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Abstract. The theorem of Ax says that any regular selfmapping of a complex algebraic
variety is either surjective or non-injective; this property is called surjunctivity and investi-
gated in the present paper in the category of proregular mappings of proalgebraic spaces. We
show that such maps are surjunctive if they commute with sufficiently large automorphism
groups. Of particular interest is the case of proalgebraic varieties over infinite graphs. The
paper intends to bring out relations between model theory, algebraic geometry, and symbolic
dynamics.

1. AX surjunctivity theorem

1.A. Strict embeddings and surjunctivity. A map between sets is called
a strict embeddingdenotedf : X C Y, if it is one-to-one buihot onto.

*
Then, following Gottschalk, (see [Gott, 1972]) a map X — Y is called
surjunctiveif it is nota strict embedding. In other wordsis surjunctive iff
it is either surjective or non-injective.

1.B. Theorem[Ax] 1. Every regular selfmapping of a complex algebraic
variety X is surjunctive

In other wordsno X admits a strict embedding c X. Or, put it yet
another way, “one-to-one” implies “onto” for every regular mip X — X.

If X = C" this specializes to the following earlier result by Bialynicki-

Barula and Rosenlicht, (see [BB-R, 1962]).

1.B'. Every complex polynomial self-mapping@f is surjunctive.
Repeat, this signifies thab strict polynomial embeddin@" g C"is

possible, i.e. every injective polynomial m@&j — C" is surjective.
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2. Proalgebraic spaces and their endomorphisms

A complex proalgebraic spaameans a projective limiK of a projective
system of complex algebraic varietie§ wherei runs over adirected
setl. The simplest and most important case is wHeee N = {1, 2, ...}.
Here our projective system can be given by a strin@ ofarieties X; and

connecting regular maps, also callpwbjections X; <« X, <« ... <«

vl 3 TTj
Xi < ....Then the projective limiX = lim X; consists of the sequences

Ti+1 <«

Xi € X such thatri(x)) = % foralli = 2,3,.... For example, the
complex Euclidean spacés, i = 1,2, ..., form such a projective system
for the natural projections;,; : C'*t — C' and the limit, denoted’>,
consists of all infinite sequencés,, z,, ...,z ...) for z € C.

Recall that a partially ordered sktis calleddirected if for every two
elementd,, i, € | there exists a third one, s&y € |, dominating both of
them,iz > iy, io. In other words, th@ositive cone$ij ={iel,i>iy}and
Iij = {i € |,i > iy} have a non-empty intersection. A subset in a directed
setl is calledcofinalif it intersects every positive cone In A subset inl is
calledresidual if it contains some positive cone. A partially defined order
preserving map between directed sets, Isay |’ — J, is calleddirected

if its domain of definitionl” is residual inl and its image is cofinite id. If
J' ¢ Jisresidual then its pullback—*(J") C I’ C | is, obviously, residual
in 1. Consequently, a composition of directed maps I’ — J and

Jo>J —ﬁ> K is directed with the domain of definitiorf = «=(J) C I.

A proregular mapf = f., between two proalgebraic spacés= X, =
I|m XjandY = Y, = I|m Y;j is given, by definition, by a directed map

between the underlying dlrected setsp I — J, denoted +— | = (i)
and by regular map$ : Xj — Y; such that all diagrams commute

X, ? YJ1
Tigip ¥ s iz
Xi, ? YJ2

wheremr;, ;, andrj, j, are the connecting maps of our projective systems
defined for alli; > j, andj; > j.. (In the above case df = N we have
Ti,i, = Wi, © Wi,—1 0 - -- o 7j,). Clearly, one can compose proregular maps
with the composition being proregular.

2.A. Example : polynomial mappingsC* — C*. Afunctionp : C*—C
is called apolynomialif it is a polynomial depending on finitely many
complex variables, sag, , z,, ... , z, € C among the infinity o, z,. ..
making upC®. In other wordsp is obtained by composing the projection
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of C* to someCk with an ordinary complex polynomial* — C. Then
a polynomial mapf of C* into itself, f : z = (z1,2,...%...) —
Z =(2,2,...7...) is defined byz = pi(2) for some polynomialgy
on C™. It is easy to see that these polynomial m&ps — C* are the
same as proregular self mapping (endomorphismsy®fthought of as
a proalgebraic space.

2.B. Our central problem. Find simple conditions which ensure surjunc-
tivity of a proregular endomorphism of a proalgebraic space

First, let us make clear that some conditions are unavoidable.

2.B'. Counterexamples.(a) The complemenX = C\{0, 1, 2, ...} is pro-
algebraic being the decreasing intersection of quasi-affine vari¥ties
C\{0,1...i}. And the (obviously proregular) map— z— 1is one-to-one
but not onto.

(b) The polynomial mapf : C* — C*> for f : {z;,2p,...} —
{0, z1, 25, ...} is also one-to-one but not onto.

The above may look discouraging. Yet we shall see that surjunctivity is
rather typical for maps commuting with a sufficiently large automorphism
group (or pseudo-group) acting oh Here is our basic example.

2.C. Endomorphisms ofX* = X2. Let X be an arbitrary (finite dimen-
sional !) complex algebraic variety amdl be a countable set. Then the
infinite Cartesian poweK = X2, i.e. the space of alX-valued functions

on A, comes along with a natural proalgebraic structure. One can see this,
for example, by enumerating, i.e. by bijectingN = {1,2,...} <> A and

thus identifyingX® with

X* =X = (X1, X, .. X gex = lim X = X2
- <~

Or, more invariantly, one can use the directed sa#tall finite subsets2 C A
(I can not bring myself to denote theinc A, | rather haveR2 € ). Here
one has the projective systegX®, Q < |} with the projectionsx® — X*
for all @ > = corresponding to restrictions of functiors= x(w) € X
from © to . One can see that the projective limit ¥f* is isomorphic
to the abovexX> :Ii(r_n X' (where, recall, the Cartesian powexs form

a projective system with the projectiops < X? < ... < X' « ...)
in the category of proalgebraic spaces and proregular maps. In fact, take an
exhaustion ofA by finite subset2; C Qo C ... C Qi C ..., U Qj = A.

|

Then the projective limit limX% obviously equals the projective limit

lim X% over all$2 since the subsef®; exhaustingA arecofinalin the set of
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all finite 2's in A. On the other hand the spacggi = ANi, N, = card<;,
make a cofinal subsystem §iX'}i_1 » . and so limX% = lim X',

Now, suppose we have a groiipacting onA and thus onX = X2 and
let f : X — X be a proregular-equivariant map.

2.C. Theorem. If T" is a locally compact (e.g. discrete) amenable (e.g.
solvable) group and the action @f on A has finitely many orbits (e.g.
transitive), thenf is surjunctive, i.e. one-to-one> onto for these map$.

Remark. In many examples the isotropy subgrodpsc I', § € A, are
compact and therh admits a structure of a locally finite graph invariant
underT. Yet we do not have to make this assumption as the general case of
the theorem trivially reduces to the one wh&geare compact.

We prove the theorem in 5.Mexploiting Ax’ idea of reduction surjunc-
tivity from the algebraic category to finite sexs

2.C’ Question Are I'-equivariant proregulator selfmappings ¥f are
surjunctive for all, not necessarily amenable, grolipacting onA with
finitely many orbits ?

One knows, this is true fanitially subamenablde.g. residually amen-
able) groups (see 4.G) but the question remains open even in the more
traditional framework oymbolic dynamics.e. forfinite setsX, where the
problem was raised by Gottschalk in [Gott] and persued in [La].

2.C"" Generalizations Theorem 2.Cextends to some endomorphisms of
proalgebraic spaces where the global symmetry group is replaced by partial
symmetries. The spaces we consider in this paper arise startingXfom
whereA is a countable connected graph whibunded valengy.e. having at
mostd < oo edges at each vertex. Suchhdas many partial symmetries

i.e. graph isomorphismg : D < D’ between finite subgraph® and

D’ in A and we require ourf to be compatible with the transformations
XP « XP induced by some of thege Then we consider a certain space
X° of “orbits” of these transformation¥® <« X" where we have a natural
map f° : X° — X°. Here we are able to prove surjunctivity &f under
suitable amenability assumptions a@n (see 7.G). In fact, we prove in

87 a more general theorem applicable to proregular endomorphisms of
orbit completionsX® of certain (sufficiently soft or “stable”) proalgebraic
subvarieties inx2.

2.D. Examples Let A be a graph with exactly edges issuing from each
vertex$§ € A and let, moreover, we are given an ordering of these edges at
eachs € A. Thus the vertices adjacentd@an be enumerated lohindices,

call themé; = i(8) € A, i = 1,...,d, for each§ € A. (If we allow
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several edges between pairs of vertices, we may fawes; fori # j and
loops ats makes; = & for somei). Next, letp: X x X x --- x X = Y

be aY valued function ind-variablesx; € X, i = 1,. dd and let us
construct a magf = f, : X* — Y* as follows. Think of eactx € X*
as anX-valued function omA and sendk to the functiony on A where the
value ofy at eachs € A is determined by the values afat the adjacent
verticess; = §;(8) € A according to the rule

Y(8) = p(X(81), X(82), . .. , X(8q))- ()

For instance, one might hav¢ = Y = C and f defined withp = x; +

Xa2. ..+ Xq by
d

y®) =) (). for & =8 ).
i=1
In general, ifX is an algebraic variety and: X% — Y is regular, then the
resulting f : X* — Y* is clearly proregular.

The constructionp— f,, can be thought of as a kind of a “symbolic
dynamic functor” in two variablep and A, wherep € MapgX? — Y)
andA is ad-regulargraph (i.e. withd edges at each vertex) wibhcal order
(i.e. with orderings of the edges at each vertex). The range of this “functor”
isour f, = fp : X* - Y € MapgX® — Y*).

We are mostly concerned in this paper with the case where Y
and sof mapsX” into itself. We seek assumptions @nand onp which
make f surjunctive. There is one case where everything is clear, namely for
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d = 1 andy(§) = p(x(d)). Here the graph structure is not relevant at all
and the mapf just repeat9 infinitely many times. Thus the surjunctivity

of f trivially reduces to that fop itself. But, in general, the combinatorics
of A enters in a subtle way and we do not actually know how to hafdle
itself rather than its orbit completion mentioned above. Yet no completion
problem arises for homogeneous graphs as is explained below.

2.D. Cayley graphs LetI" be a group with a distinguished set of generators,
sayD = {y1, ..., vq}. Thenthe Cayley grapm of (I", D), by definition,
hasT for the vertex set, wherg andy’ are joined by an edge whenever
y~y’ € D. The groupl’ acts by graph automorphisms anvia the left
translations and this action induces an obvious (shift) action onh X =

X9 = XT. (In fact A may have more global and/or partial symmetries but
we do not need them at the present moment). The fnapf, : X" — X"
defined with (*) clearly commutes with the actioniofas it commutes with

all graph isomorphisms) and so we arrive at an instance [ofiravariant
proregular selfmapping of". In fact, it is easy to show that every proregular
I'-equivariant magf from X' to Y arises in this manner with soniec T

and a regular map from XP = {mapsD — X} to Y. Actually this
f=f,: X' — Y! can be described without any reference to the Cayley
graph as follows. The value gf = f(x) at a giveny < T is obtained by
first restrictingx = x(y) to they-translate ofD, denoted/D C I and then

by evaluatingp on this restriction(x|yD) € X" = XP, where X'P is
identified with XP via the correspondenge: § <> y5. That is

Y(») = pX(¥8)sea) - (k%)

Soourf appears here as atgbraic difference operataacting on functions
x : I' = X. (For instance, iT" = Z, this can be written in the traditional
form f : x(k) — y(k), k € Z, for

y(k) = px(tk —m), ..., x(K), ..., x(k+n))

for somem andn, such tham+n+ 1 = d).

Clearly, the above is the special case of the maps considered in 2.C.
and so theorem 2Capplies. This yields the surjunctivity of = f, for
every amenable (e.g. solvable) grabp

Remark. What makes the picture attractive in our eyes, is the definition
of a transcendental object, the mdp: X" — Y, via a single regular
map between complex algebraic varieties, gur X — Y, which we
regard as an “elementary” or “finitary” object. And it is amazing, how
logically convoluted our surjunctivity becomes when translated back to the
(elementary) first order language ! (see 7.KActually, this translation and
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keeping track of a multitude of quantifiers needed for our proof, constitute
an essential part (painful but apparently unavoidable) of the present paper.

2.D’. Example of an orbit completion. Let po and p; be two different
regular mapX® — Y and leti be a Q 1-function onl", i.e.amag : ' —
{0, 1}. Definef = f; : X — Y2 by

f:X(y) = Y = Pig) X(¥)sea) - (xx)

In other words, the valug(y) is computed either withpy or with p; de-
pending on the value 0 or 1 ofat thisy € T'.

The functioni may be thought of as a member of the sp@td}’ where
the groupl” acts by the obvious (shift) transformations. If we replabg yi
for somey € T, we get an essentially same mépHowever, if we take the
full orbit I"i € {0, 1} and consider somgfrom theclosurel of I'i in the
product topologyof {0, 1}", then this mag : I' — {0, 1} may look rather
different from allyi and f; : X* — Y* may be quite dissimilar to aff,;.
For example, i" = Z andi(y) = 0fory < 0andi(y) = 1fory > 0, then
amongj’s one findsj(y) = 0 andj(y) = 1.

Now we letX° = X x | andY® : Y x | where f° mapsX® to Y° by
(X, 1) — (f;(x), ). This is an instance of our orbit completion (see’7dC
the general case) where we claim thatis surjunctive forX = Y if the
groupI' is amenable and the function I' — {0, 1} is quasihomogeneous
in the following sense.

Denote byl” = I''(i, D) for someD c T the set of those € T for
which the restriction of onyD c T equalsi|D where we identifyD and
yD by § <> y6 for all § € D. We say that™” is cofinite inI" (or makes
anetin I) if there exists dinite subsetD’ C T', such that’D’ =T, i.e.
finitely many right translates df” cover allT” (where the action we used
was the left action of" onT'). Finally we calli quasihomogeneous$the
abovel” = I''(i, D) is cofinite for all finite subset® in T".

Notice thatX° andY* are (naturallyproalgebraicand f ° is aproregular
I'-equivariantmap for the diagonal action df on X = X x | and on
Y° =Y x |.In general, however the spaces likeare neither proalgebraic
nor do they possess global symmetries while the roleisplayed by some
space of marked grapls (Compare 86).

Remarks. (a) Symbolic algebraic geometnt seems to me that infinite
dimensional spaces suchaequivariant (pro)algebraic subvarietiesXh
andrI'-equivariant pro-regular mapping between these provide a meaningful
meeting point between algebraic geometry and symbolic dynamics. Our Ax-
type theorem illuminates a tiny region as the two domains come into contact
but the entire field remains in the dark. (See [Grsy for a different view

on the symbolic algebraic geometry).
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(b) Algebraic varieties associated to graptere is an example of how the
“symbolic” idea leads to an attractively explicit class of algebraic manifolds.
Start with aralgebraic graphA, i.e. a subvariety in a Cartesian square of an
algebraic variety, sap = (X x X, Y C X x X). Here we think ofX as the

set of vertices ofA andY plays the role of the set of edges. Notice that these
edges aréirectedas X x X consists of ordered pair(g, x'). (If we want to
mimic an ordinary undirected graph rather thatigraph, we should tak&/
invariant under the canonical involution ¢hx X. On the other hand, if we
care for multiple edges and loops, we may take a non-injective morphism
Y — X x X).

Now, for every abstract digraph = (A, E C A x A) (where we use
the same notation for the vertex setofndA itself), we consider the space
A2 of the mapsA — X sendingE to Y. (For general digraphg — X x X
andE — A x A one should use pairs of compatible maps— X and
E — Y). Forinstance ifY ¢ X x X is given by an equatiori(x, x') = 0,
then A C X* consists of the strings of variables € X indexed by the
verticess € A such thatf(xs, Xy) = 0 wheneveb andé’ are adjacent im\,
i.e.(8,8) e EC A xA.

Question. Suppose we know everything about the variedeandY. What
can we say abouA” for a givenfinite graphA? Specifically, when isA*
non-singular and what are its Betti numbers ?

Example. AssumeX is defined ovelC and X x X is embedded to some
CPN, intersectX x X with a hyperplaneH ¢ CPN and takeY = Y, =
(X x X)NH.

Now we specify the above question to the present case where we take
Y = Y, for ageneric(possibly depending on) hyperplaneH. In fact,
the problem becomes much easier (and still interesting) if weddferent
genericH's for different edges ofA. To make it simple we express by
the equationfy (x, X') = 0 and then, instead of sticking #®&* = A*(H)
given by theidentical equationsfy(Xs, Xs) = 0, (8,8") € E C A x A,
we allow H to depend on the edges Af Namely, we take some collection
of hyperplanesiH = {H. c CPN} indexed by the edges = (8,8) €
E C A x A and defineA® (H) c X* by the equationgy_(Xs, Xy) Written
down at all edgee = (6, §') of A. Here the genericity has more power as
we may perturbH’'s independently of each other and it is easy to see that
the resulting varietyA” () is non-singular for non-singulaX and generic
H = {He}. Thus the topology ofA” (H) does not depend oA for generic
‘H and one is challenged to figure out what this topology actually is. (See
pp 210-214 in [Gralpr for specific examples and geometric applications).
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Generalizations.If one startswith& € X x X x ... x Xford > 2, then

d
the corresponding spa#e* makes sense for evedyhypergraph Similarly

one may use the language alfjebraic simplicial spacegcf. dimensions

d > 1) but all that, albeit useful linguistically, does not enrich the class of
varietiesA%.

The structure of the paper. The next 83 is devoted to an elementary algebra
geometric discussion around the Ax theorem, where we sketch, in particular,
the topological proof due to Bialynicki-Barula and Rosenlicht as well as
the generalization of that by Borel. Then in 84 we prove basic properties of
proalgebraic varieties we need in future. Also we explain how surjunctivity
fares when we go from one group to a “nearby” group and prove surjunctivity
for initially subfinitegroups (see 4.G. The following 85 starts with a brief
introduction to the first order theories. We explain the ideas of distance
and approximation for models and, in particular, bring forth ¢ixeended
Lefschetz principlésee 5.F constituting the major idea of Ax’ argument
based on an approximation 6fby the fieldsFp :LUJ Fpo. Then we explain

how one should reformulate the notions of injectivity and surjectivity in
the proalgebraic category in order to make surjunctivity amenable to the
extended Lefschetz principle. This reformulation is used in the case of
I'-equivariant proregular mapé : X' — X! where the surjunctivity is
reduced to that of shift endomorphisrBs — S whereSis a finite set.
Thus we prove surjunctivity foramenable grolipwhere the corresponding
feature for shift endomorphisms is rather obvious (and well known).

Our main constructions are exposed in 87 with 86 presenting basic graph
theoretic terminology in the spirit of the above 2.@nd 2.D. We explain at
the begining of §7 how partial symmetries of graphsict on proalgebraic
varieties X associated ta\, this is what we calholonomyH, and then
we introduce théolonomy(orbit) completionX® of X (see 7.C) generaliz-
ing 2.D’. Then we isolate the essential propertiesAoAnd H needed for
surjunctivity of f° : X° — X°. (These may look rather heavy and arbitrary
at the first sight but | think that most of them will prove relevant in further
development of “symbolic algebraic geometry”). We formulate our main
surjunctivity theorem in 7.Gand prove it in the following sections by essen-
tially repeating the steps used in 85 : first translating everything to the first
order language, then applying the extended Lefschetz principle and finally
using a counting argument borrowed from the topological entropy. All this
is, essentially, a routine; yet | could not find a two page argument taking
care of all details of the picture. On the other hand, | did not attempt to
state and prove everything in the maximal generality. But | tried to indicate
different possible directions and perspectives around the Ax theorem with-
out tying them all up by a unifying formalism (that would make the article
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twice shorter but, in my view, unreadable). My primary goal was to initiate
a meaningful conversation between the three well established domains :
model theory, algebraic geometry and symbolic dynamics.

Finally, we explain in 88 the “Garden of Eden” surjunctivity theorem
originated in 1963 in the theory of cellular automata.

3. More about Ax’ theorem

3.A. Let us explain in simple terms why no complex algebraic vardty
admits a strict embedding into itself. First we recall the standard

Open embedding Lemma(see 3.19 in [Har])Let f : X — Y be an
injective regular map between equidimensional complex algebraic varieties.
Thenthe imagd(X) C Y is Zariski open, i.ef(X) = Y\ Afor an algebraic
subvarietyA C Y.

3.B. Now apply this to an injective polynomial map : C" — C" and
show, following [BB-R, 1962], that the imadé : f(C") c C" can not be
homeomorphic (not even homotopy equivalentlCtounlessA = C"\U is
empty. Indeed, take a non-singular paing A at which dimy A=m > 0
and let ™™-1 pe a smalle-sphere in the normal spade,(A). This
sphere is non-trivially linked wittA and hence is non-homologous to zero
inU = C"\A. ThusHzn-m-1(U) # 0. Q.E.D.

2(n-m) -1
Ss

Fig. 2.

3.C.The Ax theorem (see [AX) claims, in general, that
one-to-one— onto

for all regular selfmappings : X — X whereX is an arbitrary complex
algebraic variety (or more generally the setkofpoints of a variety over

K where K is an algebraic closed field). This is rather obviousXifis

a projective or more generally, complete (and thus compact) variety, as no
proper subset of sucK is homeomorphic (not even homotopy equivalent)
to X. On the other hand the case of a Zariski open suksetC" is already
interesting. It is not totally obvious that a rational map C" — C" which
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is regular on thisX andinjects X into itself must sen onto all of X. Yet,
following Borel (see [Bor, 1969]) one can show th&tcan not be homo-
topy equivalent toX\ A for a non-empty Zariski closed (or even arbitrarily
constructiblg subsetA c X. In fact the above homological argument gains

in efficiency when applied to an iterat€” = fo fo...o f for largei.
—_—
i
HereU; = f@(X) c X is obtained by removingdisjoint homeomorphic
copies ofA from X,

U = X\(AU f(A U f@PA)U--.).

SinceX has finite topological type, the major contribution to the homology
Hak-1(U;) for k = codimec A comes fromi small spherical2k — 1)-cycles
that are linked tdA, f(A), ..., f'(A). Thus

rankHy_1(Uj) > i — const X)

with const{X) < rankH,(X). Now, clearly,U; is nothomotopy equivalent
to X for i > 2constX which trivially implies thatX = Up can not be
homotopy equivalent td = U, (asUj ~ Uj i for j =0,...,i —1would
makeUg ~ U;).

Itis not hard, following Borel, to extend this idea, homology + iteration,
to all complex algebraic varieties and prove Ax’s “one -to-one” implies
“onto” theorems in full generality. Then, one can invdkefschetz’ prin-
ciple and derive Ax’ theorem for all algebraically closed fields of zero
characteristic (see [Bor, 1969]).

3.D. The original proof by Ax is of more formal (model theoretic) nature
where surjunctivity of regular selfmappings is derived from that for self-
mapping of finite sets via a suitable modytoreduction (see 5.F). We
extend this powerful idea to the infinite dimensional context where the
modulo p reduction lands in the category of symbolic dynamical systems
replacing the finite sets of Ax’ argument (see 5.M). Now, not all “symbolic
endomorphisms” are surjunctive, but whenever they are such, so are also
the corresponding proalgebraic ones (see”b.Nlhus Ax’ idea gains an
extra edge in the infinite dimensional case which hardly can be matched
by a topological argument in the spirit of 3.B. and 3.C. (Eventually, the
topological proof will be rendered infinite dimensional as well, | believe.)

3.E. The converse to Ax’ theorem fails to be true : the map> x? is onto
but not one-to-one and, X2) — ((1+X1)2, X1%2) is not even finite-to-one.

Also, this theorendoes notextend to general complex analytic maps
C"— C" for n > 2 as manifested by the famous Fatou example (see [Deq]).
Yet it may be true for special classes of such méapsC" — C", e.g. for
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those where the differentidd f(x) (and/or its inverseD—1) grows slowly
(strongly subexponentially) for — oo.

3.F. The first (as far as | checked the references) one-to=srento result
was proven foreal polynomial mapR? — R? in 1960 by D.J. Newman.

It was extended to real polynomial maR8 — R" by Bialynicki-Barula
and Rosenlicht and then to regular mapsofmal (e.g. non-singular) real
algebraic varieties by Borel who was inspired by the Ax’ theorem (see
[New], [BB-R], [AX], [Bor]). Notice, that Ax’ method applies to certain
non-closed fields, (see 3,but not toR). The main point in the real case is
to observe that a regular mdp: X — Y between smooth equidimensional
R-varieties has a well defined degree mod 2 over a Zariski open subset
in Y. It follows, Y\ f(X) is Zariski closed inY for injective mapsf and
then the mod 2 homology + iteration do the job for mdpsX — X (The
mod 2-degree idea was explained to me by Slava Kharlamov).

3.G. Constructible sets and mapsA subsetA in an algebraic variety

X is calledlocally closedif it is a difference A\X where A and X are
subvarieties irX, i.e. Zariski closed subsets. Notice, that this representation
can be made canonical withbeing the Zariski closure dkandx = A\ A.
Next, a subseA c X is calledconstructibleif it is a finite union of locally
closed subsets. Notice, that this makes sense for a vatidgfined over any
field K if the words “set”, “subset” etc. refer to the s€tK) of K-points

of X. (We dealt before exclusively witk = C and did not distinguish
notationally X and X(C)).

It is rather obvious that pull-back of a constructible subset under
a regular map is constructibleNhat is deeper is the following classical

CIT : Constructible image theorem. If the fieldK is algebraically closed
then the image of a constructible subgetc X(K) under a regular map
f : X = Y is constructible inY(K) (see 3.19 in [Har]).

Basic example Let A ¢ K™ be an affine subvariety. Then the projection
of Ato K" is constructible, provide& is analgebrically closedield.

Now we can defineonstructible mapsf : X(K) — Y(K) as those
where the graph$; ¢ X(K) x Y(K) are constructible subsets. In par-
ticular, one may speak @bnstructibly isomorphispacesX(K) andY(K).
These meaiX andY can be decomposed into mutually biregularly isomor-
phic constructible pieces. Then one easily sees that every vatidty is
constructively isomorphic to a constructible subset in some affine $p¥ce

3.G. Ax’ theorem for constructible maps. Let K be an algebraically
closed field andA ¢ X(K) be a constructible subset in an algebraic variety
X over K. Then every constructible selfmappingffs surjunctive
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The proof is identical to that of Ax’ theorem (see B.FWhat is amusing
is a combination of this theorem with the following

3.G". Conservation property. Consider a rational selfmapping &, i.e.
a regular mapf : U — X whereU is a Zariski open subset iX, i.e.

N

U = X\ _U1 Y; whereY; areirreducible subvarieties inX and whereX
1=

itself is assumed irreducible.

CP.If f isone-to-one andimY; <d, i =1,..., N then the complement
of the image, saY’ = X\ f(U) can be covered by subvarieti&s, i =0,
1,..., N, whereY/ are irreducible of dimensior d and Y is a union of
subvarieties of dimensiog d — 1.

In fact, Ax" argument reduces this to the case of finite fields (see 5.F)
where one applies the Lang-Weil theorem claiming that the number of
F-points in an irreducible variety of dimensidns approximatelycardF)?
for most finite fieldsF (see App. C in [Har]).

Remark. This “conservation law” for the number of complementary com-
ponents can be alternatively obtained by the topological reasoning of Borel
but this requires a little effort.

3.G”.0One may also try to count the complementary components of different
dimensions. This is possible, for examplerif= X\U andY’ = X\ f(U)

have isomorphia-dimensional parts and then one can count(the- 1)-
dimensional ones. Technically speaking, one should work in the con-
structible category and observe that CP makes sense and remains valid
for constructible maps : U — X.

Questions.(a) What is the maximal set of numerical invariants of varieties
in a given birational equivalence class reflecting the order relation inherent
in the above version of Ax’ theorem ? (The varieties obtained by blow-
ups at different non-singular rational points are apparently numerically
undistinguishable from one another as was pointed out to me by Fedia
Bogomolov).

(b) Let two algebraic varietieX andY admit embeddings to a third
one, sayX «— Z andY < Z, such that the complemeni\ X and Z\Y
are biregular isomorphic. How far aré andY from being birationally
equivalent ? When does there exist a constructible bijectien Y ?

Remark. One can make a Grothendieck group out of constructible iso-
morphism classes of algebraic varieties wHete+ [Y] = [Z] corresponds
to

XUY=ZwithXNnY=4¢.
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The above questions (as well as the one it bertain to the structure of
this group.

Observe that the Euler characterisf¥] — x(X) defines a homo-
morphism of the Grothendieck group #o There is hardly anything else
like the Euler characteristic, but the cardinalitiei-?gﬂ‘-points ofQ-varieties
serve a somewhat similar purpose (comparé)s.F

Also notice that one can strengthen the equivalence relation in the defin-
ition of the above Grothendieck group by allowing, besides biregular maps
on the strata (making up constructible bijections) the action of the Galois
group ofC (compare the end of 4J.

3.H. On the order relation X c Y. Ax’ method allows one to operate with
+

algebraic varieties ovet as if they were natural numbers with the order
relationm < n corresponding to the strict embedding relatiénc Y. In

#
particular, one can take minima, maxima, minmax etc for families of these
varieties as follows.

Let : X — B be a morphism of varieties ové. Then there exists
a “maximal” fiber Xmax i.€. 7 1(bg) c X for someby € B, such that
it admits no strict embedding into another fiberi(b) for all b € B.
Similarly, there exists a “minimal” fibeiXi, such that nar~*(b) strictly
embeds intoXmin.

One can bring the two statements together by considering two parametric
families of varieties, sa¥, c. Here one proves the existence of a “minmax”
point (bp, Cp) € B x C. This meansXy, ¢, is “maximal” in ¢ and Yb3c,

S.t. Xp,.c, receivesno strict embedding fronXp.. Similarly one states and
prove the existence of maxminmax etc (see 5.H).

3.l. Ax theorem for subconstructible spacesGiven the notion of a con-
structible subset itkK", one goes on building new spaces as follows.

Take a constructible subsét ¢ K". Next, take a constructible subset
R C A x A C K?" which is anequivalencerelation, i.e. symmetric and
transitive. DefineB asA/R and call thesd subconstructible spaceshere
(A, R) is called apresentationof B. A subsetBs C B; x B is called
subconstructiblef it lifts to a constructible subset in the corresponding
productA; x A, ¢ K2, Then define subconstructible morphisBis— B,
as maps with subconstructible graphes.

3.I'. Theorem. Let U; and U, be subconstructibly isomorphic subspaces
in some subconstructible spad® over an algbraically closed fielK.
Then their complements have equal dimension§sagd equal numbers of
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irreducible components of dimensiérn particular every subconstructible
selfmapping oB is surjunctive

About the proof. First we observe that the notion of dimension and of irre-
ducible components obviously extend to our category and so the statement
of the theorem makes sense. Then we reduce the general case to that of the
fields K = F,, (see 5.B. Finally, we consider the minimal field; > F,

for someq = p’ so that the coefficients of polynomials involved in the
definition of B, Uy, U, and the isomorphisnf : U; < U, (Recall that
everything was defined in terms of algebraic subse®"ifor C?") appear-

ing as zero sets of some polynomials). Then the Galois groﬂﬁ;J ef Fq
overFq, generated by the Frobenius automorphisms x4, acts onB and

this action preservds,, U, and commutes with . Thus everything follows

from the fact thaB equals an increasing union of the periodic orbits of the
Galois-Frobenius action (compare 5.F).

Remark. The above theorem adds nothing new compared teGCas
every B is subconstructibly isomorphic to a constructible subsétinyet
the logic of the above definitions suggests something new for=dino,
namely the notions afubproconstructible spaces and morphigsee 4.F
and 7.P).

3.J. The surjunctivity can be extended from map&C) — X(C) to regular
mapsX(C) — Y(C) where X(C) andY(C) are conjugate by some Galois
automorphisms of. In fact if X(C) g g(X)(C) for some varietyX over

C andg € GaloigC/Q) then Borel's argument delivers strict embeddings
X(C) c g¢(X)(C) with the “homological” size of the complement abdut
#

Thus every regular map : X(C) — g(X)(C) is surjunctive.

Remark. This extends with little effort to the (sub)constructible category.
In fact a model theoretic reduction to finite fields is also possible here. This
is rather obvious foiX andY defined overQ and the general case can be
derived, | believe, along similar lines.

4. Approximation, surjunctivity and symbolic dynamics

One can sometimes prove surjunctivity of a selfmappfng X — X by

suitably approximating it by a family of mapg, : X, — X, which for

some reason are known to be surjunctive. For example, tkgseay be
f-invariant subsets itX. If their union equalsxX then the surjunctivity of
all f,: f|X, obviously implies surjunctivity off.
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4.A. Example : Surjunctivity over Fp. Recall that the field, i.e. the
algebraic closure of the prime fielfl, (consisting of residues modulo

a prime numbep), equals the increasing union of finite fieltls = OL_jl Fpe.

Then, for every regular selfmappinigof a variety X oveer, we observe

that bothX and f are defined over soni&,» and so the mag : X(Fp) —

X(Fp) sends the.-points into themselves for all > vg. Thus the maps

f, i X(Fp) = X(Fy), v > v, approximatef in the above sense as the

union of F ,.-points overv > v, gives us exactly alF ,-points of X, i.e.

X(Fp) = U X(Fp). But the mapsf, = f|X(F) are surjunctive as the
V>V

setsX(IE‘pv_) are finite and so the surjunctivity df follows.

Remark. Notice that onte=> one-to-one over eadhy, but this does not pass
to the unionF, =U IFp», unlike our surjunctivity implication “one-to-one
= onto”.

4.B. Now, supposeX is given a topology and the union of, C X is
dense inX. Then we can derive surjunctivity df from that of f, = f|X,
provided we can prove that the imadgex) C X is necessarily closed and
so “dense imageZ “onto”.

4.B. Example. Let X be acompacttopological space and : X — X
a continuous selfmapping. Suppo$eadmits a familyX, c X, v =
1,2, ..., of finite f-invariant subsets whose union is denseXinThen,
clearly, f is surjunctive.

4.B’. Shift endomorphisms.Let Sbe a finite set (alphabet) antl = S,
where the infinite power space

S =.. . xSxSx...xSxSx...

is given the product topology (with respect to whigh is homeomorphic
to the Cantor set). The natural actionZbn this X is called“shift” or the

full Z-shift on the alphabe®. One may think of elements i&” of doubly

infinite words with letters fromS. Then the generator & Z shifts each
letter to its neighbour’s place to the right.

...aabbababcacdah .
...aabbababcacdah .

Here finite orbits of a group action are callpdriodic orbitsand their
(finite!) cardinalities are callegeriods For example orbits of period 5 for
the shift look like this

...abbdcabbdcabbdc .

| shit
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Obviously, there are only finitely many points of a given period, namely
p°adS points of periodp. Also it is clear that periodic points are densedin
Indeed every word € X can be approximated by-periodic wordsx,, for
p=212.... To do this we just periodically repeat ti@tial block of x.
Namely think ofx as anS-valued functionx = x(i) € S i € Z, and define
Xp, (1) by two conditions,

(1) Xp, (i) = x(i) fori in the segment-q, ... ,0,...,p—q,
(2) Xpy (i + P) = Xpq (), i € Z.

Thesex,, are clearlyp-periodic and ifg, p — q — oo thenx,, — Xin our
product topology.

Clearly, everyshift endomorphismi.e. a continuou&-equivariant map-
ping f : X — X, sends each subs¥t, C X of p-periodic points into itself
andso f is always surjunctive

Notice, that there are lots and lots of shift endomorphisms. Indeed take
an arbitrary mag : S™"*! — Sand then defind : x — y by

y(i) = o(x(i —m), x(i —m+1),...,x(@),...,x(3{ +n))

(as we did in 2.C for regular maps). Clearly this f is continuous and
commutes with the shift. Conversely, one can easily show (compare (
below) that every shift endomorphism comes this way. On the other hand
one has no clear picture yet of all shéfitomorphismgsee [He]).

4.C. "Varieties”, “regular maps” and the prodiscrete topology. We want

to generalize the above to infinite s&%quipped with extra structures, e.g.
to algebraic varieties ovér. So we start with some subcategory of the cate-
gory of sets, where the objects are caltedrieties” and morphisms called
“regular” maps. The we take projective limits of otwarieties” and call
these “provarieties” and their morphisms, i.e. projective limits of “regular”
maps defined as in 8§82, are calfgoregular” maps. In what follows, we
stick to projective limits over countable directed systems admitting a cofi-
nal subsystem isomorphic ¥ = {1, 2, ...} and so everything reduces to
projective limits of sequences,

X=lim X; for X; < Xy« ...« Xj <~ ...,
as in 82. (But in our applications, we shall use the directed systems over

finite subsets of a countable set, compare 87).

Prodiscrete metric [x — x| on X. We define a metric on eacky, denoted
[xi =X/ | by |xi —x{| = 27" if X; # X and|x; —X{| = O otherwise. Then we set

o0
X —X/| :'21 Ix; — x| for sequences;, X\ € X; representing, X' € X. The
1=
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topology corresponding tix — x'| is calledprodiscrete Here convergence
X, — Xin X for x = (%) andx, = (x;), amounts to stabilization :

V—>00

(Xi)y = X for v > vy = vo(X, i).

Clearly the metric spacéX, |x — X'|) is complete Furthermoregvery
“proregular” map is uniformly procontinuoud.e. uniformly continuous
relative the metrigx — x'|.

And in the full category of sets (where all maps are allowed) the converse
is true : every uniformly procontinuous map is “proregular”. In particular,
every uniformly procontinuou$-equivariant mapf : & — T, where
I' is a countable group an8andT are arbitrary sets, is given by a map
¢ : SP — T for some finite subsdd C T, according to the recipe described
in 2.0, i.e. by the formula

f)() = e(X(¥8)sep) (%)

where recallx ¢ S" andy = f(x) € T! are viewed asS and T-valued
functions onI" and D is identified withyD via the translations — 4,
s e D.

4.C "Subalgebraic” sets and their intersections A subsetA c Xis called
“algebraic” if it is a finite intersection of pull-backs of points of “regular”
maps fromX to some “varieties”. We also agree that= X is “algebraic”.

Then we define “subalgebraic” subsets as images of “algebraic” ones under
“regular” maps.

Definition of “SA’IP . We say that our category hésubalgebraic” in-
tersection property “SA’IP) if every countable decreasing family abn-
empty‘subalgebraic” subsets in ea¢hhasnon-emptyintersections.

Examples (a) “SA’IP is obviously satisfied in the category of finite sets.

(b) “SA'IP is satisfid in the category of compact topological spaces and
continuous maps. In fact every (possibly uncountable) decreasing family of
non-empty compact sets has a non-empty intersection.

(c) Finite dimensional vector spaces over an arbitrary field and the affine
maps satisfy “SA’IP. This is clear.

4.C". SAIPfor uncountable algebraically closed fieldsvery subalgebraic
subset in an algebraic variety over an algebraically closed field is construc-
tible and then SAIP follows from the well knoweountable intersection

property.
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CIP. The intersection of a decreasing (possibly uncountable) family of
constructible subset in the setl§fpoints of an algebraic variet) overK
is non-empty, provide is an uncountable algebraically closed field.

This is obvious for an irreducible one-dimensiongl where the con-
structible subsets are all of the forkaminus a finite subset. These can not
have an empty intersection Z9s uncountable. Then the case of dir> 1
follows by an easy induction argument.

4.C” Remark about K = R and*R. This CIP also holds for the real
numbers, (as well as for every real closed uncountable field), but it does not
apply to subalgebraic subsets. However, (as was pointed out to me by Udi
Hrushovski) CIP does hold for semialgebraic (and thus for subalgebraic)
subsets oveK = *R, i.e. for the non-standard modéR of real numbers
obtained as the ultraproduct of countably many copieR afver a non-
principle ultrafilter (see Ch. 3 in [HML]). For example, the subggtsc *R
defined by the inequalitiedy, = {x € *R | x > n} have anon-empty

mtersectlon m A, which consists of all “infinitely large” real numbers. In

fact, every (countable) first order theory admitsauratedmodel where
CIP is valid for all subsets definable in this theory (see Ch. 3 in [HML]).

4.D. Closed image property (ClimP) for “proalgebraic” maps. If a cate-
gory of “varieties” and “regular’ maps has the “subalgebraic” intersection
property then the image of an arbitrary “proregular’ map : X — Y for
X =lim X;, X =lim Y/ is closed inY for the prodiscrete topology.

i—o00 j—o00

This is well known with the proof obtained by the standard compactness
argument. To see it in a nutshell we start with the following non-emptiness

property.

4.D.If (Xj,i € 1) is a countable projective system ir'@A’IP-category
where all X; are non-empty, then the projective limdt =lim X is also
non-empty

Proof. Let Xij C X denote the image; (X;) C X; and X =.or§. X,J
j=i

These subsets are non- empty by “SA’IP and we claim ﬁhfplii_sends

Xy, onto X foralli. In fact, n,+l,(x)m X!, is non-empty for alk € X

andj >i+lasxe X* C XJ Hence, the mtersectlo;mm,(x) N X2, is

also non-empty by “SA”IP and socomes from somg’ € X7,. Finally the

above “onto” makes the projectioh — X; also onto and s&X = lim X is
non-empty.
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Proof of 4.D. Takey € Y and lety; = nyj € Y; for the projection
Teoj : Y = Yoo — Yj. Denote byX;(y) C X the pullback ofy; under
fi - Xi — Yj and observe that

y € Closuref(X) <= Xi(y) N 7x.i(X) # 0.

Hence, X;(y) is non-empty and since;,1; (obviously) sendsX,1(y)
to Xi(y), the spacesX;(y) make a projective system, such thaty) =

lim Xi(y) = f~1(y).
Now 4.D applies to X (y)} and shows thaf ~%(y) is non-empty. Q.E.D.

Remark. Observe that “SA’IP was used X;'s and not inY;’s. This is
similar to what happens to maps between topological spaces : toffigye
closed inY one needs compactnessXbut not ofY.

4.E. Surjunctivity of shift endomorphisms over residually finite groups.
A countable groug" is called residually finite if one of the following five
equivalent conditions is satisfied.

(1) There exists a family of subgroups of finite indEy C I" such that
NI'p = {id}.

(2) There exists an embeddinglofnto aprofinitegroup, i.e. to a projective
limit of finite groups.

(3) There is a continuous faithful action Bfon a compact space such that
the periodic (i.e. finite) orbits are dense.

(4) The periodic orbits for the natural (shift) action Bfon {0, 1} are
dense.

(5) The periodic orbits irS" are dense in the prodiscrete topologydn
(which is the same as the infinite Cartesian product topology) for every
setS.

The equivalence of these properties is obvious and well known. The
most common is (1) and the one we need is (5). The implicationsy((3)
follows by the argument we used in 4.8 prove the density of periodic
points in S”. In the present case we take suitable fundamental domains
Ap C T of the subgroup$', C I" and extend the restrictiongA , to all of
I" by I' p-periodic functionsx = X(y).

4.E. Let our category of “varieties” and “regular’ maps admit finite Carte-
sian products and define the infinite products as the projective limits of finite
ones. We assume our category is surjunctive, i.e. all “regular” selfmappings
of “varieties” are surjunctive, and that it satisfies the “subalgebraic” inter-
section property. For example, this can be the category of the complex
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algebraic varieties. Now ClimP and the general discussion in 4.B. trivially
imply the following

Residually finite Surjunctivity Theorem. Every “proregular’ I'-equiva-
riant self-mappingf : X" — X' is surjunctive for all “varieties” X in our
category and all residually finite grougds.

The only point in the proof which still needs an explanation is a clarifi-
cation of the structure of the sets of periodic points. Here for eligry T,
we have the fixed point set far,, denotedX, C X, whose points are often
calledI"p-periodic. This X, can be identified with the set of maps of the
cosetI'/T", into X, or equivalently with the set oK-valued functions on
a fundamental domainn, C T'. In any caseX, equals a finite Cartesian
power of X, i.e X, = X*p = X%for q = cardA, = cardl'/T', and our f
is surjunctive onXp,.

4.E’. Remarks and open questionga) There are many examples of residu-
ally finite groups to which the above applies, e.g. all finitely generated
subgroups in Lie groups are residually finite.

(b) If the conclusion of the theorem holds true for an incresing family of
groupT", then it obviously holds fof® = UTI',. Thus our theorem extends
to locally residually finite groupsi.e. those where every finitely generated
subgroup is residually finite. For example all countable subgroups in Lie
groups aré.r.f.

(c) The above surjunctivity theorem is well known ffinite sets X
and, probably, due to Gottschalk (compare [Hed]) who introduced the word
“surjunctive” and raised the following

Gottschalk problem [Gott, 1972]. Is every shift endomorphism 8f sur-
junctive for all finite setsS?

This question generalizes to every surjunctive category with finite Carte-
sian products. But the positive answer, probably, needs something like
“SA’'IP even for such groups 5.

(d) The category of real algebraic varieties is surjunctive but has no
“SA’IP. So we do not know how to prove (or disprove) surjunctivity of
R-endomorphisms oX for residually finite group$’. Yet we gain “SA’IP
if we pass to the fieldR of nonstandard real numbers where “SA’IP holds
true and surjunctivity follows.

4.E’. Generalizations Suppose we have a family oormal subgroups
I'p C T, of possibly infinite index, such th%t I'p = {id}. Then we have by

the above argument,
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The Subgroup approximation theorem.If all quotient groupd™, = I'/T",
are surjunctive relative to a category of “varieties” with “SA”IP, then is
also surjunctive.

Here a groupl is called surjunctive (compare [Gott]) if everyl'-
equivariant “proregular” selfmapping : X' — X! is surjunctive for all
“varieties” X in our category. (We tacitly assume here that finite Cartesian
products are defined in our category).

Another possible generalization concerns more general “proalgebraic
varieties” (which are not necessarily Cartesian powers) Witictions. The
above argument applies wheneg-periodic points are dense i and
there are many interestirigractions, e.g. on “subprovarieties” X' where
periodic points are dense (compare”4dand 7.P).

4.F. Diagonal intersection property and uniform injectivity. An injective
map between metric spaces, sy X — Y is calleduniformly injectiveif
the inverse magf —* from f(X) C Y to X is uniformly continuous for the
metrics dist | f(X) and disk on X. In other words foreach > 036 > 0,
such that dist(x, X') > € = disty( f(x), f(x)) > 6.

We are interested in the case of “proregular’ mégsetween projective
limits X = lim X; and X" = lim Y; where ourf : X — Y is given by
“regular” mapsf; : Xi — Y; j = j(i). What we want to show is that in
certain categories the injective “proregular” maps are uniformly injective.

Definition. A subsetA c X x X is calledsubdiagonalf it is obtained by
pulling back the diagonal by the square of a nfajm our category, say by
f'x f': X' x X' = Y x Y, and then by pushing this pullback forward
to Xbyn' xn: X x X - X x X for somer’ : X — X. We call

B ¢ X x X codiagonalif there existst” : X — X”, such thatB equals
the pullback of the complement to the diagonakihx X” underz” x 7”.
Finally C ¢ X x X is calledo-“algebraic” if it is the pull-back of a point
under the squar¥ x X — X°* x X* of some mapX — X°.

Diagonal intersection property (DIP). This says that for every codiagonal
B ¢ X x X and an arbitrary decreasing sequeA¢ef subdiagonal subsets
in X x X, such thatA; N B is nonempty for every = 1, 2, the infinite

intersection_orﬁ1 A N B is also non-empty. Furthermore,@f ¢ X x X is
1=

o-“algebraic” such thaty N BN C is non-empty for all, then.?'wol ANBNC
1=
is also non-empty.

4.F. Clearly, algebraic varieties over an uncountable algebraically closed
field have DIP since all thesB and A;’s are constructible (see 3.G and
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4.C). Also the category of linear spaces and affine maps over an arbitrary
field has DIP. But compact spaces do not have DIP (yet they have “SA’IP).

4.F’. Proposition. In a category wittDIP injectivity implies uniform injec-
tivity of “proregular” maps. In particular, this is true for proregular maps
of proalgebraic spaces ovér.

Proof. If the projective limitf =lim f; : X — Y for f; : Xj — Yj isnot

uniformly injective for our prodiscrete metric, then there exigtsuch that
Vi >ip3d x, X' € X such that

Tiig (X) 7 i i (X)) )
fi(x) = fi(xX). (if).
We observe that the set of pairs of poilits x') € X; x X; satisfying (i)
equals the pullback of the complement of the diagonaKinwhile the
pairs satifying (ii) make the pullbacks of the diagonaMnx Y;. Hence
the projectionB;, of the first set toX;, x X;, for somei > i; > ig, is
a codiagonal inXj, x X;, independent of (as it equalgr;, j, x ml,io)*l
((Xi, x Xj,)\diagona)) while the projections of the subsets defined by
(if) make a decreasing sequen8g; C X;, x Xj, of subdiagonal subsets,
such thatBj, N A, ; # ¢ foralli = 1.... Then the infinite intersection

o0

Bi, N A, for A, oo =N A, is also non-empty and these intersections
I=I1

make a projective system for the projections

Tigiy | Bi, N A 00 = Biy N A s

where each point in the projective limit, denoted X') € By N A 0o,
satisfiesx # x’ and f(x) = f(x’) by the very construction of our sef§
andB;. Then we show that this projective limit is non-empty by intersecting
Bi2 N Aiz,i with Ci2 = (Ti,i; X mz,il)fl(Z) forz e Bij N Ail,oo and showing
(compare 4.D) that the resulting intersection remains non-empty as we send
I — oo and pass td;, N A, « N Ci,. Thus the assumption of non-uniform
injectivity led us to non-injectivity off. Q.E.D.

The main moral of the above story is th@bregular maps of proalge-
braic varieties ovelC behave similar to (even slightly better than) continu-
ous maps between compact spaces: The images are closed and inverses of
injective maps are uniformly continuous.

In fact, this remains valid if we replacg by any (countably) saturated
model of a given first order theory (see Ch. 3 in [HML]), e.g. by the field
*R of non-standard real numbers.

This is well known to model theorists in a slightly different language as
was pointed out to me by Udi Hrushovski.
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Allowing Galois action. One can enlarge the category of regular maps
acting onK-points of algebraic varieties by composing them with Ga-
lois K-automorphisms preserving these varieties. For example one can
compose polynomial mapé : C™ — C" with the actions of automor-
phismsg; andg, in GalC (diagonally) acting ofC™ and onC", i.e. taking

g2 fgy : C™ — C". Such composed maps still have the same essential fea-
tures as the regular onethey preserve constructible subsets under taking
pullbacks and images. Thus the above density and the uniform injectivity
property remain valid in this extended categdryfact one can generalize
further by applying different Galois automorphisms to different components
of our manifolds. Moreover, one can allow (non-regular) constructible map-
pings with different Galois maps on different pieces of finite constructible
decomposition of the varieties in question; all that matters is the preservation
of constructible subsets under taking images and pullbacks.

4.F”. On subproalgebraic spacesOne may try to bring together the cate-
gories of compact spaces and continuous maps and of proalgebraic spaces
and proregular maps. The relevant objects are defined as quotients of proal-
gebraic spaces by equivalence relati¥hs X/RwhereR C X x X must

be a proalgebraic (or proconstructible) subspac® ir X (compare 3.1).
Probably these quotients have the same basic properties as proalgebraic
spaces but | do not see at the moment interesting examples \Riserki-

ciently mixes together the (prodiscrete) topology and the algebraic structure
on X. In fact it is not so easy to construct by hand “proalgebraigliiva-
lencerelationsR C X x X as the transitivity ofR is hard to satisfy. (The
reader may ponder on how the plain quotieKtsR with profinite X and

R give rise to the immensely rich realm of compact spaces). On the other
hand quotients are easy to come by for profinite dimensional vector spaces.

4.G. Initial approximation of groups . Let A be a countable set. Then each
exhaustion ofA by finite subsets, sa; € Q, C ... C ; C ... with
UQ; = A gives us a (prodiscrete) metric on the set of subsetsviewed as
the space of0, 1}-valued functions om. In fact, such exhaustion identifies
{0, 1}2 with the projective limitX :Ii(r_n X; for X; = {0, 1} and then

we use our metrigx — y| =% |x — yi| for [xi — yi| = 27,0 as in 4.C.
|

Furthermore, the quotient setssfare determined by equivalence relations
R c A x A and so each exhaustion af x A, where we use one of the
forms{Q; x i} gives us a metric in the set of quotients/of

We are going to use this metric on the set of factor groups of a given
countable free group with a given exhaustion. In fact, we shall truly need
this only for finitely generated grougwith a given finite generating set,
thought of as a (possibly non-injective) map of a given finite setlintsay
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a: D — T. Then the free groufp spanned byD is exhausted by sets
of D-words of length< i that areQ; = (DUD ) U (DU D 1H?U... U
(DU D71 and so all groups™ with generatorsmarkedby D, (i.e. with
mapsD — T generating’), appear as quotients &p. Thus we have our
metric, denotedl” — I'’| on the set of thesmarkedgroups.

Initially subfinite and initially subamenable groups. Say that a finitely
generates group admitsan initial approximationby groups from a given
family, say{I',}sc4, if fOr every finite generating sdd C I' there exists
a sequence of grouds, € {I',} and mapsy; : D — Iy, such that the
a;-marked group$’,, converge td" in the above metric.

The idea is, that thesE,, are “initially close” toI", as|I'—TI'y| <2
signifies that one can not tdll from I',, by looking at the elements repre-
sentable byD-words of length< i.

Next, a (possibly infinitely generated) is calledinitially subfinite if
every finitely generated subgrodp C I admits an initial approximation
by finite groups. (Such groups were introduced in [Ve-Go] under the name
of “locally embeddable into finite groups”). Similarly, we defiirgially
subamenablaroups, (where the definition of amenability for groups is
explained in 6.E).

Remark and example Obviously, every residually finite group is initially
subfinite. And it is easy to show (see [Ve-Go]) that eviamitely presented
initially subfinite group is residually finite. Anithe groupI” of permutations

of Z generated by-translations and the permutations with finite supports
is finitely generated and initially subamenable without being residually
finite (see [Ve-Go]).

Surjunctivity and initial approximation . Let us consider again some cate-
gory of “varieties” and “regular” maps satisfying “SA’IP (see 4.&nd DIP
(see 4.F).

4.G. Initial approximation theorem for groups. If a finitely generated
groupI” admits an initial approximation by a family of groups which are
surjunctive relative to our category thdhis also surjunctive.

4.G". Corollary . If I' is initially subfinite, then everly-equivariant complex
proalgebraic endomorphisnX!” — X! is surjunctive (where, recalX
stands for an arbitrary complex algebraic varietiphis follows from 4.C
and 4.F (compare 4.E).

Remark on *R. It is unclear if the above remains true for proalgebraic
endomorphisms oveR but everything works fine if we replad@ by the
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field *R of non-standard real numbers as follows from’4.@nd 3.FThus
*R-endomorphisms of!" are surjunctive for all normatR-varietiesX and
all initially subfinite groupsl”.

Remark on locally surjunctive groups. It is obvious that the union of an
increasing family of surjunctive groups is surjunctive. Therefore, if every
finitely generated subgroup in a countable groupsurjunctive then so iB.

This somewhat enlarges the scope of applications of the above theorems.

Question Are *R-endomorphisms surjunctive for amenable (and thus for
initially subamenable) grougs? We know this is true fa€-endomorphisms
as it follows from our surjunctivity theorem 2.C

We start the proof of 4.Gwith a dynamical interpretation of our con-
vergencd’, — I'. We consider the shift space with an arbitrary “alphabet”
Sover the free grou- = Fp generated byYD ¢ Fp and observe that the
shifts over all quotient groupE of Fp imbeds into this shiftS™ ¢ S°
consists of the functions — Sinvariant under the action of the normal
divisor Rr C F definingl’ by I' = F/Rr.

4.G"”. Convergence criterion.Convergence of factor grougs, = of F to
I" is equivalent to the Hausdorff convergence of the subSetsc S to
S’ c S for every non-empty s&

Recall, that the spac8™, being a projective limit, carries a prodiscrete
metric, defined via a given exhaustiéh of F = Fp, where we may use
e.g.

Qi =DUDtUMDUDYHU...UDUDY.

Then one may use thgausdorff metridn the set of subsets & . Recall,
that the Hausdorff convergen@« — S signifies that
o—> 00

(1) S'«is contained in am-neighbourhood of" for e — 0.

(2) S'« becomes arbitrarily dense ne& for « — oo. That is the
e-neighbourhood o§'« containsS' for all o > g = ag(e).

Next, we exhaust each factorgroliby projections of giver®2; ¢ Fto T,
denoted?; (I") C I'. We observe that ea®* "’ embeds t&' by extending
function Q; — Sby constants outsid®; and eact5% ™ ¢ S is e-dense
in S fore =271 Nextif |’ — I"| < 277, then; (") is identical to$2; (I")
and soS% ™ = $% T This implies the Hausdorff convergenger — S°
forI' — TI',. And the converse (for non-emp®) is equally clear (and,
actually, unneeded for our theorem).
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4.H. ExpansivenessAn action of a groud” on a metric spac« is called
e-expansivef

VX #£ye X3y eTl, st dist(y(x), y(y)) > e.

In other words, the distance between every two different orbits is atdeast

Now we look from this angle on the shift action Bfon S" with our
prodiscrete metric defined with some exhaustioi"ain 2; and observe
that

4.H'. The shift action ig-expansive foe = 1.
This is obvious and, of course, well known.

Finally, we call an action oX onT" expansivef it is e-expansive for
somee > O.

4 H". Injectivity lemma. LetT" expansively act oiX and letf : X — X

be aI-equivariant uniformly continuous map which is uniformly injective
(see 4.F)on somerl-invariant subsetX, C X. Let X, be a sequence
of I'-invariant subsets coming close %, i.e. X, is contained in the
8-neighbourhood ofXg where§ = §(a) — 0 for « — oo. Thenf is
injective onX,, for all sufficiently largex.

Proof. In order to prove thaf(x,) # f(y,) for X, # V. € X, it suffices to
check this forx,, = y(«j) andy, = y(y;) and suitabley € T, since f is
I-equivariant. We chosg so that disty(X,), ¥(Y«)) becomes> ¢ for the
“expansive constant? and we taker so large thak/, andy,, lie 5-close to
Xo for a small enougts. Then we take points, andy;, in Yo which are
s-close tox/, andy,, so that distx;, y;) > €/2, as we could assunée< ¢/4.
Now, by the uniform injectivity off on Xo, we have distf(xg), f(yp) > &
for somes’ = §'(¢) > 0 and by the uniform coninuity of we have

dist(f(x;), f(y,)) = 8" — p(d)

for p(§) — 0 ass§ — 0. Thusf(«,) # f(y,) if § is small enough which is
achieved with larger. Q.E.D.

4.1. Proof of 4.G. Our mapf : § — S, whose surjunctivity is in
question, is given by a map: S° — Sas in 4.C. Then the samedefines
an F-equivariant selfmapping & for the free grougs = Fp, denotedf,
which maps the subs&” c SF into itself for each factor group’ of F.
Now, if I', — TI', we have the Hausdorff convergenser — S and then
the injectivity of f = f|S' yields injectivity of f|S"= for large« as f is
uniformly injective by 4.F. Then, by our assumptiorf, sends eacl8
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ontoitself and then the Hausdorff converger§e — S and continuity of
f imply that the mapf : S — S has dense image and surjectivity bf
follows by 4.D.

4.J. Further applications and non-applications. Theorem 4.Gapplies,
besides the category of regular maps of complex algebraic varieties, to finite
dimensional vector spaces (over our arbitrary field) and affine maps between
these. Onthe other hand, there are surjunctive categories which have “SA’IP
but not DIP. For example the category of closed topological manifolds (or,
more generally, of pseudomanifolds, which includes real analytic spaces) is
surjunctive no closed manifol can be strictly embedded into its€lhese
manifolds, being compact, also satisfy “SA’IP and so the residually finite
groupsI” are surjunctive relative to this category, i.e. every procontinuous
I-equivariant mapf : X" — X' is surjunctive and similar results hold
true for continuousmaps with respect to therdinary product topologyn

X' (see [Gro}ips).

4 K. DIP and “SA’IP for projective limits. If some category (of “varieties”

and “regular maps”) satisfies “SA’IP then clearly, the same remains true for
the corresponding category built of “proalgebraic” spaces and “proregular”
maps in-so-far as our projective limits are taken over countable directed sets.
The same applies to “SA’IP where one should track down the definitions
slightly more carefully (hoping they were set up right). Here is a kind of

a corollary.

LetI'; and I', be groups which are surjunctive relative to every sur-
junctive category satisfyingSA’IP and/or DIP. ThenI" = I'; x I'; is also
surjunctive relative to this class of categories.

Unfortunately, | see no meaningful application. Yet one may try to gen-
eralize this to (more) general group extensionsT'; - I' - I', — 1
where such a result may be useful.

5. Reduction modulo a prime in finite and infinite dimension
We start with a brief recollection of the language of the first order theories.

5.A. A first order structure. Such a structure on a sét is given, by
definition, by a sequence @flationsR;, Ry, ... invariables, b, c... € A,
say R is a relation inn; variablesay, ay, ... ,a, € A. Here “relation”
means either a subset " or, better, a{0, 1}-function on A" where
R(ay, ... ,ay) = 1is interpreted asR is satisfied byay, ... ,a,” or as
“being true” whileR = 0, means “not satisfied” or “false”.
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5.B. Example of groups.The basic (algebraic) relations of the group theory
areRy(a,b,c) = {ab = ¢} and Ry(ab) = {a = b~1}. Thus the relation

R : A® — {0, 1} define the multiplication table oA. Then one can derive
more complicated relations using conjunction and disjunction. For example,
{abc= d} is expressible a§ab = e;) A (&sc = d) A (61 = &)}. Thus one
arrives at all algebraic relations likéa?b’c—1d—3a®> = bcd) A - - }.

All of the above are calledjuantifier freerelations. Now, bringing in
quantifiers, we may have something liRe= {vx3y,st. x = y~1}. We
think of this as a relation of zero number of variables, and it happens to be
true for all groupsA. But the relationYx3y, st. y? = x} is true forA =R
but not forA = Z.

To see the formalism clearer one needs a more complicated example,
such aR = R(a, b) = {Vx3y, st. x?a = by?}. So thisR c A x A consists
of the pairs(a, b), where for everyx € A one can findy € A, such that
x%a = by?.

Recall, that the variableg, b, c, ... here are calledree and those at-
tached to quantifiersy, y,... are calledbound Notice, that given any
relation R(a, b, c,d, e ...) (where we only indicate free variables) we
can form new relations binding (some of) these variables, e.g. by taking
R.(d,e,...) = YadbVvc R@ab,c,de,...). (This is analogous to in-
tegration where, for examplg,(ax + by + cx? + dy® + ex+ - - )dxdy
hasx andy as “bound” variables and, b, c,d, e, ... are “free”. Then
one can “bind”a, b, ¢ by further integrating ovedadbdc. Similarly, one
“binds” variables in analysis by taking max and min over them, as in
m)?xmyin (@x? + by +cxy...).

5.C. Theories and modelsA first order theoryis determined by some
basic relations which are given some names. For example “the product
relation” is the name for what we have in groups. Another name for this is
{ab = c}, wherea, b andc here are not interpreted yet as elements of any
set, but rather as letters similarpor, 0. .. in “product”. In general, we just
name the basic relations by some lett®s Ry, ... etc. In our examples

we have finitely many of these basic relations, but we can generate further
relations using conjunction and disjunction as earlier. Furthermore, we can
add quantifiers and have the full set of relations syntactically generated by
R:, R, etc. such as

{IxVy, st. Ri(X, ¥,a, b, ¢) v Ro(x, d)}.

Next amodel of a theorgiven by relationsR;, R, . .. is a setA with some
relations in the earlier sense bearing the namdg, oR, etc. For example,
amodel of the semigroup theQyr just asemigrougs a setA with a ternary
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relation called “product relation” A°> — {0, 1} or {ab = ¢} c A3 or
anything you want, say just plaiR, or Ryoquc: What is important is the
possibility to compare this product for different sétsand eventually to
define various kinds of approximation of one model of a given theory by
a family of such models.

5.D. Initial approximation revisited. Let Ry, Ry, ... be a sequence of
relations in a given theor§ which include the basic relations, take a model
A of 7 and a finite subseb = {a,...,a,} € A. Now, given two such
models withD’s, sayA = (A, D) andA’ = (A, D")for D' = {aj, ... , &},

we look at the maximal, such that the relation®;, R, ... , R hold true in

A with respect to the variableg € D C A, if and only if the corresponding
relations hold true fog;. Then we set

“dist”(A, A) = 27

for this maximali. It is not truly a distance, since “dist= 0 does not
necessarily implyA = A’ but it certainly looks very much as a distance in
all other respects.

5.D'. Example : Convergence for groupslIf F is the group theory and

R:, Ry... is the sequence dll quantifier freerelations, then the above
distance is essentially the same we had in 4.G, where “essentially” means
the two metrics lead to the same notion of approximation.

Remark. One can refine the above metric by using an exhaustioh lof
subsetsD; and defining “ dist(A, A’) with respect to such exhaustions as
2~ for the maximalm = min(, j), such that the firgtrelations hold true

(S

for the variables from the firgt subsetd;, ... , D; in Aand D/j, e, D’j
in A’ correspondingly.

5.E. Syntactic distance.Two models of a theory are callddlementary)
equivalentf they have identical sets of true formulas without free variables.

Example : Lefschetz principle. Every two algebraically closed fields of
the same characteristic are equivalent.

In other words, every elementary geometric statement which is true in
one fieldK is true in all of them.

Warning. Be careful, that your statementegementaryi.e. expressible in

the language of the first order theory of fields. For example the statement:
“if a function f : K x K — K is a polynomial in each variable then it

is a polynomial” is true (and rather easy to prove) Kor= C but not for
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K = Q. What is wrong here is speaking of “arbitrary functionskorx K”
which are not expressible in the first order language of fields.

Next, for a given theoryF, we enumerate all relations without free
guantifiers and define digh, A’) between the equivalence clasgeand A
of models of our theories. That is

dist(A, A) = “dist” (A, A)

for some representatives and A’ of A and A’ (where the implied seb is
empty).

5.E. Extended Lefschetz principle.Let K, be a sequence of equivalence
classes of algebraically closed fields of finite characteristics converging to
infinity. Thendist(K, K,) — 0 for every algebraically closed fiel& of
zero characteristic.

This is standard (see [HML], Ch. 1, Proposition 2.8, for instance)
and rather obvious. The idea is that every finite sequence of relations
Ri1, Ry, ..., R containgVx, px = 0} only for finitely many primep = p
serving as characteristics K.

5.E’. Remark. We formulated the extended Lefschetz principle in “geom-
etric” terms. Algebraically speaking, it says that

if a relation R without free variables holds true for a sequence of alge-
braically closed fields with characteristics- oo then it holds true for all
algebraically closed fields of characteristic zero. Conversely, the validity of
an R for a single algebraically closed field of characteristic zero, implies
that for all algebraically closed fields of characteristiespyg = po(R).

5.F. Proof of Ax’ theorem. Start with polynomial mapd : C" — C".
Clearly, the statements

Rsu( ) =*“ f is onto” and
Rinj(f) =" f one-to-one”

are expressible in the first order language with the coefficientsefving as
free variables and the variablgss C" being bound variables. For example
for f = ax? 4+ bx + ¢ being onto is expressible byry3x, st.ax? + bx
+c = y}. Then, the surjunctivity relation foff, i.e. R,(f) = Rgu(f) v

Ry, (1), whereR" means negation dR is also of the same nature. On the
other hand, the desired relatigrfR, f is not of the first order as we are not
allowed to quantify over polynomials, only over variables. But evenyf

a given degrees d is given by a string of variables that are the coefficients
of f and soV fR,(f) is expressible by aequencef first order formulas
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without free variables, namelyfyR, (fq) for fq referring to polynomials
of degree< d.

_Nowthe general case of the Ax theorem reduces to the case of the fields
Fp = UF, where the surjunctivity is obvious (compare 4.A).

5.F. Remark on the role of finite fields.Not every R which holds for all
finite fields is necessarily held f@t. (For example onto implies one-to-one
for finite fields but not for all infinite fieldd.) However, this is true for
all K which can be approximated [, for our metric dist. These are the
fields which are equivalent (e.g. isomorphicutraproducts of finite fields
(see [Ax] and [HML], Ch 3).

What is special about the surjunctivity relatipnf R, ( f)} is the stability
of this under increasing union of fields. Thus all fields which are elementary
equivalent to unions of ultraproducts of finite fields enjoy the surjunctivity
of polynomial endomorphisms.

5.F’. AX' theorem for constructible maps.We have proved surjunctivity so
far only for polynomial map&" — K" for an algebraically closed field. But
the same argument applies to all constructible selfnfap§constructible
subsetsX ¢ KN. Actually, every suchX and the mapf : X — X are
defined by a finite set of first order formulas and so the extended Lefschetz
principle reduces everything t,. Then a simple argument shows tHat

is given by a collection of rational maps, each mapping some stratitn of
to X, and so ourf mapsX(F ) into itself for all sufficiently large. Hencef

is surjunctive oveF ,; and the extended Lefschetz principle applies. Notice,
that this version of Ax’ theorem yields all surjunctivity statements dver
claimed in 83 for regular, constructible and subconstructible maps.

Question. Let X andY be (smooth projective) algebraic varieties defined
over a number field. Suppose

cardX(F ) = cardY(F )

for all sufficiently largep andi. How far do [X] and [Y] lie in the
Grothendieck group(s) defined in 3.3

5.G. Surjunctivity for families of maps (compare [Ax}). Let X, be a con-
structible family of constructible sets, i.&X, = 7~1(b) € X for a con-
structible mapr : X — B. Then we say that a map: X — X sending
each fiberXy to Xy, for b’ = b'(b) € B, isone fiber surjunctivef 3b € B,
such that the may : X, — Xy is surjunctive.

If the underlying field is algebraically closed, then every constructible
f is one fiber surjunctive.
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This is obvious by the above proof of Ax’ theorem.

5.H. Maximal and minimal fibers. We want to show, that the above family
Xp contains a maximal fibeXyax = Xp, which admits no strict embedding

f into any other fiberX, and similarly, we look for a minimal fibeXn,
receiving no strict embeddings frold,, Vb € B (see 3.H). But now
watch out : the relatiof3abeV f ...} has non-first orderVf” under the
existence quantifier and it cannot (at least not obviously so) be reduced to
first order formulas of the field theory. But if we limit to maps defined by
polynomials of degree& d, or, equivalently, defined by first order formulas
of size< d, we have a bona fide first order relatifibgV f4 . . . } to which

the basic principle applies. Furthermore, our one fiber surjunctivity relation
is stable under union of fields, at least in the case we need, i.e. for the field
K =T, =U IFi. To see this consider the skj of all strict embeddings
between the fiberX, c X defined via polynomials of degreesd. This

F4 appears as a constructible set in sdﬁaleand we have the tautological
map defined oiX’ x Fq for X’ = 7~1(B’), whereB’ C B corresponds to all
non-maximal fibers, by : (x, f) — f(X) € X x F4. Now non-existence of
Xmaxamounts tdB’ = B which gives us an endomorphismXfx Fy which

is not one fiber surjunctive. Similarly, non-existence of the minimal fiber
leads to the same conclusion for the actiorr @fn the sett—1(X”) where

X" = n~1(B") for B” C B consisting of all non-minimal fibers. Thus we
prove the validity of

{Hbmaxv fd [N } and{abmn']v fd e }

for all algebraically closed field&. What remains, is to satisfy these re-
lations for infinitely manyd’s which amounts to taking intersections of
subsets ob’s satisfying{b € B|Vfq4...} for all d. But we know, that in-
tersections of non-empty chains of constructible subsets are non-empty for
uncountable algebraically closed fieldad thus we prove the existence of
Xmax and Xmin for such fields. Similarly, we prove, for example, the exis-
tence of rgamdn Xpe Claimed in 3.H, i.e. the relation&bg, ¢y, Vb, V f -

Xbey = Xbog, IS SUrjunctive andvcdb such thatv f : Xpe, — Xpe IS
surjunctive} for all uncountable algebraically closed fields (I did not look
for counterexamples for countable fields). Then one proceeds with min-
maxmin, maxminmaxmin, etc. In all cases, one first limits oneself to the
setsFy of strict embeddings between the fibers of degreasand shows
that these can not be too large over our parameter pac€ x D x ...,
where the bound comes from what we have for families of finite sets. In
fact the underlying idea comes from varietiéslefined overQ. These can

be reduced mog for all sufficiently largep > po(X). Then we can assign
the numberg,; (X) = cardX(F ;) for all large p andi measuring the size
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of X in some sense. For example)(fg X' thency, (X) < ¢y (X)) for all

sufficiently largep andi.

Sobering remark. All this may look quite interesting but one should keep
in mind that

(1) The existence of a strict embeddiXgc X' is a strong condition. No

surprise there are so few of them!

(2) Constructible order relationsn algebraic varieties are rare beasts with
a rather primitive anatomy (see Observation below) allowing the reduc-
tion of all minmax properties back to the Ax theorem.

Observation. Consider an order relation oB, denoteda > b, such that
the set of pairs satisfying > b, denoted(>~} C B x B is constructible in
B x B. Denote byB; C B the subset of thode € B for which there exists
achaina; > a, > ... = g > b. Clearly, this is a constructible subsetBn
(as we assume here the underlying field is algebraically closed.)

If i is sufficiently large, depending on the relation, then there exists
a Zariski dense open subddt ¢ B; and a constructible equivalence re-
lation, say{~} c U x U which equals to our order olJ, i.e. {~} =
{~}NU xU C B; x B.

Proof. There exists, by the Hilbert theorem, grsuch thatB;,; C B; is
Zariski dense inB;. This is ouri with U C B; being the maximal open
subset such thal x U is contained in the intersection ¢f} and{<} in
B x Bj, where{<} is obtained from{>} by the involution(a, b) — (b, a)
of B x Bi).

Corollary. If the relation admits arbitrary long chaing, > a, > ... > &
then there exists a poitite B, such that > b.

Remark. The above can be applied, besides the relaiogl b given by

(the existence of) strict embeddings — X, of degree< d, to surjective

non-injective mapsX, — Xp or to equidimensional mapg&; — X, of

topological degree- 2, or to surjective maps from subseXg, O Yy — Xp,
+

etc., where one should bound the algebraic degrees of our malps byder
to keep the order relatioa - b constructible. Eventualld — oo and we

arrive atb € B with b = b by intersecting countably many constructible
sets as we did earlier.

5.1. Initialization of surjectivity for proregular maps. Given a proregular
mapf : X — Y =lim (fi : X; = Yj), i,] € N, we want to express
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the onto property, as well as one-to-one and eventually surjunctivity, by
a sequence of first order relations. Here is such a sequence of relations.

Initial surjectivity. A proregular mapf, or rather the projective system of
maps definingf, is called(i, j*)-surjectiveif the image of f; : X; — Y;
contains the image of the projectian: j : Y;+ — Y; wherej* is assumed
> j = j(i). Then f is calledinitially surjectiveif Vidj*, s.t. fis (i, j7)-
surjective.

Notice that the above makes sense for a general “proregular” map. The
particular structure oX;, Y; and f; isirrelevant at the moment. Also observe
the following trivial implication

surjectivity — initial surjectivity
if the projectionsY; — Y;_, are onto for allj. Moreover
density of f(X) C Y = initial surjectivity (*)

provided the projective systeXy is image stable according to the following
definition

Image stability. Call a projective systemiXi} (ig, ig + £)-image stablef
Tigtk.io (Kig+k) = Tig+e.io(Xig+e) C Xj for all k > £. Then call{ X;} image
stableif Vig3¢ s.t. itis(ig, ip + £)-image stable.

The above ) obviously holds in every category of “proregular” maps
with “density” referring to the prodiscrete topology ¥h What is slightly
less trivial isthe validity of &) for proalgebraic varieties over uncountable
algebraically closed field (and saturated models, in general) without the
image stability assumption.

Indeed, if fi(X;) C Y; contains the intersection of the images)

I'=]
i (Yj) C Y, then3jg, s.t. f(Xi) D njéi/(x](,)). This follows from the
countable intersection property for constructible sets (se©4.C

Also observe the opposite implication,
initial surjectivity = surjectivity, )
provided the category in question satisfiS&\'IP.

In fact, this follows by our proof of 4.D.

The spacesX,, X, and a topological interpretation of initial surjec-
tivity . Denote byX, the disjoint union of the spaces; with the metric
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|x — X'| defined as follows. Add a dummy element, say 0, to edchnd
embed the extendeXj; to their projective limit in the obvious way,

Xi — (X,0,0,...) € Xu0=lim (X; uO0).

Then the prodiscrete metric ad L O restricts to allX; ¢ X u 0 and is
denoted byx — x'| as earlier. ClearlyX c X0 equals the set of the limits
of all convergent sequencés; € X;}. Alternatively one could introduce
X, = (metric completion ofX,) for the metric|x — x’| on X, and then
definethe projective limitX = X, :Ii(r_n X; as the complemerX_ .\ X,.

Now we observe that

(@) Xi,1 is contained in the-neighbourhood oK; ¢ X, fore = 27'.

(b) the mapf, : X, — Y, associated to a projective system of maps
{fi © Xi = Y;} is uniformly continuous for our metrics oK, and
onY,.

(c) a projective system of magsf; : Xi — Yj} is initially surjective
iff for every e > 0O there existsj, such thatY; is contained in the
e-neighbourhood off(X,) C Y,

(d) a projective systerfiX;} is image stable ifX c X, equalsthe Haus-
dorff limit of the subsetsX; ¢ X, c X, fori — oo, which amounts
in the present case to the following property : for every 0 3i, such
that X; is contained in the-neighbourhood oK .

5.I'. Reduction of surjectivity modulo a prime p — oo. Suppose our
X, Y andf are defined oveZ so that we may speak of reduction modplo
and definef(Fp) : X(Fp) — Y'(Fy) for all pandv. In fact we shall only
needp > pp andv > vg and so all we say will equally apply to provarieties
and maps defined over a number field.

If there exists a sequence of finite fields = I, for infinitely many
positive integery € {v} = {v1 < v, < ...} andp, - oo for v — oo,
such that the mayh(K,) are surjective, thef(C) is also surjective, provided
the projective systemj(K,)} are uniformly image stable.e. V;,3, s.t.
{Y;(K,)} are (jo, jo + ¢) image stable for alb.

Proof. The surjectivity and the uniform image stability obviously imply
uniform initial surjectivityof the projective system of maps definifigk,),
i.e.Vvidj* such thatf(K,) is (i, j*)-surjective for allv. This implies, that
f(Fp\u,) is also(i, j*)-surjective, at least for all largeby the following



Endomorphisms of symbolic algebraic varieties 145

Trivial Lemma. Let f : A — Bandx : Bt — B be morphisms of
varieties ovefrZ (or over any number field for this matter). Then for all suf-
ficiently largep andv, the inclusion of the image§ A(F ) D 7(B*(Fp))
implies thatf(A(Fp)) D 7(B*((Fp)).

Now f(C) is also(i, j™)-surjective by the extended Lefchetz Principle
(see 5.5 and &) applies. Q.E.D.

Counterexample.One can not go by without the uniform image stability
condition. Indeed look at the map— 7;(z) = Z(Z — 1). This is onto
over K = C but if K is a finite field withg elementsg = (prime)*, and
i = q— 1, thenz; maps all ofK to 0 € K. Thus the projective limit of
the sequenc& <« K « ... <« K <« ... equals{0}. It follows that the

1 2 TTi Ti+1
obvious map ofX = {0}, viewed as the projective limit of the sequence
{0} < {0} «...,t0Y = lim(K, m;) is surjective over every finite field
but it is not surjective oveK = C.

One can make the above even more convincing Wjth K2 — K
defined by¢; : (z1, 22) — mj(z1) + (] + 1)0;(z1, Z2) whereg; is a generic
polynomial of degree Rwithout constant term with integer coefficients.
This & is surjectiveover C and has (unlikey ;) irreducible fibers while
viewed over the finite field&k with g-elements it mapk? to {0} for j = q—1.
Now we takep; = & : K? — K, theng, = & x & : K* - K2, next
03 = (&3 x &) x (£3 x &) : K8 — K% and so on. All these maps are
surjective forK = C with irreducible fibers, while the projective limit of
this systemY; = K2 over each finite fieldbquals{0}. Thus the obvious

map f : {0} — lim Y; is surjective over all finite fields but not ovér.

5.J. Uniform irreducibility of fibers . The image stability oveK boils
down to showing that certan regular maps, 3dy; — Yj are allonto
overK, i.e. have non-empty fibers over &lkpoints inY;j for j = 1,2,....

If K is afinite field, then non-emptiness of a variety (fib&gan be derived
from non-emptiness and irreducibility @ over K by the corollary due
to Lang of the celebrated theorem of A. Weil. On the other hand, if some
Z-variety is irreducible ovef, then it is also irreducible over all fields of
sufficiently large characteristic = «(A). What, in general, is missing, is
a bound on thik independent of and for this we need some uniformity
of the C-irreducibility with respect toj. Actually, when we turn to our
applications (see 87) we shall be able to work with only finitely m@sy
at a time. Mor generally we could require the mafys, — Y|, viewed as
fibrations, to be induced from a single fibratidm,: Z — B (possibly with
non-connected base) with irreducible fibers. Then this> B will have
irreducible fibers over the fields with characteristioc > «(IT : Z — B)
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and then this irreducibility will be transmitted to arlhl — Y] induced by

regular mapy;,, — B.

Warning. ConsiderZ c C2 given by the equatiorz;z, = b and non-
equationb # 0. This obviously fibers oveB = C\{0} with irreducible
fibers. And this irreducibility remains intact over any field of arbitrary
characteristic. However, if we take soiinéeger pointby € C\{0} then the
fiber over this point, i.ez;z, = by, becomes reducible over each fiddd
where the characteristic dividég. This happens because the embedding
{e} — by € C\{0} does not define any embeddife} — K\{0} if the
characteristic oK divideshby. Yet everything works fine for affine and/or
projective varieties defined ovér, where allZ-morphisms can be reduced
modulo each prime. For example, if we take the affine realizatioB ef
C\{0} asB* c C? given by the equatiobc = 1, then the(zy, z,)-fibers of

Z° = {212, = b, bc = 1} over B* retain irrducibility over allZ-points of

Z reduced modulo any prime. In fact, tt4$ has only 4 integer points, all
with the coordinates-1.

Example. ConsiderX c (C™M* given by equationqg;(x;, Xi;1) = 0}
where each variablgy, x5, ... , X, Xi+1, ... runs overC" andg; are poly-
nomial (maps) with integer coefficient§’ x C" — C*. Then the truncated
subvarietiesX; ¢ (C")' form a projective system where, each projection
Xiy1 — X; can be obviously induced from the projections of the variety

Zi = {Xi, Xit+1 | G (%, X11) =0 cC"x C"

toB=C", II; : (X, Xi+1) — Xi. Now, if these projectiong; — B have
irreducible fibers, and if the degrees and the coefficients of all polynomials
are bounded by a constant independerit(efg. allg; are mutually equal),
then any propolynomial endomorphismof X with integer coefficients
which is onto onF .-points of X, (i.e. F(Fp) : X(Fp) — X(Fp) is onto)
forv - oo and p, — oo is also onto onC-points of X, as a simple
argument using the Lang-Weil theorm shows.

Remark. We do not formulate the most general notion of uniform irre-
ducibility. When we refer to it we mean some condition on the fibers of our
maps overC which suffices for irreducibility ove?p for large p when we
invoke the extended Lefschetz principle. Recall, what we eventually need
is the image stability of our projective systeiv} on F.-points for large

p andv and this property is trivially satisfied for the projective system of
the Cartesian powery) = YNi| regardless of irreducibility of. So we
sometimes include this case in the “uniform fiber irreducibility” category.

5.K. Z-families over proconstructible spaceslt may happen we have
to study not an individual proregular map: X — Y but a family of
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those, sayf, : X — Y whereu runs over some proconstructible moduli
space defined ovet. In other words we have a class of mapdefined by
infinitely many first order formulas of the field theory where the spates
andY may also be taken from some classes described by such formulas. For
example, one may look at polynomial endomorphismx &m the above
example where the admissib¥es are those where adf are mutually equal

and where the admissiblé’'s are given by (sequences of) polynomials,
each having exactly 55 non-zero coefficients. The question is whether the
“onto” property for a given map from this class &n-points for all ourK,
implies that forC. This can be reduced to a single map of larger spaces,
sayF : X — X', whereX andX” are fibered over some proconstructible
moduli space of spaces and maps (compare 5.Gyaisdiber preserving.

So all we have done for individual magdsapplies toF = {f,}, where
some caution is needed in the treatment of uniform irreducibility of fibers
of the maps in the projective system definitlg We shall not persue this
suject matter in full generality but shall treat it on the case by case basis.

5.L. Injectivity and initial injectivity. We start with a proregular map
f : X — Y between proalgebraic varieties defined d&@nd ask ourselves
if injectivity of f onC-points implies that for sufficiently many finite fields
K, = Fp, i.e. for finite fields of arbitrarily large characteristigg and
degrees over the respective prime field,, .

Definition. Call a projective system of magd; : Xi — Yi} (io,ip)-
injective for givenipo = 1,..., andiy > g, if mj, j;(X) # 7, i;(X) =
fi, @) # fi, (X)) forall x, x" € X;. Then callf f;} initially injectiveif Vig3i
s.t.{fi}is (ig, i, )-injective.

This is (obviously) equivalent to theventual uniform injectivityf the
associated map,. : X, — Y, which means that for every > 035 > 0
andi =1, ..., such that

X =X|>e=[f,(x) = f.(X)] >4
forall x, X' € X,\ ;L:Jll X;.
It follows that
uniform injectivity of f = Ii(r_n fi = initial injectivity of {f;} (%)
provided the projective systefiX;} is image stablésee 5.1).

Corollary. If our category has DIP, then

injectivity of f = initial injectivity of { f;}. (k)
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In particular (xx) holds for proregular maps over uncountable algebraically
closed fields

5.L" When does ‘i, i, )-injective” imply “injective”. It is obvious that
initial injectivity implies injectivity. But what we need is the implication

(ig, i4)-injective = injective €9

for fixed but possibly large andi . . It is immediate thati, i, )-injectivity
yields the following ‘¢-injectivity” of f : X — Y,

X —X| > g =270 = f(x) # f(X) forall x, X' € X.

Then we recall (see 4.H) that this is sufficient for injectivity in the presence
of an expansive action on X so we arrive at the following

Lemma. If X is endowed with uniformly continuous and expansive action
of a groupT then there exist$y, such that for every, > ig (g, i4)-
injectivity implies injectivity for alll"-equivariant uniformly continuous
mapsf : X — Y.

This applies, in particular, tB-invariant “subvarieties” irX = X with
the shift action of” on X.

Remark. The above remains true for certain expangivigit structureson
X notassociated to groups (which are implicitly present in 87).

5.L". Injectivity reduced modulo p. Let f : X — Y be a proregular map
between proalgebraic varieties, everything defined @esuch thatf is
injective on the seX(C) of C-points of X. Then, assuming the projective
systemX; defining X is image stable, we conclude that the nfaig initially
injective and thudig, i, )-injective for some pairgig, i) with ig — oco.
Now, the(io, i, )-injectivity is expressible by first order formulas and so the
map f is also(io, i + )-injective onX(Fp) forall p > po = po(i), according

to the extended Lefschetz principle. Finally, if we are in a situation where
(i0, i+)-injectivity = injectivity, e.g. for subshiftsX ¢ X", we conclude

to injectivity of f on X(Fp,) and thus to injectivity onX(F ) for all v and

P = Po.

Remarks.The above trivially extends to proconstructible varieties and maps
defined ovefZ or, more generally, over algebraic number fields. Also, as in
the case of surjectivity, one may apply the above discussion to proalgebraic
and proconstructible families of maps defined dxéor more generally for
classes of varieties and maps defined by first order formulas).
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5.M. Reducing surjunctivity modulo p. Given an injective mag : X — Y

as above, we want to establish its surjectivity Grpoints provided we
know that injectivity= surjectivity for K,-points forK, = [Fp,, for a se-
guencev, p’ — oo. This, in fact, can be done under the following three
assumptions.

(1) The systen¥; defining X is image stable oft-points of X;.

(2) There existsy, such thati, i, )-injectivity = injectivity on Fp-points
of X for eachi, > igand forallp > pg = polio)-

(3) The systeny; is uniformly fiber irreducible ove€.

Indeed (1) gives us the implication
injectivity = (io, i 1)-injectivity,

onC-points ofX foralli = 1, 2... and some, =i (io). Nextthis passes to
Fp by the extended Lefschetz principle and then ylélgsnjectlwty which
trivially implies va-lnjectIVIty for p > po. The latter injectivity implies
Fpu-surjectlwty by our assumption, which then yields mei@L -surjectivity
due to (3) as we indicated in 5.J. Finally, this yields initial surjectivity and,
hence, surjectivity on th€-points (see 5Y).

5.M’. Surjunctivity for families. Often we want to prove surjunctivity for

a (pro)regular mapf defined overC, rather than oveZ (or any number

field for this matter). For example, Ax’ theorem claims surjunctivity for

all C-endomorphisms of algebraic-varieties. And in our case we may

encountemrbitrary I'-equivariantC-proregular self-mappings of = X"

We handle this matter as earlier by including our nigandX if necessary,

into a family, sayf, : X, — X}, whereB is a proalgebraic space defined

overZ (or over a number field) or more geneally, a proconstructible space

eventually defined by first order formulae. Thus we have the global mapping
={fp} : X - X' for X = U Xp and X' = U X, ,where now all

objects F, X and X’ can be deflned over (e.Q. by first order formulas).
however, the problem we face now has changed. Instead of the implication
“one-to-one= onto” for F, we want to prove this for everyj,-constituent

of F individually. This is done by restricting to ) C X consisting of the
union of X, over the partA C B, defined by the condition

{b € A fy, one-to-one onXy(C)}.

Now, our mapF restricted to), sayF : Y — Y for )’ :bUA X, Is
c

injective and if we can prove it is surjective, we shall arrive at the desired
surjunctivity of the originalf = f,,. This works perfectly well in the case
of ordinary (finite dimensional) varieties ovér, since A C B as well as
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Y c X and)’ c X' are defined by first order relations and so byptaAnd

V' are constructible spaces defined o{and eventually oveZ. But, in
general, for proalgebraic varieties and maps, injectivity is not expressible
by first order formulas, unless we have injectiwtyinitial injectivity. And

this implication is ensured, as we know (see 5.L) by the image stability
of X. Thus we must chosp ¢ X and)’ c X’ more carefully, so that all

Xp, b € A, retain the needed properties X¥f X’ and ourf’ : X — X/,
namely (1) and (3) of 5.K. which are given by (infinitely many) first order
formulas. And as for (2), this is of a combinatorial nature and must be
required independently for all maps under scrutinity. Here is our example
where everything goes smoothly along these lines.

5.M”. Proof of 2.C for A = I'. Let f : X' — X! be aI-equivariant
proregular map defined ové€rand observe that the above discussion yields
the following conclusion.

(»#) f is surjunctive orC-points of ourX = X', provided every continuous
I'-equivariant selfmappin@ — S is surjunctive for every finite s&

In fact, eachf is given by a single regular map : X4 — X for
d = cardD and D c T being a finite subset (see 4.C). We includénto
a family X = {X,}, of varieties oveB whereB and X’ live over a number
field (which can be reduced further Zowith the first order language) and
we denote byby, the set of all regular mapgs, : X)) — Xy of degree<
degree(p). then we take the infinite Cartesian power Xfover B time
D = U Dy, i.e. X = U (Xp x ®p). This X is defined over a number field

(WhICh canbe reduced foin our first order language) and we have a natural
proregular magF = {f,} : X — X also defined over a number field (or
Z if one wishes) which sends each fibéf x @y, into itself. By the map
(X, pp) = (fp(X), ¢p) Where fy, is built out of ¢y, : Xb — X, as usual (see
4.C). Now the surjunctivity discussion from 5B.Kapplies and«x) follows.

What remains to prove 2!Gor A = T is the following result from
symbolic dynamics.
5.M”. Let Sbe a finite set]” an amenable group and’ ¢ S be a closed
*

I-invariant subset. Then the topological entropy of fhaction on X’
satisfies the strict inequality

ent X' : ) < ent(S" : I')(= log cardS).
This is standard foi" = Z and well known to experts (e.g. to Benjy

Weiss) for all amenabl& (compare 8.D). In fact we shall establish this in
a more general situation (without explicitly referring to the entropy) in the
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course of the proof of the surjunctivity theorem 7f@ initially amenable
graphsA (see 7.0).

Now surjunctivity of the shift endomorphisms is trivial as a strict em-
bedding ofS" to S” would land on a compact, and hence closed, sukset

in S" and we would havé&™ = X’ ¢ X = S which contradicts the above
#
strict inequality for the entropy.

Remarks. (a) Our proof of ¢x) equally applies toA with an action of
a locally compact group with finitely many orbits as in 2&hd the 2.C
follows with an obvious generalization fo 5'K(See 87 for a more general
results).

(b) surjunctivity of amenable groups implies that for initially sub-
amenable ones (see 4.&hd 6.E) and so surjunctivity of all proregular (and
also proconstructiblely-equivariant selfmappingg’ — X! is ensured for
all initially subamenable grougs.

6. Infinite graphs : symetries, amenability, asymptotic dimension

We collect here basic definitions concerning infinite graph&ater on we
look at projective systems parametrized Ay(or rather by finite subsets
in A) and augment the purely graph theoretic propertieA bfy extra data
coming from these projective systems.

6.A. Partial symmetries and limits of graphs. From now onA denotes
a countable, usually infiniteonnectedgraph where we do not notationally
distinguish between the graph and the set of its vertices derdoted\.
This is possible, strictly speaking, only if our graph masloopsand anat
most oneedge betweerach pairof vertices. So, to simplify the life, we
assumeA does have these two properties (and we leave to the reader the
adjustment needed for general graphsvith loops and multiple edges).

We define dist = dist(s, §') on A as the minimal length of a path of
edges joinings and ' in A. This is an integer valuethetricon A if A
is connected OtherwiseA becomes somewhere infinite, namely it gives
infinite distance between different connected components but this does not
prevent one from using it as a metric on each component. Notice that dist
carries the same information as the graph structuré on

In general, we do not expeat to have non-trivial automorphisms, i.e.
isometries for the metric digt but it may have manyartial isometries,
namely bijective maps between subset\irpreserving the metric digt
For example let us assume thathasbounded valengyi.e. each vertex
8 € A has at most adjacent edges for sonmik < oo independent o8.
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Then, clearly, for every < oo there are at modinitely manyisometry
classes of -balls in A where ther-hall D = D(8,r) C A arounds € A is
defined by

D = {8 e A|dist(s, ) <r).

Thus we have infinitely many mutually isometrieballs in eachinfinite
graph A and we are interested in isometries between such balls, denoted
y:D <+ D.
Such isometries allow one to define limia of a fixed graphA with
a given sequence of poings € A, i = 1,2,... calledmarkingsin A,
going to infinity (in A) for i — oo. To construct thisA® =ilim (A, &) we
— 00

need isometries between certain balls aroinchamelyy; : D6, ri) <
D(Si;1, i), for some sequence — oco. We may assume (by restricting
some isometries to smaller concentric bdlls;, r{) if necessary) that;
increase with and then compose eaghwith the inclusionD(8j 1, 1) C
D(Si;1,riz1)- Thus we get a sequence of isometric embeddings, still de-
notedy;,

D(81,11) <3 Do 12) &5 ... 5 D6y, 1y) &

and then the union, or rather the inductive limit of these balls, is denoted
A® =1lim (A, &), or, more precisely, lIm(A, §;, yi). This limit carries the
=00

1—00

obvious graph structure or, equivalently, a metric coming from that in the
balls D(§j, ri). (In fact the metric spac&® equals the Hausdorff limit of the
marked metric space’\, g;), (see [GLP]). Notice, that i§; do not go to
infinity, i.e. remain in a finite subset in, then the graph\* is isomorphic
to A, but we typically obtain uncountably many graphscorresponding to
various sequences — oo in A. We are primerly interested in locally finite
graphsA where the conditiod; — oo is equivalent to digbg, §;) — oo.
Observe that not every sequergagives rise toA® as we need the above
mutually isometric balls arouné of radii — oo but such sequences are
abundant ifA has bounded valency. In fact, every sequefide such aA
obviously admit a subsequence where the required balls exist.

Observe next that every limit grapA® is locally isometricto A in
the sense that each bdll, in A® of radiusr < oo is isometric to some
r-ball in A. In fact A® is exhausted by the ball3(s,,ri) C A*® around the
distinguished point (marking) corresponding to the sequésigeand these
balls are tautologically isometric to the bal3(si,ri) C A. Conversely,
every graphA’ locally isometric toA is (globally) isometric to some limit
graph A*® of A corresponding to certai® andy;. This is obvious. It is
equally obvious, that the local isometry is a partial order relation between
graphs, writterA’ < A, but this is not, in general, an equivalence relation.
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In fact, there are special graphs called (dynamically)ninimal such that
A" < A implies A < A’ and the following fact is standard.

6.A’. Minimality Lemma. Every graphA of bounded valency admits a min-
imal limit graph A* i.e. a minimal graphA® satisfyingA® < A.

This is proven with Zorn's lemma by a usual compactness argument. In
fact, this can also be derived from the existence of a minimal leave saturated
subset in a compact foliated space. (Here it is the Hausdorff moduli space
of marked graph& with valencies bounded by some constant, see [GLP]).
Also recall the following obvious (and well known)

6.A". Criterion for minimality. A graphA of bounded valency is minimal
if and only if for very ballD in A of radiusr < oo there exists a number
R = R(D) < oo, such that everyR-ball D* C A contains anr-ball
D’ ¢ D* (non-concentric tadD™ in general) isometric td (where “only
if” does not need “bounded” valency).

6.B. Additional structures on A, local order and distinguished isom-
etries. Given an additional structure ai, e.g. a coloring ofA into finitely
many colors, we may limit our isometries to these preserving our structure
and thus obtain a subset of partial isometrieA oA particularly important
structure in this respect &slocal orderon A, i.e. an ordering of the edges at
each verte¥ € A. If the graphA is locally finite, this local order eliminates
non-trivial isometries fixing a pointin\. In fact, there is at most one (if any)
isometry between ball® < D’ sending the center dd to that of D’ and
preserving the local orders in these balls induced from a preassigned local
order inA. On the other hand, such ordering does not drastically reduce the
overall partial symmetry oA as every ball of finite radius admits at most
finitely manydifferent local orders. In particular, ik is a locally ordered
graph of bounded valency, it still satisfies the following

Precompactness propertyEvery infinite sequence of pointsAncontains
a subsequence, say € A, such that each ball of radiusarounds;, i.e.
D(§i, 1) admits an order preserving isometgy to the ball D(5i,4,1). In
particular, these exists a limin® of the marked locally ordered graphs
(A, &) and this A® carries a natural (limit) structure of marked locally
ordered graph.

In fact, there are at most finitely many isomorphism classes of ordered
balls in A which yields the compactness property.

Similarly, the minimality lemma and the minimality criterion trivially
generalize to graphs with extra structures where the relevant role of these
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structures is a limitation on local isometries A1 This can be expressed
with the following

6.B'. PseudogroupsI’ of isometries of graphsA. Such a pseudogroup
' is defined as a distinguished subset of partial isometriea,ofalled
I'-isometriesand denoted as earlier : Q — Q' for y € I' and someR
andQ’ from A (depending ory) where the following four axioms must be
satisfied.

(A) T contains the identity map {d: @ —  for everyQ C A.

B) yeI'=ylerl

C) Ify:Q— Qandy : Q — Q" areinl thenalsg/’y : @ — Q" is
inT.

(D) Foreveryy eI', y : Q — Q'itsrestrictiony : Qo — Qp = ¥(Q) is
also inT for all Q¢ C €.

If, for example,T" is an isometry group acting on thenT" can be
restricted to all subset® C A fory : Q — Q' = ¥(Q) thus giving us
a pseudogroup in the above sense. But usually our pseudogroups do not
come from global isometries af.

I-limits A® of A. These are defined with sequences of paints A andI'-
isometriesy; : D(8i, ri) — D(8iy1, ri) wherer; — oo. Such a limit graph
A* =Ilim (A, §i, y4) can be thought of as an increasing union (inductive

|—00
limit) of the balls D(8;, ri) embedded into each other by and soA®
comes along with a marking, € A*® corresponding to the sequengk}
as well as embeddingS(é,, ri) — A sending these ball bijectively (and
isometrically) ontaD(8;, ri) C A. This distinguishes a certain pseudogroup
acting onA* , denoted™*, which consists of isometrigs € I" pulled from
A to A°® via the above bijections between balls. So we see(thatI™) is
locally T'-isometricto A = (A, T') in an obvious sense.

The following definitions 6.C,D distinguish sufficiently large pseu-
dogroupsI” which will be needed for the surjunctivity property in 87.G.

6.C. CofinitenessDealing withI'-isometries between ballg,: D — D’
we shall insist on the center going to the center and call baiéometricif
there exists such an isometpye I between them. We call a pseudogroup
I cofiniteon A if for everyr = 0,1, ..., there are at most finitely many
mutually nonF-isometric balls of radius.

Example. If ' comes from an isometry group acting anthen, clearly, it
is cofinite if and only if the (global) action of the group has finitely many
orbits inT".
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6.C'. Compactnesslf I' is a cofinite pseudogroup ok then every infinite
sequence of points in obviously admits a subsequence, g8ag A, such
that the ballD(8;, i) is I'-isometric toD(8j, 4, i) foralli = 1,2, ....

Recall that the resulting limit graph® =lim (A, &, y;) also possesses
|—00
(the limit) pseudogroup structure and itégally I'-isometric toA.

6.D. Dense pseudogroup$’ and quasihomogeneity.We say that two
pointss andd’ in A arer-equivalentwith respect td" if the r-balls around
these points arE-isometric. Then (the action of) is calleddense om\ if,
foreveryr =0, 1, ..., eachnon-empty -equivalence class of points i,
sayA’ C A constitutes aetin A. that is, there exists aR = R(A") < oo,
such thatA” meets every ball of radiuR in A.

Notice that this condition is similar to the one used in the above mini-
mality criterion. In fact one observes that there are some distinguished (tau-
tological) isometries between some ballsAiftand inA. Using these, one
generates a new (hugp$eudogroud™ acting on (subsets in) thdisjoint
union A* of all I'-limits A® of A. NamelyI™ is the minimal pseudogroup
acting onA* which restricts td” on A and which contains the above men-
tioned distinguished isometries (that &¢s,, ri) — D(6j, ri) C A for the
balls D(8,.,r;) — D(i,ri) C A® =ilim (A, 6, py)) for all A®. Thus one

— 00

can speak of locdl™-isometry relation between different limits] and A%

of A (which are connected componentsAdf) where the implied isometries
from r-balls of A] to A3 must belong td™. Then one defines the order
relationA{ > Aj as earlier and (easily) proves the minimality criterion for
I'-graphsA with the cofiniteness condition staying for “bounded valency”.

Finally a graphA is calledquasi-homogeneousith respect to a given
pseudogroufd if the (partial !) action of thid" on A is cofinite and dense.

If I comes from an isometry group with finitely many orbitsnthenA
is obviously quasi-homogeneous with respecdt@s cofiniteness implies
density in this case. This is not true in general; however, we have here the
following generalization of the minimality lemma.

If A is a locally finite graph and” is cofinite onA, then somd -limit
(A°, T*) of A is quasi-homogeneous

There is nothing new here to the proof compared td GAd we do not
even need this for our surjunctivity theorem. The role of this lemma is to
illuminate the notion of quasihnomogeneity.

6.E. Amenability, uniform amenability and initial subamenability . De-
fine the boundaryQ2 c A for eachQ2 C A as the set of points € A where
the unit ballD(8, 1) C A intersect2 as well as the complement\ Q2.
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An exhaustion ofA by finite subset$2; c A, i =1,2,..., is called
amenableaf
cardo2;/ cardQ; — O fori — oo.

This means that large “domain&; in A have relatively small boundaries.

Then a graph\ is calledamenablef it admits an amenable exhaustion.
Intuitively, A is amenable if it has “negligible boundary at infinity”.

This notion applies, in particular, to Cayley graphs of finitely generated
groupsI” and coincides with the traditional definition of amenability for
a groupl is called amenable if every continuous actionfobn compact
topological space admits an invariant measure. (All this is well known, see
[Gree] for instance). In particular amenability of a Cayley graptioes not
depend on the choice of generatorg iwhich are involved in the definition
of A.

6.E. Call a graphA uniformlyamenable if there exists a functi®tir, €) =
Ra(r,e), forr = 1,2,..., ande > 0, such that for each-ball D =
D(,r) C A there exists a subsé® in A pinched betweerD and the
concentricR-ball D¥ = D(8, R), i.e.D ¢ 2 c D, such that

cardo2 < e cardQ2

Clearly, the uniform amenability implies amenability. In fagtjs uni-
formly amenabile if and only if all limit grapha® (i.e. all connected graphs
locally isometric toA) are amenable, where “if” needs the assumption of
A having bounded valencyhe proof is straightforward and as far as our
applications go we could postulate the uniform amenability ohallo start
with (see 7.G).

6.E". A graphA is calledinitially subamenabléf for everyr = 1,2, ...,
everye > 0 and every finite subsé& C A (where one can restrict oneself
to ballsD C A) there exists a graph’ with a finite subsef2, C A’ such
that

(@) A’isr-locally isometric toA on .. Thatis allr-ballsD(4’,r), &' € Q,
are isometric to someballs in A.

(b) Q. contains an isometric copy @, i.e. someD’ C . is isometric
toD

c) cardd2’/card. < e.
(©) ¢ ¢

For example, ifA admits a sequence of free isometric actions by groups
I'i on A such that the quotients; = A /T are amenable (e.g. finite) graphs,
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such that for everfinite subsetD C A there exists anwhere the quotient
mapA — Aj isinjectiveon D. Then, clearlyA is initially subamenable.

Next, we say thatA is uniformly initially subamenable if there exists
a functionR = Ra(r,¢) forr = 1,2,... ande > 0, with the following
property. For every subs& c A of diameter< r there exists a graph’
and a finite subse®’ c A’ of diameter< R satisfying the above conditions
(b) and (c) and the following strengthened version of (a)

(a") A’ is r-locally isometric onQ’ to the R-neighbourhoodD*R C A
of D, i.e. eachr-ball D(§',r), § € ', must be isometric to some ball
in DR,

Notice that(a') is equivalent to (a) for quasihomogeneous graphs
and only such graphs will appear in our applications.

6.E”.IfagraphA comes along with an extra structure, e.g. alocal order, one
modifies the above definitions in the obvious way by requirkido carry

the same kind of structure and where all (local) isometries in question must
preserve this structure. The mostimportant structure for us is a distinguished
pseudogroup of isometries ofA where one may think oA” appearing in

the definition of (uniform) initial amenability as some graph glued out of
r-balls in A by some isometries frorfi on some subsets of these balls.

Example.The Cayley grapia of a finitely generated groupis (uniformly)
initially subamenable for the naturdl-structure onA, iff T is initially
subamenable. But it may (?) happeanis initially amenable as a graph
without I" being initially subamenable.

6.F. Asymptotic dimension growth of metric spaced.et A be an arbitrary
metric space (e.g. a connected graph) and défimeimension oA on the
scalei, for areal numbek > 0, denoted dirtA|A) as the minimal number
N such thatA can be covered b + 1 subsets, safg, A1, ..., Ay Where
eachA; decomposes into the unionwhiformly boundedubsets separated
by distances- A. ThusA; :LjJ Bi; for j running over some (usually infinite)

index setJ, where

(a) diamB;j < const< oo, for alli, j, (recall, diamB = sup dist(b, b))
e heB
(b) dist(Bjj, Bjj) > A foralli =0,...,N and all pairsj and j” # j,
where distB, B') = Lng‘ dist(b, b") forb € Bandb' € B'.
e , q

Whatwe are actually interested in is the asymptotic behavior of it
for A, — oo. Thisis a very robust invariant unsensitive to changing bounded
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pieces ofA. For example every nek’ C A has the same asymptotic be-
haviour of dim(A’|A) as dimMA|A). In particular every nei\ C R" has
dim(A|x) = n for all sufficiently largex. The same is true for nets in
the n-dimensional hyperbolic space and in evergimensional symmet-
ric space of non-compact type as well (see [@fo]But in general, one
has a poor idea of the growth of dim|)). (Of course, it is obvious that
dim(A|1) < const for graphsA of bounded valency but one does not know
how dim(A|x) can grow, for example, i equals the universal covering of
a finite aspherical 2-dimensional polyhedron).

6.F. On locality of dim(A|x). Observe thaevery graphA* locally (i.e.
r-locally for all r > 0) isometric toA hasdim(A°®|A) < dim(A|x) for all
A > 0, providedA has bounded valency.

However, this does not give weny estimate on dirA®|r) if A® is
r-locally isometric toA with a givenr > A. This suggests another dimen-
sion

dimiec(A L) = limsupdim(A?|A)

I—o00

whereA; runs over all graphs-locally isometric toA.

Itis clear that
dimiec(A[2) > dim(A[2)

for all A and in many cases the two dimensions are equal or, at least, have
the same asymptotic growth far — oo. But it is unknown what is the
relation between these dimensions in general.

Example. The netsA in R" obviously have dimgc(A|A) =dim(A[A) =nfor
all largea. Probably, dimc(A|A) = dim(A|)) for all connected Lie groups
with invariant Riemannian metrics and largeas well as for homogeneous
Riemannian manifolds in general.

Remark. The above definition of difg is not, a priori, quasi-isometry invari-

ant fori — oo. This could be remedied either by defining gjraa|A, L, p)

=supdimic(A’|L) where A’ runs over all metric spaces admittipgnets
A/

which areL-bilipschitz equivalent to certaip-nets inA. Then one could
sendi — oo, extract some asymptotic invariant from gipiA|x, L, p)
and finally send., p — oo. For instance one could take

lim suplim supdim.(AA, L, p)
L,p—»o0 A—o00
or
lim suplim sup 2% dimj.(A|A, L, p)

L,o—»00 A—>00
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for a givena < 0.

A more logical definition would be as follows. Consider At where
everyr-ball admits go-netL -bilipschitz equivalent to @-net in some -ball
in A. Set

dimy (A|A, L, p) = supdim(A|)1)
Ae

over all suchA® and let

dimp.(AlA, L, p) = limsupdim; (A4, L, p).

L—00
Then proceed as earlier by first sending> oo and then lettind., o — oo.

All these dimensions seem to coincide for simple examples but the
overall picture remains unclear.

7. Proalgebraic varieties over infinite graphs

We start with an observation showing that graphs enter rather naturally once
we start looking at proalgebraic varieties. For example, consider a proregular
mapping between products, sy X — Y for X = x X ;andY = x Y,

1)

SeA
whereA is a countable set and; andY are algebraic varieties. Seuch an
is given by a system of regular mapplng;s X — Y, forall 6 € A where
eachf;s actually depends on finitely many variables amaeng X;, say on
Xp for b € B = B(§) ¢ A. Thus we have a finite subsBt= B(§) C A
assigned to eache A and we make graphwith the vertex sef by joining
81 ands, with an edge iff the intersectioB(§,) N B(§,) is non-empty.

The structure of this graph is the main combinatorial characteristic
of f and we shall persue our quest for surjunctivity in the graph theoretic
language ofA.

Remark. There is a finedirected graph structuren A wheres; ands, are
joint by an arrons; — 8, whenevers; € B(§,). But we shall be oblivious
to this in the present article.

A special case of the above graph structureAroarises when we have
a proalgebraic subvarietg in C*, wheres; ands, are joined by an edge
whenever there is a polynomial, among those defirdhgvhich depends
simultaneously on the variables, andx;,. Here every edge is labelled by
(a vector of) complex numbers, the coefficients of polynomials involving
X5, andXs,. This essentially augments the pure combinatorics\oéind
a similar labelling for the abovd : X — Y is needed for answering the
surjunctivity question.
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7.A. Graphs, metrics and finite propagations.We consider a connected
graphA with the metric dist= dist, as is measured by the length of edge
paths inA. Typically, our A is an infinite locally finite graph of bounded
valency (compare 2.D and 6.A).

Our main objects of study are projective systdidg} over finite subsets
Q C A, in particular, subsystem of products which we albproduct
systems. Here the ambient system of products consists of the products of

the “fibers” X; = X5 over subset2 C A whereX, C x X, for all
5e

Q € A. Thus the subproduct property says that the ddgp—> x Xj, that

5eQ
is the product of the projection&g — Xs, is injective for all§ €  and
all @ ¢ A. And we agree in all cases that the space corresponditigeto
empty setonsists of a single poinKy = {e}.

We say that a subproduct system has propagatiahif the inclusion
X € Xq for a givenx € x X; D Xgq is detectible by looking at the balls

8e2
of radii < ¢ around all points in2. That is,x € Xg if and only if the
restrictionsof x to the intersection2 N D(8, ¢) are contained iXgnp(s.¢)
for all § € 2, where, recall, the balD(§, ¢) is defined as

D, £) = {8 € A|dist(s, 8) < ¢}

and where the word “restriction” refers to the projectiq — Xgnps.¢) as
X’s in the product areiewed as function®r sectionsy — x(8) € X; 0nA.
Then “bounded propagation” means “propagatiorf” for somef < oo.
Notice that this corresponds to the notion of “finite type” customary applied
to subshift of the full shift space in the framework of the symbolic dynamics.

Similarly, a morphism between projective systems avel{ fg : Xq —
Yqo-} is called ofpropagation< ¢, if it is determined by mapsp for the
balls D = D4, ¢) for all § € A. More precisely (and more generally) we
require that the subs€t~ = Q(2) C A consists of all-interior points
in Q, whered €  is called¢-interior if D(8, £) C Q. In particular, if{Yq}
is a subproduct system, then the above can be equivalently expressed by
saying that the value of = fo(x) at each point is determined by the
restrictionx|D(8, £), i.e. the values o on the ballD(é, ¢). Then we speak
of bounded propagation as earliefik oo and we apply this terminology
to projective limitsX and maps between thesie,:lirg fo: X =Y.

7.A. Basic examplglcompare 2.D). LeK andY be infinite product spaces

over A, say X = x XsandY = x Y;. Suppose we have mags :
SeA e

x Xg — Ys, for Dy = D(6, £), assigned to all pointse A. This defines
S/EDg



Endomorphisms of symbolic algebraic varieties 161

amapf : X — Y, wherex — y such that the value of at each
8 € A equalsps(X|D). Thus a collection of “finitary” objects, our maps,
defines a “transcendental” mdp: X — Y. Clearly, suchf has bounded
propagation and this is the only remnant of the finitary origirf of

7.A”. Generalization of subproducts.Let us replace one point s€i& by
the ballsD(4, ¢) of a fixed radius¢ and consider the Cartesian product of
the projection fromXg to Xq for 2(8) = 2 N D(4, £), that isTTg(¢) :
Xa —>ng Xa@s)- We say that our system isgeneralized subproductf

€

there existd < oo, such that the mapdq(£) are injective for all2 C A.
This generalization comes naturally in the bounded propagation framework
but it is not truly necessary. In fact, it can be reduced to the subproduct

case by introducing an auxiliary projective syste)q*f = Xgq+t}, where
(S

Q¢ c A denotes the-neighbourhoodof 2, i.e. the union of the balls
B(s, ¢) around all§ € Q. Thus everything we shall eventually prove for
subproduct systems could be extended to generalized subproducts.

7.B. Holonomy overA. Let{ Xq}oca be aprojective system over a grageh
A holonomy maph between (projective systems over) bdllandD’ in A
is given by the following data

(i) anisometryy =y, : D — D’ sending the center dd to that of D,

(ii) a bijective map from the projective systefiXqlacp t0 {Xa'}acp'-
This means there are bijective maps : Xq — Xgo forall @ c D
andQ’ = y(2) which commute with the restriction map&,, — Xq,
and Xq, = Xg, for all pairs2; and 2, C € in D (where, recall
“restriction maps” refer to projections,, o, constituting our projective
system).

The most important holonomy map amoang is hp and we often writeh
instead ofhp.

A holonomy overA is defined as a sdl of holonomy maps defined
between certain (pairs of) ball3 and D’. The balls admitting holonomies
between them are callegjuivalent Notice that equivalent balls aigomet-
ric but the converse does not have to be true. Also we do not assume the
uniqueness of holonomly between two given equivalent balls. (Actually
this non-uniqueness causes some technical complications by making certain
constructions non-canonical).

(Pseudogroup) Axioms for holonomyWe assume below that our holono-
mies satisfy the following four axioms (compare §.B

(1) Theidentity Idp, given by the identity mafp — D and the identity
mapXqo — Xq, Q C D,isinH for all ballsD c A.
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2heH&hleH

(3) If handh’ are inH whereh is defined betwee® and D’ andh’ is
betweenD’ and D”, then their compositioh’ o h defined betwee
and D' is also inH.

(4) If a ball Dy is contained inD then the (obvious) restriction of each
holonomy fromD to Dy belongs to the holonomy ové, (whereDg
is not necessarily a concentric ball).

Notice that we do not bother to define the holonomy over non-batis A

but this could be easily done by restricting those from balls Q. This
being done, we obtain a pseudogrdup= I'(H) acting onA consisting of
ally =y, heH.

7.B'. Holonomies commuting with endomorphismsSuppose we have an
endomorphism of a projective system oversay{ fo : Xq — Xq_} where
we assume2_ C 2 for all @ c A. A holonomy in this situation refers to
h’s which commute withf. (Similarly one may speak of holonomies for
maps between different systems or for extra structur¢Xi} not coming
from maps, but we deal mostly with endomorphisms in this paper).

7.B". Rigid holonomy. A holonomy is calledigid if there isat most onén
covering giveny : D — D’ where “covering” meang = y.

Basic example of holonomyCompare 2.D). Let the graph have bounded
valency, i.e. at mosi < oo edges issuing from every vertex. Suppose we
have a partition ofA into N subsetsAg, ..., Ay such that the points

8 € Ak, k=1,..., N have the same valency ik, saydy for all § € Ay.
Furthermore, we assume that we are giviexcal orderon A, i.e. an ordering

of the edges adjacent to each vertex and thus an ordering of the neighbour
points tos, call thems.(§) € D(8, L) withc =0, 1, ... , dcwhereso(§) = 4.
Next let X be an algebraic variety and It : X% — X be some regular
maps fork = 1, ..., N. Then thesegy define an endomorphisrh of the
Cartesian poweX = X* as follows, f : x — y where the value of

at each poin € Ay, k= 1,..., N, is given by the values af at the
neighbouring points; = 6.(8), ¢ = 0, ..., 8 via px according to the
following rule (compare 2.D),

Y(8) = px(X(do), X(81), - .. , X(8qy))-
This mapf clearly has bounded propagation with the impléeg 1. Then
the structure off as well as the structure of the corresponding endomor-
phism of the projective system of the Cartesian pombé@sd:ef X9, say

{fq : Xq — Xg-}, whereQ2~ equals the l-interior of2, is determined,
besides the given finite set of polynomigig by the pure combinatorics of
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the graphA, the partitionA = UAy and the local ordering ok. Thus every
isometryy : D — D’ preserving the partition and the local order sifts

to a maph : Xp — Xp compatible with the map$q where “lifts” mean

vh = y. In other words thi$ serves as a holonomy map for the projective
system{ fq : Xq — Xq-}.

Now we declare two point8; andd, in A ¢-equivalentif the balls
D(81, €) and D(82, £) are equivalent with respect 6 = I'(H) in the
sense of 7.B which amounts here to the existence of the above isometry
D(81, ) — D(82, £) compatible with the partitions. Clearly there are at
most finitely many¢-equivalence classes of points ix for every ¢ =
1,2,.... Thus we have lots of holonomy famfinite graphsA as we may
have sequences of mutually £-equivalent points inA going to infinity
(compare §6).

Observe that the holonomy in this example is quite rigid : there is at most
oneh corresponding to an isometly — D’ and this is further enhanced
by the local order inA as the local order preserving isomety — D/,
sending the center dd to the center oD’ is, obviously, unique (if existing
at all), as we have already mentioned in 6.B.

7.C. Holonomy orbit completion. Let { X} be a projective system with
aholonomyH overA. Asequence of ballD; = D(5j,i) C A, § € A, i =
1,2,...,is calledholonomidf, for everyi = 2, 3, ... the (concentric) ball
D; = D(6;,i—1)isT'(H)-equivalento D;_1, i.e. if there exists an isometry
y = yn € I'(H) from D;” to D;_;. Given such a sequence we can organize
the spacexX? = Xp, into a projective system by composing the restriction
mapsXp, — XD with some holonomy mags : XD- — Xp_; = X'_;.
Thus every choice gives us a projective system denotedt : X* —

X?_,}. For example, if we také; = §p independent of. Then the balls
D(é, i) give us an exhaustion & (if A is connected as we always assume)
and if h; = Idps, for all i, the projective limitX® =IiLn X? equals our

original X =lim Xg “viewed from the pointsy”. (Shifting “the point of

view” and sending it to infinity in all possible ways lead to our “orbit
completion” defined below). Also nothing essentially new happerss if
stay in a bounded subset ih but everything may change & — oo,
i.e. if dist(8p, 8j) — oo for i — oo. Here we have a sequence of balls
D; = D(6,i) € A and of embeddlngD. — Dj;1 given byyhll These

define the limit grapm® _I|m (A, 80, Vi 1y which is essentially the union

U D; (see 6.A). Since our holonomy mabs: XD- — Xqg_, for D =
D(5,, i —1) are, in fact, isomorphisms of the projective systefasandXq
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forall Q@ C D; andQ’ = y,(R2) C Dj_; we have not only the sequeng
but the whole projective systefiXs,.}q.ca-. If the holonomy is rigid, i.e.
completely determined by the metric (or combinatorial) structum,ithen
this {X%.} emerges as the limit X} when we move our reference point
8i € A to infinity. If the original systenm{Xgq} is homogeneous, then the
limit {X&.} is, of course, isomorphic toX,} and we do not get anything
new. In generalA® is locally isometricto A, that is every ball inA® is
isometric to some ball i\ (but not, necessarily, vice versa, see 6.A). Yet
the global geometry oA® may be far from that oA and {X%.} may be
even further away froniXq}, although{ X%,.} is locally isomorphic tq Xq}
(compare 6.A).

7.C. SpacesX°® and X" c X°. We denote byX° = X°(H) the disjoint
union of the spaceX*® =lim X* over all holonomic sequences of balls
Di C A and all sequences of holonomibs: Xp- — Xp,_;. This X°,

called theholonomy completiof {Xg} and/or of X =lim Xgq, can be

naturally represented as a projective ligdit =lim X° where eaclX? equals
the disjoint union of the spacesp, labelled by sequences of holonomies

hi : XDI— —> XDifl’ hi_]_ . XDi:1 —> XDifz, . ,h2 . XDZ* —> XDl

and the union is taken over all such sequences. Xhisnay be very big

and not convernient to work with. For example, it does not carry, in general,
a natural proalgebraic structure when we start with a projective system of
algebraic varietieXq. But it may contain subspaces which are “small” and
yet “sufficiently representative”.

Projective systems{X:'}. Suppose, for every, we are given a collection
D/ of balls D in A of radiusi and denote by’ = X2, the disjoint union

of the spacesXp over all D € D;. We assume, for each ball e Dy,
there existsD” € D;.; such that the concentri¢ — 1)-ball D_ C D is
I'(H)-equivalent toD’_. Then for eactD € D; we compose the restriction
map Xp — Xp_ with some holonomyXp, — Xp,D” € Di!,, and
thus obtain a maX; — X’ ;. All these make a projective system denoted
(' = X{’ = XiL,) andthe projective limiX" :IiLn X' obviously embeds
into X°.

Example. If X = X' for a groupr", with the holonomy generated by the
natural (shift) action of on X, thenX° = X x 'V, In fact, we have a unique
holonomyh : Xp — Xp for every two ballsD and D’ of equal radii as
D’ = yD for somey € I'. Thus every sequence of pointse I" admits
a sequence of holonomies over thealls aroundy; and X° identifies with
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the disjoint union of the copies of indexed by all sequencds;} € I'".
But in the case o)X = X" one can reduc&X° back toX, exactly because
it consists of disjoint and mutually non-interacting copiesXofin fact,
one can divideX°® by the groupl’™™ naturally acting onX° and arrive at
X = X°/rN,

Group H°.Ingeneral, every holonomiy givesrise to a huge group, denoted
H° and acting onX°, where evenh® € H¢ is, by definition, a function on
the set of all ballD c A assigning to eac a holonomy maj between

D and another balD’ ¢ A. Such function$(D) make a semigroup for the
natural composition

D— D — D
h(D) h'(D’)
and the invertible elements constitute our gréip Clearly, thisH® acts on
holonomic sequences of balls and then it acts on sequences of holonomies
between these balls by conjugation. THdi% acts onX® but the quotient
X°/H° may be rather pathological such @g Galc, for example. So it is
better to deal with the following

“Fundamental domains”. A projective systen{X;’} is called a “funda-
mental domain” foH in {X?} if for eachi-ball D C A there exists &' (H)-
equivalent ball in the collectio®’ associated to thigX;’}. We also express
this property by saying thax" :IiLn X' is a “fundamental domain” irX.
But such anX", in general, is not a true fundamental domainltiras the
He-orbit of X“ may be smaller than all ok°. This is due to the possible
non-unigueness of a holonomy between balls. In fact, given a holonomic
sequence of balld),, ..., Dj, ..., one may have a priori two sequences
of holonomiesh;, h{ : XD; — Xp,_,, such that there is no holonomies
h? = Xp, — Xp, satisfyingh! = hh;(h?)~* for all i. (Of course such?
exist fori < ig but there may be a problem with— oc). On the other
hand, no difficulty of this kind appears if the holonorhlyis rigid (as in the
above case oK = X' where X itself serves as a fundamental domain in
X° and where the action dfi° on X° reduces to that of'.) Also notice
that in the rigid caseX® itself is of the formX" for D; being the collection
ofalli-ballsinA fori =0,1,2,..., butitis not so in general.

7.C". Cofiniteness and densityA holonomy H is called cofinite if the
action of the pseudogroup(H) is cofinite onA in the sense of 6.C. Simi-
larly, H is calleddensdf I'(H) is dense om\.

If the holonomy is cofinite, then the systeiX?®} admits afundamental
domain{X{'} with finite setsD; foralli =1, ....
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Among theseX" there are minimal ones where edhcontains exactly
one representative in th& H)-equivalence class ofballs. Sometimes such
a minimal X" is unique up to an isomorphism (given by somge H°).
In general, however, given two such domains which are projective limits
Ii(r_n Xp, and I(i_m XuD;’ all we can claim is an isomorphism of these projective
systems up to a given finite levig), but this isomorphism does not always
survive wherig — oo as we mentioned earlier.

What is good about these “finite” fundamental domains in any case is
them beingproalgebraicwhen we start with a projective systemeddebraic
varietiesXgq,.

In general, every fundamental domad in X° (regardless of its “finite-
ness”) gives a good view ak° from each point € A. In particular if{ Xq}
comes with an endomorphisiin then the initial injectivity off“ does not
depend on a particular choice of a fundamental dongir, f“) and, in
fact, is equivalent to the initial injectivity of ° for the natural representation
(X°, °) =Ii(r_n (X, f°)asin7.C.

7.D. Holonomy in the proalgebraic categoryLet{Xq}qca be a projective
system of algebraic varieties over a fidddwhich may harbour additional
structures, such as an endomorphisig} of {Xq}. We want to keep track

of all symmetries, i.e. all “isomorphisms” between the projective systems
{Xalaco < {Xglaco for all balls in D and D" in A of equal radii,
where “isomorphisms” must be compatible with extra structures, e.g. with
endomorphismsfq of Xq. The obvious “isomorphisms” to consider are
biregular mappings oveK (compatible with{ fo} if this is required) and
holonomies of this kind are calledgular.

For example, if{ Xo} is a subproduct system, s&és ¢ X%, Q C A,
we may start with the obvious lifts of isometrigs: D — D’ to regular
mapsh : XP — XP" whereh identifiesthe X-components inX® and in
XP" according toy. Then we select those for which h sendsXg, to Xo
forall @ ¢ D andQ’ = 2, and commutes with alf,.

The above holonomy can be enlarged by adding extra (non-identities)
regular maps betweeK = X; and X = Xj, which can lead to a non-
rigid regular holonomy. Yet the rigidity can sometimes be recaptured by
incorporating the holonomy groups in¥y,’s (see 7.0).

Galois holonomy.We want to eventually relax the notion éfequivalent
points § and 8’ in A replacing the (essential) equality of our projective
systems over ball® = D6, ¢) and D’ = D(§, £) by their elementary
equivalenceor, for K = C, by the Galois equivalenceFor example two
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cubic polynomialsp = x? + y® +ay+bandp = x>+ y3+ay+ b on
C? arenot biregular equivalent fogenerica’ # a andb’ # b. Yet there is
an automorphism dof sending(a, b) to (&, b), if & andb’ as well asa and
b are algebraically independent. Thpgnd p’ are Galois equivalent.

The Galois equivalence ové€r(or over any algebraically closed field for
this matter) adequately represents shiatactic (elementary) equivalence
the corresponding algebra-geometric objects expressed in the first order
language of the field theory. This equivalence between two objects means,
that everything we may say in this language which is true for the first object
is also true for the second one.

Definitions of Galois holonomyHgg. Let{Xq}aca be aprojective system

of K-points of algebraic varietieX, over K with a system of endomor-
phism fq : Xq — Xgq- for all finite @ c A and some (possibly empty)
Q™ = Q7 () C A. Thenthe absolute Galois group G&ak= Aut K acts on
{Xq}. A Galois holonomy magver a pair of ball© andD’ in A is given by

the following data : a center preserving isomery D — D’ and a bireg-

ular equivalence of the projective syste&,}oca 10 {gXqo o —yoco for
someg € GalK, where the biregular equivalence is supposed to preserve
all extra structures, such dg if these are present in the picture.

Accordingly, §; andd, in A are calledGalois ¢-equivalent if there is
a Galois holonomy map ovéd (51, £) andD(é,, £).

If K is algebraically closed, then “Galdisequivalence” can be renamed
into “elementary-equivalence”, but we stick to the former even though we
are primerly interested iK = C. Accordingly we use the notatidAg, for
the (maximal) holonomy consisting afl biregular maps composed with
all Galois automorphisms of the fieki(= C).

7.E. Local and global stability. A projective system{Xq}aoca is called
(globally) ¢-stable (compare the image stability in 5.1) if for every triple of
finite subset$2y C 21 C Q2 in A the image of the projectiom, o : Xg, —
Xgq, equals the image a1 : X, — Xgq,, provided; contains the
£-neighbourhood of2g. In particular the Gstability amounts to surjectivity
of the projections (or restrictionsfo — Xq, for all finite @ C A and
Qo C  C A. In other words every, € Xq, can be extended @ D Qo.
Similarly, the¢-stability for ¢ > 0 says, in effect, that every € X, can
be extended from th@einteriorszg‘Z of Qg to everyQ O Qo, i.e. there exists
X € Xgq such thatx|2," = xo|Q2,". Here , a priori, we allow only finite
subsets2, but by repeating the process we can extgnffom “to all
of A, i.e. to construck € X =Ii{_h Xq With the projection toX%« equal to

—L
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Terminology : “stable and ¢-stable”. When we say “stable” we mean
“there existst, such that{Xq} is £-“stable” and similarly we understand
other forms of stability considered in the following sections.

Stability and mixing. Our stability is similar to the uniform mixing prop-
erty (see [Ru-We])) for topological dynamical systems, such as subshifts in
X = X! for a groupl” with the natural (shift) action oX. In fact our notion

of stability (as well as its variations displayed below) extend to a more
general framework of foliated spac&s (where the leaves in our present
case come with structures of graphs locally isomorphic to a givem).

7.E'. Localization of stability. We say that a projective systemlislocally
¢-stableif the above extension of € Xg, from Qg‘z to Q O Qqis possible
for all @ c A with diamQ < L and all2g C . Itis obvious that

ifa systen X} of propagation< £yis L-locally O-stable forL > 4¢¢+2
then it is (globally)¢-stable.

In fact, we can extendly from ¢ N By to x; on B, for every B; with
diamB; < L, and then defin&; on Q1 = Qo U Bl‘% by the conditions
X1|Q0 = Xo andxq|B;% = x;|B;%. The ¢o- propagation bound ensures
this x; is indeed contained iXg, and the inequality. > 4¢; + 1 allows us
to chooseB; such thak?; is strictly greater thaf,. For example, one could
take the ballD(é,, L/2) for B, with § outside2o and then the resulting
Q1 = QU D(S, L/2 — 2¢p) containss;.

Fig. 3.

Then we can add, to getting 2, > ©; and so on until we reach
+
a desired? O Qq.

Now let us extend this argument t > 0. Here we have an extra
complication as we have to repla€g by its ¢-interior at every stage of
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the extension and so as we go fraRg to Q adding By, By, ..., Bx we
reduce2q to Qa"e with k depending on (the size of} D €,. Notice, that
this problem would be less severe if the subdgts j = 1,... ,k, were

disjoint and far from each other, farther thatp 2An this case we could make
our extension independently around e&;fthus reducing2o only to .

More generally, if we could obtain all af and thus eacke > q by adding
subsetsAy, ... , Ay to Qo where each); is a union of disjointB;; which

are mutually far from each other, we would get an extension mgrﬂ“*l”

to 2. So we invoke the idea of asymptotic dimension (see 6.F) and arrive at
the following

7.E". Localization of ¢-stability. LetA have sublinear growth of the asymp-
totic dimensioni.e. dim(A|r)/A — 0for A — oco. Then for everyy and

¢ there existL andL™ = ¢*(L, ¢, A) , such that every -locally ¢-stable
projective system of propagation ¢y is (globally) £*-stable.

In fact, the assumption on dim |A) gives us subset4o, ... , Ay, such
that their 229+ €) (N + 1)-interiors coverA and such that each; consists
of far away B;;'s where “far away” means dist 2¢y. Then the above
argument works and delivefs = ¢(N + 1).

Density of periodic points.Suppose we have a sequence of graphs =
1,2, ..., with projective systemgX(, }ocar Which arer -locally isomorphic
to{Xq}aca and suchthatthe original system ontheall D, = D(8g, 1) C A
is identified withX" on some balD; = D(5,,r) C A".

Example. Consider a groud’, acting on A and on{Xg}, such that
dista (8, ¢8) > 2r for all § € A andy # id in I';. Then one could take
A" = A/T'; with the (naturally defined) quotient systeXh over A" sat-
isfying the above conditions. Then the spaXe = lim X}, @ C A",
can be identified with the space Bf-invariant (orFr-(E)eriodic) points in
X=IiLn Xa, Q C A.

In general, pointx € X', called A"-points in X, can be viewed as
periodic points inX, although there is no embedding < X. Yet, the
spaceX, , identifies with X, and so it makes sense to ask whether (the
union of aII) A"-points aredensem X, where we view botlX and Xpr as
subsets in the metric spage defined in 5.1. Thus the density af -points
means that eack € X restricted toD, can be extended fromy-interior of
D; = Dy to all of A" whererg — 0 withr — oco.

Clearly, the¢-stability of the system$XL,} for some¢ independent of
r is sufficient for this density but thé-stability of {Xg} on A does not,
a priori, suffice. However, the above localization argument shows that if
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dimioc(A|A) hassublinear growth them\"-points are dense iiX, provided
the original systenjXq} over A is stable.

There is one simple case where the assumption opgdisnunneeded.
One can assume instead that duadmits arabsolutely invarianelement
Xo € X which passes tX; C X" over all A". For example, if we deal
with A" = A/T this must be arx € X fixed by all groups,. Then the
¢-stability of Xg on the ballD, C A identified withD; C A" allows an
extension of eack from the ballD;_, to A" by making itx, outsideDy.

7.E”. Strong ¢-stability. Let us introduce another version of thestability
allowing localization witout extra assumptions an

Definition. A projective system is callestrongly ¢-stableif the following
condition (loc) is sufficient for extendability af from g to €2 for all finite
subseio and D Qg in A.

(loc). For everys € © the restrictionxg|$2o N D(6, £) is extendableo
DG, ¢).

Clearly, this strong-stability implies thef-stability.

Strong localization lemma.If a system id-locally strongly¢-stable for
L > 2¢ + 1then itis stronglyl-stable.

In fact, this follows by the same (trivial) argument we used to localize
the O-stability.

Corollary. Strong stability implies density of (“periodic”\"-points in the
context of the previous section.

Remark. Stability is a rather transparent property if the underlying graph is
atree, e.g. the Cayley graph of a free graffor instance. In fact stability

for free groups is essentially equivalentth@ topological mixing property
which is satisfied by “generic” subproduct systems (compare [Ru-We] and
see [Gro}ps for further discussion). But the picture is not so clear for
general graphs (and groups) where exhibiting meaningful stable systems
is not totally trivial even for (Cayley graphs of) groups &, n > 2
(compare [Gro]ips).

7.F. Vertical irreducibility. Our preoccupation with the localization of
stability was motivated by necessity of expressing this property in the first
order language where we can apply the extended Lefschetz principle re-
ducing algebra geometric problems o¢&to those ovefp. Then we need

a further reduction, tdinite subfieldsF, C Fp, and this is achieved with

the following
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Definition. A projective system (ofK-points) of algebraic varieties,
{Xalaca, overafielK is callede-vertically irreducibleif the fibers (i.e. the
pull-backs of the points) of the projection (restriction) m&p.. — Xq are
irreducible for all2 ¢ A (where, recalf2™ stands for thé-neighbourhood
of Q).

We shall see that this property O\E_égcombines with a suitably localized
¢-stability and yieldsZ-stability onlF ,.-points of our projective system by
the Weil-Lang theorem (see 5.J and 7\.K

7.G. Surjunctivity theorem for quasi-homogeneous endomorphisms
over amenable graphs.Let A be a countable connected graph drfid :
Xa — Xa-l}aca be a projective system d@E-varieties and regular maps.
We make the following assumptions on our objects.

I. Bounded propagation.{Xgq} is a subproduct system of bounded propa-
gation and the system of mapk,} has also bounded propagation.

This means that everything is detectable by looking at our objects re-
stricted to the balls imA of a fixed (possibly large) radiu& . Thus our
“transcendental” mapf : X — X is determined byA and the count-
able collection of elementary objects that are finite projective systems
{fQ  Xq — XQ—}QcD((S’[O) forall § € A.

II. Density of the Galois holonomyHgg on A. This means, that for every
¢ =12...,every non-empty Galoié-equivalence class in is a netinA
in the sense of 6.D.

In other words every algebrafepropertyof { fo} observed at some point
8o € A, i.e. a property of folacpes.ep), Will recur in the vicinity of each
points € A.

lIl —. Cofiniteness of Galois holonomyHgg. This requires that for each
¢ there are at most finitely many mutually Galois (i.e. elementary) fion-
equivalent points € A.

So, eventuallyf is determined by &nitecollection of projective systems
{fq} over ballsD(6;, ¢), i = 1,..., N, representing all-equivalence
classes. But unfortunately we do not know how to handle the “Galois
ambiguity” lurking behind the definition of thié-equivalence and so we
shall need a stronger cofiniteness condition stated in 11l below.

lll. Rigid cofiniteness of H on A. This requires the existence of a regular
rigid holonomyH on{fq : Xq — Xgq} which is cofinite.

If we have a rigid cofiniteH, then the projective system over allafcan
becanonicallyreconstructed from its restriction to some latgball DC A,
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where the restrictefifo}qocp is augmented by restricted to the pairs of
¢-ballsD(¢) andD’(¢) in D = D(L) (which are not necessarily concentric
to D(L)). Now we can truly claim that our transcendenfat X — X is
given by an (elementary) algebraic object, thatfisH)|D. This is important

in our modulop reduction argument which applies only to the properties of
algebraicobjects expressible in the elementary language of the field theory.
(Notice that the elementary property 6fD which we prove, some kind of
“initial surjunctivity”, is obtained with an appeal to the transcenderital
Thus one can think of our approach in two complementary ways. On one
hand, we establish some (surjunctivity) property tbascendentabbject,

our f, by applying theslementantheory of fields to the algebraic objects
(i.e. f, H|D). On the other hand, we derive sorakementary algebraic
propertyof f|D by transcendental mear{g/hich are not so transcendental
after all as they reduce to counting points in a finite projective system
over larger domain§2 > D in A, where we extend our system using the
holonomyH on D).

IV. Stability. This meang-stability for someZ > 0 (which can be set equal
to the propagatioriy of our system).

V. Vertical irreducibility. Here “vertical’ readst-vertical for some > 0”.

Notice that this condition fails to be true for product projective systems
such ag Xq} = {X%} whereX is a reducible algebraic variety and where
our surjunctivity theorem (stated below) holds with no problem. One could
somewhat artificially bring the two cases together by allowidg = X{, x
X%} for some vertically irreducible systefXi,} and arbitrary (possibly
reducible)X. In fact it is not hard to formulate a comprehensive condition
of “controlled vertical reducibility” sufficient for our theorem, but we leave
this to the pleasure of the reader.

VI. Amenablility. We require thathe graphA is initially uniformly sub-
amenable with respect to the pseudogrdug I'(H) associated to our rigid
holonomyH.

Recall (see 6.E) that uniform amenability an(which refers to nd")
suffices for this. Also observe that the uniformity is not needed for the
essential part of our reasoning.

Now we return to the Galois holononmyg, that is the set oéill Galois
holonomy mapsXp — Xp and let(X°, f°) denote the corresponding
holonomy completion ofX. Recall, that(X°, f°) appears as the disjoint
union of projective systems of the forfiXg,., foe}qecas WhereA® is some
limit of marked graphg A, §;) for §i — oo and the systeriX., fq.} is
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a limit (essentially, a prodiscrete limit, where “convergence” means “sta-
bilization”, compare 4.C) of Xq, fo) marked by points; € A going to
infinity.

7.G. Surjunctivity Theorem. Let a projective system of complex algebraic
varietiesXq and regular mapdq : Xq — Xqo- over a graphA satisfy the
above conditions I-VI, that are

I.  Bounded propagation dXq} and{ fg}.

Il. Density of the Galois holonomy of.

lll. Cofiniteness of a regular rigid holonomiyt on A.
IV. Stability of{ Xq}.

V. Vertical irreducibility.

VI. Uniform initial subamenability of\.

Thenthe mag©: X° — X°issurjunctive for X°, f°)=(X°, f°)(Hga),
i.e.
f°is injective = f° is surjective (0)
Furthermore, the map$“ : X" — X" are also surjunctive for all funda-
mental domains<” for Hgy in X° (Where, observe® = f°|X"),

f"isinjective = f" is surjective (U)

About the proof. We shall (essentially) reduce (o) and)(to a similar
property of projective systems fifite sets by applying a reduction modulo
p argument to a suitable fundamental domits ¢ X°. This reduction
goes in three steps.

(1) Translation of (0) andJ) into the first order language of the field theory.

(2) Invoking the extended Lefschetz principle and thus reducingCthe
problem to the correspondid@)-problems for all prime%.

(3) Passing fronf, to finite subfieldsF ,, C Ty,

The step (1) is performed in 7.H.Jwhere the key role is played by |
(i.e. bounded propagation) and1l{Galois cofiniteness which is weaker
than 1ll). These conditions say, in effect, that our projective system is deter-
mined by finite (local inA) data and the combinatorics af. One also uses
£-stability at this stage, but this is a rather technical matter.

The full strength of Ill, i.e. confiniteness of a rigiggular holonomy
is needed at the next stage when we apply the Lefschetz principle. One
seems to need here regular rather than Galois holonomy as the latter does
not belong to the first order language of the field theory.

The condition V, i.e. the vertical irreducibility, is used at the step (3)
where it ensures (by the Lang-Weil theorem) a suitable stability of the
projective system afF p.-varieties.
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Notice that neither Il (Galois density) nor VI (amenability) has been
used so far. The initial amenability is used to prove surjunctivity of certain
endomorphisms of projective system of finite sets (thaﬂ@epoints of
our varieties) by a counting argument (with some kinekofropylurking
behind the scene) where a suitably adjusted Il makes this counting work in
the desired way. Actually one could drop Il altogether with the following
weakening of the conclusion.

7.G". If f°is injective, then there exists a (limit) projective systexg.,
fae}aecae locally isomorphic to the original one, where the mép =
lim fg. is surjective. This can be written as

f° is injective = somef*® is surjective (0— o)
(Here “locally” means t-locally forallr =1,2,...,").

Finally, we confess that our proof of 7.@nd 7.G do not use the
reduction modulg all way, as we make a shortcut at some moment which
limits our considerations to projective systems over some auxifiarie
graphA” rather than the original (infinitej (see 7.L). On the other hand
such a full reduction is considerd for its own sake in 7.N with some extra
assumptions ofiXq}.

Why f°and f“? It would be more pleasant to prove the surjunctivity
for f itself rather than forf > and/or f. The technical reason of bringing
in these maps is the need faruniform injectivityof f as is explained in
the next section. (Probably, there are some examples whéself is not
surjunctive under our assumptions but these must be rather exceptional).

7.H. A-uniform injectivity. Every exhaustiof€2;i} of A representsX as

the projective limit of a sequence, namely Xf = Xg, and every such
representation defines our prodiscrete mekie x'| on X (see 4.C). Now,
for eachs € A we exhaustA by i-balls; = D(§,i) C A and denote by
|X — X'|5 the resulting metric irnx.

If we think of x € X as (Xs-valued) functions om\, then the metric
X — X'|s reflects our perception of (pairs of) functions viewed from the
point §. We clearly see any distinction betwerrandx’ at the pointss in
A nears$, but ass, goes further away from the functionsx andx’ come
closer eventually merging in our eyes for dist §) — oo. (Recall, that the
inequality|x — X'|; < 27 is equivalent tox|D(8, i) = X'|D(, 1))).

Observe, that every two metrigs— x'|5, and|x — X', are bi-Lipschitz
equivalent. In fact, the ratio between the two is (obviously) bounded by
24ist81.%2) Thus every finite set of these metrics is as good as any single
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one. But the totality of these metrics férranging over all ofA carries
more topological information than our individual metrics— x'|5. We are
especially concerned withniform injectivity of our mapsf : X — X
distinguished according to the following quite general

Definition. Consider a spac¥ with a family of metrics denotetk—x’|s,
8 € A, and call a selfmappind of X A-uniformly injectivewith respect
to this family if for everye > 0 there exists’ = €(¢) > 0, such that
X = X|s =€ = |f(X) — f(y)|s > € forall § € A (compare 4.F).

Lemma. If the systeniXgq, fo} of C-varieties and regular maps is Galois
cofinite(see III" in 7.G)then injectivity off ° implies A-uniform injectivity
of f as well asA-uniform injectivity of everyf® : X* — X°.

Proof. Let us choose a particular fundamental doma&ihfor Hgg with
finte sets of ballP;’, such that

(a)ifaballD = D(S, i) has dists, §p) < i+1 forafixed point (marking)

80 € A, then itis contained i}

(b) The ballD’_ we take with the abov® (see 7.Cfor notations) is
D_ = D(4,i — 1) and the holonomyXp_ — Xp_ must be the identity.
Thus the (vertical) arrows in the projective systEdy'} become eventually
the old restriction maps for the inclusion between concentric balls of large
radii.

Since the set®; are finite, the spaces§’, being finite unions of algebraic
varieties, are also algebraic and the projectigiis— Xi’ ; are composi-
tions of regular maps with Galois automorphisms. Thus the injectivity of the
map f* = lim " (which is a “part” of f°) implies its uniform injectivity
for the prodiscrete metric attached to this projective systitt}. On the
other hand, the\-uniform injectivity of { fo : Xq — Xg-} is equivalent,
essentially by definition, to uniform injectivity of yet another system, de-
noted{ X, f*}, whereX; equals the disjoint union oXp, over alli-balls
D C A with the projectionsX® — X ; corresponding to the restriction
to the concentric balls and with* being made offp, in the obvious way.

Thus X* =lim X equals the disjoint union of copies &f marked by the

points§ € A and so thisX* maps intoX" with this map being isometric
on each copy oX in X* and with f* going to f". This is possible due to
our choice ofX" (motivated by a possibility to have such a map). It easily
follows that the uniform injectivity off“ implies this property off * and
consequently thé\-uniform injectivity of f. Q.E.D.

Now we introduce a “mixed” surjunctivity property df via the follow-
ing implication

f is A-uniformly injective= f° is surjective *)o
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The above lemma obviously leads to the following

Corollary. The implication (), yields the(o)-part of the surjunctivity
theorem

(*)o = (0).

(And (u) of that theorem also follows froitx),, for stableprojective systems
over A as we shall see below).

Notice that surjectivity off > amounts to the surjectivity of afl® “locally
isomorphic” to f. In particular,(x), tells us that

A-uniform injectivity off = surjectivity of f (%)

and we shall see later on that.) = (x) as well agx)_ = (u) for stable
systemg Xq}. This reduces our surjunctivity theorem to proviag_ under
the assumptions I-VI.

7.H'. Remarks onA-uniform continuity etc. If we reverse the inequalities
in the definition of theA-uniform injectivity we arrive at the notion of A-
uniformly continuous masuch that

X —X1]s <e=[f(X) — f(X)|s <€

for somee’ = €/(¢) independent o8, all § € A and allx, X" in X. Similarly
one defines\-uniform Lipschitzroperty for f

[ f() — F(XDs < Clx — X5
for a constanC independent o8 € A and alls € A.

Observe, thatiff =lim fg, where the system of maps$g} over a graph
A has propagation bounded I8y then f is A-uniformly Lipschitz with
C=2"

It is also clear that the converse is true for maps between product spaces

X=x XsandY = x Y;.Namely
seA seA

A-Lipschitz for f = bounded propagation foffg}.

Finally observe that one can reconstruct the graph structurelmniooking
at the metricgx — X’|;. Namely,5o andé; are joined by an edge, if and only
if the corresponding metrics are 2-Lipschitz equivalent

1
SIX = X5 < IX = X5, < 2IX = X[5,

If one replaces “2-Lipschitz” by C-Lipschitz” with someC > 2 one gets
another graph, sa¥xc where edges correspond to paths of lengtiog, C
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in A. This Ac is quite similar toA (it is quasiisometricto it) and so the
choice of (large !'C is not so essential. (This suggests a similar construction
of a graph structure on an arbitrary febf metrics on a spac).

7.1. Uniform initial injectivity and the proof of the implications (x)_ =
(*)o, (¥)o = (L) and(x) = (0) + (U). We say that a projective system of
maps{ fq : Xq = Ya-}aca is (ig, 11 )-injectiveats € A, where 0< ip <

iy if the map fp, : Xp, — YD;, over the ballD, = D(6,iy), (where,
recallD} = D(é, i, — £o)) does not identify points iiXp, with non-equal
projections toXps.i,). Thatis

X|D(3.i0) # X |D(8.i0) = fp-(X) # fp- (X)

for all x andx’ in fp,.
+

We say that our systefif,} isuniformly initially injective onA if Vig3i
s.t.itis(ig, iy)-injective at all§ € A.

Remark. If {Xq} is asubproducsystem then the uniforif®, i , )-injectivity
obviously implies(ig, ig + i )-injectivity and so there is no need to look at
io > 0.

(a) Lemma.If a systenq f }o over a graphA is uniformly initially injective,
then the systef °} (and thus every systepii-}) is initially injective in the
sense of 5.L. Conversely,{if"} is initially injective for some fundamental
domain{f"} in {X?}, then the systerfifo} is uniformly initially injective
ONnA.

This is obvious and true for all projective systems over graphs, just
unwind the definitions.

Uniform image stability and the ¢-stability. A projective systeniXqlaca

is called(ig, ig + ¢)-stableat § € A if the image of the restriction map
(projection) Xp, — Xp, for Dx = D(é,ip + K) and Dg = D(8, ip) does
not depend ork for k > ¢. This stabilityon A means stability at evry
8 € A anduniform image stabilitysignifies thatvig3¢, s.t. the system is
(i, ig + £)-stable onA.

It is immediate that for each=0, 1, ...

£-stability = uniform image stability,

since thes-stability (defined in 7.E) says that for all finite subs@isC A
and all 2 containing thee-neighbourhoonge D Qo, the image of the
restriction mapXq — Xgq, does not depend af.
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On the other hand the uniform image stability perfectly matches the
notion of the image stability from 5.1 according to the following

(b) Obvious lemma.If a projective systeniXq}aoca is uniformly image
stable then all systen{X;’} as well ag Xio} are image stable. Conversely, if
some fundamental domajix“} is image stable, thefiXq} is A-uniformly
image stable.

Now we recall that endomorphisnisof image stablgrojective systems
(obviously) satisfy (compare 5.L)

f is uniformly injectives f is initially injective (+)

andproregular maps ovet satisfy (see 5.L)
injectivity = initial injectivity. (%)

In fact, we want to apply the latter implication to a projective system
{f7 = X{ = X'} where X} are constructed for the holonontys4 with
finite collections of ballsD;’ for all i. Here everyX}' is a finite union
of algebraic varietiesXp, D € D}, and so it is an algebrai€C-variety
itself. Yet our projectionst” : Xi — X, are notC-regular maps as
they are composed with Galois automorphisms applied to the components
Xp of X{. However §) still holds true (see 4} since our projections,
albeit contaminated by Galois automorphisms, still preserve constructible
subset under direct and inverse images. (Alternatively, one could “unwind”
the Galois part inr, i.e. to construct a truly proalgebraic system, say
(fY . X — X9} that is equivalant td f~ : X — X"} by bijective
(Galois) mapsX; < )~(iu commuting withf;’s.) Thus forfinite D we have

injectivity of f* = uniform injectivity of f“.

(c) Conclusion. Let {Xq, folaca be a stable projective system Gf
varieties with cofinite Galois holonomy. Then injectivity fof on some
“fundamental domain”X" c X° for Hg implies uniform initial injectivity
of {fo}on A,

injectivity of f* = uniform initial injectivity of{ fo}.
Proof. We can assume, taking a smaller “subdomain’Xiif necessary,
that X" is made out ofX with finite D and so the above implications

work. Then we conclude with (+) thét- is initially injective and applying
(a) we arrive at the uniform initial injectivity offq} on A. Q.E.D.

Remark. Observe that the reverse implications are obvious,

uniform initial injectivity of{ fo}on A = uniform injectivity of f
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and

uniform initial injectivity of { fo} on A = uniform injectivity of f° and
all f-.

for an arbitrary holonomyH on {Xgq, fq}.

Now let us modify our implication(x)_ to the following one, denoted
(») in sequel.

uniform initial injectivity of{ fo}on A = surjectivity of f =Ilim fo. (%)

We shall provex) in the remaining part of 87 faall projective systems
of C- varieties satisfying the assumptions I-VI of the surjunctivity theorem.
Here we only observe thak) in this generality yields the surjunctivity
theorem,
(*) = (0) + (L).

In fact, if the system{ fo} is uniformly initially injective then so are also
all (limit) systems{ f3.}q.ca- Which are locally isomorphic t¢fg} . Itis
equally clear that the assumptions I-VI, due to their locality and uniformity,
also pass fronf fg} to all { f3.} and so(x) for all systems satisfying I-VI
yields (»*), i.e. the following implication follows frongx),

uniform initial injectivity of{ fo}on A = surjectivity ofall f*  (x*).
Then, obviously

surjectivity of all f* = surjectivity of f° = surjectivity of all f-,
while (c) reduces the left hand side @) to that of(L). Q.E.D.

Finally, we observe that this argument also shows that — (%),
and (), = (u), but we do not care about this anymore as we now deal
exclusively with(x).

7.J. Initialization and localization of (x). We want to reducéx) to a prop-

erty of the projective systefifg : Xq — Xg-}aca €xpressible in the first
order language of the field theory and we start by adjusting the notion of
initial surjectivity from 5.1toA. We say that the systefiig}qca is (i, i +Kk)-
surjectiveat § € A if the image fp(Xp) C Xp-¢ contains the image of
the restriction map (projectiorp+k — Xp-¢,, WhereD denotes the ball
D@,i)in A, andD~% = D(S,i — £g), D™ = D(8,i + k) and wheret,

is the propagation dffg}. Then we introduce the following “initialization”

of (x) denoted*); = (»)i (8o, i, K1)

(0, i,)-injectivity of{ fo}on A = (i, i + ky)-surjectivity ats. ()i
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7.J. Lemma. Letdy € A be an arbitrary point,i, = 1,2..., a number
andk; = kq(i) be an arbitrary function. Then the implicatioiis); for all
i =12...,yield(x). In fact one only need&); fori > jo, i.e.

A\ @i = &)
i=jo

foreveryi, =1,2....

Proof. Uniform initial injectivity amounts tq0, i, )-injectivity for somei ;.
while surjectivity follows from(i, ky (i))-surjectivity valid for all large by
(*)in5.1.: Q.E.D.

7.J". Restricting (%) to a ball. Take theR-ball Dg = D(8p, R) C A, let
Dy = D(80, R— ¢o — i) and consider the following implication, denoted
®)i(R) = ®)i(R; do, 1, ky = Ky (1)),

(0, i;)-injectivity of { fo}on Dy = (i, i + ky)-surjectivity atdy  (»)i (R)
where we assume that
R> Ry(i) =i +ku(i) +€o+iy. (%)
It is obvious that
®i(R) = (%)
for everyi, and everyR satisfying(x).

Next we modify ()i (R) by replacing i, i + ki)-surjectivity atéy” by
“(i,1 + kp)-surjectivity on the balD(s1, p) C Dr for somes; € Dr_5, =
D(80, R—28) where “on the ball” means “at all point in this ball”. We write
the resulting implication as

(0, i1)-injectivity onD = (i, i + Kky)-surjectivity on somé@® (41, p).
®i(R, p)

7.J”. Lemma. For eachi = 1, 2.. ., there existeg = po(i), such that for
everyp > pg and everyR > 2p + i + ky(i) + £o + i, the implication
)i (R, p) yieldsxi(R),

)i (R, p) = i (R).

Proof. If the system{ fo} is not (i, i + ki)-surjective aty, then each ball
of radiusp > pg(i) iIn A contains a poiné where{ fg} is not(i, i + kp)-
surjective. This follows from the density of the Galois holonomy (see I
in 7.G) since the(i, i + kg)-surjectivity is (obviously) a Galois invariant
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property (actually it is invariant under arbitrary automorphismsfef} but
it seems silly to go beyond Galois when we deal with algebraic varieties).

7.K. Reduction (%) (R, p) modulo p. Observe that the implication (R, p)

is a sentence in the first order language of the field theory or at least it
becomes such a sentence if we limit the degrees of all variétje2 € Dg,

and mapdq. Since our system has propagatior it is sufficient to bound

the degrees of aKq and fq, for diamQ < 10¢p. We denote such a bound by

do (which also incorporate the dimensions of the fib¥gdor all § € DR).

Also, we have to bound the degrees of the holonomy n¥gps— Xp.
Since we deal with rigid holonomies, these maps are determined by their
constituentsX; — Xy for all § € D and so we only have to bound degrees
of the latter maps which we do witly again. So we defing (R, p, dp) as the
above implicationx (R, p) limited to systemg Xq, fq} where the degrees

of Xq, fg andH are bounded in the abovyéy-local) sense. This restricted

* (R, p,dp) = *i(i, ki, R p,dp) is a bona fide first order sentence in the
elementary field theory. We want to establish thigR, p, dg) for large R
under the following assumptions.

Ir.  The propagation of {Xq} and { fo} on Dg are bounded by#,. This
means, for our subproduct systgi¥q}, thatx € Xq for a given
Q C Dr_y,, iff the restriction ofx to 2 N D(8, £o) is contained in
Xanpe.ep for all 8 € Q. And similarly, the value off(x) at each
§ € Dr_y, is determined by the values rfon thef,-ball arounds.

IIr. No assumption onHgg.

Il . Holonomy on Dg corellated with T'. We consider some pseudo-
group of isometries acting of, denote itl" (where, eventuallyi® =
I'(H) for our regular holonomyH) and we assume that the system
{Xa, folacpg admits a rigid holonomyg with I'(Hg) = I'| Dr.

IVg. Stability. We assume our systefiXq}ocpg t0 bef-stable for some
£ which, to save notation, we set equal to the propagaion

Vr. Vertical irreducibility. This means-vertical irreducibility onDg

Now the time came to introduce the following

Technical definition. Say that a graph with a distinguished pseudogroup
of isometried" islocally surjunctive over &amily of fields{K} if Vg, i, 1,

do Ik1Vp IRy s.t. forVR > Ry the assumptionsg, |11 g, IVg and Vg on

a projective system oK-points of K-varieties over an arbitrarir-ball in

A vyield the implicationx; (R, p, do) = *i (i, kg, €0, p, R, dp) for all fields

K e {K}.

Notice that¢y enters into the conditionkg, Vg andVg. We also agree
that “irreducibility” always means “irreducibility over the algebraic closure
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of the field K in question. Also, it must be understood that tlig-local)
degrees of our projective system and of the holonomy are boundegiitoy
the above sense.

Now we use the extended Lefschetz principle and recyd®, p, do)
modulo p as follows.

7.K'. If a graph A of bounded valency is locally surjunctive over a family
{IF,} with infinitely many prime, then it is locally surjunctive over every
algebraically closed field of characteristi; in particular, overC.

We express this schematically by
*i (R p)/{Fp} = % (R p)/C P=0

Next, we want to go fronF, to finite fieldsF, and we do it with the
following

7.K"”. Lemma. If A is locally surjunctive over a family of finite fields .}
where everyp which appears in this family comes along with arbitrary
large exponents, (i.e. if Fpo € {Fp} then alsdf i € {F} with arbitrary
large v;), thenA is also locally surjunctive ove[ﬂ_Fp}.

Proof. SinceF, =U Fps for vi — oo everything is trivial except for the
|

(strong) ¢-stability. The problem is that a projective system defined over
F o may bet-stable on the corresponding system ofﬁr,bepoints but not

on Fy-points for any (finite)v > vo. Consequently a morphism may be
(i, 1 + k)-surjective on théT"p-points without being such di.-points. But

our vertical irreducibility condition, which says, in effect, ttTEag—varieties,
which are fibers of projections (restriction maps) in our projective system,
are absolutely irreducible and hence, must be non empty IByewhen
they are non emptﬁp by the Lang-Weil theorem. A word of caution is
needed here. The Lang-Weil theorem, which claims that every absolutely
irreducible varietyV over F» has alFp-point needs this variety to be
projective. We do not assume our variefiésire projective, but we allow to
enlargep and/orv if necessary, and then the Lang-Weil theorem holds for
all (possibly non-projective). This suffices for the proof of the Lemma,
which can be written as

(R p)/{Fp} = % (R, p)/{Fp}. (P=1D

Then we combine(p = C)) and (p = P) and see that local surjunctivity
of (A, I') overC, reduces to that over finite fields, i.e.

* (R p)/{Fp} = % (R, p)/C.



Endomorphisms of symbolic algebraic varieties 183

On the other hand we know thatx; (R, p) yields the surjunctivity theorem
|

(overC) and so all that is left is to provwe(R, p) over finite fields. In fact we
are going to prove the following purely combinatorial Lemma concerning
projective systems of finite sets over initially amenable finite grdphs

7.L. Consider a locally finite graph (which here may be finite as well as
infinite) of bounded valency with a distinguished finite suti3et A and

a pseudogrouf of isometries acting om\ such that for some (large but
fixed)r > 0 and every > 0O there exists a grapB’ with a finite subset
Q. C A’ satisfying the following three conditions (compareg.E

(a) 2. isr-locally I'-isometric toD in A. This means every-ball in A’
with the center irn2. is I'-isometric to some ball i\ with the center
in D.

(b) Q. contains d -isometric copy ofD.

(c) cardoS2./card2. <e.

Next, let{ Xq}oca be a projective subproduct system of finite sets over
A with selfmappingd fq : Xq — Xq-} commuting with the projections
in the system, such that the following conditions are satisfied.

Ip. The propagation ofXq, fo} is bounded by some numbés < r/4.
In particular, this mean®~ = Q% for all @ C A.

Il . The systen{Xq, fo} admits a rigid holonomy withi"(H) = T.

IV. Local stability. The system{ Xq} is 2r-locally £o-stable.

Then{ fg} satisfy the following property.

7.L'. Local combinatorial surjunctivity. If the system of mapsfq} is
(0, i;)-injective onA for somei; < r/4, then there exists a balD, =
D(p, 8) C Awith$ € D andp = r/4 such that the magp, : Xp, — fD;
sendsXp, onto the image of the restriction magp, — fD; for D, =
D(8, P — Zo)

Proof. We proceed in three steps.

Step 1 Reducing the general case to that whé&rgreserves some local
ordering onA. This is done by first limitingA to the r-neighbourhood
Dt c A (the rest of A takes no part in the action anyway) and then
considering the disjoint union, say- of the copies oD* corresponding to
all possible local orderings (see 6.B) bft. This A“ comes with a natural
local ordering and a pseudogroilig preserving this ordering. Namely
consists ofthose : 21 — 2, fromI" (wheref2; and2, may lie in different
copies sayD; and D of DT) which preserve the local ordering axt.
The systen{ Xq, fq} obviously extends ta“ and so we may assume from
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now on thatl" itself preserves a local order anto start with. (Notice, that
we needed local finiteness of at this point to haveD™ finite). So we do
assume thaf = D™ is locally orderedI" preserves the order antl' is
locally ordered as well (where we can use any local ordeAbwe wish,
as the copies ob™ in A" give all possibilities).

Step 2 Extension Xq, fo} to A’. Now, for each2’ C A’ contained in some
r-ball D(',r), for 8’ € @', we havel'-isometryy’ : Q" — Q c D(4,r) for
somes € D and thisy’, if it exists for someR, is unique as it preserves local
order. Then we cadefineXq and fo by declaringXq = Xq, fo = fq.
Finally we defineXq for all (larger) subset2’ in A’ by postulating the
subproduct property of the new system and the propagatiéncondition.
Since/y is significantly smaller than, this uniquely defines our extended
system. It is also clear that the extended systég} is (O, i, )-injective
sincei . is small compared to.

Step 3 Proving that there exists a ba[D;) = D@, r/4) c A, § e Q,
such that fp, sendsXp, onto the image of the projectio(restriction)
Xp, — XD;HO.This is the main step whichis performed by a simple entropy
style counting argument presented below which worksig sufficiently
small.

Suppose we have some poidfsé,, ... , 8y in ther-interior of 2 with
mutual distances 2r such that the above onto property fails to the true
for all balls D(5;,r/4), i = 1,..., N. Denote byX; the images of the
projections (restrictions)(D((;i/,p) — Xp@.p—to)r P =T1/4, i=1...,N,
and consider the projection) from X = X to theseX;. The local stability
of our system extended ta gives us the -local ¢o-stability on €2.. this
implies (by a trivial globalization argument as in 7).that the product map

T XAy X -+ XN : X—=> XX Xo X -+ X XN

is onta Furthermore, for each= 1,... , N the fibers of the projection
i © X — X satisfy
cardr; (x) > a cardX ()i

for all x € X; and somer = «(A) > 0 independent of\’. In fact

ot <max N cardX; (+)
Dy 8eDy
for all r-balls D, in D or, equivalently, inQ. In fact the stability of our
system on the balD; = D(}, r/2) reduces #£); to a similar lower bound
on the cardinality of the “complementary space”™q This space, say;,
is defined as the image of the restriction m&p — Xq for f = Q\D;.
Here it is obvious that
cardY; > a cardX
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with the above bound om2.

The inequality £); shows that missing a single poixt € 7; (X) C X;
by the mapr;) bounds the image of the mdp, by

cardfo (X) < (1 — ) cardX.
We want to iterate thi®l times and obtain the inequality
cardfo, (X) < (1— )" cardX, ()N

where we need, roughly speaking, the inequalities to be independent
fori =1, ..., N. Inother words, we need a quantitative version of the onto
claim for the above map; x 1o X -+ x 7wy : X = X1 X Xo X -+ x Xy
incorporatingN independent versions ¢); as follows.

Take some; € X, foralli =1,2,..., N, and setX(i) =.r|7l nfl(xi).
=

In other words X(i) equals the pull-back afxy, X, ..., X)) € X1 x X, x
-« x Xjunderthe mapry x o X -+ x 7 : X = Xy X Xo X -+ X X

Now we claim the following refinement o)
cardX(i) > acardX(i — 1) ()]

foralli =2,3,..., N, ande~! bounded by (+) as earlier.

Proof of (*)}. We argue as in the proof @k); with the spaceX(i — 1)
playing the the role oX. Namely, we denote byl; the restriction ofr;_;
to X(i — 1) and observe thaX(i) = H(l(Xi). To apply our previous rea-
soning toIT; : X(i — 1) — X; we need thisX(i — 1) to emerge as the
projective limit of a projective system oveél. where this system must be
Lo-stable on the balD; = D(5;, r/2). We define this systerfiXq (i — 1)},
Q' C Q., as a subsystem i§Xq '} wherex € Xq is contained inXg/ (i) C
Xgq if and only if the restriction ok to D(S/j, r/4 — £o) equalsx; for j =

1,2,...,i—1.Notice thatthis condition makes sense only(iﬁ’j /4 — L)
C '; otherwise, it is a vacuous (and, in particulg (i — 1) = Xg if
D@, r/4—¢o) & forall j =1,2,...,i —1). Clearly, this projective

system{ X (i)} equals to the ol@iX '} on D; and so the proof of«); yields
(x)j as well. Q.E.D.

Now, obviously(*)} = (x)N exactly as we wanted it. On the other hand
the (0, i )-injectivity of { fo} implies that the cardinality of this image is
bounded from below by

cardfg (X) > cardXq
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whereQ’” C . denotes here th@, + i )-interior of .. Next, we invoke
the bound on card., that is

cardd2, < ecard2,

and the bound on cabdy by a constanC depending om\ but not onA’.
It follows that
cardXg (X) > cardX/Cecard

and so
(1_ C()N > 1/Cecard§2’€.

But, recall,x (as well a<C) is fixed, independently ok’ while e can be made
arbitrarily small. Then, unles¥2 is empty and everything is obvious, each
connected component af grows in diameter as — 0 and so we can find
as many disjoint balls as we want§j. Moreover, since the graplas have
uniformly bounded valences, we can find in each of thém g card<2.
balls D(§, p), i = 1,..., N, whereg > 0 does not depend oft’, such
that these balls lie in the-interior of Q. and have digs;, §;) > 2r for

i # j. Thus we arrive at the inequality

(1— a)ﬁcardsz’e - :I_/Cecardsz’6

which leads to a contradiction for caffy — oo ande — 0. So we must
admit the existence of a baD;) = D(',r/4) in Qe where fD/p goesonto
the image of the restriction map fromD; to XDL—«O'

Finally, we recall that our system oveY' is locally isomorphic to the
original system oven and so such a ball already existsAn

7.M. Conclusion of the proof of the surjunctivity theorem. It is obvious
that the local combinatorial surjunctivity yieldg R, o) over all finite fields
and with the above(f = C)) and (p = P)) we obtainx (R, p)/C for alli.
This yields the desired (0) and)in 7.G, as was shown in the preceding
sections. Q.E.D.

Finally we observe that initial amenability of a Cayley graplygiroup
" implies this property fod™ and so our claims on surjunctivity ovér
follows from (0) with the discussion in 6.E.

7.N. Lefschetz principle for the global surjunctivity. Our reduction of

the surjunctivity overC to a combinatorial injectivity took place after the
problem had been reduced to a first order proposition. It would be more
esthetically pleasing to have such a reduction in the original setting which
is transcendental but is not overburdened by nested quantifiers. Here are
several such reductions. We start with the (almost) homogeneous situation
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where a locally compact group acts on a countablésgithe finitely many
orbits and with compact isotropy subgroups. (One can assumeshée
a locally finite graph and’ c isom A). Then

(A) If for every finite sef all continuousI'-equivariant selfmappings
of FA are surjunctive, then such are also ditequivariant proregular
mapsf : X2 — X® whereX is an arbitrary algebraicC-variety. In fact
one can claim here surjunctivity of all proconstructible selfmappings of
X2 for all K-constructible spaceX whereK is an arbitrary uncountable
algebraically closed field.

Next we look atI'-equivariant endomorphisms of certdininvariant
subsetsy ¢ F2 and X c X“. These appear as projective limits bBf
invariant projective subsysten¥, ¢ F?} and{Y, c X%}. We observe
that A admits a-equivariant locally finite graph structure and so we can at-
tribute such property as stability, bounded propagation etc. to these systems
and thus toX andY.

(A1) Let surjunctivity be satisfied by all staldleequivariantY ¢ F2 of
bounded propagations (i.e. for all stable subshifts of finite type) and all finite
setsF. Then one also has surjunctivity for &lfequivariant proregular maps
of stable and vertically irreduciblE-invariant proalgebraic subvarieties of
bounded propagatioiX in X2, whereX is the set oK -point of an arbitrary
algebraic variety ovelK for K being an uncountable algebraically closed
field and where we additionally assume tla#in(A|1) grows sublinearly
for » — oo, i.e.limsupr~tdim(A|r) = O.

A—>00

Remark. Such properties as bounded propagation, stability etc, we attribute
toY and X, refer, in fact to the projective system defining these spaces.

(A}) The same as above with “strongly stable” instead of “stable” and
with no assumption odim(A|1) anymore.

Notice that in both cases (Aand (A;) one may allow arbitrary pro-
constructible endomorphisms over uncountable algebraically closed fields.
Actually, one can admit more general fields, such as increasing unions of
ultraproducts off',» with p, v — oo, and proregular maps. (Probably one
can replace “proregular” by prodefinable in this case).

This proof of these is indicated below in 7.NNotice that for all we
know the combinatorial surjunctivity assumption may always be satisfied
in the cases we consider and so these reductions have a purely academic
interest at the present moment).

Now we generalize the above by considering a graptvith a given
pseudogroupf isometries, say acting onA. We study projective systems
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over I with rigid holonomiesH, such thatl"(H) = I', and where the
holonomy must be regular (or at least, constructible) when we deal with
X C XA for algebraic varietieX. Here, given an endomorphisiiof X,

we also need to look at all* : X* — X* locally isomorphic tof*, e.g.
coming from the projective system{(g., fS.}q.ca- Over all graphA®
locally T"-isomorphic toA, for the above (fixed)'. Then we deal with the
following weak surjunctivity

all f* are injective= somef* is surjective
Notice that this is equivalent to tttrong surjunctivity
all f* are injective= all f* are surjective

in the presence of an auxiliary (possibly non-regular, e.g. Galois) holonomy
which is dense om (compare discussion in 7.@oncerning I1).

(B,B1,B}) The aboveA), (A1) and(A’) extend to the present case with
“surjunctivity” replaced by “weak surjunctivity”. And this is also true for
the strong surjectivity if the holononty is dense as well as cofinite @gn

Here again we do not knowalll maps in question amwayssurjunctive
but making counterexamples seem more feasable with non-homogeneous
graphsA.

7.N'. About the proofs. We have seen in sections 7/J4Jow surjunctivity

over A reduces to a finitely statemest(R, p) which admits a reduction

to a finite field. What we need to do now is to go backward andeto

rive % (R, p) from the global surjunctivity, at least over finite fields (or in
the combinatorial framework in general). This is done by unwinding our
argument in 7.J%J where the key step is a deriving surjectivity from ini-
tial surjectivity. This needs stability of our system which is, a priaot

a first order property. But-local stability is eventually expressible in the
first order language as well as the stranfpcal stability. And we know
(see 7.E-E) that the latter is localizable while the former is localizable if
dim(A|A) grows sublinearly. So the reduction modyids possible in these
cases. We leave the reader at this point to the (questionable) pleasure of
browsing through all our quantifiers and checking that everything works as
expected.

7.0. About non-rigid holomies.Non-rigidity of a holonomy is manifested
by the presence of non-trividdolonomy groupsH®(Q), Q@ C A, where
HO(Q) c H consists of alh : Xg — Xq With y, : Id : @ — Q. These
HO(Q) make a projective system of groups ovewhere each groupl°(2)
acts on the spackq and, moreover, on the whole projective (sub)system

{Xortaca-
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Examples (a). LeXg = (C"® and the holonomy is defined with all
linear maps between the fibeds; = C" — C" = X for all 6,8 € A.
ThenH%Q) = (GL,)% is an algebraic group algebraically acting on the
spaceS(C”)Q — Cncardsz_

(b) The ultimate regular holonomy in the above example is given by the
group A, of all biregular automorphisms @". It is not an algebraic group
forn > 2.

There is an obvious way to rigidify a holonomy, just replaeg by
Xg = Xo/H%Q). The resulting quotient spaces are “almost algebraic” for
an algebraic groupi°(2), namely, these are constructible spaces. Sowe can
admit non-rigid algebraic holonomies as well as those which are contained
in algebraic ones. Here one must be careful to make sure that injectivity
and surjectivity of our maps do not suffer from the above factorization. For
this we need all restriction map$°(Q) — HY(Q™) to be onto which can
always be achieved with stablization by redefining

Hr?ew(sz) = N (images of the projection froml°(Q™) for all Q* > Q).

Also, if we do not want to leave the category of algebraic varieties, we can
replace the “fibers’Xs = X5 acted upon byH? by Zariski open subsets

Y; C (Xs)N for large N such that the diagonal action &f° onY; is free
(assuming the actions &1 on X; are faithful) and thus making quotients
Y;/H look more agreable.

7.P. Further directions. It seems that a natural framework for our sur-
junctivity theorem is given by the category of subproalgebraic spaces, i.e.
suitable quotients of proalgebraic spaces \agiproximateactions of cer-

tain pseudogroups satisfying some “stability” (including expansiveness,
a kind of uniform mixing and possibkrshadowing) and amenability (which
may be unnecessary) conditions. (One may start herealgtbraic sofic
systemsi.e. images of subproduct systems with finite propagation under
proregular morphisms with finite propagation).

In fact it may be worthwhile to start with reformulating our surjunctivity
theorem in terms of the spac&s = lim Xq and X° themselves without

dirctly mentioning Xq. All this does not seem hard to accomplish but |
have not worked out satisfactory examples (and making up examples looks
like a non-trivial issue) to justify the efforts needed for such generalization.
But what appears to me more exciting is developing a general view (for-
get surjunctivity!) on the equivariant proalgbraic category, e.g. visualizing
“symbolic algebraic geometry” df-invariant proalgebraic subvarieties in

X! andI'-equivariant proregular maps between these varieties.
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8. Appendix: Garden of Eden, entropy and surjunctivity

Recently, Antonio Machi explained to me that the dynamical surjunctivity
problem surfaced earlier in cellular automata under the nan@aaden of
Eden theoremHere, following the idea of Moore and Myhill (but not their

terminology), we say that a mapfrom a subproduct spacé C x X, to
SeA

someY is preinjective if f(x) # f(X') = X # X' providedx(§) = X'(§)

for all but finitely manyé € A (wherex(8) stands for the projection of

x e X C X;to X;). For example, ifX is a linear space of functionson A

and f is a linear operator, then “preinjective” amounts to “injective on the
subspace of functionX¥, C X having finite support”. (In the language of
“Garden of Eden” one speaks wfutually erasable patterns andx’. This
meansx # X/, yet f(x) = f(x'), wherex(s) = x'(8) for § € A\ (finite
subset). Then preinjectivity expresses the absence of mutually erasable
patterns.)

Clearly, preinjectivity is much weaker than injectivity; yet it is often
good enough to imply surjectivity. For example,Iebe a finitely generated
amenable groups be afinite setand : X' — X! acontinuous equivariant
map (which necessarily has finite propagation).

8.A. Theorem.(see [Ce-Ma-Sca])lhe mapf is surjective if and only if it
is preinjective.

8.A'. Remarks.(a) This result fol” = Z" is due to Moore and Myhill and
is called theGarden of Eden theoremvherex e X' is called aGarden
of Eden configuratiorf it is notin the image off. Thus “non-surjective”
acquires a nostalgie overtone: “no way to reach the Garden of Eden”. (The
implication

surjective = preinjective

was proven by Moore in [Moo] followed by the converse implication
preinjective = surjective

observed by Myhill in [Myh]. Notice that the latter sharpens the surjunctivity
as defined by Gottschalk.)

(b) Machi and Mignosi has proven earlier (see [Ma-Mi]) these results
for groupsrI” of subexponential growth.

(c) The proof of the theorem in all cases depends on an entropy type
computation similar to what we do in 7.L. Actually the meaning of the
theorem becomes clearer if the entropy enters the statement as well as the
proof so we give a definition of entropy suitable for this purpose.
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8.B. Entropy. Let X C x X, be a subproduct space afj C A, i =
SeA
1,2,...,be asequence of finite subsets. Ket= Xo, C x X; denote the
$€Q2

“restriction” of X to ;, i.e. the projection oKX to the finite product x X,
§€Q2

and set

ent(X) = ent(X : {Q;}) =liminf card1(Q;) log(cardX;).

Clearly, the entropy is monotone for inclusions between subsets, i.e. all
X" € X have
entX' < entX,

and more significant inequalities of this nature are indicated below.

8.C. Monotonicity. Let A be an infinite connected graph of bounded va-
lency (as in 86) and consider a maphafunded propagatiobetween two

subproduct spaces, sdy: X — Y for X C x X;andY C x Y;, where
de

SeA A
“bounded propagation” means that the valg® for y = f(x) and a given
8 € A, depends only on the valuesxbn the¢-ball D(8, ¢) C A for some
¢ < oo independent o8.

8.C. Ifthe sequenc; is amenable, i.ecardd2; / card2; — 0, (see 6.E),
=00

the cardinalities ofX; are bounded, i.esupcardX; < oo, and the mapf
seA
is surjective, then

entY < entX

i.e.ent f(X) < entX for all mapsf.

Proof. The cardinality ofY; = Yq, does not exceed that &€, where

Q" denotes as earlier theneighbourhood of2;, i.e. Q" = Q; U 8,9
whered, 2 denotes thé-iterated boundanof €2, i.e. the set of the centers
of the ¢-balls which meef2 as well as the complement &f. Clearly, the
amenability of®2; and the bounds on the valency afand the cardinality
of X; make

iIim cardo,2;/ card2; = 0,
and (A) trivially follows as the contribution from,$; to log cardY, is
bounded by card, 2 (log sup cardX,) which is O(cards2;).

Splicable spacesGivenQ C A and two “functions™p andxz in x X;
e

we define theispliceover 2 as the functionk on A which equalscg on
andx; outside2. We say that a subspace C x X; is ¢-splicableif the
LIS
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conditionsxgp, X; € X andXg = X, on 9,2 imply x € X for all finite subsets
Q CA.

Example.If X equals the projective limit of afrstable (see 7.E) projective
system over\ of propagation< ¢ then, clearlyX is ¢-splicable.

8.C". If X is ¢-splicable for some and f : X — x Y is a preinjective
seA
map of bounded propagation thah= f(X) hasentY = entX.

Proof. If entY < entX, then card, is much smaller than candg, ,, for
largei and so there are two functiomxg andx; which are different orf2;

but such thatf(xg) = f(X1) on ;. Moreover, one can assume thegeind

X, are equal ord,2; as the latter condition only has a minor effect on the
cardinalities for large. Then the splicex of Xy andx; is also inX, where

x andx; now equal at infinity and have equal images/inThus makingf

not preinjective. Q.E.D.

8.D. Strict monotonicity. Now, let us express the computation at Step 3 in
7.L"inthe language of entropy. We consider infinitely maryallsD; C A,

j =1, ... which constitute a net in\, i.e. someR-neighbourhood of their
union equals all ofA. Then we consider a subskt in a subproduct space

X C x X, such thatX” c Xis strictly smaller thanX on every ballD;,
SeA

. kv Ev3
I.e. Xp, g Xp;-

8.D. If X is a stable space of bounded propagation (i.e. it equals the
projective limit of a systerfiXe, C x X} with these properties) then
e

entX < entX,

where the entropy is measured with respect to a given amenable sequence
Qi C A and where we assume as earlier that the valency @nd the
cardinalities ofX; are bounded.

Proof. We may assume (throwing away some balls if necessary) that the
mutual distances between the balls are large saj0¢ for ¢ being the
stability and the propagation constant. We take our balls within some large
amenable?;, sayDj,, ..., Dj,, N = N; = N(€;), and consider the map
from X; = Xgq, to the product ofX;, = YDJK as in 7.L. Here again this
map

Ty XM X N X = Xy XX Xy
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is onto. Moreover, missing a single point in eaXh diminishes the cardi-
nality of X; by at least a factor % « for a fixede > 0. Thus

cardXq, < (1— )™ cardXq, ,

where liminf N;/ card®2; > 0 due to the density of the ball3; in A, and
1—00
our claim follows.

8.E. Preinjectivity corollary. Let f : X — x Y, be a map of bounded
LIS

propagation where the corresponding projective system of njdigs:
Xq — x_Y;} admits arigid dense holonomy. Then the equaityf(X) =
5e2

€
entX implies thatf is preinjective.

Proof. If fis not preinjective, there exists a system of b&ljsnaking a net

in A, and of pairsf(x;) of functionsx; andx; # X; in X, such that eack;
equalsx; outsideD; and f(x]) = f'(x;) for all j. Actually, the existence
of a single ball follows from the definition of (non)preinjectivity and then
the holonomy carries them densely spreadhinThen we takeX’ c X
consisting of those, where no restriction ok to any D; equalsx; | D;
(but may be equal t@}). Clearly f(X") = f(X) while en{X’) < ent(X) by
8.5.A. Thus enff(X) = ent f(X) < ent(X") < ent(X) by 8.4.A.

8.E. Surjectivity corollary. Let f : X — Y be the projective limit of
a system{ fq : Xq — Ygq} of finite propagation admitting a dense rigid
holonomy wher¢Yg} is stable. Then the equaligntY = ent f(X) implies
that f is surjective.

Proof. If the imageY’ = f(X) C X misses somg < Y, there exists
a ball D, such thaty|D does not equal/|D. Then the dense holonomy
carriesD densely over\, where 8.5.A applies to the resulting balls and
ourY’ C Y which is smaller thary on eachD;. Q.E.D.

8.F. Garden of Eden theorem for stable spacedlow, let bothX andY be
stable subproduct spaces of bounded propagatiorfand — Y be a map
(coming from a projective system of magg : Xq — Yg) of bounded
propagation and admitting dense rigid holonomy.

8.F.If entX = entY (e.g. if X = Y) then f is surjective if and only if it is
preinjective.

Proof. If f is surjective, i.e.f(X) = Y, then entX = entf(X) which
implies preinjectivity according to 8.E. Conversely, fifis preinjective,
then entX = ent f(X) by 8.C and thenf is surjective by 8.E
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Notice that 8.Fgeneralizes 8.A in three respects. First of all 8.6. A ap-
plies to certain subproduct systems which are not product (or full shift)
spaces. Second of all we need only partial symmetryfgf: Xq — Yol.

And finally the equalityX = Y is relaxed to the numerical relation éht=
entX.

8.G. Examples of non-injective preinjective maps.The simplest such
map is the difference operator 0h= KZ%, for any fieldK, by f : x(2) —
X(z+1) — x(2). Clearly thisf is surjective and preinjective but not injective
as constants go to zero. More generallyygife ' is a non-torsion element
in an arbitraryyg, then the operatoff : x(y) +— X(yoy) — X(y) is also
preinjective (and surjective but not injective). Furthermoré; # I'y x 7Z,
then every “Cauchy operator” has this property; X — 9x + F(y; X),
wheredx = X — X, for zy being a non-trivial element i, acting by
translation, i.ezo X(y) = X(zo ) - ¥i,i = 1, ... , kare some elements Iy,
andF is an arbitrary functiorkX — K.

Finally, the Laplace operaton : R" — R is preinjective but not
injective for every (possibly pure torsion) finitely generated gréupn
fact, if a functionx = x(y) with finite support satisfieax = 0, then

Y X AX() =0

yel

(% AO)r =

and then by the standard computation (or by the definition pf
(X, A(X))r = (gradx, gradx)r

where
gradx = (X — y1X, X — 2%, ... X — % X)
for a system of generatogg of T'.
Probably, such a Laplace operator, (or the associated diffusion operator)
k

X Y y X is typically preinjective also orX = KT for finite fields K.

For éx;mple, if for every finite subsBt C T" (serving as the support @)
there is a translatg B which meet the generating bdly,, ...y} C I' at

a single point, then clearly, the diffusion operator is preinjective (as every
X : I' = K with supportB must vanish).

8.H. Dynamical meaning of preinjectivity. Given aI" action on a metric
spaceX, the orbits of pointsx andx’ are calledasymptotic if dist(y(x),
y(X')) — 0 for y — oo. Then one may speak of preinjective maps
X — Y as those where

X # X = f(x) # f(X)
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for the points with asymptotic orbits. Then the Garden of Eden theorem
can be generalized to a suitable class of hyperbolic actions but for groups
I which are much “greater” thaZ most of such actions are, probably,
subshifts anyway.

8.l. Remarks on non-amenable groups(a) Theorem 8.A fails to be true

for non-amenable groups (where being residually amenable or residually
finite does not help at all unlike our earlier surjunctivity discussion). There
are examples in [Ma-Mi] attributed to D.E. Muller of the failure of both
implications preinjective=> surjective and surjective> preinjective for free
products of cyclic groups. Actually Machi conjectured (privately) that such
a failure must be characteristic for non-amenability.

(b) A closely related example, pointed out to me by Benjy Weiss, is
of a surjective shift mapgf : X — X x X where X is the full shift over
the free group. Again the existence of such maps seems probable for all
non-amenable groups. More specifically kebe (a finite or infinite) field,

["agroup and : (KP) N (KT aT-equivariantk -linear map of bounded
propagation. IfT" is non-amenable anl is “sufficiently generic”, thenf
is expected to be onto for afi > 2. (This is easy to show for free groups

and, probably for all hyperbolic groups.) Here we are going to prove the
following weaker statement.

8.I'.If T afinitely generated non-amenable group, then there exists a sub-
shift of finite typeZ c @', for some finite seb,. such that for every seX
there exists a surjectivE-equivariant mapf : Z x X' — Z x (X x X)©

of bounded propagation.

Proof. The characteristic (and easy to prove) feature of non-amenability
of ' is the existence of a “compressing vector field”i.e. a mapy :

I' — I' whereg(y) y~! is contained in a finite subs€t C T, such that
cardp~(y) > 2 for all y e I'. In other wordsy “compressesT by at
least factor of two while the displacement djsty(y)) remains bounded

by sup Vcﬂst(id, ¥). Now, giveng, one orders the pull-backs=1(y) for

all y e T' and assign to eack(y) € X' the values of at the two first
(for our ordering) pull-backg~1(y) c T'. This gives us a surjective map
f,, + X' — (X x X)U' of bounded propagation, whete denotesy
augmented by the ordering. Of course, tliiss notI"-equivariant but the
totality of them forall ¢, is equivariant. Namely, we consider the pairs
¢, = (¢, ordering), where we allow ad’s with a fixed finite subsed c T’
and all orderings of the pull-backs ¢f*(y), y € I'. Now our mapf sends
(04, X) = (¢4, f,, (X)) inan equivariant way and the proof is concluded.
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Remark. It seems that the above spaZeadmits nol'-invariant meas-
ure which makes its presence especially annoying. On the other hand, the
existence of surjective morphisitd — X x X must be typical for many
subshifts of finite type over non-amenable groups, measure or no measure.

8.J. Question.Does the Garden of Eden theorem generalize to the proalge-
braic category?

First, one asks if preinjective> surjective, while the reverse implication
needs further modification of definitions.

Here it is worth noticing that the equivalence
preinjective< surjective

remains valid for linear map$ : (K™M" — (K™ for an arbitrary fieldk

and an amenable grodp, where instead of the entropy one may use the
mean dimension (see [Gkg)s) and where instead df one may work over
amenable grapha as in 8.F.

Acknowledgementsl am grateful to the referee for several clarifying remarks.
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