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Abstract. Let f; be polynomialsim variables withoutacommon zero. Hilbert's Nullstellen-
satz says that there are polynomiglsuch thad g; f; =1. The effective versions of this re-
sultbound the degrees oftigein terms of the degrees of tHg. The aim of this paper isto gen-
eralize this to the case when thare replaced by arbitrary ideals. Applications to the Bézout
theorem, to Lojasiewicz—type inequalities and to deformation theory are also discussed.

1. Introduction

Let X,Y C P" be closed irreducible subvarieties adgd the irreducible
components oK N'Y. One variant of the theorem of Bézout (cf. [Fulton84,
8.4.6]) says that

> " degz; < degX - degy.

This result holds without any restriction on the dimensionsXofY, Z;
and it can be easily generalized to the case wXen .., Xg are arbitrary
subschemes dP" and theZ; are the reduced irreducible components of
XiN---N Xe.

Itis frequently of interest to study finer algebraic or metric properties of
intersections of varieties. In recent years considerable attention was paid to
the case when th¥; are all hypersurfaces, in connection with the effective
versions of Hilbert'sNullstellensatz Assume that we have polynomials
f1,..., fs € C[xq, ..., X,] of degreesd, = degf;. There are three related
guestions one can ask about the intersection of the hypersutfaceD),
in each case attempting to minimize a boul,, . .., ds).

Algebraic Bézout version: [Brownawell89] Find prime idealsP; >
(f1,..., fs) and natural number; such that

[[PY c(fi....f9 and ) ajdegP; < B(d.....ds).
] ]
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Effective Nullstellensatz version: [Kollar88] If the f; have no common
zeros inC", find polynomialsg; such that

Z fig =1 and degfig) < B(dy, ..., ds).

tojasiewicz inequality version: [JKS92] Fix a metric orC" and letZ be
the intersection of the hypersurfacek = 0). Prove that ifx varies in
a bounded subset @f" then

dist(Z, x) B9 < C . max| f;(x)| for someC > O.
|

The optimal value oB(d,, ..., ds) is known in almost all cases. If we
assume thad; > 3 for everyi, then

B(dl,...,ds):dl"'dS’

is best possible fos < n. (See [Kollar88, 1.5] for the case> n.)
The algebraic Bézout version is also called prane power product
variant of the Nullstellensatz.

The aim of this paper is to consider these problems in casefjthe
are replaced by arbitrary ideals. The first step in this direction was taken
in [Sombra97]. His methods can deal with special cases of the above prob-
lems if the ideals are Cohen—Macaulay. Some other cases are worked out
in [Ploski-Tworzewski98]. Lojasiewicz—type inequalities for arbitrary ana-
Iytic sets were studied in the works of Cygan, Krasiski and Tworzewski, see
especially [Tworzewski95,Cygan98,CKT98]. Although they consider the
related problem of separation exponents, their proof can easily be modified
to give a general Lojasiewicz inequality for reduced subschemes.

My proofs grew out of an attempt to understand their work in algebraic
terms. This leads to a general Lojasiewicz inequality in the optimal form and
to an effective Nullstellensatz with a slightly worse bound. In the algebraic
Bézout version my results are weaker. It should be noted, however, that
the straightforward generalization of the algebraic Bézout version fails to
hold (1.4).

All three of these results can be formulated for arbitrary ideals, but for
simplicity here | state them for unmixed ideal$.i$¢ calledunmixedif all
primary components df have the same dimension.) These are the ideals
that correspond to the usual setting of intersection theory. For such ideals
the degree ofl (cf. (2.1)) gives a good generalization of the degree of
a hypersurface. The precise versions for arbitrary ideals are stated in (6.1),
(6.2) and (7.6).

Theorem 1.1 (Algebraic Bézout theorem).Let K be any field and
l1, ..., Im unmixed ideals irK[Xy, ..., X,]. Then there are prime ideals
P; D (1, ..., Im) and natural numbers; such that
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LI P € (I1..... Im), and
2. ) ;a <n-[];degl.

Theorem 1.2 (Effective Nullstellensatz)_etK be anyfieldandl, ..., I
unmixed ideals irfK[Xy, ..., X,]. The following are equivalent:

1. 14, ..., I, have no common zero iK".
2. There are polynomial$; < I; such that

Y fi=1 and degf; <(n+1) []degl.
i i

Theorem 1.3 (Lojasiewicz inequality). (cf. [Cygan98,CKT98] Let
l1, ..., In be unmixed ideals if[Xq, ..., Xa] and X4, ..., X, € C" the
corresponding subschemes. L& be generators of;. Then for every
bounded seB c C" there is aC > 0 such that for everx € B,

dist(Xy N -+ - N X, 0199 < C . max| f;; (x)].
ij

The difference between the geometric and algebraic versions of the
Bézout theorem can be seen already in the case when an irreducible variety
is intersected with a hyperplane.

Example 1.4.Pick coordinates, vin C2andx, y, z, sin C*. For oddn > 3
consider the morphism

Fn:C?— C* givenby Fn(u,v) = (u", u? uv, v).
Let S,  C* be the image of,. It is easy to see that d& = n + 1 and
the ideal ofS, in C[x, y, z, 5] is

n—1

In= (x> —y", 2# — y&, xz— YIS xs— y'z 2).

Let us intersects, with the hyperplangs = 0) to get a curveC,. Set
theoretically, the intersection is the image &f : C — C?* given by
f.(u) = (u", u?, 0, 0) and its ideal is

Jn = (X2 - yna Za S)

On the other hand,

n

(In,9) = (X*—y", 2, xz y 7'z, s),

and we see that, as a vectorspace,

n-3

I/(n9) Z(zyz...,y 7 2).
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Letm = (X, Y, z, 5 be the ideal of the origin. There are two minimal ways
of writing an algebraic Bézout form of this example:

n-1
2

J2c(ln,9 and mz -3, C (Ip, 9.

Taking degrees we get 2dég= 2n > n+ 1 = degl, and";z1 degm +
degJ, = %52 + n > n+ 1=degl, forn > 5.

This example illustrates the nature of the difficulties, but it does not
seem to give pointers as to the general shape of the theory. Unfortunately,
| do not have any plausible conjectures about what happens in general. As
in [Kollar88], the effect of embedded primes seems small, but the correct
way of estimating it is still elusive.

Instead, | approach the question as follows. There are many different
varietiesS. ¢ C* whose intersection with the hyperplare= 0) is C,,.

(For instance, pick polynomial§(u, v), g(u, v) with no common zero and
let S'9 be the image ofu, v) — (U", U2 vf(u, v), vg(u, v)).) Each S
gives an ideal; and one can ask about all the quotients

Jn/(},9).

It turns out that their length is bounded independenitanid it is not too big.
The main lemma of [Kollar88, 3.4] is a formalization of this observation
using local conomology groups in some special cases.

This paper develops another approach to this problem, going back
to [Cayley1860]. For any space cur@ec P2 Cayley considered all cones
defined byC with a variable poinp e P2 as vertex. These cones can be en-
coded as one equation on the Grassmannian of lin ikore generally,
for any pure dimensional subscheivfec C" (or for any pure dimensional
algebraic cycle orC") consider the ideal °"(Y) generated by all cones
defined byY with a variable(n — d — 1)-dimensional linear space as its
vertex. Following [Dalbec-Sturmfels95], it is called tideal of Chow equa-
tions (4.1). It turns out that this ideal controls the length of the embedded
components of any intersection. With this observation at hand, the rest of
the arguments turn out to be not very complicated.

Section 2 reviews some basic facts about algebraic cycles and their
intersection theory of". Section 3 collects known results about integral
closures of ideals.

The ideal of Chow equations is defined and studied in Sect. 4. The
connection between the ideal of Chow equations and intersection theory is
established in Sect. 5.

Finally the main results are proved in Sects. 6 and 7.

Another approach to such theorems is to reduce them to the hypersurface
case. IfX ¢ C"is a subscheme of degreethen, set theoreticallyX can
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be defined by degrem equations. This gives reasonable bounds for each
problem, roughly like(max {degl;})". For many ideals of about the same
degree this is close to the optimal bound for the Nullstellensatz, but it is
considerably worse in general. For the algebraic Bézout version this method
and [Brownawell89] gives a bound in the original form taking into account
the degrees of the;.

A modified version of this idea is to reduce everything to intersect-
ing with the diagonal and then using the methods of [Kollar88] directly.
This gives 3-times the optimal bounds. If, however, the quotients
K[X1, ..., X%nl/lj (or more precisely, their homogenizations) are Cohen-
Macaulay, then the methods of [Sombra97] give better bounds. The factor
(n+ 1) in (1.2) can be replaced by 2.

The above questions become much more difficult if the fl€lds re-
placed by a ringR which is equipped with a “size function”. (For in-
stance, ifR is the ring of integers in a number field then the height is
a suitable size function.) In this case one would like to find a solution
of the effective Nullstellensatz where the size of the coefficients of the
f; is also controlled. The most general results in this direction are due
to [Berenstein-Yger96,Berenstein-Yger97]. It is quite possible that there is
a connection between the ideal of Chow equations and their residue calculus.

2. Intersection of cycles orA"

Definition 2.1. Let Y be a scheme. Aalgebraic cycleonY is a formal
linear combination of reduced and irreducible subschemes ) a[Z;],
a € Z. In using this notation, it is tacitly assumed that #eare different.
I do not assume that th&; have the same dimension. The cycles form
a free Abelian groupz,(Y). The subgroup generated by all reduced and
irreducible subschemes of dimensidis denoted byZ4(Y).

If Y is proper andL is a line bundle onY then one can define the
L-degree of a cycle

deg Z:=) a(Z -LIM%),

where(Z; - L9MZi) denotes the top selfintersection number of the first Chern
class ofL|z. The functionZ — deg Zis linear.

LetY be a scheme with a compactificati¥nc Y and assume that is
the restriction of a line bundle from Y to Y. For a cycleZ = 3" & Z; on
Y setZ = Y& Z; whereZ; is the closure ofZ; in Y. Then one can define
the degree of acyclg = > a Z; onY by

deq Z:=deg Z.
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It is important to note that this depends on the c_hoici‘ ahdL. | use this
version of the degree only for the padr= A" andY = P".

Definition 2.2. Let X be a scheme and an effective Cartier divisior oiX.
Let[Y] € Z4(X) be an irreduciblal-cycle onX. Define[Y] h D € Z,(X)
as follows.

1. If Y C SuppD then sef{Y] h D :=[Y] € Z4(X).
2. If Y ¢ SuppD then D|y makes sense as a Cartier divisor. &k
D :=[Dly] € Zg-1(X).

This definition is extended td, (X) by linearity. Observe that & € Z,(X)
is effective then so iZ M D.

If fis a defining equation db then | also us& m f to denoteZ r D.

It should be emphasized that this definition is not at all well behaved
functorially. While it is well defined on cycles, it is not well defined on the
Chow group. Furthermore, ,, D, are two Cartier divisors then in general

(Z h Dy) h Dy # (Z th D) th Dy.

(For instance leX = A%, Z = (y— x> =0),D; = (x = 0) and D, =
(y=0).)

Lemma 2.3. Let L be an ample line bundle oX, D a section ofL®d and
Z an effective cycle oiX. Then

1. deg (Z M D) < d-deg (2).
2. If Xis properd = 1and all the components @ have positive dimension
thendeq (Z rh D) = deq (2).

Proof. By linearity it is sufficient to check this wheZ = [Y] for an
irreducible and reduced subvariety If Y ¢ SuppD then deg(Z rh D) =
deg (Y), and otherwise dedZ rh D) < d - deg (Y) with equality holding
if X is proper and dinY > 1 by the usual Bézout theorem. ]

2.4. One would like to defin&, m Z, for any two cyclesZ; on a schemeX.
As usual, this is reduced to intersectidg x Z, with the diagonalA C
X x X. Traditional intersection theory worksX¥fis smooth since in this case
A C X x Xis a local complete intersection (cf. [Fulton84, Chap.8]). The
usual intersection produd; - Z is then a cycle of the expected dimension
d=dmZ; +dimZ, —dimX. If dm(Z; N Z,) = dthenZ; - Z, is well
defined as a cycle, but if di(@, N Z,) > dthenZ; - Z, is defined only as
a rational equivalence class inside S(ppnN Z»).

Here | follow the path of [Stlickrad-Vogel82,Vogel84] and try to define
Z, th Z;, as a well defined cycle which may have components of different
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dimension. IfX = P", the Z; are pure dimensional art> 0 thenZ, M Z,
is a cycle such that

deqgZ; h Z,) = degZ, - degZ,.

The cases wheth < 0 were not considered to have much meaning tradition-
ally. [Tworzewski95] realized that the definition is meaningful and gives an
interesting invariant.

The construction of (2.2) needs to be a connected component of
a global complete intersection. Unfortunately this happens very rarely. The
only such example that comes to mind{s= A", or more generally, any
schemeX which admits an étale map #@". For simplicity of exposition,
I work with X = A". Homogenity considerations can then be used to define
h for a few other interesting cases, most importantlyXoe P".

Definition 2.5 (Vogel-Tworzewski cycles)Let X; = ) i aij Xij be effect-
ive cycles onA" fori = 1,...,s. We would like to define a cycle which
can reasonably be called the intersection of these cycles. This is done as
follows.
Choose an identificatioA" = A" x - -- x A". Using this identification

as a cycle inz,(A"s).
LetA c A" x ... x A" denote the diagonal. Each coordinate projection

I, : A" x --- x A" — A" (onto therth factor)

gives an isomorphismil, : A = A" which is independent of.
LetL := (L1, ..., Lns—1)) be an ordered set of hyperplanesiitt such
that their intersection id. Set

S
Xy th X, £) = (]‘[xi) MLy M Lns1),

i=1

where the right hand side means that we first intersect lvjtithen with
L, and so on. To be precise, the right hand side iZj0A"S), but every
irreducible component of it is contained . Thus it can be viewed as
a cycle inZ,(A) and so it can be identified with a cycle &.(A"™) using
any of the projection§l, .

(X1 -+ X, £) is called anintersection cyclef X4, ..., X,. Any
of these cycles is denoted B§; M - - - M X.

It should be emphasized th&g - - - M Xsis not a well defined cycle
since it depends on the choice 6f In the papers [Vogel84,vanGastell91]
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the L; are chosen generic and théd; M --- M Xs, £) is well defined as

an element of a suitable Chow group. We would like to get a cycle which
is defined over our fielK. As long asK is infinite, a general choice of

the L; would work but there are some problems wh¢ns finite. (It is

for such reasons that [Brownawell89] does not work for all finite fields.)
Furthermore, in our applications it is sometimes advantageous to make
a special choice of the;. For these reasons | allow any choice of the

The price we pay is that even the degreéXf m - - - h Xs, £) depends on
theL;. This, however, does not seem to cause problems in the applications.

We obtain the following Bézout type inequality.

Theorem 2.6. Let Xy, ..., X be effective cycles ah". Then

deg Xy -+ Xo) < [ [degX;.
j

Proof. deg[]"_; Xi = [, degX; and cutting with a hyperplane does not
increase the degree by (2.3). O

Definition 2.7 (Refined intersection cyle)Let K be an infinite field. For

a schemeY let B(Y) denote all subvarieties of which can be obtained

by repeatedly taking irreducible components and their intersections. For
a Zariski dense set of thé we can write

Xy the-oth Xs, £) =Y a&lZi(L)],

where thez; (£) depend algebraically of. For eachZ; (£) there is a small-
estW e B(X1N---NXg) such thatz; (L) c W for general choice of. For
eachW e B(X1N---NXg), the sum ofthese cycles gives awell defined elem-
ent of the Chow group\,.(W). This cycle is denoted bgX,; m - - - m Xg, W).
Thus we obtain a refined intersection cycle

Xi M- M Xg = Yo XA Xs, W)
WeB(X1N:-+-NXs)
If Zc XyN---N Xgis aconnected component then
deg Xy M- M Xs, 2) := Y degXy - M Xs, W)
Wwcz

iswell defined. Itis called thequivalencef Zin X M- - -mXs (cf. [Fulton84,
9.1)).

In analogy with [Tworzewski95], one can define a local variant of this
number as follows. For every,

Z a mult, Z; (L)
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is constant on a Zariski open subset of ths. | denote it by
multp(Xy M- - - @ Xs).

There is an inequality
multy(Xy A - - - M Xs) < > deg X1 M- - @ Xs, W).
peWeB(X1N--NXs)

We need to set up a correspondence between ideal sheaves and algebraic
cycles. This does not work as well as the usual correspondence between
subschemes and ideal sheaves, but it is better suited for our purposes.
Another way of going from cycles to ideal sheaves is studied in Sect. 4.

Definition 2.8. Let X be a scheme and = ) &[Z;] an effective cycle.
Let I(Zj) Cc Ox denote the ideal sheaf & . Define thadeal sheaf oZ by

1(2) := ]_[ 1(Z)® C Ox.

Itis clear thatl (Z; + Z,) = 1(Z1)1(Z>).

Definition 2.9. Let F be any coherent sheaf otandF; C F the subsheaf
of sections whose support has codimension at masit x;; be the generic
points of the irreducible component§; C SuppFi/Fi_1). Set

Z(F):= ) _(ength, F) - [X;].
ij
Z(F) is called thecycle associated t&.
Let Qi; C Ox be the ideal sheaf oXj; andb;; := Iengthqj Fi. Then
I, Q:)j” mapsF; to F,_, thusl(Z(F)) c Ann(F).
In particular, ifJ ¢ Oy is an ideal sheaf then
1(Z(Ox/J) C J.

Lemma 2.10. Let X4, ..., X, be schemes and; an effective cycle oiX;
for everyi. Letr; : ]_[j Xj = X be thei-th coordinate projection. Then

L([]2) € @11y, ... 751 (Zm)).
i

Proof. Using induction, it is sufficient to prove the case= 2. Let Zy =
Zj a;j ij, then

2y x Zp = ZaliaZj(Zli x Z3j).
ij
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If 1, J are arbitrary ideals anal b > 1, then
(I, % c (1, J*P1 (13, Ib).

Using this onX; x X5, we obtain that

1(Z1 x Zy) = 1_[ [(Zy x sz)aliazj
i
= [[eri1(Zu). m51(Zzy))2%)

ij

C [ [eit@®, z51(Zzp))
i

c [[@ ] [1@w, m31(za)%)
j i

= [ [&=31Z0), 751(Z2p)™)
i

C (M H(Z0). 13 1(Z2). .
Definition 2.11. Let X be proper and. a line bundle onX. Define the
L-arithmetic degreef a sheafF by

arith-deqg F :=deq Z(F).

If I € Oy isanideal sheaf then the arithmetic degre®gf | is also called
the arithmetic degree df and denoted by arith-ded. Note that there is
a possibility of confusion sinckis also a sheaf.

Asin (2.1), the arithmetic degree of an ideal sheah8iis the arithmetic
degree of its unique maximal extensiorifth (Note that one can not define
the arithmetic degree of an arbitrary sheafAdh)

This definition is very natural and it appeared in several different places
(see, for instance, [Hartshorne66,Kollar88,Bayer-Mumford91]). The con-
cept was used extensively in many papers (cf. [STV95]).

3. Integral closure of ideals

In this section we recall some relevant facts concerning integral closure of
ideals. [Teissier82, Chap.l] serves as a good general reference.

Definition 3.1. Let Rbe aring and c Ranidealr € Ris calledintegral
overl if r satisfies an equation
k .
r*+> ijrI =0 whereij e I,
j=1
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All elements integral over form an ideall , called thentegral closureof | .
We use the following easy properties of the integral closure.

1. (1,9 c D, -
2. 111, il and SO(I)mC |m,

We also need the following special case of the Briangcon—Skoda theorem.
A short proof of it can be found in [Lipman-Teissier81, p.101].

Theorem 3.2. [Briancon-Skoda74lf R = K[x, ..., X,] (or more gener-
ally, if Ris regular of dimensiom) thenlI" C I. O

The following result gives the best way to compare integral closures
(cf. [Teissier82, 1.1.3.4]).

Theorem 3.3 (Valuative criterion of integral dependence).Let R be
aring andl, J ¢ Rtwo ideals. The following are equivalent.

1. Jcl.
2. If p: R— Sis any homomorphism & to a DVRSthenp(J) c p(l).

If K is an algebraically closed field ang a finitely generatedK -algebra
then in (2) it is sufficient to use homomorphisms to the power series ring
KT[t]]. |

Integral closures usually do not commute with taking quotients, but this
holds in some special cases.

Lemma 3.4. Letl C K[Xy, ..., Xs] be anideal. Then
(1, Xn)/(Xn) = (1, Xn)/(Xn).

Proof. If J, ¢ J, C R are ideals thenl,/J; ¢ J/J; always holds
using (3.1). IfR — R/ J; splits (as a ring homomorphism) then any equa-
tion over R/J; can be lifted to an equation oveR, showing the other
containment. ]

We need two lemmas about ideals given by algebraic families of gener-
ators.

Lemma 3.5. Let K be an infinite fieldR a K-algebra andL c R a finite
dimensionalK -vectorspace. La be aK-variety and

F:U—>L givenby ury

a K-morphism. Lelv c U be Zariski dense. Then there is an equality of
ideals



324 Janos Kollar

Proof. If Jis any ideal inRthenL N J is a sub vector space in. Thus
{ueU :ry e J}is Zariski closed ilJ. SetJ = (ry : u € V). SinceV is
dense inJ, we obtain that, € J for everyu € U. O

Lemma 3.6. Notation as in (3.5). Assume in addition thais irreducible.
Letu +— ry andu — s, be K-morphisms fronlJ to L. LetV c U be
Zariski dense. Then we have an equality of ideals

rSsy:ueV)y=(y:uel)-(sg:uel).

Proof. Let p: R — Shbe any homomorphism to a DVR. An ideal 8is
characterized by the minimum order of vanishing of its elements. We need
to prove that both ideals above give the same number.

The order of vanishing of eacp(r,) in Sis a lower semi continuous
function of U, thus it achieves the minimum value on a dense open subset
of U. Similarly for p(s,). Thus we can choose < V where bothp(r,) and
p(sy) achieve their minimum. O

Example 3.7.LetR = K[x, y],L = {ax+by},U = K, ry, =x—uy,s, =
X+uy. Then(ry : u e U)- (s : u e U) = (x,y)? is different from
(ruSy @ u € U) = (x2, y?). This shows that (3.6) fails without integral
closure.

Another such example is given in (4.11).

Remark 3.8.1t is easy to check that the idedlk,, s) in (1.4) are integrally
closed, hence integral closure alone cannot remove the embedded primes,
even in a geometrically very simple situation.

4. The ideal of Chow equations

LetK be afield andZ any effective cycle il\". In this section we define an
ideal inK[Xg, ..., Xy], called the ideal of Chow equations &f The main
advantage of this notion is that it behaves well with respect to arbitrary
hyperplane sections. This is the crucial property that one needs for the
applications. On the other hand, the ideal of Chow equations is quite difficult
to analyze and | leave several basic questions unresolved. (The explanation
of the name and other variants are discussed in (4.2).)

Definition 4.1. Let Z = )_&[Z;] be a purelyd-dimensional cycle im\".
Letw : A" — A% be alinear projection such that: Z; — A% is finite
for everyi. We call such a projectioallowable

The center of the projectionis a linear space c P"\ A" of dimension
n —d — 2 andx is allowable iff L is disjoint fromU; Z;. This shows that
allowable projections can be parametrized by an irreducible quasiprojective
variety.
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If 7 is allowable thenr,(Z) is a well defined codimension 1 cycle in
A%+ and so it corresponds to a hypersurface. Choose an equation of this
hypersurface and pull it back byto obtain a polynomialf (i, Z).

Assume first thaK is infinite. Define thedeal of Chow equationsf Z
in the polynomial ringK[A"] = K[Xy, ..., X,] as

1N(Z) := (f(r, Z) : 7 is allowable c K[A"].

For technical reasons we frequently work with the integral closure of this
ideal, denoted bych(Z).

We see in (4.5) that these are independent of the base field. TKus if
finite, one can define®"(Z) by taking any infinite field extension & first.
(By [Weil62, 1.7.Lem.2] every ideal has a smallest field of definition. Since
1°N(Z) is defined ovelK(x) c K(x, y) and also oveK(y) C K(x, y), it is
also defined over their intersection whichKs)

Finally, if Z = ) a[Z] is any effective cycle then writ& as a sum
Z =Y 79 whereZ9 has pure dimensiod and set

Ich(Z) — 1_[ ICh(Zd).
d

Its integral closure is denoted b§"(Z). A product formula in terms of the
Zi is given in (4.10), but this only works for the integral closures.

Remark 4.2.The idealsl ®"(Z) were first considered by [Cayley1860] and
1°"(Z) is essentially equivalent to the Chow form @ as explained

in [Catanese92,Dalbec-Sturmfels95]. This equivalence clarifies the defin-
ition of 1°"(Z), but it obscures other versions of this concept.

In (4.1) we considelinear projectionsrz : A" — A%*L, It is, however,
possible to use larger classes of morphisms. For instance we canmaltow
be any algebraic automorphism Af followed by a projection or we can
even allowrr to be any smooth morphism. The latter case can be localized
in various topologies.

More generally, ifR is any smoothK-algebra andZ a d-cycle on
SpecR then one can define the ideal of locally Chow equations (using étale
or analytic topology or even working formally) and these ideals behave well
with respect to intersections with smooth divisors. Here | concentrate on
the simpler case of linear projections. | was unable to decide if the various
definitions give the same ideals for a cycledih.

4.3. 1 do not know if it is essential to consider the integral closure or not
in the definition above. The examples (4.8, 4.9) show l¥3tZ) is not
integrally closed in general. More importantly, the crucial property (4.10)
fails without integral closure as shown by (4.11).
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The main question is whether (5.5) holds without integral closure on
the right hand side. This would eliminate the extra facto# 1) in (1.2).
I do not know the answer. This question is related to the degree bounds
considered in [Sturmfels97, Sect. 4].

As a special case of (3.5) we obtain:

Lemma4.4. Let{m, : A € A} be a Zariski dense set of allowable projec-
tions asin (4.1). Then

1MZ) = (f(r,, Z2)|% € A). .

Corollary 4.5. 1°"(Z2) is independent of the base figfd That is, ifL > K
is a field extension, then

1°M(Z) @k L = 1°"(Z)).

Proof. If K is infinite, then the projections defined ovérform a Zariski
dense set of the projections defined olerThus by (4.4) we obtain the
same ideals.

For finite K we defined °"(Z) by forcing the above formula to holdi

Example 4.6.Let X ¢ A" be a smooth subvariety with ideal shé&k).
Then 1"(X) = I(X) andI°"(a- X) = I(X)2. More generally, letZ =
> & Z; be any cycle. Then the above relationship holds near any smooth
point of SuppzZ, cf. [Catanese92, 1.14.a].

Thus|¢'(Z) is interesting only near the singular points of Spp

Let p € SuppZ be a point of multiplicityd and m, the ideal ofp.
A general projectionr(Z) has multiplicityd at(p), thus eachf(z, Z) has
multiplicity > d at p. This shows that®"(Z) c m$ N 1(2).

By [Catanese92, 1.14.b], & has codimension at least 2 théfiZ) #
I°N(Z) along the singular locus &.

Example 4.7.Let A% ¢ A" be the subspace, = -+ = Xp_ip1 = 0).
Let Z be ad-cycle onA"* and j, Z the corresponding cycle aA". We
would like to compard ¢"(Z) and|°"(j, Z).

A general projection of,.Z can be obtained as a projectiprt A" —
A" followed by a general projectiom : A" — A%+1 This shows that

f(mop, j«2) = T, Z)(Xa + L1, ..., Xk + Lnk),

where thel; are linear forms irkp_k.1, . . . , X, defining p.
This shows that the restriction map

1€M(j.Z) — 1"(Z) is surjective.
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Example 4.8.Let X C A" be defined by equationgXa, . .., Xn_1) =X =0.
A general projection oKX is isomorphic toX and, at least in characteristic
zero,

f(, X) = 9(X1 + &1 Xn, - . ., Xn—1 + @n_1X%n)
=Y ¢a Xm@
| noax!’

where thec, are nonzero constants amgl € K. Since theg can vary
independently, we see that ttier, X) generate the ideal

o' _ .
<xn"£ = (|1,...,|n_1)).

Consider for instance the case= 3 andg = x3 + x5. Then
1N(X) = (X3 + X3, X2Xa, X1 X2, X3, XX, X3X3, X5X3, XaX3).-

x3x2 is integral over S"(X) (since(x3x2)? — x3 - X3xs = 0) but it is not in
1°N(X). Hencel ch(X) # 1°1(X).

Example 4.9.Assume thatk has characteristip and let 0Oc A? be the
origin with ideal(x, y). SetZ = p[0]. Thenf(x, Z) = (ax+ by)P for some
a, b, thus1"(Z) = (xP, yP). Its integral closure is the much bigger ideal
x, yP.

The next lemma gives a product formula f6F(Z). This result is crucial

for the applications and it fails if we do not take the integral closure, as the
example after the lemma shows.

Lemma 4.10. LetZ = ) &[Z;] be an effective cycle. Then
Th(z) = [ J1eh(za.
i

Proof. It is enough to check this for pure dimensional cycles.

Let 7 be any allowable projection faZ. Thenr is allowable for every
Z;i and f(xw, Z) = []; f(r, Z)® which proves the containment. The
converse follows by a repeated application of (3.6). O

Example 4.11.Choosen > 3 odd and inA" consider the 1-cycle of the
n coordinate axeZ = Y ' ,[Z;]. Then

[[1"@) =[] ... % ....x0).
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As a vectorspace this has a basis consisting of all monomials of degree at
leastn which involve at least 2 variables.

On the other hand, | claim th&f"(Z) does not contain the monomial
X1+ Xp.

Letm : (Xg,..., %) — Q. aX, Y bix) be aprojection. This gives the
equation

f(rm, Z) = l_[ (Z mjin) Wheremji = ajbi — a.bJ
[ j
Thus twice the coefficient of the, - - - X, term is

(
2- Z l_[ Mjo(j) = Z l_[ Mio(j) + l_[ Mjs-1(j)
] J

0eS j 0eS

(
= l_[ Mio(j) + l_[ Mo (j)
j j

= [ Tmieir + D] mjau)) =0.
j j

If n = 3 then itis easy to compute thp} 1<(Z;) = (1°7(2), X1 X2X3).
| have not checked what happens for 5 or for even values af.

The following result of [Amoroso94, Thm.B] shows thatf'(Z) contains
a fairly small power ofl(Z). (The statement in [Amoroso94] is slightly
different since he is working with®"(Z), but his proof actually gives this
version.)

Theorem 4.12. [Amoroso94]Let Z = ) & Z; be a cycle inA". Let1(Z;)
denote the ideal of;. Then

[]1(@)*%%% c1h(2).

More precisely, iix € A" is a point then

[]1(z)*™"% c 1e"(Z) in a neighborhood of.

Lemma 4.13. Let Z be a cycle ilPA". Then
1"Z) c 1(2).
LetJ C K[Xq, ..., X,] be anideal. Then
1N Z(K[Xq, ..., %]/ ) C J.
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Proof. Because of the multiplicative definitions bfZ) (2.8) and ofl "(2)
(4.1), itis sufficient to prove the first claim in caZds pure dimensional.
WriteZ = > a[Z;]and letr : A" — A%+ be an allowable projection.
Thenn,(Z) = ) amn.[Z], so f(x, Z) =[] f(w, Z)¥. f(n, Zi) € 1(Z)),
so f(w, Z) € [T (Z)* = 1(2).
The second part follows from the first and from (2.9). ]

5. The ideal of Chow equations and intersection theory

The next result is the key property of the ideal of Chow equations.

Lemmab5.1. Let X ¢ A" be an irreducible and reduced subvariety and
H = (x, = 0) a hyperplane not containing. Then

10X H) C (1°(X), Xn).

Proof. By (4.5) we may assume that the base field is infinite. Choose
a general linear subspade ¢ H \ H \ X of dimensionn — d — 2.
dim(H\ H) = n—2and dim(XNH) <d—1.Since(n—d—2)+(d—1) <
n—2, L is disjoint from X. Letz’ : H — H’ andx : A" — A% be
the projections with centek. Let p : A" — H be a projection and set
7" :=mop: A" — H’. The 3 projections appear in the following diagram:
H C A"
)l ya'lnw
H c A%
X h H can be viewed as a cycle d#; in such a case | denote it ;.
m.(X) is a hypersurface in%+! andz’(Z) is a hypersurface i’ such
thatz,(Z) = 7.(X) N H". Thus

f(n’, Z)(Xl, e, Xpm1) = f(JT, X)(Xl, vy Xn—1, 0)
As in (4.7), the generators of"(X h H) are of the form

f(”, X h H) = f(n', Z)(X1 + @1Xn, . .., Xn-1 + @8n-1%n)
f(', Z2)(Xq, ..., Xn—1) mod (X,)
= f(r, X)(X1, ..., Xn—1, Xn) mMod (Xp).

0

Remark 5.2.More generally, (5.1) also holds X is a pure dimensional
cycle andH does not contain any of its irreducible components.

The generalization to intersecting with several linear equations is formal,
but the induction seems to require the use of integral closure, as shown by the
following example. The final result itself, however, may not need integral
closure.
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Example 5.3.The 3 coordinate axés,, Cy, C;in A3 can be defined by the
determinantal equations

rank(x y 0) <1
zZy z

As we remarked at the end of (4.11),
1(Cy) - 1N(Cy) - 19(C,) = (I°"(Cx + Cy + Cy), Xy2).
Cx + Cy + C;is a hyperplane section of the surface

X y+as bs ><1

Z, given by equations raréz y+cs z+ds

Z, is the cone over a rational normal curve for generdl, c, d. By explicit
computationxyz e 1°"(Z;) and using (5.1) this implies that

1M(Cy) - 1M(Cy) - 1(Cy) € 1N(Zy), 9.
Next consider the surface

Z, with equations ran(x y+as bs )51.

Z y+cs z+ds

For generah, b, c, d this defines a rational triple point. By explicit compu-
tation,xyz ¢ (1°"(Z,), s), which implies that

1N(Cy) - 1°(Cy) - 19(Cy) ¢ (1°(Z2), 9).
Lemma5.4. Let Z be a cycle o\" and H; = (¢; = 0) hyperplanes. Then
1NZ it Hyh - th Hy) € (10(Z), £y, ..., €.

Proof. Consider first the case whehis irreducible andn = 1. The claim
is trivial if Z c H, and theZ ¢ H; case is treated in (5.1).
Next we prove then = 1 case by induction on the number of irreducible
components oZ.
1(Z1+ Z2) th £2) C IN(Zy h €g) - 190(Zy 0 £1)  (by (4.10))

C (I1N(Z1), £1) - (1°N(Z), £1)  (by induction)
C (1N(Zy)1M(Zy), £1)
C (I(Z1+ Z), £1) (by (4.10))

Finally the casen > 1 is established by induction using the chain of
inclusions

1NZ ey hly) C (10(Z M 4y), €2)

C ((1(2), £1), £2)
C (1°0(2), £1, £7).
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We are ready to formulate our main technical theorem.

Theorem 5.5. Let K be a field andZ,, ..., Z, cycles inA". Let Z; M
--- M Zmy be any of the intersection cycles. Then

1NZyth -t Ze) € ((Z0), .., (Zm))-

Proof. Choose an identificatioA™ = A" x ... x A" (m-times) and let
I, : A" — A" be the projection onto threth factor. LetA ¢ A"x...x A"
denote the diagonal.

Choose an ordered set of hyperplangs= (Li = (¢; = 0) : i =
1,...,n(m— 1)) in A" whose intersection i&. This gives us a cycle
(Zyh - - h Zny, £) which we view as a cycle iA"™,

Applying (5.4) we obtain that

10(Zy oo th Zin, £) € (1SN(Zy X -+ X Zin), €1, - -+ s €ngm—1))-

1N(Zy X -+ X Zm) C 1(Z1 x --- x Zy) by (4.13) and using (2.10) this
gives the inclusion

10(Zy th oo Zin, £) € (TE1(Z), - .., TE N (Zm), €1, - - Lagm1))-

Let us restrict toA. The left hand side becomé&"(Z; i --- h Zn) by
(4.7), and the right hand side beconié&Z,), ..., [(Zy)) by (3.4). O

Remark 5.6.1t is possible that (5.5) can be considerably sharpened. The
strongest and most natural statement would be

1MNZy et Z) € (1N(Z0), ..., 1N(Z)).

For the applications the main point would be to get rid of the integral closure
since this would eliminate the extra factor+ 1) in (1.2).

6. Effective Nullstellensatz

We are ready to formulate and prove the precise technical versions of our
main theorems, using the notion of arithmetic degree as defined in (2.11).

Theorem 6.1 (Algebraic Bézout theorem).Let K be any field and
l1,..., In ideals in K[Xy, ..., Xn]. Then there are prime ideal® >
(I, ..., Im) and natural numbers; such that

LI P € (I1..... Im), and
2. ) ;3j < n-[];arith-degl;.
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Proof. Asin (2.9), setz; = Z(l;) and let)_b;X; = (Zy th -+~ N Zm, £)
be any of the intersection cycles defined in (2.5). Get= degX;, then
>_; bjd; < [T, degZ; by (2.6). By (5.5),

[Treo® ¢ U@, - 1 Zw).
i

1(Xj)% c 1h(X;) by (4.12), and so we obtain that
[[1xXpPi% ¢ O, . T(Zw)).
]

1(Zs) C lsby (2.9), hence

(I(Zy), ..., 1(Zm) C (I, ..., Im).

(o dm) € (T € (I, .-+, Im) by (3.2). Putting these to-
gether we get that

[T Xp™% c (a, .. T
j

SettingP; := (X)) anda; := nb;d; gives (6.1). O
Theorem 6.2 (Effective Nullstellensatz). Let K be any field and
l1,..., Inideals inK[Xq, ..., Xs]. The following are equivalent:

1. 14, ..., I, have no common zero K".

2. There are polynomial$; € I; such that

> fi=1 and degf; < (n+1) - [arith-degl;.
j i

Proof. It is clear that(2) = (1). To see the converse, introduce a new
variablexo and letls c K[Xo, ..., X,] denote the homogenization bf c
K[X1,...,X,]. Then arith-degiS = arith-degls andxg is contained in the
radical of(Tl, el Tm), hence it is contained in any prime ideal containing
(I1, ..., Im). By (6.1) there are prime ideaR and natural numbess such
that

LI P c (... Tm), and
2. Zj a; < (n+1) - []; arith-degl;.
Sincexg € P; for everyj, we see that

Za ~ ~
Xo le (|1,..., Im)

Thus there ard; € |; with homogenization&i such that
xoZaj = Z f, and dedf = Z a;.
i j

Settingxo = 1 we obtain (6.2). O
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7. Lojasiewicz inequalities

Next we turn to applications of these results to the study of tojasiewicz
inequalities and separation exponents. These results are essentially refor-
mulations of [Cygan98,CKT98].

Definition 7.1. Let f be a real analytic function dR" andZ := (f = 0).
Fix a norm onR" and set digtZ, X) := inf,.z [|[X — Z||. [Lojasiewicz59,
p.124] proved that for every compact $ethere arem, C > 0 such that

dist(Z,x)™ < C . |f(x)| forx e K.
Any inequality of this type is called Bojasiewicz inequality

In general it is rather difficult to obtain an upper boundrfoin terms of
other invariants off . The problem becomes easieif is replaced byC",
but even in this case it is not straightforward to obtain sharp upper bounds
for m. The question was investigated in [Brownawell88] and [JKS92]. In-
stead ofC, one can work over any algebraically closed field with an absolute
value.

Notation 7.2.Let K be a field with an absolute valye. (The case when

K = C and| | is the usual absolute value is the most interesting, but the
cases wheiK is of positive characteristic gr| is nonarchimedian are also
of interest.)| | induces a norm oK" by ||X|| := (|X1] + - - - + |Xn])Y/2. This
defines a distance dk" as in (7.1).

Definition 7.3. Let X be any topological space and G two sets of
K-valued functions orX. We say thatF is integral overG, denoted by
F « G, if the following condition holds:

(x) Foreveryf € Fandx € Xthere aray, ..., gn € G and a constart
such that f(x)| < Cmax |gi (x)| for everyx’ in a neighborhood of.

If F andG are continuous (which will always be the case for us) then
(%) is automatic ifg(x) # O for someg € G. Thus(x) is a local growth
condition near the common zerosGf

The two notions of integral dependence are closely related by the fol-
lowing result of [Teissier82, 1.3.1]. (The proof given there assukhes C
but it is not hard to modify it to work in general.)

Lemma 7.4. LetK be an algebraically closed field with an absolute valiue
Let X be an affine variety oveK (with the metric topology) andl ¢ Oy
an ideal sheaf. A polynomial function is integral oven the sense of (3.1)
iff it is integral overl in the sense of (7.3). O
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The relationship between the distance function and the ideal of Chow
equations was established in earlier papers.

Lemma 7.5. (cf. [JKS92, 8], [Cygan98, 3.T]Let K be an algebraically

closed field with an absolute valye|. Let Z ¢ K" be an irreducible
subvariety,z € Z a point andm = mult, Z. Then, in a neighborhood af

dist(Z, )" <« 1" « 17 < dist(Z, X).

The main result about Lojasiewicz inequalities is the following.
Theorem 7.6 (Lojasiewicz inequality).(cf. [CKT98]) Let K be an alge-
braically closed field with an absolute valii¢ Letl4, ..., I, be ideals in
K[Xs,...,X%] and Xy, ..., X, € K" the corresponding subschemes. Set
D := arith-deqgl, - - - arith-degl,. Then

dist(Xy N -+~ N X, 2P < (14, ..., I;m) < max{dist(X;, 2)}.
|

Proof. Let (X1 h --- h Xyn) = Y& Z; be one of the intersection cycles.
> g degZ; < Dby (2.6) andZ; C X1 N---N Xy by construction. Thus

dist( Xy N -+ N Xy 2)° < dist(Xg N -+ N Ky, 2) 2 4697
< [[distzi, 2% %9
i

< ]_[ 1M(Z)®  (by (7.5))

C (ly,...,1lm) (by(6.1))
L (g, ..., Im)  (by (7.4))
<« max{dist(X;,2)} (by (7.5)).

With a similar proof we obtain the following local version.

Corollary 7.7. (cf.[Cygan98, 4.5]Let K be an algebraically closed field
with an absolute valug|. Letlq, ..., I, beideals inK[Xq, ..., X,] and set
Dp :=multy,(Z(Iy) M --- ™ Z(Im)). Then, in a neighborhood qf,

dist(X1 N -+ N X, 2P < (11, . ..., Im) < maxdist(X;, 2)}.
|



Effective Nullstellensatz for arbitrary ideals 335

8. Application to deformation theory

In usual deformation theory we are given a schexgeand we would like
to understand all flat familie$X; : t € A} where A is the unit disc.
There are, however, some deformation problems where we are interested
in flat families{Y; : t € A} whereXy = Yy \ (embedded poinjsor, more
generally, wherKy andYy have the same fundamental cycles. This question
arises for instance in studying the Chow varieties. (See [Hodge-Pedoe52]
or [Kollar96, Chap.l] for definitions and properties of the Chow varieties.)
A point in the Chow variety oP" is not a subscheme but a pure dimensional
cycle W e Z4(P"). Thus if we want to study the Chow variety neat
then we need to understand the deformations of all subsch&mesP"
whose fundamental cycle M/. If d > 1 then there are infinitely many
such subschemeX since adding embedded points does not change the
fundamental cycle.

Assume that we find a subscheg c P" whose fundamental cycle
is W and a deformatiofiX; : t € A}. From the point of view of the Chow
variety we are interested only in the fundamental cyclXoénd not inX;
itself. Hence the only case we need to study is wKemas no embedded
points for generat. The affine version of this problem can be stated as
follows.

Question 8.1. LetW e Z4(A"™) be ad-cycle. Lety ¢ A" x A be a sub-
scheme of pure dimensigd + 1) without embedded points such that the
second projectionr : Y — Alis flat. LetYy = 71(0) be the central fiber
and assume that (Yg) = W.

What can we say aboly in terms ofWw?

This question is related to the problems considered in [Kollar95].

As an application of (5.2) we obtain the following partial answer. This
is a place where it would be more natural to use the ideal of locally Chow
equations (4.2).

Proposition 8.2. With the above notation S"(W) < 1(Y). O

Example 8.3.Consider the case Whall = [z = x® — y" = 0] € Z1(A3).
As in (4.8) we obtain that

|Ch(V\/) — (XZ _ yn’ 22, Xz, yn—lz).

On the other hand, in (1.4) we found an example of a deform&isach
that

(S) = (X*—y", 2, xz, yn;zlz).
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Using [Teissier80] we obtain that the length Ig¥)/1(Yy) is at most the
arithmetic genus ofV which is %1 Comparing these two results we con-
clude that

n

=y, 2D 1Y) D (R -y, xz y'7 2) (%)

for every deformatiorY. It is not hard to see that for every ideal satisfying
(xx) there is a corresponding deformation.

Using (4.8) one can comput€” for all monomial plane curves ih®. The
results give strong restrictions &f but | do not see how to get a complete
answer as in the above example. P. Roberts computed several examples of
monomial space curves and in each ce8éurned out to be quite close to
the ideal of the curve.

In higher dimension$®" gives a very unsatisfactory answer whsh=
[Xo] and X is normal. By [Hartshorne77, 111.9.12] in this ca¥g = Xg
but 1 "(Xo) # 1(Xo) if Xg is singular.

On the other hand, (8.2) gives information abdygteven if W has
multiple components. | do not see how to get any information alfgbly
other methods in this case.

Acknowledgementsl thank J. Johnson and P. Roberts for their help with many of the
computations. | am greatful for the comments of A. Beauville, C. Berenstein, R. Lazarsfeld,
P. Philippon, B. Sturmfels, P. Tworzewski and A. Yger which helped to eliminate many
mistakes.
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