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Abstract. We prove that the natural ma‘ﬁg(l“) — HZ(F) from bounded to usual co-
homology is injective ifl" is an irreducible cocompact lattice in a higher rank Lie group.
This result holds also for nontrivial unitary coefficients, and implies finiteness results for
the stable commutator length vanishes and@hyaction on the circle is almost trivial. We
introduce the continuous bounded cohomology of a locally compact group and prove our
statements by relating] (T') to the continuous bounded cohomology of the ambient group
with coefficients in some induction module.

1. Introduction

If one considers only bounded cochains in the standard resolution for group
cohomology, one obtains a subcomplex defining the so-cdltachded
cohomologyH; (I'; —) of a groupI'. This complex inclusion determines
a natural map

Hp(I'; =) — H*(I; —)

which in general is neither injective nor surjective.

This interesting new invariant has been shown to be relevant to geometry
by M. Gromov in his work on minimal volume [21]; moreover, the space
HZ(T"; R) has remarkable algebraic and dynamical significance as we shall
see later.

Bounded cohomology comes equipped with a natural seminorm; this
provides the classes which are in the image of the natural map with a nu-
merical invariant. This feature has been used by Gromov to give a proof
of Mostow’s rigidity theorem. In this context we mention a claim of
Gromov [22] recently proved by I. Mineyev [31]: for hyperbolic groups, the
natural mapH{’ — H" is surjective in every degrae> 1.

However, few results are known about the size of the bounded cohomo-
logy of groups; the first is a theorem of B.E. Johnson’s [26]: the bounded
cohomology of any amenable group vanishes. On the other hand, one knows
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now large classes of groups for whi¢t¢ is infinite dimensional; this in-
cludes notably non—elementary Gromov hyperbolic groups (see [12], [15]
and [32]).

Our aim is to give finiteness results for certain groups; our main results
are the following:

Theorem 1.1. LetTI" < G be an irreducible cocompact lattice in a finite

productG = [] Ga(ka), whereG, are connected, simply connected, almost
acA
simplek,—isotropic groups andt, are local fields.

If > rank,Ga > 2, then the natural map

acA
HE(; H) — HAT;9)
is injective for any separable Hilbert spagewith unitary I'—action.

Theorem 1.2. Let 71, T, be regular or biregular locally finite trees and
be a cocompact lattice iAut7; x Aut7s.

If the closurepr; (I") of the canonical projectioi” — Aut7; acts transi-
tively on the boundaryj(oco) fori = 1, 2, then the natural map

HE (T3 H) — HAT; 9)
is injective for any separable Hilbert spagewith unitary I'—action.

In particular, the Theorem 1.2 applies to the new family of finitely
presented simple groups constructed in [7].

The bounded cohomology carries crucial information in degree two via
its connection withquasimorphismsrecall that a (real-valued) quasimor-
phism of a groud™ is a mapq : I' — R satisfying

sup [q() +a(y) — a(xy)| < oc.

x,yel'
The kernelEHZ(T'; R) of the natural map identifies canonically with the
space of quasimorphisms modulo those that are at finite distance of an actual
homomorphism. Therefore, we have the

Corollary 1.3. LetI" be as in Theorem 1.1 or 1.2 above. Then any quasi-
morphismI’ — R is bounded.

The Corollary 1.3 has a consequence of algebraic flavor oodimemu-
tator subgroudT, I'], that is, the subgroup &f generated by the s&tof all
commutators of pairs of elementsin Indeed, lef| - || be the word metric
on|[I', I'] associated t&, and let

Iy
n

ts(y) = lim
n—oo
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be thestable lengtiof y € [T, T']. Ch. Bavard proves in [3] that the stable
length ¢ is identically zero if and only if every quasimorphism Bfis at
bounded distance from a homomorphism, thaEisl?(I"; R) = 0. Thus we
deduce

Corollary 1.4. LetT be as in Theorem 1.1 or 1.2 above. Then the stable
length on[T", "] vanishes.

This suggests the following

Question.Let I" be an irreducible lattice in a groupg as in Theorem 1.1
above; does there exist a const@pt such that every element i, I'] is
a product of at mosE commutators ?

The answer is affirmative fof = SL,(Z) with n > 3, and more
generally also whe is replaced by certain number rings (see [9]). Still
more general rings are considered in [36].

The Corollary 1.3 also implies a result of dynamical flavor. Cet>
Homed (S') be an action of" by orientation preserving homeomorphisms
of the circle, ande € H? (Homed (S'); Z) be the Euler class. In [17],
E. Ghys observed thatis a bounded cohomology class and that its restric-
tioner € Hg(l“; Z) is, as bounded cohomology class, a complete invariant
of semi—conjugacy.

Corollary 1.5. LetT" be as in Theorem 1.1 or 1.2 above, and assume
H?('; R) = 0. Then anyl'—action byC'—diffeomorphisms on the circle
factors via a finite group.

In the case of (not necessarily cocompact) irreducible lattices in higher
rank real Lie groups, this finiteness result {Bt—actions on the circle
has been obtained independently by Ghys in [18] lis associated to
an algebraic group of highep-rank, D. Witte has obtained in [39] this
finiteness result even for actions by homeomorphisms.

In the context of real Lie groups, one can deduce the following corollary
from the Theorem 1.1:

Corollary 1.6. Let X be an irreducible symmetric space of non-compact
type, andl" < Is(X) a torsion free cocompact lattice. Assume that the rank
of X is at least three.

(i) If X is not hermitian symmetric, theidZ(I'; R) = 0.
(i) If Xis hermitian symmetric, theH?(I'; R) is one-dimensional, gener-
ated by the Kahler class.

For a computation of the sup—norm of the Kahler class, see [11].
While it is well-known that the vanishing @?—cohomology is a quasi-
isometry invariant, we have:
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Corollary 1.7. For finitely generated groups, the vanishing or finite dimen-
sionality of HZ(I'; R) is not a quasi-isometry invariant.

Indeed, our Theorem 1.1 applies to irreducible cocompact lattices in
PSL:(Qp) x PSL:(Qg). On the other hand, reducible lattices in this product
are virtually a product of non-abelian free groups, and therefore have an
infinite dimensionaH?.

As an example of a group isomorphic to an irreducible cocompact lattice

in PSL(Qp) x PSL(Qq), one can consider the group §@[%]>, where
p and g are distinct primes congruent to 1 modulo 4. Notice also that
there is a finite index subgroup < SO; (Z[ﬁ]) which is an amalgam

I' = Asxc B of free groupsA, B, C; our Theorem 1.1 implieE H3(I") = 0,
which is in contrast to a result of K. Fujiwara [14] and R.I. Grigorchuk [20]
asserting tha€ HZ(A ¢ B) is infinite dimensional providedB/C| > 2
and|C\ A/C| > 3. Indeed, for the mentioned grouj there are only two
double classes @ in A andB.

The proof of our main theorems leads us to introdrarginuousounded
cohomology with coefficients and to consider a commutative diagram of the

type:
HE(T; ) ———— Hf ot (G: LG H)")

| e

H2(I'; ) — HZ(G: L3(G; )"

Here the lower arrow is the analogue of the Eckmann—Shapiro isomorphism,
and the upper arrow is a similar induction map for bounded cohomology.
With this picture in mind, we shift the original problem concerningver

to the corresponding question abdbit thus being left with two different
kinds of questions:

(). The injectivity of the induction map (upper arrow(B) ). The coef-
ficient spacé.?(G; $)' suits us best, but is not quite the right analogue to the
Eckmann—Shapiro induction module. We can however establish injectivity
by realizing the bounded cohomology by measurable bounded cochains on a
Furstenberg boundarg /P (P amenable), bringing into play the ergodicity
of I on (G/P)2. The higher rank assumption is not needed here.

(ii). Theinjectivity ofthe comparison ma? . (G; —) —>HZ . (G; —).

For trivial coefficients, this is a rather simple matter for the gro@psder
consideration, and doesn't involve the higher rank assumption. However,
the induction modulé& 2(G; $)" has non-trivialG—action even for trivial),

and this is the central point where higher rank phenomena appear. Indeed,
sinceHZ(I") is infinite dimensional for a lattice in a rank one gro@pthe
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point (i) implies that
H2 ont (G; L2T\G)) —> H2,,(G; LAT\G))

is not injective, while it would be ifL2(I"\G) is replaced by any space
with trivial G—action. We settle this poirtii) by appealing to properties of
the regular representation & in L?(I"\G) particular to the higher rank
situation.

Notice also that the diagramiD) shows why we are led to consider
continuous bounded cohomology with non-trivial coefficients even to settle
the case oHZ(T"; C).

The structure of this paper is as follows. After introducing in Sect. 2 the
continuousbounded cohomology of a locally compact group, we devote
Sect. 3 to constructing new resolutions for (continuous or not) bounded
cohomology. As a consequence we point out the Corollaries 3.8 and 3.9,
allowing us to realize bounded cohomology on Furstenberg boundaries.

Inthe Sect. 4, we prove an induction result linking the bounded cohomo-
logy of a latticelI’ < G with the continuous bounded cohomology Gf
with coefficients in various induction modules.

In Sect. 5, we introduce a technical hypothe#\9 @nder which the
comparison map for the ambient groGpis injective.

Now, putting everything together along the lines drafted in the diagram
(D) above, we complete the proof of Theorem 1.1 in Sect. 6 and the proof
of Theorem 1.2 in Sect. 7. In the last section, we prove the corollaries stated
in the present introduction.

Remark 1.8.We shall stay to the following notational conventions through-
out the paper:

All locally compactopological spaces will be Hausdorif,).

We denote by theright translationon function spaces over a group or
semigroupG, that is the action defined by the rule(g) f)(x) = f(xg). For
groups, thdeft translationis defined by(x(g) f)(x) = f(g~1x). A continu-
ous functionf is right uniformly continuousf the orbital mapG > g —

o(g) f is continuous (for the Fréchet structure of local boundedness). Mind
that some authors use the opposite convention.

AcknowledgementsThe first named author thanks Yehuda Shalom for helpful comments
concerning the case of irreducible lattices in products.

2. Continuous bounded cohomology

In his work [26], Johnson defined the cohomology of Banach algebras
by giving an analogue to Hochschild’s construction in the more deli-
catetopological context, replacing e.g. the algebraic tensor product with
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Grothendieck’s projective product. He could therefore consider the co-
homology of the group algebra®(G) of a locally compact grougs, and
this will turn out to be what we call theontinuous bounded cohomology
HE cont (G —) of G.

When G is a discrete group, this reduces to the bounded cohomology
Hy (G; —), to which there is a more functorial approach; that is, the bounded
cohomology of a group will be defined by the invariants of any resolution
with an universal injectivity property in an appropriate category. This functo-
rial definition has been introduced by N.V. lvanov [25] and later in a slightly
different form by G.A. Noskov [33].

We give a definition of continuous bounded cohomology and then recall
the functorial setting for plain bounded cohomology. Many of the following
definitions are analogous to the standard setup:

First definitionsLet G be a locally compact group. BanachG—modulgor
module for short) is a Banach spag®n whichG acts by continuous linear
operators. The modulg will be saidboundedresp.isometrig if G acts by
operators of uniformly bounded norm (resp. acts by isometric operators).
A morphismof modules is a continuous linear map{amorphism is an
equivariant one. Notice that every bounded modtilis isomorphic to an
isometric modulegjs by replacing its norm with the equivalent norm

lvllis = supligvll (veb).
geG

When we consider simply a Banach spé&get is understood thaE has the
isometricG—module structure defined by the trivid-action.

ResolutionsA G-resolutionof a boundeds—moduleE is a sequence
0—-ERESEBE — ..

of boundedG—modules(E,)n-0 and G—morphisms(d,)n-0, together with
a contracting homotopythat is a sequence of morphisims: E, — E,_1
(where E_; = E) satisfying hp10y11 + dhhp = 1d and hodg = Id. We
denote such a resolution bi,, d., h,) or simply by E,.

Likewise, anisometricG—resolutionof an isometric moduléE is a se-
guence of isometri&G—modules as above but witlh, || < 1 for all n.

The elements oE are calleccoefficientsthe map, is theaugmentation
and the othed, arecoboundarymaps; subscripts will often be omitted.

Thecohomologyof G with respect tae,, denoted byH*(G; E,), is the
cohomology of the subcomplex @—invariants

0—>Eg—>Ef—>EZG—>---
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More precisely, the space ofcocyclesis Z"(G; E,) = Ker(dn+1|EG)
the space oh-coboundariess B"(G; E,) = Im(dn|EG ) and we set
1

H"(G;E,) = Z"(G;E,)/B"(G;E,). We endowthevectorspabé‘(G E.)
with the quotient seminorm.

Cochain morphisms and homotopie%. cochain morphismfrom a G—

resolution (E,, d,, h,) of a BanachG—module E to another resolution

(E.,d., h)) of a BanachG—moduleE’ is a sequence, = (¢n)n>_1 Of
G—equivariant continuous linear maps such that the diagram

do dy do

0 E Eo =] E>
lm lwo lm lfﬂz

d d, o
o—e-tg -t b

commutes. In case the coefficients coincide @ndis the identity, one says
thatgp, is augmentation preserving he following is immediate:

Proposition 2.1. The morphisny, induces a sequence of maps at the level
of cohomology

H%, : H*(G: E,) — H*(G; E)),
where eaclH"g, is a continuous linear map of norm at madist, ||. O

Letg,, ¢, be two cochain morphisms froig, to E.. A (G—equivariant)
homotopyfrom ¢, to ¢, is a sequence ofG—equivariant) morphisms
on: En — E;_; (WhereE’ ; = E’) satisfying

Ont10hs1 +Ghon = ¢ —¢@n and ooth = ¢ — 1.

If there is such a@&—equivariant homotopy, the morphismas, ¢, induce
indeed the same maps at the level of cohomology.

The standard resolutiomow consider a bounded resp. isometric separable
BanachG-moduleE. For eacm > 0, we consider the spat¢e®(G"*L; E)

of essentially bounded measurable map clagsesG"*! — E. The sup-
norm relative toE turns L>®(G"*; E) into a Banach space, in general
non separable. We endow®(G"*+; E) with a structure of bounded resp.
isometric Banacl—module via the diagonéeft regularaction defined by

CHICN = g( f(g o, .- gflgn))

for f € L>®(G"*; E) andalmostaly, go, . .. , g, € G. Notice in particular
that if the action ork is trivial, this coincides with diagonal left translation.
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One gets a sequence
0—ER1%G:E) S L*GLE) L ...

n .
by the usual formulal, = _Z(—l)'dn,i whered,; simply omits thei

i=0
variable; the mayl is defined bydgv(g) = gv. A contracting homotopy is
provided as in [5], Proposition 3.2.1, by the integration of the first variable
againstafixed functiop € Cj,(G) of integral one for a left Haar measure
that is

hn f(go’ s gnfl) - ‘/(\;(p(g) . f(g’ gO’ s gnfl) dm(g)

for almost allg, ... , g1 € G. With this homotopy, the resolution above
is an isometridG—resolution ofg, and we call it thestandard homogenous
resolution The cohomology ofG with respect to this resolution is the
continuous bounded cohomologhG, and we denote it by ., (G; E).
As to terminology, see the Proposition 2.4 below.

When we take the complex fietd endowed with the trivialG—module
structure as coefficient module, we use the shorter notatipg, . (G);
likewise, we follow the general convention and write simpi (G), C(G),
Coo(G) etc. when the coefficients are complex humbers.

Remark 2.2.The relation with Johnson’s Banach algebra cohomology is as
follows. SupposeE is the dual of a Banach space with jointly continuous
G-action (in particular, th&s—action onE becomes weak-* continuous).
Since we have takeR to be separable, the spade¥ above coincide with

the spaces of weak-* measurable bounded maps. Therefore, a proposition of
Johnson’s ([26], Proposition 2.3) implies thdf ., (G; E) is the Banach
algebra cohomology df*(G) with coefficients in such modulés.

A coefficient formula.The following statement can be derivedrbatimas
in the classical case:

Proposition 2.3. Let G be a locally compact group and &, F be two
separable bounde@—modules. Then the canonical isomorphism of topo-
logical vector spaces

Ht?,cont(G; E S2) F) = Ht?,cont(G; E) S Ht?,cont(G; F)
holds for alln > 0. ]

Continuous cochaingConsidering for everp> 0 the subspacg,(G"+1; E)
of continuous bounded functions, one gets ano@eresolution ofE:

0—E®CyG:E) % CG2E) % ... (%)
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Notice that although (*) is a homotopy preserving subresolution of the
former, a simpler contracting homotopy can be given for this resolution
by

h:] f(XO’ ] anl) = f(e’ XO! R anl)'

Proposition 2.4. The complex
0 — Cp(G; E)® — Cy(G? E)® — Co(G% E)® — - -

of G—invariant continuous bounded cochains realizes the continuous
bounded cohomologhy ... (G; E).

More precisely, the inclusion maps : C,(G"; E) < L*(G"; E)
induce isometric isomorphisms at the level of cohomology.

Proof. The proof uses a standard regularization technique, almost identical
towhatis exposedin [5], 8 4. However, we describe explicitly a few (tedious)
steps which will be of later use.

Fix acompactly supported continuous non-negative fungtianC,(G)
of integral one for a left Haar measureand define theegularizationmaps

Ry : L¥(G™ E) — Cp(G™ E)

by the convolutionR,a = « * Y®™D for all « € L>®°(G™?; E). This
yields aG—morphism of complexes of norm one, another being given by the
inclusion maps,. To see that these induce mutually inverse isomorphisms
of the cohomology spaces, one shows Rat:, and:, o R, are equivariantly
homotopic to the identity. To this end, define first forall < i < n the
partial regularizationR,; by Ryja = a x y®1*D @ §2"=) (wheres, is

the convolution identity), so theR, 1 = Id andR,, = R,. Now define

the stutteringmaps

oni @ L¥(G" E) — L®(G"; E)

for each 0< i < n — 1 in the following way: for everyr € L>®(G™1; E)
andXg, ..., X, € G, let

On,i (XO, ey Xn) =
= / PEMA(y) ooy XY X Xn) AP (y),
Gn+2

wherey = (Yo, . .. , Ynt1). Everyo, ;i is a well-definedS—equivariant con-

tinuous linear operator. A direct calculation yields the “simplicial” relations
On,j dn,j = dn—l,j—lUn—l,i Vi =< J - 2,
On,i dn,j = dn—l,j On—1,i—1 Vi = J +1,
On,i Ohi = Ra-gi-1,

OniOnitt = Ro_ai.
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Now define aG—equivariant continuous linear operator
on: L¥(G™ E) — L®(G"; E)

n—1 .
by on = ) (—1'on;. Using the simplicial relations above, one checks

i=0
that

dnon + On+1 dn+1 = Id - R,,

thus establishing the homotopy frage R, to Id and, by restriction, from
R, o, to Id. O

The comparison mag.he resolution (*) can be viewed as a subcomplex of
the sequence of vector spaces

0—ERcGE Bcete L. ..

which realizes thaesualcontinuous cohomologi s, .. (G; E) of G (see [23],
§ 2). This inclusion of complexes induces for each map
Hp cont(G: E) —> Hgon(G: B)

cont
which, in general, is neither injective nor surjective.

Bounded cohomologyConsidering any grous, denoteG; the locally
compact group consisting @ endowed with the discrete topology. The
bounded cohomologh; (G; E) of G with coefficients in a separable mod-
ule E is the continuous bounded cohomolod .., (Gs; E) of G;. Since
G; is discrete, there is no difficulty in considering non separable modules
E aswell.

The resolution (*) takes the more familiar form

0—ER G E) S G2 E) S ... (%)
The comparison map now reduces to
Hp(G: BE) — H*(G: B),

that is, connects the bounded cohomology to the usual cohomdidgy
We call this map th@atural mapfrom Hg to H*; this terminology will be
justified by the Proposition 2.6 below. The kerf&Hs (G; E) of the natural
map is called thexact partof Hy (G; E).

Injectivity. We recall now the functorial definition of bounded cohomology
for a discretegroup G. A G—morphism isadmissibleif it has a (left)
section which is a morphism (not necessa@hyequivariant). Aradmissible
submodulés a submodule (i.e. a closds-invariant subspace) for which
the inclusion map is admissible. A bounded modHlés injective if any
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G-morphismx : A — E from a bounded admissible submodiéle— B of
a bounded modul® can be extended:

Likewise, aG—morphism igsometrically admissibld it has a (left) section
which is a morphism of normx 1. An isometrically admissible submod-
ule is a submodule for which the inclusion map is isometrically admis-
sible. An isometric modulé& is isometrically injectivaf any G—morphism

a : A — E from an isometric isometrically admissible submodile- B

of an isometric moduld can be extended as above but wjgi| < |«]|.

The resolutionE, is injectiveif all E, are; it isisometrically injective
if all E, are and|h,| < 1 for all n. As expected, ifE, is an injective
resolution of aG—moduleE, H"(G; E,) doesn't depend, as a topological
vector space, on the choice of the resolution; see the Remark 2.5 below.

The point of these considerations is that the standard resolution is in-
jective; more precisely, putting together results of [25] and [33], one has
that £>°(G"; E) is injective for any bounded modulg and isometrically
injective if E is isometric.

While H3 comes with a canonical topology, mind that the quotient
seminormon H"(G; E,) does depend on the resolution. Therefore one
defines thecanonical seminornon Hy,(G; E) to be the infimum seminorm
over allisometricallyinjective resolutions. This seminorm is realized by the
standard resolution ([25], Theorem 3.6). Notice also that wHfl¢G; R)
is Hausdorff forn < 2 (see [30]), this is not necessarily the case in higher
degree, as has been shown by T. Soma in [37].

Remark 2.5.Let us be more precise about functoriality (following [25],
Lemma 3.3.2 and below). Consider two isometric resolutiBpsand E;

of an isometricG—moduleE and suppos&, isometrically injective. Then
there is an augmentation preserving morphigm E, — E,, and more-
over any two such morphisms ai@-(equivariantly) homotopic. Endowing
H*(G; E,) with the canonical seminorm artd*(G; E) with its quotient
seminorm, the induced maps at the level of cohomology are of norm at most
one. In particular, ifE, is also isometrically injective, we get canonical
isomorphisms, isometric for the canonical seminorms.

In particular, we insist that the symbHli$ (G; E) stands for the cohomo-
logy associated to the resolution (**), while there is a canonical isomorphism
from the cohomology of any other isometrically injective resolutiorcdb
Hy (G; E). Likewise, we choosél® to stand for the cohomology associated
to the resolution by the spac€sG"; E).
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These consideration will be understood whenever we mentiaratinen-
ical isomorphismsNotice the obvious analogues for non-isometric injec-
tivity.

The natural mapLet us turn back to theatural mapmentioned above, that

is the comparison mapl? (G; E) — H*(G; E) induced by the inclusions
(I, E) ¢ C(I'™;, E). It turns out that this map is completely canonical.
This is due to the fact that bounded cohomology is defined in a subcategory
of the category used to define usual cohomology; more precisely, a reso-
lution in the sense of bounded cohomology is in particular a resolution
in the usual sense, a module as defined in this paper is in particular also
a module in the usual cohomological context, and so on for morphisms and
homotopies. It is actually this inclusion of categories that determines the
natural map:

Proposition 2.6. Let G be a discrete group an# a boundedG—module.

Let ¢, : E, — E. be an augmentation preserving morphism from
any injective resolutionE, = 0 - E - E¢ - E; — --- to any
E.=0— E - E; — E] — --- which is an injective resolution in the
sense olusualcohomology.

Then the canonical isomorphismel*(G; E,) = H3(G; E) and
H*(G; E,) = H*(G; E) intertwin H*¢, with the natural map.

Notice that this implies in particular thainy augmentation preserving
morphism from the standard resolutiéty (G*; E) to the usual resolution
C(G*; E) induces the natural map.

Proof of Proposition 2.6The injectivity conditions (in each category) yield
the existence of augmentation preserving morphigmg*(G*; E) — E,
andv, : E, — C(G*; E) inducing the corresponding canonical isomorph-
isms.

The usual injectivity implies that any augmentation preserving morphism
from £°°(G*®; E) to C(G*; E) is equivariantly homotopic to the inclusiop
Apply this tov, o ¢, o U,. ]

Remark 2.7.At least part of this argumentation can be carried over to
the comparison map for continuous bounded cohomology; indeed, there is
a functorial setting for (usual) continuous cohomology (see [5] or [6]). The
spacesC(G"; E) and L .(G™ E) (for 1 < p < o0) are injective in the
appropriate sense, so that the Proposition 2.4 implies that the inclusions

L®(G" E) — LPJ(G"; E)

also induce the comparison mé&fg ... (G, E) — Hg, (G, E).
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A few injective resolutionsT'he isometric injectivity of¢*°(G; E) can be
immediately generalized to the following setting:

Lemma 2.8. Let G be a group acting (say on the left) freely on a 3et
Then the spacé>(X; E) endowed with the left regulaG—action is an
isometrically injective bounde@—module for every isometrie—moduleE.

This statement (aswell as some others below) has an obvious analogue
for boundedG—modulesE; the adjustment is left to the reader.

Proof of Lemma 2.8Since the action oiX is free, there is a fundamental
domainF ¢ X and aG—equivariant mag : X — G such thas(x)"*x € F
forall x € X. If we endow the Banach spaé® (F; E) with theG—action on
the coefficients, then we know that the Banach spd€e(G; £*°(F; E))
endowed with the left regular action is isometrically injective. Now one
checks that the map

A: °(X; E) — €% (G; £*(F; E))

defined byA f(g)(x) = f(gx) is well-defined,G—equivariant, linear and
isometric. One checks also that the map

B: £%(G; ¢*(F; E)) — £*(X; E)

defined byB f(x) = f(s(X))(s(X)~1x) is an inverse ofA. Thus¢>® (X"1)
is also isometrically injective. O

There is a measure—theoretic version of the Lemma 2.8 if the group
under consideration is countable:

Lemma 2.9. Let G be a countable group acting on a measure spce
Suppose thaG preserves the measure class and that there is a measurable
sections: X — G.

Then the space*(X; E) endowed with the left regula&—action is an
isometrically injective bounde@—module for every isometr8—moduleE.

By measurable sectignve understand a measurafdeequivariant map
s: X — G as in the proof of Lemma 2.8; in particuld@ = s~(e) is
a fundamental domain.

Proof of Lemma 2.9The proof goes as for the Lemma 2.8 by considering
the maps
A: L¥(X; E) — £ (G; L™(F; B))

defined byA f(g)(x) = f(gx) and
B: ¢* (G; L (F; E)) — L®(X; E)
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defined byB f(x) = f(s(X))(s(x)~1x); but we have to check measurability.
The mapA f(g) is clearly measurable for aj, and as tdB f, notice that for
every measurable skt ¢ E we have

@HW = J (st oMo o)

yeG
hence we are done by the countability@®f O
This yields immediatly the following

Corollary 2.10. Let G be a separable locally compact group, < G
a countable closed subgroup,a separable isometri€—module. Then

(i) the bounded cohomologyls (I"; E) of T is realized by the complex
of invariants

0— E— L¥G%E) — L®G%E) — -
(ii) any augmentation preservirfg—equivariant cochain morphism or v,

0——=E—>L®G;E) —=L®(G% E) —=L®(G% E) — -

I

0——=E——= ([ E) ——=(®*T% E) — (T35 E) —

induces an isometric isomorphism at the level of cohomology; the isomorph-
ism doesn’t depend on the choicegfresp.,.

In this statement, the coboundary maps are still the ntdpscn (or d
for short) defined above, as will always be the case unless otherwise stated.

Proof of Corollary 2.10Concerning point (i), the existence of the map
needed to apply the Lemma 2.9 with= G" is a consequence & being
separable; so it remains only to exhibit a contracting homotopy. This is
achieved by setting

hn f(gOv ey gnfl) - f f(g’ gO’ ey gnfl) (ﬂ(g) dm(g)’
G

for any fixed positive compactly supported continuous funcgiofintegral
one for a left Haar measum® on G. The integration is justified by the
separability ofE.

As to point (i), this is the functorial property of injectivity mentioned
in [25], Sect. 3.7. O
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We have proved in Proposition 2.4 that the resolutibgG*; E) and
Cy(G*; E) of a G—-module E are G—equivariantly homotopic; therefore,
consideringE as al'-module, we deduce the following from the Corol-
lary 2.10:

Corollary 2.11. Let G be a separable locally compact group, < G
a countable closed subgroup,a separable isometric—module.

The bounded cohomolodyy (T'; E) of T' is realized by the complex of
invariants

0— E— Cy(G% E) — C,(G% B — .-

Here is another source of new injective resolutions:

Lemma 2.12. Let V be an injectiveG—module andV a closed subspace
of V admitting aG—equivariant continuous projection: V — W.

ThenW is also injective.

Moreover, if||] = 1 andV is isometricallyinjective, then so i§V.

Proof. Apply the definition(s) of injectivity to the following diagram:
A"———=B

Wee———=V

3. Amenability, harmonicity and resolutions

In this section, we will apply amenability methods to semigroups of meas-
ures in order to obtain new resolutions for bounded cohomology.

Definitions. A semigroups a setSendowed with an associative composi-
tionlaw Sx S— S(written multiplicatively); neither inverses nor a neutral
element are required.

A semitopological semigrouis a semigroup endowed with a topology
for which the multiplication iseparatedlgontinuous, that is for eache S
the right and left multiplication by are continuous mapS — S.

A semitopological semigrou§ is right amenablef the spaceCy, (S
of right uniformly continuous bounded functions admits a right invariant
mean, that is a continuous linear form of norm one

M : Cpu(S — C
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invariant under right translations and withi(1ls) = 1.

For a survey on amenable semigroups, see [27]. This reference considers
leftamenability ofS, which is equivalent to right amenability of the opposite
semigroups’ (that is, the semigroup with multiplicatiots, s) — S's).
Beware however that countrary to the case of groups, a semigroup needs
not to be isomorphic to its opposite; and it may indeed happer8tisatght
amenable whiles® is not. Nonetheless, we will often omit to specify that
we consideright amenability.

For technical reasons, we introduce a further notion: a semitopolog-
ical semigroupS is right C—amenablef the spaceC,(S of continuous
bounded functions admits a right invariant mean. It is not known whether
C—amenability is really different from amenability (see [27], problem 1).
However, one has the results stated in 3.1 below.

Finally, we say that a semigrouis amenable or C—amenable whenever
it is the case for the semitopological semigrdionsisting ofSendowed
with the discrete topology.

We now summarize a few facts on amenability.

Proposition 3.1.
(i) C—amenable—=> amenable.
(i) For discrete semigroups, C—amenal#e= amenable.
(i) For locally compact groups, C—amenabie— amenable.
(iv) All commutative semitopological semigroups are amenable.
(v) Afinite product of amenable semitopological semigroups is amenable.

Proof. SinceCy, (S is a subspace dE,(S), we get (i) by restricting the
mean. In (ii), these spaces coincide. As to (iii), an amenable locally compact
groupG has an invariant mean on the even larger spatéG) (see [19]).

The last two statements are well-known, see [10] and [27]. ]

Convolution semigroups on a locally compact groupet G be a locally
compact group and denote byi(G) the convex set of positive Radon
measures of norm one (probability measures). This is a semigroup for the
convolution defined by

(n*v) (f) = // f(xy) du()dv(y)
cJo

for u,v € M(G) and f € Cu(G). Recall that thenarrow topology on
M(G) is defined by integration of bounded continuous functions, which
means that a n€fc,)ac o cOnverges toe if and only if wa(f) — w(f) for all

f € Cp(G). This topology turnd(G) into a semitopological semigroup
(see [35], Proposition 24.1.3).
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For every separable Banach spdeethe semigroupM(G) acts on
L>°(G; E) by right convolution, that is

(Fxm) = f foxy D duty = u(ex 1),
G

for f € L*(G; E) andu € M(G). This is an action by linear operators of
norm one which leaves the constants invariant. Moreover, givenaction

on E by continuous linear operators, the associated left actidtPe(G; E)
defined forf € L>(G; E) and almostaly € Gby (g- f)(x) = g(f(g~*x))
commutes withM(G) (this amounts to Bochner’s theorem, see e.g. [41],
V.5 Corollary 2). Likewise, viewing the direct produbt(G)" as a subset
of M(G"), one has for everyy an M(G)"—action onL*(G"; E) which
commutes with the left diagonal regul@action.

Notice also that the action dfl(G) preserves the subspades(G; E)
and Cy 4(G; E) of continuous (resp. left uniformly continuous) bounded
functions.

We consider for any subsemigro@of M(G) the spacd-g(G"; E) of
all functions which ares-invariant in every variable, that is the subspace of
S'—invariant functions. We call these functioBsharmonidn each variable,
or S—pluriharmonic (whenn > 2). More generally, any8'—convolable
function will be calledS-pluriharmonic if it isS"-invariant.

Proposition 3.2. LetG be a locally compact separable group aSe sub-
semigroup oM(G) endowed with the narrow topology.

If Sis C—-amenable, then there iSG—equivariant continuous projection
of norm one

7: L*(G) — LT(G)

onto the subspace &-harmonic functions.
Moreover,r preserves left uniform continuity.

Proof. Asis pointed by M.E.B. Bekka in [4], it is enough to defimen the
subspace€y,, 1, (G) of bounded left uniformly continuous functions, that is

7 Cou(G) — Cpu(G) N LT (G).

For more details, see the proof of Theorem 1 in [4].

Fix f € Cy1u(G) andx € G. We define a functionfy : S — C by
setting fx(n) = (f % w)(X). If (na)aca IS @ Net converging narrowly ta,
one has

fu(ia) = naexH 1Y) > p(exH1Y) = fxu,
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hencefy is continuous o1%. But f, is bounded by f ||, and hence, choosing
aninvariant meatt onCy (S), we may average and defind (x) = M(fy).
We have obtained a composed function

G— 9L c

X — fy —afX)

where the secound arrow is norm-continuous, while the bound

I = fyd = sup n(e0H ) = p(excty ™)

< 1Y — oy H o = If — 2V ™ flloos

together with the left uniform continuity of, implies that the first arrow
is left uniformly continuous. Therefore we have shown thdt is left
uniformly continuous. On the other handf is bounded by f |, and
7 is clearly linear inf, so that we have a continuous map of norm one
(r preserves the constant functions). It is straightforward thas left
G—equivariant, and hence we proceed to show:itfats S-harmonic.

To this end, picke € S. Now we have

=

(of %)) = fG M( 1) dua(y).

and since the map — f,,1 is continuous, it has separable range in
the Banach spadg,(S and hence (see again [41]) we may commute the
integral with the continuous for® and continue with Bochner integrals:

(rf () = aﬁ( fG fxrldmy)) =

= im(m / f*v(Xyl)dM(y)) =
G

- zm<u > fxw *M(x)> — Mo() ).

By right S-invariance ofi, this last expression is equal 2 ( fy) which

is 7 f(x). This shows thes-harmonicity ofr f. Since it follows from the
definition of 7 that it leaves harmonic functions unchanged, the proof is
complete. O

The result above can be extended as follows. Take 0 and suppose
Sl is C—amenable; this is e.g. the case wiSda amenable and discrete
or is an amenable locally compact group. Then the proposition above yields
a projection
Mo L¥(G™ — LF(G™Y
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onto the subspace &-pluriharmonic functions. Furthermore, turning back
to a separable Banach spdtwith G—action by continuous linear operators
(i.e. a BanactG—module), consider the associat8t—action on the (left
diagonal regular) BanacB—moduleL>°(G"*+1; E). For every continuous
linear form A € E* and everyf e L>°(G"*1; E), the functionA o f is

in L*(G"*1) and we define for almost all € G an elementr f(x) of the
bidual E** by the formula

7f(X)(A) = w(A o )(X).

In particular, forE reflexive, it is straightforward to check that this yields
a G—equivariant projection of norm one

T LX(G™h E) — LPG™L B

onto the subspace dd-harmonic functions. Moreover, one can choose
the invariant mean o€, (S™!) in a way compatible with the canonical
projectionsS™! — S, so that the maps, commute with the coboundary.
To sum up, we have obtained the following result:

Corollary 3.3. LetG be alocally compact separable groupa separable
reflexive Banaclis—module andS a subsemigroup df1(G). Supposesis
either amenable as discrete semigroup or is an amenable locally compact
group when endowed with the narrow topology.

Then there is a morphism of complexes

0—=E—L®G;E) —= L®(G% E) —= L®(G3% E) —= -

B

0—=E—=LZGE) —= LFGHE) —=LFGHE) —= -
consisting ofG—equivariant continuous projections of normone. 0O

The contracting homotopy defined in Sect. 2 preserSeglurihar-
monicity; therefore the spacdsgo(G”“; E) determine a subresolution
of E. In the case thaG is a discrete group, the Corollary 3.3 implies
in particular (via Lemma 2.12) that eveh® (G"*; E) (= ¢3(G"; E))
is isometrically injective (forE isometric), and therefore we have the

Corollary 3.4. Let G be a countable groupk a separable reflexive iso-
metric G-module andS a subsemigroup oM(G). SupposeS is either
amenable as discrete semigroup or is an amenable locally compact group
when endowed with the narrow topology.

Then eacht ¥ (G"1; E) is isometrically injective and thus the complex

0— (3(G; B)° — (PG4 B)® — (F(G%E)°® — -
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of G—invariant S—pluriharmonic bounded cochains realizes the bounded
cohomologyH; (G; E).

More precisely, the inclusior§’ (G"; E) C ¢*°(G"; E) induce a canon-
ical isometric isomorphism at the level of cohomology. O

More generally, the Corollary 2.10 now implies

Corollary 3.5. LetG be alocally compact separable groupa separable
reflexive isometricG—-module,S a subsemigroup oM(G) andT" < G
a countable closed subgroup. Suppdés either amenable as discrete
semigroup or is an amenable locally compact group when endowed with
the narrow topology.

Then eachLg(G"; E) is isometricallly injective and thus the complex

0— LG B — LYG%:E) — LTGB! — -

of measurabld’—invariant S-pluriharmonic bounded cochains realizes the
bounded cohomologhts (I"; E).

More precisely, the inclusion&(G"; E) < L*(G"; E) induce
a canonical isometric isomorphism at the level of cohomology. O

We do not have a satisfactory notion of injective modulecimntinuous
bounded cohomology that would also be compatible with the morphism
but we obtain nevertheless a corresponding statemerttifog,,, by con-
structing a homotopy. First, observe that if we$t! act onL>(G"1; E)
via the canonical projections

St 9 = (5 )t x (—=1<i <n),

we obtain corresponding projectiong; onto the subspaces of those func-
tions harmonic in the last — i variables. In particularg, 1 = 7, and
mo.n = Id. Having choosen the invariant means compatible with projec-
tions, it is a matter of computation to check the following lemma:

Lemma 3.6. Foralln>1,—-1<i <nand0 < j < nthe relations
Tn,i dn,j = dn,j TTh-1,i—1 (> J)
TTn,i dn,j = dn,j TTn—1,i (i =< J - 1)
hold. O

We are now ready to prove

Proposition 3.7. Let G be a locally compact separable group,a separ-

able reflexive BanacG—module andsa subsemigroup d¥1(G). Suppos&

is either amenable as discrete semigroup or is an amenable locally compact
group when endowed with the narrow topology.
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Then the complex
0— LY(G;E)® — LY(G* E)® — LTG%E)° — -

of measurablé&—invariant S-pluriharmonic bounded cochains realizes the
continuous bounded cohomolo#ly ... (G; E).

More precisely, the inclusions¥(G"; E) C L*(G"; E) induce an
isometric isomorphism at the level of cohomology.

Proof. Fix a functionys € C,(G) of integral one for a left Haar measure
and recall from the proof of Proposition 2.4 the definitions of the operators
Rn,i andan,i.

Now we define a&—equivariant continuous linear operator

Tm: L¥(@G™ E) — L™(G" E)
by
n—1 .
Th = Z(_l)lgn,iﬂn,h
i=0

The simplicial relations of the proof of Proposition 2.4 together with
Lemma 3.6 yield after a calculation the relation

dh o + Tn+ldn+1 = Rn.,—l7Tn,—1 - I:\’n,n Tnn = TTn — R,.

Therefore, denoting by, the incIusionLgo(G"“; E) c L*(G"L; E), we
conclude that, is aG—equivariant homotopy from o R, to, o 7,, and by
restriction also fronR, o ¢, to 7, o ¢,. Combining this with the homotopy
o, from ¢, o R, (resp.R, o ¢,) to the identity constructed in the proof of
Proposition 2.4 above, we have shown that the cochain mapad r,
induce the identity at the level of cohomology. O

We draw now a few consequences of the preceding proposition, by taking
specific semigroups fos ¢ M(G).

Amenable subgroupsVe begin with the generalization of a result which is
well-known for discrete groups.

Corollary 3.8. Let G be a locally compact separable group, a closed
amenable subgroup @ and E a separable reflexive Banach—module.
The complex

0—> L®(G/P; E)*— L®(G/P)?;, E)*— L*((G/P)% E)°—> ...

of measurablés—invariant componentwise riglR—invariant bounded co-
chains realizes the continuous bounded cohomoldgjy, .. (G; E).

More precisely, the inclusions®((G/P)"; E) ¢ L%(G"; E) induce
an isometric isomorphism at the level of cohomology.
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Proof. We can viewP as locally compact subgroup M(G) via the map

p — 8, wich assigns top € P its point measure. This is a topological
isomorphism of groups on its image endowed with the narrow topology,
hence we may apply the Proposition 3.7. O

Using the Corollary 3.5, we also deduce:

Corollary 3.9. LetG, P be as in the Corollary 3.8 above arilbe a sep-
arable reflexive isometriG—module.

If ' < G is a countable closed subgroup, then each((G/P)"; E) is
isometrically injective and thus the complex

0— L®(G/P; E)'— L®(G/P)% E)'— L*(G/P*% E) — ...

of measurableI'-invariant P—invariant bounded cochains realizes the
bounded cohomologhts (I"; E).

More precisely, the inclusions*((G/P)"; E) c L*(G"; E) induce
a canonical isometric isomorphism at the level of cohomology. O

As an important application of this result, suppose thafithaction on
(G/P)? is ergodic. Let us then point out an explicit reformulation of the
above for complex coefficients:

Corollary 3.10. LetT', G, P and E be as in the Corollary 3.9 above. If
the M'—action on(G/P)? is ergodic, then the spade?(I') is realized as the
guotient of the space

ZL¥(G/P?" = {ce L®(G/P?® v®3)" : dc= 0}

of '—invariant measurable bounded cocycles by the subspace of constant
functions. o

An illustration. Let G = Sp(2n, R) be the group of symplectic automor-
phisms orR?", and denote by, the Lagrangian Grassmanniamanifold
consisting of all Lagrangian subspaces3f (see [2]). Denote by

w: Ay X An X Ay —Z

the Maslov index; then is a boundedG—invariant cocycle with set of
values[—n, n] N Z. Let F, be the space of maximal isotropic flagsRA"
andr : F, — A, the canonical projection. TheR, is the Furstenberg
boundary ofG, andk = wo (7 x 7 x 7) is in ZL*(F3)C. Sincex is not
essentially constant, Corollary 3.10 implies thatefines a nonzero element
in Hg(r‘) for every latticel' < G. Moreover, ifn > 3andifl" is cocompact,
then it follows from Corollary 1.6 that is a generator oH?Z(T).

Discrete Poisson transfornSupposel’ is a countable discrete group. If
we takeSto be the semigroup generated by a single meaguthen S
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is commutative and hence amenable as discrete semigroup. The associated
spacest;;” of p—pluriharmonic functions realize therefore the bounded
cohomology ofG.

Now, one may associate (see [16] or [1]) to the g&iru) its Poisson
boundarywhich is a standard measure spéBev) acted upon by in such
a way that various Poisson transform isomorphisms hold:

Proposition 3.11. LetI" be a countable discrete group,e M*(I") a prob-
ability measure andB, v) the corresponding boundary.

For every separable reflexivE-moduleE and alln > 0, there is al'—
equivariant isometric isomorphism

PO LB v E) — 2™ E)
defined by
POF(p) = / F(PEAE™D (8).
Bn+1

via the product action of™** on B"*+2,

Remark. The mapP™ is obviouslyI'"+1—equivariant, but this is not the
action we want to emphasize. Remark also that the seq@fcis a (aug-
mentation preserving) cochain map for the usual coboundary maps, that is
P Ddn = v(B) - dh 1 P™ = dn PM.

Proof of Proposition 3.11Suppose firsE = C. The casen = 0 is well-
known, so we argue by induction. The injectivity is done componentwise,
so the point here is surjectivity. Pick e el‘f(l“"“); by the induction
hypothesis, there is for eaghe I a mapF, € L>(B", v®") with f(y, -) =
PODE and|F, |l < | flle. Now for all p € I'" the u—pluriharmonicity
reads

Y oumfom ™ p = fo, p),

nel
and therefore

| S uwFaeoae = [ Feoase.

nel’

The injectivity of P~ now implies

Y umF,(pg) = Fy(pd  v-a-e(d).

nel’

In other words, the may — F,(§) is u—harmonic for almost every
£ € B", and hence admits a Poisson representabiot€) = PYF:(y)
with F: € L>®(B, v). So we have a class € L>®(B"!, v®D) defined
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by F(&, ... ,&n) = F,... &) (&0); observe thaflF |l = || f |l and thatF
is measurable by Fubini’'s theorem.

For more general modulds, we proceed as in the discussion preceding
the Corollary 3.3, that is, foF € L>®°(B"*, v®™+D: E)y andp e '+ we
define an elemer®™ F(p) of E** = E by

POE(p) (A) = PP(AoF)(p)
forall A € E*. O
The Proposition 3.11 together with Corollary 3.4 now imply
Corollary 3.12. The complex of invariants
0 — L®(B,v; E)f — L®(B? v®% E) — LB v®3% E)f — ..

realizes the bounded cohomologi (I'; E) for every separable reflexive
isometric’—moduleE.

Moreover, the Poisson transforff® induces an isometric isomorphism
at the level of cohomology. O

Another corollary concerns the quasimorphisgmg QM(T") of T. If
the groupr is finitely generated, there is a natural bi-Lipschitz equivalence
class of left invariant metrics canonically attachedtathe variousword
lengthsassociated to finite generating sets. A quasimorphism has at most
linear growth with respect to this class. Tirst momenbf a measure: on
I for a metricd is fr d(e, y) du(y), and its finiteness doesn’t depend on the
choice ofd. So if u has finite first moment, the convolutianx © makes
sense for any quasimorphisin

But we need a lemma. Notice that the spacgs(resp.£;’,, ) of alter-
nating (pluriharmonic) cochains determine a subcomplex of the standard
resolution. We have:

Lemma 3.13. The complexes of alternating invariant cochains
0— (B — 5 (T%5E) — 534 B — -
and of u—pluriharmonic alternating invariant cochains
0— 0@ B — £, T4 B — 6 TEE) — -

realize the bounded cohomologylaf
Moreover, the inclusions

G@TME) Ce®T™E) and £, (T E) C (I E)

determine isometric isomorphisms at the level of cohomology.
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Proof. Use the classical projectors

A: °T"; E) — £ (I'; E)

alt.

defined by the formula

1 .
A0 x) = =) SigNO) X, - Xorm)

: (TESn

whereins, is the permutation group. Apply the Lemma 2.12. O

Corollary 3.14. Let I" be a finitely generated group and a symmetric
probability measure o with finite first moment. Then any quasimorphism
is at bounded distance ofiaharmonic one.

Proof. We begin with the following observation. Let: ' x I' — C be an
alternatingl’—invariant map such that the coboundémyis in e;o(r?’); then
we claim thatx is u—biharmonic. Indeed, denote By the convolution at
the first variablep beingu-summable in each variable, we may compute

@rp-0xy = > p@(axzy —axy)

zel

= Z w(z) <da(X, Xzt y) — a(x, xz‘1)>

zel

— _ —1
= da(X, X, Y) Zu(z)a(e,z ).

-0 zel

Lettingl'g = {y € T : y = y~1}, one can decomposE asT =
TouT U Fl‘l. But« beingI'—invariant alternating and being symmetric,
we have

D n@aezh = ) u@aeE =

zely zert
-1 -1
= Y n@a@zhe = - w@aez?h),
zel‘l’l zel"l’1

while the summandgi(z)x(e, z1) is zero forz e T'y. Therefore, we have
ax pu—a = 0, sox is harmonic in the first variable. Likewisejs harmonic
in the second.

Now we pick a quasimorphism of I". Observing thatg(y) differs
from (q(») — a(»™))/2 by at most(|q(e)| + [/dgl~)/2, we may assume
g antisymmetric. Define a bounded alternating cocyele dyr by letting

v(X,y) = q(xty). Since the inclusiort?”,, (I'*) C €>(I'*) induces the
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identity at the level of cohomology, there is a bounded coclfasuch
thatw + dB is u—pluriharmonic. Now the reasoning above applied te:
¥ + B yields thaty + 8 is biharmonic. Therefore we have a harmonic
guasimorphisng’ at bounded distance gfby lettingq’ (x) = (¥ + B)(e, X).

]

We turn back to the case of a locally compact gr@and give another
class of resolutions arising from the Proposition 3.7.

Gelfand pairs.Recall that aGelfand pair consists of a locally compact
group G with a compact subgrouk such that the convolution algebra
Coo (K\G/K) of bi-K—invariant compactly supported continuous functions
is commutative. For an introduction to Gelfand pairs, see [13] and [35]
§24.8.

An example of Gelfand pair iG (k) whereG is ak—almost simple simply
connected group over a fiekdof characteristic zero together with a good
maximal compact subgroug (see [34] or [29]).

Geometrically, ifG is a group acting doubly transitively on a proper
metric space anK is the stabilizer of a point, thenG, K) is another
example of a Gelfand pair (see [35], Proposition 24.8.3).

Recall also that if G, K) is a Gelfand pair, thef® is unimodular ([35],
Proposition 24.8.1).

By the trivial character of Cyo (K\G/K), we mean the charactef
defined byyo(f) = fG f. Let E be a separabl&—module; the algebra
Coo (K\G/K) acts onLi(G; E) by right convolution. This action pre-
servesC(G/K) and isG—equivariant. Recall the following

Definition. A function¢ € C(G/K; E) is K—harmonicif it is a joint
eigenfunction ofCq (K\G/K) with joint eigenvalueyo, that is¢ * f =
xo( f) - Q forall f e Coo(K\G/K)

A function¢ € C((G/K)"; E) is K—pluriharmonicif K—harmonic
in each variable. We denote i (G"; E) the space ofboundedK—
pluriharmonic functions.

Notice that ak—harmonic function is continuous, right uniformly con-
tinuous and righK—invariant.

Now we state another corollary of the Proposition 3.7.

Corollary 3.15. Let (G, K) be a Gelfand pair withG separable ande
a separable reflexive Bana€k—module.

The complex

0 — HY(G: E)° — HZ(GH E)® — HY (G E)® — - -

of G—invariant K—pluriharmonic bounded cochains realizes the continuous
bounded cohomologhy, ., (G; E).
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More precisely, the inclusion®(G"; E) C L*°(G"; E) induce an
isometric isomorphism at the level of cohomology.

Proof. Fix a right Haar measure o6& (we won't use the fact that this
measure has to be left invariant aswell). DenoteSthlge semigroup of non-
negative functions i€y (K\G/K) having integral one; the Proposition 3.7
applies to thisS, so that it remains only to show th&tinvariance implies
harmonicity. Since scalar multiplication commutes Wity (K\G/K) and
with xo, we haveCy, (K\G/K)—invariance. But the standard decomposition
¢ = ¢t — ¢~ of a function into two non—negative parts preserveKbi—
invariance, so that we get harmonicity. O

Again, we use the Corollary 3.5 to deduce:

Corollary 3.16. Let (G, K) be as in the Corollary 3.15 above aritl be
a separable reflexive isometrie—module.

If I' < G is a countable closed subgroup, then e&dff(G"; E) is
isometrically injective and thus the complex

0— HI(G; B — HY(G* E) — HI(GLE) — -

of M'—invariant K—pluriharmonic bounded cochains realizes the bounded
cohomologyH; (T"; E).
More precisely, the inclusion${’(G"; E) < L*(G"; E) induce
a canonical isometric isomorphism at the level of cohomology. This iso-
morphism is also induced by the restriction m&{fs (G"; E) — €>°(I"; E).
]

Notice that the above restriction maps are well-defined because of the
continuity of K—harmonic functions; the unicity of the induced cohomo-
logical isomorphism is again the consequence of the functorial property of
injective resolutions.

4. Cochain induction

We begin by recalling the topological analogue of the “Frobenius reciproc-
ity” as stated in [5], Proposition 8.6. With our terminology, this yields

Proposition 4.1. (Ph. Blanc)Let I" be a discrete subgroup of a second
countable locally compact group. Supposé&s acts continuously on a sec-
ond countable locally compact spaeand preserves a Radon measpure
Then the map
i LP.OX s E)Y — LP

loc

(X. 11 LPe(G: B)T)°

loc

defined forf e L? (X, u; E)' almost everywhere hiyf (x)(g) = f(gx)

loc
is a topological isomorphism of Fréchet spaces for edersgnoduleE and

everyl < p < oc. |
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In this statement, the grou@s andI” act as usual by left regular action
on the space& p (X; —), but we takeG to act byright translation on
LlpC(G; E)''. We call the map theinduction mapand call theG—-module
LEC(G; E)" theinduction module

The Proposition 4.1 applies in particular to the case wheieG" with
a left Haar measure; sindecommutes with the corresponding cobound-
ary maps, we can seek an analogue of the Eckmann—Shapiro induction
isomorphism. However, the natural induction module would be the (non
separable) spade™(G; E)'', which is of little use to us because of the lack
of information about it$s—module structure. Therefore, we need a stronger
result:

Proposition 4.2. Let T" be a lattice in a separable locally compact group
G and E a separable boundefi—module. Suppose there is an amenable
closed subgrouf® < G such that the diagonal’—action on(G/P)¥ is
ergodic for some integet > 1.

Then the induction majpinduces an injection

H b HE( E) — Hf on(G: LP(G: B)')
forall 1 < p < oo.

We will apply this result to the case= 2 andp = 2, so that we can use
properties of the unitary representation®fn L?(I"\G). The point of the
statement above is that® is realized by invariantk + 1)—cocycles, while
I is ergodic only onG/P)X.

Proof of Proposition 4.2The statement makes no claim for the precise
norm of HXi p, SO that we may assunteisometric by replacing it witfEs
(see Sect. 2). Sindé\ G has finite invariant measure, one has(I'\G) C
LP(I'"\G); nowE being separable, we can dedlice(G; E)"' c LP(G; E)"
by passing to the norm.

It follows from its definition that is G"—equivariant with respect to the
right diagonal translation for every > 1. Therefore, using the Corollar-
ies 3.8 and 3.9, we realizd"i , by

ip: LY(G/P™L BN — L™((G/P™L LP(G; B)")®,

wherei, is the composition of with the range inclusior.>(G; E)'' C
LP(G; E)''. Thus every element of the kernel bfi, is represented by
a cocyclex in L®(G/P)*1; E)' such thatic = dB for someg in
L>((G/P)% LP(G; E)F)G. Now we can viewB as a rightP*—invariant
element ofL>(G; L (G; E)‘“)G and hence ot | (G*; LR (G; E)F)G,

loc loc loc
sothatg = i g’ for some rightPk—invariantg’ € L{.(G¥; E)'. Furthermore,
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one checks that’ can actually be viewed as eIementLq%C((G/ P E)L.
Sincei commutes with the coboundary maps, the Proposition 4.1 implies
a = dp’. Now the ergodicity assumption implies that the ngrfi| is an
essentially constant function, so thgitis essentially bounded. Henads
trivial in H(T; E). o

Actually, the above proof yields a stronger statement. Indeed, one can
use the standard resolution to define continuous bounded cohomology with
coefficients in Fréchet spaces, say for instabfe(G; E)"'. Now the argu-
ments above show in fact that the (furhter) induction

HET; E) — HE o (Gs LE(G: B)D)

loc

is still injective.

5. The comparison map

Lemma 5.1. Let (s, $) be a continuous unitary representation of a locally
compact grougs and letH < G be a compactly generated closed subgroup.
Leta : G x G — $ be alocally bounde@—invariant map with bounded
coboundaryw = dao.

If n\H has no almost invariant vectors, thquG(H) « Za(H) is

bounded.

In other words, the lemma states that the expression

sup  [la(91, 925
g1,92€Zg(H)

is finite.

Proof of Lemma5.Xor shorter notation, we work with the inhomogenous
representative& anda of « andw, that isa(x) = a(e, X) anda(X, y) =
(e, X, Xy). Now w = du reads

o(X, y) = z(X)a(y) — a(xy) + a(x).
Therefore, for alh € Zg(H) andt € H, the vectors

r®aht™) — atht™) + a()
andz(h)a(t™) — a(ht™) + a(h)

are norm—bounded biw|| ., independently oh andt. Applying 7(t) to the
second vector before adding it to the first yields that

rah) —a(h) + z®mh)at™) + a(t)
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is bounded independently bfandt, hence
(1d=mw)am] < 1aa s + 165 +C

for someC < oo. Sincen|H has no almost invariant vectors, there is

(by [28], IV 3.2, p. 155) a non negative functigh= " of integral one in
Coo(H) such that| ()| < 1. Now we have

[(id==n)am| = sup (latlo+l1a0]s+C)

teSuppy)

forallhin Zg(H). Since ld— 7 (v) is invertible, we conclude thaot‘z (H)
is bounded, whence the statement.

We introduce now a technical definition which allows us to state the next
developments of this section with a certain generality.

Definition 5.2. Let P be a closed subgroup of a locally compact grasp
We say that the paifG, P) has the propertyA) if for any continuous unitary
representation o6 in a Hilbert spacef) and anyg;, g, € G the following
holds:

if v e $is fixed byg, Pgl N gngz1 then the diagonal action of the
stabilizer Staly (v) on (G/P)? is ergodic.

In particular, considering the trivial representation, one sees that the
G—-action on(G/P)? is ergodic for any paitG, P) with the property A).

Proposition 5.3. Let G1, G, be separable compactly generated locally
compact groups and I€® < G; be closed amenable subgroups such that
the pairs(Gj, P,) have property A).

Let (7, $) be a continuous unitary representation®f= G; x G, in
a separable Hilbert spacs. If ¢ = $H%2 = 0, then the comparison map

Hécont(G;ﬁ) — Hgont(G’ﬁ)
is injective.
Proof. SettingP = P; x P,, one checks thaiG, P) has propertyA). One
can find a sequenad®,,)n-1 of closedG—invariant subspaces éfsuch that

(i) for all n, the restrictions;r‘Gl and n‘Gz have no almost invariant

vectors inf,;
(ii) forall v e $H,on hasn limfjv —prg (v)|| =0.
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Pickw : G® — $ a continuous bounded 3—cocycle and a continuous
cochaina : G2 — $ with de = w. By the Corollary 3.8, we find' e
L>*(G?; $)€ such thatw = 7w + do’, where

mm: L¥(G™ ) — L*((G/P)™ 9)
are the continuous equivariant projections of the Corollary 3.3;#hus=
d(e — o'). Set
wn =Pl omaw and fn=prg o (@ —da),

and observe that — «’ and hences,, are locally bounded. Therefore, since
G1 C Zs(Gy) and vice-versa, we may apply the Lemma 5.1 consecutively
to G; andG» to conclude that

sup [|Bn(91, )l < o0
01,92€G

for all n > 1. Now, 8, being bounded, the identity, = 7wy, = 7,dBn
impliesw, = dr1B, for all n > 1. Som1B, is in L*((G/P)?; 55)6 and for
almost all couplegg; P, g>P) in (G/P)?, the vectorr,8,(9.P, g P) of
is fixed by gy Pg;* N g2Pg,*. By the property A), there is for alin > 1
a vectorv, € H° such that

71Bn(91P, 92P) = vn
for almost all(g, P, g, P). Therefore we have also
wn(G1P, 02P, g3P) = wvn
for almost all triples(g; P, g, P, g3 P); but the condition (ii) above implies
lim. |m20(91P. G2 P, gsP) — wn(G1P. g2P. gsP) | =0,

S0 mw IS essentially constant of value = lim v,. Denote byc, the
n—oo

G—equivariant mafs x G — $ of constant value e $¢; recalling that
w = mow + do’, we may writew = d(c, + «’) as coboundary of a bounded
map, and therefore we conclude thais trivial in HZ ;.. (G; $). |

6. Proof of the Theorem 1.1

Setting.Throughout this section, we consider a finite fanghy),c  of local
fields, and for eacla € A we consider a connected, simply connected,
almost simplek,—isotropic groupgs,. We set

G = HGa(ka), rankG = ZranK%G.

acA acA
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Define for any Banach spade the space QM,:(G; E) of continuous
guasimorphisms to be the collection of continuous mgpsG — E
satisfying

sup [ldax, Yl < oo,

X,yel’
wheresq(x, y) def ax) +q(y) — q(xy) (that is,s is the usual inhomogenous
coboundary map). Thehinduces a natural identification

QMcont(G§ =)
Cv(G; E) + HomMeont (G; E)

= Ker(H2 ooni(Gs B) = Hap(G: B)).

Lemma 6.1. All continuous quasimorphisms Gfare bounded.

Proof. First notice thatany quasimorphismg with values in a Banach
spaceE is bounded on a given conjugacy class:

lacxty0 e < [ax™) +ay) + a0 | ¢ + 21159ll
< llaylle + lla@)lle + 315l
On a product of groups, one can bound quasimorphisms componentwise,
thus letG = G,(ky). Now one may writeG as a productG = Np--- N,
of unipotent subgroups such that for ed¢hthere is a semisimple element
s € G whose action as inner automorphism contradtso the identitye
of G, that is
Jim stug'=e Yu e N..

Therefore, ifg is continuous, it is bounded byi@(e)||e + 3||6q]l. On each
N; and hence is bounded & O

In other words, we now know that the comparison map
Hk?,cont(G; E) — chont(G; E)
is injective for eventrivial moduleE.

Corollary 6.2. LetI" be an irreducible cocompact latice & and let$) be
a separable Hilbert space with unitafy~action.
If rankG > 2, then the comparison map

HE cont (G: L2(G; 9)7) —> HZ&n(Gi LA(G; )"
is injective.
Recall from Sect. 4 that in the statement above the coefficients are

thought of as the continuous unitary representa(tlo%’(G; /T, Q) defined
by right translation.
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Proof of Corollary 6.2The subspace @—invariants inL%(G; $)" can be
canonicaly identified with the triviadb—module". Therefore, if we denote
its orthogonal complement by, we have a&G—invariant decomposition

L2G: )" = 9" @ §,

and by the Proposition 2.3 we can handle these components separatedly.
Since theG-action is trivial on$", the Lemma 6.1 implies that the
comparison map

Hécont(G;ﬁF) - chont(G; 53F)

is injective, so that we are left with tiecomponent, which has no invariant
vectors.

Now there are two cases.

Suppose firstA| = 1 and writeG = G(k). Let G = KSK be a Cartan
decomposition ofG; here S = S(k) and S is a maximalk—split torus.
Takew : G — § a continuous bounded 3—cocycle amd G*> — §
continuous withde = w. Since rankG > 2, we may choose singular tori
Si,....S C Swith S;---S = Sand Zg(S (k) non amenable. Thus,
using the same arguments needed to establish the property (G) fame
gets tha@‘zG (S (k)) has no almost invariant vectors. Now the Lemma 5.1

applied to the representatic@ﬁ, o) yields in particular thartx|si ) x S K
is bounded. Therefore is bounded.

In the second case, when there are at least two indicAsfix ag € A
and define

G1 = Gay(Kay), Gz = [] Gatka).

azap

Now choose for ala € A a minimalk,—parabolic subgroup, of G, and
set

Pl = Pay(Ka), P, = [] Patka.

azap

By Howe—Moore (see [24]), the two paii&;, P,) have property4). More-
over, the irreducibility of” implies that the canonical projections (@) are
dense inG;, so thatH® = 0. Now we can apply the Proposition 5.3 to
(9, 0), thus completing the proof. O

The Theorem 1.1 is a direct consequence of the juxtaposition of this
Corollary 6.2 with the Proposition 4.2:
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End of the proof of Theorem 1.1We have a diagramm

H2(T; 6) HZ o (G: LA(G; )

| e

HZ(F§ 55) - = chont(G; LZ(G; ﬁ)r)

in which the upper and rightmost maps are injective; therefore, in order
to conclude that the leftmost map is an injection, it is enough to show
that the diagram commutes. Notice by the way that the lower map is an
isomorphism; this is the content of the more classical Eckmann—Shapiro
type lemma in continuous cohomology (see [5] or [6]).

According to Proposition 2.6 and Remark 2.7, the arrows of the diagram
(D) are induced by the map sequence

e s
L=((G/P)™ H)" ; ' L= ((G/P)™ L3(G; $)F)°
/d/' | /d]
pone -
LL.(G™ H) ’ = LL.(G™ L2(G; 9))°
-;/d/ ---/d]

where the vertical arrows are inclusions; this latter diagram commutes.

7. Proof of the Theorem 1.2

In this section, we consider regular or biregular locally finite trégs7,
and fix a cocompact latticE in Aut7; x Aut7,. We define

Gi = pr(ID i=12
as the closure of the canonical projection and suppose that@aelts
transitively on the corresponding boundary at infirffyoco). DefineG =
Gl X Gz.

Lemma 7.1. All continuous quasimorphisms Gf are bounded.

Proof. This follows from a Cartan—like decomposition of each of (e
as given in [8]. More precisely, fix a hyperbolic element G; and set
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At = {@" : n > 0}. Pick adjacent verticex, y on the axis ofa; the
stabilizersK = Stalg, (X) andK’ = Stalys, (y) are compact. One has then

G;= K-A". K if G, is vertex transitive,
Gi= K-A". (KUK’ otherwise.

A continuous quasimorphismwith values in a Banach spaéeis bounded
on K U K’; on the other hand, for every> 0 one can writa™" = ka"k’
fork, k € KU K”andm > 0. Now the inequalities

Ja@™ —a@"|e < 269l +2]d]k |kl

and
la@™ +a@) |z < 15l + lla© e
yield

Ja@™ ™|l < 3lsalle +2]a| | o + @ Ile,

so thatq is uniformly bounded on arbitrarily high positive powers af
Therefore, the quasimorphisv;ka> is bounded and henegis bounded

on G; and likewise ornGs. O
Corollary 7.2. The comparison map

HE cont (G L2(G: 9)') — HEGw (Gi LA(Gi )"
is injective.
Proof. As in the proof of the analogous Corollary 6.2, we decompose the
coefficients as orthogonal sum

L2G: o) = 9" a5,
and as before, the Lemma 7.1 implies that the comparison map
Hécont(G;ﬁF) - chont(G; 53F)

is injective, so that we are left with th%ecomponent, which has no invariant
vectors.

Now we pick points at infinitye; € 71(00), & € To(00) and consider
the stabilizersP; = Staly, (£1) and P, = Staly, (&,). It follows from the
Proposition 5 in [7] that the pair€G;, P) satisfy property ). Now the
definition of G; implies@Gi = 0, so that we may again conclude by applying
the Proposition 5.3 t¢$), o). ]

The Corollary 7.2 above together with the Proposition 4.2 completes the
proof of the Theorem 1.2. The situation is summarized in the diagam
of Sect. 6.
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8. Proof of corollaries

The Corollary 1.3 follows from the well-known description BHZ(T'; R)
in terms of quasimorphisms (see also the beginning of Sect. 6).

The Corollary 1.4 isverbatimthe mentioned result of Bavard [3] once
we have the Theorems 1.1 and 1.2.

D. Witte shows in [40] how W.P. Thurston’s stability theorem in [38]
implies the Corollary 1.5 given the injectivity of the natural map. Along
the way, one needs the vanishinglét(I"; R) for finite index subgroups
I < T', which is well-known in the setting of Theorem 1.1 and a result
of [8] in the setting of Theorem 1.2.

Proof of Corollary 1.6.It follows from [6] that in the case (i) we have
H?(I") = 0, while in case (ii) the spacel?(I") is one dimensional and
generated by the K&hler class. This class being bounded (by [21]), the
corollary follows from Theorem 1.1. O

Finally, the Corollary 1.7 is proven in the introduction.
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