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Abstract. Let G be the group of Hamiltonian diffeomorphisms of a closed symplectic
manifoldY. Alooph : St — Gis called strictly ergodic if for some irrational numhethe
associated skew product map: St x Y — St x Y defined byT(t, y) = (t + «, h(t)y) is

strictly ergodic. In the present paper we address the following question. Which elements of
the fundamental group & can be represented by strictly ergodic loops? We prove existence
of contractible strictly ergodic loops for a wide class of symplectic manifolds (for instance
for simply connected ones). Further, we find a restriction on the homotopy classes of smooth
strictly ergodic loops in the framework of Hofer’s bi-invariant geometryGrNamely, we

prove that their asymptotic Hofer's norm must vanish. This result provides a link between
ergodic theory and symplectic topology.

1. Introduction and results
1.1. Hamiltonian loops as dynamical objects

Let (Y, ) be a closed symplectic manifold, and I8t be its group of
Hamiltonian diffeomorphism$Given an irrational number and a smooth
looph : St — G, one can defina skew product map, , : S'xY — StxY

by Th.«(t, y) = (t + «, h(t)y). The purpose of the present paper is to relate
geometry and topology of Hamiltonian loops with dynamics of associated
skew products.

The definition above is a particular case of a much more general notion
of a skew product (see [CFS, p.231]) which has been intensively studied
during several decades. There are at least two important reasons for the
interest to this notion. First, it serves as a foundation for mathematical
models of random dynamics (see [Ki] for a survey). Second, it provides
non-trivial examples of systems with interesting dynamical properties (see
discussion in 1.2 below).
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1 Recall thatG consists of all symplectomorphisms @, £2) which can be included into
a time-dependent Hamiltonian flow &h
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The dynamical property we consider is the strict ergodicity. Recall that
a homeomorphisnT of a compact topological space is called strictly
ergodicif it has precisely one invariant Borel probability measure, gay
and moreover this measure is positive on non-empty open subsets. Strictly
ergodic homeomorphisms are ergodic, and have a number of additional
remarkable features. We mention one of them which plays a crucial role
below. Namely, given suchBand an arbitrary continuous functiéghon X,
the time average%Ei’igl F(T'x) converge uniformly to the space average
[« Fdu, and in particular converger all x € X. Note that for general er-
godic transformations such a convergence takes place ordgyrfmst allx.
The contrast between "all" and "almost all" becomes especially transparent
when one notices that there are pure topological obstructions to the strict
ergodicity. For instance, the 2-sphere admits no strictly ergodic homeomor-
phisms. Indeed the Lefschetz theorem implies that every homeomorphism
of & has either a fixed point, or a periodic orbit of period 2 and we see that
the invariant measure which is concentrated on such an orbit contradicts the
definition of strict ergodicity. In 1.3 below we describe a more sophisticated
obstruction to the strict ergodicity which comes from symplectic topology.
We say that a loogh : S' — G is strictly ergodicif for some o
the corresponding skew product map, is strictly ergodic? With this
language our central question can be formulated as follows.

Question 1.1.A. Which homotopy classe® — G can be represented by
strictly ergodic loops?

Here is an example where one gets a complete answer to this question.
Let Y be the blow up of the complex projective pla@G®? at one point.
Choose a Kahler symplectic structufeon Y which integrates to 1 over
a general line and té over the exceptional divisor. The periods of the
symplectic form are chosen in such a way that its cohomology class is
a multiple of the first Chern class &f. One can easily see thay, Q)
admits an effective Hamiltonian action of the unitary gra¢2), in other
words there exists a monomorphismU(2) — G. The fundamental group
of U(2) equalsZ. It was proved recently by Abreu and McDuff [AM] that
the inclusionr,1(U(2)) — m1(G) is an isomorphism, and thus (G) = Z.

As far as we know this is the simplest example of a symplectic manifold

Theorem 1.1.B. In this situation, the trivial clas® € Z is the only one
which can be represented by a strictly ergodic loop.

2 Note that eacfiy ,, preserves the canonical measuré&dix Y induced by the symplectic
form. Thus in our setting the strict ergodicity means that this measure is the unique (up to
a factor) invariant measure.
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The proof (see 1.3 below) is based on two general results on existence
and non-existence of strictly ergodic loops.

1.2. An existence result

Assume in addition that the group of all Hamiltonian diffeomorphisms
of a closed symplectic manifolg¥, 2) is C*°-closed in Diff(Y).

Theorem 1.2.A. Under this assumption there exists a contractible smooth
strictly ergodic Hamiltonian loop.

Remark. The assumption above holds for a wide class of symplectic mani-
folds, for instance whei (Y, R) = 0, or when the cohomology class of
the symplectic form is rational. (And thus it holds for the blow upa#¥
considered in 1.1 above). However it is still unclear whether it is valid for
all closed symplectic manifolds. This long standing problem is known as
the Flux conjecture, and we refer the reader to [LMP] for more discussion
and recent results. On the other hand it sounds likely that in our situation
this assumption plays a technical role only and can be removed, but | have
not checked the details (see the footnote in 5.3 below; | am thankful to
D. McDuff for illuminating discussions on this issue).

Constructions of ergodic and strictly ergodic skew products associated
to a loop in a group acting on a topological space have a long history.
Many of them (see [AK, FH, GW, He, N]) are based on a beautiful and quite
counter-intuitive idea to look for such skew products in the closure of ones
with absolutely trivial dynamical behaviotiHere is the precise statement
in our setting.

Consider the se€> (S, G) of all smooth loopsSt — G as a subset of
the spaceC>®(S' x Y, Y), and endow it with the topology induced by the
C°°-topology. Consider the subsRt ¢ S' x C*(S!, G) which is defined
as the closure of the following subset:

{(er, )| h(t) = g(t + &) 1g(t), for someg e C*(S!, G)).

Theorem 1.2.B. The pairs(«a, h) such that the transformatiort, y) —
(t + «, h(t)y) is strictly ergodic form a residual subsetT.

Though in the literature there are plenty of similar statements, those of
them which | found deal either with other groupsor with usual ergodicity.
We outline the proof of 1.2.B in 82 below, and give full details in 83—85.
Note that the loop$ which appear in the definition of the sgt are
limits of contractible loops o0& (just letx tend to zero), and therefore are
contractible. Thus 1.2.B implies 1.2.A.

3 Adifferent approach based on KAM theory was used in [E1, E2], see also 1.7.B below.
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1.3. An obstruction via Hofer's geometry

LetY be aclosed connected symplectic manifold an@lbée the group of all
Hamiltonian diffeomorphism$In 1990 Hofer [H] discovered a remarkable
bi-invariant geometry oiG. The development of this geometry has lead to
a new intuition in dynamical systems (see discussion in [P2, P3]), and our
approach to Question 1.1.A may be considered as a step in this direction.
We refer the reader to [P3] for a survey of Hofer's geometry.

Let us introduce the notion of the (asymptotic) length spectrur® of
which is relevant for our study of loops of Hamiltonian diffeomorphisms
(see [P1]). Every smooth loop : S' — G is generated by the unique
Hamiltonian functionH : S' x Y — R which is normalized as follows: the
integral of H(t, .) overY vanishes for alt. Define the length of the loolp

by .
lengthth) = / max|H(t, y)|dt.
0 yeY

Note thatG can be considered as an infinite-dimensional Lie group whose

Lie algebra coincides with the spaCg°(Y) of smooth functions with zero

mean. Thd.,,-norm on the Lie algebra is invariant under the adjoint action

of G, so it defines a bi-invariant Finsler metric Gn With this language the

definition of the length above is just the usual definition of Finsler length.
Take now an element of the fundamental grousp:(G). Set

|ly1l = inflength(h),

where the infimum is taken over all loops: S' — G representingy.
Finally, defineasymptotic Hofer’s nornof y as

= lim Lok
||V||oo—k_>ook||y Il

(The limit exists since the sequengée/X||} is subadditive).
Using methods of "hard" symplectic topology, one can show that in
some interesting situations this quantity is non-trivial (see [P1]).

Theorem 1.3.A. Lety € 71(G) be a class represented by a smooth strictly
ergodic loop. Then asymptotic Hofer’s nofm||, vanishes.

Proof of Theorem 1.1.B.et Y be the monotone blow up &P? at one
point as in 1.1.B. It follows from 1.2.A that there exists a contractible
strictly ergodic loop. On the other hand, it was shown in [P1] that in this
case asymptotic Hofer's norm of every non-trivial elementrefG) is
strictly positive. Thus there are no non-contractible strictly ergodic loops in
view of Theorem 1.3.A. This completes the proof. O

The proof of 1.3.Ais very simple and we present it immediately in 1.4.

4 In this section we do not impose any additional assumptio¥.on
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1.4. Asymptotic shortening of strictly ergodic Hamiltonian loops

Recall that ifh,(t) and h,(t) are paths of Hamiltonian diffeomorphisms
generated by normalized Hamiltoniaty and H, respectively then the
compositionh,(t) o hy(t) is generated by the normalized Hamiltonian
Ho(t, y) + Hi(t, ho(t)~ty). Leth : St — G be a smooth loop of Ha-
miltonian diffeomorphisms which defines a strictly ergodic skew product
Tt y) = (t + a, h()y). Let y be the corresponding element i1 (G).
Denote byH(t, x) the normalized Hamiltonian function generating the loop
h(t)~1. Sethy(t) = h(t + ke) ! and set

fN(t) = ho(t) 0...0 hN_l(t).

In view of the discussion above the lodg is generated by the normalized
Hamiltonian function

Fa(t y) = H(t, y) + H(t + o, ho(t)"1y) + ...

+H(t + (N — D, hy_a(®) Lo ... o ho(t)Ly).
This expression can be rewritten as follows:

Fu(t y) = SR H o T y).

SinceT is strictly ergodic and the functioRy has zero mean we conclude
that

1 1
5 | maxiFuc yidt— o

when N — oo. But the expression on the left hand side is exactly
% length( fy (t)). Note now that the loog (t) represents the elemeptN.
Since|[yN|| = [ly~N|| we get that>||y"|| tends to zero whelN — oco.
This proves that asymptotic Hofer’'s normpfvanishes. O

1.5. A generalization to sequential systems

We present here a generalization of Theorem 1.3.A which deals with ergodic
properties of so called sequential dynamical systemsXUe¢ a compact
topological measure space, and{lgtt = (T, T», ..., Tj, ...) be a sequence

of measure-preserving homeomorphisms. Such a sequence defines an evo-
lution with discrete time orX. Namely a position of a point € X at the

time momenn e N is T™(x), where here and below we wrilé™ for the
compositionT, o ... o T1. Ergodic properties of such systems were studied

in the literature (see for instance [BB], as well as an extensive discussion
on random ergodic theorems in [Kr]). However, we have not found any re-
ference to the next definition which sounds to us pretty natural. A sequence
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{T;} is calledstrictly ergodicif for every continuous functiond on X with
zero mean the time averages

%Ei’\‘:BlH oT®
converge uniformly to zero. Our convention is tAa® is the identity map.

Let as beforés be the group of Hamiltonian diffeomorphisms of a closed
symplectic manifoldY, Q), andX = S'x Y. Let{w;}, i > 1be anarbitrary
sequence of numbers, and {gt} be an arbitrary sequence of Hamiltonian
diffeomorphisms. Take a smooth lobp S' — G and consider a sequence
{Ti} of skew products of the forri;(t, y) = (t + «;, gih(t)y). Denote by
y € m1(G) the element represented byln this setting one can generalize
Theorem 1.3.A as follows.

If the sequencd; is strictly ergodic then asymptotic Hofer’'s norm pf
vanishes

This can be proved by the following modification of the shortening proce-
dure described in 1.4 above. DenoteHbdt, y) the normalized Hamiltonian
function ofh(t) L.

Let ¢po = id, ¢1, @2, ... be a sequence of transformations fré@rsuch
thatg, ‘¢4 = g foralli > 1. Set

hi() = geh(t + a0 + ... + @)
whereag = 0. Consider a new loop
fu(t) = ho(t) o ... o hn_1 (D).
It is easy to see thaty is generated by the normalized Hamiltonian
Fn =N "HoTO,

and this loop represents the class'. Now exactly the same argument as
in 1.4 completes the proof.

1.6. An application to Hofer's geometry

| do not knowthe precisevalue of||y ||~ in any example where this quantity

is strictly positive (for instance, for the blow up 62 in 1.1 above). The
difficulty is as follows. In all known examples where Hofer’s ngji|| can

be computed precisely there exists a closed lo@pwhich minimizes the
length in its homotopy class (thatasminimal closed geodesidt turns out
however that every non-constant minimal closed geodesic loses minimality
after a suitable number of iterations. In other words the lo@jt) can be
shortened providedl is large enough. The proof of this statement is based
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on a shortening procedure described in the previous section and goes as
follows.

Let H(t, y) be the normalized Hamiltonian &f(t)~1. Assume without
loss of generality thdt(0) = id, and thaH (0, y) does not vanish identically.
Denote byl" the set of all points of where the functionH(0, y)| attains the
maximal value. Sinc& — I" is a non-empty open subset, and the gr@up
acts transitively orY, one can choose a sequeige= id, ¢1, ..., dn_1 € G
such that

FNgu(D)N...Npn_1(I) = @.

Consider the loogfn (t) = h() L ogih(t) 2¢; o ..o pn_1h() Lpy ;. We
claim that it is shorter than the lodi Nt). Indeed, note that its Hamiltonian
Fn at timet = 0 can be written as follows:

Fn 0, y) = ZTH, ¢7ty).

Seta(t) = maxey |Fn(t, y)| andb(t) = N maxcy |H(t, y)|. Our choice of
the sequencéy;} implies thata(0) < b(0). Sincea(t) < b(t) for all t, we
get that fol a(ttydt < fol b(t)dt, and this proves the claim. We conclude that
if a non-zero clasy € w1(G) is represented by a minimal geodesic then
[17]]so is strictly less than|y||.

Let us complete this section with few remarks on curve shortening in
Hofer's geometry. The first shortening procedure is due to Sikorav [Si].
Further progress was made by Ustilovsky [U], Lalonde - McDuff [LM], and
in a joint paper with Bialy [BP]. Our procedures in 1.4 and 1.5 are closely
related to these developments. In particular, in [BP] we asked a question
about the role of Birkhoff’'s ergodic sums in Hofer's geometry. The results
above can be considered as a sort of answer.

1.7. Remarks and open problems

1.7.A. Further obstructions? Do there exist further restrictions on the ho-
motopy classes of smooth strictly ergodic loops in the group of Hamiltonian
diffeomorphisms? | do not know the answer even in the simplest case when
Y is the 2-sphere endowed with an area form. In this case the group of
Hamiltonian diffeomorphisms has the homotopy typ&&f3), and thus its
fundamental group equats. It would be interesting to understand whether

in this situation there exists a smooth strictly ergodic loop in the non-trivial
homotopy class. Note that the obstruction provided by Theorem 1.3.A can-
not be applied since the homotopy class in question has finite order.

1.7.B. Continuous vs. smoothQuestion 1.1.A still makes sense if one con-
siders continuous loops of Hamiltonian diffeomorphisms instead of smooth
ones. In this situation the existence result 1.2.A above can be refined as
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follows. One can show existence of contractible continuous strictly ergo-
dic loopswith every givenirrational rotation numbes. Note that in the
smooth case the methods used below lead to th@senly which admit

a very fast approximation by ration&l€n the other hand, our proof of the
obstruction 1.3.A above does not go through when a strictly ergodic loop is
continuous, since it crucially uses existence of the Hamiltonian function.

1.7.C. The volume-preserving casd.et Y be a closed manifold endowed
with a volume form and leG be the identity component of the group of all
volume-preserving diffeomorphisms. Exactly as in the Hamiltonian case,
one can address the question about homotopy classes represented by strictly
ergodic loops. The formulation and the proof of the existence result 1.2.A
remain valid without any changes in the volume-preserving category. Ho-
wever strictly ergodic loops may well be non-contractible. We present here
an example of a non-contractible strictly ergodic loop in the group of area
preserving diffeomorphisms of the 2-torus. Note that in dimension 2 every
area preserving diffeomorphism is symplectic but not necessarily Hamilto-
nian. This leads to a suggestion that the phenomenon described in 1.3.A is
a purely Hamiltonian one.

Take irrational numbera and 8 such that 1« and 8 are independent
overQ. Consider the loop of transformations of the 2-tolng® : T? — T2
which take(yy, y2) € T?to (y; +t, y» + B). Clearly these transformations
preserve the area foruhy; A dy, on T2, and the loop is not contractible.
The standard harmonic analysis argument shows that the corresponding
skew producfTy, , : T® — T3 is ergodic. It follows from a theorem due to
Furstenberg [F2, p. 66] that in this cage, is strictly ergodic.

Moreover, in the case of volume-preserving diffeomorphisms of the
circle Y = S' Furstenberg [F1] observed an opposite phenomemam-
contractibility implies strict ergodicity” In this situatioreverynon-contract-
ible looph : St — S' ¢ G is strictly ergodic.

2. Constructing strictly ergodic skew products

Let © be the canonical measure oh We write H for the space of all
continuous functions olY with zero mean with respect t@. This space
is endowed with a normiH|| = max.y |H(y)|. Recall that our task is to
prove Theorem 1.2.B on the existence of smooth strictly ergodic loops.

5 This feature of the classical approach (see 82 below) is well known to experts. It sounds
likely however that using methods developed by Eliasson [E1, E2] one can construct strictly
ergodic Hamiltonian skew products 6hx S? whose rotation numbers satisfy a diophantine
condition.
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2.1. The classical approach

The proof of 1.2.B is based on the following chain of statements.

Property 2.1.A.For every continuous functioR : S' x Y — R with zero
mean with respect tdtdu, for everys > 0 and for every rational number
there exists a loog € C*(S', G) such that the following two conditions
hold:

() | f5 F(t g~ty)dt| < eforally e Y;

(i) gt 4+r) = g(t) for all t.

Averaging property 2.1.BFor everyH € H ande > 0 there exist transfor-
mationsg;, ..., gn € G such that

1
N|H(g;1y) + ..+ HNty) <&,
forally e.

Note that 2.1.B is a natural discrete version of 2.1.A(i). However in
contrast with 2.1.A we consider here functioHsof the variabley only,
and do not care about the commutativity condition 2.1.A(ii).

Property 2.1.A implies the statement of Theorem 1.2.B (see [FH]). Ave-
raging property 2.1.B implies property 2.1.A (see [N] where an analogous
implication is proved in the context of ergodicity; in our situation the ar-
gument goes through without any essential modifications). For the reader’s
convenience, we present details in the Appendix in 85.

At this point we face a difficulty. The analogue of 2.1.B for thenorm
on H, which is used in [N], was proved earlier by M. Herman [He] with
a very elegant use of the Hahn-Banach theorem. | was unable to adjust
Herman’'s short argument to the,,-case, and thus was forced to take
a different route. The key idea is to derive the averaging property from
a certain covering property which we are going to describe now.

Let us introduce the following useful object. Denote Sythe set of
linear operatorg{ — H which consists of all averaging operators of the
form

whereN € N andg;, ..., gy € G. Note thatS is closed under composition
of operators. With this notation 2.1.B states that forthle # there exists

S € S such that||S(H)|| is arbitrarily small. An important (and obvious)
feature of transformations froid is that they do not increase the norm of
functions:||S(H)|| < |[H]].
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2.2. A covering property

Covering property 2.2.AThere exist constants; > 0,c, > 1 such that
for every non-empty open subsét C Y one can find transformations
01, ..., On € G sothatthe setg; (A), ..., gn(A) form a covering ofY which
satisfies the following inequality:

w(Y) )—1’

1 |
Z3N 3P (y) > (cl tor s

N
forally e Y.

Here and belowy B stands for the characteristic function of a sutBet
Theorem 2.2.B. The covering property implies the averaging property.

Note that averaging property 2.1.B applied to the normalized characte-
ristic function of an open subsétimplies up tos covering property 2.2.A
with the optimal constants, = 1 andc,; = 0. Hence a surprising feature of
Theorem 2.2.B is that starting from an arbitrary choice of the constants we
get the optimal constants. Let us mention also that our covering property is
motivated by the Glasner-Weiss covering property [GW].

The rest of the paper is organized as follows. Theorem 2.2.B admits
arather short proof which we present in Sect. 3. Thus it remains to verify that
the group of Hamiltonian diffeomorphisms enjoys covering property 2.2.A.
Here is the idea of our proof. “Represent” the symplectic maniflds
a cubical polyhedron consisting of small symplectically standard pairwise
equal closed cubes. There exists a universal constank which depends
only onY (but not on the size of the cubes!) such tiatan be decomposed
as the union of subpolyhedhs, ..., Yx where eacly; consists of cubes with
pairwise disjoint closureAssume without loss of generality that the get
givenin 2.2.Ais a subpolyhedron ¥f andu(ANY1) > w(A)/k. SetA; =
ANY,, and assume that this set consistenafubes. Assume for simplicity
that eachy; consists oM cubes withM > m. Clearly, every subpolyhedron
of Y; which consists ofn cubes is Hamiltonian diffeomorphic t&, (cf.

[HZ, p. 171]). Denote by the number of all such subpolyhedra¥n thus
their total number idN = kr. Note that every point of; belongs to at least
rm/M subpolyhedra from our collection. Thus we can choliselements
of G such that for every point of the left hand side of the inequality 2.2.A
is at least

rm/Mkr = m/Mk > u(A)/ku(Y).

Sincek is a universal constant, we get 2.2.A. The details of this elementary
argument are quite cumbersome. They are worked out in Sect. 4 with the
use of Katok’s results [K]. This will complete the proof of Theorem 1.2.B.
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3. Covering implies averaging

In this section we prove Theorem 2.2.B.

3.1. Arecursive procedure

Suppose that covering property 2.2.A holds. We have to show that for all
H € H there existsS € S such that|S(H)|| is arbitrarily small.

We claim that it suffices to show that there exi§is € S such that
maxS, (H) is arbitrarily small. Indeed, note that the same result applied
to the function—S; (H) would show that there existS. € S such that
min S_(S, (H)) is arbitrarily small. But obviously operators frofdo not
increasemaximal values of functions, thus m&x(S, (H)) < maxS, (H).
SotakingS= S_o S, we get that|S(H)|| is arbitrarily small. The claim
follows.

Assume without loss of generality thAH|| < 1 andu(Y) = 1. We
construct the operat@, with the help of the following recursive procedure.
We start with the functiotH© = H, and defineH "V as the image o
under some specially chosen operdfoe S. Namely consider a subset

1 .
A ={HD < EmaxH(')} CY.

Takegqs, ..., gy from the definition of the covering property 2.2.A applied
to the setA, and set§ = S9N,

Lemma 3.1.A. The following inequality holds:

i i maxH®
maxH Y < maxH" (1 —

),

wherec = 2(3¢, + ¢1).

The theorem easily follows from the lemma. We claim that the operator
S, = So..0 5 does the job provided is large enough. Indeed, set
m; = maxH®. Notice thaimy < 1 due to our assumption, and the sequence
{m;} is non-increasing since operators fra$hdo not increase maximal
values of functions. Clearly the sequerjog} converges to a non-negative
numbem. For the proof of the claim (and hence of the theorem) it suffices to
show thatm = 0. Assume on the contrary that > 0. Lemma 3.1.A implies
thatm < m(1 — %), which is obviously impossible. This contradiction
proves the theorem. O
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3.2. Proof of 3.1.A

For simplicity of notations we writéd for H®, H’ for HI*D, and A for
Ai. Setm = maxH andm’ = maxH’. The proof is divided into 2 parts.
1) Ouir first task is to find a lower bound far(A). SinceH has zero

mean we have
f Hdu + f Hdu = 0.
A Y—-A

The first summand is not less than(A) since ||H|| < 1 due to our
assumption. The second summand is not Iess%haa(rl— w(A)) inview of

the definition of A and our convention that(Y) = 1. Thus 0> —u(A) +

(1 - n(A)m/2 and hence

w(A) > m/(m+2).

2) Return now to the definition dfl’. Take a pointy € Y and denote by
N’ the cardinality of the s€ftj| y € g;j(A)}. Clearly,

’ 1 ’ ’ _ _l/
H'(y) < N((N - N)YmM+ N'm/2) = m(1 2N).

Since this holds for aly, the maximurmm' of H’ satisfies the same inequality.
On the other hand the covering property 2.2.A implies that

N'/N > (c1 + ¢/ n(A) .
Substituting the inequality for(A) obtained in part 1, we get that
N'/N > m/(2c; + (cp + c2)m) > m/cs,

wherecz = 3¢, + ¢;. In the last inequality we used that < 1. Finally,
substituting this estimate fod/N’ into the estimate fom’ obtained above,
we get tham’ < m(1 — m/c). This completes the proof. O

4. Proving the covering property
4.1. Statement of the result

In this section we prove the following result. As before, &be the group
of Hamiltonian diffeomorphisms of a closed symplectic manifofd<).

Theorem 4.1.A. The groupG enjoys covering property 2.2.A.

As it was explained in 82, this result completes the proof of Theo-
rem1.2.B.
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4.2. Alocal version

First of all we prove an analogue of 4.1.A for domains of the even dimen-
sional linear spac®". We assume thaR" is endowed with the standard
symplectic form. LetX ¢ R" be a closed bounded connected domain with
piece-wise smooth boundary. llétbe an open domain with compact closure
which containsX, and write Gy for the group of all Hamiltonian diffeo-
morphisms generated by Hamiltonian functions supportédl. iWe denote

by 1 the canonical measure &1'. Also, given a familyd = {Ay, ..., A}

of subsets obJ, we writev, for the "counting functionzN | x A

Proposition 4.2.A. There exist universal constants; = Cy(n) > 0,
C, > 1suchthat for every non-empty open sul#set the interior ofX there
exist transformationg, ..., gu € Gy such thath = {g1(A), ..., gu (A} is
a covering ofX, and

M(X))_l,

1
Va0 = (cl+c2M(A)

for all x € X.
The proof is based on two auxiliary statements.

Lemma 4.2.B. For everya € (0; u(X)] there exists a family = {Aq, ...,
Ay} of open subsets &f with compact closure ity such thatu(Aj) = a
andv, (X)/N > a/2u(X), forall x € X.

Lemma 4.2.C. There exists a constaft € N which depends only on the
dimension ofX with the following property. LetA, B ¢ U be two open
subsets with compact closure lihsuch thatu(A) > 2Cu(B). Then there
existC transformationgy, ..., gc € Gy such thatB c Uiczlgi(A).

Let us derive Proposition 4.2.A from these lemmas.

Proof of 4.2.ATake any open subsétas in 4.2.A and apply Lemma 4.2.B
with a = u(A). We get a familyo = {Aq, ..., Ay} of subsets. Fix > 0.
We claim that there existy, ..., fy € Gy such thatu(fi(A)AA) < ¢/N
foralli =1, ..., N. HereA stands for the symmetric difference of subsets.
The claim follows immediately from Katok’s Basic Lemma fiK[Consider

a family of subsets = {f;(A), ..., fn(A)}, and seB = Ui"‘zl(fi(A)AAi).
Obviously,u(B) < e. Assume now that is so small that Lemma 4.2.C can

6 For the reader's convenience we present the formulation of the lemma. Let
{Dj}, {D!},i =1,...,N be two collections of compact subsets of a connected symple-
ctic manhlold. Assume that the sets in each collection are pair-wise disjoint, and the volume
of D; equals the volume oDi’ for all i. Then for everye > 0O there exists a Hamiltonian

diffeomorphismg such that Volumép(Dj) A Di/) < eforalli.
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be applied toA and a small open neighbourhood Bf Using this lemma,
we getC transformationg;, ..., gc € Gy such thatB c Ug;(A).

SetN' = miny.x v, (X). Define a new familyy which consists of all
subsets of the forng;(A),i = 1, ..., C takenN’ times, and in addition of
all subsets from. In other words,

0= {f1(A), ..., INn(A); 91(A), ..., Ic(A), ..., B (A), ..., gc(A)}.

The numbeM of elements ir® equals toN + CN'. On the other hand, we
claim thatvy(x) > N’ for all x € X. Indeed, fox € B this follows from the
definition of transformationg;. Forx € X — B we note thab, (X) = v, (X)
and the claim follows from the definition df’.

Recall now from Lemma 4.2.B th&'/N > w(A)/2u(X). Thus

1 u(X)\~1
— N'/(N N’ 2——=) .
v = N'/(N+C )z(c+ M(A))
Therefore we proved 4.2.A witB; = C andC, = 2. O

It remains to prove the lemmas. Both are of combinatorial nature, and
we need some suitable notions. Bycubical partition of sizali we mean
a decomposition oR" into equal closed cubes of volume The cubes
may intersect along the boundaries only, and their centers form a lattice.
A cubical polyhedroris the union of some cubes of a cubical partition.

Proof of 4.2.B.Take a sulfficiently large positive integ&rand consider

a cubical partition of siza/k. We can assume that there exists a cubical po-
lyhedronX’, X c X' c U such thatu(X") < 1.5u(X). Take all possible
sub-polyhedra o’ consisting of exacthk — 1 cubes. LetA,, ..., Ay be
their open neighbourhoods of voluraavhich have compact closure .
Denote this family byr. Clearly for allx € X

vo(X)/N > (k= Da/ku(X') > a/2u(X).
This proves the lemma. O

For the proof of the second lemma we need the following facts from
elementary geometry &®". Given a closed cub® c R" and a positive
numberc denote bycQ the cube with the same center which is homothetic
to Q with the coefficientc. Let Qq, Q, be two cubes which are obtained
from each other by a translation. Note first thatQf N Qo # @ then
Q1 C Interior(4Q,). Define anice subpartitionof a cubical partition as
a family of pairwise disjoint cubes from the partition which satisfies the
following property. Given any two cubel; and Q, from the family, their
homothetic images X8, and 18), are also disjoint. Note finally that there
exists a constar® € N which depends only on such that every cubical
partition of R" can be decomposed innice subpartitions.
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Proof of 4.2.C.

1) Let U’ ¢ U be an open connected domain with compact closure
in U which contains bothA and B. Fix a cubical partitionP of size u.
We assume that is so small that for each cul®@ of the partition which
intersectd)’ holds 18 c U. Let P = P, U ... U Pc be its decomposition
into nice subpartitions. Denote By the union of all cubes fron®, which
are contained i, and byB; the union of all cubes fron®, which intersect
B. Clearly takingu small enough we can achieve thaiB;) < 1.1u(B) for
alli,andu(A) > u(A)/1.1C for some . Assume without loss of generality
that the last inequality holds for= 1. Sinceu(A) > 2Cu(B) we conclude
that the number of cubes #, is greater than the number of cubes in each of
Bi. Fix somei € {1, ..., C}. Clearly, in order to prove the lemma it suffices
to show that ifu is small enough there exists a transformatipre G such
thatB; C gi(A1).

2) Denote byq = {Qq, ..., Qx} the set of all cubes i\, by =
{QL. ..., Qr,} the set of all cubes iB;, and byp the unionq U q'. We write
4q for {4Qq, ..., 4Qy}, and define analogouslyg4and 4p. Let Z be the
subset otJ obtained by the union of all cubes fronpANe claim that each
connected component & is either one cube, or the union of two cubes.
Assume on the contrary that there exist three cubes frprauth that two
of them intersect the third one. By definition of a nice subpartion, either
these two belong togtand the third belongs tog4 or vice versa the two
belong to 4 and the third to 4. Without loss of generality we assume that
4Q, and 4, intersect 4. But then 1&); and 18, contain 4, and
that contradicts the definition of a nice subpartition. The claim follows.

3) In view of step 2, we may assume without loss of generality that for
somer <m

4Q.N4AQY # 0, ... 4Q, N4Q, # 0,

and all other pairs of cubes fronpdare disjoint. Recall also that < k. We
claim that for everyj € {1, ..., m} there exists a transformatidn € Gy
such thah;(Q;) = Q/J- andh; equals the identity on af;, Q; with | # j.
Note that this claim implies the lemma. Indeedget h;o... o h,. Clearly
g (Qj) = Qj, and hence we constructed a transformation as required in
step 1.

4) It remains to prove the claim of step 3. Take {1, ..., m}.

First assume that < r. Consider a seK = 16Q; N 16Q/j. Clearly,
K is a convex polyhedron whose interior contains b@thand Q. There
exists a path of transformations froBy supported inK whose time one
map takexQ; to Q/j. Take this time one map dg. Any other cube from
p is disjoint from K by definition of a nice subpartition. Thug has the
required properties.
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Assume now thaj > r. Consider the seZ; = Z — (4Q; U 4Q’j). It
follows from step 2 thal’ — Z; is a connected set. Join the centers of cubes
Qj and Q] by a smooth pathy C U’ — Z;. Lett be a parameter along
which runs from 0 to 1. Denote bl¢; the cube centered ip(t) which is
obtained fromQ; by a parallel translation. Since the centeikgfis disjoint
from all cubes Q), 4Q; with | # j thenK; is disjoint from all suchQ, and
Q. In particular, there exists a small neighbourhood gayf the union of
all cubesK; which is disjoint from all cube®);, Q with | # j. Itis easy
to see that there exists a path of transformations ftagmsupported inv
whose time one map take3; to Q;. Take this time one map dg. This
completes the proof. O

4.3. Proof of 4.1.A

Denote by the canonical measure §nConsider atriangulatiol, ..., X,

of Y such that every simpleX; is contained in a (Darboux) coordinate chart
U;. Assume moreover that aK; have equal volumec(Y)/r. Let AC Y

be an open subset. A straightforward application of Katok’s Basic Lemma
([K], see the footnote in 4.2 above) shows that there exists a transformation
f € G with the following property:

p(f(A) N X)) > n(A)/2r,

foralli =1, ...,r.

Obviously it suffices to check the covering property for the Aet=
f(A). Let A; be an open set which lies in the interior Af N X; and has
volumew(A)/2r. Apply the local statement 4.2.A to the triglg;, Xi, A).
For everyi, we get a sequence of transformatiags j = 1, ..., N; such
that for allx € X; holds

1 N oga m(Xj)\—1
DI gij (A) C C = )\,,
Ni J:lX ! (X)2< 1+ ZM(A|)>
where ) -1
—_— M -
r=(Ci+ 2c2M(A,)) .

Repeating the sequences we can achieve that each of them has the same
number of terms, in other words that &li’s are equal to the same number
N. We claim that the family of transformations

{gij}, i=1..r; j =1..,N
does the job for the s&t’ with universal constants; = rC; andc, = 2rC,.
Indeed, takey € Y. Without loss of generality assume that X;. Thus
w(Y) )*1'
w(A)

1 - 1 . AN
WEi,ng”(A)(Y) > szxglj(Al)(y) > m = <I‘C1 + 2rC,
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This completes the proof. O

5. APPENDIX: more details on the classical approach

In this appendix we present details of the classical approach to constructing
strictly ergodic Hamiltonian skew products (see Sect. 2.1 of the main text).

5.1. Averaging property 2.1.B implies 2.1.A (cf. [N])

We work in the notations of Sect. 2.1. The proof is divided into several steps.
1) We claim that for every finite sequenkk, ..., Hy of functions from

and for every > 0Othere exists an operatBre S such that|S(H;)|| < & for

all i. Indeed, using averaging property 2.1.B define recursively a sequence

of operatorsS € S such that the following inequalities hold:

ISI(HDI < &, [1S(S(HD)I < &, oy IS (S1(HW)- DI < e

SetS= S o...0 S. The operatoiSis as required in view of the fact that
operators frons do not increase the norm of functions.

As animmediate consequence of the claim we get that for every sequence
Hi, ..., He and everye > 0 there exists a smooth lodp: S' — G such
that

1
/ Hi(h(t)ly)dt‘ <e,
0

forally e .

2) Note that in order to verify condition 2.1.A(i) we can assume that for
each fixed the functionF(t, .) belongs to the spac®. Indeed, given any
F one can modify it as follows:

Fty) = F(t.y) — fY Ft, 2du(2).

Clearly our assumption holds fét'. MoreoverF and F’ satisfy or do not
satisfy the conditions in question simultaneously.

3) Let F be a function which satisfies the assumption of step 2. We claim
that for everye > 0 there exists a smooth lodpsuch that for alk € S' the
following inequality holds:

1
f F(s. h(t)ly)dt‘ <¢e/3.
0
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Indeed, choose a large natural numlNesuch thatF(t’, y)—F(”, y)| < ¢/9
for all y provided|t’ —t”| < 1/N. Setp, = i/N wherei =0, ..., N — 1.
Using the last statement of step 1 choose a smoothhgpsuch that

1
‘/ F(pi, h(t) ty)dt| < /9.
0
A straightforward estimate shows thats as required.
4) Take now an arbitrary integem > N. A more specific choice of
M will be made in the next step. Meanwhile we dengt® = h(Mt) and
claim that

< €.

1
| = ‘ / F(t, gty
0

Here is the proof. Set; = i/M wherei = 0, ..., M. An obvious argument
shows that

| <e/34+2MY30,
where -
3= f F(g. h(Mb~y)dt.
i

Introducing a new variable = Mt — i we get that

1 [t »
b= / F(g. h(o ly)ds
0

and thus our choice di implies that|J| < ¢/(3M) for all i. The claim
follows immediately.

5) Let us sum up the results of the previous steps. We constructed a loop
g(t) = h(Mt) which satisfies 2.1.A(i) above. Moreover the choice of the
sufficiently large integeM is in our hands. We are going to use this in order
to guarantee condition 2.1.A(ii). Letbe a rational number. Takingl as
a large multiple of the denominator ofve get thag(t + r) = g(t).

This completes the proof. O

5.2. Property 2.1.A implies Theorem 1.2.B

The proof of this statement occupies the rest of the appendix. We follow
very closely the exposition in [FH]. Let us fix some notations. We work on
the manifoldX = S' x Y. Denote byD the group of all skew products
(t,y) = (t+a, h(t)y) wherea € Standh : St — G is a smooth loop. Let
Do be its subgroup consisting of maps of the foftny) — (t, h(t)y). We
write §, for the shift(t, y) — (t + «, y).

Consider the set of all mappings of the fogm' o S, o ¢ whereg € Dg
anda e S'. Its closure inD can be identified in an obvious way with the set
‘R introduced in 1.2, and in this appendix we use for it the same not&tion
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5.3. Strict ergodicity
Consider a collectio of all subsets ofR of the form
. 1 _noa j
C(F, &) ={T e R ,LQL ||NEJ-=0 FoT!|| < ¢},

where F runs over all continuous functions with zero mean ¥nand
e > 0. It is easy to see that the intersection of all sets ftbwonsists of
strictly ergodic diffeomorphisms. Thus for the existence of strictly ergodic
skew products it suffices to show that the intersection of all sets rasn
non-empty. Considea countablesubcollectionC’ of C which consists of
all sets of the fornC(Fj, ), where{F;} is a countable dense subset of the
space of continuous functions with zero meanqrand the numbek runs
over the natural numbers. Obviously every set fr@montains a set from
C’, thus the intersection of all sets fragnis equal to the intersection of all
sets fromC’.

Now the strategy is as follows. The collectighconsists of subsets
which are open ifR. Since the groufs is closed in Diff(Y), the setfR (with
the topology induced from DiffX)) has the Baire propertyTherefore it
suffices to show that the subsets frémare dense irR.

Lemma 5.3.A. Let C be a set fronC andr be a rational number. There
exists¢ € Do which commutes witls and such that for every irrational
numbera the diffeomorphisnp— o S, o ¢ belongs tcC.

5.4. The final argument

Assume the Lemma. We claim that for every ratianahd evenC < C the

shift § belongs to the closure &@. Indeed, takep from the Lemma and
choose a sequende;} of irrational numbers which convergesitoThen

{p~ 1o S, o} is a sequence of elements@fvhich converges t&, and the
claim follows. Since rational numbers are dense in the circle, we conclude
that every (rational or irrational) shift is in the closure@fNote that for
everyyr € Do andC e C the set

{(YofoytfecC

is again contained id. Thus every element of the forgh—! o S, o ¥ with

¥ € Dg belongs to the closure &. Since by definition these elements are
dense inR, we get thatC is dense inR. As it was explained in 5.3 this
completes the proof of existence of smooth strictly ergodic skew products.

7 Thisis exactly the place where we use t@ats closed in Diff(Y). It seems, however,
that one can prove the theorem without this assumption. For that purpose one should work
with a different cleverly chosen topology @
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5.5. Proof of 5.3.A

Fix a setC = C(F, ¢) from C and a rational number. Given a loop
g: S' — G consider the integral

1
I(y) = /0 Ft, g Ly)dt

Using Property 2.1.A we can choogén such a way thag(t + r) = g(t)
for all t, and|1(y)| < ¢/2 for all y. Define an element € Dg by ¢(t, y) =
(t, g(v)y). It commutes withS . Take an irrationad. Write the ergodic sum

1 .
T Fo@ oS 09

asFy o ¢, where

1 )
Fy = sz“;ol(lz opHo9.

Since the shift of the circlé — t + « is strictly ergodic, and the family

{F(t, g(t)~ty)}, y € Y of functionsS' — R is compact, the ergodic sum
above converges uniformly 1@y) whenN goes to infinity. In particular for

largeN holds||Fy o ¢]| = ||Fn|| < &, and we conclude thatis as needed.

This completes the proof. O
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