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Abstract. There is an obvious topological obstruction for a finite energy unimodular har-
monic extension of &!-valued function defined on the boundary of a bounded regular
domain of R". When such extensions do not exist, we use the Ginzburg-Landau relaxation
procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers,
as the coupling parameter tends to infinity, converges to a unimodular harmonic map away
from a codimension-2 minimal current minimizing the area within the homology class in-
duced from theS-valued boundary data. The union of this harmonic map and the minimal
current is the natural generalization of the harmonic extension.

I. Introduction
I.1. Vortex equations

Complex Ginzburg-Landau equations originated in the theory of super-
conductivity [16]. When the Ginzburg-Landau parameter is chosen to be
a special constant, the equations are called self-dual vortex equations which
were carefully studied by Jaffe and Taubes [19].

For the vortex equation on a Riemannian surfaeone considers an
open, smooth domaig® € X with, possibly empty, smooth boundad§.
Let L be a complex line bundle ové&t equipped with a Hermitian metric
< .,. >. For a sectioru of L we write |u(x)|> =< u(x), u(x) >. Then the
Ginzburg-Landau functionals are defined for a sectiafi L and a unitary
connectionAonL.

The self-dual case of this functional is given by

E(u, A, Q):/ [|dA|2+|VA u|2+%(1—|u|2)2} dx (1.1)
Q
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wheredx is the volume form of some fixed Kahler metric &h As usual
we adopt the following notations:

Vau=({d—-iAu ;
d is the exterior derivative. Hence the unitary property simply means
d<uv>=<VaUv>-+<UVav>

for sectionau, v of L. The curvature oA is F = dA

Thus (1.1) is the usual Yang-Mills-Higgs functional for this special case.
In local coordinategx;, X;) on X, we write V§ = Va(s%x) = ok — i A,

k=12 andFX = gA — 3; A = i(VKVA — VAVX). Then the Euler-

Lagrange equations fdt are

1
Aau=—Zu(l—up)

2 (1.2)
WF = —3(@ —iAHu,u) |

whereA, = VK.VK, and where we employ the usual summation conven-
tion.

E has two important properties. The first one is called the gauge in-
variance, i.e. the value dt is invariant under the gauge transformation
(u, Ay — (uexp(iy), A+ dy), for a real valued functiony. The second
important feature ok is the self duality. Namely, decomposiig, into its
(1,0) and(0, 1) parts,Va = da + 94, in case = R? and if ju(x)| — 1,

Va u(x) — 0 sufficiently fast agx| — oo, thenE can be written as

o 1 2 |
Eu, A = [ |23aul +‘*F—§(l—|u| )‘ dx
R? (1.3)
+ 27d
for some integed, the so-called vortex number (see [19], page 54). Thus

we see that the infimum fdg, namely 2rd, is attained if and only if the
vortex equations

5AU=0

1 (1.4)
«F=21- ul?)

are satisfied.

Of course, sinc& is non negative, this is possible onlyit> 0 (ifd < 0,
one should consider antiholomorphic sections instead of holomorphic ones).
Taubes [33] showed that for any collection Nf points x; € R? with
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multiplicities N;, there is a solution, unique up to gauge equivalence, of the
vortex equations withi(xj) =0, j = 1,..., N.

The situation for a compact Riemannian surfacis the same. One can
rewrite E as

E(u, A %) :/ [2|5A up? + ‘ *« F — }(1— |u|2)ﬂ dx
5 2 (1.5)

+ 2rdegL

wheredeglL is the degree df andsx denotes the contraction with the Kéhler
form of . Thus the infimum 2 degL is achieved by the solution of the
vortex equations
5A u=20
F=2a-|ud o
k= = —
2

We refer to the works by Bradlow and Garcia-Pradu for the detailed analysis
on (1.6) ([6], [7], [13], [14]).
I.2. The scaling effect

OnR?, for the functional
1
E(u,A>=f [|dA|2+|vAu|2+Z<1—|u|2)2] dx
RZ

one can easily introduce the scaling dimensionaufand A in such a way
that the term/x. |Vaul?dx is scaling invariant. Thus we put to be of
dimension 0A to be of dimension-1 and sovVau is of dimension—1. The
scaled functional is

E(u,A)=/ [82|dA|2+|VAu|2+i2(l—|u|2)2} dx , (1.7)
R2 4e

0 < ¢ < oo. It still is self-dual and gauge invariant. The Euler-Lagrange
equations for (1.7) are

1
ApU=—=ul—|uP)

2¢ (1.8)
?0FY = —X (@ — AU, u)
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Again, the vortex equations dk? are
5A u=2~0

1 (1.9)
% F = E(l_ lul®

On the general Riemannian surfacdéhe second equation becomes
xF = %(1— up . (1.10)
Note that a necessary condition for solving (1.10)X1s
27 e2degl < %Vol z . (1.12)

The latter will obviously be true whesis sufficiently small.
In [17], Hong-Jost-Struwe studied the asymptotic behavior of minimal
solutions of

5A€U€ =0
1 (1.12)
% F, = S |u,|%)

on a compact Riemannian surfage They showed that, for a fixed =
degL > 0, and for some sequeneg — O, there are pointx;, | =
1,...1 < d, such thatu,| — 1, Vau, — 0, dA. — 0 uniformly on
compact subsets af \ {X4, ..., X/}. Moreover, forh, = *dA., one has

h, — 2r le=1 dx; In the sense of measures, where delta functions have
to be counted with multiplicity. This yields a method for degenerating a line
bundleL on ¥ of degreed into a flat line bundle with d| singularities
(counted with multiplicity) and a covariantly constant section.

The above described result is a two-dimensional analogue of works by
Taubes ([34], [35]) on the Seiberg-Witten equations. Taubes used them
to relate the Seiberg-Witten and Gromov invariants in four dimensional
geometry through a similar change of scales.

I.3. Superconductivity

In the theory of superconductivity, particularly for those higrsupercon-
ductors, the coupling constant (or the Ginzburg-Landau parameter) is often
very large. Hence instead of (1.7), one has to look at variational integrals:

E.(u, A Q) = /

IdA|2+IVAUI2+i(1—|u|2)2 dx , (1.13)
Q 42
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for 0 < ¢ << 1. The energy functional (1.13) is, though gauge invariant,

no longer self-dual in the sense we discussed before. Thus the analysis has

to be done on this variational integral and its corresponding second order

Euler-Lagrange equations instead of the first order vortex equations.
When g is a two-dimensional domain, and if one ignores the effect of

a magnetic field, i.e. the connectidy then it suffices to study the following

model problem:

min/ [|Vu|2+ i(|u|2— 1)2] dx . (1.14)
Q 282

The natural boundary condition for (1.14) is the standard Dirichlet boundary
condition

U, =0 . (1.15)

Hereu is a complex-valued function argl: 92 — St is a smooth unit
vector field of degree.
In[4], Bethuel-Brezis-Helein systematically analysed the problem (1.14)-
(1.15). Then, by taking subsequences if necessary, one has
i)
d o4
J .
* = h
Uy () = U0 =] | " exp(iha(x))

j:1| — 4

CLé(@\ {a, ... aq))

[Aha_O in

u, =g ono2

1 1
1 VU, 2+ —(u.. [2— 12| d
5 [ 170l 4 e - 2] o

1
= nwdlog — + min W(b, g, ) + o, (1)
En  beqd

HereW(., g, ) is a function defined o&¢ which is called the renor-
malized energy;
i) a= (ay, ..., aq4) is a global minimum of\/(., g, 2);
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(uy = 17
— 2n Zaa, :

n

IVUsnI2

2m log 2 Z %,

j=1
in the sense of Radon measures.

We remark that the above statements were shown in [4] under the addi-
tional assumption tha is star-shaped. The key conclusion following from
this assumption is the estimate

8—12f(|u8|2—1)2dxs C@ Q) . (1.16)
Q

Using the approach by Struwe [32], one can drop this additional assumption.
Indeed the estimate (1.16) also follows from [32]. Later in [9] an elegant
approach showed also this estimate without using the star-shaped property
for Q.

It turns out, from the point of view of analysis, the variational prob-
lem (1.13) is a small perturbation of the problem (I.14). Indeed, in [5],
Bethuel-Riviére established corresponding results to the ones in [4] for the
minimization problem associated with (1.13) with a suitable boundary con-
dition by using similar analytical arguments. See also [10] and [29] for
results under a more physical boundary condition and an external applied
magnetic field.

I.4. Ginzburg-Landau equations in high dimensions

The purpose of this article is to study the asymptotic behavior of minimizers
of the Ginzburg-Landau functionals (1.13) in high dimensions. In [25], the
second author first studied the problem when the dimensi@isthree. He
proved among other results that the minimizers of (1.13) converge (by taking
a subsequence if needed) away from a one-dimensional length minimizing
current. Similar to the situations in the two dimensional case, the analysis
in [25] suggest that the essential analytical difficulties in studying such
problems lie in the following model problem:

. 1
mln/gz[|Vu|2+E(|u|2—l)2] dx (1.17)
subject to the Dirichlet boundary condition

u=g. :0Q— S . (1.18)
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For this reason we shall therefore discuss only the model problem (1.17)-
(1.18).

I.4.1. The Dirichlet boundary conditionTo further simplify the presenta-
tion we will make use of the following assumptions:

(A1) 2 isasmooth convex domain iR", n > 3;
(A2) on a2 we prescribed a family of boundary valugs: 02 — C, for
& < &g, such that

0] d(%*d@) = S, whereS is a fixed smooth(n — 3)-dimensional
current with integer multiplicity (i.e. it can be represented by a
(n — 3)-dimensional smooth compact submanifoldaf2 with
integer multiplicity);

(i) 9l <= 1,19/ = 1if r > ce, and VK |(X) < mime
on 92, whereC andc are a positive constants independent of
andr = dist(x, sptS).

From (A2) one deduces in particular
1
/ |Vg.|?> < Clog = (1.19)
aQ €
and
1 2 2
S(glP-1n?<C | (1.20)
Q€

whereC is a constant independent af

In part IV of this paper we will need to strengthen a bit assumptia?)
and prescribe a more precise shapeafose to its zero set: we will add
a third hypothesis to i) and ii).

(iii) There existsr; > 0 such that for anyx® in sptS there exists a diffeo-
morphisma, of B, (x°) and a rotatiorR of R" such that
X

g=f, (5) o®pyo R where

®o(x%) = x%and|V(®g — 1d)|(x°) =0

X1 + X2

[X1 4+ iX2]
where x is an increasing function satifying(0) = O andy = 1

on [1, +00), moreoverh, is any function fromS! into S' such that
| V¥h, ||« are uniformly bounded, independently sof

(A2) enforced by iii) is called A2').

fe(X1, ..., Xn) = hg ( ) x(IXg +ixa])
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1.4.2. The energy density concentration séthen dmQ =n = 3,S =
Z‘j‘zl djda;, for somea; € 022, j = 1, ..., k. Sincedf2 is compact, we have
le(:ldj = 0. It was shown in [25] that, given, tending to zero, from
a subsequence,, of minimizers of (1.17) withu,, = g., on 92 among
Hglsn (R, C) one can extract a subsequence which convergedlinQ \

sptT) to a harmonic map into St whereT is a length minimizing current
supported ir2 with 9T = Z‘j‘zl djda;- Suppose such a length minimizing
current is unique, then the whole family, 0 < ¢ < 1, converges ta as

¢ — 0 wheneverg, does. In the beginning of Sect. Il of this paper we
shall give an alternative and much simpler proof of a part of the main result
in [25]. For the general dimensions we have the following result which is
the first part of the main result in this paper:

Theorem I.1 Suppose the assumptiofdl), (A2) are valid and thatu,,
0 < & < 1 are minimizers of (1.17)-(1.18). Let

_eu)dx  [31VUl? + g5 (ul? — 1)?] dx

e =

mlogl mlog

Then, for any sequencg, — O, there is a subsequence {i.,} that

converges weakly (as Radon measures) to a Radon meassueh that
sptu = sptT, n(2) = M(T) (mass ofT). Here T is an area minimizing
codimension two current iR" with T = S. In the case that sucfi is

unique, the whole family,, 0 < ¢ < 1, converges tq ass — 0%,

We should point out that the proof of the above theorem does not use the
existence of area minimizing curreritsvith 9T = S. The proof of the latter
fact often needs the compactness theorem of Federer-Fleming for integral
currents [12]. Thus the paper gives an alternative, though not necessary
simple, proof of this useful fact.

At this point, it is interesting to point out that our arguments can be easily
adopted to the problem studied in [34] to show the energy concentration
set (the collapsing set for harmonic spinors) are two-dimensional area-
minimizing surfaces. The holomorphic structure proved in [34] comes from
the self-duality property of the Seiberg-Witten functionals considered there.

Though we have studied here a simple minded variational problem, we
believe that we have developed here a very general analytical frame-work
that can be used in various applications that latter may be more interesting
than the main conclusion of the paper.

We should also point out that the infinite energy concentration sets have
to be area minimizing is not particularly surprising from formal analysis. It
is also naturally suggested by the results on its associated gradient flow [21].
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1.4.3. The limiting map.We also give a description of the sequence of min-
imizers itself. This uses a somehow different approach as the one developed
in part 1l to prove Theorem |.1. In this approach we assume hypothesis
(A2) above but we do not have to assume anymorestiatconvex (hypo-
thesis(Al)).  can be any regular bounded domain®St. In particular

0 can be topologically different fron§"~1. We are still interested in

the situation where, /|g.| admits no extension iW*2($2, S'). So either

d (%*d@) =S # 0 or we can also hav%i—‘ e C®(Q, SY, m(3Q) # ¢
and there exists at least a generat@f 1(92) which is contractible irf2

and such that de{%; y) # 0. Of course one can also have both situations
together. '

We will use the following elementary lemma proved in the appendix:

Lemma A.7.Let 2 be a bounded regular domain R", let g be a regular
map fromd<2 into C such thatg=({0}) is a submanifold 062. Denote by

S the currentS = d (%*d@) and S = sptS. Then, there exists a clagsin

Hn_2(R, S Z) such that, for any currerit representingC one has

i) gadmits a regular extension frof\sptL into S.
ii) for any closed curve in 9Q \ g~1({0}) such thaty = do whereo is a
2-cycle in2 we have

deg(g/lgl,y) =0 ~ L

This class. is uniquely determined iy and the degree aj on any closed
curve indQ \ g~1({0}). [

In order to simplify the statement of our second main theorem we will
make the following assumption on the boundary condigon

(A3) The classL € Hn_»(2, S Z) defined byg, is independent o,
moreoverl # 0.

The following result generalizes to any dimension the result of F. Bethuel,
H. Brezis and F. Hélein in [4] in dimension two and the result of the second
author in [25] for the dimension three case.

Theorem |.2 Let Q2 be a bounded domain ilR", let ¢, be a sequence
tending to zero and,, be a sequence of boundary conditions fréghinto
C verifying (A2) and (A3). If u,,, denotes a sequence of minimizer&gf
then one can extract a subsequence (still denatgfwhich converges in
HL.(€2\ sptT, C) to an harmonic mapi, from Q \ sptT into S', whereT
minimizes the area in the clags Moreoverd(u:dé) = T. [

Remark 1.1 In view of this result the union of the harmonic mapand
the minimal currenfl is the right object which generalizes the harmonic
extension ofy, = lim g, from € into S' when it does not exist. [
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I.5. Description of the paper

In Sect. Il we shall establish two important ingredients of our proofs. The
first is the energy monotonicity property. The second isiHtempactness
lemma. Thej-compactness lemma was first shown also in [25] for Qis

n = 3, here we generalized it to arbitrary dimensior 3. Itis the starting
point of our analysis. The Sect. Il is devoted to the proof of Theorem I.1.
In the first part of Sect. Il we restrict to the dimension 3 case and we give
a relatively simplified proof of a part of the main result in [25]. It also
presents the key idea we use in the second part of Sect. lll to generalize it to
high dimensions. Here we first analyze the defect meagswaed establish
various properties concernisgt., such as its density with respectfith—2,

(n — 2)-dimensional Hausdorff measure, its rectifiability and orientability.
Then we use energy arguments to showspt sptT, M(T) = w(2) and

T is an area-minimizing current 2 with 9T = S.

In the final section IV we prove Theorem 1.2. This part is independent
from part lll, in particular we give an alternative proof of Theorem 1.1, using
the Federer-Fleming Theorem this time. The interest of this approach, which
is the highd version of the approach in [4] fat = 2, and [25] ford = 3, is
that at the same time it gives the convergenca.away fromsptu which
could not be deduced directly from the approach in the previous section.

Il. Fundamental lemmas
II.1. Bounding the energy density

II.1.1. Basic estimatesSupposal,, 0 < ¢ < 1, are minimizers oE,(.)
over Hég(sz, C), then using the maximum principle one has

Lemmall.l [3]
[UellLoey <1 . (1.1)
]
Using a Gagliardo-Nirenberg type interpolation inequality, Lemma ll.1 and
the Euler-Lagrange equation one has

Lemma Il.2 [3] There exist > 0depending only of and the constants
in hypothesig A2) such that

® |0

VUg L) < (1.2)
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Finally a comparison construction yields the following (see also Lemma
1.2):

Lemma Il.3 LetT be a current representing, then
1
E.(ue) <7 (M(T) +9) |09; ,
for anyé > 0 and for all sufficiently smalt > 0. [
Note this estimate is particularly simple when= 3.

11.1.2. The monotonicity formula

Lemma .4 (Monotonicity formula) The following identity holds

d 1 5 n 1 o2
E[r”Z/B vul +2(n—2)?(1_|u| )}

, (1.3)

1( 1 au 1 1 2

= - 2 |— = (1—|uf?

r [r”3 /asr v n—282( uF?) }

[ ]
The Euler Lagrange equation foy is

au=2a 2 1.4
—Au=— (1) (1.4)

We multiply —Au by the Pohozaev quantify! ; x; 4 and we integrate
by parts onB,. We get

. du
— AU Xi —

2 n 2
Jdu 9<u
=T + [ |Vu)? +/ X —
/BBr /;sr B Z I Xy OXk0X;

ri k=1
Integrating by parts onthe last integral of the right-hand side of (11.5) we
obtain

(I1.5)

ou
v

n
ou 94U 1 n
/E:xi— =—/ rivu?—= 1, |vu? . (1.6
Bri,k:l 8Xk an8Xi 2 9B, 2 B
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Multiplying the right-hand side of the Euler equation (I.4) by the Pohozaev
guantity and integrating by parts we obtain

n

2
Ui ey SO M L )
-/Br 82(1 |u|) Zx'axi_ 4./aB,r <2

i=1

(1.7)
+n/ (1-1uP)’
4 B 82
Combining (11.4)...(11.7) we get
L (L= PP o [ (- P’
4 9B, 82 4 B 82
(1.8)
B rf 8u2+rf vup n—2 VU2
B 4B, | OV 2 Jom 2 Br
We multiply this identity byrn%1 and we get the desired result. [

We also need a boundary version of the energy monotonicity formula.
Consider a part af2 of the formaQ N By, (x°) wherex® € Q. Assume that

r, is sufficiently small. Assume @ 3Q N By, (x°). We can parameterize
92 N By, (x%) in the following way

32 N B, (x%) = {x € B1(X®) : Xy = ¥(X1, ... %n_1)}

such thaty/(0) = |Vy(0)] = 0 and let||y¥|lcz < 8o. Denote byd =
dist(x%,sptS) and Q2 := QN B;(x°) Letu, be a minimizer ofE.(.) on ;.

We have the following boundary version of the energy monotonicity for-
mula.

Lemmalll.5 (Boundary energy monotonicity) With above notations one
has, forr € (0,r;) and any0 < o < 1, that

d o oo [ 5 n 2 2
i {eA r fgrz [Vu,| +2(n_2)82 (Jugl®> = 1)° | dx

r—n+2 au, 12 (1—up)?
- / du, +¥ (11.9)
2 3By (X0)NQ ap &
au|? M e
+r”+1f [X.v| |[— dx—C—zeAr
AQNB (x0) v d

Here A andC are constants depending only on the upper bound of the ratio
ri=¢/d, onéy and the constants in the hypothe&2), but not orr or ¢. m
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Proof. Assume first for the simplicity of the presentation that =
B, (x9N is star-shaped around, this implies in particulatx—x°).v > 0
for anyx € 822N By (x°). Multiply the equationAu + S u(1— [u[?) = 0 by
the Pohozaev multiplie}_; (xi — XP)%. Integrating ore2, like in the proof
of the interior monotonicity formula one gets

d 1 n 1 2
— Vul? —(1—|u)?
dr[r”zfgzr| |+2(I’]—2)82( ll)}
1| 1 au|? 11 )
== 3/ 2 |— = (1—1up?)
r rn B NQ v I’l—28
1 21
+ / (x — x%.v
rn=1 Joane

m4/ x —x%).v|vg?
r IQNB;

2 au o
+ 1/ (x—xo).r—.—g ,
rn- IQNB; av 0t

(11.10)

whereB, meansB, (x°) and wherer|x — x°| is the orthogonal projection of

x —x% on the tangent plane éf2 atx. Of course, the worst term to deal with

is the last one. In order to bound it one uses an idea from [8]. One can always
find an extensiorg of g in ©, such thatVvg| < C/d anlezgl < C/d?.

The idea is to multiply the equation satisfieduy > " (x — ) 39 and to
integrate it org2;. This yields

ou ag ag ou
—x = = _ x — x°
/mB,(X X)tav ot mr( )vav ov
MO (1 —x0) 9 111
8Xk3Xk ! 0Xi ( ' )

(1—|up®) X0 g
/S;r 82 ( )a_XI

The first term of the right-hand side of (11.11) is bounded by
og ou 1 ou
_x0 - RV N
(X —Xx%). _d/agr(x X7).v av‘
n

V—
iR av 81)
C r L X — %) ou
— — — .U —
=3 @ . O v

(11.12)
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The second term of the right-hand side of (11.11) can be bounded in the
following way

au 9 0. 00
F Xi — %)~ IVUI
Q 0Xk axk 0Xi
(1.13)
Finally for the last term of the right-hand side of (11.11) we write
(1—uP) g 11— uff| IUI I
-~ .14
/Qr g2 (X )8X| - d ( )

Now the difficulty is to handle the tenﬁ2 1"“6‘ dx. Here we should point

out that|u.| < 1. To estimate;fQ = l“e‘ dx, we use the same trick as in [8],

we multiply the equatiom\u, + 3u, (1 — |us|?) = 0by¢ (1— |u.|?) u
Hereg(t) is a smooth positive function of> 0 such tha$(0) = 0,¢(t) =1
fort > 2, and¢'(t) > 0. Recall thatg|(x) = 1 if dist(x, sptS) > . After
integration by parts, we obtain

rn
a2

ou,

U |? (1 — Jug[?
/ %dx < |Vu8|2dx+ U,. —
Qr & Qr 3By (0)N2

. C
8,0+

Therefore
1— 82 1— 2\2 u82 1— U, (n
/ IUIdXS ( IUI)Jr ug|? (1= |u.|?) el
o2

g2 o g2 o g2 d2

8U
< f e.(u) + f
& 9B (0)NQ

combining (11.12), (II.14) and (11.15) we get

n
C@

(I1.15)

(1- IU|2) ri-e crn / au |2
—X— < C re.(u —_—— I} XV |—
/Qr £2 8x, g TEWrTETel  XVIE

(.16)
Combining now (11.10), (11.11), (11.12), (11.13) and (Il.16) we get, for
5§=1/8

alA 1l 1 au |2
Y+ -—Y>Z|—— 2| =
fle” —r [Zr”—3 /BBm

1 1 N2
s it e w]

(1.17)
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where

1 n 2
Y = "2 — ng S 82—1 d
fsz,Z[' U+ gy (Ul — 1) dx

Multiplying (11.17) by exp(Ar®) we get (11.9).

We do not assume anymore ti§at is star-shaped. We have to study the
perturbation terms induced by omitting this assumption.

We claim that

vxe 2N B (X%  x=xHv>|x=xOv—cr? ,  (11.18)

wherec is independent of or x° in Q. We have

1 i
”=W(‘%‘Za—xﬁ)

i=1
SinceVy(0) = 0 we have|Vy/|(xX) < Cr and in order to prove (11.18) it
suffices to prove
Vx € 922 N B (x%) (x —x%.e, > —cr? . (11.19)

One can notice that it suffices to prove the previous identity yhtimstead
of x°, wherey? is the projection ok® on aQ alonge, (i.e. y° = x° + Ae,,
wherex > 0). SinceVy(0) = 0 we have|y(x) — ¥(y°)| < Cr? and this
implies

(X —y°).6 = —cr?
From this identity and the discussion above we deduce (11.18). So, without
the star-shapedness assumptionStprinstead of (11.17) we get

a A 1 1
Y/+r1“Y2F|:2r”3_/ 2
9BNQ
n 1 /‘ x| ou
V|| =
r"=2 Joans,

il Br

So we have to bound the terfffs [, |2|°. Observe that we haveS
in front of the integral and nor{%, this is the reason why this term is not

so bad. For; sufficiently small compared to th@? -norm of 32 one can
ensure that, is always star-shaped for< r; around some poirg° for

2 1

ou 1 2
rg

v

2

au |2

v

:
a2

(11.20)



252 Fanghua Lin, Tristan Riviere

which one hagx — z%.v > cr, wherec is independent of or x°. One
can apply all the previous Pohozaev argumentSpbut aroundz’. Using
similar estimates as above one deduces that

1 / ou
r"=3 Joana

v
Inserting this estimate in (11.20) one gets a similar estimate as (11.17) and
we can conclude in the same way. [

2 2
-c [Y 42y é} . (11.21)

11.1.3. A uniform bound of the energy density Part IV we will need the
following bound for the density of energy

Lemma ll.6 For anyx?in Q the following bound holds

1 1 1
/ IVu?+ =1 —|u®?<Clog= |, (11.22)

I‘”_Z Br(XO)mQ 82 &
whereC is independent om, r andx°. |

Proof. Itis clear from the global upper bound of the energy given by Lemma
I1.3 and from the monotonicity formulas (Lemma 1.4 and Lemma 11.5) that
(11.22) holds for anyx® e K, whereK is a compact set included @\ sptS
and for anyr > 0 but the constant a priori could dependkn

Let us takex® e sptS and prove that (11.22) holds for @ independent
of r, x° e sptS ande. We use the notations of the proof of Lemma II.5,
for instanceY still denotes the density of energy 6 = QN B;: Y =
rni_zEg(u)(Br). (11.10) implies, using (11.19) (in fact since® e 9 similar
arguments as the ones used to prove (11.19) give j@se x°).v| < Cr?).

2
Y/ > _ C _ C v 2
- n-3 n—-3 | gl
r 3QNB; r QN B,

2 ou o
+ / (x—xo).r—.—g ,
aQNB, v

ou
av

(11.23)

rn—l

wheret|x — x| is the orthogonal projection of — x° on the tangent plane
of 9Q2 atx. First of all we have

1 /' v |2< C /' 1 “Clo 1
rn=3 Joans, 9= rn=3 Jagns, mMaxdist(x, sptS), £) ~ g €
(11.24)

We have also the following a-priori bound

1 / ou
r"=2 Joons x0)

av

2 1
Y log=
SC[Y/—i-F—i- ?8} . (1.25)



Ginzburg-Landau equations 253

Indeed (I1.25) is established in the following way: take a pahin N
B, (x%) around which2n B, (x°) is star-shaped wittx — z°).v > cr? where
c is some universal constant. This is always possible fmnall compared
to the C? -norm of 2. Let us apply the Pohozaev formulaghn B, (x°)
aroundz®. This easily implies

: /
rn-2 3QN B (x0)

2 c

i / e.(u) + C/ e.(u)
= — e — ©
rn-t QNB; (x0) rn-2 QNIB; (x0)

v

v [ |Vg|2+|Vg|‘8“‘
rn-2 3QN B (x0) ov .
(11.26)
Observe that we have from hypothe&i2")
1 log 1
Vg’ <C—= . .27
rn-2 /asmsr 0 J r (.27

Thus combining (11.26) and (I1.27) one gets (11.25). Observe now that from
hypothesig A2') on g one deduces that

« of, >
I3Xi ° %o

where f,(x) denotesf,(x) = h, (M) X (M) (recall that
[X1 + iX2] €
from (A2) we have sptx — 1) C [0, 1]). Thusx; % o ®g has a support in

S = {x € 92 ; dist(x; sptS) < ¢} and is bounded bgr/e. Combining
this fact with (11.28) we get

1 u 9 c 1
/ (x—xo).r—u.—g < —I1S N B
9QNB; Vv ot

rn—l
- f vyl
rn=3 Joane

Using the fact thatS. N B;| < Ce?r"3, (11.23), (11.24), (11.25) and (11.29)
we finally obtain

9g

(X — XO).ra— < +Cr?|vg| (11.28)
T

(11.29)
8_u
av

1 C
Y/z—CIog——CY—? . (1.30)
&
This differential inequality integrated between 1 and ary ¢ gives the
result forx® e sptS (for r < ¢ (11.22) is a direct consequence of thé®
bounds||ulls < 1 and||Vulle < % see Lemma Il.1 and Lemma 11.2).
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Now take any poink® € Q and anyr > 0. Letd = dist(x’; sptS). If
r > d/2, letz° e sptS such thad = |x° — 2°|. Since we have proven the
lemma for any point on sgi we have

! / e.(u) < ! / es(U)<C|091
=2 Jg o0 T -2 Ba (0)NQ - e

and the lemma is proven in this case. So we just have to consider the case
wherer < d/2 and we can also assume tiéte 92. Indeed, if the lemma

is proven for the point on the boundary, for any poifibne has the estimate
(11.22) for it’s projection ondS2. We use it for > 2 dist(x%, Q), this gives

the estimate fox® and anyr > dist(x°, 2)/2 and the estimate (I1.22)
betweens and dist(x?, €)/2 is just a consequence of the interior mono-
tonicity formula. Thus we have® € 9Q andr < d/2. Ona2 N B, (x%) we

have|Vg| < % Thus the Pohozaev identity implies
2 2. Cc1
— Cr

C
Yz -ns R
r"=< Joans, dz r"2d Jyone,

Using (11.25) we bound the last term of the right-hand side of (11.31) in the
following way

au
av

au
av

(11.31)

Cc 1
r"=2d Jyons,

ou
v

1
1 1\ 2
r Y log=
5c§<v/+c?+ ?) . (11.32)

Combining (11.31) and (I1.32) we get

1 1 1
1 1\2 2 Y2
Y >-C|Y+=|log- +r—2 Y +C— . (11.33)
d £ d r

So at any point/2 > s > r one of these 4 possibilities occur

Y'(s) > —CY(s)

Y'(s) > ¢ (Iog })2
d € (11.34)

Y'(s) = -C3

MOCERAE

Integrating all these possibilities betweeandd/2 one getY(r) < CY(d) +

C(log %)%. Since (I1.22) holds fod/2, this implies (11.22) for and Lemma
1.6 is proven. [
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II.2. The eta-compactness Lemma

This part of our work is devoted to the proof of one of the main proper-
ties we use for solutions of the complex Ginzburg-Landau functional: the
eta-compactness property. This roughly says thatif the energy in a ball is suf-
ficiently small then the density of the order parameétgicannot approach 0O
on the ball of half radius and if this remains true as the coupling constant
tends to infinity we will have compactness on this ball. This property is
reminiscent of the é-regularity” lemma proved by R. Schoen and K. Uh-
lenbeck for the minimizing harmonic map (see [28]). The eta-compactness
Lemma was proved in the 3-dimensional case for minimizers in [25], it can
also be used for the study of similar loss of compactness for the minimizing
sequence of the gauge invariant Ginzburg-Landau functional in dimension 2
(see [26]). Here we give a proof of this eta-compactness property in any
dimension and for critical points in general. This proof follows step by step
the one in [25] except at the end, where the comparison argument using the
minimality of the solution is replaced by a more refined one requiring only
the fact that we have a critical point of the Ginzburg-Landau functional.

Let 2 be a domain iR" for n > 2.

Lemmall.7 (eta-compactness) Letbe a critical point of the Ginzburg-
Landau functional satisfyingu] < 1 and ||Vu|l., < C/¢ whereC is
independent of, then there exists, A and ¢, such that for any < ¢, and
for any ball B,(x°) C Q wherep > A,

! p 1
S (B,00) = logt = U = 3

Proof of then-compactness lemma
We introduce the following notations

n 1 2
E = vu|? = (1—u)? ,
; Br| ul +2(n—2).92( ul?)

_ 2 n_ 1 ueredE
Ir_faB, vl +2(I’]—2)82(1 u®)” = ar

2
F,=/2 ! l(1—|u|2)2 ,
Br

n—2e2
Jr:fz
By

ou
av

au
av

21 1
=

+ 2_dFr
n—2¢ -

(1—up?) o
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Using these notations, Lemma 1.4 becomes
dr [rn=2|  rn-2 gr

The hypothesis implies in particular

”1 1 P
/; F [rn_3Jr] =7 Iogg

p 1
e rn-2

F, P11 P F.
P2 + - 2)‘/8 r |:rn2 Fri| =1 Iog; + gn—2

Using the fact thajj Vul||, < C/e and|u| < 1 we obtain

F. 2
8”_2 = 8”_2

Thus, ifnlogr > C (i.e. A > exp(%)), sincep > e, we haveF, /"2 <
n log p/e and finally we get

PAT 1 1 0

Using the mean value formula we deduce the existence of{2¢, p] such
that

(11.35)

Integrating by party”  [-5 J ] =

4% we obtain

2 1 1
n—2egn

ou

- 1-jud’=<c

1 1 F
Jy + rn'jz <Cp . (11.36)

1

—J
r?73 it (%)n73

We make the following change of scale — 1 andu — 0. Thusu is
a minimizer of (2
vaP+ (=) (1-1ap)?
[ o+ () -

Using Lemma A.6 and the fact thatl is parallel tol we have inT; =
B1\ B:
2

_aa .oa ~
A (U VAN a—r> = -2 (*)d‘r |:(|8—r, (*)dTu>i|
+gi 0/\@ +n—l 0/\@
ror or r2 or ’

where(x) anddy respectively denote the Hodge operator and the external
differentiation ondB; and(a; b) is the scalar product between two complex

(1.37)




Ginzburg-Landau equations 257

numbersa andb. Let Ay ! be the inverse of the Laplace Beltrami operator
onn — 2-form A in T; for the Dirichlet boundary conditionsgr, = 0 and
xvjs1, = 0) and letv be the followingn — 2-forms inT;

v=—2A;1 (i ‘2—;’ (*)dTG> . (11.38)

Denote also by, ! the inverse operator of the Laplace operator on functions
for Dirichlet boundary conditions and by the following function onr;

H= Ayt (0drAv — A(x)drv) . (11.39)

We claim thatvl < p < +o0 we have

flVHlprpf IVulP . (11.40)
T T

Indeed, letwg-1 be the volume form ol = 9B, such thatdr = wg-1.
We have(x)dr Av = (dAv; wg-1).
Write

V=Y vk A A A XA R A dX

i<k

n
Jvik i g
We havedv = —~(=1'1d o AOX...nd h ik 1= Uk
e havedv ;; T (=)' 2dxy A ... Ad¥... AdX, (Wherevi := vy
fori > k). Thus

Xy OV
AG)drv = A ((dv: @) = A Tk%
£k !
Xk 0A
= Tk axvlk + ( derivatives ofv of order < 2)
i

ik
= (dAv; w) + ( derivatives ofv of order < 2)

This proves (11.40). Denote bi¢ the following function inT;

290 ol n—1 aou
K=A==(0A— oAn—) . .41
0 (rar( ar)+ r2 ar) (11.41)

Thus we have

ol .
A(UAa—:J—(*)dTv+H—K)=O in Ty

a ad
—(*)dTv-l—H—K:G/\% onadT,

an —
or
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Leté =0A %—‘r‘ — (x)dtv+ H — K in Ty, using standard results on harmonic
functions we have, for any domamcc Ty,

8~ 2
f V&[> <C(w) [ I£]° < C(w) & (11.42)
® o1 o1 | 0
Choosew = By/g \ Bs/s. In @ we have
D (o0 ag+() 4 +8H 9K
—_— [ —_— * —_— —_— — ——
o o ) " o T T o
(11.43)
% 4 odr (2 () i oK
= — * — | — - —_— =
ar T \or T T o

Let 1 < g < %, using standard elliptic estimates and the mean value

formula, we deduce from (11.38), (11.40), (11.41), (11.42) and (11.43) that
there exists € (5/8, 7/8) such that

(e 19€R)" = (i 121)

<fa|3t >31<C(le|Vu| >%1X (le )% ,

(f 12 ) c ([, 2 ) % »
<faBt >;<C(fT Z)AX(le ) ’

<faB |VU|2>2 < C(fT [Va| >2

(e 57"+ (20 (@ 107) " = © (f [+ ()" (- 1))’

1
2\ 2

Combining the previous inequalities, (11.42) and (11.43) we obtain
ol

1
ol 2
Jir (2 5 = S Ce) < (]
3r 3r W_l'q(BBt) Tl Tl 8r
2\ 3
al
we([ 5] +c( [
T, | OF oTy

Using the fact thafi A Al = 0 we deduce that

(11.45)
90

1
2)2

ar

0 al n—1 al
d® @A drO) =0A A D= A — aA— (.46
T( T) r +3I‘ ar + r ar ( )
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where A, denotes the Laplace operator ®B, andd(T*) the adjoint of the
exterior differentiatiord for the scalar product induced o1, .
Using (11.36) and (11.44) we have

LBt (2) @-1m)? <co

Vel = (%)

(1.47)

and we deduce thdk:|T(X)| < 1/2} is contained inCn(r1/¢)"~2 balls of
radiuse/rq in 9B;. Let w, be this union of balls and let@, be the union of
the balls having the same centers and radjir2 in 9B;.

Leta(x) be a positive function oaB; satisfying

a(x) = W in 0B \ 2w,
ax)=1 inw, (11.48)
and||VaiX)|ls < C% in 0B

First observe that

dT (ax) aAn dTCl) = dT (iﬂ AN dTl~J>

a2
(11.49)
a a .
Id‘r(ﬁ/\d‘rﬁ>=o InaBt\Zwe

Let A denote the Hodge operator on formsad. A admits an inverse —*
on 1- or 2-forms imMB; (for n > 4). If n = 3 we restrict ourselves to exact
2-forms. We have

ax)i A drt = dP A7 (dr (@(x)b A dr) + dra onadB; , (11.50)

wherea(x) is the function equal td’ A=t (a(x)ii A d+ ).

Let K(x,y) = 221% Ui (X) ® ¥ (y) be the kernel ofA on dr (A9B).
K(X,y) € w5 A20B ®@73 (A20By)", whereri (X, y) — xandma(X, y) — Y,
where; are the eigenvalues df, ; the corresponding eigenforms and,
forv e /\§aBt (1//i*(y); v) := i (y).v. Standard results on kernels imply

IK(x,y)Isﬁ and [3xK(X, y)| =< (1.51)

i X2
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(Recall dimaB; = n — 1). In view of (1.49) we have

AL (dr (20T A dr ) = f K(x, y).dr @) A dr ) ()

9Bt

(1.52)
— [ Ko d- @yundm
2w,

Using (11.48), (11.51) and the fact thdtvi| ., < Cry/e, we get

C r2

() A — 5 5 1
‘d—r A 1 (dT (a(X)U AN dTU))‘ (X) < /ng m X ? . (”53)

Letting 1 < p < 21, we have

‘d(*)A’l dr (@)@ A - ‘p< c s
/\ —_— —_
./B\Bt T ( T( ( ) T )) = /aBt /Z‘wg |X—y|n72 X 82

<GCp (%>2p |20,

where we have used Hoélder + Fubini and the fact that — 2) <

n — 1 =dimaB;. Combining (11.47) and (I1.54), we have, for any<4 p

n-1
< n-2’

Hdﬁ’yl (dr @0 A dTU))HLp <Cpn . (11.55)
On the other hand, Combining (11.43), (11.46) and (11.50), we have
A = d¥ (@ A dri) 4+ d ((a— 1)d A drii)

g (Y% 1, 9H 9K

A ) R R S [ =15
-1 o0

—nTU/\a—lrJ+d$<)((a—l)U/\dTl])

Letting 1 < g < -3, we have

q

g \ 172 3
/(a—l)q |UAdTU|qS(/ |a—1|fa) x(/ |dTU|2)
Bt Bt Bt
1-9 q
o2 2 _5\?2
50(/ (1—a?) +|2a)8|) x (/ |Vu|> (11.57)
Bt T1

q

2—q 3
<cpi (2 VG2
ri T
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Finally, combining (11.36), (11.44), (11.45), (11.56) and (11.57) we get, for any

l<g<y

1
2
IVallLa < Cq 12 </ IVGIZ) +Cqn? . (11.58)
T1

Thus, (11.50), (11.55) and (11.58) imply, for any & q < -1,

~ ~19 % 1 ~ 2 1/2 1
|G A drQ] <Cqyn? |va| +Cqnz . (1.59)
Bt T1

n n
If we takem < p < 2, choose any < =, we have

1y

1 Y
P q =
(/ |UAdTl]|p> < (/ |l]/\dTL~J|q) X (/ |l]/\dTL~J|2)
9Bt 0Bt 9Bt
(11.60)
1
r ~2 2 r
<Cqn2 |V +Cqn2
T1
vy lyv _ 1
Whereq+ 7 =5

Using the mean value formula simultaneously for 2 slices at the same time
one can ensure inequality (11.60) holds #; anddBz/g in the same time
and we have, denotin = B; \ Bzys

1 1
P 2
( |u/\da|9>pgcq n? (/ |va|2> +Cqn? . (11.61)
Tt T1

Let a(x) be the function equal t%l‘—z in {X; |u(x)| > 1/2} and equal to 4
otherwise and leb, be the set whera(x) = 4. The forma(x)t A di is the
solution of

Ah = dd*(a(x)l A db) + d*d(a(x)i A di)
(11.62)

h=aX)liAdli ondT;

Observe that the boundary condition means that both normal and tangential
components of the formtsandl A di coincide ondT;. h = hg + hy + hy,
where

Aho =0 in Tq
h=aX)liAdl ondT;
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[ Ahy = d*d@(x)t A di) in T

hi=0 ondT

Ahy = dd*(a(x)0 A di) in Ty
h, =0 ondT;
In view of (11.61) we have forp > 2(n — 1)/n

IhollL2 < Cllhol| ) < Cllax)t A da|lLriT) - (1.63)

1
WP P(T

Moreover we havel(a(x)t A di) = 4d(x.0 A di) wherey, is the charac-
teristic function ofw,. Thus

1
2

~ ~ 1 ~
Ih1l1?, < Clix.0 A dilf?, < Clew,|? </ IVU|4)
T

< c( (- ja13)? (;)2) (
(

1 )
< Cy} (/ |vu|2)
Ty

Using the fact thatt A O = 0, we write
d*(@ax)t A di) = d*((a(x) — D)t A di)
and we get

Ih2ll?, < Cll@a(x) — Dt A dii?,

1

1 _ 2
< (Ul - Uiz + o) ( [ 1vae
T1
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1

- eYis ? £\’ <14 ?
—C<T1(1_'”') (;)) (/T(a) |Vu|>

18 2\ ? 1
SC( T(1_|0|2)2 <%>) (/T sz) (11.65)
<y (/T |v0|2)§

Thus combining (11.63), (11.64) and (11.65) we get

1

2
/lﬂAdﬂ|2§CnV/ VAP + n? (f |va|2) +Cpf . (1.66)
Tt T1 T1

We can always find a good slieebetweert and% such that

1
2

ra\2
/ vaE+(2) (@-1md)’ =co [ IVaR+Cr . (1.67)
3B; € T

The monotonicity formula implies
L f e =C L / & (u)
@2 Je, @)™ i,

Writing (11.67) in the usual scale, using (11.44) and the estimate above we
have eitherrE—'_l2 < n*~2, which permits to conclude the lemma as it is

A 1
explained below,) can be so close to zero as we want) or we have

E‘LT]_ Er
<Cp’ -5+
(ryh=2 — 1 ri—2 7

wheretr > 1/2. Thus, because of the monotonicity formula we have
=4 <cp £y 11.68
(r_l)n—Z— 77r£1—_2+77 . (1.68)
2

Using (I1.35) we have

E ELJ_ r 1 C ry F
n:12 B r21—2 = / n—2 Jdr < n—2 / Jdr <C nri2
ry (%) ry2 r ry/2 r

and since we have chosensuch thaﬂ:rl/r;‘*2 < Cn (see (11.36)), we get
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E E
L < Cy rn—ilz + 1" +Cn
1 1

Thus, forn sufficiently small, this |mpI|esl is small, and in particular,
because of the monotonicity formulg, /"~ 2 is small. Precisely we have

—/ =g .

whereg(n) — 0 asn — 0. Since||Vu|l, < C/e, for n sufficiently small,

we necessarily haviel|(Xo) > 3. m

We need a version of thecompactness on the boundauy.s a critical
point of E, verifying u, = g. on the boundary. Assume thgt verifies
(A2), thus we have

Lemmalll.8 (eta-compactnesslemmaatthe boundary) For@rya < 1,
there are positive constants, A, p1, &g depending only od2 and the
constants in conditioA2), such that, for any < &, for anyx® € Q\ sptS
and for anyp verifyingmin(p¢, d/1=) > p > re whered = dist(x%,sptS)
one has

1 1 2 0
Vu, u:2—1)°| < nlog =
ph? /Bp(xo)msz |:| o 2e2 (l | ) ] =109 €

= |u.(x%)| >

NI =

Proof of the eta-compactness lemma at the boundary

We adapt the proof of Lemma 1.7 to our present situation. Denotgthg

ratio

£ = P WP
dist(x, sptS) ~ =Py

Observe that, in order to verify the hypothesis of the theogehas to tend

to zero asp; is taken smaller and smaller. So one should think abag

something small since; (like ) will be chosen to be sufficiently small at the

end of the proof. From the hypothesis of the Ienﬁllg_é is bounded by 1 so

all the constants in the monotonicity formula at the boundary (Lemma I1.5)

are bounded. Using this Lemma we deduce, like in the proof of (11.36), the

existence of; € [2¢, p] such that

1 /
n-3
r (9Br, UdB, 2)NQ

_p‘i‘

au |2

1
+SA-uP?<COh+d .
av e
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1 x | loul?
—3f | Bl ax<cmr
r a2nB, (x0) 'T
(11.69)
1 ul> 1
—— —| +5A-uP?=<C@u+¥
rl Br,NQ ov &

We have only to deal with the case where @%t3<Q) is so small as we
want compared ta;. Indeed if dis¢x®, Q) > Cry one can apply once
again the mean value formula in order to get a possibly snmalkatisfying
(1.69) and such thaB,, (x°) c © and the remaining part of the proof is
identical to the proof of Lemma 1.7 in order to get(x®)| > 1/2. Since
we only consider the case disf, 9Q2) << r; and since we can take,
so small as we want compared to tB&-norm of 3Q we can be so close
as we want to the situation whegg2/r;) N BJ(x%) is B'l“l(O) the unit
ball of R"! once we have made the change of scale> 1. This means
that the constants (Sobolev constants, constants for the Dirichlet Problem
for the Laplace Beltrami operator @B, (x®) N ©/r...etc) can be bounded
independently ok®, r, ands.
Let G(x) = u(ryx), g(x) = g(rix) on 02/ry and Qs = Bs(x%) N Q/r.
0 is a minimizer of
2

vaR+ (2) - jap?

Q €
with @ = g on aQ/ry N B1(x°). Observe that condition (ii) afA2) implies

IVEgl < Ce  onQy . (1.70)
DenoteT,"” = Q3 \ Q1/2. Working onT," instead of working o, one can
follow similar arguments as the ones used to pass from identity (11.37) to
identity (11.45) in order to decompos}r\(ﬂ A 33—?): Let Agl be the inverse of

the Laplace Beltrami Operatax on T, for n — 2 or 0 forms. Denote also
like in the proof of Lemma II.7

V= —Aal (|2_:_J, (*)dTG) s

H= Ayt (0drAv— A(x)drv)

K=ag (22 (an20) Dty 00
“ 70 \ror or r2 or
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Let ¢ be the solution of

A¢=0 inT/
=0 on(@Bi(x% UadBy(x%)) N/ry

¢ =®drv  ond/riN (Bi(x®) U Bya(x°))

From standard elliptic theory we have

R < [ vor
T W 0902/r1N(B10)UBL209)  JTi

Let& be the harmonic extension &fa 2 in T;*. We have clearly ofT;".

ou

uan—
ar

=&+ (drv—¢—-H+K

Forx e 8%2/r, denote bye, (x) the orthogonal projection @k —x°) /|x—x°|
on the tangent plane t@f2/r; atx. We have

»/(;Q/I’lﬁ B1(x9)

2
2
52/ +2/
99Q/r1NB1(x0) 99Q/r1NB1(x0)
2

2 2
=53 VOl + ==
ry IQN By, (X0) ry IQN By, (X0)

. aa
A —
or

ad 2

oe;

a0 (x—x9
—.
v |x —XO

(I.71)

2 2

X — x9
D
Ix — x|

ou
av

<CE+n |,

where we have used (11.69). Singe- ¢ is harmonic there exists a 2-form
y such that

d¢ -9 =dy inT andy=do whereo; , =0
1
Moreovery verifies

Iylla < 1A — Ollw-ta < IE = ¢llLa < C(n+ &)Y2 (11.72)

see for instance [18]. Thus we have

D (400 d + ode ()~ Loy - 2H K
— — | =ta. * — ) ——(x - —+ —
or or LY T \or r v or o
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wheret%.d*y is the interior product betweefg andd*y and we have
L%.d*y = (dty . (1.73)

Now, like in the proof of Lemma Il.7, one can find a good slicd, a
(1/2, 1), such that for anyj € (1, -23) (I1.44) holds (wheredB; and T, are

respectively replaced BB N Q2 andT,;") and such that also
[ wrsc wrscm+oh . (1.74)
BN T

Since(x)dt corresponds to tangential derivatives al@my, we have

0 ol e
u
‘_<0A_)H scm+9%(/|vmﬁ
or I J llw-ra8x0)n2/ry) T (11.75)

+Cn+8)?

Let N = 9B,(x%) N ©/r1. On N we definea(x) like in (11.48). Leta be the
function that is the solution of the following problem

[ A = d¥ (a(x)0 A dr ) in N

(11.76)
¢=0 onoN

whereA; denotes the Laplace Beltrami OperatordiN forany0< p < n.
From standard results on Hodge decomposition (see for instance [18]), there
exists a unique 2-forng such that

a(x)i A dri — dra = dB onN
(1.77)
p=do onN forsomes e A'N satisfyingoy,, = 0
B is in fact the unique 2-form satisfying
AB = dT(a(X)G A dTG) in N
dp, =L Add  onon 11.78
B =0 onoN

B is in fact the minimizer of

2
min{/ ‘d@ﬁ—a(x)aAddeTa +ldrB12 ;s tB, :o}
N
(1.79)
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For problems (11.76) and (11.78) the solutions are given by convolutions with
Calderon-Zygmund Kernels and an analysis similar to the one developed
for passing from (11.50) to (11.60). Using (I1.75) instead of (11.45) yields

1

~ ~ Tl) Y Y ~12 2 Y Y
lGAdalP) <Cqn2+£2) Va7 ] +Cq(n? +§2),
B (XONQ/r1 L
(11.80)

where l<g< Lo, s < p<2andyis giver_1 by + 1’73’ = % Now
the remaining part of the proof can be establlshea almost identically like

the end of the proof of Lemma I1.7 in order to obtain that
1
— 1—uP?*<h@m8 |, (1.81)
& JB.NQ

whereh(n, &) — 0 asn, & — 0. And since||Vull, < C/e, for n and

o1 sufficiently small,h(n, &) is sufficiently small in order to deduce from
(1.81) that|u(x%)| > 1/2. m

[ll. The energy concentration set as a minimal current
llI.1. A short proof in dimension 3

We let$2 to be a bounded smooth convex domaiRihand letg : 92 — S
be a smooth map. We consider
}|Vu|2 + i(|u|2 —1?|dx O0<e<<1
2 42
(1n.1)

min E,(u) = min/
Q

forue Hy(Q,C) = {ue HY(Q,C) : uj, =g}.
Suppose = 2 and degree of : 92 — Stisd > 0. Then, one of the
principal results proved in [4] can be stated as follows.
Let
1 2 1 2 2
> [IVugl + @(IUI -1 } dx

mlog

e = , O<e<<1 ,

hereu, is a minimizer of (lll.1). Then, for any sequeneg — 0, there is

a subsequence (still denoted fay;}) such thatu., — © weakly as Radon
measures and that

d
=Yy 8y . (111.2)
j=1
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for somed distinct pointsay, ..., a4 inside . Moreover, thed-tuple point
a= (ay, ..., aq) is a global minimum of the so called renormalized energy
W(b, g, ), b e Q.

In the case wher& is a ball there is no topological obstruction for
extending a smooth map: 92 — S' to a smooth ma@ : @ — St
whenn > 3. In order to obtain a similar statement as that for @ira
n = 2 described above, we want to allow the boundary datehave some
topological non trivial singularities of2 (see part 1.4.3 of the paper and
Lemma A.7).

In [25] the second author considered the caseStlim n = 3, and
a family of boundary datg,, 0 < ¢ < 1, such that the assumptigA2) is
valid in particular:

N
d< % d@) 5= dd, . (11.3)
9 2

for someay, ..., ay € 02, anddy, ...,dy € Z. HereC,, C, are positive
constants independentofSince2 is compact, we must ha\Eg“zl d; =0,
(dim = 3).

We shall now give an alternative proof of the following main result
of [25].

Theorem IIl.1 [25] For any sequence, — 0, letu,, be asequence of min-

imizers ofE,, (.). Lety,, = e;nggj’x,egn(u)—— VU, P+ o (|u8n| 2_1)2|.

Then there is a subsequenceuQf (still denoted byu.,) such thatu,, —
as Radon measures. Moreover gpt sptT, ©(2) = M(T). HereT is
a length minimizing current il2 such thatoT = S, and M(T) denote the
mass of the currerif. [

We note that the above formulation of the part of the main result of [25]
which concerns the energy concentration set immediately unifies the state-
ments of the results in both 2-D and 3-D cases. Unlike the 2-D case where
the locations of the singularities (the supportfs determined by the finite
part of the total energy (the so-called renormalized energy, the next term
in the energy asymptotic expansions), in 3-D (or high dimensions) case the
support ofu is essentially determined by the infinite energy concentrations
(the first term in the energy asymptotic expansions). The proof of Theorem
I11.1 given below is rather different from [25].

Proof of Theorem III.1
Let 1 N
e(u)dx 3 [IVUl®+ 55 (ul? — 1)?] dx

~ mlogl mlog 2
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Thenu,(Q) < M(T)+48 by Lemma I1.3. Thus for any sequengg— 0,
we may obtain a subsequence({pf,, } (still denoted by{u.,}) such that
e, — pnweakly as Radon measures. As a consequence of the energy mono-

tonicity Lemma 114,45 is a monotone nondecreasing functiom dor

r e (0,ry), X° € Q, o = dist(x?, 3Q). Similarly, by Lemma II.5, we see
exp(Ar)M is a monotone nondecreasing functionrof (0, ro(£2)),
for anyx? € 9. In particular,

(B (X))
Ou, x) = lim ————=
(M ) r—0 2r
exists for allx € Q. Moreover,®(u, X) is upper semi-continuous e Q.
Let

r={xeQ : ©'(ux >0}

Then the general results in the Sect. I11.2 bellow show B, in particular,
aH*—rectifiable set. But here we will not need this fact.

Next we assumeC, = C! +iC? is a regular value of the map. :
Q — Csuch thatl < |ClZ+|C2% < 1.

Letl', = u;l{Cg}. Suppose, for the moment, that dil = +1, | =
1, ..., N. ThereN = 2, and from the properties @f one may obtairk em-
beddedC!-curvesrl'), j = 1, ..., k, such that (Z'j‘:l F;) = Z;\':l d;da;-
Blaschke’s theorem implies that (by taking subsequences if neélg]neel}
Il ase, — 0, for j = 1, ..., k, in the Hausdorff metric (see [12] page 183).
EachI'l is a connected, compact subsetbf

Applying the eta-compactness lemmas (Lemma II.7 and Lemma 11.8),
we see tha®(u, X) > no/2forallx e TIN(Q\sptS), j = 1, ..., k. Indeed,
if ®X(u, X) < no/2 for somex e I'l andx ¢ sptS, thenm < no/2
for all sufficiently smallr. We may assume is so small thatB, (x) N
sptS = @. Now for sufficiently smalk, and small, we may lete; = ¢/r,

and v, () = U.(ry + ), thenu., (B1(0)) < no/2. Herey,, = Sl

mlogt ~
Note thatg,, (Y) = g.(ry + x) will satisfy the assumption of Lemma II.5.
From the latter fact we would conclude that (x)| > % This contradicts
to the factx € I'!, for somej. Therefore

k
1o 2 2
> oHNI) = =u(@) = =M(T)
i 1o 1o
j=1
the latter estimate implies, in particular, that edchis #H!-rectifiable:

indeed a connected 1-dimensional set of fiffite measure is rectifiable
(cf. [11], Theorem 2).
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We want to show tha®*(u, x) > 1 for H-a.e.x € u'j‘:lri. Then we
can easily deduce thﬁj'j‘:1 HYTT) < M(T).

Since T is a multiplicity 1 length minimizing current, and since
(’J(Z‘j‘:l ')y = 9T, we see eacli’’ must be a line segment sin€e is
convex. Moreoveru(Q) = M(T), andu = H'[(U_,TI'Y). This is the
conclusion of Theorem Ill.1.

Now we have to show(u, x) > 1,forH*-a.ex eI, j =1, ... k Let
us give a proof of this fact fax in the interior ofQ. If x € 'l N (32 \ sptS),
the arguments should be modified slightly.

Since®! (1, x) is approximately continuou&-a.e.x € I'l, we get, for
H-a.e.x’, ®(u, x) is H1-approximate continuous (as a function defined
onT'}) atx?, and thatl™ has a unique tangent line xt.

For simplicity we assumg® = 0 and the tangent line af is thez-axis.
Letn; : Xx — X/A, for A > 0, andu; (A) = %u(nglA), for any Borel
measurable seA C R3.

By the monotonicity formula, we conclude that there is a sequence
Am —> 0, m — oo such thatu,, — v weakly as Radon measures.
v is a tangent measure pfat O (cf. [30]). Moreover,”(Bzf—r(o” =00 =
®(u, x%). Onthe other hand the measire= ©(u, X)X I'! has a unique
tangent measure at x°, v = ®(u, X)H'|{z — axis}. Note thatu > &

v > v. We apply monotonicity formula again to obtain= v. In other
words, i, — v = OY(u, X)H!|{z — axis} as» — 0. Note that we have
©(u,0 >n > 0.

LetCs; = B§(0) x [-1,1] for 1 > § > 0. Then we may find a suitable

§ € (0, 1) such that

v(3BZ(0) x [-1,1]) =0
and hence
w,(3B2(0) x [-1,1]) - Oasr — 0 . (11.4)
We note that

2
L1992 + £ (0P - 177]

dx
l b
log 2,

Mep, . =

herev(x) = u,,(AX). It is then clear from the eta-compactness lemma
that for a.e.z € [—1, +1], deqv, 8852(0) x {z}) = d is well defined and

is independent of € [—1, 1]. Indeed (lll.4) and eta-compactness lemma
imply that|v| > 1 onaB2(0) x [—1, 1].
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We claimd # 0. Indeed, ifd = 0, we first choosé;, € [1 — 25,1 — §],
t, € [-1+ 6, —1+ 26], such that

/ [|Vv|+ = (Jv]? 1)1
Ss(ti)

<<n forj=12
Iog;

Where §(t)) = 8852(0) x {tj}. Since we are in dimension 2, we may
construct a new mapon 852(0) x {t;j} such that

1 1
/ 2[|VTU| + — (| 12 — )]dx<<nlog—
B2(0) x{tj} &n

We now definey as follows:

— v=v0ndC;s
— v be as above 0B2(0) x {tj}, ] =1, 2,
— v minimizes

2

A 2
VUl + == (Jul> - }dx
/B§<o>x[t1,1] 2 [ 24 7 Y
1 A2
/ [|Vu| + = (lu* - )2} dx
B2(0) x|~ 1 t2] 2 2¢2

f l[|Vu| +— S (Jul? 1)2] dx
B2(0) x[tz,t1] 2 2¢ 2

subject to corresponding Dirichlet boundary conditions.

and

By the proof of energy-monotonicity formula, we see the first two integrals
are bounded byCs log 2, the last integral is bounded ly;)Cs log 2. Here
o(n) << n. By choosings suitably small, we can be sure that

1 1
Vv + — dx < =n log—
/(;a2|:| 2 (I 2 )] 51 g(9n

On the other hangk,, ;(Cs) > %77 for n large andx suitably small. This
contradicts the energy minimizing propertywofhus we can assunae£ O.
Then [4] implies that

1 A2 2 y 1
V 2_1 log——o| | —
/Bz(o>x{z} 2 [| o 2¢2 (v ) ]dx z 7 |dilog &n o<og (8n)>

whenever /¢ : [le|2 + 2)\—:% (Jvf* - 1)2] dx = o(log2), and degv,
S(2)) = d. Notex > O is fixed here.
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Indeed, if we apply arguments in [22] or [27], then, since &ryy)
with |u(X, Y, 2)| < 1/2 is contained |m5/2(0), and|Vtv| < Ci/ep, then
degv, $(2)) = d implies

1 A
/ [wm b2 (| 2 )]dxzmduog——K
B2(0)x{z} 2 €n

We thus conclude th&bl(u, 0) > |d| > 1.

Remark.Let (Supfl')s be thes-neighborhood of the support @fin Propo-
sition 1. Then arguments of [22] or [27] show that

E.(u., (Supfl)s) > = M(T) Iogi;L - K

Thus u, is locally uniformly bounded inH..(2 \ (SuppT)) and hence
Ug, — uin C%(Q\ (Supfl)) ase, — 0 (cf. [3] and [22]).

n

Now we allowd; to be arbitraryintegers such thazg\':1 dj =0.

As before, we haver,, — w as Radon measures. LEt = u;HC,} be
as.before and lef}, j = 1,..,mbem embeddedC!-curves such that
ol =38, — 8y, hereal, b} € 89 with

lal —al<e |bl—a|<e, forsomea, a, k#l

Moreover, >, 9} = 1L, djda; andm < 3 310, [dj].

Apply Blaschke’s theorem to ead”}} so thatl'} — TV in the Haus-
dorff metric. I'! is compact, connected subset @f Moreover, by the
eta-compactness lemn¥'(I'l) < %M(ﬁ) < 00. Thus eachl'! is rec-
tifiable. We may find a lipschitz mag: [0, H1(I'))] into T'} such that
f(0) = limbl =a, f(H'(")) = limal = a. Moreover, f gives an
arc-parameterization of its image

rl = fqo, #rhH)y cr

Note thatUk ;! € = € Supp), 0 (Z',-‘zl r;) — YN, dja,. More-
over, the last arguments in the proof of Proposition 2 imply thatfbia.e.

x such thak belongs tal of curves in{T', ..., T¥}, we have®*(u, x) > =d.
Thus

k
w@ =7 Y HNTD =7 M(T)
j=1
The last inequality along with thefam(SZ) < 7 (M(T) +3), foranyé > O,
implies thaty = ZJ (HHT) andZJ LTl (with proper orientations) is
a length minimizing current with boundaly, d; 8.
This completes the proof of Theorem III.1. [
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lll.2. General dimensiong) =dim > 4

l11.2.1. Basic energy estimated.et 2 be a bounded, smooth convex do-
main inR", and letu, be a minimizer of

1 1
Ee(u)Z/ §[|Vu|z+ﬁ(|ulz—l)2} dx , O<e<1 ,
Q £

subject to the boundary conditiam = g, on 02. Here g, satisfies the
assumption( A2), in particular

g * 0\
d<|gg| d9> =S (I11.5)

whereS is a fixed smootlin — 3)-dimensional current of integer multiplicity.
By the energy monotonicity Lemmas (Lemma 1.4 and Lemma II.5)
along with (1.19) and (1.20), one deduces that

w(Q)<C , forall0<e<1 . (111.6)

Here again

_e@uydx 3 [IVuP+ 52 (ul? - 1)?]
~ mlogl mlog

Hence, for any sequencg, — O, there is a subsequence {9f.,} that
weakly converges, as Radon measures, to a Radon meas&rem the
Monotonicity lemmas (Lemma 1.4 and Lemma 11.5) we get that

n(Br (&)

—— Iisamono. non decreas. functionrof , (n.7)

r € (0, dist(a, 02)) whenever € 2, and that

exp(Ar) u(B; (a))
rn72

r € (0,ro(2)) for all a € 0L2. .
Hence®"2(u, a) = lim,_o+ LB exists for everya e Q. Moreover,

©"?(u, a) is an upper-semi continuous functionak Q.
We define

is @ mono. non decreas. functionrof , (1.8)

T={aeQ : 0" ?u,a >0
and B B
T={aecQ : 0" %\, a >0
We should prove thak is a %" ~2-rectifiable set. Here we first prove the
following density lemma

Lemmalll.l If a € %, then®"?(u,a) > §, for some fixed positive
constants,. m
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As a consequence of Lemma lll.1 and the usual covering arguments, we
have

Corollary lll.L1 X is relatively closed subset a2 with H"2(%) <
C(n) n(£2)/do. u

Proof of Lemma lll.1
Supposea € ¥ and ®"2(u,a) < 8. Then there ig > 0 such that
LB @) _ 5. Hence for all sufficiently smay,

e (Br ()

I‘n*Z < 50

Via a simple scaling, one may replaceby 1, e, by &, = =* which
one may assume to be very small, then we would be able to apply the
n-compactness lemma for a suitable sndglto obtain|u,,(x)| > % for all
Ix—al < 5.

Below we shall use a comparison mapto deduce an energy growth
estimate that would lead to

d (B, (@)

SR 20 for0<pss (111.9)
b "~

O©"2(u, a) = 0. The last fact contradicts thate .
To show (111.9) we note first that the eta-compactness lemma (it's proof)
implies actually that:

This latter fact would imply u(B,(@) < Cp"%2 and therefore

Vé6>0,Ip=n0l) >0 s.t. u.(By) <n=—|u>1-68inB;
(11.10)

and fore sufficiently small.
Next by a scaling it suffices to verify that

1
/Bl e.(u,) dx < n_32 /BBi e(u,) , (.12

whenever|u.|(x) > 1 — § on B; (8 sufficiently small) anc: sufficiently
small. Note thaf|u, ||L~,) < 1 by Lemma Il.1. Note thaa = O in above
by a translation. Sinca, can be written asl, = p. exp(if,), p. = |U.|, we
shall construct a comparison map of the famm= p exp(id). In the polar
coordinates system we simply define that

1 fOo<r<1-§ |,

A r—(1-9%)

- Lo)———= , 1-8<r<1
3 + (1, ) 5 <r<



276 Fanghua Lin, Tristan Riviere

and that

Then

/ e.(u,) dx < f €. () dx
B1 B

1 _ 1—|uP)?
< Ef IVGIZdX+C8/ % (111.12)
B1 9B1 €

2

C 1190
| @A-juPi+=|—
+5 ), @b +2n‘awpg

HereC is a constant independent é@ande.
Sinced is a harmonic function oB,, we obtain by the monotonicity of

, |V6|? dx
the functlonf'grrin that

/W@an V62
aB1 By

Also, an integration by parts yields

3 _|? o5
/ By} :/ —| +(n=2) | V2
dB1 dw dB1 or B1
Thus
9 —|? >
—0 > (-2 VO
dB1 ow B1

Therefore, we obtain from the last part and (111.12) that,det < 3§,

f e:(U) dx
B1

1 1)1|0 -
<[ Z||>7
“n-1 3512 ow

1+Cs
< f e (Ue)
n—1 9B

2+ 5
8a)p€

2 1
— (1— 522
55 |p|)}

If § is suitable small, theAtS> < n_#s,/z and thus (111.11) is valid.
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Consider nowa € X N (3Q \ SptS, ®"2(u, a) < §y. We want to show
d p(B,@)
d,O pn—3/2

0 < p <r/2, for a constanC, (depending ore) and a small positive

numberr (may also depend oa). From this differential inequality (111.13)
we conclude

> _Cpp? , (I1.13)

w(By(@) < C(p" %%+ pM
and hence
O"?(u,a) =0

The last fact will contradica € X.
To show (111.13) we apply the boundary eta-compactness lemma. After
a scaling, a translation and a suitable diffeomorphism it suffices to verify.

1
e.(u,) dx < / e(u,) dx+C(e,a,p) . (.14
/B+ N —3/2 Jas: nix,>0) P ( )

1
Here
C(e,a,0) < /P l19llcip,@) < Cavp
forall p < r < r, ande sufficiently small. Note thati.(x) has boundary
valueg, (a+ px) after the above translation, scaling and suitable diffeomor-
phism.
We then follow the above proof for the case& X to obtain

/ € (uy) dx < f e (U) dx
B B

i
We writed as6; + 6, where
A0 =0 in B
0, =06, onadBf N {x, > 0}
9, =0 on{x, = 0}
Ab;=0 in Bf

0, =06, on{x, = 0}

0,=0 ondB; N {xy > 0}

It is obvious that, one has again

_ 1 _
/ V12 dx < —/ V5,2
B N Jog;
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On the other hand
/+ |VB,]2 dx < Cp 1Ge llci(, (a)
Bl

Combining the last two estimates and the proof for the eage X, we
easily deduce (111.14). This complete the proof of Lemma lll.1. [

Our next lemma is the precise upper-bound on the total mass of the
Radon measurgs, and .
Let
A=inf(M(T) : Tel, »R") , T =S} ,

i.e. Alis the infimum of masses of integral rectifiable curréefitm R" of
dimension(n — 2) such that the boundary &f, 0T, equalsS.

Lemmalll.2
n() < A

Proof. It suffices to show, for ang > 0 = w(Q) < A+ 6. By the
definition of the valueA, we may find ' € I,,_>(R") such thabT = S and
M(T) < A+ §/4. SinceQ is convex and smooth, we assume the support
of T, sptT, is contained inQ. Moreover, spT\sptS c  (cf. [12] for
various definitions and notations). Without loss of generality, we assume
0. = |9:| exp(ib,), for a multi-valued functiord, on d$2. Then we can find

a multi-valued harmonic functioh, in € as follows:

Ah, =8r InQ
(11.15)
h, =6, onaQ

Heredr is the delta measure on gpwith integer multiplicity exactly the
same as the multiplicity off. That isér = (T, x) H"~?|sptT, here
O(T, x) is the multiplicity function ofT atx e sptT. Indeeddh, is simply
the harmonic 1-forna with given singularityT and hagld;, as it's tangential
part ond2 \ sptS which was found in the Appendix V.2. Then a standard
elliptic estimate yields

n

VhlLpy <C , forl<p< 1 (1.1e)
HereC is a constant depending @ghand various constants in the assump-
tion (A2) on the familyg, of the boundary dataQ is independent of).
Indeed from the Appendix V.2 we see that (111.16) is valid forang Ip < 2,
whereC may also depend op.
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Let 0 € @, and letn; (X) = % forx e R", 0 < A < oo we choose a
A E (1, 1+ 81) and IetSZ)L = 77)\(9)
We consider orf2; a mapv, such that, fox € &2, one has
dist (x, sptT)
&

expih.(x)) , ifdist (x,sptT) <& ,

UE(X) =
exp(ihg(x)) if dist (x, sptT) > ¢

(1n.17)

and thus, fox € @, \ €, v.(X) minimizesfm\Q e.(v) dx among all maps
such that = v, on 92 andv = g, o nf on 02;. We need to estimate the
total energy ofv, on ;.

Let O, be the(A — 1)-neighborhood of the support &in 92, and let
C, be the infinite cone with vertex at 0 consisting of all rays emitted from 0
through©;.. We consider a torus like domaby, = C;, N (L2, \ ) in R,
On D, N 3%;, we havey, = g, on; %, ondD, N3 v, is given by (111.17).
Firstitis easy to find an extensiafi of this map to the rest of the boundary
of D;, in such a way that

f e@;) <C, . (111.18)
aD;,

Then it is easy to see (cf. monotonicity Lemma 11.4) that the energy min-
imizer on D, with boundary value described above has total energy not
larger tharC(. — 1) log 2.

On the other hand, one can easily find an extension, ¢andv?) on
(2, \ )\ D, in such a way that the total energy is boundedyy

Next we want to estimate the energywpfon Q. It is easy to see

dist(x,sptT)\2

1— |v.]?)? 1-=""")

/( |28|>dxs4/ S
Q & {xeQ : dist(x,sptT)<e} &

4
< 5LMx e Q : dist(x, sptT) < ¢}
&

SinceT is an integral multiplicity rectifiable current with("=2(sptT) <
A + 8, one easily obtains

LMx € Q : dist(x, sptT) < &} < C(N)(A+ §)&?

for all sufficiently smalle > 0. In other words,

1232
f%dxscm) (A+5) . (111.19)
Q
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To estimatey, |Vv,|? dx, we need the following approximation theorem
(cf. [12] page 417): for any; > O, there are an integral polyhedron chain
P in R" with sptP C {x : dist(x, sptT) < §;} and a diffeomorphisnt of
class 1 mappin@®" ontoR" such that

M — £,T) + M@P — f.T)) <8, .

lip f<1+468 , lipflt<1468 , [fX)—x <8 xeR"

and f(x) = x whenever disix, sptT) > §;.

For this integral polyhedron chaip, and for all sufficiently smalb, €
(0, 81), one may find an open subset of BpO; c O, C sptP such thatD,
is thed,-open neighborhood @ in sptlP, and that on thé,-neighborhood
of Oy, sayN;,(Oy), the nearest point projection frafvs, (O;) to O, is well
defined and smooth. Moreover,

H"2(sptP ~ O1) <C(8y) — 0 ass, — 0

We also observe that, &s is harmonic in2\ sptT and because of (111.16),
one gets

IVh.(x)| < Tt SptT) (111.20)

Let B(84, §2) be the set defined by

B(S1,82) = f~H{(f:Q ~ N;,(01) U8, — neighb. of sptP — £.T)} .
(ll.21)

Then it is rather easy to calculate

1
/ e.(v;) dx < Clog — [M(P — f,T)
B(51.82) €

+ HM2(sptP — O)] + C(81, 82) (.22)

< (814 C(82)) C log 2 + C(81, 82)

Note §; + C(82) — 0 asédy, 5, — 07, andC(é1, 8,) is independent of.
(11.22) gives an estimate of the energy away from a good3@t, ») for
the currentl. HereG (81, §2) = Q\ B(81, 82). Indeed, sgfl) N G(84, 82) is
contained inf ~1( sptP N N, (O1)). By our construction, sg NN, (O1)
is uniformly smooth in the sense that the nearest point projection from
N, (0Oy) to O, is well defined and smooth.

To obtain an energy upper-bound ffg(al)sz) e.(ve) dx, we first look at
a special case.
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LetQ = BQ;Z(O) X B§2 (0) be a cube iR" and leth, be a (multi-valued)
harmonic function inQ \ BQZ‘Z(O) x {0}, such that
Ah, = H"2|BJ(0)
and that|Vh,||Lrq) < C,for1 < p < . Thus

n-1°

C
IVh,(X)| < ———
[Xn—1| + [Xn|

Let
expih.(x)) , if [(Xn—1, X)) > €
US(X) -
Mexp(ihe(x) , otherwise
Then
1
f e.(v,) dx < mlog =H""?(B};%(0)) + M(C, &) . (11.23)
Q12 € z

HereQq, = BQJ%(O) X B§2/2(O). Indeed, lev be the argument function on

the (X,—1, X») plane. ThemMA(h —0) = 0in Q, and|V(h — 0)||Lrq) < C.

Hence||V(h —0)]|L~q,) < C. Then estimate (l11.23) follows from a direct
2

computation.

It is clear from our construction thab (s, 5,) can be covered by
a bilipschitz image, under a bilipschitz mappifg of cubes of the form
B, %(0) x B2 (0) with

lip F <14+ C(1+82) , lip Ft<1+C(1+62)

Then we apply the change of variables formula to estimate the Dirichlet
integral [ | Vv, [2(x) dx and also use (111.19) to obtain

1
f &.(v,) dx < 7 l0g = (14 C(81 + 82)™2 M(T) + M(5s. 85, C)
G(81,82) €
(111.24)

Let us summarize: We have constructed a comparisonunap 2, such
thatv, = g, o ;* onQ, and such that

/ e (v,)dx < M(C, A, 6, 81,82, 1)
Q3

+ 7 log % [+ C (81 +82)"2 + C(. — )] M(T)
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Now for any givens > 0, we may choosé,, §,, A — 1 sufficiently small
such that

ACO =1 + (L+C61+82)" 2] (A+5/4)

1
+ M(C, A, 8, 81,80, 1) /log= < A+ 8
&

for all sufficiently smalle. Let v,(X) = v.(AX), X € @, then
- 1
/ e[@,)dx < (A+6) mlog-—
Q &

That isu. () < A+ 8, for all sufficiently smalle, and the conclusion of
Lemma lll.2 follows. ]

Remark Let Ty, T, be two integral rectifiable currents @ with 0T, =
dT, =Sandhr,, j = 1, 2 be such that (as for (Il1.15))

Ah']rj = 811“]. in Q s

hy, =0, onoaQ

Letv;(x) be defined by (I11.17) fofl — Tj, j = 1, 2, respectively then

1
/ € (v dx < / &:(v2) dX+ CM(Ty — To) log -
Q Q &
This is an easy consequence of our proof of Lemma lll.2 above.

l11.2.2. Rectifiability of = and . We shall follow closely the argument
in [20] to show thatX is a H"?-rectifiable set with®@"2(u, X) is an
integer for{"2?-a.e.x € X. Then we modify the proof slightly to show
the same is true foE. We note first that the functio®"2(u, X), X € X is
Borel measurable (cf. [30]). In particula®"—2(u, X) is H"~?-approximate
continuousX"?-a.e. onx. That is, forH"2-a.e.x € %, and for every
§>0

im H'"2({y e BI(X)NZ @ |O"2(u, y) — O 2(u, X)| > 8} _
r—0 n-2 o

0
(11.25)
We have already verified in Lemma Ill.1 th&"~?(u, a) > &y for every

a € X. As in [20] the rectifiability ofx follows from the following Lemma
1.3, Lemma lll.4 and Lemma II1.5 (cf. [20]).



Ginzburg-Landau equations 283

Lemma l11.3 (Existence of weak tangent planes) Fd#f—2-a.e.x € X,
and for$ > 0, there is a positive numbey > 0 such that if0 < r < ry
then there is a(n — 2)-planeV = V(x,r) € GL(n,n — 2) such that
> N B (X) C V;s. HereV; is thedr-neighborhood oV in R". [ |

We note that Lemma II.3 immediately implies the following

Corollary lll.2 For any$4, 8, € (0, 1) there is a positive numbet, and
a subsetE of X such that

(@) H"%(Z\ E) < 6,
(b) ifx e E,0 <r <r,, thenthereisv = V(x,r) € GL(n,n — 2) such
that B;(X) N X C §,r-neighborhood o¥V.

Indeed, it is clear that ify in Lemma 111.3 is the largest such number
such that the conclusion of Lemma Ill.3 remains true for the givenXx,
thenr, is a#""2-measurable function o&. The statement of Corollary
1.2 follows from the standard facts in measure theory.

The next lemma needed in the proof of the rectifiabilityxf a general
fact (cf. [20] Lemma 2.5).

Lemma lll.4 (Null-projection Lemma) IE C X is a purelyH"~2-unrectifi-
able set, ther{"2(Py(E)) = 0, for anyV € GL(n,n — 2). Here Py
denotes the orthogonal projection &f ontoV. [

Proof. See [20] Lemma 2.5. [

The final key fact needed is the following
Lemma Ill.5 (Positive projection density)

2Py (XN B
im  sup H"2(Py ( rz(X))) _1
r-0veGL(n,n—2) a(n—2)r"-

for H"2-a.e.x € X. m

The proof of Lemmallll.3is identical to that of Lemma 2.1 of [20]. Indeed
the same geometriclemma (Lemma 2.4 of [20]) and the monotonicity lemma
are valid. We shall point out that when we apply the proof of Lemma 2.1 to
our situation, we obtain the following fact:

ForH"2-a.e.x € %, and for any sequence gf — 0, the sequence of
scaled measures: 1. (hereny : y — ¥, andn. M(A) “(X“' LA )

i g

r )
contains aweaklyconverglng subsequence Moreover anysuch weak limit
(a tangent measure of at x) is of the formv = ©"2(u, X) H" 2|V for
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someV € GL(n, n— 2). In other words, though the total defect measure
may have part other than= ©"?(u, x) H"~?| X, any tangent measuye
atH"?- a.e.x € X is simply the tangent measurefpfk u atx.

The proof of Lemma IV.5 is actually somewhat simpler than that of
Lemma 2.6 in [20].

Proof of Lemma 111.5.

We assume at, X has the weak tangent planes property (that is true for
H"?-a.e.x € X, by Lemma I11.3). Thus for any sequence — 0%,

{ui = ”%ﬁ“} contains a subsequence that converges weakly to

v=0"?(u,x) H"?V
for someV € GL(n, n — 2). It suffices to verify

H"2(Py(Z N B (X))
a(n — 2)rn-2
The conclusion of Lemma 1.5 will follow.

Without loss of generality, we may assuivie= {0} x R"~2. Then for
anyé > 0

wi ((BZ(0) \ BZ(0)) x B{"*(0)) — 0 asi — oo . (11.26)

—1 asr=r; — 0"

Eachy; is a weak limit of Radon measures of the foemUL) dx for some
minimizers of E.(.), and for a sequence efs tending to zero. Now eta-
compactness lemma implies that(x)| > 3 for all x € (BZ(0) \ BZ(0)) x
B{‘*Z(O), § > 0, whenever is sufficiently large and is sufficiently small.
Thus the degrees of the maﬁ% : 8852(0) x{p} — S pe B'l“Z(O) are

well defined and they are equal for every B]%(0), sayd € Z.

If d # 0, then on each incBSZ(O) X P, P € BQ‘Z(O), there must be
apointg® € B2(0) x {p} such thatu! (qf)| < % Hence the eta compactness
Lemma implies that

: 1
an/ e.(u,) dx > no log - (11.27)
Br (a) 3

forallr € (re, 1/4) and for someyo > 0. Suppose’ —> ¢ ase — 0*.
Theng € n1 X and
f t

% >no foreveryr € (0,1/4) . (I1.28)

Note that (111.26), (111.28) also implies thaf — (0, p) € B(0) x {p} as

i — oo.
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What we have just shown is that, @ # 0 and if (lll.26) is true,
thenPy (X N By (X)) = B, (x) forr = r;. In particular the conclusion of
Lemma lll.5.

It remains to verify thatl # 0. We shall construct comparison maps
suchthat, il = 0thenone may find, withv! = ul ond [BZ(0) x B} ~%(0)|
and

; 1
f e (v,)dx < Cé log - (11.29)
B2(0)x B]~2(0) €

the latter will imply that®"—2?(u, x) < C §. Sinces > 0 can be made
arbitrarily small, we obtain a contradiction as X.

The construction below is done by an induction on the dimensidh
n = 3, then we can choose smalt- 0 such that

i) / e.(u) = o(1) |ogl
B2(0) x {—1+8} €

(”) fBBZ(O)X{l s} ea(ui) = 0(1) Iog 1

(iii) The degrees of the mapﬁ‘r dB2(0) x {1—8} — S'are well defined
(by (i) and (ii)) and both are equal to zero sirtte- 0.

Hereo(l) — Oase — 0, i — oo.

It is very easy to obtain extensions mj';onto B§(0) x {—=1+6,1— 6}
in such a way that the resulting magp) has total energy on these two
discs equal®(1) log % Next we can easily extend the map BA(0) x
[—1+ 68,1 — §] with the Dirichlet boundary condition given bl;r'g on
dB2(0) x [-1+ 68,1 — 8] andv! on B2(0) x {—1+ 8, 1 — 8} such that the
extended map still called, has energy oBZ(0) x [—1+ 8,1 — §] equal
to o(1) log % The latter fact follows easily from the energy bound on the
boundary.

Finally we extend boundary values defined on two cuB2¢)) x
[—1, -1+ 4], B§(0) x [1— 8, 1], into these two cubes. Since the boundary
values have total energy less or equaCtdog % one may extend the map
to have the energy bounded Bys log % This completes the construction
whenn = 3.

Under the assumption that we can do a similar construction in dimension
n — 1, we show how to construct such a map in dimension

ForasmaIB > 0, we consider thén — 1)-dimensional domanBZ(O) X
dBI~2(0). We may assuméis chosen so that

; 1
/ e.(u,) =o(1) log -
9B2(0)x3BI~2(0) €
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Suppose again the degree of the n?uﬁp dB2(0) x {p} — St is zero,

forpe 852:5(0). Then by induction assumption, one may extehdrom
9B2(0) x aB]"Z(0) into BZ(0) x 9B{~7(0) in such a way that the extended
map denoted by, satisfies

- 1
/ e()<Cslog= . (11.30)
B2(0) xaB'~2(0) £

Now we may extend the map intBZ(0) x BJ~2(0) with the Dirichlet
boundary conditions oB2(0) x dB}~2(0) given byv. and onaBZ(0) x
B[~2(0) given byu! such that the extended map 83(0) x B}~?(0) has
total energy bounded bg § log %

Finally, in the torus like domaiB2(0) x B]~%(0) \ B]~%(0) we again
extend the map by minimizing,.(.) with given Dirichlet boundary con-
dition on 3(BZ(0) x (B]72(0) \ BI~%(0))), since the domairBZ(0) x
(B)%(0) \ B~?(0)) can be covered by cubes of sigewith total num-
ber of such cubes bounded Bys"—3. On each cube, the energy is bounded
by C 6"? log % Hence the total energy of the map on the whole domain
BZ(0) x (B}"%(0) \ B{~5(0)) is bounded byC § log 2. This completes the
induction. [

We have therefore completed the proof of rectifiability>af

Let us now prove the rectifiability oi. For convenience we again
assume tha® is a convex domain. We extend our minimizerswhich are
defined on2 outsideQ by a simply homogeneous degree zero extension.
Here we may assume without loss of generality thatQ. By the boundary
energy monotonicity and by the boundary eta-compactness lemma, we can
easily establish the similar statements as in Lemma Ill.3 and Lemma 111.4
for the setz \ ( sptS). Thus it again suffices to verify Lemma I11.5 for the
setX \ (sptS).

First, for H"2—a.e.x € X \ (sptS) andx € 3Q, we have a tangent
measure of: at x of the form

v =0""2(u, UV
for some(n — 2)-dimensional plan&/. Note that by Lemma lll.1:
O" (1, X) > 8 > 0

Note also thaV has to lie inside the tangent plarigo<2 of 92 atx. The
latter is due to the fact that = 0 outsideS2 with exception on the cone over
spt(S) with vertex at 0. Here, we have extended the mapi® whole R",
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w is a Radon measure @' with support of. contained ire2 N (cone over
SptS).

Then we follow the exact same arguments as in the proof of the Lemma
I11.5 for points belonging ta& and using instead the boundary eta-compact-
ness lemma to conclude that the conclusion of Lemma Ill.5 remains true for
H"2-a.e. points irk \ (sptS). This completes the proof of the rectifiability
of X as spi(S) is a smootm — 3-dimensional submanifold @k2. [

Important remark.
We note that the last part of the proof of the rectifiabilitysbfor ) implies
actually the following:

Suppose fox € = \ (sptS) one has

v =0"2(u, )YH"? |V

as the tangent measure pfat X, for some(n — 2)-dimensional plan¢/ .
(Thisis true forH"2-a.e.x € X\ (sptS)). Then®"~2(u, x) is in fact equal

to
u
‘ U]

Herey is a sufficiently small circle linked witl/ and lies in a sufficiently
small ball centered at.

Indeed we look at the scaled measuyugsvith the properties as (l11.26).
Then the degrees of the map

Iﬁgil : 9B;s(0) x {p} — S

are well defined by eta-compactness lemmas, goe B{‘*Z(O). As in

the proof of (11l.27) we see that this degrdes not zero. Moreover, by
2-dimensional estimates in [4], we have an improved form of (111.27) that
is the following:

/ e(u)dx >
BZ(0)x B 2(0)

|d||Bf~2(0)| log I 0:(1) |ogl
£ £

(I11.31)

with 0,(1) — 0 ase — 0.
This last estimate implie®"2(u, X) > |d|. On the other hand we
follow a similar construction as in the proof of estimate (111.29). But now
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d # 0, we use the usual 2-dimensional construction again to obtain the
following upper bound for the energy:

| 1
/ e:(uy) dx < Cslog -
B2(0) < B 2(0) ¢ (111.32)

1
+ B{ (0 7djlog = + C

(compare with (111.30)). Her€ is a constant independent ®ande, ands
can be chosen arbitrarily small to start with. Thus we obtain

O"2(u, x) < |d|

Note thaty here can be any circkB?2 x {p}, p € B} ?(0) in this normalized
situation.

To end this section, we want to sh@vcan have an orientation in such
a way that we will have atn — 2)-dimensional current that represents the
exact same class iH,_»(Q, sptS, Z) as described in the Lemma A.7.

We already know that, for"2-a.e.a € = \ sptS, i has the tangent
measure ad given by®"—?(u, a) H"?| V(a), for some(n — 2)-dimensional
planeV(a) in R" and for a positive intege®"~?(u, a). Let y be a circle
in Q, \ X,, here; = QU (A — 1-neighborhood of2, X, = T U
((cone over spB) N ,), for ar > 1. LetZ, be the integral homology
group of y. HereZ, is isomorphic (but not canonically isomorphic) to
the integersZ. Any homeomorphism (in particular isotopy) between two
such circles does induce a natural isomorphism between their corresponding
cohomology groups. Note these are simply constant -integer length 1-forms
ony wheny, say, is lipschitz.

Let w.(y) be the pull-back by @y — S' of the standard one-
form on S, that isdg, then we have shown that jf is linked with V(a)
and lies in a small ball centered atthen|w.(y)| = the length ofw,(y)
simply coincides with the absolute degree of the ﬁeafp. y — S thatis
O"?(u, a).

Now we simply introduce an orientation &fga) so that the intersection
number satisfies

o A V(a) = deg (“ljsf',y)

for &; sufficiently small, wherg.,, — 1 and wheres is a regular 2-cycle

in ©2; bounded byy. In the notation [30] p. 146, the fact above and the fact
that this being true fol{"?-a.e.a € X, we conclude that

T=1(Z 0" 2(u,.),T()

is an(n — 2)-dimensional integer multiplicity rectifiable current.
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Now leto be a generic, regular 2-cycledr, with doc = y being aregular
curve ondg2; \ (cone over spf). Suppose is a generic position so that

ocNX={a,.. a}
and ataq, ..., a, « has tangent measures
O"2(u,a) H"? (V@) , j=1,..1

Then

|
deg(u‘Ei ,y):Za/\V(aj):aAT

U | ~

by eta-compactness lemmas. Note V(a;) = +O"2(p, a;).

From this canonical property of intersection, we see, by the Poincaré-
Lefschetz Duality theorem, thaf represents the class ifl,_»($2;,
sptS,, Z) = Hy_2(R2, sptS 7Z) as given in Lemma A.7. In particular

0T =S,

HereS; = n,.S, 1.(X) = Ax so that spiS;) € 02;,. We should point out
there is a more general lemma which implies such curfelmas boundary
equal todS; and which uses only the local structureTafWe should leave
it to a forthcoming work.

[11.2.3. Proof of the minimality ofl

First proof.
We have, via energy comparison that

nE@ <A
where
A=inf {M(T) : T e [,_>(R") , 9T =S}

On the other hand, for the integral currédhbbtained at the end of the last
subsection we have

A< M(T) < ()

Thus
pw=0"2(u,.)H" 2T

andT is an area-minimizing current. [
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Second proof.
In this part we will use some results proved in the next section.

Step | By energy comparisons, we have shown that
w@ <A , A=inf{MT) : Tel,,R"), aT =S}
Here 14 is the defect measure which is a weak limit of Radon measures
_ &(up) dx
e = — 71—

mlogl *

Step Il Let {T?}, 0 < ¢ << 1, be a family ofe*-approximation of

d |38|*d9> given by Lemma V.2, such that' e I,_,(R")
() aT°*=S |,

(i) M(T*) <Co ,
(i) vy Cc @\ Ui'\i’l B.«(Xi), closed regular curve,

Ug
de , =DAT® ,
gQw|0

whereD is a two dimensional regular cycle boundipg

By the Federer-Fleming Compactness Theorem for integral currents,
one may assum@&® — T in flat norm,T e I,_»(R") such thathT = S,

Step Il Note that, by construction of thel“}’s, one also has s@if) C
UM Be(X). Thensptl) € £ = {x € @ : ©"2(u,x) > 0}. Indeed,
vx° € spt(T), there is a sequenoe, —> Xx° such thafju,, (x.,)| < 3. By
eta—compactnesw > np > 0 for anyr > 0 and sufficiently large.
Thus%&‘o” > no/2 > 0 for anyr > 0, i.e.x’ € . We have already
noted that fori"2-a.e.x? e sp(T) € X, ©"?(u,x% =d € Z* and
d= deg(ﬁ, y). Herey is a standard circle if0} x R? (with center at 0)

whereR"~? x {0} is the tangent of sgT) at x°.

Since by property(iii ) and intersection theory for currents (see [12]
Chap. 4), one sees thaiis equal toD A T, the multiplicity of the current.
Therefore

M(T) < u(sptT) < w(Q) < A

We conclude thafl must be an area-minimizing current. Moreover
spiu C sptT, i.e.

= 0""2(u, x) H"?|sptT
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IV. Convergence of the minimizing maps

In this part we assume hypothesis2') of Sect. |.4 but we do not assume
anymore thaf2 is convex 2 can be any regular bounded domairRdf This

part is relatively independent from part Il and follows closely the analysis
in [25]. It also yields to a new proof of Theorem I.1 but this time uses the
Federer-Fleming compactness theorem for integrable currents.

IV.1. TheW!P estimate

We first prove the following uniform bound for the minimizers.

Lemma IV.1 LetQ and g, satisfying(A2') and (A3), for ¢ < g for any
minimizeru, of E, on Q with u, = g, on 92, we have the uniform bounds

n
V1l < p < n— ||Ug||Wl,p(Q) < C (IVl)

whereC is a constant independent enit only depends o, 2 andg,. m

Remark IV.1.In fact theW P bound above holds for critical points of the
Ginzburg-Landau functional in general once one knows the a-priori bound
E.(u) <C Iog% whereC is independent on.

U, *

IV.1.1. Ang¥-approximation ofd do | by a(n — 2)-current having

&
a uniformly bounded masdn this section we prove the following lemma

LemmalV.2 LetO < v < a < 1, for ¢ < gg there existd\, balls of ra-
diuse®, (Bg(Xi))i=1..n, » Ny ball of radiuse” (B,»(zj))j=1..n, and a Lipschitz
(n — 2)-currentT*, having integer multiplicity such that

) Jul = 3onQ\ Ul Bu(x) UL, Ba(Z)).

i) Ny < (Ea)% andn, < (8)% (C independent o).

i) supp(T®) C UL Bea (X)) U, Bo(Z)).

iv) 9T* =S.

V) M(T®) < C (C independent on).

Vi) Yy CQ\ U Bu(x) UM, Bu(z)), closed regular curve,

u
deg| —, =X AT®
g<|u| V)

whereX is a two-dimensional regular cycle boundipgvhich is transversal
to T and X A T* denotes the intersection number betw&ezandT*. m
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Remark IV.2. The last condition can also be written like this: L&t! be
the inverse of the Laplace-Hodge Operatoron {w € A2Q s.t.w),, = 0
andxw),, = 0}, we have

Ji/\dii-d*A*%Tﬁ
luf ul

is exact ing \ U™, B (X;). n

IV.1.2. Preliminaries: rectangular coveringsWe will start by introducing
the notion of a perfect rectangular covering of size We first give an
example: Consider all the cubedif, having faces parallel to the canonical
hyperplanegxx = 0}, with edges of length£ and with center in the lattice
£*7Z". We will translate now a bit the centers of this covering, keeping the
faces of the cube parallel to the canonical hyperpldres- 0} and without
changing their size. We will do it in a periodic way such that the following
holds: two parallel faces of two different cubes are at the distance at least
wne®, wherep will be some fixed constant independentotets, ., be

a sequence of vectors & indexed byZg = {0, ..., 4}" such that all the
coordinates of all these vectors are different and denote the infimum,

in absolute value, of all these differences:

O<p=min{|sl =8| VI#I"ez) Vi=1.n}

Suppose also that the maximum|&f is small enough. If we translate each

of our cubes of center say (k;...k,) by the vector*s g ¢, wherek; = k;

in Zs, then we are done. Indeed, first, since the maximum of|&H&s
supposed to be small compare to one, two parallel sides of cubes which
should be at a distance less thetfy2 after this translation necessarily
had to touch before the translation. Secondly, if two sides of cubes, say
perpendicular t@;, were touching before this translationgffik;...k,) and
e*(k;...k;) are their centers, we know that they will be at a distance of at
leasts” x |8%— 8%| > pe® after the translation (necessary4 k' otherwise

they would not touch before). L€C;) be the covering that we obtain. We
will need the following definitions

Definition IV.1 A rectangular set is a polyhedral setitf' whose faces are
parallel to one of the hyperplangy = 0}

Definition IV.2 Let Rbe a union of disjoint rectangular setsiRi'. We call
the union of then-rectangular sets formingr the n-skeleton ofR, denoted
by R,, and more generally it'&-skeleton, denoteRy, fork < n — 1, is the
union of the rectangular sets boundaries of the rectangular sefg.in.
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Ris now a union of disjoint rectangular sets such fRat R". We call such
aunion arectangular covering. For instance the union of the connected com-
ponents ofR" \ U;aC; is a rectangular covering. We will use the following
definitions

Definition IV.3 The external size (possibly infinite) of a rectangular cov-
ering R is the infimum among the length of the edges of the cubes which
contain any component &t.

Definition IV.4 Let R be a rectangular covering. The maximum of the
length of edges of the cubes (possibly 0) such that for any componBnt of
and any point in this component there exists a cube of the same size included
in this component and containing the point, is called the internal size of the
covering.

Definition IV.5 We say that a rectangular coveririgis u-perfect, ifu is
the ratio between the internal and the external sizeRofu will also be
called the perfection coefficient.

Observe that the perfection coefficientRf= R" \ U;dC; is positive and
independent of.

Definition IV.6 We say that a rectangular coveririg has no topology if
for anyk < n all the rectangular sets of itk-skeleton are homeomorphic
to BX.

We claim thatR = R" \ U;dC; has no topology. Indeed, for ariy
rectangular component in itl-skeleton we have the following property:
the intersection oKy with any line parallel to one of the canonical direction
has at most one component. We can prove it in the following way, any point
of K is contained in a fixed family of cubes among teand this family
does not depend on the pointkiy. Take a line parallel to the I-th canonical
direction which intersect&y. When this line starts to leau€, that means
in particular that this line either leaves definitively one of the cubes in the
family mentioned above or start to enter in a new cube and it will stay in
this new cube during a length exactly equal t§ Zsince this direction is
parallel to one of the edges of the cube) and after it is too late for entering
again inKy since the maximal distance along a canonical directidgyiis
bounded by 2*.

IV.1.3. Proof of LemmalV.2Let0 < v < « < B. We consider first a good
covering of S = sptS by balls of radiuss” (each point ofSis covered by
at most a finite number of ballB.. depending only on the dimensian).

Denote byS’ the union of these ball§’ = U?”:lBeu(zj). Of course, since

we have a good covering the condition< —&%— is automatically ensured.

= o
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Denote by, = @\ S. We will work now mainly on<2! in order to have
the hypothesis of the-compactness Lemma I1.8 fulfilled for sets of size
oref.

We consider a good covering 6f by ball of radiuss? whose centers
are contained ing. Among these balls there are the one for whigh> %
everywhere inside, we will call them the good balls, and the other ones, the
bad balls. We will use the following notation for any subkebf :

N3 (K) is the number of bad balls intersectikg .

Now take the union of cubes; of sizes* constructed in the preliminaries
and it's associated covering. In fact we only consider the ones which intersect
Qv but we will not mention it explicitly anymore. We will change these union

of cubes a little bit, still keeping the perfection coefficient bounded from
below by a positive number independent sofind still keeping the “no
topology” condition but in order to ensure the two following key conditions
for any Ky rectangular component of tikeskeleton for any < k < n:

HlL eu<CIo}
( )(Sa)szKk - (U) < 98 ,

an k=2
(H2) Nj(K) < C (j—ﬂ) ,

whereC in both(H1) and(H?2) is independent oK, R, u or ¢. First observe
that these two conditionéH1) and (H2) are satisfied for tha-skeleton:
(H1) follows from Lemma 1.7 and H2) from (H1), the n-compactness
Lemma 11.8 and the following argument that we will often use and that was
previously developed in [25]:

Let K,, be one of then-dimensional rectangular sets Bf Let B,s(Y;)
fori = 1...N3(K,) be the bad balls intersectiri,. By then-compactness
Lemma we have

= [ ewz=na-p g3
(8/3)”72 B,.p (Vi) ¢ a e
Summing over all the =1, .., /\/’,g(Kn) and since, by Lemma 1.6, the total
energy inK, is bounded bW log? we get(H2) for K,. So for this
first step we do not need to chan@ein order to obtain H1) and(H2) for
the n-skeleton. We will proceed inductively in order to gétl) and(H?2)
for the k-skeleton starting from to 2.

Suppose now we have a covering@fby cubes of size &, say(CP),
such thatthe induced rectangular covering has a perfection coefficier
independent of and such that it has no topology and suppose alsd ithht
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and(H?2) are satisfied fok > p. We will deduce a new covering by cubes
(CP™) satisfying(H1) and(H2) fork > p — 1.

Let C(2¢%, x;) be any of the cubes ofC”). Letn —1>1 > p—1
and K, be any rectangular component of thekeleton which is contained
in 3C(2¢%, X;). Let m be the number of cubes cQCip) whose boundary
containK,; (we can haven = O, ...,n — | — 1). Let H,_, be then — m-
rectangular set realized by the intersection of all the faces of these cubes
which containK;. Let's move the center; of our cubeC(2¢%, x;) and callx
the new center which becomes a variable xAsoves inB,,.«,4(x;) (recall
thatyu is the perfection coefficient)s; moves continuously ik, _n. Denote
by K;(x) the family of rectangular sets id,_r, that we get. We claim that

1
/ dx/ e.(u) < C (%)™ 2]og = (IV.2)
X€By504(%i) Ki (%) €
and
N q (Sa)n+l—2 ( )
(Kix)dx<C—F——— . V.3
/xeswm(xi) P (eh)1-2

Let B;;,”/’;' (x) be the ball of radiug.s® /4, centerx; and dimensiom —m-—|
for the directions perpendicular K and included irH,_. We clearly have

/ dx/ e(u) <C / e.(u)
xeBI ' o) Ki(%) Hn—m

Since(CP) is a covering in particular satisfyingH1) for k > p and since
n—m>I|+1>np,

1
/ dx f eu=C f e.(u) < C(eM)"™?log =
xeBl o0 JKim Hn-m €

Integrating both sides of the inequality (IV.4) along time+ | remaining
directions we get (1V.2). Similarly we have

(IV.4)

/ Ny(Ki00) < CE™™ Ay(Hom)
xe Bl ' 00)

Since(H?2) is satisfied fon(Cip) fork > pandsincem—m=>1+1> pwe
haveNs(Hn_m) < C (i—Z)nfm*z. Thus

/ Ny(Ki () < CE)™ ™22 (V5)
xe BE;Q}Z' (%)
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Integrating both sides of the inequality (IV.5) along time+ | remaining
directions we get (IV.3). Considering inequalities (1V.2) and (IV.3) for all
the K, contained imC(2¢%, x;) forl > p — 1, we can simultaneously apply
the mean value formula for deducing the existencg ef X; such that for
any of theseK; we have(H1) and(H2). We do that one by one for all the
cubes of(C”) and we call(C” ™) the new family of cubes that we obtain.
By construction, this family gives a new rectangular covering which has
a perfection coefficient larger thary2,which satisfie§H1) and (H2) for
k > 2, which is homotopic to th€C;) we start with and thus of course has
also no topology.

Denote byR the rectangular covering deduced fra®?). Denote by
R’ the union of rectangular sets & which contain a poinx such that
[u[(x) < 1/2 and denote it'k-skeleton byR,. We know, by a similar
argument used above to bound the number of bad balls, that the number of
rectangular components R is bounded byC/(s%)"2.

Let K, be any rectangular componentiRf. We have

/eg(u)SCIog:gL and MNg(Kp <C . (1V.6)
K2

Moreover K is Lipschitz diffeomorphic to the balB2 (for a diffeo. v
verifying |V |l + V¥ s < C indep. one). For all this reason we
can deduce like in [5] or [25] that there exfist («, B) andz, ..., zy in Ky
such that

) Vi# ] Bws(z)NBs(z) =0

i) |ul > 2in K\ UiB.s(z)

i) N<Cand deg(l—ﬂ‘, (Ko N B,s(z))) < C whereC is independent of
K, ande.

Denote byT, the sum, among all thi; in R;, of the Dirac masses at tlag
with the multiplicity given by the degree off |u| atz;. Denote by, a given
regular map fronR,\suppr into St equal tou/|u| outside ofB,s(z;).

We will construct by induction frork = 3tok = n both ak—2-Lipschitz
currentTy in R and a mapy : R \ Suppl — S*such that

i) supp(Ty) C R,
ii) v rectangular components, of R,

(T [Ki) = Tie1[ 0Ky
iif) Vv rectangular component &, R,
M(Ticl Ki) < C(e)
WhereC is independent of.
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iv) UklaRasuppry — Vk—1
V) dequg, %) = X A T

forany Lipschitz oriented 2-surfaggin R¢ suchthad>® C Re\supplk

SupposeTl, andvg are constructed as above. L€t ; be one of the com-
ponents ofk, ;. We claim that

0(Tk[0Kk1) =0

This is a direct consequence of the existenceyain 0Ky ; satisfying iv).
There exists a Lipschitz-diffeomorphisih which sendsKy,1 to the unit
ball of radiuss* and which satisfie§ V|« + V¥ s < C, whereC
is independent of. The choice ofTy, 1| Kk, 1 is as follows: the image by
¥ 1 of the radial extension af, (Tx| 9Kk.1). So it is clear that it satisfies
conditions i), ii) and iii). The fact that there exists an extensigp, of
vk as a map fromKy, ;\supply,1 satisfying condition v) is explained in
Appendix A.7.

Using arguments above we can change the good cov&ipgz;) of
S a bit into B_s).»(zj), wheres; < 1/4 in order to ensure that each
9B2—s,)er (z) intersects at mosEe~* =3 rectangular components con-
taining a point whereu| < 1/2. Denote2; := Q \ UjB_s,).» (z;) instead
of @\ U;Bw(zj) . LetT) = T, 2!. Because of conditions ii), iii) and the
remark just above we have it C Q! and sincen, < < we can de-
duce thatM(dT.") < C. Because of v) we easily deduce thaf’ —S = 9N,
for someN, C UjB_s).(z;), moreover we can ensuM(N;) < &”. Now
we claim thatl® = T, + N, is a solution of our problem. The fact that the
conditions i),..,v) of Lemma V.1 are satisfied ff = T,, comes from the
construction ofT,,. Let’s look at the last condition. Let be a closed curve
in @\ R. Itis clear thaty can be continuously deformed into a curve lying
in dR, staying completely in the set whejig > % which ensures the fact
that the degree along it does not change. The curve is n&jy ipbut in the
components oR,_; where|u| > 3. So we can deform it again iR,_, and
so on until reaching the 2-skeletd®, and by construction of, we know
that condition v) of Lemma V.2 is satisfied for such a curve and since, the
degree ou/|u] did not change during this transformation we have proved
Lemma V.2.

IV.1.4. Proof of Lemma IV.1Take O0< v < u < a < 1 (to be fixed
later) and IetUiNngga(xi) U?”:l B.»(zj) be the union of balls of radius®
ande” given by Lemma IV.2. Like in the proof of Lemma V.2, we can find
a covering ofQ \ UT;lBgu(zj) by 2¢#-cubes such thatH1) and(H2) are
satisfied (forg := «) at least for then andn — 1-skeletons. Denote b,

the complements if2 \ U?”legu(zj) of the union of the rectangular sets
(R)1. ..., N, of this rectangular covering which contain at least one point
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where|u| < 1/2. We will use the notatiors = U?”legu(zj). We have
chosen in fact the good coverirg). (z;) of S such that

1
/es(u)fbg— : (IV.7)
S €

This is always possible, using Lemma 1.7 + the mean value formula and
the boundn, < ﬁ (the coveringB,.(z;) is eventually changed into

acoveringB_s,).»(zj) where 0< §; < 1/4). Recall thaN,, < C/(e")"2,
Let 1> s> 0, to be fixed later. We proceed with the following Hodge
decomposition

uAdu

g = dkHdL ine (IV.8)

wherelL is a function in2 such that. = 0 ono$2. We know (see [18]) that
such a decomposition exists, sin@eis diffeo. to B", with the following
bound for any 1< q < +o0

1
IKllwzac) < Cq [ / U A dulq“‘s)} b (IV.9)
Q

In the remaining part] will be chosen such thaf > n in order to ensure,
by Sobolev injection, that

1
||k||oo + ”k”cO,é‘(Q) S Cq |:/ |U A\ dU|q<l_S)] ! N (IVlO)
Q
fors =1— g We will choseq ands such that
0=1—% - (IV.11)

Sinceq > n the constraint ors becomeﬁ < s < 1. Multiply (IV.8) by
u A du and integrate o. We get

f|U/\du|2_S:/d*kA(UAdU)+/dLA*(UAdU) . (IV.12)
Q Q Q

Using the fact that. = 0 on9a2 and the fact thatl(x(u A du)) = 0 we get

f|UAdu|25=/d*kA(UAdu) . (IV.13)
Q Q
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Decomposgl, dxkA (uAdu) = [ ...+ [5q, ---- We bound the second

integral like this
: )
§C</ |d*k|2) (/ |du|2)
Q\Qy Q
1\? g
q
< (294 <Iog—) [/ |u/\du|2~°}
€ Q

(IV.14)

/ dx kA (uAdu)
Q\Qy

In 2, we writeu A du = i A dg + (1 — Gz)u A du. We have

/(l—i>d*k/\(U/\dU)
Q. uf2

U=

q

scndknLq( / (L—[u®Y Jun dul‘*)
Q

1 1
’ 2 q
<Cel % <Iog }) [/ lu A du|2‘s} '
& Q

(IV.15)

We integrate the remaining term by parts and sitd(qﬁ A dﬁ) =0onQ,
we get

f dsk A (iAdi) =/ <K A (iAdi> . (V.16)
Q lul [ul 39, lul lul

We write 9€2,, = (92, N 2) U (a2 N Q_M) and we establish the following
bound

/ *kA(iAdi>scnknm/ 9 A dgl
0NQ, lul [ul QN0

%
<C [f lu A du|25}
Q

Once again we writ?ui| /\d|_3\ = (ﬁ —1uAdu+uAdu, and using (1V.7)

and the fact thafmum2 e.(u) < = log < we establish the bound

1
/ (—2 — 1) s kKA (UAdu| < ||k||ooe/ e.(u)
ae,ne \ Ul 92,NQ

1
< ||Klloe™™* log =
&

(IV.17)

(IV.18)
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Now decompos\£2,, as aunion of and the rectangular st )i_1

N

Ny,
We have/ *k A (UAdU) = / +Z/ —/ ...The
0Q2,,NQ SNQ i—1 YR 0N\,
following bounds hold, using the hypothesis @rand (1V.7):
1
2
/ *kK A (UAdu) < Clkl|lsog” </ eg(u)) (IV.19)
SN2 S
1\? g
< Ce¢" (Iog —) [/ lu A dulzs]
€ Q
/ *k/\(U/\dU):/ *k A (@A dY < C [kl
IQNQ\Q, 0QNQ\Q,
(IV.20)

Let xk; be the mean value &k on R, in particular

1
|| s k — sKi|loo < CeH [/ luA du|2‘s}q
Q

Thus, using the fact thg?m |du|? < ¢#=3) |og % we get

(6+n-2) 1)2 2-s g
< Cgt log - [u A du
& Q

(IV.21)

/ (xk — xki) A (U A du)
R

In order to find a bound fofm_, xKi A (U A du), we look for a bound of

faR{ x(dX,_1 A dx;) A d(u A du) sincek; is a linear combination of the
dx¢ A dx for k # | with constant coefficients.

dxq A ... AdX,_2 = x(dX,_1 AdX,) does not cancel on the faces where either
Xn IS constant oK,_; is constant. For a gives, ..., t,_») the intersection
with the two-planex; = ti, ..., Xp—2 = t,_2 anddR/ is a 1-dim. closed
Lipschitz line that we will denote by, i _,. We denote by; the set of
coordinatesty, ..., t,_2) such that, ;,_, is non empty. Amongy; we only
want to keep the coordinates such that ;. , does not intersect the balls
(B.«(x)). Denote this set by,. There exist at mosEe"d*~ of such
balls, thus th&n — 2)-measure o¥/; is bounded byCs* T+ Let

Si={xeR s t3t..th2) € Vi, s.t.x € Tyt ,}

It is clear thaS;|,_1 < Ce*t#("=2 Thus

luAdul < Ce2trM=2 (IV.22)
Si
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OnaR \ Si letuswriteu Adu= 4 Ad¥ + (1— ﬁ)u A du. We have the

ul ™l
bound
1
f (1—[u®|uAdul < Ce*M=3jog = . (IV.23)
IR\S €
Now using Lemma V.1 we deduce that
u u u u
f dxp...d%y_2 A (— /\d—) :/ f LI
IR\S; |ul |ul UV Jry g, U |ul

(IV.24)

- / Etl...tn_z AN TE s
Ui\Vi

whereX, i, , = {X € R's. t.X3 = t1...Xp—2 = th_2}. Summing (IV.19),
(IV.21)...(1V.24) overi we obtain

/ *K A (U A du)
392,,NQ

Combining now (1V.13)...(1V.20) and (IV.25) we obtain thAj |u A du|?>—s

is bounded independently ef moreover recall that the constraint sfis
Q%f < s < 1. That means that the constraint or-3is 1 < 2 —s < 7.

Thus we prove a uniforni.? bound foru A dufor 1 < p < %5 and the
passage from thi& P bound to the result of Lemma V.1 can be done like
in [4] or [25].

< C(M(T®) + o(1)) [/ lu A du|2‘sr
Q
(IV.25)

IV.2. Proof of Theorem I.2

Let T be the limit (modulo a subsequence) of the curréitsgiven by
Lemma IV.2. LetQ; = Q \ {8 — neighborhood of sjit}, § > 0. Then the
eta-compactness Lemma implies, in particular, thaix) > 1/2,V¥x e Q.

We write u,(X) = p.(X) exp(if,) locally near any point of2;. Then
div(p?V®,) = 0. Using the fact thap, — 1~ (ase — 0) pointwise on
Qs and thew? P estimate foru,, one hasve, € L?(Q;). At this stage of
the proof one easily deduces thép, € L?(Q2s). The minimality of T is
obtained by a comparison argument and proving a lower bound of the form

1
Vo >0 3C, >0 s.t. 7 (M(T) — @) Iogg — Cy < Eg(uy)
(IV.26)

This can be done working perpendicularly to the integral cuffeag in [25]
Sect. 7 and using Lemma A.6 of [25] at each perpendicular 2-plafiemf
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V. Appendix
V.1. Few technical lemmas

Lemma A.1.Lety be ap-form inR", we have

0 dp 1 o
—dyp =d— — —-d dlogr A —
or 09 = U — yGedlogr A
]
Proof of Lemma A.1.
9
¢=Z¢Idxl > d(pZZaTka/\dXI
| ki 97k
) d [ g
—dp = — | — [ dxc A dX
ar 4 %:ar [axk] X !
Jd [0 X
= 2| % SAN A dx
ox | Xk | |X|
kIl
9 [0pr T X dg1 du
= — || —d - — —dx¢ A dX
o axk[axJ x| A %axm (AT
dp; X
+ %Jd A dx
AR IX]
0y @
=d— — —dp +dlogr A —
or
]

Denote byd+ and (x) respectively the exterior differentiation and the

Hodge operator ol = 9B;. Forw € A*R", drw not only denotes, the
exterior differentiation of the restrictiom to S, but also the form im*+t1R"
which coincides with this restriction at each poinfof. drw = dw—dmg—‘;’.

Lemma A.2.We have

o

0 1
— 2 (dre) + =d
T ar(T¢)+rT§0
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Proof of Lemma A.2.

dp g 9%
dr—=d— —dr A —
T P ar2
1 © 8%
= —dp+ Zdp — Zdr A = —dr A —
or 4T are
0 0 1
= Zldp—dr A |+ |dp—drn
or or r
—8[ ]+ —d
ar TY rT‘P

Lemma A.3.We have
ad an
o (@] =eu =

wherey, is the isometric embedding 6B, into R".

Proof of Lemma A.3Ne have

()i =—%nAdr

Thus 5 5 5
Ui Ui

Lemma A.4.Let¢ be a 0-form we have

0 dp 2
A=A, — _Z
ar ¢ r

"o Ar-g

Proof of Lemma A.4.

a

0 0
gAr(P = —g(*)dT(*)dTQD = —(*)§dT(*)dT‘P

0 1
= _(*)dT§ [(r)dre] + () [FdT(*)deﬂ]
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0 1
= —(*)dT(*)gdﬂﬂ — Ay

09 1 Arg 00 A
= Ar% + (*)dT(*)FdT(P - r Ar& -2 p
]
Lemma A.5.
o ad _ 0
Ay (<p A 5) ~ [p A Arg] = 2(x)dr [(I o (*)dﬂP)]
2 .
+ - (p;1Arp)
]
Proof of Lemma A.5.
.0 .0
Ar (w; la—f) = —(xdr()dr [(w; ua—‘f)}
(V.27)
.0 ., 0
= —(x)dy [((*)dw; la—f)] — (1) (%) [(qo; ldTa—‘f)}
Using Lemma A.2. we compute
.0 d .
(x)dr (%) [(w; idt a—(f)} = [T [(@: iGdTe)]]
(V.28)

+2(0dr [(9; i (dre)] — (0dy [(3:1(0dre)]
A short computation shows that

—(®)dr [(p; i1(x)dre)] = (95 1Ar¢)
Combining the previous identity and (V.28) we get the desired resulim

Lemma A.6.

dp\ 0 0
A (<p A 5) =3 (p A Ag) — 2(x)dr [(I o (*)dﬂP)]

2 290 o n—1 o
tr@nAp)+ o (oA Tz |93

roar or ar
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Proof of Lemma A.6.
dp dp 92 dp
A — ) =A R I -
(‘Mar) r<(p/\8r) 8r2<(p/\8r

n—19 /\8(,0
r o \Z"

Using Lemma A.5 we get
dp\ 0 0
A (‘P N §) = (o A Arp) — 2(x)dr [(l o (*)dﬂl’)]

+2 A 92 /\8(,0 n—129 /\8(,0
(PR T 52\ r o \Z

ReplacingA;¢ by Agp — g% — ”%13%’ we get the desired result. [

Proof of Lemma A.7.

By a continuity argument we can always assume that O is a regular value
for g. Let g be a regular extension @f from 2 into C such that O is also

a regular point forg. Denote byl the integral current associated to the
regular oriented submanifold realized gy*({0}). L defines a homology
class£ in H,_»(Q, sptlL) which satisfies of course i). It also satisfies ii)
by of the following fact: leto = > njo; be a cellular decomposition of,

ni € Z ando; = f;(D?). The degree ofj/|g| on the one-chain realized by

307 i [,z <|;g| o fi)* do. This is equal to
/ a((Lot) @)= T dgy=onl
pz \\[0 o
ajeajnsptl.
Multiplying this identity byn; and summing overone gets ii).

The uniqueness A is a direct consequence of the Poincaré-Lefschetz
duality theorem (see [31] page 296). We have

Hn_2(Q; sptL) ~ H2(Q2 \ sptS; 92 \ sptS)
and this isomorphism is exactly given by the intersection number. ii) means

that we define uniquely a class (2 \ sptS; 2 \ sptS) and its image
by the isomorphism above Is. [
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V.2. A harmonic form with given singularity

First let us fix the notations.

Euclidean spac®", withn > 3. Forxg € R", r > 0,

Ur(Xo) = {(X\x € R", | X — %o | < T},

Br(Xo) = {X\x € R", | X — %o |< T},

LJr = U,—(O), Br = B,-(O).

wp = the volume ofB; c R".

rx = Wln\x\”*z the fundamental solution of the Laplacian operator.
For any open se2 c R", any integek € [0, n],

D*(Q) = {all smooth differentiak forms on$ with compact suppojt
For a locally integrablé&-form » on 2, we have gn — k)-currentT,, given
by T,(v) = fQ w A T, for anyt € D" K(Q). For anyk-currentT on €,
oT is a(k + 1)-current defined byoT)(7) = T(87), for anyt € D¥1(Q).
AT = 00T + 00T.

V.2.1. The questionSupposeS; = (Mg, g, &o) is an integer multipli-
city (n — 2)-current, whereMg is a (n — 2)-rectifiable subset oB; with
H"2(Mp) < 00, 6y : My — Z is a measurable function s.t. for arnye Mg
there exists a positive numbeg with | 69(X) |< Co & is the orientation
n — 2 vector function. We assuni& = 0 in Uz (not inR™).

¢ is a given smooth closed tangential differential 1-formadi\ Mg s.t.
| Z(X) |< c-d(X, W)_l for x € 9B, c being a positive constant.

Compatibility condition.For any oriented closed smooth cui@dying in
dB1\Mo, /. ¢ = 2n(the winding number o€ aroundS).

Aim. We are looking for a canonical smooth harmonic 1-formBip\ Mo,
which hast as its tangential part 0B, \ Mo and satisfieg. w = 2r (the
winding number ofC aroundS) for any smooth closed cun@in B;\ Mo.

We want to pick up a canonical one because there are many solutions of
the problem which just look like higher order poles in complex analysis.

V.2.2. The solution to the problenSupposen = 3 and S is the part of
the z-axis in B;. Let @ be the angle on the horizontal plane, then as the
standard picture we haw in our mind. Sincedw is integrable inBy, we
may consideiTy, and

o(Ta) = 0, 3(Tgy) = 27((zaxis) N By) in Uy
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This motivates the following formulation of the question. Suppose we have
S, ¢ as in the former section. We hope to find an integrable 1 foron B,
which is harmonic inJ;\ Mg, smooth inB;\ Mg with tangential part on
dB;\ Mo. Besides this» needs to satisfy

o(T,) =0, d(T,) =21 in Uy

Uniqueness of solutions.
Suppose we have two solutions, sayandw,. Setw = w; — wy, then

o(T,) =0, 9(T,) =0inU;

From elliptic regularity we knoww is smooth and harmonic id;. w = d f,
where f is a harmonic function itJ;. By the boundary condition we have
d(f |y8,\m3) = O, which impliesf |,5\1; = const. Sof = const inB;.

w = df = 0, which gives the unigqueness.

Existence of a solution.
Suppose we have an integrable 1 fapgin B; which satisfies

0(Tyy) =0, 3(T,y) =27 inU;

but doesn't satisfy the boundary condition, then we may gebthesolving
a Dirichlet problem for a harmonic function. So the main step isto get a
We first choose another integer multiplicifp — 2)-current namelyS, =
(M4, 61, £1), whereM; is bounded and lies iR"\ B; with H"~?(M;) < oo,

| 61(X) |< ¢y ¢; being a positive constant. We chodSesuitably such that

S=5+S=(MogUMy,00Ub1, & UéE) =(M,0,8)

satisfiedS = 0 in R". Notice thatM is bounded anio(x) |< maxcy, C1}.
Let A = 2no(I" * S), then

oA =2n0(c(l’'x §) =0
%9 =T%3S=0
0A = 2100(I"' * §) = 2w (do + cd)(I" %
=21 AT %S =27(AT' * S = 27Sin R"

Now for x € M suppose thag& (X), - - - , e,(X) is a positive orthonor-
mal base ofR" s.t. e1(X), --- , e,_2(X) is a positive base foilyM. Let
el(x), --- , € (x) be the dual base, then we callx) = e*(X) A--- A€ 2(X)
the orientation form oM. Let

OKX) = fM T(x — Y)Y x(dH"2(y) for x € R"
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It follows from Holder’s inequality and Fubini’s theorem thate Wli’c”Tre
for arbitrary small > 0. We have

T.o =T %S A = 210(T,0) = 27Ts0)

Putwy = 278(x®). We havew, € ngTcl_g for arbitrary smalk > 0.

o000 = [ BT forx e R

wn

wherei means the contraction of forms by a vector. Hence
0(To) =0, 3(Tyy) = 27SinR"
U(T(wO‘Bl)) = 0’ a(T(wo\Bl)) = 27'[3) in U]_

We know wo(x) |< c-d(x, M) for x close toM. (¢ —tangential part o)
is exact indB;\ M, say it is equal tal f. It follows from the growth of and
wo that f is integrable (in fact it is irLP(dB;) for any p € [1, 00)). Solve
the Dirichlet problemAu = 0in U4, u |3g,= f. Thenw = wg |y, + duis
a solution to the problem.

Remark A.1We may do similar problems where the unit ball is replaced
by an arbitrary smooth domaia in R", which doesn’'t need to be simply
connected, or by a smooth domdhin a compact oriented Riemannian
manifold. For these cases, the necessary condition(for-&)-current to be

the singular set of some harmonic form8gt) = 0, for r any closed form

in D"2(Q). We may use a similar idea of finding a complement current but
replacd” by the Green’s operator in the case of a Riemannian manifold. Now
because the topology is nontrivial, the solution space is a finite dimensional
affine space. One may find more information in Chapter V of [24] and
Chapter 7 of [23]. [

V.2.3. Higher integrability of the solutionWe know ifU; ¢ R® and« is

the horizontal angle, then the standard matielies in L2~¢ for arbitrary
small ¢ > 0. Now we will get this integrability for the solution in the
former section under a local growth condition of the singular set. Because
® = wo |y, +du andu is a nice harmonic function, it suffices to study the
form w.

Proposition A.1. SupposeS = (M, 0, &) is an integer multiplicityn — 2
current inR", H""2(M) < oo. There existsg > 0s.t. M C By,. There
existscy > 0s.t.

H"™2(M N B;(X)) <cym -r"2, forr € (0,1],x € R"
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There existgy > 0s.t.| O(X) |< ¢cofor x € M. Let

wo(X) = a fM iﬁ”(*x(y))e(y)dH”‘z(y) forx e R" ,

wn

wherey is the orientation form. Then

wo € L& for arbitary smalle > 0

Proof. Observing thatvg(X) < c(n, cp) Im(X), where
I (X) :f ;dH”*Z(y) for x € R"
. M x—y [t ’

we only need to showy e L2 for arbitrary smalk > 0. For anyr; > 0,

1
——  _dH""?(y)
./Brl(x)ﬁM Ix — y[n-1 y

1 1 H"2(B,,(x) N M
:/ — _ — dHn—Z(y)+ ( :_l) )
Br,0onM \ [ X =Y rf %
r Hn—2 B A M
=(n-1 dHr-2(y) [ rngr ¢ BB M
Br, (ONM IX—y| ry
" H"2(B;,(x) N M
=(n-1 / dr / (ingHn2(y) ¢ 1 BuIOM
Br (x)NM I‘l
" H"2(B (x) N M Hn 2(B,,(x) N M
(n—1)/ ( r(X) ) dr (rrnl(i() )
1

Letr; go tooo. This implies

00 n-2
H (B;f]x)ﬂ M) o

oo = -1 |

0

For anyp € [1, 2), anyr; > O,

(f (PP < (n— 1)f°°[f (HP2(B, (% N M))Pdx] T ~"dlr
Br, 0 Br,

Now we have for € (0, 1],

f qu@wmmMn%xgoﬂwwmaf H™2(B. (%) N M)dx
B B

1 r1
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<c- r(pl)(”z)/ dx/ dH""2(y)
n Br (X)NM

—c. r(pl)(nZ)‘/ rd anz(y) —c. rpn—2(p—l)
M

Hence
1
p 1
(/ [H" (B, N M)]dx) r"<c.r 2%
Brl
Forr € [1, 0c0), we have

(| TH"2(B.00 N M) T < c(n, p, o) H™2(Myr =
B,

The above two inequalities implf, 1v(x)Pdx < oco.
1

RemarkThe functionly, in the proof is closely related to the trace problem
because of the following,

1 X' — yHai f(y)
f(X) = — = fi f (R" R"
(X) non Jon Xy T dy forany f € CZ(R"), x €
1 | VA(y) |
= f(x) |< — —= d
| ()l_nwn/Rn|x—y|”‘1 y
So

/ | 0 | dH™2(x) <
M Newn

For this aspect we may refer to Sect. 7.8 of [15] and Chapter 7 of [1]
(especially P197 Theorem 7.2.2. and P211, 7.6.6.).

/ | V(X)) | Im(X)dx
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