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Abstract. Let G be the group of Hamiltonian diffeomorphisms of a closed symplectic
manifoldY. A loop h : S1→ G is called strictly ergodic if for some irrational numberα the
associated skew product mapT : S1 × Y→ S1 × Y defined byT(t, y) = (t + α,h(t)y) is
strictly ergodic. In the present paper we address the following question. Which elements of
the fundamental group ofG can be represented by strictly ergodic loops? We prove existence
of contractible strictly ergodic loops for a wide class of symplectic manifolds (for instance
for simply connected ones). Further, we find a restriction on the homotopy classes of smooth
strictly ergodic loops in the framework of Hofer’s bi-invariant geometry onG. Namely, we
prove that their asymptotic Hofer’s norm must vanish. This result provides a link between
ergodic theory and symplectic topology.

1. Introduction and results

1.1. Hamiltonian loops as dynamical objects

Let (Y,�) be a closed symplectic manifold, and letG be its group of
Hamiltonian diffeomorphisms.1 Given an irrational numberα and a smooth
looph : S1→ G, one can definea skew product mapTh,α : S1×Y→ S1×Y
by Th,α(t, y) = (t + α,h(t)y). The purpose of the present paper is to relate
geometry and topology of Hamiltonian loops with dynamics of associated
skew products.

The definition above is a particular case of a much more general notion
of a skew product (see [CFS, p. 231]) which has been intensively studied
during several decades. There are at least two important reasons for the
interest to this notion. First, it serves as a foundation for mathematical
models of random dynamics (see [Ki] for a survey). Second, it provides
non-trivial examples of systems with interesting dynamical properties (see
discussion in 1.2 below).
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1 Recall thatG consists of all symplectomorphisms of(Y,�) which can be included into
a time-dependent Hamiltonian flow onY.
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The dynamical property we consider is the strict ergodicity. Recall that
a homeomorphismT of a compact topological spaceX is calledstrictly
ergodic if it has precisely one invariant Borel probability measure, sayµ,
and moreover this measure is positive on non-empty open subsets. Strictly
ergodic homeomorphisms are ergodic, and have a number of additional
remarkable features. We mention one of them which plays a crucial role
below. Namely, given such aT and an arbitrary continuous functionF on X,
the time averages1N6

N−1
i=0 F(Ti x) converge uniformly to the space average∫

X Fdµ, and in particular convergefor all x ∈ X. Note that for general er-
godic transformations such a convergence takes place only foralmost allx.
The contrast between "all" and "almost all" becomes especially transparent
when one notices that there are pure topological obstructions to the strict
ergodicity. For instance, the 2-sphere admits no strictly ergodic homeomor-
phisms. Indeed the Lefschetz theorem implies that every homeomorphism
of S2 has either a fixed point, or a periodic orbit of period 2 and we see that
the invariant measure which is concentrated on such an orbit contradicts the
definition of strict ergodicity. In 1.3 below we describe a more sophisticated
obstruction to the strict ergodicity which comes from symplectic topology.

We say that a looph : S1 → G is strictly ergodic if for some α
the corresponding skew product mapTh,α is strictly ergodic.2 With this
language our central question can be formulated as follows.

Question 1.1.A. Which homotopy classesS1→ G can be represented by
strictly ergodic loops?

Here is an example where one gets a complete answer to this question.
Let Y be the blow up of the complex projective planeCP2 at one point.
Choose a Kähler symplectic structure� on Y which integrates to 1 over
a general line and to13 over the exceptional divisor. The periods of the
symplectic form are chosen in such a way that its cohomology class is
a multiple of the first Chern class ofY. One can easily see that(Y,�)
admits an effective Hamiltonian action of the unitary groupU(2), in other
words there exists a monomorphismi : U(2)→ G. The fundamental group
of U(2) equalsZ. It was proved recently by Abreu and McDuff [AM] that
the inclusionπ1(U(2))→ π1(G) is an isomorphism, and thusπ1(G) = Z.
As far as we know this is the simplest example of a symplectic manifold
with π1(G) = Z.

Theorem 1.1.B. In this situation, the trivial class0 ∈ Z is the only one
which can be represented by a strictly ergodic loop.

2 Note that eachTh,α preserves the canonical measure onS1×Y induced by the symplectic
form. Thus in our setting the strict ergodicity means that this measure is the unique (up to
a factor) invariant measure.
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The proof (see 1.3 below) is based on two general results on existence
and non-existence of strictly ergodic loops.

1.2. An existence result

Assume in addition that the groupG of all Hamiltonian diffeomorphisms
of a closed symplectic manifold(Y,�) is C∞-closed in Diff(Y).

Theorem 1.2.A. Under this assumption there exists a contractible smooth
strictly ergodic Hamiltonian loop.

Remark.The assumption above holds for a wide class of symplectic mani-
folds, for instance whenH1(Y,R) = 0, or when the cohomology class of
the symplectic form is rational. (And thus it holds for the blow up ofCP2

considered in 1.1 above). However it is still unclear whether it is valid for
all closed symplectic manifolds. This long standing problem is known as
the Flux conjecture, and we refer the reader to [LMP] for more discussion
and recent results. On the other hand it sounds likely that in our situation
this assumption plays a technical role only and can be removed, but I have
not checked the details (see the footnote in 5.3 below; I am thankful to
D. McDuff for illuminating discussions on this issue).

Constructions of ergodic and strictly ergodic skew products associated
to a loop in a group acting on a topological space have a long history.
Many of them (see [AK, FH, GW, He, N]) are based on a beautiful and quite
counter-intuitive idea to look for such skew products in the closure of ones
with absolutely trivial dynamical behaviour.3 Here is the precise statement
in our setting.

Consider the setC∞(S1,G) of all smooth loopsS1→ G as a subset of
the spaceC∞(S1 × Y,Y), and endow it with the topology induced by the
C∞-topology. Consider the subsetR ⊂ S1× C∞(S1,G) which is defined
as the closure of the following subset:

{(α,h)| h(t) = g(t + α)−1g(t), for someg ∈ C∞(S1,G)}.
Theorem 1.2.B. The pairs(α,h) such that the transformation(t, y) →
(t + α,h(t)y) is strictly ergodic form a residual subset inR.

Though in the literature there are plenty of similar statements, those of
them which I found deal either with other groupsG, or with usual ergodicity.
We outline the proof of 1.2.B in §2 below, and give full details in §3–§5.

Note that the loopsh which appear in the definition of the setR are
limits of contractible loops onG (just letα tend to zero), and therefore are
contractible. Thus 1.2.B implies 1.2.A.

3 A different approach based on KAM theory was used in [E1, E2], see also 1.7.B below.
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1.3. An obstruction via Hofer’s geometry

LetY be a closed connected symplectic manifold and letG be the group of all
Hamiltonian diffeomorphisms.4 In 1990 Hofer [H] discovered a remarkable
bi-invariant geometry onG. The development of this geometry has lead to
a new intuition in dynamical systems (see discussion in [P2, P3]), and our
approach to Question 1.1.A may be considered as a step in this direction.
We refer the reader to [P3] for a survey of Hofer’s geometry.

Let us introduce the notion of the (asymptotic) length spectrum ofG
which is relevant for our study of loops of Hamiltonian diffeomorphisms
(see [P1]). Every smooth looph : S1 → G is generated by the unique
Hamiltonian functionH : S1×Y→ R which is normalized as follows: the
integral ofH(t, .) overY vanishes for allt. Define the length of the looph
by

length(h) =
∫ 1

0
max
y∈Y
|H(t, y)|dt.

Note thatG can be considered as an infinite-dimensional Lie group whose
Lie algebra coincides with the spaceC∞0 (Y) of smooth functions with zero
mean. TheL∞-norm on the Lie algebra is invariant under the adjoint action
of G, so it defines a bi-invariant Finsler metric onG. With this language the
definition of the length above is just the usual definition of Finsler length.

Take now an elementγ of the fundamental groupπ1(G). Set

||γ || = inf length(h),

where the infimum is taken over all loopsh : S1 → G representingγ .
Finally, defineasymptotic Hofer’s normof γ as

||γ ||∞ = lim
k→∞

1

k
||γ k||.

(The limit exists since the sequence{||γ k||} is subadditive).
Using methods of "hard" symplectic topology, one can show that in

some interesting situations this quantity is non-trivial (see [P1]).

Theorem 1.3.A. Letγ ∈ π1(G) be a class represented by a smooth strictly
ergodic loop. Then asymptotic Hofer’s norm||γ ||∞ vanishes.

Proof of Theorem 1.1.B.Let Y be the monotone blow up ofCP2 at one
point as in 1.1.B. It follows from 1.2.A that there exists a contractible
strictly ergodic loop. On the other hand, it was shown in [P1] that in this
case asymptotic Hofer’s norm of every non-trivial element ofπ1(G) is
strictly positive. Thus there are no non-contractible strictly ergodic loops in
view of Theorem 1.3.A. This completes the proof. ut

The proof of 1.3.A is very simple and we present it immediately in 1.4.

4 In this section we do not impose any additional assumption onY.
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1.4. Asymptotic shortening of strictly ergodic Hamiltonian loops

Recall that ifh1(t) and h2(t) are paths of Hamiltonian diffeomorphisms
generated by normalized HamiltoniansH1 and H2 respectively then the
composition h2(t) ◦ h1(t) is generated by the normalized Hamiltonian
H2(t, y) + H1(t,h2(t)−1y). Let h : S1 → G be a smooth loop of Ha-
miltonian diffeomorphisms which defines a strictly ergodic skew product
T(t, y) = (t + α,h(t)y). Let γ be the corresponding element inπ1(G).
Denote byH(t, x) the normalized Hamiltonian function generating the loop
h(t)−1. Sethk(t) = h(t + kα)−1 and set

fN(t) = h0(t) ◦ ... ◦ hN−1(t).

In view of the discussion above the loopfN is generated by the normalized
Hamiltonian function

FN(t, y) = H(t, y)+ H(t + α,h0(t)
−1y)+ ...

+H(t + (N − 1)α,hN−2(t)
−1 ◦ ... ◦ h0(t)

−1y).

This expression can be rewritten as follows:

FN(t, y) = 6N−1
k=0 H ◦ Tk(t, y).

SinceT is strictly ergodic and the functionFN has zero mean we conclude
that

1

N

∫ 1

0
max
y∈Y
|FN(t, y)|dt→ 0,

when N → ∞. But the expression on the left hand side is exactly
1
N length( fN(t)). Note now that the loopfN(t) represents the elementγ−N.
Since||γ N|| = ||γ−N|| we get that1

N ||γ N|| tends to zero whenN → ∞.
This proves that asymptotic Hofer’s norm ofγ vanishes. ut

1.5. A generalization to sequential systems

We present here a generalization of Theorem 1.3.A which deals with ergodic
properties of so called sequential dynamical systems. LetX be a compact
topological measure space, and let{Ti } = (T1, T2, ..., Ti , ...) be a sequence
of measure-preserving homeomorphisms. Such a sequence defines an evo-
lution with discrete time onX. Namely a position of a pointx ∈ X at the
time momentn ∈ N is T(n)(x), where here and below we writeT(n) for the
compositionTn ◦ ... ◦ T1. Ergodic properties of such systems were studied
in the literature (see for instance [BB], as well as an extensive discussion
on random ergodic theorems in [Kr]). However, we have not found any re-
ference to the next definition which sounds to us pretty natural. A sequence
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{Ti } is calledstrictly ergodicif for every continuous functionH on X with
zero mean the time averages

1

N
6N−1

i=0 H ◦ T(i)

converge uniformly to zero. Our convention is thatT(0) is the identity map.
Let as beforeG be the group of Hamiltonian diffeomorphisms of a closed

symplectic manifold(Y,�), andX = S1×Y. Let{αi }, i ≥ 1 be an arbitrary
sequence of numbers, and let{gi } be an arbitrary sequence of Hamiltonian
diffeomorphisms. Take a smooth looph : S1→ G and consider a sequence
{Ti } of skew products of the formTi (t, y) = (t + αi , gi h(t)y). Denote by
γ ∈ π1(G) the element represented byh. In this setting one can generalize
Theorem 1.3.A as follows.
If the sequenceTi is strictly ergodic then asymptotic Hofer’s norm ofγ
vanishes.
This can be proved by the following modification of the shortening proce-
dure described in 1.4 above. Denote byH(t, y) the normalized Hamiltonian
function ofh(t)−1.

Let φ0 = id, φ1, φ2, ... be a sequence of transformations fromG such
thatφ−1

i φi−1 = gi for all i ≥ 1. Set

hk(t) = φkh(t + α0+ ...+ αk)
−1φ−1

k ,

whereα0 = 0. Consider a new loop

fN(t) = h0(t) ◦ ... ◦ hN−1(t).

It is easy to see thatfN is generated by the normalized Hamiltonian

FN = 6N−1
i=0 H ◦ T(i),

and this loop represents the classγ−N. Now exactly the same argument as
in 1.4 completes the proof.

1.6. An application to Hofer’s geometry

I do not knowthe precisevalue of||γ ||∞ in any example where this quantity
is strictly positive (for instance, for the blow up ofCP2 in 1.1 above). The
difficulty is as follows. In all known examples where Hofer’s norm||γ || can
be computed precisely there exists a closed looph(t) which minimizes the
length in its homotopy class (that isa minimal closed geodesic). It turns out
however that every non-constant minimal closed geodesic loses minimality
after a suitable number of iterations. In other words the looph(Nt) can be
shortened providedN is large enough. The proof of this statement is based
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on a shortening procedure described in the previous section and goes as
follows.

Let H(t, y) be the normalized Hamiltonian ofh(t)−1. Assume without
loss of generality thath(0) = id, and thatH(0, y)does not vanish identically.
Denote by0 the set of all points ofY where the function|H(0, y)| attains the
maximal value. SinceY− 0 is a non-empty open subset, and the groupG
acts transitively onY, one can choose a sequenceφ0 = id, φ1, ..., φN−1 ∈ G
such that

0 ∩ φ1(0) ∩ ... ∩ φN−1(0) = ∅.
Consider the loopfN(t) = h(t)−1◦φ1h(t)−1φ−1

1 ◦ ...◦φN−1h(t)−1φ−1
N−1. We

claim that it is shorter than the looph(Nt). Indeed, note that its Hamiltonian
FN at timet = 0 can be written as follows:

FN(0, y) = 6N−1
i=0 H(0, φ−1

i y).

Seta(t) = maxy∈Y |FN(t, y)| andb(t) = N maxy∈Y |H(t, y)|. Our choice of
the sequence{φi } implies thata(0) < b(0). Sincea(t) ≤ b(t) for all t, we
get that

∫ 1
0 a(t)dt <

∫ 1
0 b(t)dt, and this proves the claim. We conclude that

if a non-zero classγ ∈ π1(G) is represented by a minimal geodesic then
||γ ||∞ is strictly less than||γ ||.

Let us complete this section with few remarks on curve shortening in
Hofer’s geometry. The first shortening procedure is due to Sikorav [Si].
Further progress was made by Ustilovsky [U], Lalonde - McDuff [LM], and
in a joint paper with Bialy [BP]. Our procedures in 1.4 and 1.5 are closely
related to these developments. In particular, in [BP] we asked a question
about the role of Birkhoff’s ergodic sums in Hofer’s geometry. The results
above can be considered as a sort of answer.

1.7. Remarks and open problems

1.7.A. Further obstructions?Do there exist further restrictions on the ho-
motopy classes of smooth strictly ergodic loops in the group of Hamiltonian
diffeomorphisms? I do not know the answer even in the simplest case when
Y is the 2-sphere endowed with an area form. In this case the group of
Hamiltonian diffeomorphisms has the homotopy type ofSO(3), and thus its
fundamental group equalsZ2. It would be interesting to understand whether
in this situation there exists a smooth strictly ergodic loop in the non-trivial
homotopy class. Note that the obstruction provided by Theorem 1.3.A can-
not be applied since the homotopy class in question has finite order.

1.7.B. Continuous vs. smooth.Question 1.1.A still makes sense if one con-
siders continuous loops of Hamiltonian diffeomorphisms instead of smooth
ones. In this situation the existence result 1.2.A above can be refined as
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follows. One can show existence of contractible continuous strictly ergo-
dic loopswith every givenirrational rotation numberα. Note that in the
smooth case the methods used below lead to thoseα’s only which admit
a very fast approximation by rationals.5 On the other hand, our proof of the
obstruction 1.3.A above does not go through when a strictly ergodic loop is
continuous, since it crucially uses existence of the Hamiltonian function.

1.7.C. The volume-preserving case.Let Y be a closed manifold endowed
with a volume form and letG be the identity component of the group of all
volume-preserving diffeomorphisms. Exactly as in the Hamiltonian case,
one can address the question about homotopy classes represented by strictly
ergodic loops. The formulation and the proof of the existence result 1.2.A
remain valid without any changes in the volume-preserving category. Ho-
wever strictly ergodic loops may well be non-contractible. We present here
an example of a non-contractible strictly ergodic loop in the group of area
preserving diffeomorphisms of the 2-torus. Note that in dimension 2 every
area preserving diffeomorphism is symplectic but not necessarily Hamilto-
nian. This leads to a suggestion that the phenomenon described in 1.3.A is
a purely Hamiltonian one.

Take irrational numbersα andβ such that 1, α andβ are independent
overQ. Consider the loop of transformations of the 2-torush(t) : T2→ T2

which take(y1, y2) ∈ T2 to (y1+ t, y2+ β). Clearly these transformations
preserve the area formdy1 ∧ dy2 on T2, and the loop is not contractible.
The standard harmonic analysis argument shows that the corresponding
skew productTh,α : T3→ T3 is ergodic. It follows from a theorem due to
Furstenberg [F2, p. 66] that in this caseTh,α is strictly ergodic.

Moreover, in the case of volume-preserving diffeomorphisms of the
circle Y = S1 Furstenberg [F1] observed an opposite phenomenon:“non-
contractibility implies strict ergodicity”. In this situationeverynon-contract-
ible looph : S1→ S1 ⊂ G is strictly ergodic.

2. Constructing strictly ergodic skew products

Let µ be the canonical measure onY. We writeH for the space of all
continuous functions onY with zero mean with respect toµ. This space
is endowed with a norm||H|| = maxy∈Y |H(y)|. Recall that our task is to
prove Theorem 1.2.B on the existence of smooth strictly ergodic loops.

5 This feature of the classical approach (see §2 below) is well known to experts. It sounds
likely however that using methods developed by Eliasson [E1, E2] one can construct strictly
ergodic Hamiltonian skew products onS1×S2 whose rotation numbers satisfy a diophantine
condition.
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2.1. The classical approach

The proof of 1.2.B is based on the following chain of statements.

Property 2.1.A.For every continuous functionF : S1× Y→ R with zero
mean with respect todtdµ, for everyε > 0 and for every rational numberr
there exists a loopg ∈ C∞(S1,G) such that the following two conditions
hold:
(i) | ∫ 1

0 F(t, g(t)−1y)dt| < ε for all y ∈ Y;
(ii) g(t + r) = g(t) for all t.

Averaging property 2.1.B.For everyH ∈ H andε > 0 there exist transfor-
mationsg1, ..., gN ∈ G such that

1

N
|H(g−1

1 y)+ ...+ H(g−1
N y)| < ε,

for all y ∈ Y.

Note that 2.1.B is a natural discrete version of 2.1.A(i). However in
contrast with 2.1.A we consider here functionsH of the variabley only,
and do not care about the commutativity condition 2.1.A(ii).

Property 2.1.A implies the statement of Theorem 1.2.B (see [FH]). Ave-
raging property 2.1.B implies property 2.1.A (see [N] where an analogous
implication is proved in the context of ergodicity; in our situation the ar-
gument goes through without any essential modifications). For the reader’s
convenience, we present details in the Appendix in §5.

At this point we face a difficulty. The analogue of 2.1.B for theL1-norm
onH, which is used in [N], was proved earlier by M. Herman [He] with
a very elegant use of the Hahn-Banach theorem. I was unable to adjust
Herman’s short argument to theL∞-case, and thus was forced to take
a different route. The key idea is to derive the averaging property from
a certain covering property which we are going to describe now.

Let us introduce the following useful object. Denote byS the set of
linear operatorsH → H which consists of all averaging operators of the
form

Sg1,...,gN (H) = 1

N
(H ◦ g−1

1 + ...+ H ◦ g−1
N ),

whereN ∈ N andg1, ..., gN ∈ G. Note thatS is closed under composition
of operators. With this notation 2.1.B states that for allH ∈ H there exists
S ∈ S such that||S(H)|| is arbitrarily small. An important (and obvious)
feature of transformations fromS is that they do not increase the norm of
functions:||S(H)|| ≤ ||H||.
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2.2. A covering property

Covering property 2.2.A.There exist constantsc1 ≥ 0, c2 ≥ 1 such that
for every non-empty open subsetA ⊂ Y one can find transformations
g1, ..., gN ∈ G so that the setsg1(A), ..., gN(A) form a covering ofY which
satisfies the following inequality:

1

N
6N

i=1χ
gi (A)(y) ≥

(
c1+ c2

µ(Y)

µ(A)

)−1
,

for all y ∈ Y.

Here and belowχB stands for the characteristic function of a subsetB.

Theorem 2.2.B. The covering property implies the averaging property.

Note that averaging property 2.1.B applied to the normalized characte-
ristic function of an open subsetA implies up toε covering property 2.2.A
with the optimal constantsc2 = 1 andc1 = 0. Hence a surprising feature of
Theorem 2.2.B is that starting from an arbitrary choice of the constants we
get the optimal constants. Let us mention also that our covering property is
motivated by the Glasner-Weiss covering property [GW].

The rest of the paper is organized as follows. Theorem 2.2.B admits
a rather short proof which we present in Sect. 3. Thus it remains to verify that
the group of Hamiltonian diffeomorphisms enjoys covering property 2.2.A.
Here is the idea of our proof. “Represent” the symplectic manifoldY as
a cubical polyhedron consisting of small symplectically standard pairwise
equal closed cubes. There exists a universal constant, sayk which depends
only onY (but not on the size of the cubes!) such thatY can be decomposed
as the union of subpolyhedraY1, ...,Yk where eachYi consists of cubes with
pairwise disjoint closure. Assume without loss of generality that the setA
given in 2.2.A is a subpolyhedron ofY, andµ(A∩Y1) ≥ µ(A)/k. SetA1 =
A∩Y1, and assume that this set consists ofm cubes. Assume for simplicity
that eachYi consists ofM cubes withM > m. Clearly, every subpolyhedron
of Yi which consists ofm cubes is Hamiltonian diffeomorphic toA1 (cf.
[HZ, p. 171]). Denote byr the number of all such subpolyhedra inYi , thus
their total number isN = kr. Note that every point ofYi belongs to at least
rm/M subpolyhedra from our collection. Thus we can chooseN elements
of G such that for every point ofY the left hand side of the inequality 2.2.A
is at least

rm/Mkr = m/Mk ≥ µ(A)/kµ(Y).
Sincek is a universal constant, we get 2.2.A. The details of this elementary
argument are quite cumbersome. They are worked out in Sect. 4 with the
use of Katok’s results [K]. This will complete the proof of Theorem 1.2.B.
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3. Covering implies averaging

In this section we prove Theorem 2.2.B.

3.1. A recursive procedure

Suppose that covering property 2.2.A holds. We have to show that for all
H ∈ H there existsS∈ S such that||S(H)|| is arbitrarily small.

We claim that it suffices to show that there existsS+ ∈ S such that
maxS+(H) is arbitrarily small. Indeed, note that the same result applied
to the function−S+(H) would show that there existsS− ∈ S such that
min S−(S+(H)) is arbitrarily small. But obviously operators fromS do not
increasemaximal values of functions, thus maxS−(S+(H)) ≤ maxS+(H).
So takingS= S− ◦ S+ we get that||S(H)|| is arbitrarily small. The claim
follows.

Assume without loss of generality that||H|| ≤ 1 andµ(Y) = 1. We
construct the operatorS+with the help of the following recursive procedure.
We start with the functionH (0) = H, and defineH(i+1) as the image ofH (i)

under some specially chosen operatorSi ∈ S. Namely consider a subset

Ai = {H (i) <
1

2
maxH(i)} ⊂ Y.

Takeg1, ..., gN from the definition of the covering property 2.2.A applied
to the setAi , and setSi = Sg1,...,gN .

Lemma 3.1.A. The following inequality holds:

maxH (i+1) ≤ maxH(i)(1− maxH(i)

c
),

wherec= 2(3c2 + c1).

The theorem easily follows from the lemma. We claim that the operator
S+ = Si ◦ ... ◦ S1 does the job providedi is large enough. Indeed, set
mi = maxH(i). Notice thatm0 ≤ 1 due to our assumption, and the sequence
{mi } is non-increasing since operators fromS do not increase maximal
values of functions. Clearly the sequence{mi } converges to a non-negative
numberm. For the proof of the claim (and hence of the theorem) it suffices to
show thatm= 0. Assume on the contrary thatm> 0. Lemma 3.1.A implies
that m ≤ m(1 − m

c ), which is obviously impossible. This contradiction
proves the theorem. ut
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3.2. Proof of 3.1.A

For simplicity of notations we writeH for H (i), H ′ for H (i+1), and A for
Ai . Setm= maxH andm′ = maxH ′. The proof is divided into 2 parts.

1) Our first task is to find a lower bound forµ(A). SinceH has zero
mean we have ∫

A
Hdµ+

∫
Y−A

Hdµ = 0.

The first summand is not less than−µ(A) since ||H|| ≤ 1 due to our
assumption. The second summand is not less than1

2m(1−µ(A)) in view of
the definition ofA and our convention thatµ(Y) = 1. Thus 0≥ −µ(A) +
(1− µ(A))m/2 and hence

µ(A) ≥ m/(m+ 2).

2) Return now to the definition ofH ′. Take a pointy ∈ Y and denote by
N′ the cardinality of the set{ j | y ∈ gj (A)}. Clearly,

H ′(y) ≤ 1

N
((N − N′)m+ N′m/2) = m(1− N′

2N
).

Since this holds for ally, the maximumm′ of H ′ satisfies the same inequality.
On the other hand the covering property 2.2.A implies that

N′/N ≥ (c1+ c2/µ(A))
−1.

Substituting the inequality forµ(A) obtained in part 1, we get that

N′/N ≥ m/(2c2+ (c1+ c2)m) ≥ m/c3,

wherec3 = 3c2 + c1. In the last inequality we used thatm ≤ 1. Finally,
substituting this estimate forN/N′ into the estimate form′ obtained above,
we get thatm′ ≤ m(1−m/c). This completes the proof. ut

4. Proving the covering property

4.1. Statement of the result

In this section we prove the following result. As before, letG be the group
of Hamiltonian diffeomorphisms of a closed symplectic manifold(Y,�).

Theorem 4.1.A. The groupG enjoys covering property 2.2.A.

As it was explained in §2, this result completes the proof of Theo-
rem 1.2.B.
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4.2. A local version

First of all we prove an analogue of 4.1.A for domains of the even dimen-
sional linear spaceRn. We assume thatRn is endowed with the standard
symplectic form. LetX ⊂ Rn be a closed bounded connected domain with
piece-wise smooth boundary. LetU be an open domain with compact closure
which containsX, and writeGU for the group of all Hamiltonian diffeo-
morphisms generated by Hamiltonian functions supported inU. We denote
by µ the canonical measure onRn. Also, given a familyθ = {A1, ..., AN}
of subsets ofU, we writeνθ for the "counting function"6N

i=1χ
Ai .

Proposition 4.2.A. There exist universal constantsC1 = C1(n) ≥ 0,
C2 ≥ 1such that for every non-empty open subsetAof the interior ofX there
exist transformationsg1, ..., gM ∈ GU such thatθ = {g1(A), ..., gM(A)} is
a covering ofX, and

1

M
νθ(x) ≥

(
C1+ C2

µ(X)

µ(A)

)−1
,

for all x ∈ X.

The proof is based on two auxiliary statements.

Lemma 4.2.B. For everya ∈ (0;µ(X)] there exists a familyσ = {A1, ...,

AN} of open subsets ofU with compact closure inU such thatµ(Aj ) = a
andνσ(x)/N ≥ a/2µ(X), for all x ∈ X.

Lemma 4.2.C. There exists a constantC ∈ N which depends only on the
dimension ofX with the following property. LetA, B ⊂ U be two open
subsets with compact closure inU such thatµ(A) > 2Cµ(B). Then there
existC transformationsg1, ..., gC ∈ GU such thatB ⊂ ∪C

i=1gi (A).

Let us derive Proposition 4.2.A from these lemmas.

Proof of 4.2.A.Take any open subsetA as in 4.2.A and apply Lemma 4.2.B
with a = µ(A). We get a familyσ = {A1, ..., AN} of subsets. Fixε > 0.
We claim that there existf1, ..., fN ∈ GU such thatµ( fi (A)1Ai ) < ε/N
for all i = 1, ..., N. Here1 stands for the symmetric difference of subsets.
The claim follows immediately from Katok’s Basic Lemma [K]6. Consider
a family of subsetsτ = { f1(A), ..., fN(A)}, and setB = ∪N

i=1( fi (A)1Ai ).

Obviously,µ(B) < ε. Assume now thatε is so small that Lemma 4.2.C can

6 For the reader’s convenience we present the formulation of the lemma. Let
{Di }, {D′i }, i = 1, ...,N be two collections of compact subsets of a connected symple-
ctic manifold. Assume that the sets in each collection are pair-wise disjoint, and the volume
of Di equals the volume ofD′i for all i . Then for everyε > 0 there exists a Hamiltonian
diffeomorphismφ such that Volume(φ(Di )1D′i ) ≤ ε for all i .
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be applied toA and a small open neighbourhood ofB. Using this lemma,
we getC transformationsg1, ..., gC ∈ GU such thatB ⊂ ∪gi (A).

Set N′ = minx∈X νσ(x). Define a new familyθ which consists of all
subsets of the formgi (A), i = 1, ...,C takenN′ times, and in addition of
all subsets fromτ. In other words,

θ = { f1(A), ..., fN(A); g1(A), ..., gC(A), ..., g1(A), ..., gC(A)}.
The numberM of elements inθ equals toN+CN′. On the other hand, we
claim thatνθ(x) ≥ N′ for all x ∈ X. Indeed, forx ∈ B this follows from the
definition of transformationsgi . Forx ∈ X− B we note thatντ(x) = νσ (x)
and the claim follows from the definition ofN′.

Recall now from Lemma 4.2.B thatN′/N ≥ µ(A)/2µ(X). Thus

1

M
νθ ≥ N′/(N + CN′) ≥

(
C+ 2

µ(X)

µ(A)

)−1
.

Therefore we proved 4.2.A withC1 = C andC2 = 2. ut
It remains to prove the lemmas. Both are of combinatorial nature, and

we need some suitable notions. Bya cubical partition of sizeu we mean
a decomposition ofRn into equal closed cubes of volumeu. The cubes
may intersect along the boundaries only, and their centers form a lattice.
A cubical polyhedronis the union of some cubes of a cubical partition.

Proof of 4.2.B.Take a sufficiently large positive integerk and consider
a cubical partition of sizea/k. We can assume that there exists a cubical po-
lyhedronX′, X ⊂ X′ ⊂ U such thatµ(X′) < 1.5µ(X). Take all possible
sub-polyhedra ofX′ consisting of exactlyk− 1 cubes. LetA1, ..., AN be
their open neighbourhoods of volumea which have compact closure inU.
Denote this family byσ . Clearly for allx ∈ X

νσ(x)/N ≥ (k− 1)a/kµ(X′) ≥ a/2µ(X).

This proves the lemma. ut
For the proof of the second lemma we need the following facts from

elementary geometry ofRn. Given a closed cubeQ ⊂ Rn and a positive
numberc denote bycQ the cube with the same center which is homothetic
to Q with the coefficientc. Let Q1,Q2 be two cubes which are obtained
from each other by a translation. Note first that ifQ1 ∩ Q2 6= ∅ then
Q1 ⊂ Interior(4Q2). Define anice subpartitionof a cubical partition as
a family of pairwise disjoint cubes from the partition which satisfies the
following property. Given any two cubesQ1 andQ2 from the family, their
homothetic images 16Q1 and 16Q2 are also disjoint. Note finally that there
exists a constantC ∈ N which depends only onn such that every cubical
partition ofRn can be decomposed intoC nice subpartitions.
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Proof of 4.2.C.
1) Let U ′ ⊂ U be an open connected domain with compact closure

in U which contains bothA and B. Fix a cubical partitionP of size u.
We assume thatu is so small that for each cubeQ of the partition which
intersectsU ′ holds 16Q ⊂ U. Let P = P1 ∪ ... ∪ PC be its decomposition
into nice subpartitions. Denote byAi the union of all cubes fromPi which
are contained inA, and byBi the union of all cubes fromPi which intersect
B. Clearly takingu small enough we can achieve thatµ(Bi ) ≤ 1.1µ(B) for
all i , andµ(Ai ) ≥ µ(A)/1.1C for somei . Assume without loss of generality
that the last inequality holds fori = 1. Sinceµ(A) > 2Cµ(B) we conclude
that the number of cubes inA1 is greater than the number of cubes in each of
Bi . Fix somei ∈ {1, ...,C}. Clearly, in order to prove the lemma it suffices
to show that ifu is small enough there exists a transformationgi ∈ G such
that Bi ⊂ gi (A1).

2) Denote byq = {Q1, ...,Qk} the set of all cubes inA1, by q′ =
{Q′1, ...,Q′m} the set of all cubes inBi , and byp the unionq∪ q′. We write
4q for {4Q1, ...,4Qk}, and define analogously 4q′ and 4p. Let Z be the
subset ofU obtained by the union of all cubes from 4p. We claim that each
connected component ofZ is either one cube, or the union of two cubes.
Assume on the contrary that there exist three cubes from 4p such that two
of them intersect the third one. By definition of a nice subpartion, either
these two belong to 4q and the third belongs to 4q′, or vice versa the two
belong to 4q′ and the third to 4q. Without loss of generality we assume that
4Q1 and 4Q2 intersect 4Q′1. But then 16Q1 and 16Q2 contain 4Q′1, and
that contradicts the definition of a nice subpartition. The claim follows.

3) In view of step 2, we may assume without loss of generality that for
somer ≤ m

4Q1 ∩ 4Q′1 6= ∅, ...,4Qr ∩ 4Q′r 6= ∅,
and all other pairs of cubes from 4p are disjoint. Recall also thatm< k. We
claim that for everyj ∈ {1, ...,m} there exists a transformationh j ∈ GU

such thath j (Qj ) = Q′j andh j equals the identity on allQl ,Q′l with l 6= j .
Note that this claim implies the lemma. Indeed setgi = h1 ◦ ... ◦hr . Clearly
gi (Qj ) = Q′j , and hence we constructed a transformation as required in
step 1.

4) It remains to prove the claim of step 3. Takej ∈ {1, ...,m}.
First assume thatj ≤ r . Consider a setK = 16Qj ∩ 16Q′j . Clearly,

K is a convex polyhedron whose interior contains bothQj andQ′j . There
exists a path of transformations fromGU supported inK whose time one
map takesQj to Q′j . Take this time one map ash j . Any other cube from
p is disjoint from K by definition of a nice subpartition. Thush j has the
required properties.
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Assume now thatj > r . Consider the setZj = Z − (4Qj ∪ 4Q′j ). It
follows from step 2 thatU ′ − Zj is a connected set. Join the centers of cubes
Qj and Q′j by a smooth pathγ ⊂ U ′ − Zj . Let t be a parameter alongγ
which runs from 0 to 1. Denote byKt the cube centered inγ(t) which is
obtained fromQj by a parallel translation. Since the center ofKt is disjoint
from all cubes 4Ql ,4Q′l with l 6= j thenKt is disjoint from all suchQl and
Q′l . In particular, there exists a small neighbourhood sayV of the union of
all cubesKt which is disjoint from all cubesQl ,Q′l with l 6= j . It is easy
to see that there exists a path of transformations fromGU supported inV
whose time one map takesQj to Q′j . Take this time one map ash j . This
completes the proof. ut

4.3. Proof of 4.1.A

Denote byµ the canonical measure onY. Consider a triangulationX1, ..., Xr

of Y such that every simplexXi is contained in a (Darboux) coordinate chart
Ui . Assume moreover that allXi have equal volumeµ(Y)/r . Let A ⊂ Y
be an open subset. A straightforward application of Katok’s Basic Lemma
([K], see the footnote in 4.2 above) shows that there exists a transformation
f ∈ G with the following property:

µ( f(A) ∩ Xi ) > µ(A)/2r,

for all i = 1, ..., r .
Obviously it suffices to check the covering property for the setA′ =

f(A). Let Ai be an open set which lies in the interior ofA′ ∩ Xi and has
volumeµ(A)/2r . Apply the local statement 4.2.A to the triple(Ui , Xi , Ai ).
For everyi , we get a sequence of transformationsgi j , j = 1, ..., Ni such
that for allx ∈ Xi holds

1

Ni
6

Ni
j=1χ

gi j (Ai )(x) ≥
(
C1+ C2

µ(Xi )

µ(Ai )

)−1 = λ,
where

λ =
(
C1+ 2C2

µ(Y)

µ(A′)

)−1
.

Repeating the sequences we can achieve that each of them has the same
number of terms, in other words that allNi ’s are equal to the same number
N. We claim that the family of transformations

{gi j }, i = 1, ..., r ; j = 1, ..., N

does the job for the setA′ with universal constantsc1 = rC1 andc2 = 2rC2.
Indeed, takey ∈ Y. Without loss of generality assume thaty ∈ X1. Thus

1

Nr
6i, jχ

gi j (A′)(y) ≥ 1

Nr
6 jχ

g1 j (A1)(y) ≥ λN

rN
=
(
rC1+ 2rC2

µ(Y)

µ(A′)

)−1
.
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This completes the proof. ut

5. APPENDIX: more details on the classical approach

In this appendix we present details of the classical approach to constructing
strictly ergodic Hamiltonian skew products (see Sect. 2.1 of the main text).

5.1. Averaging property 2.1.B implies 2.1.A (cf. [N])

We work in the notations of Sect. 2.1. The proof is divided into several steps.
1) We claim that for every finite sequenceH1, ..., Hk of functions fromH

and for everyε > 0 there exists an operatorS∈ S such that||S(Hi)|| < ε for
all i . Indeed, using averaging property 2.1.B define recursively a sequence
of operatorsSi ∈ S such that the following inequalities hold:

||S1(H1)|| < ε, ||S2(S1(H2))|| < ε, ..., ||Sk(...(S1(Hk)...)|| < ε.

SetS= Sk ◦ ... ◦ S1. The operatorS is as required in view of the fact that
operators fromS do not increase the norm of functions.

As an immediate consequence of the claim we get that for every sequence
H1, ..., Hk and everyε > 0 there exists a smooth looph : S1 → G such
that ∣∣∣∣∫ 1

0
Hi (h(t)

−1y)dt

∣∣∣∣ < ε,
for all y ∈ Y.

2) Note that in order to verify condition 2.1.A(i) we can assume that for
each fixedt the functionF(t, .) belongs to the spaceH. Indeed, given any
F one can modify it as follows:

F′(t, y) = F(t, y)−
∫

Y
F(t, z)dµ(z).

Clearly our assumption holds forF ′. MoreoverF andF ′ satisfy or do not
satisfy the conditions in question simultaneously.

3) Let F be a function which satisfies the assumption of step 2. We claim
that for everyε > 0 there exists a smooth looph such that for alls ∈ S1 the
following inequality holds:∣∣∣∣∫ 1

0
F(s,h(t)−1y)dt

∣∣∣∣ < ε/3.
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Indeed, choose a large natural numberN such that|F(t′, y)−F(t′′, y)| < ε/9
for all y provided|t′ − t′′| < 1/N. Set pi = i/N wherei = 0, ..., N − 1.
Using the last statement of step 1 choose a smooth looph(t) such that∣∣∣∣∫ 1

0
F(pi ,h(t)

−1y)dt

∣∣∣∣ < ε/9.
A straightforward estimate shows thath is as required.

4) Take now an arbitrary integerM > N. A more specific choice of
M will be made in the next step. Meanwhile we denoteg(t) = h(Mt) and
claim that

I =
∣∣∣∣∫ 1

0
F(t, g(t)−1y)dt

∣∣∣∣ < ε.
Here is the proof. Setqi = i/M wherei = 0, ...,M. An obvious argument
shows that

I ≤ ε/3+6M−1
i=0 |Ji |,

where

Ji =
∫ qi+1

qi

F(qi ,h(Mt)−1y)dt.

Introducing a new variables= Mt − i we get that

Ji = 1

M

∫ 1

0
F(qi ,h(s)

−1y)ds,

and thus our choice ofh implies that|Ji | < ε/(3M) for all i . The claim
follows immediately.

5) Let us sum up the results of the previous steps. We constructed a loop
g(t) = h(Mt) which satisfies 2.1.A(i) above. Moreover the choice of the
sufficiently large integerM is in our hands. We are going to use this in order
to guarantee condition 2.1.A(ii). Letr be a rational number. TakingM as
a large multiple of the denominator ofr we get thatg(t + r) = g(t).

This completes the proof. ut

5.2. Property 2.1.A implies Theorem 1.2.B

The proof of this statement occupies the rest of the appendix. We follow
very closely the exposition in [FH]. Let us fix some notations. We work on
the manifoldX = S1 × Y. Denote byD the group of all skew products
(t, y)→ (t+α,h(t)y)whereα ∈ S1 andh : S1→ G is a smooth loop. Let
D0 be its subgroup consisting of maps of the form(t, y)→ (t,h(t)y). We
write Sα for the shift(t, y)→ (t + α, y).

Consider the set of all mappings of the formφ−1 ◦ Sα ◦ φ whereφ ∈ D0

andα ∈ S1. Its closure inD can be identified in an obvious way with the set
R introduced in 1.2, and in this appendix we use for it the same notationR.
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5.3. Strict ergodicity

Consider a collectionC of all subsets ofR of the form

C(F, ε) = {T ∈ R| inf
N∈N
|| 1

N
6N−1

j=0 F ◦ T j || < ε},
where F runs over all continuous functions with zero mean onX, and
ε > 0. It is easy to see that the intersection of all sets fromC consists of
strictly ergodic diffeomorphisms. Thus for the existence of strictly ergodic
skew products it suffices to show that the intersection of all sets fromC is
non-empty. Considera countablesubcollectionC′ of C which consists of
all sets of the formC(Fj ,

1
k), where{Fj } is a countable dense subset of the

space of continuous functions with zero mean onX, and the numberk runs
over the natural numbers. Obviously every set fromC contains a set from
C′, thus the intersection of all sets fromC is equal to the intersection of all
sets fromC′.

Now the strategy is as follows. The collectionC consists of subsets
which are open inR. Since the groupG is closed in Diff(Y), the setR (with
the topology induced from Diff(X)) has the Baire property.7 Therefore it
suffices to show that the subsets fromC are dense inR.

Lemma 5.3.A. Let C be a set fromC and r be a rational number. There
existsφ ∈ D0 which commutes withSr and such that for every irrational
numberα the diffeomorphismφ−1 ◦ Sα ◦ φ belongs toC.

5.4. The final argument

Assume the Lemma. We claim that for every rationalr and everyC ∈ C the
shift Sr belongs to the closure ofC. Indeed, takeφ from the Lemma and
choose a sequence{α j } of irrational numbers which converges tor . Then
{φ−1◦Sα j ◦φ} is a sequence of elements ofC which converges toSr , and the
claim follows. Since rational numbers are dense in the circle, we conclude
that every (rational or irrational) shift is in the closure ofC. Note that for
everyψ ∈ D0 andC ∈ C the set

{ψ ◦ f ◦ ψ−1| f ∈ C}
is again contained inC. Thus every element of the formψ−1 ◦ Sα ◦ ψ with
ψ ∈ D0 belongs to the closure ofC. Since by definition these elements are
dense inR, we get thatC is dense inR. As it was explained in 5.3 this
completes the proof of existence of smooth strictly ergodic skew products.

7 This is exactly the place where we use thatG is closed in Diff(Y). It seems, however,
that one can prove the theorem without this assumption. For that purpose one should work
with a different cleverly chosen topology onG.
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5.5. Proof of 5.3.A

Fix a setC = C(F, ε) from C and a rational numberr . Given a loop
g : S1→ G consider the integral

I(y) =
∫ 1

0
F(t, g(t)−1y)dt.

Using Property 2.1.A we can chooseg in such a way thatg(t + r) = g(t)
for all t, and|I(y)| < ε/2 for all y. Define an elementφ ∈ D0 by φ(t, y) =
(t, g(t)y). It commutes withSr . Take an irrationalα. Write the ergodic sum

1

N
6N−1

j=0 F ◦ (φ−1 ◦ Sα ◦ φ) j

asFN ◦ φ, where

FN = 1

N
6N−1

j=0 (F ◦ φ−1) ◦ Sj
α.

Since the shift of the circlet → t + α is strictly ergodic, and the family
{F(t, g(t)−1y)}, y ∈ Y of functionsS1 → R is compact, the ergodic sum
above converges uniformly toI(y)whenN goes to infinity. In particular for
largeN holds||FN ◦φ|| = ||FN|| < ε, and we conclude thatφ is as needed.
This completes the proof. ut
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