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Abstract. We prove that the natural mapH2
b (0) → H2(0) from bounded to usual co-

homology is injective if0 is an irreducible cocompact lattice in a higher rank Lie group.
This result holds also for nontrivial unitary coefficients, and implies finiteness results for0:
the stable commutator length vanishes and anyC1–action on the circle is almost trivial. We
introduce the continuous bounded cohomology of a locally compact group and prove our
statements by relatingH•b(0) to the continuous bounded cohomology of the ambient group
with coefficients in some induction module.

1. Introduction

If one considers only bounded cochains in the standard resolution for group
cohomology, one obtains a subcomplex defining the so-calledbounded
cohomologyH•b(0;−) of a group0. This complex inclusion determines
a natural map

H•b(0;−) −→ H•(0;−)
which in general is neither injective nor surjective.

This interesting new invariant has been shown to be relevant to geometry
by M. Gromov in his work on minimal volume [21]; moreover, the space
H2

b(0;R) has remarkable algebraic and dynamical significance as we shall
see later.

Bounded cohomology comes equipped with a natural seminorm; this
provides the classes which are in the image of the natural map with a nu-
merical invariant. This feature has been used by Gromov to give a proof
of Mostow’s rigidity theorem. In this context we mention a claim of
Gromov [22] recently proved by I. Mineyev [31]: for hyperbolic groups, the
natural mapHn

b → Hn is surjective in every degreen > 1.
However, few results are known about the size of the bounded cohomo-

logy of groups; the first is a theorem of B.E. Johnson’s [26]: the bounded
cohomology of any amenable group vanishes. On the other hand, one knows
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now large classes of groups for whichH2
b is infinite dimensional; this in-

cludes notably non–elementary Gromov hyperbolic groups (see [12], [15]
and [32]).

Our aim is to give finiteness results for certain groups; our main results
are the following:

Theorem 1.1. Let 0 < G be an irreducible cocompact lattice in a finite
productG = ∏

a∈A
Ga(ka), whereGa are connected, simply connected, almost

simpleka–isotropic groups andka are local fields.
If
∑
a∈A

rankkaGa ≥ 2, then the natural map

H2
b(0;H) −→ H2(0;H)

is injective for any separable Hilbert spaceH with unitary0–action.

Theorem 1.2. Let T1, T2 be regular or biregular locally finite trees and0
be a cocompact lattice inAutT1× AutT2.

If the closurepri (0) of the canonical projection0→ AutTi acts transi-
tively on the boundaryTi (∞) for i = 1,2, then the natural map

H2
b(0;H) −→ H2(0;H)

is injective for any separable Hilbert spaceH with unitary0–action.

In particular, the Theorem 1.2 applies to the new family of finitely
presented simple groups constructed in [7].

The bounded cohomology carries crucial information in degree two via
its connection withquasimorphisms; recall that a (real-valued) quasimor-
phism of a group0 is a mapq : 0→ R satisfying

sup
x,y∈0

∣∣q(x)+ q(y)− q(xy)
∣∣ < ∞.

The kernelEH2
b(0;R) of the natural map identifies canonically with the

space of quasimorphisms modulo those that are at finite distance of an actual
homomorphism. Therefore, we have the

Corollary 1.3. Let0 be as in Theorem 1.1 or 1.2 above. Then any quasi-
morphism0→ R is bounded.

The Corollary 1.3 has a consequence of algebraic flavor on thecommu-
tator subgroup[0,0], that is, the subgroup of0 generated by the setSof all
commutators of pairs of elements in0. Indeed, let‖ · ‖ be the word metric
on [0,0] associated toS, and let

`s(γ) = lim
n→∞
‖γ n‖

n
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be thestable lengthof γ ∈ [0,0]. Ch. Bavard proves in [3] that the stable
length`s is identically zero if and only if every quasimorphism of0 is at
bounded distance from a homomorphism, that is,EH2

b(0;R) = 0. Thus we
deduce

Corollary 1.4. Let 0 be as in Theorem 1.1 or 1.2 above. Then the stable
length on[0,0] vanishes.

This suggests the following

Question.Let 0 be an irreducible lattice in a groupG as in Theorem 1.1
above; does there exist a constantC0 such that every element in[0,0] is
a product of at mostC0 commutators ?

The answer is affirmative for0 = SLn(Z) with n ≥ 3, and more
generally also whenZ is replaced by certain number rings (see [9]). Still
more general rings are considered in [36].

The Corollary 1.3 also implies a result of dynamical flavor. Let0 →
Homeo+

(
S1
)

be an action of0 by orientation preserving homeomorphisms
of the circle, ande ∈ H2

(
Homeo+

(
S1
) ;Z) be the Euler class. In [17],

É. Ghys observed thate is a bounded cohomology class and that its restric-
tion e0 ∈ H2

b(0;Z) is, as bounded cohomology class, a complete invariant
of semi–conjugacy.

Corollary 1.5. Let 0 be as in Theorem 1.1 or 1.2 above, and assume
H2(0;R) = 0. Then any0–action byC1–diffeomorphisms on the circle
factors via a finite group.

In the case of (not necessarily cocompact) irreducible lattices in higher
rank real Lie groups, this finiteness result forC1–actions on the circle
has been obtained independently by Ghys in [18]. If0 is associated to
an algebraic group of higherQ–rank, D. Witte has obtained in [39] this
finiteness result even for actions by homeomorphisms.

In the context of real Lie groups, one can deduce the following corollary
from the Theorem 1.1:

Corollary 1.6. Let X be an irreducible symmetric space of non-compact
type, and0 < Is(X) a torsion free cocompact lattice. Assume that the rank
of X is at least three.

(i) If X is not hermitian symmetric, thenH2
b(0;R) = 0.

(ii) If X is hermitian symmetric, thenH2
b(0;R) is one-dimensional, gener-

ated by the Kähler class.

For a computation of the sup–norm of the Kähler class, see [11].
While it is well-known that the vanishing of̀2–cohomology is a quasi-

isometry invariant, we have:
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Corollary 1.7. For finitely generated groups, the vanishing or finite dimen-
sionality ofH2

b(0;R) is not a quasi-isometry invariant.

Indeed, our Theorem 1.1 applies to irreducible cocompact lattices in
PSL2(Qp)×PSL2(Qq). On the other hand, reducible lattices in this product
are virtually a product of non-abelian free groups, and therefore have an
infinite dimensionalH2

b.
As an example of a group isomorphic to an irreducible cocompact lattice

in PSL2(Qp)×PSL2(Qq), one can consider the group SO3

(
Z[ 1

pq]
)

, where

p and q are distinct primes congruent to 1 modulo 4. Notice also that

there is a finite index subgroup0 < SO3

(
Z[ 1

pq]
)

which is an amalgam

0 = A∗C B of free groupsA, B,C; our Theorem 1.1 impliesEH2
b(0) = 0,

which is in contrast to a result of K. Fujiwara [14] and R.I. Grigorchuk [20]
asserting thatEH2

b(A ∗C B) is infinite dimensional provided|B/C| ≥ 2
and|C\A/C| ≥ 3. Indeed, for the mentioned group0, there are only two
double classes ofC in A andB.

The proof of our main theorems leads us to introducecontinuousbounded
cohomology with coefficients and to consider a commutative diagram of the
type:

H2
b(0;H) //

��

H2
b,cont.

(
G; L2(G;H)0)

��

H2(0;H) // H2
cont.

(
G; L2(G;H)0)

(D)

Here the lower arrow is the analogue of the Eckmann–Shapiro isomorphism,
and the upper arrow is a similar induction map for bounded cohomology.
With this picture in mind, we shift the original problem concerning0 over
to the corresponding question aboutG, thus being left with two different
kinds of questions:

(i). The injectivity of the induction map (upper arrow in(D) ). The coef-
ficient spaceL2(G;H)0 suits us best, but is not quite the right analogue to the
Eckmann–Shapiro induction module. We can however establish injectivity
by realizing the bounded cohomology by measurable bounded cochains on a
Furstenberg boundaryG/P (P amenable), bringing into play the ergodicity
of 0 on (G/P)2. The higher rank assumption is not needed here.

(ii). The injectivity of the comparison mapH2
b,cont.(G;−)→H2

cont.(G;−).
For trivial coefficients, this is a rather simple matter for the groupsG under
consideration, and doesn’t involve the higher rank assumption. However,
the induction moduleL2(G;H)0 has non-trivialG–action even for trivialH,
and this is the central point where higher rank phenomena appear. Indeed,
sinceH2

b(0) is infinite dimensional for a lattice in a rank one groupG, the
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point (i) implies that

H2
b,cont.

(
G; L2(0\G)) −→ H2

cont.

(
G; L2(0\G))

is not injective, while it would be ifL2(0\G) is replaced by any space
with trivial G–action. We settle this point(ii) by appealing to properties of
the regular representation ofG in L2(0\G) particular to the higher rank
situation.

Notice also that the diagramm(D) shows why we are led to consider
continuous bounded cohomology with non-trivial coefficients even to settle
the case ofH2

b(0;C).
The structure of this paper is as follows. After introducing in Sect. 2 the

continuousbounded cohomology of a locally compact group, we devote
Sect. 3 to constructing new resolutions for (continuous or not) bounded
cohomology. As a consequence we point out the Corollaries 3.8 and 3.9,
allowing us to realize bounded cohomology on Furstenberg boundaries.

In the Sect. 4, we prove an induction result linking the bounded cohomo-
logy of a lattice0 < G with the continuous bounded cohomology ofG
with coefficients in various induction modules.

In Sect. 5, we introduce a technical hypothesis (A) under which the
comparison map for the ambient groupG is injective.

Now, putting everything together along the lines drafted in the diagram
(D) above, we complete the proof of Theorem 1.1 in Sect. 6 and the proof
of Theorem 1.2 in Sect. 7. In the last section, we prove the corollaries stated
in the present introduction.

Remark 1.8.We shall stay to the following notational conventions through-
out the paper:

All locally compacttopological spaces will be Hausdorff (T2).
We denote by% theright translationon function spaces over a group or

semigroupG, that is the action defined by the rule(%(g) f)(x) = f(xg). For
groups, theleft translationis defined by(λ(g) f)(x) = f(g−1x). A continu-
ous function f is right uniformly continuousif the orbital mapG 3 g 7→
%(g) f is continuous (for the Fréchet structure of local boundedness). Mind
that some authors use the opposite convention.

Acknowledgements.The first named author thanks Yehuda Shalom for helpful comments
concerning the case of irreducible lattices in products.

2. Continuous bounded cohomology

In his work [26], Johnson defined the cohomology of Banach algebras
by giving an analogue to Hochschild’s construction in the more deli-
cate topological context, replacing e.g. the algebraic tensor product with
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Grothendieck’s projective product. He could therefore consider the co-
homology of the group algebraL1(G) of a locally compact groupG, and
this will turn out to be what we call thecontinuous bounded cohomology
H•b,cont.(G;−) of G.

WhenG is a discrete group, this reduces to the bounded cohomology
H•b(G;−), to which there is a more functorial approach; that is, the bounded
cohomology of a group will be defined by the invariants of any resolution
with an universal injectivity property in an appropriate category. This functo-
rial definition has been introduced by N.V. Ivanov [25] and later in a slightly
different form by G.A. Noskov [33].

We give a definition of continuous bounded cohomology and then recall
the functorial setting for plain bounded cohomology. Many of the following
definitions are analogous to the standard setup:

First definitions.Let G be a locally compact group. ABanachG–module(or
module for short) is a Banach spaceE on whichG acts by continuous linear
operators. The moduleE will be saidbounded(resp.isometric) if G acts by
operators of uniformly bounded norm (resp. acts by isometric operators).
A morphismof modules is a continuous linear map; aG–morphism is an
equivariant one. Notice that every bounded moduleE is isomorphic to an
isometric moduleEis by replacing its norm with the equivalent norm

‖v‖is = sup
g∈G
‖gv‖ (v ∈ E).

When we consider simply a Banach spaceE, it is understood thatE has the
isometricG–module structure defined by the trivialG–action.

Resolutions.A G–resolutionof a boundedG–moduleE is a sequence

0−→ E
d0−→ E0

d1−→ E1
d2−→ E2 −→ · · ·

of boundedG–modules(En)n≥0 andG–morphisms(dn)n≥0, together with
a contracting homotopy, that is a sequence of morphismshn : En→ En−1

(where E−1 = E) satisfying hn+1dn+1 + dnhn = Id and h0d0 = Id. We
denote such a resolution by(E•,d•,h•) or simply byE•.

Likewise, anisometricG–resolutionof an isometric moduleE is a se-
quence of isometricG–modules as above but with‖hn‖ ≤ 1 for all n.

The elements ofE are calledcoefficients, the mapd0 is theaugmentation
and the otherdn arecoboundarymaps; subscripts will often be omitted.

Thecohomologyof G with respect toE•, denoted byH•(G; E•), is the
cohomology of the subcomplex ofG–invariants

0−→ EG
0 −→ EG

1 −→ EG
2 −→ · · ·
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More precisely, the space ofn–cocyclesis Zn(G; E•) = Ker(dn+1
∣∣EG

n
),

the space ofn–coboundariesis Bn(G; E•) = Im(dn
∣∣EG

n−1
) and we set

Hn(G;E•) = Zn(G;E•)/Bn(G;E•). We endow the vector spaceHn(G; E•)
with the quotient seminorm.

Cochain morphisms and homotopies.A cochain morphismfrom a G–
resolution (E•,d•,h•) of a BanachG–module E to another resolution
(E′•,d′•,h′•) of a BanachG–module E′ is a sequenceϕ• = (ϕn)n≥−1 of
G–equivariant continuous linear maps such that the diagram

0 // E

��

ϕ−1

//
d0 E0

��

ϕ0

//
d1 E1

��

ϕ1

//
d2 E2

��

ϕ2

// · · ·

0 // E′ //
d′0 E′0 //

d′1 E′1 //
d′2 E′2 // · · ·

commutes. In case the coefficients coincide andϕ−1 is the identity, one says
thatϕ• is augmentation preserving. The following is immediate:

Proposition 2.1. The morphismϕ• induces a sequence of maps at the level
of cohomology

H•ϕ• : H•(G; E•) −→ H•(G; E′•),
where eachHnϕ• is a continuous linear map of norm at most‖ϕn‖. ut

Letϕ•, ϕ′• be two cochain morphisms fromE• to E′•. A (G–equivariant)
homotopyfrom ϕ• to ϕ′• is a sequence of (G–equivariant) morphisms
σn : En→ E′n−1 (whereE′−1 = E′) satisfying

σn+1dn+1 + dnσn = ϕ′n − ϕn and σ0d0 = ϕ′−1 − ϕ−1.

If there is such aG–equivariant homotopy, the morphismsϕ•, ϕ′• induce
indeed the same maps at the level of cohomology.

The standard resolution.Now consider a bounded resp. isometric separable
BanachG–moduleE. For eachn ≥ 0, we consider the spaceL∞(Gn+1; E)
of essentially bounded measurable map classesf : Gn+1 → E. The sup-
norm relative toE turns L∞(Gn+1; E) into a Banach space, in general
non separable. We endowL∞(Gn+1; E) with a structure of bounded resp.
isometric BanachG–module via the diagonalleft regularaction defined by

(g f)(g0, . . . , gn) = g
(

f(g−1g0, . . . , g
−1gn)

)
for f ∈ L∞(Gn+1; E)and almost allg, g0, . . . , gn ∈ G. Notice in particular
that if the action onE is trivial, this coincides with diagonal left translation.
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One gets a sequence

0−→ E
d0−→ L∞(G; E) d1−→ L∞(G2; E) d2−→ · · ·

by the usual formuladn =
n∑

i=0
(−1)i dn,i wheredn,i simply omits thei th

variable; the mapd0 is defined byd0v(g) = gv. A contracting homotopy is
provided as in [5], Proposition 3.2.1, by the integration of the first variable
against a fixed functionϕ ∈ C+00(G)of integral one for a left Haar measurem,
that is

hn f(g0, . . . , gn−1) =
∫

G
ϕ(g) · f(g, g0, . . . , gn−1)dm(g)

for almost allg0, . . . , gn−1 ∈ G. With this homotopy, the resolution above
is an isometricG–resolution ofE, and we call it thestandard homogenous
resolution. The cohomology ofG with respect to this resolution is the
continuous bounded cohomologyof G, and we denote it byH•b,cont.(G; E).
As to terminology, see the Proposition 2.4 below.

When we take the complex fieldC endowed with the trivialG–module
structure as coefficient module, we use the shorter notationH•b,cont.(G);
likewise, we follow the general convention and write simplyL∞(G), C(G),
C00(G) etc. when the coefficients are complex numbers.

Remark 2.2.The relation with Johnson’s Banach algebra cohomology is as
follows. SupposeE is the dual of a Banach space with jointly continuous
G–action (in particular, theG–action onE becomes weak-* continuous).
Since we have takenE to be separable, the spacesL∞ above coincide with
the spaces of weak-* measurable bounded maps. Therefore, a proposition of
Johnson’s ([26], Proposition 2.3) implies thatH•b,cont.(G; E) is the Banach
algebra cohomology ofL1(G) with coefficients in such modulesE.

A coefficient formula.The following statement can be derivedverbatimas
in the classical case:

Proposition 2.3. Let G be a locally compact group and letE, F be two
separable boundedG–modules. Then the canonical isomorphism of topo-
logical vector spaces

Hn
b,cont.(G; E⊕ F) ∼= Hn

b,cont.(G; E) ⊕ Hn
b,cont.(G; F)

holds for alln ≥ 0. ut
Continuous cochains.Considering for everyn≥0 the subspaceCb(Gn+1;E)
of continuous bounded functions, one gets anotherG–resolution ofE:

0−→ E
d0−→ Cb(G; E) d1−→ Cb(G

2; E) d2−→ · · · (∗)
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Notice that although (*) is a homotopy preserving subresolution of the
former, a simpler contracting homotopyh′• can be given for this resolution
by

h′n f(x0, . . . , xn−1) = f(e, x0, . . . , xn−1).

Proposition 2.4. The complex

0−→ Cb(G; E)G −→ Cb(G
2; E)G −→ Cb(G

3; E)G −→ · · ·
of G–invariant continuous bounded cochains realizes the continuous
bounded cohomologyH•b,cont.(G; E).

More precisely, the inclusion mapsιn : Cb(Gn; E) ⊂ L∞(Gn; E)
induce isometric isomorphisms at the level of cohomology.

Proof. The proof uses a standard regularization technique, almost identical
to what is exposed in [5], § 4. However, we describe explicitly a few (tedious)
steps which will be of later use.

Fix a compactly supported continuous non-negative functionψ ∈ C+00(G)
of integral one for a left Haar measurem and define theregularizationmaps

Rn : L∞(Gn+1; E) −→ Cb(G
n+1; E)

by the convolutionRnα = α ∗ ψ⊗(n+1) for all α ∈ L∞(Gn+1; E). This
yields aG–morphism of complexes of norm one, another being given by the
inclusion mapsι•. To see that these induce mutually inverse isomorphisms
of the cohomology spaces, one shows thatR•◦ι• andι•◦R• are equivariantly
homotopic to the identity. To this end, define first for all−1 ≤ i ≤ n the
partial regularizationsRn,i by Rn,iα = α ∗ ψ⊗(i+1) ⊗ δ⊗(n−i)

e (whereδe is
the convolution identity), so thatRn,−1 = Id and Rn,n = Rn. Now define
thestutteringmaps

σn,i : L∞(Gn+1; E) −→ L∞(Gn; E)
for each 0≤ i ≤ n− 1 in the following way: for everyα ∈ L∞(Gn+1; E)
andx0, . . . , xn ∈ G, let

σn,iα (x0, . . . , xn) =
=

∫
Gn+2

ψ⊗(n+2)(y) · α(x0y−1
0 , . . . , xi y

−1
i , xi , . . . , xn) dm⊗(n+2)(y),

wherey= (y0, . . . , yn+1). Everyσn,i is a well-definedG–equivariant con-
tinuous linear operator. A direct calculation yields the “simplicial” relations

σn,i dn, j = dn−1, j−1 σn−1,i ∀ i ≤ j − 2,

σn,i dn, j = dn−1, j σn−1,i−1 ∀ i ≥ j + 1,

σn,i dn,i = Rn−1,i−1,

σn,i dn,i+1 = Rn−1,i .
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Now define aG–equivariant continuous linear operator

σn : L∞(Gn+1; E) −→ L∞(Gn; E)

by σn =
n−1∑
i=0
(−1)iσn,i . Using the simplicial relations above, one checks

that
dn σn + σn+1 dn+1 = Id− Rn,

thus establishing the homotopy fromι• ◦ R• to Id and, by restriction, from
R• ◦ ι• to Id. ut
The comparison map.The resolution (*) can be viewed as a subcomplex of
the sequence of vector spaces

0−→ E
d0−→ C(G; E) d1−→ C(G2; E) d2−→ · · ·

which realizes theusualcontinuous cohomologyH•cont.(G; E)of G (see [23],
§ 2). This inclusion of complexes induces for eachn a map

Hn
b,cont.(G; E) −→ Hn

cont.(G; E)
which, in general, is neither injective nor surjective.

Bounded cohomology.Considering any groupG, denoteGδ the locally
compact group consisting ofG endowed with the discrete topology. The
bounded cohomologyH•b(G; E) of G with coefficients in a separable mod-
ule E is the continuous bounded cohomologyH•b,cont.(Gδ; E) of Gδ. Since
Gδ is discrete, there is no difficulty in considering non separable modules
E aswell.

The resolution (*) takes the more familiar form

0−→ E
d0−→ `∞(G; E) d1−→ `∞(G2; E) d2−→ · · · (∗∗)

The comparison map now reduces to

H•b(G; E) −→ H•(G; E),
that is, connects the bounded cohomology to the usual cohomologyH•.
We call this map thenatural mapfrom H•b to H•; this terminology will be
justified by the Proposition 2.6 below. The kernelEH•b(G; E) of the natural
map is called theexact partof H•b(G; E).
Injectivity. We recall now the functorial definition of bounded cohomology
for a discrete group G. A G–morphism isadmissibleif it has a (left)
section which is a morphism (not necessarilyG–equivariant). Anadmissible
submoduleis a submodule (i.e. a closedG–invariant subspace) for which
the inclusion map is admissible. A bounded moduleE is injective if any
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G–morphismα : A→ E from a bounded admissible submoduleA⊂ B of
a bounded moduleB can be extended:

A
�

�

//

��
α

@
@
@
@
@
@
@

B

��
β

E

Likewise, aG–morphism isisometrically admissibleif it has a (left) section
which is a morphism of norm≤ 1. An isometrically admissible submod-
ule is a submodule for which the inclusion map is isometrically admis-
sible. An isometric moduleE is isometrically injectiveif any G–morphism
α : A→ E from an isometric isometrically admissible submoduleA ⊂ B
of an isometric moduleB can be extended as above but with‖β‖ ≤ ‖α‖.

The resolutionE• is injective if all En are; it is isometrically injective
if all En are and‖hn‖ ≤ 1 for all n. As expected, ifE• is an injective
resolution of aG–moduleE, Hn(G; E•) doesn’t depend, as a topological
vector space, on the choice of the resolution; see the Remark 2.5 below.

The point of these considerations is that the standard resolution is in-
jective; more precisely, putting together results of [25] and [33], one has
that `∞(Gn; E) is injective for any bounded moduleE and isometrically
injective if E is isometric.

While H•b comes with a canonical topology, mind that the quotient
seminormon Hn(G; E•) does depend on the resolution. Therefore one
defines thecanonical seminormon Hb(G; E) to be the infimum seminorm
over allisometricallyinjective resolutions. This seminorm is realized by the
standard resolution ([25], Theorem 3.6). Notice also that whileHn

b (G;R)
is Hausdorff forn ≤ 2 (see [30]), this is not necessarily the case in higher
degree, as has been shown by T. Soma in [37].

Remark 2.5.Let us be more precise about functoriality (following [25],
Lemma 3.3.2 and below). Consider two isometric resolutionsE• and E′•
of an isometricG–moduleE and supposeE• isometrically injective. Then
there is an augmentation preserving morphismϕ• : E′• → E•, and more-
over any two such morphisms are (G–equivariantly) homotopic. Endowing
H•(G; E•) with the canonical seminorm andH•(G; E′•) with its quotient
seminorm, the induced maps at the level of cohomology are of norm at most
one. In particular, ifE′• is also isometrically injective, we get canonical
isomorphisms, isometric for the canonical seminorms.

In particular, we insist that the symbolH•b(G; E) stands for the cohomo-
logy associated to the resolution (**), while there is a canonical isomorphism
from the cohomology of any other isometrically injective resolution ofE to
H•b(G; E). Likewise, we chooseH• to stand for the cohomology associated
to the resolution by the spacesC(Gn; E).
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These consideration will be understood whenever we mention thecanon-
ical isomorphisms. Notice the obvious analogues for non-isometric injec-
tivity.

The natural map.Let us turn back to thenatural mapmentioned above, that
is the comparison mapH•b(G; E)→ H•(G; E) induced by the inclusions
`∞(0n; E) ⊂ C(0n; E). It turns out that this map is completely canonical.
This is due to the fact that bounded cohomology is defined in a subcategory
of the category used to define usual cohomology; more precisely, a reso-
lution in the sense of bounded cohomology is in particular a resolution
in the usual sense, a module as defined in this paper is in particular also
a module in the usual cohomological context, and so on for morphisms and
homotopies. It is actually this inclusion of categories that determines the
natural map:

Proposition 2.6. Let G be a discrete group andE a boundedG–module.
Let ψ• : E• → E′• be an augmentation preserving morphism from

any injective resolutionE• = 0 → E → E0 → E1 → · · · to any
E′• = 0→ E → E′0 → E′1 → · · · which is an injective resolution in the
sense ofusualcohomology.

Then the canonical isomorphismsH•(G; E•) ∼= H•b(G; E) and
H•(G; E′•) ∼= H•(G; E) intertwin H•ϕ• with the natural map.

Notice that this implies in particular thatany augmentation preserving
morphism from the standard resolution`∞(G•; E) to the usual resolution
C(G•; E) induces the natural map.

Proof of Proposition 2.6.The injectivity conditions (in each category) yield
the existence of augmentation preserving morphismsu• : `∞(G•; E)→ E•
andv• : E′• → C(G•; E) inducing the corresponding canonical isomorph-
isms.

The usual injectivity implies that any augmentation preserving morphism
from `∞(G•; E) to C(G•; E) is equivariantly homotopic to the inclusionι•.
Apply this tov• ◦ ι• ◦ u•. ut
Remark 2.7.At least part of this argumentation can be carried over to
the comparison map for continuous bounded cohomology; indeed, there is
a functorial setting for (usual) continuous cohomology (see [5] or [6]). The
spacesC(Gn; E) and L p

loc(G
n; E) (for 1 ≤ p < ∞) are injective in the

appropriate sense, so that the Proposition 2.4 implies that the inclusions

L∞(Gn; E) −→ L p
loc(G

n; E)
also induce the comparison mapH•b,cont.(G, E)→ H•cont.(G, E).
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A few injective resolutions.The isometric injectivity of̀ ∞(G; E) can be
immediately generalized to the following setting:

Lemma 2.8. Let G be a group acting (say on the left) freely on a setX.
Then the spacè∞(X; E) endowed with the left regularG–action is an
isometrically injective boundedG–module for every isometricG–moduleE.

This statement (aswell as some others below) has an obvious analogue
for boundedG–modulesE; the adjustment is left to the reader.

Proof of Lemma 2.8.Since the action onX is free, there is a fundamental
domainF ⊂ X and aG–equivariant maps : X→ G such thats(x)−1x ∈ F
for all x ∈ X. If we endow the Banach space`∞(F; E)with theG–action on
the coefficientsE, then we know that the Banach space`∞ (G; `∞(F; E))
endowed with the left regular action is isometrically injective. Now one
checks that the map

A : `∞(X; E) −→ `∞
(
G; `∞(F; E))

defined byA f(g)(x) = f(gx) is well-defined,G–equivariant, linear and
isometric. One checks also that the map

B : `∞ (G; `∞(F; E)) −→ `∞(X; E)
defined byB f(x) = f(s(x))(s(x)−1x) is an inverse ofA. Thus`∞(Xn+1)

is also isometrically injective. ut
There is a measure–theoretic version of the Lemma 2.8 if the group

under consideration is countable:

Lemma 2.9. Let G be a countable group acting on a measure spaceX.
Suppose thatG preserves the measure class and that there is a measurable
sections : X→ G.

Then the spaceL∞(X; E) endowed with the left regularG–action is an
isometrically injective boundedG–module for every isometricG–moduleE.

By measurable section, we understand a measurableG–equivariant map
s : X → G as in the proof of Lemma 2.8; in particularF = s−1(e) is
a fundamental domain.

Proof of Lemma 2.9.The proof goes as for the Lemma 2.8 by considering
the maps

A : L∞(X; E) −→ `∞
(
G; L∞(F; E))

defined byA f(g)(x) = f(gx) and

B : `∞ (G; L∞(F; E)) −→ L∞(X; E)
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defined byB f(x) = f(s(x))(s(x)−1x); but we have to check measurability.
The mapA f(g) is clearly measurable for allg, and as toB f , notice that for
every measurable setU ⊂ E we have

(B f)−1(U) =
⋃
γ∈G

(
s−1(g)

⋂
( f(g))−1(gU)

)
hence we are done by the countability ofG. ut

This yields immediatly the following

Corollary 2.10. Let G be a separable locally compact group,0 < G
a countable closed subgroup,E a separable isometric0–module. Then

(i) the bounded cohomologyH•b(0; E) of 0 is realized by the complex
of invariants

0−→ E −→ L∞(G2; E)0 −→ L∞(G3; E)0 −→ · · ·
(ii) any augmentation preserving0–equivariant cochain morphismϕ• orψ•

0 // E // L∞(G; E) //

��

ϕ0

L∞(G2; E) //

��

ϕ1

L∞(G3; E) //

��

ϕ2

· · ·

0 // E // `∞(0; E) //

UU

ψ0

`∞(02; E) //

TT

ψ1

`∞(03; E) //

TT

ψ2

· · ·

induces an isometric isomorphism at the level of cohomology; the isomorph-
ism doesn’t depend on the choice ofϕ• resp.ψ•.

In this statement, the coboundary maps are still the maps(dn)n∈N (or d
for short) defined above, as will always be the case unless otherwise stated.

Proof of Corollary 2.10.Concerning point (i), the existence of the maps
needed to apply the Lemma 2.9 withX = Gn is a consequence ofG being
separable; so it remains only to exhibit a contracting homotopy. This is
achieved by setting

hn f(g0, . . . , gn−1) =
∫

G
f(g, g0, . . . , gn−1) ϕ(g)dm(g),

for any fixed positive compactly supported continuous functionϕ of integral
one for a left Haar measurem on G. The integration is justified by the
separability ofE.

As to point (ii), this is the functorial property of injectivity mentioned
in [25], Sect. 3.7. ut
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We have proved in Proposition 2.4 that the resolutionsL∞(G•; E) and
Cb(G•; E) of a G–module E are G–equivariantly homotopic; therefore,
consideringE as a0–module, we deduce the following from the Corol-
lary 2.10:

Corollary 2.11. Let G be a separable locally compact group,0 < G
a countable closed subgroup,E a separable isometric0–module.

The bounded cohomologyH•b(0; E) of 0 is realized by the complex of
invariants

0−→ E −→ Cb(G
2; E)0 −→ Cb(G

3; E)0 −→ · · ·
ut

Here is another source of new injective resolutions:

Lemma 2.12. Let V be an injectiveG–module andW a closed subspace
of V admitting aG–equivariant continuous projectionπ : V → W.

ThenW is also injective.
Moreover, if‖π‖ = 1 andV is isometricallyinjective, then so isW.

Proof. Apply the definition(s) of injectivity to the following diagram:

A
�

�

//

  
@
@
@
@
@
@
@
@

B

~~ ��
@
@
@
@
@
@
@

W
�

�

// Vkk

π

ut

3. Amenability, harmonicity and resolutions

In this section, we will apply amenability methods to semigroups of meas-
ures in order to obtain new resolutions for bounded cohomology.

Definitions. A semigroupis a setSendowed with an associative composi-
tion law S×S→ S(written multiplicatively); neither inverses nor a neutral
element are required.

A semitopological semigroupis a semigroup endowed with a topology
for which the multiplication isseparatedlycontinuous, that is for eachs ∈ S
the right and left multiplication bys are continuous mapsS→ S.

A semitopological semigroupS is right amenableif the spaceCb,ru(S)
of right uniformly continuous bounded functions admits a right invariant
mean, that is a continuous linear form of norm one

M : Cb,ru(S) −→ C
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invariant under right translations and withM(11S) = 1.
For a survey on amenable semigroups, see [27]. This reference considers

left amenability ofS, which is equivalent to right amenability of the opposite
semigroupSo (that is, the semigroup with multiplication(s, s′) 7→ s′s).
Beware however that countrary to the case of groups, a semigroup needs
not to be isomorphic to its opposite; and it may indeed happen thatSis right
amenable whileSo is not. Nonetheless, we will often omit to specify that
we considerright amenability.

For technical reasons, we introduce a further notion: a semitopolog-
ical semigroupS is right C–amenableif the spaceCb(S) of continuous
bounded functions admits a right invariant mean. It is not known whether
C–amenability is really different from amenability (see [27], problem 1).
However, one has the results stated in 3.1 below.

Finally, we say that a semigroupSis amenable or C–amenable whenever
it is the case for the semitopological semigroupSδ consisting ofSendowed
with the discrete topology.

We now summarize a few facts on amenability.

Proposition 3.1.
(i) C–amenableH⇒ amenable.
(ii) For discrete semigroups, C–amenable⇐⇒ amenable.
(iii) For locally compact groups, C–amenable⇐⇒ amenable.
(iv) All commutative semitopological semigroups are amenable.
(v) A finite product of amenable semitopological semigroups is amenable.

Proof. SinceCb,ru(S) is a subspace ofCb(S), we get (i) by restricting the
mean. In (ii), these spaces coincide. As to (iii), an amenable locally compact
groupG has an invariant mean on the even larger spaceL∞(G) (see [19]).
The last two statements are well-known, see [10] and [27]. ut
Convolution semigroups on a locally compact group.Let G be a locally
compact group and denote byM(G) the convex set of positive Radon
measures of norm one (probability measures). This is a semigroup for the
convolution defined by

(µ ∗ ν) ( f) =
∫

G

∫
G

f(xy)dµ(x)dν(y)

for µ, ν ∈ M(G) and f ∈ Cb(G). Recall that thenarrow topology on
M(G) is defined by integration of bounded continuous functions, which
means that a net(µa)a∈A converges toµ if and only ifµa( f)→ µ( f) for all
f ∈ Cb(G). This topology turnsM(G) into a semitopological semigroup
(see [35], Proposition 24.1.3).
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For every separable Banach spaceE, the semigroupM(G) acts on
L∞(G; E) by right convolution, that is

( f ∗ µ)(x) =
∫

G
f(xy−1)dµ(y) = µ

(
%(x−1) f ∨

)
,

for f ∈ L∞(G; E) andµ ∈ M(G). This is an action by linear operators of
norm one which leaves the constants invariant. Moreover, given aG–action
on E by continuous linear operators, the associated left action onL∞(G; E)
defined forf ∈ L∞(G; E) and almost allg ∈ G by (g· f)(x) = g

(
f(g−1x)

)
commutes withM(G) (this amounts to Bochner’s theorem, see e.g. [41],
V.5 Corollary 2). Likewise, viewing the direct productM(G)n as a subset
of M(Gn), one has for everyn an M(G)n–action onL∞(Gn; E) which
commutes with the left diagonal regularG–action.

Notice also that the action ofM(G) preserves the subspacesCb(G; E)
andCb,lu(G; E) of continuous (resp. left uniformly continuous) bounded
functions.

We consider for any subsemigroupSof M(G) the spaceL∞S (G
n; E) of

all functions which areS–invariant in every variable, that is the subspace of
Sn–invariant functions. We call these functionsS–harmonicin each variable,
or S–pluriharmonic (when n ≥ 2). More generally, anySn–convolable
function will be calledS–pluriharmonic if it isSn–invariant.

Proposition 3.2. Let G be a locally compact separable group andSa sub-
semigroup ofM(G) endowed with the narrow topology.

If Sis C–amenable, then there is aG–equivariant continuous projection
of norm one

π : L∞(G) −→ L∞S (G)

onto the subspace ofS–harmonic functions.
Moreover,π preserves left uniform continuity.

Proof. As is pointed by M.E.B. Bekka in [4], it is enough to defineπ on the
subspaceCb,lu(G) of bounded left uniformly continuous functions, that is

π : Cb,lu(G) −→ Cb,lu(G) ∩ L∞S (G).

For more details, see the proof of Theorem 1 in [4].
Fix f ∈ Cb,lu(G) and x ∈ G. We define a functionfx : S→ C by

setting fx(µ) = ( f ∗ µ)(x). If (µa)a∈A is a net converging narrowly toµ,
one has

fx(µa) = µa

(
%(x−1) f ∨

)
→ µ

(
%(x−1) f ∨

)
= fx(µ),
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hencefx is continuous onS. But fx is bounded by‖ f‖∞ and hence, choosing
an invariant meanMonCb(S), we may average and defineπ f (x) =M( fx).
We have obtained a composed function

G −→ Cb(S)
M−→ C

x 7−→ fx 7−→ π f (x)

where the secound arrow is norm-continuous, while the bound

‖ fx − fyx‖∞ = sup
µ∈S

∣∣∣µ(%(x−1) f ∨
)
− µ

(
%(x−1y−1) f ∨

)∣∣∣ ≤
≤ ‖ f ∨ − %(y−1) f ∨‖∞ = ‖ f − λ(y−1) f ‖∞,

together with the left uniform continuity off , implies that the first arrow
is left uniformly continuous. Therefore we have shown thatπ f is left
uniformly continuous. On the other hand,π f is bounded by‖ f ‖∞ and
π is clearly linear in f , so that we have a continuous map of norm one
(π preserves the constant functions). It is straightforward thatπ is left
G–equivariant, and hence we proceed to show thatπ f is S–harmonic.

To this end, pickµ ∈ S. Now we have

(π f ∗ µ)(x) =
∫

G
M( fxy−1)dµ(y),

and since the mapx 7→ fxy−1 is continuous, it has separable range in
the Banach spaceCb(S) and hence (see again [41]) we may commute the
integral with the continuous formM and continue with Bochner integrals:

(π f ∗ µ)(x) = M
(∫

G
fxy−1 dµ(y)

)
=

= M
(
ν 7→

∫
G

f ∗ ν(xy−1)dµ(y)

)
=

= M
(
ν 7→ f ∗ ν ∗ µ(x)

)
= M(%(µ) fx).

By right S–invariance ofM, this last expression is equal toM( fx) which
is π f(x). This shows theS–harmonicity ofπ f . Since it follows from the
definition of π that it leaves harmonic functions unchanged, the proof is
complete. ut

The result above can be extended as follows. Taken ≥ 0 and suppose
Sn+1 is C–amenable; this is e.g. the case whenS is amenable and discrete
or is an amenable locally compact group. Then the proposition above yields
a projection

πn : L∞(Gn+1) −→ L∞S (G
n+1)
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onto the subspace ofS–pluriharmonic functions. Furthermore, turning back
to a separable Banach spaceE with G–action by continuous linear operators
(i.e. a BanachG–module), consider the associatedSn+1–action on the (left
diagonal regular) BanachG–moduleL∞(Gn+1; E). For every continuous
linear form3 ∈ E∗ and every f ∈ L∞(Gn+1; E), the function3 ◦ f is
in L∞(Gn+1) and we define for almost allx ∈ G an elementπ f(x) of the
bidual E∗∗ by the formula

π f(x)(3) = π(3 ◦ f)(x).

In particular, forE reflexive, it is straightforward to check that this yields
a G–equivariant projection of norm one

πn : L∞(Gn+1; E) −→ L∞S (G
n+1; E)

onto the subspace ofS–harmonic functions. Moreover, one can choose
the invariant mean onCb(Sn+1) in a way compatible with the canonical
projectionsSn+1→ S, so that the mapsπn commute with the coboundary.
To sum up, we have obtained the following result:

Corollary 3.3. LetG be a locally compact separable group,E a separable
reflexive BanachG–module andSa subsemigroup ofM(G). SupposeS is
either amenable as discrete semigroup or is an amenable locally compact
group when endowed with the narrow topology.

Then there is a morphism of complexes

0 // E // L∞(G; E)

��

π0

// L∞(G2; E)

��

π1

// L∞(G3; E)

��

π2

// · · ·

0 // E // L∞S (G; E) // L∞S (G2; E) // L∞S (G3; E) // · · ·
consisting ofG–equivariant continuous projections of norm one. ut

The contracting homotopy defined in Sect. 2 preservesS–plurihar-
monicity; therefore the spacesL∞S (Gn+1; E) determine a subresolution
of E. In the case thatG is a discrete group, the Corollary 3.3 implies
in particular (via Lemma 2.12) that everyL∞S (G

n+1; E) ( = `∞S (Gn+1; E) )
is isometrically injective (forE isometric), and therefore we have the

Corollary 3.4. Let G be a countable group,E a separable reflexive iso-
metric G–module andS a subsemigroup ofM(G). SupposeS is either
amenable as discrete semigroup or is an amenable locally compact group
when endowed with the narrow topology.

Then each̀∞S (G
n+1; E) is isometrically injective and thus the complex

0−→ `∞S (G; E)G −→ `∞S (G
2; E)G −→ `∞S (G

3; E)G −→ · · ·



218 M. Burger, N. Monod

of G–invariant S–pluriharmonic bounded cochains realizes the bounded
cohomologyH•b(G; E).

More precisely, the inclusions̀∞S (G
n; E) ⊂ `∞(Gn; E) induce a canon-

ical isometric isomorphism at the level of cohomology. ut
More generally, the Corollary 2.10 now implies

Corollary 3.5. LetG be a locally compact separable group,E a separable
reflexive isometricG–module,S a subsemigroup ofM(G) and 0 < G
a countable closed subgroup. SupposeS is either amenable as discrete
semigroup or is an amenable locally compact group when endowed with
the narrow topology.

Then eachL∞S (G
n; E) is isometricallly injective and thus the complex

0−→ L∞S (G; E)0 −→ L∞S (G
2; E)0 −→ L∞S (G

3; E)0 −→ · · ·
of measurable0–invariant S–pluriharmonic bounded cochains realizes the
bounded cohomologyH•b(0; E).

More precisely, the inclusionsL∞S (G
n; E) ⊂ L∞(Gn; E) induce

a canonical isometric isomorphism at the level of cohomology. ut
We do not have a satisfactory notion of injective module forcontinuous

bounded cohomology that would also be compatible with the morphismπ•;
but we obtain nevertheless a corresponding statement forH•b,cont. by con-
structing a homotopy. First, observe that if we letSn+1 act onL∞(Gn+1; E)
via the canonical projections

Sn+1 −→ Sn−i ∼= {δe}i+1 × Sn−i (−1≤ i ≤ n),

we obtain corresponding projectionsπn,i onto the subspaces of those func-
tions harmonic in the lastn − i variables. In particular,πn,−1 = πn and
πn,n = Id. Having choosen the invariant means compatible with projec-
tions, it is a matter of computation to check the following lemma:

Lemma 3.6. For all n ≥ 1,−1≤ i ≤ n and0≤ j ≤ n the relations

πn,i dn, j = dn, j πn−1,i−1 (i ≥ j)

πn,i dn, j = dn, j πn−1,i (i ≤ j − 1)

hold. ut
We are now ready to prove

Proposition 3.7. Let G be a locally compact separable group,E a separ-
able reflexive BanachG–module andSa subsemigroup ofM(G). SupposeS
is either amenable as discrete semigroup or is an amenable locally compact
group when endowed with the narrow topology.
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Then the complex

0−→ L∞S (G; E)G −→ L∞S (G
2; E)G −→ L∞S (G

3; E)G −→ · · ·
of measurableG–invariant S–pluriharmonic bounded cochains realizes the
continuous bounded cohomologyH•b,cont.(G; E).

More precisely, the inclusionsL∞S (G
n; E) ⊂ L∞(Gn; E) induce an

isometric isomorphism at the level of cohomology.

Proof. Fix a functionψ ∈ C+00(G) of integral one for a left Haar measurem
and recall from the proof of Proposition 2.4 the definitions of the operators
Rn,i andσn,i .

Now we define aG–equivariant continuous linear operator

τn : L∞(Gn+1; E) −→ L∞(Gn; E)
by

τn =
n−1∑
i=0

(−1)iσn,i πn,i .

The simplicial relations of the proof of Proposition 2.4 together with
Lemma 3.6 yield after a calculation the relation

dn τn + τn+1 dn+1 = Rn,−1 πn,−1− Rn,n πn,n = πn − Rn.

Therefore, denoting byιn the inclusionL∞S (G
n+1; E) ⊂ L∞(Gn+1; E), we

conclude thatτ• is aG–equivariant homotopy fromι• ◦R• to ι• ◦π•, and by
restriction also fromR• ◦ ι• to π• ◦ ι•. Combining this with the homotopy
σ• from ι• ◦ R• (resp. R• ◦ ι•) to the identity constructed in the proof of
Proposition 2.4 above, we have shown that the cochain mapsi• andπ•
induce the identity at the level of cohomology. ut

We draw now a few consequences of the preceding proposition, by taking
specific semigroups forS⊂ M(G).

Amenable subgroups.We begin with the generalization of a result which is
well-known for discrete groups.

Corollary 3.8. Let G be a locally compact separable group,P a closed
amenable subgroup ofG and E a separable reflexive BanachG–module.

The complex

0−→L∞(G/P; E)G−→L∞((G/P)2; E)G−→L∞((G/P)3; E)G−→· · ·
of measurableG–invariant componentwise rightP–invariant bounded co-
chains realizes the continuous bounded cohomologyH•b,cont.(G; E).

More precisely, the inclusionsL∞((G/P)n; E) ⊂ L∞(Gn; E) induce
an isometric isomorphism at the level of cohomology.
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Proof. We can viewP as locally compact subgroup ofM(G) via the map
p 7→ δp wich assigns top ∈ P its point measure. This is a topological
isomorphism of groups on its image endowed with the narrow topology,
hence we may apply the Proposition 3.7. ut

Using the Corollary 3.5, we also deduce:

Corollary 3.9. Let G, P be as in the Corollary 3.8 above andE be a sep-
arable reflexive isometricG–module.

If 0 < G is a countable closed subgroup, then eachL∞((G/P)n; E) is
isometrically injective and thus the complex

0−→ L∞(G/P; E)0−→ L∞((G/P)2; E)0−→ L∞((G/P)3; E)0−→ · · ·
of measurable0–invariant P–invariant bounded cochains realizes the
bounded cohomologyH•b(0; E).

More precisely, the inclusionsL∞((G/P)n; E) ⊂ L∞(Gn; E) induce
a canonical isometric isomorphism at the level of cohomology. ut

As an important application of this result, suppose that the0–action on
(G/P)2 is ergodic. Let us then point out an explicit reformulation of the
above for complex coefficients:

Corollary 3.10. Let 0, G, P and E be as in the Corollary 3.9 above. If
the0–action on(G/P)2 is ergodic, then the spaceH2

b(0) is realized as the
quotient of the space

ZL∞((G/P)3)0 = {
c ∈ L∞((G/P)3, ν⊗3)0 : dc= 0

}
of 0–invariant measurable bounded cocycles by the subspace of constant
functions. ut
An illustration. Let G = Sp(2n,R) be the group of symplectic automor-
phisms onR2n, and denote by3n theLagrangian Grassmannianmanifold
consisting of all Lagrangian subspaces ofR2n (see [2]). Denote by

ω : 3n ×3n ×3n −→ Z

the Maslov index; thenω is a boundedG–invariant cocycle with set of
values[−n,n] ∩ Z. Let Fn be the space of maximal isotropic flags inR2n

andπ : Fn → 3n the canonical projection. ThenFn is the Furstenberg
boundary ofG, andκ = ω ◦ (π × π × π) is in ZL∞(F3

n )
G. Sinceκ is not

essentially constant, Corollary 3.10 implies thatκ defines a nonzero element
in H2

b(0) for every lattice0 < G. Moreover, ifn ≥ 3 and if0 is cocompact,
then it follows from Corollary 1.6 thatκ is a generator ofH2

b(0).

Discrete Poisson transform.Suppose0 is a countable discrete group. If
we takeS to be the semigroup generated by a single measureµ, then S
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is commutative and hence amenable as discrete semigroup. The associated
spaces̀ ∞µ of µ–pluriharmonic functions realize therefore the bounded
cohomology ofG.

Now, one may associate (see [16] or [1]) to the pair(0,µ) its Poisson
boundarywhich is a standard measure space(B, ν) acted upon by0 in such
a way that various Poisson transform isomorphisms hold:

Proposition 3.11. Let0 be a countable discrete group,µ ∈ M1(0) a prob-
ability measure and(B, ν) the corresponding boundary.
For every separable reflexive0–moduleE and all n ≥ 0, there is a0–
equivariant isometric isomorphism

P(n) : L∞(Bn+1, ν⊗(n+1); E) −→ `∞µ (0
n+1; E)

defined by

P(n)F(p) =
∫

Bn+1
F(pξ)dν⊗(n+1)(ξ).

via the product action of0n+1 on Bn+1.

Remark. The mapP(n) is obviously0n+1–equivariant, but this is not the
action we want to emphasize. Remark also that the sequenceP(•) is a (aug-
mentation preserving) cochain map for the usual coboundary maps, that is
P(n+1)dn+1 = ν(B) · dn+1P(n) = dn+1P(n).

Proof of Proposition 3.11.Suppose firstE = C. The casen = 0 is well-
known, so we argue by induction. The injectivity is done componentwise,
so the point here is surjectivity. Pickf ∈ `∞µ (0n+1); by the induction
hypothesis, there is for eachγ ∈ 0 a mapFγ ∈ L∞(Bn, ν⊗n)with f(γ, ·) =
P(n−1)Fγ and‖Fγ‖∞ ≤ ‖ f ‖∞. Now for all p ∈ 0n theµ–pluriharmonicity
reads ∑

η∈0
µ(η) f(γη−1, p) = f(γ, p),

and therefore∫
Bn

∑
η∈0

µ(η)Fγη−1(pξ)dν⊗n(ξ) =
∫

Bn
Fγ (pξ)dν⊗n(ξ).

The injectivity ofP(n−1) now implies∑
η∈0

µ(η)Fγη−1(pξ) = Fγ (pξ) ν–a.-e.(ξ).

In other words, the mapγ 7→ Fγ (ξ) is µ–harmonic for almost every
ξ ∈ Bn, and hence admits a Poisson representationFγ (ξ) = P(1)Fξ(γ)
with Fξ ∈ L∞(B, ν). So we have a classF ∈ L∞(Bn+1, ν⊗(n+1)) defined
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by F(ξ0, . . . , ξn) = F(ξ1,... ,ξn)(ξ0); observe that‖F‖∞ = ‖ f ‖∞ and thatF
is measurable by Fubini’s theorem.

For more general modulesE, we proceed as in the discussion preceding
the Corollary 3.3, that is, forF ∈ L∞(Bn+1, ν⊗(n+1); E) and p ∈ 0n+1 we
define an elementP(n)F(p) of E∗∗ = E by

P(n)F(p) (3) = P(n)(3 ◦ F) (p)

for all 3 ∈ E∗. ut
The Proposition 3.11 together with Corollary 3.4 now imply

Corollary 3.12. The complex of invariants

0−→ L∞(B, ν; E)0−→ L∞(B2, ν⊗2; E)0−→ L∞(B3, ν⊗3; E)0−→ · · ·
realizes the bounded cohomologyH•b(0; E) for every separable reflexive
isometric0–moduleE.

Moreover, the Poisson transformP(•) induces an isometric isomorphism
at the level of cohomology. ut

Another corollary concerns the quasimorphismsq ∈ QM(0) of 0. If
the group0 is finitely generated, there is a natural bi-Lipschitz equivalence
class of left invariant metrics canonically attached to0: the variousword
lengthsassociated to finite generating sets. A quasimorphism has at most
linear growth with respect to this class. Thefirst momentof a measureµ on
0 for a metricd is

∫
0

d(e, γ)dµ(γ), and its finiteness doesn’t depend on the
choice ofd. So if µ has finite first moment, the convolutionq ∗ µ makes
sense for any quasimorphismq.

But we need a lemma. Notice that the spaces`∞alt. (resp.`∞µ,alt.) of alter-
nating (pluriharmonic) cochains determine a subcomplex of the standard
resolution. We have:

Lemma 3.13. The complexes of alternating invariant cochains

0−→ `∞alt.(0; E)0 −→ `∞alt.(0
2; E)0 −→ `∞alt.(0

3; E)0 −→ · · ·
and ofµ–pluriharmonic alternating invariant cochains

0−→ `∞µ,alt.(0; E)0 −→ `∞µ,alt.(0
2; E)0 −→ `∞µ,alt.(0

3; E)0 −→ · · ·
realize the bounded cohomology of0.

Moreover, the inclusions

`∞alt.(0
n; E) ⊂ `∞(0n; E) and `∞µ,alt.(0

n; E) ⊂ `∞µ (0n; E)
determine isometric isomorphisms at the level of cohomology.
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Proof. Use the classical projectors

A : `∞(0n; E) −→ `∞alt.(0
n; E)

defined by the formula

A f(x1, . . . , xn) = 1

n!
∑
σ∈Sn

sign(σ) f(xσ(1), . . . , xσ(n))

whereinSn is the permutation group. Apply the Lemma 2.12. ut
Corollary 3.14. Let 0 be a finitely generated group andµ a symmetric
probability measure on0 with finite first moment. Then any quasimorphism
is at bounded distance of aµ–harmonic one.

Proof. We begin with the following observation. Letα : 0×0→ C be an
alternating0–invariant map such that the coboundarydα is in `∞µ (03); then
we claim thatα is µ–biharmonic. Indeed, denote by∗1 the convolution at
the first variable;α beingµ-summable in each variable, we may compute

(α ∗1 µ− α)(x, y) =
∑
z∈0

µ(z)
(
α(xz−1, y)− α(x, y)

)
=
∑
z∈0

µ(z)
(
dα(x, xz−1, y)− α(x, xz−1)

)
= dα(x, x, y)︸ ︷︷ ︸

=0

−
∑
z∈0

µ(z)α(e, z−1).

Letting 00 = {γ ∈ 0 : γ = γ−1}, one can decompose0 as 0 =
00t01t0−1

1 . Butα being0–invariant alternating andµ being symmetric,
we have∑

z∈01

µ(z)α(e, z−1) =
∑

z∈0−1
1

µ(z)α(e, z) =

=
∑

z∈0−1
1

µ(z)α(z−1,e) = −
∑

z∈0−1
1

µ(z)α(e, z−1),

while the summandµ(z)α(e, z−1) is zero forz ∈ 00. Therefore, we have
α∗1µ−α = 0, soα is harmonic in the first variable. Likewise,α is harmonic
in the second.

Now we pick a quasimorphismq of 0. Observing thatq(γ) differs
from

(
q(γ)− q(γ−1)

)
/2 by at most

(|q(e)| + ‖dq‖∞
)
/2, we may assume

q antisymmetric. Define a bounded alternating cocycleω = dψ by letting
ψ(x, y) = q(x−1y). Since the inclusioǹ∞µ,alt.(0

•) ⊂ `∞(0•) induces the
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identity at the level of cohomology, there is a bounded cochainβ such
thatω+ dβ is µ–pluriharmonic. Now the reasoning above applied toα =
ψ + β yields thatψ + β is biharmonic. Therefore we have a harmonic
quasimorphismq′ at bounded distance ofq by lettingq′(x) = (ψ+β)(e, x).

ut
We turn back to the case of a locally compact groupG and give another

class of resolutions arising from the Proposition 3.7.

Gelfand pairs.Recall that aGelfand pair consists of a locally compact
group G with a compact subgroupK such that the convolution algebra
C00 (K\G/K)of bi–K–invariant compactly supported continuous functions
is commutative. For an introduction to Gelfand pairs, see [13] and [35]
§ 24.8.

An example of Gelfand pair isG(k)whereG is ak–almost simple simply
connected group over a fieldk of characteristic zero together with a good
maximal compact subgroupK (see [34] or [29]).

Geometrically, ifG is a group acting doubly transitively on a proper
metric space andK is the stabilizer of a point, then(G, K) is another
example of a Gelfand pair (see [35], Proposition 24.8.3).

Recall also that if(G, K) is a Gelfand pair, thenG is unimodular ([35],
Proposition 24.8.1).

By the trivial character of C00 (K\G/K), we mean the characterχ0

defined byχ0( f) = ∫
G f . Let E be a separableG–module; the algebra

C00 (K\G/K) acts onL1
loc(G; E) by right convolution. This action pre-

servesC(G/K) and isG–equivariant. Recall the following

Definition. A function ϕ ∈ C(G/K; E) is K–harmonic if it is a joint
eigenfunction ofC00 (K\G/K) with joint eigenvalueχ0, that isϕ ∗ f =
χ0( f) · ϕ for all f ∈ C00 (K\G/K).

A function ϕ ∈ C((G/K)n; E) is K–pluriharmonic if K–harmonic
in each variable. We denote byH∞K (G

n; E) the space ofboundedK–
pluriharmonic functions.

Notice that aK–harmonic function is continuous, right uniformly con-
tinuous and rightK–invariant.

Now we state another corollary of the Proposition 3.7.

Corollary 3.15. Let (G, K) be a Gelfand pair withG separable andE
a separable reflexive BanachG–module.

The complex

0−→ H∞K (G; E)G −→ H∞K (G2; E)G −→ H∞K (G3; E)G −→ · · ·
of G–invariant K–pluriharmonic bounded cochains realizes the continuous
bounded cohomologyH•b,cont.(G; E).
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More precisely, the inclusionsH∞K (Gn; E) ⊂ L∞(Gn; E) induce an
isometric isomorphism at the level of cohomology.

Proof. Fix a right Haar measure onG (we won’t use the fact that this
measure has to be left invariant aswell). Denote bySthe semigroup of non-
negative functions inC00 (K\G/K) having integral one; the Proposition 3.7
applies to thisS, so that it remains only to show thatS–invariance implies
harmonicity. Since scalar multiplication commutes withC00 (K\G/K) and
withχ0, we haveC+00 (K\G/K)–invariance. But the standard decomposition
ϕ = ϕ+ − ϕ− of a function into two non–negative parts preserves bi–K–
invariance, so that we get harmonicity. ut

Again, we use the Corollary 3.5 to deduce:

Corollary 3.16. Let (G, K) be as in the Corollary 3.15 above andE be
a separable reflexive isometricG–module.

If 0 < G is a countable closed subgroup, then eachH∞K (G
n; E) is

isometrically injective and thus the complex

0−→ H∞K (G; E)0 −→ H∞K (G2; E)0 −→ H∞K (G3; E)0 −→ · · ·
of 0–invariant K–pluriharmonic bounded cochains realizes the bounded
cohomologyH•b(0; E).

More precisely, the inclusionsH∞K (Gn; E) ⊂ L∞(Gn; E) induce
a canonical isometric isomorphism at the level of cohomology. This iso-
morphism is also induced by the restriction mapsH∞K (Gn; E)→ `∞(0; E).

ut
Notice that the above restriction maps are well–defined because of the

continuity of K–harmonic functions; the unicity of the induced cohomo-
logical isomorphism is again the consequence of the functorial property of
injective resolutions.

4. Cochain induction

We begin by recalling the topological analogue of the “Frobenius reciproc-
ity” as stated in [5], Proposition 8.6. With our terminology, this yields

Proposition 4.1. (Ph. Blanc)Let 0 be a discrete subgroup of a second
countable locally compact groupG. SupposeG acts continuously on a sec-
ond countable locally compact spaceX and preserves a Radon measureµ.

Then the map

i : L p
loc(X, µ; E)0 −→ L p

loc

(
X, µ; L p

loc(G; E)0
)G

defined for f ∈ L p
loc(X, µ; E)0 almost everywhere byi f(x)(g) = f(gx)

is a topological isomorphism of Fréchet spaces for every0–moduleE and
every1≤ p<∞. ut
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In this statement, the groupsG and0 act as usual by left regular action
on the spacesL p

loc(X;−), but we takeG to act by right translation on
L p

loc(G; E)0. We call the mapi the induction map, and call theG–module
L p

loc(G; E)0 the induction module.
The Proposition 4.1 applies in particular to the case whereX is Gn with

a left Haar measure; sincei commutes with the corresponding cobound-
ary maps, we can seek an analogue of the Eckmann–Shapiro induction
isomorphism. However, the natural induction module would be the (non
separable) spaceL∞(G; E)0, which is of little use to us because of the lack
of information about itsG–module structure. Therefore, we need a stronger
result:

Proposition 4.2. Let 0 be a lattice in a separable locally compact group
G and E a separable bounded0–module. Suppose there is an amenable
closed subgroupP < G such that the diagonal0–action on(G/P)k is
ergodic for some integerk ≥ 1.

Then the induction mapi induces an injection

Hki p : Hk
b(0; E) −→ Hk

b,cont.(G; L p(G; E)0)
for all 1≤ p<∞.

We will apply this result to the casek = 2 andp= 2, so that we can use
properties of the unitary representation ofG in L2(0\G). The point of the
statement above is thatHk

b is realized by invariant(k+ 1)–cocycles, while
0 is ergodic only on(G/P)k.

Proof of Proposition 4.2.The statement makes no claim for the precise
norm of Hki p, so that we may assumeE isometric by replacing it withEis

(see Sect. 2). Since0\G has finite invariant measure, one hasL∞(0\G) ⊂
L p(0\G); nowE being separable, we can deduceL∞(G; E)0 ⊂ L p(G; E)0
by passing to the norm.

It follows from its definition thati is Gn–equivariant with respect to the
right diagonal translation for everyn ≥ 1. Therefore, using the Corollar-
ies 3.8 and 3.9, we realizeHni p by

i p : L∞((G/P)n+1; E)0 −→ L∞
(
(G/P)n+1; L p(G; E)0)G,

wherei p is the composition ofi with the range inclusionL∞(G; E)0 ⊂
L p(G; E)0. Thus every element of the kernel ofHki p is represented by
a cocycleα in L∞((G/P)k+1; E)0 such thatiα = dβ for someβ in
L∞
(
(G/P)k; L p(G; E)0)G

. Now we can viewβ as a rightPk–invariant

element ofL∞
(
Gk; L p

loc(G; E)0
)G

and hence ofL p
loc

(
Gk; L p

loc(G; E)0
)G

,
so thatβ = iβ′ for some rightPk–invariantβ′ ∈ L p

loc(G
k; E)0. Furthermore,
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one checks thatβ′ can actually be viewed as element ofL p
loc((G/P)k; E)0.

Sincei commutes with the coboundary maps, the Proposition 4.1 implies
α = dβ′. Now the ergodicity assumption implies that the norm‖β′‖ is an
essentially constant function, so thatβ′ is essentially bounded. Henceα is
trivial in Hk

b(0; E). ut
Actually, the above proof yields a stronger statement. Indeed, one can

use the standard resolution to define continuous bounded cohomology with
coefficients in Fréchet spaces, say for instanceL p

loc(G; E)0. Now the argu-
ments above show in fact that the (furhter) induction

Hk
b(0; E) −→ Hk

b,cont.(G; L p
loc(G; E)0)

is still injective.

5. The comparison map

Lemma 5.1. Let (π,H) be a continuous unitary representation of a locally
compact groupG and letH < G be a compactly generated closed subgroup.
Letα : G × G→ H be a locally boundedG–invariant map with bounded
coboundaryω = dα.

If π
∣∣H has no almost invariant vectors, thenα

∣∣ZG(H)× ZG(H)
is

bounded.

In other words, the lemma states that the expression

sup
g1,g2∈ZG(H)

‖α(g1, g2)‖H

is finite.

Proof of Lemma 5.1.For shorter notation, we work with the inhomogenous
representatives̄α andω̄ of α andω, that isᾱ(x) = α(e, x) and ω̄(x, y) =
ω(e, x, xy). Nowω = dα reads

ω̄(x, y) = π(x)ᾱ(y)− ᾱ(xy)+ ᾱ(x).
Therefore, for allh ∈ ZG(H) andt ∈ H, the vectors

π(t)ᾱ(ht−1)− ᾱ(tht−1)+ ᾱ(t)
andπ(h)ᾱ(t−1)− ᾱ(ht−1)+ ᾱ(h)

are norm–bounded by‖ω‖∞ independently ofh andt. Applyingπ(t) to the
second vector before adding it to the first yields that

π(t)ᾱ(h)− ᾱ(h)+ π(t)π(h)ᾱ(t−1)+ ᾱ(t)
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is bounded independently ofh andt, hence∥∥∥(Id− π(t)
)
ᾱ(h)

∥∥∥
H
≤ ‖ᾱ(t−1)‖H + ‖ᾱ(t)‖H + C

for someC < ∞. Sinceπ
∣∣H has no almost invariant vectors, there is

(by [28], IV 3.2, p. 155) a non negative functionψ = ψ∨ of integral one in
C00(H) such that‖π(ψ)‖ < 1. Now we have∥∥∥(Id− π(ψ)

)
ᾱ(h)

∥∥∥
H
≤ sup

t∈Supp(ψ)

(
‖ᾱ(t−1)‖H + ‖ᾱ(t)‖H + C

)
for all h in ZG(H). Since Id−π(ψ) is invertible, we conclude thatᾱ

∣∣ZG(H)
is bounded, whence the statement. ut

We introduce now a technical definition which allows us to state the next
developments of this section with a certain generality.

Definition 5.2. Let P be a closed subgroup of a locally compact groupG.
We say that the pair(G, P) has the property (A) if for any continuous unitary
representation ofG in a Hilbert spaceH and anyg1, g2 ∈ G the following
holds:

if v ∈ H is fixed byg1Pg−1
1 ∩ g2Pg−1

2 , then the diagonal action of the
stabilizerStabG(v) on (G/P)2 is ergodic.

In particular, considering the trivial representation, one sees that the
G–action on(G/P)2 is ergodic for any pair(G, P) with the property (A).

Proposition 5.3. Let G1,G2 be separable compactly generated locally
compact groups and letPi < Gi be closed amenable subgroups such that
the pairs(Gi , Pi ) have property (A).

Let (π,H) be a continuous unitary representation ofG = G1 × G2 in
a separable Hilbert spaceH. If HG1 = HG2 = 0, then the comparison map

H2
b,cont.(G;H) −→ H2

cont.(G;H)
is injective.

Proof. SettingP = P1× P2, one checks that(G, P) has property (A). One
can find a sequence(Hn)n≥1 of closedG–invariant subspaces ofH such that

(i) for all n, the restrictionsπ
∣∣G1

and π
∣∣G2

have no almost invariant

vectors inHn;
(ii) for all v ∈ H, on has lim

n→∞‖v− prHn
(v)‖ = 0.
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Pick ω : G3 → H a continuous bounded 3–cocycle and a continuous
cochainα : G2 → H with dα = ω. By the Corollary 3.8, we findα′ ∈
L∞(G2;H)G such thatω = π2ω+ dα′, where

πm : L∞(Gm+1;H) −→ L∞
(
(G/P)m+1;H)

are the continuous equivariant projections of the Corollary 3.3; thusπ2ω =
d(α− α′). Set

ωn = prHn
◦ π2ω and βn = prHn

◦ (α− α′),
and observe thatα− α′ and henceβn are locally bounded. Therefore, since
G1 ⊂ ZG(G2) and vice-versa, we may apply the Lemma 5.1 consecutively
to G1 andG2 to conclude that

sup
g1,g2∈G

‖βn(g1, g2)‖ < ∞

for all n ≥ 1. Now,βn being bounded, the identityωn = π2ωn = π2dβn

impliesωn = dπ1βn for all n ≥ 1. Soπ1βn is in L∞
(
(G/P)2;H)G

and for
almost all couples(g1P, g2P) in (G/P)2, the vectorπ1βn(g1P, g2P) of H
is fixed byg1Pg−1

1 ∩ g2Pg−1
2 . By the property (A), there is for alln ≥ 1

a vectorvn ∈ HG such that

π1βn(g1P, g2P) = vn

for almost all(g1P, g2P). Therefore we have also

ωn(g1P, g2P, g3P) = vn

for almost all triples(g1P, g2P, g3P); but the condition (ii) above implies

lim
n→∞

∥∥π2ω(g1P, g2P, g3P)− ωn(g1P, g2P, g3P)
∥∥ = 0,

so π2ω is essentially constant of valuev = lim
n→∞ vn. Denote bycv the

G–equivariant mapG × G→ H of constant valuev ∈ HG; recalling that
ω = π2ω+ dα′, we may writeω = d(cv + α′) as coboundary of a bounded
map, and therefore we conclude thatω is trivial in H2

b,cont.(G;H). ut

6. Proof of the Theorem 1.1

Setting.Throughout this section, we consider a finite family(ka)a∈A of local
fields, and for eacha ∈ A we consider a connected, simply connected,
almost simpleka–isotropic groupGa. We set

G =
∏
a∈A

Ga(ka), rankG =
∑
a∈A

rankkaG.
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Define for any Banach spaceE the space QMcont.(G; E) of continuous
quasimorphisms to be the collection of continuous mapsq : G → E
satisfying

sup
x,y∈0
‖δq(x, y)‖E < ∞,

whereδq(x, y)
def= q(x)+q(y)−q(xy) (that is,δ is the usual inhomogenous

coboundary map). Thenδ induces a natural identification

QMcont.(G; E)
Cb(G; E)+ Homcont.(G; E)

∼= Ker
(

H2
b,cont.(G; E)→ H2

cont.(G; E)
)
.

Lemma 6.1. All continuous quasimorphisms ofG are bounded.

Proof. First notice thatany quasimorphismq with values in a Banach
spaceE is bounded on a given conjugacy class:∥∥q(x−1yx)

∥∥
E
≤ ∥∥q(x−1)+ q(y)+ q(x)

∥∥
E
+ 2‖δq‖∞

≤ ‖q(y)‖E + ‖q(e)‖E + 3‖δq‖∞
On a product of groups, one can bound quasimorphisms componentwise,
thus letG = Ga(ka). Now one may writeG as a productG = N1 · · · N`
of unipotent subgroups such that for eachNi there is a semisimple element
si ∈ G whose action as inner automorphism contractsNi to the identitye
of G, that is

lim
k→∞

s−k
i usk

i = e ∀u ∈ Ni .

Therefore, ifq is continuous, it is bounded by 2‖q(e)‖E + 3‖δq‖∞ on each
Ni and hence is bounded onG. ut

In other words, we now know that the comparison map

H2
b,cont.(G; E) −→ H2

cont.(G; E)
is injective for everytrivial moduleE.

Corollary 6.2. Let0 be an irreducible cocompact latice inG and letH be
a separable Hilbert space with unitary0–action.

If rankG ≥ 2, then the comparison map

H2
b,cont.

(
G; L2(G;H)0) −→ H2

cont.

(
G; L2(G;H)0)

is injective.

Recall from Sect. 4 that in the statement above the coefficients are
thought of as the continuous unitary representation

(
L2(G;H)0, %) defined

by right translation.
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Proof of Corollary 6.2.The subspace ofG–invariants inL2(G;H)0 can be
canonicaly identified with the trivialG–moduleH0. Therefore, if we denote
its orthogonal complement bỹH, we have aG–invariant decomposition

L2(G;H)0 = H0 ⊕ H̃,
and by the Proposition 2.3 we can handle these components separatedly.

Since theG–action is trivial onH0, the Lemma 6.1 implies that the
comparison map

H2
b,cont.

(
G;H0) −→ H2

cont.

(
G;H0)

is injective, so that we are left with thẽH component, which has no invariant
vectors.

Now there are two cases.
Suppose first|A| = 1 and writeG = G(k). Let G = KSK be a Cartan

decomposition ofG; here S = S(k) and S is a maximalk–split torus.
Takeω : G3 → H̃ a continuous bounded 3–cocycle andα : G2 → H̃

continuous withdα = ω. Since rankkG ≥ 2, we may choose singular tori
S1, . . . ,Sr ⊂ S with S1 · · ·Sr = S and ZG

(
Si (k)

)
non amenable. Thus,

using the same arguments needed to establish the property (T) forG, one
gets that%

∣∣ZG
(
Si (k)

) has no almost invariant vectors. Now the Lemma 5.1

applied to the representation(H̃, %) yields in particular thatα
∣∣Si (k)× Si (k)

is bounded. Thereforeα is bounded.

In the second case, when there are at least two indices inA, fix a0 ∈ A
and define

G1 = Ga0(ka0), G2 =
∏
a6=a0

Ga(ka).

Now choose for alla ∈ A a minimalka–parabolic subgroupPa of Ga and
set

P1 = Pa0(ka0), P2 =
∏
a6=a0

Pa(ka).

By Howe–Moore (see [24]), the two pairs(Gi , Pi ) have property (A). More-
over, the irreducibility of0 implies that the canonical projections pri (0) are
dense inGi , so thatH̃Gi = 0. Now we can apply the Proposition 5.3 to
(H̃, %), thus completing the proof. ut

The Theorem 1.1 is a direct consequence of the juxtaposition of this
Corollary 6.2 with the Proposition 4.2:
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End of the proof of Theorem 1.1.We have a diagramm

H2
b(0;H) //

��

H2
b,cont.

(
G; L2(G;H)0)

��

H2(0;H) // H2
cont.

(
G; L2(G;H)0)

(D)

in which the upper and rightmost maps are injective; therefore, in order
to conclude that the leftmost map is an injection, it is enough to show
that the diagram commutes. Notice by the way that the lower map is an
isomorphism; this is the content of the more classical Eckmann–Shapiro
type lemma in continuous cohomology (see [5] or [6]).

According to Proposition 2.6 and Remark 2.7, the arrows of the diagram
(D) are induced by the map sequence

where the vertical arrows are inclusions; this latter diagram commutes.ut

7. Proof of the Theorem 1.2

In this section, we consider regular or biregular locally finite treesT1, T2

and fix a cocompact lattice0 in AutT1× AutT2. We define

Gi = pri (0) (i = 1,2)

as the closure of the canonical projection and suppose that eachGi acts
transitively on the corresponding boundary at infinityTi (∞). DefineG =
G1× G2.

Lemma 7.1. All continuous quasimorphisms ofG are bounded.

Proof. This follows from a Cartan–like decomposition of each of theGi

as given in [8]. More precisely, fix a hyperbolic elementa ∈ G1 and set
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A+ = {an : n ≥ 0}. Pick adjacent verticesx, y on the axis ofa; the
stabilizersK = StabG1(x) andK ′ = StabG1(y) are compact. One has then

G1 = K · A+ · K if G1 is vertex transitive,

G1 = K · A+ · (K ∪ K ′) otherwise.

A continuous quasimorphismq with values in a Banach spaceE is bounded
on K ∪ K ′; on the other hand, for everyn ≥ 0 one can writea−n = kamk′
for k, k′ ∈ K ∪ K ′ andm≥ 0. Now the inequalities∥∥q(a−n)− q(am)

∥∥
E
≤ 2‖δq‖∞ + 2

∥∥q
∣∣K ∪ K ′

∥∥∞
and ∥∥q(a−n)+ q(an)

∥∥
E
≤ ‖δq‖∞ + ‖q(e)‖E

yield ∥∥q(an+m)
∥∥

E
≤ 3‖δq‖∞ + 2

∥∥q
∣∣K ∪ K ′

∥∥∞ + ‖q(e)‖E,

so thatq is uniformly bounded on arbitrarily high positive powers ofa.
Therefore, the quasimorphismq

∣∣
<a> is bounded and henceq is bounded

on G1 and likewise onG2. ut
Corollary 7.2. The comparison map

H2
b,cont.

(
G; L2(G;H)0) −→ H2

cont.

(
G; L2(G;H)0)

is injective.

Proof. As in the proof of the analogous Corollary 6.2, we decompose the
coefficients as orthogonal sum

L2(G;H)0 = H0 ⊕ H̃,
and as before, the Lemma 7.1 implies that the comparison map

H2
b,cont.

(
G;H0) −→ H2

cont.

(
G;H0)

is injective, so that we are left with thẽH component, which has no invariant
vectors.

Now we pick points at infinityξ1 ∈ T1(∞), ξ2 ∈ T2(∞) and consider
the stabilizersP1 = StabG1(ξ1) and P2 = StabG2(ξ2). It follows from the
Proposition 5 in [7] that the pairs(Gi , Pi ) satisfy property (A). Now the
definition ofGi impliesH̃Gi = 0, so that we may again conclude by applying
the Proposition 5.3 to(H̃, %). ut

The Corollary 7.2 above together with the Proposition 4.2 completes the
proof of the Theorem 1.2. The situation is summarized in the diagram(D)
of Sect. 6.
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8. Proof of corollaries

The Corollary 1.3 follows from the well-known description ofEH2
b(0;R)

in terms of quasimorphisms (see also the beginning of Sect. 6).
The Corollary 1.4 isverbatimthe mentioned result of Bavard [3] once

we have the Theorems 1.1 and 1.2.
D. Witte shows in [40] how W.P. Thurston’s stability theorem in [38]

implies the Corollary 1.5 given the injectivity of the natural map. Along
the way, one needs the vanishing ofH1(0′;R) for finite index subgroups
0′ < 0, which is well-known in the setting of Theorem 1.1 and a result
of [8] in the setting of Theorem 1.2.

Proof of Corollary 1.6.It follows from [6] that in the case (i) we have
H2(0) = 0, while in case (ii) the spaceH2(0) is one dimensional and
generated by the Kähler class. This class being bounded (by [21]), the
corollary follows from Theorem 1.1. ut

Finally, the Corollary 1.7 is proven in the introduction.
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