=0

sin(n+ 1)θ j,N

sinθ j,N
=

′∑
|ω|≤n

sin(N + 1)rω
sinrω

. (27)

We use (27) to estimate the number of exceptionalθ j,N’s. To this end
note that ifn is even (which we assume henceforth in this section) then for
exceptionalθ j,N we have

sin(n+ 1)θ j,N

sinθ j,N
= sinh(n+ 1)ξ j,N

sinhξ j,N
> 0. (28)

Hence (27) becomes∑
ξ j,N

exceptional

sinh(n+ 1)ξ j,N

sinhξ j,N
+ O(Nn) = p−n/2

′∑
0<|ω|≤n

sin(N + 1)rω
sinrω

. (29)

In order to exploit the cancellation in the sum on the right hand side of
(29) we sum overN in a rangeN ∼ N0, N0 large. For technical reasons
we do so in a smooth way. Letf ∈ C∞(1/2,3/2), f ≥ 0 and f(1) = 1.
Summing overN in (29) we get∑

N∼N0

f

(
N + 1

N0 + 1

) ∑
ξ j,N

exceptional

sinh(n+ 1)ξ j,N

sinhξ j,N
= (30)
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= p−n/2
′∑

0<|ω|≤n

∑
N∼N0

f

(
N + 1

N0 + 1

)
sin(N + 1)rω

sinrω
+ O(N2

0n)

Poisson summation applied to the sum onN leads to the following: For
anyδ > 0, A� 1 andr ∈ [0, π] we have∑

N∼N0

f

(
N + 1

N0 + 1

)
sin(N + 1)r

sinr
�δ,A (31)

{
N2

0, r ∈ [0, N−1+δ
0 ],

min
{

N2
0,

N−A
0

sinr

}
, r ∈ [N−1+δ

0 , π].
Since0z is free we have 0< rω < π for any reduced wordω(|ω| > 0).

In fact we assume that there is a constantB = B(g1, . . . , gk) such that for
|ω| = n,

B−n ≤ rω ≤ π − B−n (32)

We will verify (32) for any of the choices ofg1, . . . , gk below. SinceA is
arbitrarily large in (31), we conclude from (30) and (31) that∑

N∼N0

f

(
N + 1

N0 + 1

) ∑
ξ j,N

exceptional

sinh(n+ 1)ξ j,N

sinhξ j,N
�δ,A (33)

N2
0n+ p−n/2N2

0#
{
0< |ω| < n : rω ∈ [0, N−1+δ

0 ]} .
Thus estimating the left hand side above is reduced to estimating the

number fo wordsω′, |ω′| < n with small rotation (i.e. sizeN−1+δ
0 ). Before

continuing we contemplate what to expect as far as the number of suchrω’s.
Going back to (27) we note that forN fixed if we let n→ ∞ and use the
fact that−2k < λ j,N < 2k for N ≥ 1, we get

lim
n→∞ p−n

′∑
|ω|≤n

sin(N + 1)rω
sinrω

= 0. (34)

The number of|ω| ≤ n is (p+ 1)pn−1 so (34) asserts that the rotations
rω, |ω| ≤ n become equidistributed with respect to 2 sin2 θ dθ/π, that is
with respect to the Weyl measure which is the image of the Haar measure
on G onto the maximal torus. We might expect at least generically for
(g1, . . . , gk) ∈ G(k) that this continues to hold approximately for small
intervals. That is that

#
{|ω| ≤ n|rω ∈ [0, N−1+δ

0 ]} � {ω : |ω| ≤ n}
N3−3δ

0

+ 1. (35)
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While we don’t know how to establish (35) for the generic(g1, . . . , gk),
we can prove it for some special choices.

Granting (35) we have (using (28) and (33)) that∑
ξ j,N0

exceptional

sinh(n+ 1)ξ j,N0

sinhξ j,N0

� N2
0n+ p−n/2

(
pn

N3
0

+ 1

)
N2

0

and hence forb> 0∑
e
ξ j,N0≥pb

1 � p−nb

(
N2

0n+ p−n/2N2
0

(
pn

N3
0

+ 1

))

Choosen satisfyingN6
0 ≤ pn ≤ p2N6

0 (n even), then∑
e
ξ j,N0≥pb

1 � p(−b+1/3)n · n (36)

If b> 1/3 the right hand side of (36) is less than one and we conclude that
for N0 large there are no exceptionalξ j,N0 with eξ j,N0 ≥ pb. That is forN0

large and anyj

|λ j,N0| ≤ p1/2(p1/3+ p−1/3)+ ε̃, (37)

(ε̃ sufficiently small).
So the explicit gap (36) is what we expect to hold for generic(g1, . . . , gk)

and we now exhibitg’s satisfying (35) (or sufficiently good approximations
to it).

Let H(Z) be the integral Hamilton quaternions, so ifα ∈ H(Z) then
α = x0 + x1i + x2j + x3k with xj ∈ Z. We let ᾱ = x0 − x1i − x2j − x3k
andN(α) = ᾱα ∈ Z. For q ≥ 3 a prime number we take forg̃1, g̃2, . . . g̃k

a subset of the set{α|N(α) = q} (as pointed out in the Introduction this set
has 8(q+ 1) elements) which satisfies

(I) g̃j1 6= εg̃j2 if j1 6= j2 andε ∈ {±1,±i,±j,±k} is a unit.

(II) g̃j1 6= εg̃j2 for any j1, j2 andε a unit.

As is well known (see [LPS] for example) different reduced wordsω =
R(g̃1, g̃1, . . . g̃k) in g̃1, . . . , g̃k of lengthm ≥ 1 give different quaternions
of normqm. In particular to each such word corresponds a unique solution
of

x2
0 + x2

1 + x2
2 + x2

3 = qm, x2
0 6= qm (38)
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For anyα = x0+ x1i + x2j + x3k ∈ H(Z) with N(α) equal tot, set

g = 1√
t

[
x0 + x1i x2 + x3i
−x2+ x3i x0 − x1i

]
∈ G

The image under the homomorphism ofg̃1, . . . , g̃k yields a set
g1, g

−1
1 , . . . , gk, g

−1
k in G. According to (38) above,〈g1, . . . , gk〉 is a free

group. Note that under this correspondence

traceg̃ = 2x0/
√

t (39)

We proceed to estimate the number fo wordsω in g1, . . . , g
−1
k of lengthm

with rω close to 0 orπ. According to (38) and (39) such a wordω corresponds
to a solution

x2
0 + x2

1 + x2
2 + x2

3 = qm, x2
0 6= qm

and

sinrω =
√

qm− x2
0/q

m/2

From this (32) is clearly satisfied and also

#
{
ω : |ω| = m, rω ∈ [0, N−1+δ]} �

#

{
x2

0 + x2
1 + x2

2 + x2
3 = qm,

√
qm− x2

0/q
m/2 ≤ N−1+δ

}
�

#
{
x2

0 + x2
1 + x2

2 + x2
3 = qm;qm/2(1− N2δ−2) ≤ x0 < qm/2

} =∑
qm/2(1−N2δ−2)1/2

≤x0<qm/2

r3(q
m− x2

0),

wherer3(m) is the number of representations ofm as a sum of three squares.
From elementary number theory [HW] we have a boundr3(m) =

Oε(m1/2+ε) for any ε > 0. Hence the above sum is

� qεm
∑

qm/2(1−N2δ−2)1/2

≤ x0 < qm/2
√

qm− x2
0 �

� qεm
(

1+
∫ qm/2

qm/2(1−N2δ−2)1/2

√
qm− t2 dt

)
�

� qεm
(

1+ qm
∫ N−1+δ

0
sin2 θ dθ

)
�

� qεm(1+ qm/N3−3δ) (40)
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Summing this form≤ n yields

#
{
ω : |ω| ≤ n, rω ∈ [0, N−1+δ]}� qεn

(
1+ qn

N3−3δ

)
(41)

Note that if p= q (which is the largest set of suchgj ’s that we can choose)
then (41) gives the expected bound (35).

Continuing the analysis as above we get

∑
e
ξ j,N0≥pb

1�ε,δ p−nb

(
N2

0n+ p−n/2N2
0qεn

(
1+ qn

N3−3δ
0

))
(42)

Now assume thatp> q4/5 and choosen even satisfying

N3
0 ≤

(
q√
p

)n

≤
(

q√
p

)2

N3
0

For N0 large enough andpb > q2/3/p1/3 we will have the right hand side
of (42) being less than 1. It follows that forε̃ > 0 andN0 large enough

∣∣λ j (̂z(πN0))
∣∣ ≤ p1/2

(
q2/3

p1/3
+ p1/3

q2/3

)
+ ε̃

and sincep > q4/5 the latter is less thanp+ 1 = 2k. This completes the
proof of the Theorem 1.1. ut

4. Density of states

Let z=∑ xgg ∈ R[G] and assume thatz= z∗. Set

µN(z) = 1

N + 1

N∑
j=0

δλ j (̂z(πN))

Proposition 4.1. There are measuresνeven(z) andνodd(z) such that

lim
N→∞
N even

µN(z) = νeven(z),

lim
N→∞
N odd

µN(z) = νodd(z).

(the convergence being in the sense of integration against any continuous
function).
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Proof. Fix an integerm≥ 0. Then

zm =
∑

g1,... ,gm∈supp(z)

xg1xg2 . . . xgmg1g2 . . . gm (43)

Hence

trace(ẑm(πN)) =
∑

g1,... ,gm

xg1xg2 . . . xgmχπN(g1g2 . . . gm)

or

µN(z)(x
m) =

∑
g1,... ,gm

xg1xg2 . . . xgmχπN(g1g2 . . . gm)/(N + 1) (44)

NowχπN (g) = sin(N+ 1)α/(sinα) if g is conjugate to

[
e(α) 0

0 e(−α)
]

.

In particular

lim
N→∞
N even

χπN(g)

N + 1
=
{

1, i f g = ±e,

0, otherwise.

lim
N→∞
N odd

χπN(g)

N + 1
=


1, i f g = e,

−1, i f g = −e,

0, otherwise.

Hence

lim
N→∞
N even

µπN(z)(x
m) := Ceven

m (z) =
∑

g1,... ,gm
g1...gm=±e

xg1 . . . xgm (45)

and

lim
N→∞
N odd

µπN(z)(x
m) := Codd

m (z) = (46)

∑
g1,... ,gm
g1...gm=e

xg1 . . . xgm −
∑

g1,... ,gm
g1...gm=−e

xg1 . . . xgm

Thus for any continuousf , µN(z)( f)→ νeven( f) as N → ∞ through
even values andµN(z)( f)→ νodd( f) asN→∞ through odd values. Here
νeven(z) andνodd(z) are the probability measures (whose existence is clear)
and whose moments are given by (45) and (46). ut

Of special interest are elements of the form

zg1,... ,gk = g1+ g−1
1 + g2+ g−1

2 + . . .+ gk + g−1
k .
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In this case the measuresνeven(z) and νodd(z) can be interpreted as the
spectral measures for the random walk on0z with respect to the symme-
tric set of generatorsg1, g

−1
1 , g2, g

−1
2 , . . . , gk, g

−1
k (see Kesten [Kest]). It

follows from [Kest] that suppνeven(z) and suppνodd(z) are contained in
[−2
√

2k− 1,2
√

2k− 1] iff 0z is a free group and in this case

νeven(z) = νodd(z) =
√

2k− 1− t2/4

2πk(1− (t/2k)2)
dt. (47)

Moreover Kesten shows that the support ofνeven(z)andνodd(z)are contained
in (−2k,2k) iff 0z is not amenable. Hence it is only forz with 0z not
amenable thatz can have a gap.

We next examine the speed of convergence in Proposition 4.1. This
will depend on the diophantine properties ofg1, . . . , gk ∈ G (we use this
terminology to draw an analogy with diophantine approximation).

Definition 4.2. For k ≥ 2, we say thatg1, g2, . . . , gk ∈ G are diophantine
(or satisfy a diophantine condition) if there isB = B(g1, . . . , gk) > 0
such that for anym ≥ 1 and a wordRm in g1, g2, . . . , gk of lengthm with
Rm 6= ±e we have

||Rm± e|| ≥ B−m

Here ∣∣∣∣∣∣∣∣[a b
c d

]∣∣∣∣∣∣∣∣2 = |a|2 + |b|2 + |c|2+ |d|2.
Note that forg ∈ G we have

||g± e||2 = 2|trace(g)∓ 2|. (48)

For example if0(g1,... ,gk) is finite theng1, . . . , gk are diophantine, howe-
ver we are mainly interested in the case that0(g1,... ,gk) is free. In this case it
follows by a pigeon hole argument similar to Dirichlet’s that for anym ≥ 1
there always is a wordR 6= ±e in g1, g

−1
1 , . . . , gk, g

−1
k of length at mostm

satisfying

||R− e|| ≤ 10

(2k− 1)m/6
(49)

(here and elsewhere we assume thatk ≥ 2). This shows that the exponential
behavior in the definition of diophantine is the appropriate one.

As was first exploited by Hausdorff [Hau] the relation

Rm(g1, g
−1
1 , . . . , gk, g

−1
k ) = e
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whereR is a reducedword of lengthm ≥ 1 is not satisfied identically in
G(k). Hence the sets

V(Rm) := {(g1, . . . , gk)|Rm(g) = e}
are of codimension at least one inG(k). It follows that∪m≥1V(Rm) is of zero
measure inG(k) and also it is of the first Baire category inG(k). Thus the
generic(g1, . . . , gk) ∈ G(k) (in both senses) generates the free group. Now
the set of(g1, . . . , gk) ∈ G(k) for which 〈g1, . . . , gk〉 is not free is clearly
dense inG(k) so it follows easily that the set of(g1, . . . , gk) ∈ G(k) which
arenot diophantine is of the second (Baire) category inG(k). That is to say
the topologically generic(g1, . . . , gk) is free but not diophantine. On the
other hand we expect that in the measure sense the generic(g1, . . . , gk) is
diophantine. For elements with algebraic number entries we have:

Proposition 4.3. Let g1, . . . , gk ∈ G ∩ M2(Q). Theng1, . . . , gk are dio-
phantine.

Proof. Since the set{g1, . . . , gk} is finite we havegj ∈ M2(K) whereK is
a finite extension ofQ of degreed say. We can find a rational integerN ≥ 1
such that

Ngj ∈ M2(OK ) (50)

whereOK is the ring of integers ofK . ChooseM ≥ N large enough so that
for each of thed embeddingsσ of K into C we have

||σ(Ngj )|| ≤ M, j = 1, . . . , k. (51)

If
R = gj1gj2 . . . gjn

is a word of lengthn in theg’s then

Nn R ∈ M2(OK ) (52)

Seth = Nn R± Nne= Nn(R± e), h ∈ M2(OK ) and ifh 6= 0, sayhi j 6= 0
then

|σ(hi j )| ≤ ||σ(Nn R)± σ(Nne)|| ≤ 2Mn

Also
hi j

∏
σ 6=Id

σ(hi j ) ∈ Z

and is not zero, so we have

|hi j | ≥ 1

(2M)nd
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Hence

||R± e|| ≥ 1

((2M)dN)n

ChooseB = (2M)dN, then g1, . . . , gk is diophantine with this choice
of B. ut

Our main result about the distributionµN(z) for diophantinez is Theo-
rem 1.3.

Proof of Theorem 1.3.The proof of Proposition 4.1 together with the dio-
phantine condition leads to the following. There exists a constantA = A(z)
such that form≥ 1,{

µN(z)(xm) = νeven(z)(xm)+ O(Am/N), N even,

µN(z)(xm) = νodd(z)(xm)+ O(Am/N), N odd,
(53)

the implied constants in (53) being universal (that is independent ofm and
N). The passage from (53) to the discrepancy bounds is a straightforward
analysis of suitable approximation of characteristic functions of intervals
by polynomials; we give the details below.

We choose a large constantK and make a change of variables:

λ j = K cosθ j , 0≤ θ j ≤ π.
We next define new measures̃µN by

µ̃N =
N∑

j=0

1

2
(δθ j + δ−θ j ). (54)

The corresponding limit measures asN → ∞ are denoted bỹνeven, ν̃odd;
they will both be called̃ν∞. The definitions insure that all the measures are
evenin θ.

ChoosingK large enough, we may assume that the measuresµ̃N and
ν̃∞ are supported in(−3π/4,−π/4) ∪ (π/4,3π/4). Given I ⊂ (−π, π),
we want to estimate|(µ̃N− ν̃∞)(I)|. LetχI be the characteristic function of
the intervalI . For everym ∈ N there exist trigonometric polynomialsS+m(θ)
and S−m(θ) of degreem (which depend onI ), calledSelberg polynomials,
such that ([Sel,V])

S−m(θ) ≤ χI (θ) ≤ S+m(θ),
∫ π

−π
(S+m(θ)− S−m(θ)) dθ = O(1/m), (55)

and the constants are independent ofI . The degreem of the polynomials
will be chosen later.
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By positivity,∫
S−m(θ) dµ̃N ≤ µ̃N(χI (θ)) ≤

∫
S+m(θ) dµ̃N,

and similar inequalities hold for̃ν∞ in place of̃µN.
We next remark that since the measuresµ̃N and̃ν∞ are even inθ,∫

S±m(dµ̃N − d̃ν∞) =
∫

S±m,even(dµ̃N − d̃ν∞) (56)

whereS±m,even is theeven partof S±m.
We make another substitutiony = cosθ. We denote the measures̃µN

(respectively,̃ν∞) in the new coordinates by corresponding measures by
ξN (respectively,ξ∞). To prove Theorem 1.3, it suffices to estimate the
discrepancyD(ξN, ξ∞).

The functionsS±m,even(θ) become polynomials of degreem in y which
we denote byf ±m (y). It is easy to show (cf. [V]) that there exists a constant
B > 0, which does not depend on the intervalI , such that the coefficients
of fm’s grow slower thanBm. That fact and the bounds (53) imply that for
a sufficiently smallc> 0 and form= c ln N,∫

f ±m (y)(dξN(y)− dξ∞(y)) � 1/(ln N).

To finish the proof, it suffices to show that form= c ln N,∫
supp(ξ∞)

( f +m (y)− f −m (y))dξ∞(y) � 1/(ln N). (57)

By assumptions onνeven andνodd (which remain valid forξ∞) it suffices to
establish (57) for the measuredy instead ofdξ∞(y).

We note that∫
supp(ξ∞)

( f +m (y)− f −m (y)) dy <
∫

supp(ξ∞)

f +m (y)− f −m (y)√
1− y2

dy

(the last integral is well-defined since supp(ξ∞) ⊂ {|y| < 1/
√

2}). The last
integral by (56) and a change of variables is equal to∫ π

−π
(S+m(θ)− S−m(θ)) dθ.

Accordingly, the bound (55) implies (57) and finishes the proof of Theo-
rem 1.3. ut
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Remark 4.4.As pointed out above the generic (in topology)g1, . . . , gk is
not diophantine and so does not satisfy the assumptions of Theorem 1.3. In
fact in view of Kesten’s Theorem above about the support ofν(z) and0z

being free, together with the density of(g1, . . . , gk) which are not free, it
follows by the usual Baire category argument (cf. [LPS]) that Theorem 1.3
fails for topologically genericz(g1, . . . , gk).

On the other hand the numerical experiments of Sect. 5 indicate that for
the generic in measure(g1, . . . , gk), k ≥ 3, spec(̂z(πN)) behaves like that
of a member of the corresponding random matrix ensemble. If this is so
then Theorem 1.3 for such a genericz is very far from the true upper bound
which would be of order(log N)/N rather than 1/ log N. For the case of the
specific Ramanujan elementszp of Sect. 3 we now establish a lower bound
for D.

Proof of Theorem 1.4.A zp as above satisfies spec(̂zp(πN)) ⊂ [−2
√

p,
2
√

p] for N ≥ 1. Our aim is to show thatD(µN(zp), ν(zp)) is large at
least on a subsequenceNj →∞. The measureν(zp) is the Kesten measure
defined in (47).

One checks that the discrepancy is invariant under continuous mo-
notone changes of variable in the eigenvalue parameter. Sinceλ j,N ∈
[−2
√

p,2
√

p] is is convenient to use the variableθ j,N ∈ [0, π] where

2
√

pcosθ j,N = λ j,N, 0≤ j ≤ N; N ≥ 1

Set

µ̃N(zp) = 1

N + 1

N∑
j=0

δθ j,N (58)

which is a probability measure on[0, π]. Let ν̃p be the corresponding limit
of theµ̃N(zp) asN→∞. Forn ≥ 3 let

In,N = (N + 1)
∫ π

0

(
sin(n+ 1)t

sint
− sin(n− 1)t

psint

)
dµ̃N(t). (59)

Note that∫ π

0

(
sin(n+ 1)t

sint
− sin(n− 1)t

psint

)
d̃νp(t) = 0. (60)

Thus an integration by parts in (59) yields

(N + 1)−1
∣∣In,N

∣∣ ≤ 2n2 D(µ̃N, ν̃p) (61)
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We will use (61) to give a lower bound forD(µ̃N, ν̃p). According to (27)
we have

In,N = p−n/2
′∑

|ω|=n

sin(N + 1)rω
sinrω

. (62)

For the elementzp we saw in Sect. 3 that the right hand side of (62) may
be expressed as

p−n/2
∑
|x|<pn/2

ν(n, x)
sin((N + 1)βx,n)

sin(βx,n)
(63)

whereν(n, x) is the multiplicity of reduced words of lengthn with the trace
equal tox/pn/2, that is

cosβx,n = x

pn/2
, x ∈ Z, |x| < pn/2. (64)

From the caseN = 0 we have

pn−1(1+ p) =
∑
|x|<pn/2

ν(n, x) (65)

Now rewrite (63) as

In,N =
∑
|x|<pn/2

ν(x,n)√
pn − x2

sin((N + 1)βx,n). (66)

Let f ∈ S(R) be even,f ≥ 0, f(0) = 0 and
∫∞
−∞ f(x)dx = 1. Assume

further that supp̂f ⊂ (−1,1). Consider

∞∑
N=0

f

(
N + 1

N0

)
|In,N|2 = 1

2

∑
x

(ν(x,m))2

pn − x2

∞∑
m=−∞

f

(
m

N0

)
(sinmβx,n)

2

+ 1

2

∑
x 6=x′

(ν(x,n))ν(x,n′)√
(pn − x2)(pn − (x′)2)

∞∑
m=−∞

f

(
m

N0

)
sin(mβx,n) sin(mβx′,n)

(67)

If x 6= x′,

1

pn/2
≤
∣∣∣∣x− x′

pn/2

∣∣∣∣ = | cosβx,N − cosβx′,N| ≤ |βx,N − βx′,N| (68)

while

βx,N + βx′,N < 2π − 1/pn/2 (69)
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Thus applying Poisson summation in (67) together with suppf̂ ⊂ (−1,1)
we see that forN0 > 2pn/2 the second term in (67) vanishes while the first
equals

N0

4

(∫ ∞
−∞

f(x)dx

) ∑
|x|<pn/2

(ν(x,n))2

pn − x2
.

That is we have
∞∑

N=0

f

(
N + 1

N0

)
|In,N|2 = N0

4

∑
|x|<pn/2

(ν(x,n))2

pn − x2
(70)

if pn/2 < N0/2. On the other hand from (65) we have

pn ≤
∑
|x|<pn/2

ν(x,n) ≤
 ∑
|x|<pn/2

ν2(x,n)

pn − x2

1/2 ∑
|x|<pn/2

(pn − x2)

1/2

Hence ∑
|x|<pn/2

ν2(x,n)

pn − x2
≥ pn/2

4
. (71)

That is for pn/2 < N0/2,

∞∑
N=0

f

(
N + 1

N0

)
|In,N|2 ≥ N0 pn/2

16

Choosen so that
N0

2
√

p
< pn/2 <

N0

2
.

We then have
1

N0

∞∑
N=0

f

(
N + 1

N0

)
|In,N|2 � N0

and hence from (61) that

1

N0

∞∑
N=0

f

(
N + 1

N0

)
|D(µ̃N, ν̃p)|2 � N−1

0

(log N0)4
(72)

In particular this means that there is a subsequenceNj →∞ such that

D(µ̃Nj , ν̃p) �
N−1/2

j

(log Nj )2
. (73)

This establishes the required lower bound for the discrepancy claimed in
Theorem 1.4. ut
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5. Numerical results

We report on some numerical computations of spec(̂z(πN)) for certainz
and for N of size of about 1000. As pointed out in the Introduction, if
z = g1 + g−1

1 + g2 + g−1
2 and is in generic position there is a nontrivial

h ∈ G commuting withz (as elements ofR[G]). This impacts the statistics
of the distributions of the eigenvalues ofẑ(πN). To avoid this symmetry we
consider in this section elements of the formg1+g−1

1 +g2+g−1
2 +g3+g−1

3 .
For such azwith (g1, g2, g3) generic it appears1 that centralizing subalgebra
of z in R[G] is R[z]. The numerics below also confirm that the generic such
g is “desymmetrized”. The precisez’s which we consider are

(I) z chosen at random (i.e.g1, g2, g3 chosen at random).
(II) z is the Ramanujan elementz5, that is

g1 = A= 1√
5

[
1+ 2i 0

0 1− 2i

]
, g2 = B = 1√

5

[
1 2
−2 1

]
,

and

g3 = C = 1√
5

[
1 2i
2i 1

]
.

(III) z the element̃z defined after Theorem 1.1 withq = 7,

Ã= 1√
7

[
2− i 1+ i
−1+ i 2+ i

]
, B̃ = 1√

7

[
2− i −1+ i
1+ i 2+ i

]
,

and

C̃ = 1√
7

[
2+ i −1+ i
1+ i 2− i

]
.

In all these cases0z is a free group on 3 generators so that the density
of states is given by (47) withk = 3.

We first describe the method of computation. A direct computation of the
matrix of ẑ(πN) using the basis (11) (or variants thereof using orthogonal
polynomials) turn out to be too time consuming and inaccurate whenN is
of size 1000. What is much better is to use matrix exponentiation as follows.
The Lie algebra su(2) of SU(2) is spanned by the vectors

X1 =
[

i 0
0−i

]
, X2 =

[
0 1
−1 0

]
, X3 =

[
0 i
i 0

]
. (74)

For X ∈ su(2) andπ a representation ofG (in particularπN) we have the
relation

π(expX) = exp(dπ(X)) (75)

1 This question will be addressed in more detail in a separate paper.
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The matrix of dπN(X j ), j = 1,2,3 may be computed explicitly from
the action (1) and the basis ofWN+1 normalized according to (12). For
j = 0,1, . . . , N let

êj = x j yN− j

√
j !(N − j)! (76)

Then
dπN(X1)(̂ej ) = i(2 j − N)̂ej ,

dπN(X2)(̂ej ) = −
√

j(N − j + 1)̂ej−1+
√
(N − j)( j + 1)̂ej+1,

dπN(X3)(̂ej ) = i
√

j(N − j + 1)̂ej−1+ i
√
(N − j)( j + 1)̂ej+1.

(77)

Thus dπN(X j ) is skew-Hermitian withdπN(X1) diagonal anddπN(X2),
dπN(X3) tridiagonal. The exponentials of these matrices were computed
using MATLAB which appeals to the Pade approximation with scaling and
squaring algorithm (see [GV, method 11.3.1]). A nice discussion of the
subtleties of computing such exponentials of matrices is given in [MV].
Once the exponential is computed we use (75) to obtainẑ(πN) in this basis.
The eigenvalues of this matrix were then computed, again using MATLAB.

We turn to an analysis of the results and their interpretation. The first
data concerns the density of states. For the randomz = g1 + g−1

1 + g2 +
g−1

2 +g3+g−1
3 (that is to say we choseX( j) = ξ1X1+ξ2X2+ξ3X3 at random

for j = 1,2,3 and then used these to getgj = exp(X( j))) the distributions
µN(z) were computed for variousN’s. The graphs all looked alike and in
Fig. 1 the caseN = 1004 with a histogram ofµ1004(z) is drawn against
the density (47). The fit is excellent and is consistent with the discrepancy
beingO((log N)/N).

On the other hand the same experiment was carried out for the Ramanu-
jan elementz5 (note thatA, B,C in z5 are very conveniently expressed as
exp(ξX1),exp(ξX2),exp(ξX3)with cosξ = 3/5) and the result is displayed
in Fig. 2. The discrepancy is much larger and is consistent with being of
size 1/

√
N as proven in Theorem 1.3.

The second set of data concerns the consecutive spacings distribution
between the eigenvalues ofẑ(πN). As is apparent from Fig. 1 the density
of eigenvalues is essentially constant between−3 and 3. To use more of
the data set one straightens or unfolds the eigenvalues by the change of
variables

F(x) =
∫ x

−2
√

5

6
√

20− t2

2π(36− t2)
dt

which renders the density uniform. The histogram of the distribution for the
resulting consecutive spacings between these straightened numbers (renor-
malized to have mean 1) was then computed.
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Fig. 1. Density for a randomz, N = 1004, k = 3, vs. Kesten’s measure
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Fig. 2. Density forA, B,C of (II), N = 1004, vs. Kesten’s measure

For a randomz and 10 values ofN in the range[700,1100] the results
were all alike. In Fig. 3 the caseN = 1099 is displayed against the Gaussian
Symplectic Ensemble prediction [M] (actually we used the Wigner surmise
which is a very good approximation to the latter). Note that in the case of
N odd we know that the spectrum ofẑ(πN) comes in doublets and we took
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Fig. 3. Spacings for a randomz, N = 1099, vs. GSE
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Fig. 4. Spacings for a randomz, N = 1004, vs. GOE

one eigenvalue out of each of these. The fit is very good (theoretically we
might expect the discrepancy to be of order 1/

√
N).

A similar calculation forN even gave GOE statistics. A typical case
being the histogram in Fig. 4 forN = 1004 which is compared with the
GOE Wigner surmise.



Spectra of elements in the group ring of SU(2) 81

For the case ofz5 the spacings behave very differently. Firstly there
is added multiplicity to the eigenvalues. This may be accounted for by
symmetry. The subgroupH of G which centralizesz5 is isomorphic to
the symmetric groupS4. A convenient geometric way of seeing this is to
represent a rotationR in SO(3) as ξ = (ξ1, ξ2, ξ3), whereξ is the axis
of rotation of R and whose length is the angle of rotation. The direction
is chosen so that the rotation is at mostπ about the oriented axis. For
A, B,C in (II) above, theξ representations areξA = (0,0, τ), ξB = (0, τ,0)
and ξC = (τ,0,0) with cosτ = 3/5. Now if g0 corresponds toξ and
g is in SO(3), then g−1g0g corresponds togξ. Hence since the vectors
ξA, ξA−1, ξB, ξB−1, ξC, ξC−1 are the vertices of a regular octahedron, we see
that H , the rotational symmetry group, is the octahedral groupS4.

We decompose the action ofH on WN+1 into irreducible subspaces on
each of whichzacts as a scalar. The irreducible representations and character
table ofS4 are well known.|S4| = 24 and there are five conjugacy classes.
The identity element, 6 transpositions(ab), 3 elements of order 2(ab)(cd),
8 elements(abc) of order 3 and 6 elements of order 4(abcd). There are two
one dimensional irreducible representationsχ0 andε, one two dimensional
representationθ and two three dimensional representationsψ andεψ. The
character table together with the characterχN, N = 2l of SO(3) (using the
double cover SU(2)→ SO(3)) is given in Table 1.

Table 1.

1 (ab) (ab)(cd) (abc) (abcd)

χ0 1 1 1 1 1
ε 1 −1 1 1 −1
θ 2 0 2 −1 0
ψ 3 1 −1 0 −1
εψ 3 −1 −1 0 1

χ2l 2l + 1 (−1)l (−1)l ε3(l) ε4(l)

Here

ε3(l) =


1, i f l ≡ 0(mod3),

0, i f l ≡ 1(mod3),

−1, i f l ≡ 2(mod3),

and

ε4(l) =
{

1, i f l ≡ 0,1(mod4),

−1, i f l ≡ 2,3(mod4).
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Using the scalar product〈χ2l , χσ 〉 we can count the multiplicitymσ with
whichσ appears inW2l+1. We get

m0 = (2l + 1+ 9(−1)l + 8ε3(l)+ 6ε4(l))/24

mε = (2l + 1− 3(−1)l + 8ε3(l)− 6ε4(l))/24

mθ = (2l + 1+ 3(−1)l − 4ε3(l))/12

mψ = (2l + 1+ (−1)l − 2ε4(l))/8

mεψ = (2l + 1− 3(−1)l + 2ε4(l))/8

Thus if there are no degeneracies in the spectrum ofẑ5(π2l+1) beyond
what is forced by the symmetry groupH then we would havem0+mε simple
eigenvalues,mθ eigenvalues of multiplicity two, andmψ+mεψ eigenvalues
of multiplicity three. We checked this for 10 differentl ’s and found exactly
those multiplicities in each case. Note that the multiplicity two part is “pure”
and the consecutive spacing distribution for it was computed. The results
were all more or less the same. Fig. 5 gives the pure spectrum for three
values ofN of order 1000 and compares the distribution withe−xdx (i.e.
“Poissonian”). Several values ofN were taken because the pure part of the
spectrum forN of that order is rather small (less than 100).
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0.6

0.7

0.8

0.9

1

Fig. 5. Spacings forA, B,C of (II), N ≈ 1000, vs.e−xdx (“pure” part)

Combining all the spectrum for̂z5(π2l+1) (taking one eigenvalue out of
each multiple set) gives a similar distribution, see Fig. 6. Presumably the
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Fig. 6. Spacings forA, B,C of (II), N = 1004, vs.e−xdx (“combined”)

reason being that each “pure” piece is Poissonian and the superposition of
independent Poissonians is again Poissonian.

A similar analysis for the elementz̃ (cf. (III) above) was carried out.
Recall that in Theorem 1.1 we showed that||z̃(πN)|| ≤ 5.83< 6. It turns
out that z̃ is not a Ramanujan element since for example||z̃(π80)|| =
4.5842. . . > 4.4721. . . = 2

√
5. Again there are degeneracies in the spec-

trum due to symmetry. This time theξ vectors corresponding tõA, B̃, C̃
are √

α

3
(−1,1,1),

√
α

3
(−1,−1,1),

√
α

3
(1,−1,1)

where cosα = 1/7. The vectorsξÃ, ξÃ−1, ξB̃, ξB̃−1, ξC̃, ξC̃−1 form the three
diagonals of the cube with barycenter at the origin. The rotation symmetry
group is S3 and an analysis as above with its irreducibles (there is one
2-dimensional and two 1-dimensional representations) yields a “pure” part
in W2l+1 of multiplicity two. The dimension of this part is 2(2l+1−ε3(l))/3
and the rest of the space corresponds to the 1-dimensional pieces. Again
this accounted for all the degeneracy in the spectrum for thel ’s we checked.
The consecutive spacing distribution for the pure multiplicity two part is
given in Fig. 7 whenN = 912. Again it was typical of what was found for
otherN’s. The approximation by GOE is quite good. As for the multiplicity
one part of the spectrum, it is not GOE. The reason is that it consists of
eigenvalues from both of the 1-dimensional representations which are being
superimposed.
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Fig. 7. Spacings for̃A, B̃, C̃ of (III), N = 912, vs. GOE (“pure” part)
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