
J. Eur. Math. Soc. 1, 237–311 c© Springer-Verlag & EMS 1999

Fanghua Lin· Tristan Rivière

Complex Ginzburg-Landau equations
in high dimensions and codimension
two area minimizing currents

Received December 3, 1998 / final version received May 10, 1999

Abstract. There is an obvious topological obstruction for a finite energy unimodular har-
monic extension of aS1-valued function defined on the boundary of a bounded regular
domain ofRn. When such extensions do not exist, we use the Ginzburg-Landau relaxation
procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers,
as the coupling parameter tends to infinity, converges to a unimodular harmonic map away
from a codimension-2 minimal current minimizing the area within the homology class in-
duced from theS1-valued boundary data. The union of this harmonic map and the minimal
current is the natural generalization of the harmonic extension.

I. Introduction

I.1. Vortex equations

Complex Ginzburg-Landau equations originated in the theory of super-
conductivity [16]. When the Ginzburg-Landau parameter is chosen to be
a special constant, the equations are called self-dual vortex equations which
were carefully studied by Jaffe and Taubes [19].

For the vortex equation on a Riemannian surface6, one considers an
open, smooth domain� ⊆ 6 with, possibly empty, smooth boundary∂�.
Let L be a complex line bundle over� equipped with a Hermitian metric
< ., . >. For a sectionu of L we write |u(x)|2 =< u(x),u(x) >. Then the
Ginzburg-Landau functionals are defined for a sectionu of L and a unitary
connectionA on L.

The self-dual case of this functional is given by

E(u, A,�) =
∫
�

[
|dA|2 + |∇A u|2+ 1

4
(1− |u|2)2

]
dx , (I.1)
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wheredx is the volume form of some fixed Kähler metric on6. As usual
we adopt the following notations:

∇A u = (d− i A)u ;
d is the exterior derivative. Hence the unitary property simply means

d< u, v >=< ∇A u, v > + < u,∇A v >

for sectionsu, v of L. The curvature ofA is F = dA.
Thus (I.1) is the usual Yang-Mills-Higgs functional for this special case.

In local coordinates(x1, x2) on6, we write∇k
A = ∇A(

∂

∂xk ) = ∂k− i Ak,

k = 1,2, andFk j = ∂k Aj − ∂ j Ak = i(∇k
A∇ j

A − ∇ j
A∇k

A). Then the Euler-
Lagrange equations forE are

1A u = −1

2
u(1− |u|2)

∂kFk j = −= 〈(∂ j − i A j )u,u
〉

,

(I.2)

where1A = ∇k
A.∇k

A, and where we employ the usual summation conven-
tion.

E has two important properties. The first one is called the gauge in-
variance, i.e. the value ofE is invariant under the gauge transformation
(u, A) → (u exp(iψ), A+ dψ), for a real valued functionψ. The second
important feature ofE is the self duality. Namely, decomposing∇A into its
(1,0) and(0,1) parts,∇A = ∂A + ∂A, in case� = R2 and if |u(x)| → 1,
∇A u(x)→ 0 sufficiently fast as|x| → ∞, thenE can be written as

E(u, A) =
∫
R2

[
2|∂A u|2+

∣∣∣ ∗ F − 1

2
(1− |u|2)

∣∣∣2] dx

+ 2πd

(I.3)

for some integerd, the so-called vortex number (see [19], page 54). Thus
we see that the infimum forE, namely 2πd, is attained if and only if the
vortex equations 

∂A u = 0

∗F = 1

2
(1− |u|2)

(I.4)

are satisfied.
Of course, sinceE is non negative, this is possible only ifd ≥ 0 (if d< 0,

one should consider antiholomorphic sections instead of holomorphic ones).
Taubes [33] showed that for any collection ofN points xj ∈ R2 with
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multiplicities Nj , there is a solution, unique up to gauge equivalence, of the
vortex equations withu(xj ) = 0, j = 1, ..., N.

The situation for a compact Riemannian surface6 is the same. One can
rewrite E as

E(u, A,6) =
∫
6

[
2|∂A u|2+

∣∣∣ ∗ F − 1

2
(1− |u|2)

∣∣∣2] dx

+ 2π degL ,

(I.5)

wheredegL is the degree ofL and∗ denotes the contraction with the Kähler
form of 6. Thus the infimum 2π degL is achieved by the solution of the
vortex equations 

∂A u = 0

∗F = 1

2
(1− |u|2) .

(I.6)

We refer to the works by Bradlow and Garcia-Pradu for the detailed analysis
on (I.6) ([6], [7], [13], [14]).

I.2. The scaling effect

OnR2, for the functional

E(u, A) =
∫
R2

[
|dA|2 + |∇A u|2+ 1

4
(1− |u|2)2

]
dx ,

one can easily introduce the scaling dimensions foru and A in such a way
that the term

∫
R2 |∇Au|2 dx is scaling invariant. Thus we putu to be of

dimension 0,A to be of dimension−1 and so∇Au is of dimension−1. The
scaled functional is

E(u, A) =
∫
R2

[
ε2|dA|2 + |∇A u|2+ 1

4ε2
(1− |u|2)2

]
dx , (I.7)

0 < ε < ∞. It still is self-dual and gauge invariant. The Euler-Lagrange
equations for (I.7) are

1A u = − 1

2ε2
u(1− |u|2)

ε2∂kFk j = −= 〈(∂ j − i A j )u,u
〉

.

(I.8)
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Again, the vortex equations onR2 are
∂A u = 0

ε2 ∗ F = 1

2
(1− |u|2) .

(I.9)

On the general Riemannian surface6 the second equation becomes

ε2 ∗ F = 1

2
(1− |u|2) . (I.10)

Note that a necessary condition for solving (I.10) on6 is

2π ε2 degL <
1

2
Vol6 . (I.11)

The latter will obviously be true whenε is sufficiently small.
In [17], Hong-Jost-Struwe studied the asymptotic behavior of minimal

solutions of 
∂Aεuε = 0

ε2 ∗ Fε = 1

2
(1− |uε|2)

(I.12)

on a compact Riemannian surface6. They showed that, for a fixedd =
degL ≥ 0, and for some sequenceεn → 0, there are pointsxj , j =
1, ..., l ≤ d, such that|uε| → 1, ∇Aεuε → 0, dAε → 0 uniformly on
compact subsets of6 \ {x1, ..., xl }. Moreover, forhε = ∗dAε, one has
hε −→ 2π

∑l
j=1 δxj in the sense of measures, where delta functions have

to be counted with multiplicity. This yields a method for degenerating a line
bundle L on 6 of degreed into a flat line bundle with|d | singularities
(counted with multiplicity) and a covariantly constant section.

The above described result is a two-dimensional analogue of works by
Taubes ([34], [35]) on the Seiberg-Witten equations. Taubes used them
to relate the Seiberg-Witten and Gromov invariants in four dimensional
geometry through a similar change of scales.

I.3. Superconductivity

In the theory of superconductivity, particularly for those highTc supercon-
ductors, the coupling constant (or the Ginzburg-Landau parameter) is often
very large. Hence instead of (I.7), one has to look at variational integrals:

Eε(u, A,�) =
∫
�

[
|dA|2 + |∇A u|2+ 1

4ε2
(1− |u|2)2

]
dx , (I.13)
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for 0 < ε << 1. The energy functional (I.13) is, though gauge invariant,
no longer self-dual in the sense we discussed before. Thus the analysis has
to be done on this variational integral and its corresponding second order
Euler-Lagrange equations instead of the first order vortex equations.

When� is a two-dimensional domain, and if one ignores the effect of
a magnetic field, i.e. the connectionA, then it suffices to study the following
model problem:

min
∫
�

[
|∇u|2+ 1

2ε2
(|u|2− 1)2

]
dx . (I.14)

The natural boundary condition for (I.14) is the standard Dirichlet boundary
condition

u|∂� = g . (I.15)

Hereu is a complex-valued function andg : ∂� −→ S1 is a smooth unit
vector field of degreed.

In [4], Bethuel-Brezis-Helein systematically analysed the problem (I.14)-
(I.15). Then, by taking subsequences if necessary, one has

i)

uεn(x)→ u?(x) =
d∏

j=1

x− aj

|x− aj | exp(iha(x))

in

C1,α
loc (� \ {a1, ...,ad}) ,

1ha = 0 in �

u? = g on ∂� ;
ii)

1

2

∫
�

[
|∇uεn |2+

1

2ε2
(|uεn|2− 1)2

]
dx

= πd log
1

εn
+ min

b∈�d
W(b, g,�)+ oεn(1) .

HereW(., g,�) is a function defined on�d which is called the renor-
malized energy;

iii) a≡ (a1, ...,ad) is a global minimum ofW(., g,�);
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iv)
(|uεn|2− 1)2

ε2
n

⇀ 2π
d∑

j=1

δaj ,

|∇uεn|2
2π log 1

ε

⇀

d∑
j=1

δaj

in the sense of Radon measures.

We remark that the above statements were shown in [4] under the addi-
tional assumption that� is star-shaped. The key conclusion following from
this assumption is the estimate

1

ε2

∫
�

(|uε|2− 1)2dx ≤ C(g,�) . (I.16)

Using the approach by Struwe [32], one can drop this additional assumption.
Indeed the estimate (I.16) also follows from [32]. Later in [9] an elegant
approach showed also this estimate without using the star-shaped property
for �.

It turns out, from the point of view of analysis, the variational prob-
lem (I.13) is a small perturbation of the problem (I.14). Indeed, in [5],
Bethuel-Rivière established corresponding results to the ones in [4] for the
minimization problem associated with (I.13) with a suitable boundary con-
dition by using similar analytical arguments. See also [10] and [29] for
results under a more physical boundary condition and an external applied
magnetic field.

I.4. Ginzburg-Landau equations in high dimensions

The purpose of this article is to study the asymptotic behavior of minimizers
of the Ginzburg-Landau functionals (I.13) in high dimensions. In [25], the
second author first studied the problem when the dimension of� is three. He
proved among other results that the minimizers of (I.13) converge (by taking
a subsequence if needed) away from a one-dimensional length minimizing
current. Similar to the situations in the two dimensional case, the analysis
in [25] suggest that the essential analytical difficulties in studying such
problems lie in the following model problem:

min
∫
�

[
|∇u|2+ 1

2ε2
(|u|2− 1)2

]
dx (I.17)

subject to the Dirichlet boundary condition

u = gε : ∂� −→ S1 . (I.18)
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For this reason we shall therefore discuss only the model problem (I.17)-
(I.18).

I.4.1. The Dirichlet boundary condition.To further simplify the presenta-
tion we will make use of the following assumptions:

(A1) � is a smooth convex domain inRn, n ≥ 3;
(A2) on∂� we prescribed a family of boundary valuesgε : ∂� −→ C, for

ε ≤ ε0, such that

(i) d( gε
|gε|
∗dθ) = S, whereS is a fixed smooth(n − 3)-dimensional

current with integer multiplicity (i.e. it can be represented by a
(n − 3)-dimensional smooth compact submanifold in∂� with
integer multiplicity);

(ii) ‖gε‖∞ ≤ 1, |gε|(x) ≡ 1 if r ≥ cε, and |∇kgε|(x) ≤ C
max(r,ε)k

on ∂�, whereC andc are a positive constants independent ofε

andr = dist(x, sptS).

From(A2) one deduces in particular∫
∂�

|∇gε|2 ≤ C log
1

ε
(I.19)

and ∫
∂�

1

ε2
(|gε|2− 1)2 ≤ C , (I.20)

whereC is a constant independent ofε.
In part IV of this paper we will need to strengthen a bit assumption(A2)

and prescribe a more precise shape ofg close to its zero set: we will add
a third hypothesis to i) and ii).

(iii) There existsr1 > 0 such that for anyx0 in sptS there exists a diffeo-
morphism80 of Br1(x

0) and a rotationR of Rn such that

g= fε
(x

ε

)
◦80 ◦ R where

80(x
0) = x0 and|∇(80 − Id)|(x0) = 0

fε(x1, ..., xn) = hε

(
x1+ ix2

|x1+ ix2|
)
χ(|x1 + ix2|) ,

whereχ is an increasing function satifyingχ(0) = 0 andχ ≡ 1
on [1,+∞), moreoverhε is any function fromS1 into S1 such that
‖∇khε‖∞ are uniformly bounded, independently ofε.

(A2) enforced by iii) is called(A2′).
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I.4.2. The energy density concentration set.When dim� = n = 3, S =∑k
j=1 dj δaj , for someaj ∈ ∂�, j = 1, ..., k. Since∂� is compact, we have∑k
j=1 dj = 0. It was shown in [25] that, givenεn tending to zero, from

a subsequenceuεn of minimizers of (I.17) withuεn = gεn on ∂� among
H1

gεn
(�,C) one can extract a subsequence which converges inH1

loc(� \
sptT) to a harmonic mapu into S1 whereT is a length minimizing current
supported in� with ∂T =∑k

j=1 dj δaj . Suppose such a length minimizing
current is unique, then the whole familyuε, 0 < ε < 1, converges tou as
ε → 0 whenevergε does. In the beginning of Sect. III of this paper we
shall give an alternative and much simpler proof of a part of the main result
in [25]. For the general dimensions we have the following result which is
the first part of the main result in this paper:

Theorem I.1 Suppose the assumptions(A1), (A2) are valid and thatuε,
0< ε < 1 are minimizers of (I.17)-(I.18). Let

µε = eε(uε)dx

π log 1
ε

=
[

1
2|∇uε|2+ 1

4ε2 (|uε|2− 1)2
]

dx

π log 1
ε

.

Then, for any sequenceεn → 0, there is a subsequence of{µεn} that
converges weakly (as Radon measures) to a Radon measureµ such that
sptµ = sptT, µ(�) = M(T) (mass ofT). HereT is an area minimizing
codimension two current inRn with ∂T = S. In the case that suchT is
unique, the whole familyµε, 0< ε < 1, converges toµ asε→ 0+.

We should point out that the proof of the above theorem does not use the
existence of area minimizing currentsTwith ∂T = S. The proof of the latter
fact often needs the compactness theorem of Federer-Fleming for integral
currents [12]. Thus the paper gives an alternative, though not necessary
simple, proof of this useful fact.

At this point, it is interesting to point out that our arguments can be easily
adopted to the problem studied in [34] to show the energy concentration
set (the collapsing set for harmonic spinors) are two-dimensional area-
minimizing surfaces. The holomorphic structure proved in [34] comes from
the self-duality property of the Seiberg-Witten functionals considered there.

Though we have studied here a simple minded variational problem, we
believe that we have developed here a very general analytical frame-work
that can be used in various applications that latter may be more interesting
than the main conclusion of the paper.

We should also point out that the infinite energy concentration sets have
to be area minimizing is not particularly surprising from formal analysis. It
is also naturally suggested by the results on its associated gradient flow [21].
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I.4.3. The limiting map.We also give a description of the sequence of min-
imizers itself. This uses a somehow different approach as the one developed
in part III to prove Theorem I.1. In this approach we assume hypothesis
(A2′) above but we do not have to assume anymore that� is convex (hypo-
thesis(A1)). � can be any regular bounded domain ofRn. In particular
∂� can be topologically different fromSn−1. We are still interested in
the situation wheregε/|gε| admits no extension inW1,2(�, S1). So either

d
(

gε
|gε|
∗dθ

)
= S 6= 0 or we can also havegε|gε| ∈ C∞(�, S1), π1(∂�) 6= ∅

and there exists at least a generatorγ of π1(∂�) which is contractible in�
and such that deg( gε

|gε| ; γ) 6= 0. Of course one can also have both situations
together.

We will use the following elementary lemma proved in the appendix:

Lemma A.7. Let� be a bounded regular domain inRn, let g be a regular
map from∂� intoC such thatg−1({0}) is a submanifold of∂�. Denote by

S the currentS = d
(

gε
|gε|
∗dθ

)
andS= sptS. Then, there exists a classL in

Hn−2(�, S,Z) such that, for any currentL representingL one has

i) g admits a regular extension from�\sptL into S1.
ii) for any closed curveγ in ∂� \ g−1({0}) such thatγ = ∂σ whereσ is a

2-cycle in� we have

deg(g/|g|, γ) = σ _ L .

This classL is uniquely determined byS and the degree ofg on any closed
curve in∂� \ g−1({0}).

In order to simplify the statement of our second main theorem we will
make the following assumption on the boundary conditiongε

(A3) The classL ∈ Hn−2(�, S,Z) defined bygε is independent onε,
moreoverL 6= 0.

The following result generalizes to any dimension the result of F. Bethuel,
H. Brezis and F. Hélein in [4] in dimension two and the result of the second
author in [25] for the dimension three case.

Theorem I.2 Let � be a bounded domain inRn, let εn be a sequence
tending to zero andgεn be a sequence of boundary conditions from∂� into
C verifying(A2′) and(A3). If uεn denotes a sequence of minimizers ofEεn

then one can extract a subsequence (still denoteduεn) which converges in
H1

loc(� \ sptT,C) to an harmonic mapu? from� \ sptT into S1, whereT
minimizes the area in the classT . Moreoverd(u∗?dθ) = T.

Remark I.1 In view of this result the union of the harmonic mapu? and
the minimal currentT is the right object which generalizes the harmonic
extension ofg∗ = lim gε from� into S1 when it does not exist.
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I.5. Description of the paper

In Sect. II we shall establish two important ingredients of our proofs. The
first is the energy monotonicity property. The second is theη-compactness
lemma. Theη-compactness lemma was first shown also in [25] for dim� =
n = 3, here we generalized it to arbitrary dimensionn ≥ 3. It is the starting
point of our analysis. The Sect. III is devoted to the proof of Theorem I.1.
In the first part of Sect. III we restrict to the dimension 3 case and we give
a relatively simplified proof of a part of the main result in [25]. It also
presents the key idea we use in the second part of Sect. III to generalize it to
high dimensions. Here we first analyze the defect measureµ and establish
various properties concerningsptµ, such as its density with respect toHn−2,
(n− 2)-dimensional Hausdorff measure, its rectifiability and orientability.
Then we use energy arguments to show sptµ = sptT, M(T) = µ(�) and
T is an area-minimizing current in� with ∂T = S.

In the final section IV we prove Theorem I.2. This part is independent
from part III, in particular we give an alternative proof of Theorem I.1, using
the Federer-Fleming Theorem this time. The interest of this approach, which
is the high-d version of the approach in [4] ford = 2, and [25] ford = 3, is
that at the same time it gives the convergence ofuε away fromsptµ which
could not be deduced directly from the approach in the previous section.

II. Fundamental lemmas

II.1. Bounding the energy density

II.1.1. Basic estimates.Supposeuε, 0 < ε < 1, are minimizers ofEε(.)
over H1

gε(�,C), then using the maximum principle one has

Lemma II.1 [3]

‖uε‖L∞(�) ≤ 1 . (II.1)

Using a Gagliardo-Nirenberg type interpolation inequality, Lemma II.1 and
the Euler-Lagrange equation one has

Lemma II.2 [3] There existsC > 0 depending only on� and the constants
in hypothesis(A2) such that

‖∇uε‖L∞(�) ≤ C

ε
. (II.2)
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Finally a comparison construction yields the following (see also Lemma
III.2):

Lemma II.3 LetT be a current representingT , then

Eε(uε) ≤ π (M(T)+ δ) log
1

ε
,

for anyδ > 0 and for all sufficiently smallε > 0.

Note this estimate is particularly simple whenn = 3.

II.1.2. The monotonicity formula

Lemma II.4 (Monotonicity formula) The following identity holds

d

dr

[
1

r n−2

∫
Br

|∇u|2+ n

2(n− 2)

1

ε2

(
1− |u|2)2

]

= 1

r

[
1

r n−3

∫
∂Br

2

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

n− 2

1

ε2

(
1− |u|2)2

]
.

(II.3)

The Euler Lagrange equation foruε is

−1u = u

ε2

(
1− |u|2) (II.4)

We multiply−1u by the Pohozaev quantity
∑n

i=1 xi
∂u
∂xi

and we integrate
by parts onBr . We get∫

Br

−1u
n∑

i=1

xi
∂u

∂xi

= −r
∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2+ ∫

Br

|∇u|2+
∫

Br

n∑
i,k=1

xi
∂u

∂xk

∂2u

∂xk∂xi
.

(II.5)

Integrating by parts oni the last integral of the right-hand side of (II.5) we
obtain ∫

Br

n∑
i,k=1

xi
∂u

∂xk

∂2u

∂xk∂xi
= 1

2

∫
∂Br

r |∇u|2 − n

2

∫
Br

|∇u|2 . (II.6)
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Multiplying the right-hand side of the Euler equation (II.4) by the Pohozaev
quantity and integrating by parts we obtain∫

Br

u

ε2

(
1− |u|2) n∑

i=1

xi
∂u

∂xi
= −1

4

∫
∂Br

r

(
1− |u|2)2

ε2

+n

4

∫
Br

(
1− |u|2)2

ε2
.

(II.7)

Combining (II.4)...(II.7) we get

−1

4

∫
∂Br

r

(
1− |u|2)2

ε2
+ n

4

∫
Br

(
1− |u|2)2

ε2

= −r
∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2+ r

2

∫
∂Br

|∇u|2− n− 2

2

∫
Br

|∇u|2 .

(II.8)

We multiply this identity by 2
rn−1 and we get the desired result.

We also need a boundary version of the energy monotonicity formula.
Consider a part of∂� of the form∂�∩ Br1(x

0) wherex0 ∈ �. Assume that
r1 is sufficiently small. Assume 0∈ ∂� ∩ Br1(x

0). We can parameterize
∂� ∩ Br1(x

0) in the following way

∂� ∩ Br1(x
0) = {x ∈ B1(x

0) : xn = ψ(x1, ...xn−1)}
such thatψ(0) = |∇ψ(0)| = 0 and let‖ψ‖C2 ≤ δ0. Denote byd =
dist(x0,sptS) and�r := �∩ Br(x0) Let uε be a minimizer ofEε(.) on�r1.
We have the following boundary version of the energy monotonicity for-
mula.

Lemma II.5 (Boundary energy monotonicity) With above notations one
has, forr ∈ (0, r1) and any0< α < 1, that

d

dr

{
e3rαr−n+2

∫
�r

1

2

[
|∇uε|2+ n

2(n− 2)ε2

(|uε|2− 1
)2
]

dx

}

≥ r−n+2

2

∫
∂Br (x0)∩�

∣∣∣∣∂uε∂ρ
∣∣∣∣2+

(
1− |u|2)2

ε2

+ r−n+1
∫
∂�∩Br (x0)

|x.ν|
∣∣∣∣∂u∂ν

∣∣∣∣2 dx− C
r

d2
e3rα .

(II.9)

Here3 andC are constants depending only on the upper bound of the ratio
r 1−α/d, onδ0 and the constants in the hypothesis(A2), but not onr or ε.
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Proof. Assume first for the simplicity of the presentation that�r =
Br (x0)∩� is star-shaped aroundx0, this implies in particular(x−x0).ν ≥ 0
for anyx ∈ ∂�∩ Br (x0). Multiply the equation1u+ 1

ε2 u(1− |u|2) = 0 by
the Pohozaev multiplier

∑
i (xi − x0

i )
∂u
∂xi

. Integrating on�r like in the proof
of the interior monotonicity formula one gets

d

dr

[
1

r n−2

∫
�r

|∇u|2+ n

2(n− 2)

1

ε2

(
1− |u|2)2

]

= 1

r

[
1

r n−3

∫
∂Br∩�

2

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

n− 2

1

ε2

(
1− |u|2)2

]

+ 1

r n−1

∫
∂�∩Br

(x− x0).ν

∣∣∣∣∂u∂ν
∣∣∣∣2− 1

r n−1

∫
∂�∩Br

(x− x0).ν |∇g|2

+ 2

r n−1

∫
∂�∩Br

(x− x0).τ
∂u

∂ν
.
∂g

∂τ
,

(II.10)

whereBr meansBr (x0) and whereτ|x− x0| is the orthogonal projection of
x−x0 on the tangent plane of∂� atx. Of course, the worst term to deal with
is the last one. In order to bound it one uses an idea from [8]. One can always
find an extensiong of g in �r such that|∇g| ≤ C/d and |∇2g| ≤ C/d2.
The idea is to multiply the equation satisfied byu by

∑
i (xi − x0

i )
∂g
∂xi

and to
integrate it on�r . This yields∫

∂�∩Br

(x− x0).τ
∂u

∂ν
.
∂g

∂τ
= −

∫
∂�r

(x− x0).ν
∂g

∂ν
.
∂u

∂ν

+
∫
�r

∂u

∂xk

∂

∂xk

(
(xi − x0

i )
∂g

∂xi

)

−
∫
�r

u
(1− |u|2)

ε2
(xi − x0

i )
∂g

∂xi
.

(II.11)

The first term of the right-hand side of (II.11) is bounded by∫
∂�r

(x− x0).ν
∂g

∂ν
.
∂u

∂ν
≤ 1

d

∫
∂�r

(x− x0).ν

∣∣∣∣∂u∂ν
∣∣∣∣

≤ C

δ

r n

d2
+ δ

∫
∂�r

(x− x0).ν

∣∣∣∣∂u∂ν
∣∣∣∣2 .

(II.12)
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The second term of the right-hand side of (II.11) can be bounded in the
following way∫

�r

∂u

∂xk

∂

∂xk

(
(xi − x0

i )
∂g

∂xi

)
≤ C

d

∫
�r

|∇u| ≤ C
r n−α

d2
+ r α

∫
�r

|∇u|2 .

(II.13)

Finally for the last term of the right-hand side of (II.11) we write∫
�r

u
(1− |u|2)

ε2
(xi − x0)

∂g

∂xi
≤ Cr

d

∫
�r

|1− |u|2|
ε2

. (II.14)

Now the difficulty is to handle the term
∫
�r

1−|uε|2
ε2 dx. Here we should point

out that|uε| ≤ 1. To estimate
∫
�r

1−|uε|2
ε2 dx, we use the same trick as in [8],

we multiply the equation1uε + 1
ε2 uε

(
1− |uε|2

) = 0 byφ
(
1− |uε|2

)
uε.

Hereφ(t) is a smooth positive function oft ≥ 0 such thatφ(0) = 0,φ(t) = 1
for t ≥ ε2, andφ′(t) ≥ 0. Recall that|g|(x) ≡ 1 if dist(x, sptS) ≥ ε. After
integration by parts, we obtain∫

�r

|uε|2
(
1− |uε|2

)
ε2

dx ≤
∫
�r

|∇uε|2dx+
∫
∂Br (0)∩�

∣∣∣∣uε.∂uε∂ρ
∣∣∣∣+ C

r n

d2
.

Therefore∫
�r

1− |uε|2
ε2

dx≤
∫
�r

(1− |u|2)2
ε2

+
∫
�r

|uε|2
(
1− |uε|2

)
ε2

+ C
r n

d2

≤
∫
�r

eε(u)+
∫
∂Br (0)∩�

∣∣∣∣∂uε∂ρ
∣∣∣∣+ C

r n

d2
.

(II.15)

combining (II.12), (II.14) and (II.15) we get∫
�r

u
(1− |u|2)

ε2
xi
∂g

∂xi
≤ C

r 1−α

d
r αEε(u)+ C

δ

r n

d2
+ δ

∫
∂Br∩�

x.ν

∣∣∣∣∂u∂ν
∣∣∣∣2 .

(II.16)

Combining now (II.10), (II.11), (II.12), (II.13) and (II.16) we get, for
δ = 1/8

Y′ + α3

r 1−αY ≥ 1

r

[
1

2r n−3

∫
∂Br∩�

2

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

n− 2

1

ε2

(
1− |u|2)2

]

+ 1

r n−2

∫
∂�∩�
|x.ν|

∣∣∣∣∂u∂ν
∣∣∣∣2− C

r

d2
,

(II.17)
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where

Y = r−n+2
∫
�r

1

2

[
|∇uε|2+ n

2(n− 2)ε2

(|uε|2− 1
)2
]

dx .

Multiplying (II.17) by exp(3r α) we get (II.9).
We do not assume anymore that�r is star-shaped. We have to study the

perturbation terms induced by omitting this assumption.
We claim that

∀x ∈ ∂� ∩ Br (x
0) (x− x0).ν ≥ |(x− x0).ν| − cr2 , (II.18)

wherec is independent ofr or x0 in �. We have

ν = 1

(1+ |∇ψ|2)1/2
(

en −
n−1∑
i=1

∂ψ

∂xi
ei

)
.

Since∇ψ(0) = 0 we have|∇ψ|(x) ≤ Cr and in order to prove (II.18) it
suffices to prove

∀x ∈ ∂� ∩ Br (x
0) (x− x0).en ≥ −cr2 . (II.19)

One can notice that it suffices to prove the previous identity withy0 instead
of x0, wherey0 is the projection ofx0 on ∂� alongen (i.e. y0 = x0 + λen,
whereλ ≥ 0). Since∇ψ(0) = 0 we have|ψ(x) − ψ(y0)| ≤ Cr2 and this
implies

(x− y0).en ≥ −cr2 .

From this identity and the discussion above we deduce (II.18). So, without
the star-shapedness assumption for�r , instead of (II.17) we get

Y′ + α3

r 1−αY ≥ 1

r

[
1

2r n−3

∫
∂Br∩�

2

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

n− 2

1

ε2

(
1− |u|2)2

]

+ 1

r n−2

∫
∂�∩Br

|x.ν|
∣∣∣∣∂u∂ν

∣∣∣∣2

− C

r n−3

∫
∂�∩Br

∣∣∣∣∂u∂ν
∣∣∣∣2− C

r

d2
.

(II.20)

So we have to bound the termC
rn−3

∫
∂�∩Br

∣∣ ∂u
∂ν

∣∣2. Observe that we haveC
rn−3

in front of the integral and notC
rn−2 , this is the reason why this term is not

so bad. Forr1 sufficiently small compared to theC2 -norm of∂� one can
ensure that�r is always star-shaped forr ≤ r1 around some pointz0 for
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which one has(x − z0).ν ≥ cr, wherec is independent ofr or x0. One
can apply all the previous Pohozaev arguments on�r but aroundz0. Using
similar estimates as above one deduces that

1

r n−3

∫
∂�∩�

∣∣∣∣∂u∂ν
∣∣∣∣2 ≤ C

[
Y+ r−n+3(r n−2Y)′ + r 2

d2

]
. (II.21)

Inserting this estimate in (II.20) one gets a similar estimate as (II.17) and
we can conclude in the same way.

II.1.3. A uniform bound of the energy density.In Part IV we will need the
following bound for the density of energy

Lemma II.6 For anyx0 in � the following bound holds

1

r n−2

∫
Br (x0)∩�

|∇u|2+ 1

ε2
(1− |u|2)2 ≤ C log

1

ε
, (II.22)

whereC is independent onε, r andx0.

Proof. It is clear from the global upper bound of the energy given by Lemma
II.3 and from the monotonicity formulas (Lemma II.4 and Lemma II.5) that
(II.22) holds for anyx0 ∈ K , whereK is a compact set included in�\ sptS
and for anyr > 0 but the constant a priori could depend onK .

Let us takex0 ∈ sptS and prove that (II.22) holds for aC independent
of r , x0 ∈ sptS andε. We use the notations of the proof of Lemma II.5,
for instanceY still denotes the density of energy on�r = � ∩ Br : Y =

1
rn−2 Eε(u)(Br ). (II.10) implies, using (II.19) (in fact sincex0 ∈ ∂� similar
arguments as the ones used to prove (II.19) give also|(x− x0).ν| ≤ Cr2).

Y′ ≥ − C

r n−3

∫
∂�∩Br

∣∣∣∣∂u∂ν
∣∣∣∣2− C

r n−3

∫
∂�∩Br

|∇g|2

+ 2

r n−1

∫
∂�∩Br

(x− x0).τ
∂u

∂ν
.
∂g

∂τ
,

(II.23)

whereτ|x− x0| is the orthogonal projection ofx− x0 on the tangent plane
of ∂� at x. First of all we have

1

r n−3

∫
∂�∩Br

|∇g|2 ≤ C

r n−3

∫
∂�∩Br

1

max(dist(x, sptS), ε)2
≤ C log

1

ε
.

(II.24)

We have also the following a-priori bound

1

r n−2

∫
∂�∩Br (x0)

∣∣∣∣∂u∂ν
∣∣∣∣2 ≤ C

[
Y′ + Y

r
+ log 1

ε

r

]
. (II.25)
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Indeed (II.25) is established in the following way: take a pointz0 in � ∩
Br (x0) around which�∩Br(x0) is star-shaped with(x−z0).ν ≥ cr2 where
c is some universal constant. This is always possible forr small compared
to theC2 -norm of∂�. Let us apply the Pohozaev formula in� ∩ Br (x0)

aroundz0. This easily implies

1

r n−2

∫
∂�∩Br (x0)

∣∣∣∣∂u∂ν
∣∣∣∣2 ≤ C

r n−1

∫
�∩Br (x0)

eε(u)+ C

r n−2

∫
�∩∂Br (x0)

eε(u)

+ C

r n−2

∫
∂�∩Br (x0)

|∇g|2 + |∇g|
∣∣∣∣∂u∂ν

∣∣∣∣ .

(II.26)

Observe that we have from hypothesis(A2′)

1

r n−2

∫
∂�∩Br (x0)

|∇g|2 ≤ C
log 1

ε

r
. (II.27)

Thus combining (II.26) and (II.27) one gets (II.25). Observe now that from
hypothesis(A2′) on g one deduces that

(x− x0).τ
∂g

∂τ
≤
∣∣∣∣(xi

∂ fε
∂xi

)
◦80

∣∣∣∣+ Cr2|∇g| , (II.28)

where fε(x) denotesfε(x) = hε

(
x1+ ix2

|x1+ ix2|
)
χ

( |x1+ ix2|
ε

)
, (recall that

from (A2′) we have spt(χ − 1) ⊂ [0,1]). Thusxi
∂ fε
∂xi
◦80 has a support in

Sε = {x ∈ ∂� ; dist(x; sptS) ≤ ε} and is bounded byCr/ε. Combining
this fact with (II.28) we get

1

r n−1

∫
∂�∩Br

(x− x0).τ
∂u

∂ν
.
∂g

∂τ
≤ C

r n−2

1

ε2
|Sε ∩ Br |

+ C

r n−3

∫
∂�∩Br

|∇g|
∣∣∣∣∂u∂ν

∣∣∣∣ .

(II.29)

Using the fact that|Sε ∩ Br | ≤ Cε2r n−3, (II.23), (II.24), (II.25) and (II.29)
we finally obtain

Y′ ≥ −C log
1

ε
− CY− C

r
. (II.30)

This differential inequality integrated between 1 and anyr ≥ ε gives the
result forx0 ∈ sptS (for r ≤ ε (II.22) is a direct consequence of theL∞
bounds‖u‖∞ ≤ 1 and‖∇u‖∞ ≤ C

ε
, see Lemma II.1 and Lemma II.2).
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Now take any pointx0 ∈ � and anyr > 0. Let d = dist(x0; sptS). If
r > d/2, let z0 ∈ sptS such thatd = |x0 − z0|. Since we have proven the
lemma for any point on sptS we have

1

r n−2

∫
Br (x0)∩�

eε(u) ≤ 1

r n−2

∫
B3r (z0)∩�

eε(u) ≤ C log
1

ε

and the lemma is proven in this case. So we just have to consider the case
wherer < d/2 and we can also assume thatx0 ∈ ∂�. Indeed, if the lemma
is proven for the point on the boundary, for any pointx0 one has the estimate
(II.22) for it’s projection on∂�. We use it forr ≥ 2 dist(x0,�), this gives
the estimate forx0 and anyr > dist (x0,�)/2 and the estimate (II.22)
betweenε and dist(x0,�)/2 is just a consequence of the interior mono-
tonicity formula. Thus we havex0 ∈ ∂� andr < d/2. On∂� ∩ Br(x0) we
have|∇g| ≤ C

d . Thus the Pohozaev identity implies

Y′ ≥ − C

r n−3

∫
∂�∩Br

∣∣∣∣∂u∂ν
∣∣∣∣2− C

r 2

d2
− C

r n−2

1

d

∫
∂�∩Br

∣∣∣∣∂u∂ν
∣∣∣∣ . (II.31)

Using (II.25) we bound the last term of the right-hand side of (II.31) in the
following way

C

r n−2

1

d

∫
∂�∩Br

∣∣∣∣∂u∂ν
∣∣∣∣ ≤ C

r
1
2

d

(
Y′ + C

Y

r
+ log 1

ε

r

) 1
2

. (II.32)

Combining (II.31) and (II.32) we get

Y′ ≥ −C

[
Y+ 1

d

(
log

1

ε

) 1
2

+ r
1
2

d

(
Y′ + C

Y

r

) 1
2
]

. (II.33)

So at any pointd/2≥ s≥ r one of these 4 possibilities occur

Y′(s) ≥ −CY(s)

Y′(s) ≥ C

d

(
log

1

ε

) 1
2

Y′(s) ≥ −C s
d2

Y′(s) ≥ −C
d Y

1
2 .

(II.34)

Integrating all these possibilities betweenr andd/2 one getY(r) ≤ CY(d)+
C(log 1

ε
)

1
2 . Since (II.22) holds ford/2, this implies (II.22) forr and Lemma

II.6 is proven.
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II.2. The eta-compactness Lemma

This part of our work is devoted to the proof of one of the main proper-
ties we use for solutions of the complex Ginzburg-Landau functional: the
eta-compactness property. This roughly says that if the energy in a ball is suf-
ficiently small then the density of the order parameter|u| cannot approach 0
on the ball of half radius and if this remains true as the coupling constant
tends to infinity we will have compactness on this ball. This property is
reminiscent of the “ε-regularity” lemma proved by R. Schoen and K. Uh-
lenbeck for the minimizing harmonic map (see [28]). The eta-compactness
Lemma was proved in the 3-dimensional case for minimizers in [25], it can
also be used for the study of similar loss of compactness for the minimizing
sequence of the gauge invariant Ginzburg-Landau functional in dimension 2
(see [26]). Here we give a proof of this eta-compactness property in any
dimension and for critical points in general. This proof follows step by step
the one in [25] except at the end, where the comparison argument using the
minimality of the solution is replaced by a more refined one requiring only
the fact that we have a critical point of the Ginzburg-Landau functional.

Let� be a domain inRn for n > 2.

Lemma II.7 (eta-compactness) Letu be a critical point of the Ginzburg-
Landau functional satisfying|u| ≤ 1 and ‖∇u‖∞ ≤ C/ε where C is
independent ofε, then there existsη, λ andεo such that for anyε < εo and
for any ball Bρ(x0) ⊂ � whereρ ≥ λε,

1

ρn−2
Eε(u)

(
Bρ(x

0)
) ≤ η log

ρ

ε
⇒ |u|(x0) ≥ 1

2
.

Proof of theη-compactness lemma
We introduce the following notations

Er =
∫

Br

|∇u|2+ n

2(n− 2)

1

ε2

(
1− |u|2)2

,

Ir =
∫
∂Br

|∇u|2+ n

2(n− 2)

1

ε2

(
1− |u|2)2 = dEr

dr
,

Fr =
∫

Br

2

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

n− 2

1

ε2

(
1− |u|2)2

,

Jr =
∫

Br

2

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

n− 2

1

ε2

(
1− |u|2)2 = dFr

dr
.
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Using these notations, Lemma II.4 becomes

d

dr

[
Er

r n−2

]
= 1

r n−2

dFr

dr
. (II.35)

The hypothesis implies in particular∫ ρ

ε

1

r

[
1

r n−3
Jr

]
≤ η log

ρ

ε
.

Integrating by parts
∫ ρ
ε

1
r

[
1

rn−3 Jr
] = ∫ ρ

ε
1

rn−2
dFr
dr we obtain

Fρ
ρn−2

+ (n− 2)
∫ ρ

ε

1

r

[
1

r n−2
Fr

]
≤ η log

ρ

ε
+ Fε
εn−2

.

Using the fact that‖∇u‖∞ ≤ C/ε and|u| ≤ 1 we obtain

Fε
εn−2
=
∫

Bε

2

εn−2

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

n− 2

1

εn

(
1− |u|2)2 ≤ C .

Thus, ifη logλ ≥ C (i.e. λ ≥ exp(C
η
)), sinceρ ≥ λε, we haveFε/εn−2 ≤

η logρ/ε and finally we get∫ ρ

ε

1

r

[
1

r n−2
Fr + 1

r n−3
Jr

]
≤ Cη log

ρ

ε
.

Using the mean value formula we deduce the existence ofr1 ∈ [2ε, ρ] such
that

1

r n−3
1

Jr1 +
1( r1

2

)n−3 Jr1
2
+ Fr1

r n−2
1

≤ C η . (II.36)

We make the following change of scaler1 → 1 andu → ũ. Thus ũ is
a minimizer of ∫

B1

|∇ũ|2+
(r1

ε

)2 (
1− |ũ|2)2

.

Using Lemma A.6 and the fact that1ũ is parallel toũ we have inT1 =
B1 \ B1

2

1

(
ũ ∧ ∂ũ

∂r

)
= −2 (∗)d>

[(
i
∂ũ

∂r
; (∗)d>ũ

)]

+ 2

r

∂

∂r

(
ũ ∧ ∂ũ

∂r

)
+ n− 1

r 2

(
ũ ∧ ∂ũ

∂r

)
,

(II.37)

where(∗) andd> respectively denote the Hodge operator and the external
differentiation on∂Br and(a;b) is the scalar product between two complex
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numbersa andb. Let1−1
0 be the inverse of the Laplace Beltrami operator

on n− 2-form1 in T1 for the Dirichlet boundary conditions (v|∂T1 = 0 and
∗v|∂T1 = 0) and letv be the followingn− 2-forms inT1

v = −21−1
0

(
i
∂ũ

∂r
; (∗)d>ũ

)
. (II.38)

Denote also by1−1
0 the inverse operator of the Laplace operator on functions

for Dirichlet boundary conditions and byH the following function onT1

H = 1−1
0 ((∗)d>1v −1(∗)d>v) . (II.39)

We claim that∀1< p< +∞ we have∫
T1

|∇H|p ≤ Cp

∫
T1

|∇v|p . (II.40)

Indeed, letωSn−1 be the volume form onSr = ∂Br such that∗dr = ωSn−1.
We have(∗)d>1v = 〈d1v;ωSn−1〉.
Write

v =
∑
i<k

vik dx1 ∧ ... ∧ dx̌i ... ∧ dx̌k... ∧ dxn .

We havedv =
n∑

k=1

∑
i 6=n

∂vik

∂i
(−1)i−1dx1∧ ...∧dx̌k...∧dxn (wherevik := vki

for i > k). Thus

1(∗)d>v = 1(〈dv;ω〉) = 1
∑
i 6=k

xk

r

∂vik

∂xi

=
∑
i 6=k

xk

r

∂1vik

∂xi
+ ( derivatives ofv of order ≤ 2)

= 〈d1v;ω〉 + ( derivatives ofv of order ≤ 2) .

This proves (II.40). Denote byK the following function inT1

K = 1−1
0

(
2

r

∂

∂r

(
ũ ∧ ∂ũ

∂r

)
+ n− 1

r 2
ũ ∧ ∂ũ

∂r

)
. (II.41)

Thus we have
1

(
ũ ∧ ∂ũ

∂r
− (∗)d>v+ H − K

)
= 0 in T1

ũ ∧ ∂ũ
∂r
− (∗)d>v+ H − K = ũ ∧ ∂ũ

∂r
on ∂T1 .
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Let ξ = ũ∧ ∂ũ
∂r − (∗)d>v+H−K in T1, using standard results on harmonic

functions we have, for any domainω ⊂⊂ T1,∫
ω

|∇ξ|2 ≤ C(ω)
∫
∂T1

|ξ|2 ≤ C(ω)
∫
∂T1

∣∣∣∣∂ũ∂r
∣∣∣∣2 . (II.42)

Chooseω = B7/8 \ B5/8. In ω we have

∂

∂r

(
ũ ∧ ∂ũ

∂r

)
= ∂ξ

∂r
+ (∗) ∂

∂r
d>v+ ∂H

∂r
− ∂K

∂r

= ∂ξ

∂r
+ (∗)d>

(
∂v

∂r

)
− 1

r
(∗)d>v+ ∂H

∂r
− ∂K

∂r
.

(II.43)

Let 1 < q < n
n−1, using standard elliptic estimates and the mean value

formula, we deduce from (II.38), (II.40), (II.41), (II.42) and (II.43) that
there existst ∈ (5/8,7/8) such that(∫

∂Bt
|∇ξ|2

) 1
2 ≤

(∫
∂T1

∣∣ ∂ũ
∂r

∣∣2) 1
2

,(∫
∂Bt

∣∣ ∂v
∂r

∣∣q) 1
q ≤ C

(∫
T1
|∇ũ|2

) 1
2 ×

(∫
T1

∣∣ ∂ũ
∂r

∣∣2) 1
2

,(∫
∂Bt

∣∣ ∂K
∂r

∣∣2) 1
2 ≤ C

(∫
T1

∣∣ ∂ũ
∂r

∣∣2) 1
2

,(∫
∂Bt

∣∣ ∂H
∂r

∣∣q) 1
q ≤ C

(∫
T1
|∇ũ|2

) 1
2 ×

(∫
T1

∣∣ ∂ũ
∂r

∣∣2) 1
2

,(∫
∂Bt
|∇ũ|2

) 1
2 ≤ C

(∫
T1
|∇ũ|2

) 1
2

,(∫
∂Bt

∣∣ ∂ũ
∂r

∣∣2+ ( r1
ε

)2 (
1− |ũ|2)2

) 1
2 ≤ C

(∫
T1

∣∣ ∂ũ
∂r

∣∣2+ ( r1
ε

)2 (
1− |ũ|2)2

) 1
2

.

(II.44)

Combining the previous inequalities, (II.42) and (II.43) we obtain

∣∣∣∣∣∣∣∣ ∂∂r
(

ũ ∧ ∂ũ
∂r

)∣∣∣∣∣∣∣∣
W−1,q(∂Bt)

≤ C

(∫
T1

|∇ũ|2
) 1

2

×
(∫

T1

∣∣∣∣∂ũ∂r
∣∣∣∣2
) 1

2

+ C

(∫
T1

∣∣∣∣∂ũ∂r
∣∣∣∣2
) 1

2

+ C

(∫
∂T1

∣∣∣∣∂ũ∂r
∣∣∣∣2
) 1

2

.

(II.45)

Using the fact that̃u ∧1ũ = 0 we deduce that

d(∗)> (ũ ∧ d>ũ) = ũ ∧1r ũ = + ∂
∂r

(
ũ ∧ ∂ũ

∂r

)
+ n− 1

r
ũ ∧ ∂ũ

∂r
, (II.46)
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where1r denotes the Laplace operator on∂Br andd(∗)> the adjoint of the
exterior differentiationd> for the scalar product induced on∂Br .
Using (II.36) and (II.44) we have

∫
∂Bt

(r1

ε

)2 (
1− |ũ|2)2 ≤ C η

‖∇ũ‖∞ ≤ C
(r1

ε

) (II.47)

and we deduce that{x:|ũ(x)| < 1/2} is contained inCη(r1/ε)
n−3 balls of

radiusε/r1 in ∂Bt. Letωε be this union of balls and let 2ωε be the union of
the balls having the same centers and radii 2ε/r1 in ∂Bt.
Let a(x) be a positive function on∂Bt satisfying

a(x) = 1

|ũ|2 in ∂Bt \ 2ωε

a(x) ≡ 1 in ωε

and‖∇a(x)‖∞ ≤ C
r1

ε
in ∂Bt .

(II.48)

First observe that

d> (a(x) ũ ∧ d>ũ) = d>
(

1

|ũ|2 ũ ∧ d>ũ

)

= d>
(

ũ

|ũ| ∧ d>
ũ

|ũ|
)
= 0 in ∂Bt \ 2ωε .

(II.49)

Let1 denote the Hodge operator on forms on∂Bt.1 admits an inverse1−1

on 1- or 2-forms in∂Bt (for n ≥ 4). If n = 3 we restrict ourselves to exact
2-forms. We have

a(x)ũ ∧ d>ũ = d(∗)> 1
−1 (d> (a(x)ũ ∧ d>ũ))+ d>α on ∂Bt , (II.50)

whereα(x) is the function equal tod(∗)> 1−1 (a(x)ũ ∧ d>ũ).
Let K(x, y) = ∑∞

i=1
1
λi
ψi (x) ⊗ ψ∗i (y) be the kernel of1 on d>(∧1∂Bt).

K(x, y) ∈ π∗1∧2∂Bt⊗π∗2
(∧2∂Bt

)∗
, whereπ1(x, y)→ x andπ2(x, y)→ y,

whereλi are the eigenvalues of1, ψi the corresponding eigenforms and,
for v ∈ ∧2

y∂Bt
〈
ψ∗i (y); v

〉 := ψi (y).v. Standard results on kernels imply

|K(x, y)| ≤ C

|x− y|n−3
and |∂xK(x, y)| ≤ C

|x− y|n−2
(II.51)



260 Fanghua Lin, Tristan Rivière

(Recall dim∂Bt = n− 1). In view of (II.49) we have

1−1 (d> (a(x)ũ ∧ d>ũ)) =
∫
∂Bt

K(x, y).d> (a(y)ũ ∧ d>ũ) (y)

=
∫

2ωε

K(x, y).d> (a(y)ũ ∧ d>ũ) (y) .

(II.52)

Using (II.48), (II.51) and the fact that‖∇ũ‖∞ ≤ Cr1/ε, we get∣∣∣d(∗)> 1−1 (d> (a(x)ũ ∧ d>ũ))
∣∣∣ (x) ≤ ∫

2ωε

C

|x− y|n−2
× r 2

1

ε2
. (II.53)

Letting 1< p< n−1
n−2, we have∫

∂Bt

∣∣∣d(∗)> 1−1 (d> (a(x)ũ ∧ d>ũ))
∣∣∣p ≤ ∫

∂Bt

[∫
2ωε

C

|x− y|n−2
× r 2

1

ε2

]p

≤ Cp

(r1

ε

)2p |2ωε|p ,

(II.54)

where we have used Hölder + Fubini and the fact thatp(n − 2) <
n− 1=dim∂Bt. Combining (II.47) and (II.54), we have, for any 1< p
< n−1

n−2, ∥∥∥d(∗)> 1
−1 (d> (a(x)ũ ∧ d>ũ))

∥∥∥
L p
≤ Cp η . (II.55)

On the other hand, Combining (II.43), (II.46) and (II.50), we have

1tα = d(∗)> (ũ ∧ d>ũ)+ d(∗)> ((a− 1)ũ ∧ d>ũ)

= −(∗)d>
(
∂v

∂r

)
− ∂ξ
∂r
+ 1

r
(∗)d>v− ∂H

∂r
+ ∂K

∂r

− n− 1

r
ũ ∧ ∂ũ

∂r
+ d(∗)> ((a− 1)ũ ∧ d>ũ) .

(II.56)

Letting 1< q< n
n−1, we have∫

∂Bt

(a− 1)q |ũ ∧ d>ũ|q ≤
(∫

∂Bt

|a− 1| 2q
2−q

)1− q
2

×
(∫

∂Bt

|d>ũ|2
) q

2

≤ C

(∫
∂Bt

(
1− |ũ|2)2+ |2ωε|

)1− q
2

×
(∫

T1

|∇ũ|2
) q

2

≤ C η1− q
2

(
ε

r1

)2−q (∫
T1

|∇ũ|2
) q

2

.

(II.57)
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Finally, combining (II.36), (II.44), (II.45), (II.56) and (II.57) we get, for any
1< q< n

n−1

||∇α||Lq ≤ Cq η
1
2

(∫
T1

|∇ũ|2
) 1

2

+ Cqη
1
2 . (II.58)

Thus, (II.50), (II.55) and (II.58) imply, for any 1< q< n
n−1,

(∫
∂Bt

|ũ ∧ d>ũ|q
) 1

q

≤ Cq η
1
2

(∫
T1

|∇ũ|2
)1/2

+ Cq η
1
2 . (II.59)

If we take n
n−1 ≤ p< 2, choose anyq< n

n−1, we have

(∫
∂Bt

|ũ ∧ d>ũ|p
) 1

p

≤
(∫

∂Bt

|ũ ∧ d>ũ|q
) γ

q

×
(∫

∂Bt

|ũ ∧ d>ũ|2
) 1−γ

2

≤ Cq η
γ
2

(∫
T1

|∇ũ|2
) 1

2

+ Cq η
γ
2

(II.60)

whereγq + 1−γ
2 = 1

p.
Using the mean value formula simultaneously for 2 slices at the same time
one can ensure inequality (II.60) holds for∂Bt and∂B7t/8 in the same time
and we have, denotingTt = Bt \ B7t/8(∫

∂Tt

|ũ ∧ dũ|p
) 1

p

≤ Cq η
γ
2

(∫
T1

|∇ũ|2
) 1

2

+ Cq η
γ
2 . (II.61)

Let a(x) be the function equal to1
|ũ|2 in {x ; |u(x)| > 1/2} and equal to 4

otherwise and letωε be the set wherea(x) = 4. The forma(x)ũ∧ dũ is the
solution of 1h = dd∗(a(x)ũ ∧ dũ)+ d∗d(a(x)ũ ∧ dũ)

h = a(x)ũ ∧ dũ on ∂Tt .

(II.62)

Observe that the boundary condition means that both normal and tangential
components of the formsh andũ ∧ dũ coincide on∂Tt. h = h0+ h1+ h2,
where 1h0 = 0 in Tt

h = a(x)ũ ∧ dũ on ∂Tt
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h1 = 0 on∂Tt

1h2 = dd∗(a(x)ũ ∧ dũ) in Tt

h2 = 0 on∂Tt

In view of (II.61) we have forp ≥ 2(n− 1)/n

‖h0‖L2 ≤ C‖h0‖
W

1
p ,p(Tt)

≤ C‖a(x)ũ ∧ dũ‖L p(∂Tt ) . (II.63)

Moreover we haved(a(x)ũ ∧ dũ) = 4d(χεũ ∧ dũ) whereχε is the charac-
teristic function ofωε. Thus

‖h1‖2
L2 ≤ C‖χεũ ∧ dũ‖2

L2 ≤ C|ωε| 12
(∫

T1

|∇ũ|4
) 1

2

≤ C

(∫
T1

(1− |ũ|2)2
(

r 1

ε

)2
) 1

2
(∫

T1

(
ε

r1

)2

|∇ũ|4
) 1

2

≤ C

(∫
T1

(1− |ũ|2)2
(

r 1

ε

)2
) 1

2 (∫
T1

|∇ũ|2
) 1

2

≤ Cη
1
2

(∫
T1

|∇ũ|2
) 1

2

.

(II.64)

Using the fact that1ũ ∧ ũ = 0, we write

d∗(a(x)ũ ∧ dũ) = d∗((a(x)− 1)ũ ∧ dũ)

and we get

‖h2‖2
L2 ≤ C‖(a(x)− 1)ũ ∧ dũ‖2

L2

≤ C
(
‖|u|2− 1‖L2 + |ωε| 12

)(∫
T1

|∇ũ|4
) 1

2
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≤ C

(∫
T1

(1− |ũ|2)2
(

r 1

ε

)2
) 1

2
(∫

T1

(
ε

r1

)2

|∇ũ|4
) 1

2

≤ C

(∫
T1

(1− |ũ|2)2
(

r 1

ε

)2
) 1

2 (∫
T1

|∇ũ|2
) 1

2

≤ Cη
1
2

(∫
T1

|∇ũ|2
) 1

2

.

(II.65)

Thus combining (II.63), (II.64) and (II.65) we get∫
Tt

|ũ ∧ dũ|2 ≤ Cηγ
∫

T1

|∇ũ|2+ η 1
2

(∫
T1

|∇ũ|2
) 1

2

+ Cηγ . (II.66)

We can always find a good sliceτ betweent and 7t
8 such that∫

∂Bτ

|∇ũ|2+
(r1

ε

)2 (
1− |ũ|2)2 ≤ C ηγ

∫
T1

|∇ũ|2+ Cηγ . (II.67)

The monotonicity formula implies

1

(τr1)n−2

∫
Bτr1

eε(u) ≤ Cn
1

(τr1)n−3

∫
∂Bτr1

eε(u) .

Writing (II.67) in the usual scale, using (II.44) and the estimate above we
have either

Er1

rn−2
1
≤ η1−2γ , which permits to conclude the lemma as it is

explained below, (γ can be so close to zero as we want) or we have

Eτr1

(τr1)n−2
≤ Cηγ

Er1

r n−2
1

+ ηγ

whereτ ≥ 1/2. Thus, because of the monotonicity formula we have

Er1
2( r1

2

)n−2 ≤ Cηγ
Er1

r n−2
1

+ ηγ . (II.68)

Using (II.35) we have

Er1

r n−2
1

− Er1
2( r1

2

)n−2 ≤
∫ r1

r1/2

1

r n−2
Jr dr ≤ C

r1
n−2

∫ r1

r1/2
Jr dr ≤ C

Fr1

r1
n−2

and since we have chosenr1 such thatFr1/r
n−2
1 ≤ Cη (see (II.36)), we get
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Er1

r n−2
1

≤ Cηγ
Er1

r n−2
1

+ ηγ + Cη .

Thus, forη sufficiently small, this implies
Er1

rn−2
1

is small, and in particular,

because of the monotonicity formula,Eε/εn−2 is small. Precisely we have

1

εn

∫
Bε

(
1− |u|2)2 ≤ g(η) ,

whereg(η)→ 0 asη→ 0. Since‖∇u‖∞ ≤ C/ε, for η sufficiently small,
we necessarily have|u|(x0) ≥ 1

2.

We need a version of theη compactness on the boundary.uε is a critical
point of Eε verifying uε = gε on the boundary. Assume thatgε verifies
(A2), thus we have

Lemma II.8 (eta-compactness lemma at the boundary) For any0 < α < 1,
there are positive constantsη, λ, ρ1, ε0 depending only on∂� and the
constants in condition(A2), such that, for anyε < ε0, for anyx0 ∈ �\sptS
and for anyρ verifyingmin(ρ1,d1/1−α) ≥ ρ ≥ λε whered =dist(x0,sptS)
one has

1

ρn−2

∫
Bρ(x0)∩�

[
|∇uε|2+ 1

2ε2

(|uε|2− 1
)2
]
≤ η log

ρ

ε

H⇒ |uε(x0)| ≥ 1

2
.

Proof of the eta-compactness lemma at the boundary
We adapt the proof of Lemma II.7 to our present situation. Denote byξ the
ratio

ξ = ρ

dist(x0, sptS)
≤ ρα1

ρ1−α

d
≤ ρα1 .

Observe that, in order to verify the hypothesis of the theorem,ξ has to tend
to zero asρ1 is taken smaller and smaller. So one should think aboutξ as
something small sinceρ1 (like η) will be chosen to be sufficiently small at the
end of the proof. From the hypothesis of the lemmaρ1−α

d is bounded by 1 so
all the constants in the monotonicity formula at the boundary (Lemma II.5)
are bounded. Using this Lemma we deduce, like in the proof of (II.36), the
existence ofr1 ∈ [2ε, ρ] such that

1

r n−3
1

∫
(∂Br1∪∂Br1/2)∩�

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

ε2
(1− |u|2)2 ≤ C (η+ ξ) ,
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1

r n−3
1

∫
∂�∩Br1(x

0)

∣∣∣x
r
.ν

∣∣∣ ∣∣∣∣∂u∂ν
∣∣∣∣2 dx ≤ C (η+ ξ) ,

1

r n−2
1

∫
Br1∩�

∣∣∣∣∂u∂ν
∣∣∣∣2+ 1

ε2
(1− |u|2)2 ≤ C (η+ ξ) .

(II.69)

We have only to deal with the case where dist(x0, ∂�) is so small as we
want compared tor1. Indeed if dist(x0, ∂�) ≥ Cr1 one can apply once
again the mean value formula in order to get a possibly smallerr1 satisfying
(II.69) and such thatBr1(x

0) ⊂ � and the remaining part of the proof is
identical to the proof of Lemma II.7 in order to get|u(x0)| ≥ 1/2. Since
we only consider the case dist(x0, ∂�) << r1 and since we can takeρ1

so small as we want compared to theC2-norm of ∂� we can be so close
as we want to the situation where∂(�/r1) ∩ Bn

1(x
0) is Bn−1

1 (0) the unit
ball of Rn−1 once we have made the change of scaler1 → 1. This means
that the constants (Sobolev constants, constants for the Dirichlet Problem
for the Laplace Beltrami operator on∂B1(x0)∩�/r1...etc) can be bounded
independently ofx0, r1 andε.

Let ũ(x) = u(r1x), g̃(x) = g(r1x) on ∂�/r1 and�̃s = Bs(x0) ∩ �/r1.
ũ is a minimizer of ∫

�̃1

|∇ũ|2+
(r1

ε

)2
(1− |ũ|2)2

with ũ = g̃ on ∂�/r1 ∩ B1(x0). Observe that condition (ii) of(A2) implies

‖∇kg̃‖ ≤ Cξk on �̃1 . (II.70)

DenoteT+1 = �̃1 \ �̃1/2. Working onT+1 instead of working onT1, one can
follow similar arguments as the ones used to pass from identity (II.37) to
identity (II.45) in order to decompose∂

∂r (ũ∧ ∂ũ
∂r ): Let1−1

0 be the inverse of
the Laplace Beltrami Operator1 on T+1 for n− 2 or 0 forms. Denote also
like in the proof of Lemma II.7

v = −1−1
0

(
i
∂ũ

∂r
; (∗)d>ũ

)
,

H = 1−1
0 ((∗)d>1v−1(∗)d>v) ,

K = 1−1
0

(
2

r

∂

∂r

(
ũ ∧ ∂ũ

∂r

)
+ n− 1

r 2
ũ ∧ ∂ũ

∂r

)
.
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Let ζ be the solution of
1ζ = 0 in T+1

ζ = 0 on(∂B1(x
0) ∪ ∂B1/2(x

0)) ∩�/r1

ζ = (∗)d>v on ∂�/r1 ∩ (B1(x
0) ∪ B1/2(x

0)) .

From standard elliptic theory we have∫
T+1
|ζ |q ≤ ‖(∗)d>v‖q

W
− 1

q ,q(∂�/r1∩(B1(x0)∪B1/2(x0)))

≤
∫

T+1
|∇v|q .

Let ξ be the harmonic extension ofũ ∧ ∂ũ
∂r in T+1 . We have clearly onT+1 .

ũ ∧ ∂ũ
∂r
= ξ + (∗)d>v− ζ − H + K .

Forx ∈ ∂�/r1 denote byeτ (x) the orthogonal projection of(x−x0)/|x−x0|
on the tangent plane to∂�/r1 at x. We have∫

∂�/r1∩B1(x0)

∣∣∣∣ũ ∧ ∂ũ∂r
∣∣∣∣2

≤ 2
∫
∂�/r1∩B1(x0)

∣∣∣∣ ∂ũ∂eτ
∣∣∣∣2+ 2

∫
∂�/r1∩B1(x0)

∣∣∣∣∂ũ∂ν ν.(x− x0)

|x− x0|
∣∣∣∣2

≤ 2

r n−3
1

∫
∂�∩Br1(x

0)

|∇g|2+ 2

r n−3
1

∫
∂�∩Br1(x

0)

∣∣∣∣∂u∂ν
∣∣∣∣2 ∣∣∣∣ x− x0

|x− x0| .ν
∣∣∣∣2

≤ C(ξ + η) ,

(II.71)

where we have used (II.69). Sinceξ − ζ is harmonic there exists a 2-form
γ such that

d(ξ − ζ) = d∗γ in T+1 andγ = dσ whereσ|
∂T+1
= 0 .

Moreoverγ verifies

‖γ‖Lq ≤ ‖d(ξ − ζ)‖W−1,q ≤ ‖ξ − ζ‖Lq ≤ C(η+ ξ)1/2 (II.72)

see for instance [18]. Thus we have

∂

∂r

(
ũ ∧ ∂ũ

∂r

)
= ι ∂

∂r
.d∗γ + (∗)d>

(
∂v

∂r

)
− 1

r
(∗)d>v − ∂H

∂r
+ ∂K

∂r
,
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whereι ∂
∂r
.d∗γ is the interior product between∂

∂r andd∗γ and we have

ι ∂
∂r
.d∗γ = (∗)d>γ . (II.73)

Now, like in the proof of Lemma II.7, one can find a good slice, at ∈
(1/2,1), such that for anyq ∈ (1, n

n−1) (II.44) holds (where∂Bt andT1 are

respectively replaced by∂Bt ∩ �̃1 andT+1 ) and such that also∫
∂Bt∩�̃1

|γ |q ≤ C
∫

T+1
|γ |q ≤ C(η+ ξ) 1

2q . (II.74)

Since(∗)d> corresponds to tangential derivatives along∂Bt, we have∥∥∥∥ ∂∂r
(

ũ ∧ ∂ũ
∂r

)∥∥∥∥
W−1,q(∂Bt(x0)∩�/r1)

≤ C(η+ ξ) 1
2

(∫
T+1
|∇u|2

)1/2

+ C(η+ ξ) 1
2 .

(II.75)

Let N = ∂Bt(x0) ∩�/r1. On N we definea(x) like in (II.48). Letα be the
function that is the solution of the following problem1tα = d(∗)> (a(x)ũ ∧ d>ũ) in N

φ = 0 on∂N ,

(II.76)

where1t denotes the Laplace Beltrami Operator on∧p N for any 0≤ p ≤ n.
From standard results on Hodge decomposition (see for instance [18]), there
exists a unique 2-formβ such thata(x)ũ ∧ d>ũ− d>α = d(∗)> β on N

β = dσ on N for someσ ∈ ∧1N satisfyingσ|∂N = 0 .

(II.77)

β is in fact the unique 2-form satisfying

1tβ = d>(a(x)ũ ∧ d>ũ) in N

d(∗)> β|∂N =
g̃

|g̃| ∧ d
g̃

|g̃| on ∂�

β|∂N = 0 on∂N .

(II.78)

β is in fact the minimizer of

min

{∫
N

∣∣∣d(∗)> β − a(x)ũ ∧ d>ũ+ d>α
∣∣∣2+ |d>β|2 ; s. t.β|∂N = 0

}
.

(II.79)
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For problems (II.76) and (II.78) the solutions are given by convolutions with
Calderon-Zygmund Kernels and an analysis similar to the one developed
for passing from (II.50) to (II.60). Using (II.75) instead of (II.45) yields(∫

∂Bt(x0)∩�/r1

|ũ ∧ dũ|p
) 1

p

≤ Cq(η
γ
2+ ξ γ2 )

(∫
T+1
|∇ũ|2

) 1
2

+ Cq(η
γ
2 + ξ γ2 ) ,

(II.80)

where 1< q < n
n−1, n

n−1 ≤ p < 2 andγ is given by γq + 1−γ
2 = 1

p. Now
the remaining part of the proof can be established almost identically like
the end of the proof of Lemma II.7 in order to obtain that

1

εn

∫
Bε∩�

(1− |u|2)2 ≤ h(η, ξ) , (II.81)

whereh(η, ξ) −→ 0 asη, ξ → 0. And since‖∇u‖∞ ≤ C/ε, for η and
ρ1 sufficiently small,h(η, ξ) is sufficiently small in order to deduce from
(II.81) that|u(x0)| ≥ 1/2.

III. The energy concentration set as a minimal current

III.1. A short proof in dimension 3

We let� to be a bounded smooth convex domain inRn and letg : ∂� −→ S1

be a smooth map. We consider

min Eε(u) , min
∫
�

[
1

2
|∇u|2 + 1

4ε2
(|u|2− 1)2

]
dx 0< ε << 1

(III.1)

for u ∈ H1
g(�,C) ≡ {u ∈ H1(�,C) : u|∂� = g}.

Supposen = 2 and degree ofg : ∂� −→ S1 is d ≥ 0. Then, one of the
principal results proved in [4] can be stated as follows.

Let

µε =
1

2

[
|∇uε|2+ 1

2ε2
(|u|2− 1)2

]
dx

π log 1
ε

, 0< ε << 1 ,

hereuε is a minimizer of (III.1). Then, for any sequenceεn → 0, there is
a subsequence (still denoted by{εn}) such thatµεn ⇀ µ weakly as Radon
measures and that

µ =
d∑

j=1

δaj , (III.2)
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for somed distinct pointsa1, ...,ad inside�. Moreover, thed-tuple point
a = (a1, ...,ad) is a global minimum of the so called renormalized energy
W(b, g,�), b ∈ �d.

In the case where� is a ball there is no topological obstruction for
extending a smooth mapg : ∂� −→ S1 to a smooth map̃g : � −→ S1

when n ≥ 3. In order to obtain a similar statement as that for dim� =
n = 2 described above, we want to allow the boundary datag to have some
topological non trivial singularities on∂� (see part I.4.3 of the paper and
Lemma A.7).

In [25] the second author considered the case dim� = n = 3, and
a family of boundary datagε, 0< ε < 1, such that the assumption(A2) is
valid in particular:

d

(
gε
|gε|

∗
dθ

)
= S =

N∑
j=1

dj δaj , (III.3)

for somea1, ...,aN ∈ ∂�, andd1, ...,dN ∈ Z. HereC1, C2 are positive
constants independent ofε. Since� is compact, we must have

∑N
j=1 dj = 0,

(dim� = 3).
We shall now give an alternative proof of the following main result

of [25].

Theorem III.1 [25] For any sequenceεn → 0, letuεn be a sequence of min-

imizers ofEεn(.). Letµεn= eεn (u) dx

π log 1
εn

,eεn(u)=
1

2

[
|∇uεn|2+

1

2ε2
n

(|uεn|2−1)2
]

.

Then there is a subsequence ofµεn (still denoted byµεn) such thatµεn ⇀ µ

as Radon measures. Moreover sptµ = sptT, µ(�) = M(T). HereT is
a length minimizing current in� such that∂T = S, and M(T) denote the
mass of the currentT.

We note that the above formulation of the part of the main result of [25]
which concerns the energy concentration set immediately unifies the state-
ments of the results in both 2-D and 3-D cases. Unlike the 2-D case where
the locations of the singularities (the support ofµ) is determined by the finite
part of the total energy (the so-called renormalized energy, the next term
in the energy asymptotic expansions), in 3-D (or high dimensions) case the
support ofµ is essentially determined by the infinite energy concentrations
(the first term in the energy asymptotic expansions). The proof of Theorem
III.1 given below is rather different from [25].

Proof of Theorem III.1
Let

µε = eε(uε)dx

π log 1
ε

=
1
2

[|∇uε|2+ 1
2ε2(|uε|2− 1)2

]
dx

π log 1
ε

.
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Thenµε(�) ≤ M(T)+δ by Lemma II.3. Thus for any sequenceεn→ 0,
we may obtain a subsequence of{µεn} (still denoted by{µεn}) such that
µεn ⇀ µweakly as Radon measures. As a consequence of the energy mono-

tonicity Lemma II.4,µ(Br (x0))

r is a monotone nondecreasing function ofr , for
r ∈ (0, rx0), x0 ∈ �, rx0 = dist(x0, ∂�). Similarly, by Lemma II.5, we see
exp(3r)µ(Br (x0))

r is a monotone nondecreasing function ofr ∈ (0, r0(�)),
for anyx0 ∈ ∂�. In particular,

21(µ, x) = lim
r→0

µ(Br (x))

2r

exists for allx ∈ �. Moreover,21(µ, x) is upper semi-continuous inx ∈ �.
Let

6 = {x ∈ � : 21(µ, x) > 0
}

.

Then the general results in the Sect. III.2 bellow show that6 is, in particular,
aH1−rectifiable set. But here we will not need this fact.

Next we assumeCε = C1
ε + iC2

ε is a regular value of the mapuε :
� −→ C such that1

16 < |C1
ε |2+ |C2

ε |2 < 1
4.

Let 0ε = u−1
ε {Cε}. Suppose, for the moment, that alldj = ±1, j =

1, ..., N. ThereN = 2l , and from the properties ofgε one may obtaink em-

beddedC1-curves0 j
ε , j = 1, ..., k, such that∂

(∑k
j=10

j
ε

)
= ∑N

j=1 dj δaj .

Blaschke’s theorem implies that (by taking subsequences if needed)0 j
εn
→

0 j asεn→ 0, for j = 1, ..., k, in the Hausdorff metric (see [12] page 183).
Each0 j is a connected, compact subset of�.

Applying the eta-compactness lemmas (Lemma II.7 and Lemma II.8),
we see that21(µ, x) ≥ η0/2 for all x ∈ 0 j∩(�\sptS), j = 1, ..., k. Indeed,
if 21(µ, x) ≤ η0/2 for somex ∈ 0 j andx /∈ sptS, then µ(Br (x))

r ≤ η0/2
for all sufficiently smallr . We may assumer is so small thatB2r(x) ∩
sptS = ∅. Now for sufficiently smallε, and smallr , we may letε1 = ε/r ,
andvε1(y) = uε(ry + x), thenµε1(B1(0)) ≤ η0/2. Hereµε1 = eε1(vε1) dx

π log 1
ε1

.

Note thatgε1(y) = gε(ry + x) will satisfy the assumption of Lemma II.5.
From the latter fact we would conclude that|uε(x)| ≥ 1

2. This contradicts
to the factx ∈ 0 j , for somej . Therefore

k∑
j=1

H1(0 j ) ≤ 2

η0
µ(�) ≤ 2

η0
M(T) .

the latter estimate implies, in particular, that each0 j is H1-rectifiable:
indeed a connected 1-dimensional set of finiteH1 measure is rectifiable
(cf. [11], Theorem 2).
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We want to show that21(µ, x) ≥ 1 forH1-a.e.x ∈ ∪k
j=10

j . Then we

can easily deduce that
∑k

j=1H
1(0 j ) ≤ M(T).

Since T is a multiplicity 1 length minimizing current, and since
∂(
∑k

j=10
j ) = ∂T, we see each0 j must be a line segment since� is

convex. Moreover,µ(�) = M(T), andµ = H1b(∪k
j=10

j ). This is the
conclusion of Theorem III.1.

Now we have to show21(µ, x) ≥ 1, forH1-a.e.x ∈ 0 j , j = 1, ..., k. Let
us give a proof of this fact forx in the interior of�. If x ∈ 0 j ∩ (∂�\sptS),
the arguments should be modified slightly.

Since21(µ, x) is approximately continuousH1-a.e.x ∈ 0 j , we get, for
H1-a.e.x0, 21(µ, x) isH1-approximate continuous (as a function defined
on0 j ) at x0, and that0 j has a unique tangent line atx0.

For simplicity we assumex0 = 0 and the tangent line atx0 is thez-axis.
Let ηλ : x −→ x/λ, for λ > 0, andµλ(A) = 1

λ
µ(η−1

λ A), for any Borel
measurable setA ⊆ R3.

By the monotonicity formula, we conclude that there is a sequence
λm −→ 0, m −→ ∞ such thatµλm ⇀ ν weakly as Radon measures.
ν is a tangent measure ofµ at 0 (cf. [30]). Moreover,ν(Br (0))

2r ≡ 21(ν,0) ≡
21(µ, x0). On the other hand the measureµ = 21(µ, x)H1b0 j has a unique
tangent measureν at x0, ν = 21(µ, x)H1b{z− axis}. Note thatµ ≥ µ

ν ≥ ν. We apply monotonicity formula again to obtainν ≡ ν. In other
words,µλ ⇀ ν = 21(µ, x)H1b{z− axis} asλ → 0. Note that we have
21(µ,0) ≥ η > 0.

Let Cδ = B2
δ (0)× [−1,1] for 1 > δ > 0. Then we may find a suitable

δ ∈ (0,1) such that

ν
(
∂B2

δ (0)× [−1,1]) = 0

and hence

µλ(∂B2
δ (0)× [−1,1])→ 0 asλ→ 0 . (III.4)

We note that

µεn,λ =
1
2

[
|∇v|2+ λ2

2ε2
n
(|v|2− 1)2

]
log 1

εn

dx ,

here v(x) = uεn(λx). It is then clear from the eta-compactness lemma
that for a.e.z ∈ [−1,+1], deg(v, ∂B2

δ (0) × {z}) = d is well defined and
is independent ofz ∈ [−1,1]. Indeed (III.4) and eta-compactness lemma
imply that |v| ≥ 1

2 on ∂B2
δ (0)× [−1,1].
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We claimd 6= 0. Indeed, ifd = 0, we first chooset1 ∈ [1− 2δ,1− δ],
t2 ∈ [−1+ δ,−1+ 2δ], such that∫

Sδ(ti )

[
|∇v|2+ λ2

2ε2
n

(|v|2− 1)2
]

log 1
εn

<< η for j = 1,2 .

Where Sδ(t j ) = ∂B2
δ (0) × {t j }. Since we are in dimension 2, we may

construct a new map̃v on B2
δ (0)× {t j } such that∫

B2
δ (0)×{t j }

1

2

[
|∇T ṽ|2+ λ2

2ε2
n

(|ṽ|2− 1
)2
]

dx<< η log
1

εn
.

We now definẽv as follows:

− ṽ = v on ∂Cδ

− ṽ be as above onB2
δ (0)× {t j }, j = 1,2,

− ṽ minimizes ∫
B2
δ (0)×[t1,1]

1

2

[
|∇u|2 + λ2

2ε2
n

(|u|2 − 1
)2
]

dx∫
B2
δ (0)×[−1,t2]

1

2

[
|∇u|2+ λ2

2ε2
n

(|u|2− 1
)2
]

dx

and ∫
B2
δ (0)×[t2,t1]

1

2

[
|∇u|2+ λ2

2ε2
n

(|u|2− 1
)2
]

dx

subject to corresponding Dirichlet boundary conditions.

By the proof of energy-monotonicity formula, we see the first two integrals
are bounded byηCδ log 1

ε
, the last integral is bounded byo(η)Cδ log 1

ε
. Here

o(η) << η. By choosingδ suitably small, we can be sure that∫
Cδ

1

2

[
|∇ṽ|2+ λ2

2ε2
n

(|ṽ|2− 1
)2
]

dx<
1

2
η log

1

εn
.

On the other handµεn,λ(Cδ) ≥ 3
2η for n large andλ suitably small. This

contradicts the energy minimizing property ofv. Thus we can assumed 6= 0.
Then [4] implies that∫

B2
δ (0)×{z}

1

2

[
|∇Tv|2+ λ2

2ε2
n

(|v|2− 1
)2
]

dx≥ π |d| log
λ

εn
−o

(
log

(
1

εn

))
whenever

∫
Sδ(z)

1
2

[
|∇v|2 + λ2

2ε2
n

(|v|2− 1
)2
]

dx = o(log 1
εn
), and deg(v,

Sδ(z)) = d. Noteλ > 0 is fixed here.
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Indeed, if we apply arguments in [22] or [27], then, since any(x, y)
with |v(x, y, z)| ≤ 1/2 is contained inB2

δ/2(0), and|∇Tv| ≤ Cλ/εn, then
deg(v, Sδ(z)) = d implies∫

B2
δ (0)×{z}

1

2

[
|∇Tv|2+ λ2

2ε2
n

(|v|2− 1
)2
]

dx≥ π|d| log
λ

εn
− K .

We thus conclude that21(µ,0) ≥ |d| ≥ 1.

Remark.Let (SuppT)δ be theδ-neighborhood of the support ofT in Propo-
sition 1. Then arguments of [22] or [27] show that

Eε(uε, (SuppT)δ) ≥ π M(T) log
1

ε
− K .

Thus uε is locally uniformly bounded inH1
loc(� \ (SuppT)) and hence

uεn → u in C1,α(� \ (SuppT)) asεn→ 0 (cf. [3] and [22]).

Now we allowdj to be arbitraryintegers such that
∑N

j=1 dj = 0.
As before, we haveµεn ⇀ µ as Radon measures. Let0ε = u−1

ε {Cε} be
as before, and let0 j

ε , j = 1, ...,m be m embeddedC1-curves such that
∂0 j

ε = δaj
ε
− δbj

ε
, hereaj

ε , bj
ε ∈ ∂�, with

|aj
ε − ak| ≤ ε |bj

ε − al | ≤ ε , for someak, al , k 6= l .

Moreover,
∑m

j=1 ∂0
j
ε =

∑N
j=1 dj δaj andm≤ 1

2

∑N
j=1 |dj |.

Apply Blaschke’s theorem to each{0 j
ε} so that0 j

εn
→ 0 j in the Haus-

dorff metric. 0 j is compact, connected subset of�. Moreover, by the
eta-compactness lemmaH1(0 j ) ≤ 1

η
µ(�) < ∞. Thus each0 j is rec-

tifiable. We may find a lipschitz mapf : [0,H1(0 j )] into 0 j such that
f(0) = lim bj

εn
= al , f(H1(0 j )) = lim aj

εn
= ak. Moreover, f gives an

arc-parameterization of its image

0 j
? = f([0,H1(0 j )]) ⊂ 0 j .

Note that∪k
j=10

j
? j 6 j Supp(µ), ∂

(∑k
j=10

?
j

)
= ∑N

j=1 dj δaj . More-

over, the last arguments in the proof of Proposition 2 imply that forH1-a.e.
x such thatx belongs tod of curves in{01

?, ..., 0
k
?}, we have21(µ, x) ≥ πd.

Thus

µ(�) ≥ π
k∑

j=1

H1(0 j
?) ≥ π M(T) .

The last inequality along with the factµ(�) ≤ π (M(T)+δ), for anyδ > 0,
implies thatµ = ∑k

j=1H
1b0 j

? and
∑k

j=10
j
? (with proper orientations) is

a length minimizing current with boundary
∑

dj δaj .
This completes the proof of Theorem III.1.
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III.2. General dimensions,n =dim� ≥ 4

III.2.1. Basic energy estimates.Let � be a bounded, smooth convex do-
main inRn, and letuε be a minimizer of

Eε(u) =
∫
�

1

2

[
|∇u|2 + 1

2ε2
(|u|2− 1)2

]
dx , 0< ε < 1 ,

subject to the boundary conditionu = gε on ∂�. Here gε satisfies the
assumption(A2), in particular

d

(
gε
|gε|

∗
dθ

)
= S , (III.5)

whereS is a fixed smooth(n−3)-dimensional current of integer multiplicity.
By the energy monotonicity Lemmas (Lemma II.4 and Lemma II.5)

along with (I.19) and (I.20), one deduces that

µε(�) ≤ C , for all 0< ε < 1 . (III.6)

Here again

µε = eε(uε)dx

π log 1
ε

=
1
2

[|∇u|2+ 1
2ε2(|u|2− 1)2

]
π log 1

ε

.

Hence, for any sequenceεn → 0, there is a subsequence of{µεn} that
weakly converges, as Radon measures, to a Radon measureµ. From the
Monotonicity lemmas (Lemma II.4 and Lemma II.5) we get that

µ(Br(a))

r n−2
is a mono. non decreas. function ofr , (III.7)

r ∈ (0, dist (a, ∂�)) whenevera ∈ �, and that

exp(3r)µ(Br (a))

r n−2
is a mono. non decreas. function ofr , (III.8)

r ∈ (0, r0(�)) for all a ∈ ∂�.
Hence2n−2(µ,a) = limr→0+

µ(Br (a))
rn−2 exists for everya ∈ �. Moreover,

2n−2(µ,a) is an upper-semi continuous function ofa ∈ �.
We define

6 = {a ∈ � : 2n−2(µ,a) > 0}
and

6 = {a ∈ � : 2n−2(µ,a) > 0} .

We should prove that6 is aHn−2-rectifiable set. Here we first prove the
following density lemma

Lemma III.1 If a ∈ 6, then2n−2(µ,a) ≥ δ0 for some fixed positive
constantδ0.
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As a consequence of Lemma III.1 and the usual covering arguments, we
have

Corollary III.1 6 is relatively closed subset of� with Hn−2(6) ≤
C(n) µ(�)/δ0.

Proof of Lemma III.1
Supposea ∈ 6 and2n−2(µ,a) < δ0. Then there isr > 0 such that
µ(Br (a))

rn−2 < δ0. Hence for all sufficiently smallεn,

µεn(Br (a))

r n−2
< δ0 .

Via a simple scaling, one may replacer by 1, εn by εn = εn
r which

one may assume to be very small, then we would be able to apply the
η-compactness lemma for a suitable smallδ0 to obtain|uεn(x)| ≥ 1

2 for all
|x− a| ≤ r

2.
Below we shall use a comparison mapuε to deduce an energy growth

estimate that would lead to

d

dρ

µε(Bρ(a))

ρn−3/2
≥ 0 for 0< ρ ≤ r

2
. (III.9)

This latter fact would implyµ(Bρ(a)) ≤ Cρn−3/2, and therefore
2n−2(µ,a) = 0. The last fact contradicts thata ∈ 6.

To show (III.9) we note first that the eta-compactness lemma (it’s proof)
implies actually that:

∀δ > 0, ∃η = η(δ) > 0 s. t. µε(B2) < η H⇒ |uε| > 1− δ in B1

(III.10)

and forε sufficiently small.
Next by a scaling it suffices to verify that∫

B1

eε(uε) dx ≤ 1

n− 3/2

∫
∂B1

eε(uε) , (III.11)

whenever|uε|(x) ≥ 1− δ on B1 (δ sufficiently small) andε sufficiently
small. Note that‖uε‖L∞(B1) ≤ 1 by Lemma II.1. Note thata = 0 in above
by a translation. Sinceuε can be written asuε = ρε exp(iθε), ρε = |uε|, we
shall construct a comparison map of the formu = ρ exp(iθ). In the polar
coordinates system we simply define that

ρ(r, ω) =


1 if 0 ≤ r ≤ 1− δ ,

1− r

δ
+ ρ(1, ω)r − (1− δ)

δ
, 1− δ ≤ r ≤ 1
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and that 1θ = 0 in B1 ,

θ = θε on∂B1 .

Then ∫
B1

eε(uε)dx≤
∫

B1

eε(u)dx

≤ 1

2

∫
B1

|∇θ|2 dx+ Cδ
∫
∂B1

(1− |u|2)2
ε2

+ C

δ

∫
∂B1

(1− |u|2)2+ 1

2n

∣∣∣∣ ∂∂ωρε
∣∣∣∣2 .

(III.12)

HereC is a constant independent onδ andε.
Sinceθ is a harmonic function onB1, we obtain by the monotonicity of

the function

∫
Br
|∇θ|2 dx

r n
that∫

∂B1

|∇θ|2 ≥ n
∫

B1

|∇θ|2 .

Also, an integration by parts yields∫
∂B1

∣∣∣∣ ∂∂ωθ
∣∣∣∣2 = ∫

∂B1

∣∣∣∣∣∂θ∂r
∣∣∣∣∣
2

+ (n− 2)
∫

B1

|∇θ|2 .

Thus ∫
∂B1

∣∣∣∣ ∂∂ωθ
∣∣∣∣2 ≥ (n− 2)

∫
B1

|∇θ|2 .

Therefore, we obtain from the last part and (III.12) that, forε << δ,∫
B1

eε(uε)dx

≤ 1

n− 1

∫
∂B1

1

2

[∣∣∣∣ ∂∂ωθ
∣∣∣∣2+ ∣∣∣∣ ∂∂ωρε

∣∣∣∣2+ 1

2ε2
(1− |ρε|2)2

]

≤ 1+ Cδ

n− 1

∫
∂B1

eε(uε) .

If δ is suitable small, then1+Cδ
n−1 ≤ 1

n−3/2, and thus (III.11) is valid.
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Consider nowa ∈ 6 ∩ (∂� \ sptS,2n−2(µ,a) < δ0. We want to show

d

dρ

µε(Bρ(a))

ρn−3/2
≥ −Caρ

1
2 , (III.13)

0 < ρ ≤ r/2, for a constantCa (depending ona) and a small positive
numberr (may also depend ona). From this differential inequality (III.13)
we conclude

µ(Bρ(a)) ≤ C(ρn−3/2+ ρn)

and hence
2n−2(µ,a) = 0 .

The last fact will contradicta ∈ 6.
To show (III.13) we apply the boundary eta-compactness lemma. After

a scaling, a translation and a suitable diffeomorphism it suffices to verify.∫
B+1

eε(uε) dx ≤ 1

n− 3/2

∫
∂B+1 ∩{xn>0}

eε(uε) dx+ C(ε,a, ρ) . (III.14)

Here
C(ε,a, ρ) ≤ √ρ ‖gε‖C1(Bρ(a)) ≤ Ca

√
ρ

for all ρ ≤ r ≤ ra andε sufficiently small. Note thatuε(x) has boundary
valuegε(a+ρx) after the above translation, scaling and suitable diffeomor-
phism.

We then follow the above proof for the casea ∈ 6 to obtain∫
B+1

eε(uε) dx ≤
∫

B+1
eε(u) dx .

We writeθ asθ1+ θ2 where
1θ1 = 0 in B+1

θ1 = θε on ∂B+1 ∩ {xn > 0}

θ1 = 0 on{xn = 0}
1θ2 = 0 in B+1

θ2 = θε on {xn = 0}

θ2 = 0 on∂B+1 ∩ {xn > 0} .

It is obvious that, one has again∫
B+1
|∇θ1|2 dx ≤ 1

n

∫
∂B−1
|∇θ1|2 .
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On the other hand∫
B+1
|∇θ2|2 dx ≤ Cρ ‖gε‖C1(Bρ(a)) .

Combining the last two estimates and the proof for the casea ∈ 6, we
easily deduce (III.14). This complete the proof of Lemma III.1.

Our next lemma is the precise upper-bound on the total mass of the
Radon measuresµε andµ.
Let

A ≡ inf{M(T) : T ∈ In−2(Rn) , ∂T = S} ,

i.e. A is the infimum of masses of integral rectifiable currentsT in Rn of
dimension(n− 2) such that the boundary ofT, ∂T, equalsS.

Lemma III.2
µ(�) ≤ A .

Proof. It suffices to show, for anyδ > 0 ⇒ µ(�) ≤ A + δ. By the
definition of the valueA, we may find aT ∈ In−2(Rn) such that∂T = S and
M(T) ≤ A+ δ/4. Since� is convex and smooth, we assume the support
of T, sptT, is contained in�. Moreover, sptT\sptS ⊂ � (cf. [12] for
various definitions and notations). Without loss of generality, we assume
gε = |gε|exp(iθε), for a multi-valued functionθε on ∂�. Then we can find
a multi-valued harmonic functionhε in � as follows:1hε = δT in �

hε = θε on ∂� .

(III.15)

HereδT is the delta measure on sptT with integer multiplicity exactly the
same as the multiplicity ofT. That is δT = 2(T, x) Hn−2bsptT, here
2(T, x) is the multiplicity function ofT at x ∈ sptT. Indeeddhε is simply
the harmonic 1-formωwith given singularityT and hasdθε as it’s tangential
part on∂� \ spt S0 which was found in the Appendix V.2. Then a standard
elliptic estimate yields

‖∇hε‖L p(�) ≤ C , for 1≤ p<
n

n− 1
. (III.16)

HereC is a constant depending onA and various constants in the assump-
tion (A2) on the familygε of the boundary data (C is independent ofε).
Indeed from the Appendix V.2 we see that (III.16) is valid for any 1≤ p< 2,
whereC may also depend onp.
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Let 0 ∈ �, and letηλ(x) = x
λ
, for x ∈ Rn, 0 < λ < ∞ we choose a

λ ∈ (1,1+ δ1) and let�λ = ηλ(�).
We consider on�λ a mapvε such that, forx ∈ �, one has

vε(x) =


dist (x, sptT)

ε
exp(ihε(x)) , if dist (x, sptT) ≤ ε ,

exp(ihε(x)) , if dist (x, sptT) ≥ ε
(III.17)

and thus, forx ∈ �λ \�, vε(x)minimizes
∫
�λ\� eε(v)dx among all mapsv

such thatv = vε on ∂� andv = gε ◦ η−1
λ on ∂�λ. We need to estimate the

total energy ofvε on�λ.
LetOλ be the(λ − 1)-neighborhood of the support ofS in ∂�, and let

Cλ be the infinite cone with vertex at 0 consisting of all rays emitted from 0
throughOλ. We consider a torus like domainDλ = Cλ ∩ (�λ \ �) in Rn.
On∂Dλ ∩ ∂�λ, we havevε = gε ◦ η−1

λ , on∂Dλ ∩ ∂� vε is given by (III.17).
First it is easy to find an extensionv∗ε of this map to the rest of the boundary
of Dλ in such a way that ∫

∂Dλ

eε(v
∗
ε) ≤ Cλ . (III.18)

Then it is easy to see (cf. monotonicity Lemma II.4) that the energy min-
imizer on Dλ with boundary value described above has total energy not
larger thanC(λ− 1) log 1

ε
.

On the other hand, one can easily find an extension ofvε (andv∗ε ) on
(�λ \�) \ Dλ in such a way that the total energy is bounded byCλ.

Next we want to estimate the energy ofvε on�. It is easy to see∫
�

(1− |vε|2)2
ε2

dx ≤ 4
∫
{x∈� : dist(x,sptT)≤ε}

(1− dist(x,sptT)
ε

)2

ε2
dx

≤ 4

ε2
Ln{x ∈ � : dist(x, sptT) ≤ ε} .

SinceT is an integral multiplicity rectifiable current withHn−2(sptT) ≤
A+ δ, one easily obtains

Ln{x ∈ � : dist(x, sptT) ≤ ε} ≤ C(n)(A+ δ)ε2

for all sufficiently smallε > 0. In other words,∫
�

(1− |vε|2)2
ε2

dx ≤ C(n) (A+ δ) . (III.19)
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To estimate
∫
�
|∇vε|2 dx, we need the following approximation theorem

(cf. [12] page 417): for anyδ1 > 0, there are an integral polyhedron chain
P in Rn with sptP ⊆ {x : dist(x, sptT) ≤ δ1} and a diffeomorphismf of
class 1 mappingRn ontoRn such that

M(P− f]T)+ M(∂(P− f]T)) ≤ δ1 ,

lip f ≤ 1+ δ1 , lip f −1 ≤ 1+ δ1 , | f(x)− x| ≤ δ1 x ∈ Rn

and f(x) = x whenever dist(x, sptT) ≥ δ1.
For this integral polyhedron chainP, and for all sufficiently smallδ2 ∈

(0, δ1), one may find an open subset of sptP,O1 ⊂ O2 ⊂ sptP such thatO2

is theδ2-open neighborhood ofO1 in sptP, and that on theδ2-neighborhood
ofO1, sayNδ2(O1), the nearest point projection fromNδ2(O1) toO2 is well
defined and smooth. Moreover,

Hn−2(sptP ∼ O1) ≤ C(δ2) −→ 0 asδ2→ 0 .

We also observe that, ashε is harmonic in�\ sptT and because of (III.16),
one gets

|∇hε(x)| ≤ C

dist (x, sptT)
. (III.20)

Let B(δ1, δ2) be the set defined by

B(δ1, δ2) = f −1 {( f]� ∼ Nδ2(O1)) ∪ δ2− neighb. of spt(P− f]T)
}

.

(III.21)

Then it is rather easy to calculate∫
B(δ1,δ2)

eε(vε)dx ≤ C log
1

ε

[
M(P− f]T)

+ Hn−2(sptP−O1)
]+ C(δ1, δ2)

≤ (δ1+ C(δ2)) C log 1
ε
+ C(δ1, δ2) .

(III.22)

Note δ1 + C(δ2) → 0 asδ1, δ2 → 0+, andC(δ1, δ2) is independent ofε.
(III.22) gives an estimate of the energy away from a good setG(δ1, δ2) for
the currentT. HereG(δ1, δ2) = � \ B(δ1, δ2). Indeed, spt(T)∩G(δ1, δ2) is
contained inf −1( sptP∩Nδ2(O1)). By our construction, sptP∩Nδ2(O1)

is uniformly smooth in the sense that the nearest point projection from
Nδ2(O1) toO2 is well defined and smooth.

To obtain an energy upper-bound for
∫

G(δ1,δ2)
eε(vε)dx, we first look at

a special case.
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Let Q = Bn−2
δ2
(0)×B2

δ2
(0) be a cube inRn and lethε be a (multi-valued)

harmonic function inQ \ Bn−2
δ2
(0)× {0}, such that

1hε = Hn−2bBn−2
δ2
(0)

and that‖∇hε‖L p(Q) ≤ C, for 1≤ p< n
n−1. Thus

|∇hε(x)| ≤ C

|xn−1| + |xn| .

Let

vε(x) =


exp(ihε(x)) , if |(xn−1, xn)| ≥ ε
|(xn−1, xn)|

ε
exp(ihε(x) , otherwise.

Then∫
Q1/2

eε(vε)dx ≤ π log
1

ε
Hn−2(Bn−2

δ2
2

(0))+ M(C, δ2) . (III.23)

HereQ1/2 = Bn−2
δ2/2
(0)× B2

δ2/2
(0). Indeed, letθ be the argument function on

the(xn−1, xn) plane. Then1(h− θ) = 0 in Q, and‖∇(h− θ)‖L p(Q) ≤ C.
Hence‖∇(h− θ)‖L∞(Q 1

2
) ≤ C. Then estimate (III.23) follows from a direct

computation.
It is clear from our construction thatG(δ1, δ2) can be covered by

a bilipschitz image, under a bilipschitz mappingF, of cubes of the form
Bn−2
δ2
(0)× B2

δ2
(0) with

lip F ≤ 1+ C(δ1+ δ2) , lip F−1 ≤ 1+ C(δ1+ δ2) .

Then we apply the change of variables formula to estimate the Dirichlet
integral

∫ |∇vε|2(x)dx and also use (III.19) to obtain∫
G(δ1,δ2)

eε(vε)dx ≤ π log
1

ε
(1+ C(δ1+ δ2))

n−2 M(T)+ M(δ1, δ2,C) .

(III.24)

Let us summarize: We have constructed a comparison mapvε on�λ such
thatvε = gε ◦ η−1

λ on�λ and such that∫
�λ

eε(vε)dx≤ M(C, A, δ, δ1, δ2, λ)

+ π log
1

ε

[
(1+ C(δ1+ δ2))

n−2 + C(λ− 1)
]

M(T) .
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Now for any givenδ > 0, we may chooseδ1, δ2, λ − 1 sufficiently small
such that

λn
[
C(λ− 1)+ (1+ C(δ1+ δ2))

n−2] (A+ δ/4)
+ M(C, A, δ, δ1, δ2, λ)/π log

1

ε
< A+ δ

for all sufficiently smallε. Let ṽε(x) = vε(λx), x ∈ �, then∫
�

eε(ṽε)dx ≤ (A+ δ) π log
1

ε
.

That isµε(�) ≤ A+ δ, for all sufficiently smallε, and the conclusion of
Lemma III.2 follows.

Remark. Let T1, T2 be two integral rectifiable currents in� with ∂T1 =
∂T2 = S andhT j , j = 1,2 be such that (as for (III.15))

1hT j = δT j in � ,

hT j = θε on∂� .

Let v j (x) be defined by (III.17) forT− T j , j = 1,2, respectively then∫
�

eε(v1)dx ≤
∫
�

eε(v2)dx+ CM(T1− T2) log
1

ε
.

This is an easy consequence of our proof of Lemma III.2 above.

III.2.2. Rectifiability of6 and6. We shall follow closely the argument
in [20] to show that6 is a Hn−2-rectifiable set with2n−2(µ, x) is an
integer forHn−2-a.e.x ∈ 6. Then we modify the proof slightly to show
the same is true for6. We note first that the function2n−2(µ, x), x ∈ 6 is
Borel measurable (cf. [30]). In particular,2n−2(µ, x) isHn−2-approximate
continuousHn−2-a.e. on6. That is, forHn−2-a.e.x ∈ 6, and for every
δ > 0

lim
r→0

Hn−2({y ∈ Br(x) ∩6 : |2n−2(µ, y)−2n−2(µ, x)| > δ})
r n−2

= 0 .

(III.25)

We have already verified in Lemma III.1 that2n−2(µ,a) ≥ δ0 for every
a ∈ 6. As in [20] the rectifiability of6 follows from the following Lemma
III.3, Lemma III.4 and Lemma III.5 (cf. [20]).
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Lemma III.3 (Existence of weak tangent planes) ForHn−2-a.e. x ∈ 6,
and for δ > 0, there is a positive numberrx > 0 such that if0 < r < rx

then there is a(n − 2)-plane V = V(x, r) ∈ GL(n,n − 2) such that
6 ∩ Br (x) ⊆ Vδ. HereVδ is theδr -neighborhood ofV in Rn.

We note that Lemma III.3 immediately implies the following

Corollary III.2 For any δ1, δ2 ∈ (0,1) there is a positive numberr∗ and
a subsetE of6 such that

(a) Hn−2(6 \ E) < δ1,
(b) if x ∈ E, 0 < r < r∗, then there isV = V(x, r) ∈ GL(n,n− 2) such

that Br(x) ∩6 ⊆ δ2r -neighborhood ofV.

Indeed, it is clear that ifrx in Lemma III.3 is the largest such number
such that the conclusion of Lemma III.3 remains true for the givenx ∈ 6,
then rx is aHn−2-measurable function on6. The statement of Corollary
III.2 follows from the standard facts in measure theory.

The next lemma needed in the proof of the rectifiability of6 is a general
fact (cf. [20] Lemma 2.5).

Lemma III.4 (Null-projection Lemma) IfE ⊂ 6 is a purelyHn−2-unrectifi-
able set, thenHn−2(PV(E)) = 0, for any V ∈ GL(n,n − 2). HerePV

denotes the orthogonal projection ofRn ontoV.

Proof. See [20] Lemma 2.5.

The final key fact needed is the following

Lemma III.5 (Positive projection density)

lim
r→0

sup
V∈GL(n,n−2)

Hn−2(PV(6 ∩ Br (x)))

α(n− 2)r n−2
= 1

for Hn−2-a.e.x ∈ 6.

The proof of Lemma III.3 is identical to that of Lemma 2.1 of [20]. Indeed
the same geometric lemma (Lemma 2.4 of [20]) and the monotonicity lemma
are valid. We shall point out that when we apply the proof of Lemma 2.1 to
our situation, we obtain the following fact:

ForHn−2-a.e.x ∈ 6, and for any sequence ofr i → 0, the sequence of
scaled measuresη 1

ri ]
µ (hereη 1

ri
: y → y−x

r , andη 1
ri ]
µ(A) = µ(x+ri A)

rn−2
i

)

contains a weakly converging subsequence. Moreover, any such weak limitν

(a tangent measure ofµ at x) is of the formν = 2n−2(µ, x) Hn−2bV for
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someV ∈ GL(n,n−2). In other words, though the total defect measureµ

may have part other thanξ = 2n−2(µ, x) Hn−2b6, any tangent measureµ
atHn−2- a.e.x ∈ 6 is simply the tangent measure ofξ ≤ µ at x.

The proof of Lemma IV.5 is actually somewhat simpler than that of
Lemma 2.6 in [20].

Proof of Lemma III.5.
We assume atx, 6 has the weak tangent planes property (that is true for
Hn−2-a.e. x ∈ 6, by Lemma III.3). Thus for any sequenceri → 0+,
{µi = η 1

ri ]
µ} contains a subsequence that converges weakly toν.

ν = 2n−2(µ, x) Hn−2bV
for someV ∈ GL(n,n− 2). It suffices to verify

Hn−2(PV(6 ∩ Br(x)))

α(n− 2)r n−2
→ 1 asr = r i → 0+ .

The conclusion of Lemma III.5 will follow.
Without loss of generality, we may assumeV = {0} × Rn−2. Then for

anyδ > 0

µi
(
(B2

1(0) \ B2
δ (0))× Bn−2

1 (0)
) −→ 0 asi →∞ . (III.26)

Eachµi is a weak limit of Radon measures of the formeε(ui
ε)dx for some

minimizers of Eε(.), and for a sequence ofε’s tending to zero. Now eta-
compactness lemma implies that|ui

ε(x)| ≥ 1
2 for all x ∈ (B2

1(0) \ B2
δ (0))×

Bn−2
1 (0), δ > 0, wheneveri is sufficiently large andε is sufficiently small.

Thus the degrees of the mapsui
ε

|ui
ε| : ∂B2

δ (0) × {p} −→ S1, p ∈ Bn−2
1 (0) are

well defined and they are equal for everyp ∈ Bn−2
1 (0), sayd ∈ Z.

If d 6= 0, then on each sliceB2
δ (0) × p, p ∈ Bn−2

1 (0), there must be
a pointqεi ∈ B2

δ (0)×{p} such that|ui
ε(q

ε
i )| < 1

2. Hence the eta compactness
Lemma implies that

r 2−n
∫

Br (qεi )
eε(u

i
ε)dx ≥ η0 log

1

ε
(III.27)

for all r ∈ (λε,1/4) and for someη0 > 0. Supposeqεi −→ qi asε→ 0+.
Thenqi ∈ η 1

ri ]
6 and

µi (Br(qi ))

r n−2
≥ η0 for everyr ∈ (0,1/4) . (III.28)

Note that (III.26), (III.28) also implies thatqi −→ (0, p) ∈ B2
δ (0)× {p} as

i →∞.
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What we have just shown is that, ifd 6= 0 and if (III.26) is true,
thenPV(6 ∩ Br (x)) ≡ Br (x) for r = ri . In particular the conclusion of
Lemma III.5.

It remains to verify thatd 6= 0. We shall construct comparison mapsvi
ε

such that, ifd = 0 then one may findvi
ε with vi

ε = ui
ε on∂

[
B2
δ (0)× Bn−2

1 (0)
]

and ∫
B2
δ (0)×Bn−2

1 (0)
eε(v

i
ε)dx ≤ C δ log

1

ε
(III.29)

the latter will imply that2n−2(µ, x) ≤ C δ. Sinceδ > 0 can be made
arbitrarily small, we obtain a contradiction asx ∈ 6.

The construction below is done by an induction on the dimensionn. If
n = 3, then we can choose smallδ > 0 such that

(i)
∫
∂B2

δ (0)×{−1+δ}
eε(u

i
ε) = o(1) log

1

ε

(ii)
∫
∂B2

δ (0)×{1−δ} eε(u
i
ε) = o(1) log 1

ε

(iii) The degrees of the mapsu
i
ε

|ui
ε| : ∂B2

δ (0)×{1−δ} −→ S1 are well defined
(by (i) and (ii)) and both are equal to zero sinced = 0.

Hereo(1) −→ 0 asε→ 0+, i →∞.
It is very easy to obtain extensions ofui

ε onto B2
δ (0) × {−1+ δ,1− δ}

in such a way that the resulting mapui
ε has total energy on these two

discs equalso(1) log 1
ε
. Next we can easily extend the map onB2

δ (0) ×
[−1 + δ,1 − δ] with the Dirichlet boundary condition given byui

ε on
∂B2

δ (0)× [−1+ δ,1− δ] andvi
ε on B2

δ (0)× {−1+ δ,1− δ} such that the
extended map still calledvi

ε has energy onB2
δ (0) × [−1+ δ,1− δ] equal

to o(1) log 1
ε
. The latter fact follows easily from the energy bound on the

boundary.
Finally we extend boundary values defined on two cubesB2

δ (0) ×[−1,−1+ δ], B2
δ (0)× [1− δ,1], into these two cubes. Since the boundary

values have total energy less or equal toC log 1
ε
, one may extend the map

to have the energy bounded byC δ log 1
ε
. This completes the construction

whenn = 3.
Under the assumption that we can do a similar construction in dimension

n− 1, we show how to construct such a map in dimensionn.
For a smallδ > 0, we consider the(n−1)-dimensional domainB2

δ (0)×
∂Bn−2

1−δ (0). We may assumeδ is chosen so that∫
∂B2

δ (0)×∂Bn−2
1−δ (0)

eε(u
i
ε) = o(1) log

1

ε
.
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Suppose again the degree of the mapui
ε

|ui
ε| : ∂B2

δ (0) × {p} −→ S1 is zero,

for p ∈ ∂Bn−2
1−δ (0). Then by induction assumption, one may extendui

ε from
∂B2

δ (0)× ∂Bn−2
1−δ (0) into B2

δ (0)× ∂Bn−2
1−δ (0) in such a way that the extended

map denoted byvi
ε satisfies∫

B2
δ (0)×∂Bn−2

1−δ (0)
eε(v

i
ε) ≤ C δ log

1

ε
. (III.30)

Now we may extend the map intoB2
δ (0) × Bn−2

1−δ (0) with the Dirichlet
boundary conditions onB2

δ (0) × ∂Bn−2
1−δ (0) given byvi

ε and on∂B2
δ (0) ×

Bn−2
1−δ (0) given byui

ε such that the extended map onB2
δ (0) × Bn−2

1−δ (0) has
total energy bounded byC δ log 1

ε
.

Finally, in the torus like domainB2
δ (0) × Bn−2

1 (0) \ Bn−2
1−δ (0) we again

extend the map by minimizingEε(.) with given Dirichlet boundary con-
dition on ∂(B2

δ (0) × (Bn−2
1 (0) \ Bn−2

1−δ (0))), since the domainB2
δ (0) ×

(Bn−2
1 (0) \ Bn−2

1−δ (0)) can be covered by cubes of sizeδ with total num-
ber of such cubes bounded byC/δn−3. On each cube, the energy is bounded
by C δn−2 log 1

ε
. Hence the total energy of the map on the whole domain

B2
δ (0)× (Bn−2

1 (0) \ Bn−2
1−δ (0)) is bounded byC δ log 1

ε
. This completes the

induction.

We have therefore completed the proof of rectifiability of6.

Let us now prove the rectifiability of6. For convenience we again
assume that� is a convex domain. We extend our minimizersuε which are
defined on� outside� by a simply homogeneous degree zero extension.
Here we may assume without loss of generality that 0∈ �. By the boundary
energy monotonicity and by the boundary eta-compactness lemma, we can
easily establish the similar statements as in Lemma III.3 and Lemma III.4
for the set6 \ ( sptS). Thus it again suffices to verify Lemma III.5 for the
set6 \ ( sptS).

First, forHn−2−a.e.x ∈ 6 \ (sptS) and x ∈ ∂�, we have a tangent
measure ofµ at x of the form

ν = 2n−2(µ, x)Hn−2bV
for some(n− 2)-dimensional planeV. Note that by Lemma III.1:

2n−2(µ, x) ≥ δ0 > 0 .

Note also thatV has to lie inside the tangent plane,Tx∂� of ∂� at x. The
latter is due to the fact thatµ ≡ 0 outside�with exception on the cone over
spt(S) with vertex at 0. Here, we have extended the mapsuε in wholeRn,
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µ is a Radon measure onRn with support ofµ contained in�∩ (cone over
sptS).

Then we follow the exact same arguments as in the proof of the Lemma
III.5 for points belonging to6 and using instead the boundary eta-compact-
ness lemma to conclude that the conclusion of Lemma III.5 remains true for
Hn−2-a.e. points in6 \ (sptS). This completes the proof of the rectifiability
of 6 as spt(S) is a smoothn− 3-dimensional submanifold of∂�.

Important remark.
We note that the last part of the proof of the rectifiability of6 (or6) implies
actually the following:

Suppose forx ∈ 6 \ (sptS) one has

ν = 2n−2(µ, x)Hn−2bV
as the tangent measure ofµ at x, for some(n − 2)-dimensional planeV.
(This is true forHn−2-a.e.x ∈ 6\ (sptS)). Then2n−2(µ, x) is in fact equal
to

N =
∣∣∣∣ deg

(
uε
|uε| , γ

)∣∣∣∣ .

Hereγ is a sufficiently small circle linked withV and lies in a sufficiently
small ball centered atx.

Indeed we look at the scaled measuresµi with the properties as (III.26).
Then the degrees of the map

uεi

|uεi |
: ∂Bδ(0)× {p} −→ S1

are well defined by eta-compactness lemmas, forp ∈ Bn−2
1 (0). As in

the proof of (III.27) we see that this degreed is not zero. Moreover, by
2-dimensional estimates in [4], we have an improved form of (III.27) that
is the following:∫

B2
δ (0)×Bn−2

1 (0)
eε(u

i
ε) dx ≥

π|d||Bn−2
1 (0)| log

1

ε
− oε(1) log

1

ε

(III.31)

with oε(1)→ 0 asε→ 0.
This last estimate implies2n−2(µ, x) ≥ |d|. On the other hand we

follow a similar construction as in the proof of estimate (III.29). But now
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d 6= 0, we use the usual 2-dimensional construction again to obtain the
following upper bound for the energy:∫

B2
δ (0)×Bn−2

1 (0)
eε(u

i
ε) dx ≤ Cδ log

1

ε

+ |Bn−2
1 (0)| π|d| log

1

ε
+ C

(III.32)

(compare with (III.30)). HereC is a constant independent ofδ andε, andδ
can be chosen arbitrarily small to start with. Thus we obtain

2n−2(µ, x) ≤ |d| .

Note thatγ here can be any circle∂B2
δ×{p}, p ∈ Bn−2

1 (0) in this normalized
situation.

To end this section, we want to show6 can have an orientation in such
a way that we will have an(n− 2)-dimensional current that represents the
exact same class inHn−2(�, sptS,Z) as described in the Lemma A.7.

We already know that, forHn−2-a.e.a ∈ 6 \ sptS, µ has the tangent
measure ata given by2n−2(µ,a)Hn−2bV(a), for some(n−2)-dimensional
planeV(a) in Rn and for a positive integer2n−2(µ,a). Let γ be a circle
in �λ \ 6λ, here�λ = � ∪ (λ − 1)-neighborhood of�, 6λ = 6 ∪
((cone over sptS)∩�λ), for a λ > 1. Let Zγ be the integral homology
group of γ . HereZγ is isomorphic (but not canonically isomorphic) to
the integersZ. Any homeomorphism (in particular isotopy) between two
such circles does induce a natural isomorphism between their corresponding
cohomology groups. Note these are simply constant -integer length 1-forms
onγ whenγ , say, is lipschitz.

Let ωε(γ) be the pull-back by uε
|uε| : γ → S1 of the standard one-

form on S1, that isdθ, then we have shown that ifγ is linked with V(a)
and lies in a small ball centered ata, then |ωε(γ)| = the length ofωε(γ)
simply coincides with the absolute degree of the mapuε

|uε| : γ → S1, that is

2n−2(µ,a).
Now we simply introduce an orientation onV(a) so that the intersection

number satisfies

σ ∧ V(a) = deg

(
uεi

|uεi |
, γ

)
for εi sufficiently small, whereµεi ⇀ µ and whereσ is a regular 2-cycle
in �λ bounded byγ . In the notation [30] p. 146, the fact above and the fact
that this being true forHn−2-a.e.a ∈ 6, we conclude that

T = τ (6,2n−2(µ, .),T(.)
)

is an(n− 2)-dimensional integer multiplicity rectifiable current.
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Now letσ be a generic, regular 2-cycle in�λ with ∂σ = γ being a regular
curve on∂�λ \ (cone over sptS). Supposeσ is a generic position so that

σ ∩6 = {a1, ...,al }
and ata1, ...,al , µ has tangent measures

2n−2(µ,aj )H
n−2bV(aj ) , j = 1, ..., l .

Then

deg

(
uεi

|uεi |
, γ

)
=

l∑
j=1

σ ∧ V(aj ) = σ ∧ T

by eta-compactness lemmas. Noteσ ∧ V(aj ) = ±2n−2(µ,aj ).
From this canonical property of intersection, we see, by the Poincaré-

Lefschetz Duality theorem, thatT represents the class inHn−2(�λ,

spt Sλ,Z) = Hn−2(�, spt S,Z) as given in Lemma A.7. In particular

∂T = Sλ .

HereSλ = ηλ]S, ηλ(x) = λx so that spt(Sλ) ⊆ ∂�λ. We should point out
there is a more general lemma which implies such currentT has boundary
equal to∂Sλ and which uses only the local structure ofT. We should leave
it to a forthcoming work.

III.2.3. Proof of the minimality ofT

First proof.
We have, via energy comparison that

µ(�) ≤ A ,

where

A= inf
{
M(T) : T ∈ In−2(Rn) , ∂T = S} .

On the other hand, for the integral currentT obtained at the end of the last
subsection we have

A ≤ M(T) ≤ µ(�) .

Thus

µ = 2n−2(µ, .)Hn−2b6
andT is an area-minimizing current.
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Second proof.
In this part we will use some results proved in the next section.

Step I. By energy comparisons, we have shown that

µ(�) ≤ A , A = inf
{
M(T) : T ∈ In−2(Rn) , ∂T = S} .

Hereµ is the defect measure which is a weak limit of Radon measures
µε = eε(uε) dx

π log 1
ε

.

Step II. Let {Tε}, 0 < ε << 1, be a family ofεα-approximation of

d

(
uε
|uε|

∗
dθ

)
given by Lemma V.2, such thatTε ∈ In−2(Rn)

(i) ∂Tε = S ,

(ii) M(Tε) ≤ C0 ,

(iii) ∀γ ⊂ � \ ∪Nα
i=1Bεα(xi ), closed regular curve,

deg

(
uε
|uε| , γ

)
= D ∧ Tε ,

whereD is a two dimensional regular cycle boundingγ .

By the Federer-Fleming Compactness Theorem for integral currents,
one may assumeTε ⇀ T in flat norm,T ∈ In−2(Rn) such that∂T = S,
M(T) ≤ C0.

Step III. Note that, by construction of the{Tε}’s, one also has spt(Tε) ⊂
∪Nα

i=1Bεα(xi ). Then spt(T) ⊆ 6 = {x ∈ � : 2n−2(µ, x) > 0}. Indeed,
∀x0 ∈ spt(T), there is a sequencexεi −→ x0 such that|uεi (xεi )| ≤ 1

2. By

eta-compactness,
µεi (Br (xεi ))

rn−2 ≥ η0 > 0 for anyr > 0 and sufficiently largei .

Thus µ(Br (x0))

rn−2 ≥ η0/2 > 0 for anyr > 0, i.e. x0 ∈ 6. We have already
noted that forHn−2-a.e.x0 ∈ spt(T) ⊆ 6, 2n−2(µ, x0) = d ∈ Z+ and

d = deg
(

uε
|uε| , γ

)
. Hereγ is a standard circle in{0} ×R2 (with center at 0)

whereRn−2× {0} is the tangent of spt(T) at x0.
Since by property(iii ) and intersection theory for currents (see [12]

Chap. 4), one sees thatd is equal toD∧T, the multiplicity of the currentT.
Therefore

M(T) ≤ µ(sptT) ≤ µ(�) ≤ A .

We conclude thatT must be an area-minimizing current. Moreover
sptµ ⊆ sptT, i.e.

µ = 2n−2(µ, x) Hn−2bsptT .
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IV. Convergence of the minimizing maps

In this part we assume hypothesis(A2′) of Sect. I.4 but we do not assume
anymore that� is convex,� can be any regular bounded domain ofRn. This
part is relatively independent from part III and follows closely the analysis
in [25]. It also yields to a new proof of Theorem I.1 but this time uses the
Federer-Fleming compactness theorem for integrable currents.

IV.1. TheW1,p estimate

We first prove the following uniform bound for the minimizers.

Lemma IV.1 Let� and gε satisfying(A2′) and (A3), for ε < ε0 for any
minimizeruε of Eε on� with uε = gε on ∂�, we have the uniform bounds

∀1< p<
n

n− 1
‖uε‖W1,p(�) ≤ C (IV.1)

whereC is a constant independent onε, it only depends onp, � andgε.

Remark IV.1.In fact theW1,p bound above holds for critical points of the
Ginzburg-Landau functional in general once one knows the a-priori bound
Eε(uε) ≤ C log 1

ε
whereC is independent onε.

IV.1.1. Anεα-approximation ofd

[
uε
|uε|

∗
dθ

]
by a (n − 2)-current having

a uniformly bounded mass.In this section we prove the following lemma

Lemma IV.2 Let 0 < ν < α < 1, for ε ≤ ε0 there existsNα balls of ra-
diusεα, (Bεα(xi ))i=1...Nα , nν ball of radiusεν (Bεν(zj )) j=1...nν and a Lipschitz
(n− 2)-currentTε, having integer multiplicity such that

i) |u| ≥ 1
2 on� \ ∪Nα

i=1Bεα(xi ) ∪nν
j=1 Bεν(zj ).

ii) Nα ≤ C
(εα)n−2 andnν ≤ C

(εν)n−3 (C independent onε).

iii) supp(Tε) ⊂ ∪Nα
i=1Bεα(xi ) ∪nν

j=1 Bεν(zj ).
iv) ∂Tε = S.
v) M(Tε) ≤ C (C independent onε).
vi) ∀γ ⊂ � \ ∪Nα

i=1Bεα(xi ) ∪nν
j=1 Bεν(zj ), closed regular curve,

deg

(
u

|u| , γ
)
= 6 ∧ Tε

where6 is a two-dimensional regular cycle boundingγ which is transversal
toTε and6 ∧ Tε denotes the intersection number between6 andTε.
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Remark IV.2.The last condition can also be written like this: Let1−1 be
the inverse of the Laplace-Hodge Operator1 on {ω ∈ ∧2� s.t.ω|∂� = 0
and∗ω|∂� = 0}, we have

u

|u| ∧ d
u

|u| − d∗1−1(Tε)

is exact in� \ ∪Nα
i=1Bεα(xi ).

IV.1.2. Preliminaries: rectangular coverings.We will start by introducing
the notion of a perfect rectangular covering of sizeεα. We first give an
example: Consider all the cubes ofRn, having faces parallel to the canonical
hyperplanes{xk = 0}, with edges of length 2εα and with center in the lattice
εαZn. We will translate now a bit the centers of this covering, keeping the
faces of the cube parallel to the canonical hyperplanes{xk = 0} and without
changing their size. We will do it in a periodic way such that the following
holds: two parallel faces of two different cubes are at the distance at least
µεα, whereµ will be some fixed constant independent ofε. Let δ(l1,...,ln) be
a sequence of vectors ofRn indexed byZn

5 = {0, ...,4}n such that all the
coordinates of all these vectors are different and denote byµ the infimum,
in absolute value, of all these differences:

0< µ = min{|δi
l − δi

l ′ | ∀l 6= l ′ ∈ Zn
5 ∀i = 1...n} .

Suppose also that the maximum of|δl | is small enough. If we translate each
of our cubes of center sayεα(k1...kn) by the vectorεαδ(k1...kn)

whereki ≡ ki

in Z5, then we are done. Indeed, first, since the maximum of the|δl | is
supposed to be small compare to one, two parallel sides of cubes which
should be at a distance less thanεα/2 after this translation necessarily
had to touch before the translation. Secondly, if two sides of cubes, say
perpendicular toe1, were touching before this translation, ifεα(k1...kn) and
εα(k′1...k

′
n) are their centers, we know that they will be at a distance of at

leastεα×|δ1
k
−δ1

k′ | ≥ µεα after the translation (necessarilyk 6= k′ otherwise
they would not touch before). Let(Ci ) be the covering that we obtain. We
will need the following definitions

Definition IV.1 A rectangular set is a polyhedral set inRn whose faces are
parallel to one of the hyperplane{xk = 0}
Definition IV.2 Let R be a union of disjoint rectangular sets inRn. We call
the union of then-rectangular sets formingR then-skeleton ofR, denoted
by Rn, and more generally it’sk-skeleton, denotedRk, for k ≤ n− 1, is the
union of the rectangular sets boundaries of the rectangular sets inRk+1.
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R is now a union of disjoint rectangular sets such thatR= Rn. We call such
a union a rectangular covering. For instance the union of the connected com-
ponents ofRn \ ∪i∂Ci is a rectangular covering. We will use the following
definitions

Definition IV.3 The external size (possibly infinite) of a rectangular cov-
ering R is the infimum among the length of the edges of the cubes which
contain any component ofR.

Definition IV.4 Let R be a rectangular covering. The maximum of the
length of edges of the cubes (possibly 0) such that for any component ofR
and any point in this component there exists a cube of the same size included
in this component and containing the point, is called the internal size of the
covering.

Definition IV.5 We say that a rectangular coveringR is µ-perfect, ifµ is
the ratio between the internal and the external size ofR. µ will also be
called the perfection coefficient.

Observe that the perfection coefficient ofR = Rn \ ∪i∂Ci is positive and
independent ofε.

Definition IV.6 We say that a rectangular coveringR has no topology if
for any k ≤ n all the rectangular sets of itsk-skeleton are homeomorphic
to Bk.

We claim thatR = Rn \ ∪i∂Ci has no topology. Indeed, for anyKk

rectangular component in it’sk-skeleton we have the following property:
the intersection ofKk with any line parallel to one of the canonical direction
has at most one component. We can prove it in the following way, any point
of Kk is contained in a fixed family of cubes among theCi and this family
does not depend on the point inKk. Take a line parallel to the l-th canonical
direction which intersectsKk. When this line starts to leaveKk that means
in particular that this line either leaves definitively one of the cubes in the
family mentioned above or start to enter in a new cube and it will stay in
this new cube during a length exactly equal to 2εα (since this direction is
parallel to one of the edges of the cube) and after it is too late for entering
again inKk since the maximal distance along a canonical direction inKk is
bounded by 2εα.

IV.1.3. Proof of Lemma IV.2.Let 0< ν < α < β. We consider first a good
covering ofS= sptS by balls of radiusεν (each point ofS is covered by
at most a finite number of ballsBεν depending only on the dimensionn).
Denote bySνε the union of these balls:Sνε = ∪nν

j=1Bεν(zj ). Of course, since
we have a good covering the conditionnν ≤ C

(εν)n−3 is automatically ensured.
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Denote by�νε = � \ Sνε . We will work now mainly on�νε in order to have
the hypothesis of theη-compactness Lemma II.8 fulfilled for sets of sizeεα

or εβ.
We consider a good covering of�νε by ball of radiusεβ whose centers

are contained in�νε. Among these balls there are the one for which|u| > 1
2

everywhere inside, we will call them the good balls, and the other ones, the
bad balls. We will use the following notation for any subsetK of �:

Nβ(K) is the number of bad balls intersectingK .

Now take the union of cubesCi of sizeεα constructed in the preliminaries
and it’s associated covering. In fact we only consider the ones which intersect
�νε but we will not mention it explicitly anymore. We will change these union
of cubes a little bit, still keeping the perfection coefficient bounded from
below by a positive number independent ofε and still keeping the “no
topology” condition but in order to ensure the two following key conditions
for any Kk rectangular component of thek-skeleton for any 2≤ k ≤ n:

(H1)
1

(εα)k−2

∫
Kk

eε(u) ≤ C log
1

ε
,

(H2) Nβ(Kk) ≤ C

(
εα

εβ

)k−2

,

whereC in both(H1) and(H2) is independent ofK , R, u or ε. First observe
that these two conditions(H1) and(H2) are satisfied for then-skeleton:
(H1) follows from Lemma II.7 and(H2) from (H1), theη-compactness
Lemma II.8 and the following argument that we will often use and that was
previously developed in [25]:

Let Kn be one of then-dimensional rectangular sets ofR. Let B2εβ(yi )

for i = 1...Nβ(Kn) be the bad balls intersectingKn. By theη-compactness
Lemma we have

1

(εβ)n−2

∫
B2εβ (yi )

eε(u) ≥ η (1− β) log
1

ε
.

Summing over all thei = 1, ..,Nβ(Kn) and since, by Lemma II.6, the total
energy inKn is bounded by 1

(εα)n−2 log 1
ε

we get(H2) for Kn. So for this
first step we do not need to changeCi in order to obtain(H1) and(H2) for
then-skeleton. We will proceed inductively in order to get(H1) and(H2)
for thek-skeleton starting fromn to 2.

Suppose now we have a covering of� by cubes of size 2εα, say(Cp
i ),

such that the induced rectangular covering has a perfection coefficientµ > 0
independent ofε and such that it has no topology and suppose also that(H1)
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and(H2) are satisfied fork ≥ p. We will deduce a new covering by cubes
(Cp−1

i ) satisfying(H1) and(H2) for k ≥ p− 1.
Let C(2εα, xi ) be any of the cubes of(Cp

i ). Let n − 1 ≥ l ≥ p− 1
andKl be any rectangular component of thel-skeleton which is contained
in ∂C(2εα, xi ). Let m be the number of cubes of(Cp

i ) whose boundary
containKl (we can havem = 0, ...,n − l − 1). Let Hn−m be then − m-
rectangular set realized by the intersection of all the faces of these cubes
which containKl . Let’s move the centerxi of our cubeC(2εα, xi ) and callx
the new center which becomes a variable. Asx moves inBµεα/4(xi ) (recall
thatµ is the perfection coefficient),Kl moves continuously inHn−m. Denote
by Kl(x) the family of rectangular sets inHn−m that we get. We claim that∫

x∈Bµεα/4(xi )

dx
∫

Kl (x)
eε(u) ≤ C (εα)n+l−2 log

1

ε
(IV.2)

and ∫
x∈Bµεα/4(xi )

Nβ(Kl(x)) dx ≤ C
(εα)n+l−2

(εβ)l−2
. (IV.3)

Let Bn−m−l
µεα/4 (xi ) be the ball of radiusµεα/4, centerxi and dimensionn−m−l

for the directions perpendicular toKl and included inHn−m. We clearly have∫
x∈Bn−m−l

µεα/4 (xi )

dx
∫

Kl (x)
eε(u) ≤ C

∫
Hn−m

eε(u) .

Since(Cp
i ) is a covering in particular satisfying(H1) for k ≥ p and since

n−m≥ l + 1≥ p,∫
x∈Bn−m−l

µεα/4 (xi )

dx
∫

Kl (x)
eε(u) ≤ C

∫
Hn−m

eε(u) ≤ C(εα)n−m−2 log
1

ε
.

(IV.4)

Integrating both sides of the inequality (IV.4) along them+ l remaining
directions we get (IV.2). Similarly we have∫

x∈Bn−m−l
µεα/4 (xi )

Nβ(Kl(x)) ≤ C(εβ)n−m−l Nβ(Hn−m) .

Since(H2) is satisfied for(Cp
i ) for k ≥ p and sincen−m≥ l + 1≥ p we

haveNβ(Hn−m) ≤ C
(
εα

εβ

)n−m−2
. Thus∫

x∈Bn−m−l
µεα/4 (xi )

Nβ(Kl(x)) ≤ C(εα)n−m−2(εβ)−l+2 . (IV.5)
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Integrating both sides of the inequality (IV.5) along them+ l remaining
directions we get (IV.3). Considering inequalities (IV.2) and (IV.3) for all
the Kl contained in∂C(2εα, xi ) for l ≥ p−1, we can simultaneously apply
the mean value formula for deducing the existence ofx = xi such that for
any of theseKl we have(H1) and(H2). We do that one by one for all the
cubes of(Cp

i ) and we call(Cp−1
i ) the new family of cubes that we obtain.

By construction, this family gives a new rectangular covering which has
a perfection coefficient larger thanµ/2,which satisfies(H1) and(H2) for
k ≥ 2, which is homotopic to the(Ci ) we start with and thus of course has
also no topology.

Denote byR the rectangular covering deduced from(C2
i ). Denote by

R′ the union of rectangular sets ofR which contain a pointx such that
|u|(x) < 1/2 and denote it’sk-skeleton byR′k. We know, by a similar
argument used above to bound the number of bad balls, that the number of
rectangular components inR′ is bounded byC/(εα)n−2.

Let K2 be any rectangular component ofR2. We have∫
K2

eε(u) ≤ C log
1

ε
and Nβ(K2) ≤ C . (IV.6)

Moreover K2 is Lipschitz diffeomorphic to the ballB2
εα (for a diffeo.ψ

verifying ‖∇ψ‖∞ + ‖∇ψ−1‖∞ ≤ C indep. onε). For all this reason we
can deduce like in [5] or [25] that there existδ ∈ (α, β) andz1, ..., zN in K2

such that

i) ∀i 6= j Bεδ(zi ) ∩ Bεδ(zj ) = ∅
ii) |u| ≥ 1

2 in K2 \ ∪i Bεδ(zi )

iii) N ≤ C and deg( u
|u| , ∂(K2 ∩ Bεδ(zi ))) ≤ C whereC is independent of

K2 andε.

Denote byT2 the sum, among all theK2 in R′2, of the Dirac masses at thezj

with the multiplicity given by the degree ofu/|u| atzj . Denote byv2 a given
regular map fromR2\suppT2 into S1 equal tou/|u| outside ofBεδ(zj ).

We will construct by induction fromk = 3 tok = n both ak−2-Lipschitz
currentTk in Rk and a mapvk : Rk \ SuppTk→ S1 such that

i) supp(Tk) ⊂ R′k
ii) ∀ rectangular componentsKk of R′k

∂(TkbKk) = Tk−1b∂Kk

iii) ∀ rectangular component ofKk R′k

M(TkbKk) ≤ C(εα)k−2

WhereC is independent ofε.
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iv) vk|∂(Rk\suppTk)
= vk−1

v) deg(vk, ∂6) = 6 ∧ Tk

for any Lipschitz oriented 2-surface6 in Rk such that∂6⊂Rk\suppTk

SupposeTk andvk are constructed as above. LetKk+1 be one of the com-
ponents ofRk+1. We claim that

∂(Tkb∂Kk+1) = 0

This is a direct consequence of the existence ofvk on ∂Kk+1 satisfying iv).
There exists a Lipschitz-diffeomorphismψ which sendsKk+1 to the unit
ball of radiusεα and which satisfies‖∇ψ‖∞ + ‖∇ψ−1‖∞ ≤ C, whereC
is independent ofε. The choice ofTk+1bKk+1 is as follows: the image by
ψ−1 of the radial extension ofψ∗(Tkb∂Kk+1). So it is clear that it satisfies
conditions i), ii) and iii). The fact that there exists an extensionvk+1 of
vk as a map fromKk+1\suppTk+1 satisfying condition v) is explained in
Appendix A.7.

Using arguments above we can change the good coveringB2εγ (zj ) of
S a bit into B(2−δ j )εγ (zj ), whereδ j < 1/4 in order to ensure that each
∂B(2−δ j )ε

γ (zj ) intersects at mostCε(ν−α)(n−3) rectangular components con-
taining a point where|u| < 1/2. Denote�νε := � \ ∪ j B(2−δ j )ε

γ (zj ) instead
of � \ ∪ j Bεγ (zj ) . Let Tγε = Tnb�νε. Because of conditions ii), iii) and the
remark just above we have spt∂Tγε ⊂ ∂�νε and sincenν ≤ C

εγ(n−3) we can de-
duce thatM(∂Tνε ) ≤ C. Because of v) we easily deduce that∂Tνε −S = ∂Nε
for someNε ⊂ ∪ j B(2−δ j )ε

ν(zj ), moreover we can ensureM(Nε) ≤ εν. Now
we claim thatTε = Tn + Nε is a solution of our problem. The fact that the
conditions i),..,v) of Lemma V.1 are satisfied forTε = Tn comes from the
construction ofTn. Let’s look at the last condition. Letγ be a closed curve
in � \ R′. It is clear thatγ can be continuously deformed into a curve lying
in ∂R′, staying completely in the set where|u| ≥ 1

2, which ensures the fact
that the degree along it does not change. The curve is now inR′n−1 but in the
components ofR′n−1 where|u| ≥ 1

2. So we can deform it again inR′n−2 and
so on until reaching the 2-skeletonR′2 and by construction ofTk we know
that condition v) of Lemma V.2 is satisfied for such a curve and since, the
degree ofu/|u| did not change during this transformation we have proved
Lemma V.2.

IV.1.4. Proof of Lemma IV.1.Take 0< ν < µ < α < 1 (to be fixed
later) and let∪Nα

i=1Bεα(xi ) ∪nν
j=1 Bεν(zj ) be the union of balls of radiusεα

andεν given by Lemma IV.2. Like in the proof of Lemma V.2, we can find
a covering of� \ ∪nν

j=1Bεν(zj ) by 2εµ-cubes such that(H1) and(H2) are
satisfied (forβ := α) at least for then andn− 1-skeletons. Denote by�µ
the complements in� \ ∪nν

j=1Bεν(zj ) of the union of the rectangular sets
(R′i )1, ..., Nµ of this rectangular covering which contain at least one point
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where |u| < 1/2. We will use the notationSε = ∪nν
j=1Bεν(zj ). We have

chosen in fact the good coveringBεν(zj ) of S such that∫
∂Sε

eε(u) ≤ log
1

ε
. (IV.7)

This is always possible, using Lemma II.7 + the mean value formula and
the boundnν ≤ C

εν(n−3) (the coveringBεν(zj ) is eventually changed into
a coveringB(1−δ j )ε

ν(zj )where 0< δ j < 1/4). Recall thatNµ ≤ C/(εµ)n−2.
Let 1> s> 0, to be fixed later. We proceed with the following Hodge

decomposition

u ∧ du

|u ∧ du|s = d∗k+ dL in � , (IV.8)

whereL is a function in� such thatL ≡ 0 on∂�. We know (see [18]) that
such a decomposition exists, since� is diffeo. to Bn, with the following
bound for any 1< q< +∞

‖k‖W1,q(�) ≤ Cq

[∫
�

|u ∧ du|q(1−s)

] 1
q

. (IV.9)

In the remaining partq will be chosen such thatq > n in order to ensure,
by Sobolev injection, that

‖k‖∞ + ‖k‖C0,δ(�) ≤ Cq

[∫
�

|u ∧ du|q(1−s)

] 1
q

, (IV.10)

for δ = 1− n
q . We will choseq ands such that

q = 2− s

1− s
. (IV.11)

Sinceq > n the constraint ons becomesn−2
n−1 < s< 1. Multiply (IV.8) by

u ∧ du and integrate on�. We get∫
�

|u ∧ du|2−s =
∫
�

d ∗ k∧ (u ∧ du)+
∫
�

dL ∧ ∗(u ∧ du) . (IV.12)

Using the fact thatL ≡ 0 on∂� and the fact thatd(∗(u ∧ du)) = 0 we get∫
�

|u ∧ du|2−s =
∫
�

d ∗ k∧ (u ∧ du) . (IV.13)
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Decompose
∫
�

d ∗ k∧ (u∧ du) = ∫
�µ
...+ ∫

�\�µ .... We bound the second
integral like this∣∣∣∣∣
∫
�\�µ

d ∗ k∧ (u ∧ du)

∣∣∣∣∣ ≤ C

(∫
�\�µ
|d∗k|2

) 1
2 (∫

�

|du|2
) 1

2

≤ (ε2µ)
1− 2

q

(
log

1

ε

) 1
2
[∫

�

|u ∧ du|2−s

] 1
q

.

(IV.14)

In �µ we writeu ∧ du= u
|u| ∧ d u

|u| + (1− 1
|u|2 )u ∧ du. We have∣∣∣∣∣

∫
�µ

(
1− 1

|u|2
)

d ∗ k∧ (u ∧ du)

∣∣∣∣∣≤C‖dk‖Lq

(∫
�

(1− |u|2)q′ |u ∧ du|q′
) 1

q′

≤ Cε1− q′
2

(
log

1

ε

) 1
2
[∫

�

|u ∧ du|2−s

] 1
q

.

(IV.15)

We integrate the remaining term by parts and sinced( u
|u| ∧ d u

|u|) = 0 on�µ
we get∫

�µ

d ∗ k∧
(

u

|u| ∧ d
u

|u|
)
=
∫
∂�µ

∗k∧
(

u

|u| ∧ d
u

|u|
)

. (IV.16)

We write∂�µ = (∂�µ ∩ �) ∪ (∂� ∩ �µ) and we establish the following
bound∫

∂�∩�µ
∗k∧

(
u

|u| ∧ d
u

|u|
)
≤ C‖k‖∞

∫
∂�∩�µ

|g∧ dg|

≤ C

[∫
�

|u ∧ du|2−s

] 1
q

.

(IV.17)

Once again we writeu
|u| ∧d u

|u| = ( 1
|u|2 −1)u∧du+u∧du, and using (IV.7)

and the fact that
∫
∂�µ∩� eε(u) ≤ 1

εµ
log 1

ε
we establish the bound∣∣∣∣∣

∫
∂�µ∩�

(
1

|u|2 − 1

)
∗ k∧ (u ∧ du)

∣∣∣∣∣ ≤ ‖k‖∞ε
∫
∂�µ∩�

eε(u)

≤ ‖k‖∞ε1−µ log
1

ε
.

(IV.18)
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Now decompose�\�µ as a union ofSε and the rectangular sets(R′i )i=1,...,Nµ .

We have
∫
∂�µ∩�

∗k∧ (u∧du) =
∫
∂Sε∩�

...+
Nµ∑
i=1

∫
∂R′i
...−

∫
∂�∩�\�µ

.... The

following bounds hold, using the hypothesis ongε and (IV.7):∫
∂Sε∩�
∗k∧ (u ∧ du) ≤ C‖k‖∞εν

(∫
Sε

eε(u)

) 1
2

(IV.19)

≤ Cεν
(

log
1

ε

) 1
2
[∫

�

|u ∧ du|2−s

] 1
q

.

∫
∂�∩�\�µ

∗k∧ (u ∧ du) =
∫
∂�∩�\�µ

∗k∧ (g∧ dg) ≤ C ‖k‖∞ .

(IV.20)

Let ∗ki be the mean value of∗k on R′i , in particular

‖ ∗ k− ∗ki‖∞ ≤ Cεµδ
[∫

�

|u ∧ du|2−s

] 1
q

.

Thus, using the fact that
∫
∂R′i
|du|2 ≤ εµ(n−3) log 1

ε
, we get∣∣∣∣∣

∫
∂R′i
(∗k− ∗ki ) ∧ (u ∧ du)

∣∣∣∣∣ ≤ Cεµ(δ+n−2)

(
log

1

ε

) 1
2
[∫

�

|u ∧ du|2−s

] 1
q

.

(IV.21)

In order to find a bound for
∫
∂R′i
∗ki ∧ (u ∧ du), we look for a bound of∫

∂R′i
∗(dxn−1 ∧ dxn) ∧ d(u ∧ du) since ki is a linear combination of the

dxk ∧ dxl for k 6= l with constant coefficients.
dx1∧ ...∧dxn−2 = ∗(dxn−1∧dxn) does not cancel on the faces where either
xn is constant orxn−1 is constant. For a given(t1, ..., tn−2) the intersection
with the two-planex1 = t1, ..., xn−2 = tn−2 and ∂R′i is a 1-dim. closed
Lipschitz line that we will denote by0t1,...,tn−2. We denote byUi the set of
coordinates(t1, ..., tn−2) such that0t1...tn−2 is non empty. AmongUi we only
want to keep the coordinates such that0t1...tn−2 does not intersect the balls
(Bεα(xi )). Denote this set byVi . There exist at mostCε(n−3)(µ−α) of such
balls, thus the(n− 2)-measure ofVi is bounded byCεα+µ(n−3). Let

Si = {x ∈ R′i s. t.∃(t1...tn−2) ∈ Vi , s. t.x ∈ 0t1...tn−2} .

It is clear that|Si |n−1 ≤ Cεα+µ(n−2). Thus∫
Si

|u ∧ du| ≤ Cε
α
2+µ(n−2) . (IV.22)
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On∂R′i \Si let us writeu∧ du= u
|u| ∧d u

|u| + (1− 1
|u|2 )u∧du. We have the

bound ∫
∂R′i \Si

(1− |u|2)|u ∧ du| ≤ Cε1+µ(n−3) log
1

ε
. (IV.23)

Now using Lemma V.1 we deduce that∫
∂R′i \Si

dx1...dxn−2 ∧
(

u

|u| ∧ d
u

|u|
)
=
∫

Ui \Vi

∫
0t1...tn−2

u

|u| ∧ d
u

|u|

=
∫

Ui \Vi

6t1...tn−2 ∧ Tε ,

(IV.24)

where6t1...tn−2 = {x ∈ R′i s. t.x1 = t1...xn−2 = tn−2}. Summing (IV.19),
(IV.21)...(IV.24) overi we obtain∣∣∣∣∣

∫
∂�µ∩�

∗k∧ (u ∧ du)

∣∣∣∣∣ ≤ C(M(Tε)+ o(1))

[∫
�

|u ∧ du|2−s

] 1
q

.

(IV.25)

Combining now (IV.13)...(IV.20) and (IV.25) we obtain that
∫
�
|u ∧ du|2−s

is bounded independently ofε, moreover recall that the constraint ons is
n−2
n−1 < s< 1. That means that the constraint on 2− s is 1< 2− s< n

n−1.
Thus we prove a uniformL p bound foru ∧ du for 1 < p < n

n−1 and the
passage from thisL p bound to the result of Lemma V.1 can be done like
in [4] or [25].

IV.2. Proof of Theorem I.2

Let T be the limit (modulo a subsequence) of the currentsTε given by
Lemma IV.2. Let�δ = � \ {δ − neighborhood of sptT}, δ > 0. Then the
eta-compactness Lemma implies, in particular, that|uε|(x) ≥ 1/2,∀x ∈ �δ.

We write uε(x) = ρε(x) exp(iθε) locally near any point of�δ. Then
div(ρ2

ε∇2ε) = 0. Using the fact thatρε → 1− (asε → 0) pointwise on
�δ and theW1,p estimate foruε, one has∇θε ∈ L2(�δ). At this stage of
the proof one easily deduces that∇ρε ∈ L2(�δ). The minimality ofT is
obtained by a comparison argument and proving a lower bound of the form

∀α > 0 ∃Cα ≥ 0 s.t. π (M(T)− α) log
1

ε
− Cα ≤ Eε(uε) .

(IV.26)

This can be done working perpendicularly to the integral currentT as in [25]
Sect. 7 and using Lemma A.6 of [25] at each perpendicular 2-plane ofT.
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V. Appendix

V.1. Few technical lemmas

Lemma A.1. Letϕ be ap-form inRn, we have

∂

∂r
dϕ = d

∂ϕ

∂r
− 1

r
dϕ + d logr ∧ ∂ϕ

∂r
.

Proof of Lemma A.1.

ϕ =
∑

I

φI dxI , dϕ =
∑
k,I

∂ϕI

∂xk
dxk ∧ dxI

∂

∂r
dϕ =

∑
k,I

∂

∂r

[
∂ϕ

∂xk

]
dxk ∧ dxI

=
∑
k,I,l

∂

∂xl

[
∂ϕI

∂xk

]
xl

|x|dxk ∧ dxI

=
∑
k,I,l

∂

∂xk

[
∂ϕI

∂xl

]
xl

|x|dxk ∧ dxI −
∑
k,l,I

∂ϕI

∂xl

δkl

|x|dxk ∧ dxI+

+
∑
k,I,l

∂ϕI

∂xl

xl xk

|x| dxk ∧ dxI

= d
∂ϕ

∂r
− 1

r
dϕ + d logr ∧ ∂ϕ

∂r
.

Denote byd> and(∗) respectively the exterior differentiation and the
Hodge operator onSr = ∂Br . Forω ∈ ∧∗Rn, d>ω not only denotes, the
exterior differentiation of the restrictionω to Sr , but also the form in∧∗+1Rn

which coincides with this restriction at each point ofRn : d>ω = dω−dr∧ ∂ω
∂r .

Lemma A.2. We have

d>
∂ϕ

∂r
= ∂

∂r
(d>ϕ)+ 1

r
d>ϕ .
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Proof of Lemma A.2.

d>
∂ϕ

∂r
= d

∂ϕ

∂r
− dr ∧ ∂

2ϕ

∂r 2

= ∂

∂r
dϕ + 1

r
dϕ − 1

r
dr ∧ ∂ϕ

∂r
− dr ∧ ∂

2ϕ

∂r 2

= ∂

∂r

[
dϕ − dr ∧ ∂ϕ

∂r

]
+ 1

r

[
dϕ − dr ∧ ∂ϕ

∂r

]

= ∂

∂r
[d>ϕ] + 1

r
d>ϕ .

Lemma A.3. We have

∂

∂r

[
(∗)ι∗r η

] = (∗)ι∗r ∂η∂r ,

whereιr is the isometric embedding of∂Br intoRn.

Proof of Lemma A.3.We have

(∗)ι∗r η = − ∗ η ∧ dr .

Thus
∂

∂r
(∗)ι∗r η = − ∗

∂η

∂r
∧ dr = (∗)ι∗r

∂η

∂r
.

Lemma A.4. Letφ be a 0-form we have

∂

∂r
1rϕ = 1r

∂ϕ

∂r
− 2

r
1r .ϕ .

Proof of Lemma A.4.

∂

∂r
1rϕ = − ∂

∂r
(∗)d>(∗)d>ϕ = −(∗) ∂

∂r
d>(∗)d>ϕ

= −(∗)d> ∂
∂r

[(∗)d>ϕ] + (∗)
[

1

r
d>(∗)d>ϕ

]
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= −(∗)d>(∗) ∂
∂r

d>ϕ − 1

r
1rϕ

= 1r
∂φ

∂r
+ (∗)d>(∗)1r d>ϕ − 1rϕ

r
= 1r

∂φ

∂r
− 2

1rϕ

r
.

Lemma A.5.

1r

(
ϕ ∧ ∂ϕ

∂r

)
− ∂

∂r
[ϕ ∧1rϕ] = 2(∗)d>

[(
i
∂ϕ

∂r
; (∗)d>ϕ

)]

+ 2

r
(ϕ; i1rϕ) .

Proof of Lemma A.5.

1r

(
ϕ; i ∂ϕ

∂r

)
= −(∗)d>(∗)d>

[(
ϕ; i ∂ϕ

∂r

)]

= −(∗)d>
[(
(∗)d>ϕ; i ∂ϕ

∂r

)]
− (∗)d>(∗)

[(
ϕ; id> ∂ϕ

∂r

)]
.

(V.27)

Using Lemma A.2. we compute

(∗)d>(∗)
[(
ϕ; id> ∂ϕ

∂r

)]
= ∂

∂r
[(∗)d> [(ϕ; i(∗)d>ϕ)]]

+ 2
r (∗)d> [(ϕ; i(∗)d>ϕ)] − (∗)d>

[(
∂ϕ

∂r ; i(∗)d>ϕ
)]

.

(V.28)

A short computation shows that

−(∗)d> [(ϕ; i(∗)d>ϕ)] = (ϕ; i1rϕ) .

Combining the previous identity and (V.28) we get the desired result.

Lemma A.6.

1

(
ϕ ∧ ∂ϕ

∂r

)
= ∂

∂r
(ϕ ∧1ϕ)− 2(∗)d>

[(
i
∂ϕ

∂r
; (∗)d>ϕ

)]

+ 2

r
(ϕ ∧1ϕ)+ 2

r

∂

∂r

(
ϕ ∧ ∂ϕ

∂r

)
+ n− 1

r 2

(
ϕ ∧ ∂ϕ

∂r

)
.
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Proof of Lemma A.6.

1

(
ϕ ∧ ∂ϕ

∂r

)
= 1r

(
ϕ ∧ ∂ϕ

∂r

)
− ∂2

∂r 2

(
ϕ ∧ ∂ϕ

∂r

)

− n− 1

r

∂

∂r

(
ϕ ∧ ∂ϕ

∂r

)
.

Using Lemma A.5 we get

1

(
ϕ ∧ ∂ϕ

∂r

)
= ∂

∂r
(ϕ ∧1rϕ)− 2(∗)d>

[(
i
∂ϕ

∂r
; (∗)d>ϕ

)]

+ 2

r
ϕ ∧1rϕ − ∂2

∂r 2

(
ϕ ∧ ∂ϕ

∂r

)
− n− 1

r

∂

∂r

(
ϕ ∧ ∂ϕ

∂r

)
.

Replacing1rϕ by1ϕ − ∂2ϕ

∂r2 − n−1
r

∂ϕ

∂r we get the desired result.

Proof of Lemma A.7.
By a continuity argument we can always assume that 0 is a regular value
for g. Let g be a regular extension ofg from � into C such that 0 is also
a regular point forg. Denote byL the integral current associated to the
regular oriented submanifold realized byg−1({0}). L defines a homology
classL in Hn−2(�, sptL) which satisfies of course i). It also satisfies ii)
by of the following fact: letσ = ∑niσi be a cellular decomposition ofσ ,
ni ∈ Z andσi = fi (D2). The degree ofg/|g| on the one-chain realized by

∂σi is
∫
∂D2

(
g
|g| ◦ fi

)∗
dθ. This is equal to

∫
D2

d

((
g

|g| ◦ fi

)∗
dθ

)
=

∑
aj∈σi∩sptL

dj δaj = σi ∧ L .

Multiplying this identity byni and summing overi one gets ii).
The uniqueness ofL is a direct consequence of the Poincaré-Lefschetz

duality theorem (see [31] page 296). We have

Hn−2(�; sptL) ' H2(� \ sptS; ∂� \ sptS)

and this isomorphism is exactly given by the intersection number. ii) means
that we define uniquely a class inH2(� \ sptS; ∂� \ sptS) and its image
by the isomorphism above isL.
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V.2. A harmonic form with given singularity

First let us fix the notations.

Euclidean spaceRn, with n ≥ 3. Forx0 ∈ Rn, r > 0,
Ur (x0) = {x\x ∈ Rn, | x− x0 |< r },
Br (x0) = {x\x ∈ Rn, | x− x0 |≤ r },
Ur = Ur (0), Br = Br(0).
ωn = the volume ofB1 ⊂ Rn.
0(x) = 1

n(n−2)ωn|x|n−2 the fundamental solution of the Laplacian operator.

For any open set� ⊂ Rn, any integerk ∈ [0,n],
Dk(�) = {all smooth differentialk forms on� with compact support}.
For a locally integrablek-form ω on�, we have a(n− k)-currentTω given
by Tω(τ) =

∫
�
ω ∧ τ, for any τ ∈ Dn−k(�). For anyk-currentT on�,

σT is a(k+ 1)-current defined by(σT)(τ) = T(δτ), for anyτ ∈ Dk+1(�).
4T = σ∂T + ∂σT.

V.2.1. The question.SupposeS0 = (M0, θ0, ξ0) is an integer multipli-
city (n − 2)-current, whereM0 is a (n − 2)-rectifiable subset ofB1 with
Hn−2(M0) <∞, θ0 : M0→ Z is a measurable function s.t. for anyx ∈ M0

there exists a positive numberc0 with | θ0(x) |≤ c0 ξ0 is the orientation
n− 2 vector function. We assume∂S0 = 0 in U1 (not inRn!).

ζ is a given smooth closed tangential differential 1-form on∂B1\M0 s.t.
| ζ(x) |≤ c · d(x,M0)

−1
for x ∈ ∂B1, c being a positive constant.

Compatibility condition.For any oriented closed smooth curveC lying in
∂B1\M0,

∫
C ζ = 2π(the winding number ofC aroundS0).

Aim. We are looking for a canonical smooth harmonic 1-form inB1\M0,
which hasζ as its tangential part on∂B1\M0 and satisfies

∫
C ω = 2π (the

winding number ofC aroundS0) for any smooth closed curveC in B1\M0.

We want to pick up a canonical one because there are many solutions of
the problem which just look like higher order poles in complex analysis.

V.2.2. The solution to the problem.Supposen = 3 andS0 is the part of
the z-axis in B1. Let α be the angle on the horizontal plane, then as the
standard picture we havedα in our mind. Sincedα is integrable inB1, we
may considerTdα and

σ(Tdα) = 0, ∂(Tdα) = 2π((z axis) ∩ B1) in U1 .
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This motivates the following formulation of the question. Suppose we have
S0, ζ as in the former section. We hope to find an integrable 1 formω on B1

which is harmonic inU1\M0, smooth inB1\M0 with tangential partζ on
∂B1\M0. Besides thisω needs to satisfy

σ(Tω) = 0, ∂(Tω) = 2πS0 in U1 .

Uniqueness of solutions.
Suppose we have two solutions, sayω1 andω2. Setω = ω1− ω2, then

σ(Tω) = 0, ∂(Tω) = 0 in U1 .

From elliptic regularity we knowω is smooth and harmonic inU1.ω = d f ,
where f is a harmonic function inU1. By the boundary condition we have
d( f |∂B1\M0

) = 0, which implies f |∂B1\M0
≡ const. Sof ≡ const inB1.

ω = d f = 0, which gives the uniqueness.

Existence of a solution.
Suppose we have an integrable 1 formω0 in B1 which satisfies

σ(Tω0) = 0, ∂(Tω0) = 2πS0 in U1 ,

but doesn’t satisfy the boundary condition, then we may get theω by solving
a Dirichlet problem for a harmonic function. So the main step is to get aω0.
We first choose another integer multiplicity(n − 2)-current namelyS1 =
(M1, θ1, ξ1), whereM1 is bounded and lies inRn\B1 with Hn−2(M1) <∞,
| θ1(x) |≤ c1 c1 being a positive constant. We chooseS1 suitably such that

S= S0+ S1 = (M0 ∪ M1, θ0 ∪ θ1, ξ0 ∪ ξ1) = (M, θ, ξ)
satisfies∂S= 0 inRn. Notice thatM is bounded and| θ(x) |≤ max{c0, c1}.
Let3 = 2πσ(0 ∗ S), then

σ3 = 2πσ(σ(0 ∗ S)) = 0 .

∂(0 ∗ S) = 0 ∗ ∂S= 0 .

∂3 = 2π∂σ(0 ∗ S) = 2π(∂σ + σ∂)(0 ∗ S)

= 2π4(0 ∗ S) = 2π(40 ∗ S) = 2πS in Rn .

Now for x ∈ M suppose thate1(x), · · · ,en(x) is a positive orthonor-
mal base ofRn s.t. e1(x), · · · ,en−2(x) is a positive base forTxM. Let
e1(x), · · · ,en(x) be the dual base, then we callχ(x) = e1(x)∧· · ·∧en−2(x)
the orientation form ofM. Let

2(x) =
∫

M
0(x− y)θ(y)χ(y)dHn−2(y) for x ∈ Rn .
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It follows from Hölder’s inequality and Fubini’s theorem that2 ∈ W
1, n

n−1−ε
loc

for arbitrary smallε > 0. We have

T∗2 = 0 ∗ S, 3 = 2πσ(T∗2) = 2πTδ(∗2) .

Putω0 = 2πδ(∗2). We haveω0 ∈ L
n

n−1−ε
loc for arbitrary smallε > 0.

ω0(x) = 2π

nωn

∫
M

i x−y
|x−y|n

(∗χ(y))θ(y)dHn−2(y) for x ∈ Rn ,

wherei means the contraction of forms by a vector. Hence

σ(Tω0) = 0, ∂(Tω0) = 2πS in Rn .

σ(T(ω0|B1)
) = 0, ∂(T(ω0|B1)

) = 2πS0 in U1 .

We know| ω0(x) |≤ c·d(x,M)
−1

for x close toM. (ζ−tangential part ofω0)
is exact in∂B1\M, say it is equal tod f . It follows from the growth ofζ and
ω0 that f is integrable (in fact it is inL p(∂B1) for any p ∈ [1,∞)). Solve
the Dirichlet problem4u = 0 in U1, u |∂B1= f . Thenω = ω0 |U1 + du is
a solution to the problem.

Remark A.1.We may do similar problems where the unit ball is replaced
by an arbitrary smooth domain� in Rn, which doesn’t need to be simply
connected, or by a smooth domain� in a compact oriented Riemannian
manifold. For these cases, the necessary condition for a(n−2)-current to be
the singular set of some harmonic form isS0(τ) = 0, for τ any closed form
in Dn−2(�). We may use a similar idea of finding a complement current but
replace0 by the Green’s operator in the case of a Riemannian manifold. Now
because the topology is nontrivial, the solution space is a finite dimensional
affine space. One may find more information in Chapter V of [24] and
Chapter 7 of [23].

V.2.3. Higher integrability of the solution.We know if U1 ⊂ R3 andα is
the horizontal angle, then the standard modeldα lies in L2−ε for arbitrary
small ε > 0. Now we will get this integrability for the solution in the
former section under a local growth condition of the singular set. Because
ω = ω0 |U1 +du andu is a nice harmonic function, it suffices to study the
form ω0.

Proposition A.1. SupposeS = (M, θ, ξ) is an integer multiplicityn − 2
current inRn. Hn−2(M) < ∞. There existsr0 > 0 s.t. M ⊂ Br0. There
existscM > 0 s.t.

Hn−2(M ∩ Br(x)) ≤ cM · r n−2, for r ∈ (0,1], x ∈ Rn .
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There existsc0 > 0 s.t. | θ(x) |≤ c0 for x ∈ M. Let

ω0(x) = 2π

nωn

∫
M

i x−y
|x−y|n

(∗χ(y))θ(y)dHn−2(y) for x ∈ Rn ,

whereχ is the orientation form. Then

ω0 ∈ L2−ε
loc for arbitary smallε > 0 .

Proof. Observing thatω0(x) ≤ c(n, c0)IM(x), where

IM(x) =
∫

M

1

| x− y |n−1
dHn−2(y) for x ∈ Rn ,

we only need to showIM ∈ L2−ε
loc for arbitrary smallε > 0. For anyr1 > 0,∫

Br1(x)∩M

1

|x− y|n−1
dHn−2(y)

=
∫

Br1(x)∩M

(
1

|x− y|n−1
− 1

r n−1
1

)
dHn−2(y)+ Hn−2(Br1(x) ∩ M)

r n−1
1

= (n− 1)
∫

Br1(x)∩M
dHn−2(y)

∫ r1

|x−y|
r−ndr + Hn−2(Br1(x) ∩ M)

r n−1
1

= (n− 1)
∫ r1

0
dr
∫

Br (x)∩M
r 1−ndHn−2(y)+ Hn−2(Br1(x) ∩ M)

r n−1
1

= (n− 1)
∫ r1

0

Hn−2(Br (x) ∩ M)

r n
dr + Hn−2(Br1(x) ∩ M)

r n−1
1

.

Let r1 go to∞. This implies

IM(x) = (n− 1)
∫ ∞

0

Hn−2(Br (x) ∩ M)

r n
dr .

For anyp ∈ [1,2), anyr1 > 0,

(

∫
Br1

IM(x)
pdx)

1
p ≤ (n− 1)

∫ ∞
0
[
∫

Br1

(Hn−2(Br (x) ∩ M))
p
dx]

1
p

r−ndr .

Now we have forr ∈ (0,1],∫
Br1

[Hn−2(Br (x) ∩ M)]pdx ≤ c · r (p−1)(n−2)
∫

Br1

Hn−2(Br(x) ∩ M)dx
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≤ c · r (p−1)(n−2)
∫
Rn

dx
∫

Br (x)∩M
dHn−2(y)

= c · r (p−1)(n−2)
∫

M
r ndHn−2(y) = c · r pn−2(p−1) .

Hence

(

∫
Br1

[Hn−2(Br(x) ∩ M)]pdx)
1
p

r−n ≤ c · r−2(1− 1
p) .

For r ∈ [1,∞), we have

(

∫
Br1

[Hn−2(Br(x) ∩ M)]pdx)
1
p

r−n ≤ c(n, p, r1)H
n−2(M)r−n .

The above two inequalities imply
∫

Br1
IM(x)

pdx<∞.

Remark.The functionIM in the proof is closely related to the trace problem
because of the following,

f(x) = 1

nωn

∫
Rn

(xi − yi )∂i f(y)

| x− y |n dy for any f ∈ C∞c (R
n), x ∈ Rn .

⇒| f(x) |≤ 1

nωn

∫
Rn

| ∇ f(y) |
| x− y |n−1 dy .

So ∫
M
| f(x) | dHn−2(x) ≤ 1

nωn

∫
Rn
| ∇ f(x) | IM(x)dx .

For this aspect we may refer to Sect. 7.8 of [15] and Chapter 7 of [1]
(especially P197 Theorem 7.2.2. and P211, 7.6.6.).
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