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Abstract. The theorem of Ax says that any regular selfmapping of a complex algebraic
variety is either surjective or non-injective; this property is called surjunctivity and investi-
gated in the present paper in the category of proregular mappings of proalgebraic spaces. We
show that such maps are surjunctive if they commute with sufficiently large automorphism
groups. Of particular interest is the case of proalgebraic varieties over infinite graphs. The
paper intends to bring out relations between model theory, algebraic geometry, and symbolic
dynamics.

1. Ax’ surjunctivity theorem

1.A. Strict embeddings and surjunctivity. A map between sets is called
a strict embedding, denoted f : X ⊂

6=
Y, if it is one-to-one butnot onto.

Then, following Gottschalk, (see [Gott, 1972]) a mapf : X→ Y is called
surjunctiveif it is nota strict embedding. In other wordsf is surjunctive iff
it is either surjective or non-injective.

1.B. Theorem [Ax] 1. Every regular selfmapping of a complex algebraic
variety X is surjunctive.

In other wordsno X admits a strict embeddingX ⊂
6=

X. Or, put it yet

another way, “one-to-one” implies “onto” for every regular mapf : X→ X.

If X = Cn this specializes to the following earlier result by Bialynicki-
Barula and Rosenlicht, (see [BB-R, 1962]).

1.B′. Every complex polynomial self-mapping ofCn is surjunctive.

Repeat, this signifies thatno strict polynomial embeddingCn ⊂
6=
Cn is

possible, i.e. every injective polynomial mapCn→ Cn is surjective.
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2. Proalgebraic spaces and their endomorphisms

A complex proalgebraic spacemeans a projective limitX of a projective
system of complex algebraic varietiesXi where i runs over adirected
set I . The simplest and most important case is whereI = N = {1,2, . . . }.
Here our projective system can be given by a string ofC-varietiesXi and
connecting regular maps, also calledprojections, X1 ←

π2
X2 ←

π3
. . . ←

πi

Xi ←
πi+1

. . . . Then the projective limitX = lim← Xi consists of the sequences

xi ∈ Xi such thatπi (xi ) = xi−1 for all i = 2,3, . . . . For example, the
complex Euclidean spacesCi , i = 1,2, . . . , form such a projective system
for the natural projectionsπi+1 : Ci+1 → Ci and the limit, denotedC∞,
consists of all infinite sequences(z1, z2, . . . , zi . . . ) for zi ∈ C.

Recall that a partially ordered setI is calleddirected, if for every two
elementsi1, i2 ∈ I there exists a third one, sayi3 ∈ I , dominating both of
them,i3 ≥ i1, i2. In other words, thepositive conesI+i1 = {i ∈ I, i ≥ i1} and
I+i2 = {i ∈ I, i ≥ i2} have a non-empty intersection. A subset in a directed
setI is calledcofinal if it intersects every positive cone inI . A subset inI is
calledresidual, if it contains some positive cone. A partially defined order
preserving map between directed sets, sayI ⊃ I ′ −→

α
J, is calleddirected

if its domain of definitionI ′ is residual inI and its image is cofinite inJ. If
J′ ⊂ J is residual then its pullbackα−1(J′) ⊂ I ′ ⊂ I is, obviously, residual
in I . Consequently, a composition of directed mapsI ⊃ I ′ −→

α
J and

J ⊃ J′ −→
β

K is directed with the domain of definitionI ′′ = α−1(J′) ⊂ I .

A proregular mapf = f∞ between two proalgebraic spacesX = X∞ =
lim← Xi andY = Y∞ = lim← Yj is given, by definition, by a directed map

between the underlying directed sets,I ⊃ I ′ → J, denotedi 7→ j = j(i)
and by regular mapsfi : Xi → Yj such that all diagrams commute

Xi1 −→ Yj1
πi1,i2 ↓ ↓ π j1, j2

Xi2 −→ Yj2

whereπi1,i2 andπ j1, j2 are the connecting maps of our projective systems
defined for alli1 ≥ j2 and j1 ≥ j2. (In the above case ofI = N we have
πi1,i2 = πi2 ◦ πi2−1 ◦ · · · ◦ πi1). Clearly, one can compose proregular maps
with the composition being proregular.

2.A. Example : polynomial mappingsC∞→C∞. A function p : C∞→C
is called apolynomial if it is a polynomial depending on finitely many
complex variables, sayzi1, zi2, . . . , zik ∈ C among the infinity ofz1, z2 . . .

making upC∞. In other wordsp is obtained by composing the projection
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of C∞ to someCk with an ordinary complex polynomialCk → C. Then
a polynomial map f of C∞ into itself, f : z = (z1, z2, . . . zi . . . ) 7→
z′ = (z′1, z

′
2, . . . z

′
i . . . ) is defined byz′i = pi (z) for some polynomialspi

on C∞. It is easy to see that these polynomial mapsC∞ → C∞ are the
same as proregular self mapping (endomorphisms) ofC∞ thought of as
a proalgebraic space.

2.B. Our central problem. Find simple conditions which ensure surjunc-
tivity of a proregular endomorphism of a proalgebraic space.

First, let us make clear that some conditions are unavoidable.

2.B′. Counterexamples.(a) The complementX = C\{0,1,2, . . . } is pro-
algebraic being the decreasing intersection of quasi-affine varietiesXi =
C\{0,1 . . . i }. And the (obviously proregular) mapz 7→ z−1 is one-to-one
but not onto.

(b) The polynomial mapf : C∞ → C∞ for f : {z1, z2, . . . } 7→
{0, z1, z2, . . . } is also one-to-one but not onto.

The above may look discouraging. Yet we shall see that surjunctivity is
rather typical for maps commuting with a sufficiently large automorphism
group (or pseudo-group) acting onX. Here is our basic example.

2.C. Endomorphisms ofX∞ = X1. Let X be an arbitrary (finite dimen-
sional !) complex algebraic variety and1 be a countable set. Then the
infinite Cartesian powerX = X1, i.e. the space of allX-valued functions
on1, comes along with a natural proalgebraic structure. One can see this,
for example, by enumerating1, i.e. by bijectingN = {1,2, . . . } ↔ 1 and
thus identifyingX1 with

X∞ = XN = {x1, x2, . . . , xi , . . . }xi∈X = lim← Xi = X{1,2,...i}.

Or, more invariantly, one can use the directed setI of all finite subsets� ⊂ 1
(I can not bring myself to denote themi ⊂ 1, I rather have� ∈ I ). Here
one has the projective system{X�,� ∈ I } with the projectionsX�→ X6

for all � ⊃ 6 corresponding to restrictions of functionsx = x(ω) ∈ X�

from � to 6. One can see that the projective limit ofX� is isomorphic
to the aboveX∞ =lim← Xi (where, recall, the Cartesian powersXi form

a projective system with the projectionsX ← X2 ← . . . ← Xi ← . . . )

in the category of proalgebraic spaces and proregular maps. In fact, take an
exhaustion of1 by finite subsets�1 ⊂ �2 ⊂ . . . ⊂ �i ⊂ . . . ,∪

i
�i = 1.

Then the projective limit lim← X�i obviously equals the projective limit

lim← X� over all� since the subsets�i exhausting1 arecofinal in the set of
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all finite�’s in1. On the other hand the spacesX�i = XNi , Ni = card�i ,
make a cofinal subsystem in{Xi }i=1,2,... and so lim← X�i = lim← Xi .

Now, suppose we have a group0 acting on1 and thus onX = X1 and
let f : X→ X be a proregular0-equivariant map.

2.C′. Theorem. If 0 is a locally compact (e.g. discrete) amenable (e.g.
solvable) group and the action of0 on 1 has finitely many orbits (e.g.
transitive), thenf is surjunctive, i.e. one-to-one⇒ onto for these mapsf .

Remark. In many examples the isotropy subgroups0δ ⊂ 0, δ ∈ 1, are
compact and then1 admits a structure of a locally finite graph invariant
under0. Yet we do not have to make this assumption as the general case of
the theorem trivially reduces to the one where0δ are compact.

We prove the theorem in 5.M′′ exploiting Ax’ idea of reduction surjunc-
tivity from the algebraic category to finite setsX.

2.C′′ Question. Are 0-equivariant proregulator selfmappings ofX0 are
surjunctive for all, not necessarily amenable, groups0 acting on1 with
finitely many orbits ?

One knows, this is true forinitially subamenable(e.g. residually amen-
able) groups (see 4.G) but the question remains open even in the more
traditional framework ofsymbolic dynamics, i.e. forfinitesetsX, where the
problem was raised by Gottschalk in [Gott] and persued in [La].

2.C′′′ Generalizations. Theorem 2.C′ extends to some endomorphisms of
proalgebraic spaces where the global symmetry group is replaced by partial
symmetries. The spaces we consider in this paper arise starting fromX1

where1 is a countable connected graph withbounded valency, i.e. having at
mostd<∞ edges at each vertex. Such a1 has many partial symmetriesγ
i.e. graph isomorphismsγ : D ↔ D′ between finite subgraphsD and
D′ in 1 and we require ourf to be compatible with the transformations
XD ↔ XD′ induced by some of theseγ . Then we consider a certain space
X◦ of “orbits” of these transformationsXD ↔ XD′ where we have a natural
map f ◦ : X◦ → X◦. Here we are able to prove surjunctivity off ◦ under
suitable amenability assumptions on1 (see 7.G). In fact, we prove in
§7 a more general theorem applicable to proregular endomorphisms of
orbit completionsX◦ of certain (sufficiently soft or “stable”) proalgebraic
subvarieties inX1.

2.D. Examples. Let1 be a graph with exactlyd edges issuing from each
vertexδ ∈ 1 and let, moreover, we are given an ordering of these edges at
eachδ ∈ 1. Thus the vertices adjacent toδ can be enumerated byd indices,
call themδi = δi (δ) ∈ 1, i = 1, . . . ,d, for eachδ ∈ 1. (If we allow
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several edges between pairs of vertices, we may haveδi = δ j for i 6= j and
loops atδ makeδi = δ for somei ). Next, let p : X× X× · · · × X︸ ︷︷ ︸

d

→ Y

be aY valued function ind-variablesxi ∈ X, i = 1, . . . ,d, and let us
construct a mapf = f p : X1 → Y1 as follows. Think of eachx ∈ X1

as anX-valued function on1 and sendx to the functiony on1 where the
value of y at eachδ ∈ 1 is determined by the values ofx at the adjacent
verticesδi = δi (δ) ∈ 1 according to the rule

y(δ) = p(x(δ1), x(δ2), . . . , x(δd)). (∗)
For instance, one might haveX = Y = C and f defined withp = x1 +
x2 . . .+ xd by

y(δ) =
d∑

i=1

x(δi ), for δi = δi (δ).

In general, ifX is an algebraic variety andp : Xd → Y is regular, then the
resulting f : X1→ Y1 is clearly proregular.

The constructionp∼→ f p can be thought of as a kind of a “symbolic
dynamic functor” in two variablesp and1, where p ∈ Maps(Xd → Y)
and1 is ad-regulargraph (i.e. withd edges at each vertex) withlocal order
(i.e. with orderings of the edges at each vertex). The range of this “functor”
is our f p = f 1p : X1→ Y ∈ Maps(X1→ Y1).

δ  (δ)1

δ  (δ)2

δ  (δ)3

δ

Fig. 1.

We are mostly concerned in this paper with the case whereX = Y
and so f mapsX1 into itself. We seek assumptions on1 and onp which
make f surjunctive. There is one case where everything is clear, namely for
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d = 1 andy(δ) = p(x(δ)). Here the graph structure is not relevant at all
and the mapf just repeatsp infinitely many times. Thus the surjunctivity
of f trivially reduces to that forp itself. But, in general, the combinatorics
of 1 enters in a subtle way and we do not actually know how to handlef
itself rather than its orbit completion mentioned above. Yet no completion
problem arises for homogeneous graphs as is explained below.

2.D′. Cayley graphs. Let0 be a group with a distinguished set of generators,
say D = {γ1, . . . , γd}. Thenthe Cayley graph1 of (0, D), by definition,
has0 for the vertex set, whereγ andγ ′ are joined by an edge whenever
γ−1γ ′ ∈ D. The group0 acts by graph automorphisms on1 via the left
translations and this action induces an obvious (shift) action of0 on X =
Xd = X0. (In fact1 may have more global and/or partial symmetries but
we do not need them at the present moment). The mapf = f p : X0→ X0

defined with (*) clearly commutes with the action of0 (as it commutes with
all graph isomorphisms) and so we arrive at an instance of a0-invariant
proregular selfmapping ofX0. In fact, it is easy to show that every proregular
0-equivariant mapf from X0 to Y0 arises in this manner with someD ⊂ 0
and a regular mapp from XD = {maps D → X} to Y. Actually this
f = f p : X0 → Y0 can be described without any reference to the Cayley
graph as follows. The value ofy = f(x) at a givenγ ∈ 0 is obtained by
first restrictingx = x(γ) to theγ -translate ofD, denotedγD ⊂ 0 and then
by evaluatingp on this restriction(x|γD) ∈ XγD = XD, where XγD is
identified withXD via the correspondenceγ : δ↔ γδ. That is

y(γ) = p (x(γδ)δ∈1) . (∗∗)
So our f appears here as analgbraic difference operatoracting on functions
x : 0 → X. (For instance, if0 = Z, this can be written in the traditional
form f : x(k) 7→ y(k), k ∈ Z, for

y(k) = p(x(k−m), . . . , x(k), . . . , x(k+ n))

for somem andn, such thatm+ n+ 1= d).

Clearly, the abovef is the special case of the maps considered in 2.C.
and so theorem 2.C′. applies. This yields the surjunctivity off = f p for
every amenable (e.g. solvable) group0.

Remark. What makes the picture attractive in our eyes, is the definition
of a transcendental object, the mapf : X0 → Y0, via a single regular
map between complex algebraic varieties, ourp : Xd → Y, which we
regard as an “elementary” or “finitary” object. And it is amazing, how
logically convoluted our surjunctivity becomes when translated back to the
(elementary) first order language ! (see 7.K′′). Actually, this translation and
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keeping track of a multitude of quantifiers needed for our proof, constitute
an essential part (painful but apparently unavoidable) of the present paper.

2.D′′. Example of an orbit completion. Let p0 and p1 be two different
regular mapsXD→ Y and leti be a 0,1-function on0, i.e. a mapi : 0→
{0,1}. Define f = fi : X1→ Y1 by

f : x(γ) 7→ y(γ) = pi(γ) (x(γδ)δ∈1) . (∗∗)′
In other words, the valuey(γ) is computed either withp0 or with p1 de-
pending on the value 0 or 1 ofi at thisγ ∈ 0.

The functioni may be thought of as a member of the space{0,1}0 where
the group0 acts by the obvious (shift) transformations. If we replacei byγi
for someγ ∈ 0, we get an essentially same mapf . However, if we take the
full orbit 0i ∈ {0,1}0 and consider somej from theclosureI of 0i in the
product topologyof {0,1}0, then this mapj : 0→ {0,1} may look rather
different from allγi and f j : X1 → Y1 may be quite dissimilar to allfγi .
For example, if0 = Z andi(γ) = 0 for γ ≤ 0 andi(γ) = 1 for γ > 0, then
among j ’s one findsj(γ) ≡ 0 and j(γ) ≡ 1.

Now we let X◦ = X × I andY◦ : Y × I where f ◦ mapsX◦ to Y◦ by
(x, i) 7→ ( fi (x), i). This is an instance of our orbit completion (see 7.C′ for
the general case) where we claim thatf ◦ is surjunctive forX = Y if the
group0 is amenable and the functioni : 0→ {0,1} is quasihomogeneous
in the following sense.

Denote by0′ = 0′(i, D) for someD ⊂ 0 the set of thoseγ ∈ 0 for
which the restriction ofi on γD ⊂ 0 equalsi |D where we identifyD and
γD by δ ↔ γδ for all δ ∈ D. We say that0′ is cofinite in0 (or makes
a net in 0) if there exists afinite subsetD′ ⊂ 0, such that0′D′ = 0, i.e.
finitely many right translates of0′ cover all0 (where the action we used
was the left action of0 on 0). Finally we calli quasihomogeneousif the
above0′ = 0′(i, D) is cofinite for all finite subsetsD in 0.

Notice thatX◦ andY◦ are (naturally)proalgebraicand f ◦ is aproregular
0-equivariant map for the diagonal action of0 on X = X × I and on
Y◦ = Y× I . In general, however the spaces likeX◦ are neither proalgebraic
nor do they possess global symmetries while the role ofI is played by some
space of marked graphs1 (Compare §6).

Remarks. (a) Symbolic algebraic geometry. It seems to me that infinite
dimensional spaces such as0-equivariant (pro)algebraic subvarieties inX0

and0-equivariant pro-regular mapping between these provide a meaningful
meeting point between algebraic geometry and symbolic dynamics. Our Ax-
type theorem illuminates a tiny region as the two domains come into contact
but the entire field remains in the dark. (See [Gro]TIDS for a different view
on the symbolic algebraic geometry).
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(b) Algebraic varieties associated to graphs.Here is an example of how the
“symbolic” idea leads to an attractively explicit class of algebraic manifolds.
Start with analgebraic graphA, i.e. a subvariety in a Cartesian square of an
algebraic variety, sayA = (X× X, Y ⊂ X× X). Here we think ofX as the
set of vertices ofA andY plays the role of the set of edges. Notice that these
edges aredirectedasX× X consists of ordered pairs(x, x′). (If we want to
mimic an ordinary undirected graph rather than adigraph, we should takeY
invariant under the canonical involution onX× X. On the other hand, if we
care for multiple edges and loops, we may take a non-injective morphism
Y→ X× X).

Now, for every abstract digraph1 = (1, E ⊂ 1 ×1) (where we use
the same notation for the vertex set of1 and1 itself), we consider the space
A1 of the maps1→ X sendingE to Y. (For general digraphsY→ X× X
and E → 1 × 1 one should use pairs of compatible maps1 → X and
E→ Y). For instance ifY ⊂ X × X is given by an equationf(x, x′) = 0,
then A1 ⊂ X1 consists of the strings of variablesxδ ∈ X indexed by the
verticesδ ∈ 1 such thatf(xδ, xδ′) = 0 wheneverδ andδ′ are adjacent in1,
i.e. (δ, δ′) ∈ E ⊂ 1×1.

Question.Suppose we know everything about the varietiesX andY. What
can we say aboutA1 for a givenfinite graph1? Specifically, when isA1

non-singular and what are its Betti numbers ?

Example. AssumeX is defined overC and X × X is embedded to some
CPN, intersectX × X with a hyperplaneH ⊂ CPN and takeY = YH =
(X× X) ∩ H.

Now we specify the above question to the present case where we take
Y = YH for a generic(possibly depending on1) hyperplaneH. In fact,
the problem becomes much easier (and still interesting) if we takedifferent
genericH ’s for different edges of1. To make it simple we expressY by
the equationfH(x, x′) = 0 and then, instead of sticking toA1 = A1(H)
given by theidentical equations fH(xδ, xδ′) = 0, (δ, δ′) ∈ E ⊂ 1 × 1,
we allow H to depend on the edges of1. Namely, we take some collection
of hyperplanesH = {He ⊂ CPN} indexed by the edgese = (δ, δ′) ∈
E ⊂ 1×1 and defineA1(H) ⊂ X1 by the equationsfHe(xδ, xδ′) written
down at all edgese= (δ, δ′) of 1. Here the genericity has more power as
we may perturbHe’s independently of each other and it is easy to see that
the resulting varietyA1(H) is non-singular for non-singularX and generic
H = {He}. Thus the topology ofA1(H) does not depend onH for generic
H and one is challenged to figure out what this topology actually is. (See
pp 210-214 in [Gro]PDR for specific examples and geometric applications).
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Generalizations.If one starts with aY ⊂ X × X × . . .× X︸ ︷︷ ︸
d

for d ≥ 2, then

the corresponding spaceA1 makes sense for everyd-hypergraph. Similarly
one may use the language ofalgebraic simplicial spaces(cf. dimensions
d > 1) but all that, albeit useful linguistically, does not enrich the class of
varietiesA1.

The structure of the paper.The next §3 is devoted to an elementary algebra
geometric discussion around the Ax theorem, where we sketch, in particular,
the topological proof due to Bialynicki-Barula and Rosenlicht as well as
the generalization of that by Borel. Then in §4 we prove basic properties of
proalgebraic varieties we need in future. Also we explain how surjunctivity
fares when we go from one group to a “nearby” group and prove surjunctivity
for initially subfinitegroups (see 4.G′′). The following §5 starts with a brief
introduction to the first order theories. We explain the ideas of distance
and approximation for models and, in particular, bring forth theextended
Lefschetz principle(see 5.E′) constituting the major idea of Ax’ argument
based on an approximation ofC by the fieldsFp =∪

ν
Fpν . Then we explain

how one should reformulate the notions of injectivity and surjectivity in
the proalgebraic category in order to make surjunctivity amenable to the
extended Lefschetz principle. This reformulation is used in the case of
0-equivariant proregular mapsf : X0 → X0 where the surjunctivity is
reduced to that of shift endomorphismsS0 → S0 whereS is a finite set.
Thus we prove surjunctivity for amenable groups0 where the corresponding
feature for shift endomorphisms is rather obvious (and well known).

Our main constructions are exposed in §7 with §6 presenting basic graph
theoretic terminology in the spirit of the above 2.C′′′ and 2.D. We explain at
the begining of §7 how partial symmetries of graphs1 act on proalgebraic
varieties X associated to1, this is what we callholonomyH, and then
we introduce theholonomy(orbit) completionX◦ of X (see 7.C) generaliz-
ing 2.D′′. Then we isolate the essential properties of1 and H needed for
surjunctivity of f ◦ : X◦ → X◦. (These may look rather heavy and arbitrary
at the first sight but I think that most of them will prove relevant in further
development of “symbolic algebraic geometry”). We formulate our main
surjunctivity theorem in 7.G′ and prove it in the following sections by essen-
tially repeating the steps used in §5 : first translating everything to the first
order language, then applying the extended Lefschetz principle and finally
using a counting argument borrowed from the topological entropy. All this
is, essentially, a routine; yet I could not find a two page argument taking
care of all details of the picture. On the other hand, I did not attempt to
state and prove everything in the maximal generality. But I tried to indicate
different possible directions and perspectives around the Ax theorem with-
out tying them all up by a unifying formalism (that would make the article
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twice shorter but, in my view, unreadable). My primary goal was to initiate
a meaningful conversation between the three well established domains :
model theory, algebraic geometry and symbolic dynamics.

Finally, we explain in §8 the “Garden of Eden” surjunctivity theorem
originated in 1963 in the theory of cellular automata.

3. More about Ax’ theorem

3.A. Let us explain in simple terms why no complex algebraic varietyX
admits a strict embedding into itself. First we recall the standard

Open embedding Lemma(see 3.19 in [Har]). Let f : X → Y be an
injective regular map between equidimensional complex algebraic varieties.
Then the imagef(X) ⊂ Y is Zariski open, i.e.f(X) = Y\A for an algebraic
subvarietyA ⊂ Y.

3.B. Now apply this to an injective polynomial mapf : Cn → Cn and
show, following [BB-R, 1962], that the imageU : f(Cn) ⊂ Cn can not be
homeomorphic (not even homotopy equivalent) toCn unlessA = Cn\U is
empty. Indeed, take a non-singular pointa ∈ A at which dima A = m ≥ 0
and let S2(n−m)−1

ε be a smallε-sphere in the normal spaceNa(A). This
sphere is non-trivially linked withA and hence is non-homologous to zero
in U = Cn\A. ThusH2(n−m)−1(U) 6= 0. Q.E.D.

A

2(n − m) − 1S ε

Fig. 2.

3.C. The Ax theorem (see [Ax]1) claims, in general, that

one-to-oneH⇒ onto

for all regular selfmappingsf : X → X whereX is an arbitrary complex
algebraic variety (or more generally the set ofK -points of a variety over
K where K is an algebraic closed field). This is rather obvious ifX is
a projective or more generally, complete (and thus compact) variety, as no
proper subset of suchX is homeomorphic (not even homotopy equivalent)
to X. On the other hand the case of a Zariski open subsetX ⊂ Cn is already
interesting. It is not totally obvious that a rational mapf : Cn→ Cn which
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is regular on thisX andinjectsX into itself must sendX onto all of X. Yet,
following Borel (see [Bor, 1969]) one can show thatX can not be homo-
topy equivalent toX\A for a non-empty Zariski closed (or even arbitrarily
constructible) subsetA ⊂ X. In fact the above homological argument gains
in efficiency when applied to an iteratef (i) = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸

i

for large i .

HereUi = f (i)(X) ⊂ X is obtained by removingi disjoint homeomorphic
copies ofA from X,

Ui = X\(A∪ f(A) ∪ f (2)(A) ∪ · · · ).
SinceX has finite topological type, the major contribution to the homology
H2k−1(Ui ) for k = codimC A comes fromi small spherical(2k− 1)-cycles
that are linked toA, f(A), . . . , f i (A). Thus

rankH2k−1(Ui ) ≥ i − const(X)

with const(X) ≤ rankH∗(X). Now, clearly,Ui is not homotopy equivalent
to X for i > 2 constX which trivially implies that X = U0 can not be
homotopy equivalent toU = U1 (asUj ∼ Uj+1 for j = 0, . . . , i −1 would
makeU0 ∼ Ui ).

It is not hard, following Borel, to extend this idea, homology + iteration,
to all complex algebraic varieties and prove Ax’s “one -to-one” implies
“onto” theorems in full generality. Then, one can invokeLefschetz’ prin-
ciple and derive Ax’ theorem for all algebraically closed fields of zero
characteristic (see [Bor, 1969]).

3.D. The original proof by Ax is of more formal (model theoretic) nature
where surjunctivity of regular selfmappings is derived from that for self-
mapping of finite sets via a suitable modulop reduction (see 5.F). We
extend this powerful idea to the infinite dimensional context where the
modulo p reduction lands in the category of symbolic dynamical systems
replacing the finite sets of Ax’ argument (see 5.M). Now, not all “symbolic
endomorphisms” are surjunctive, but whenever they are such, so are also
the corresponding proalgebraic ones (see 5.M′′). Thus Ax’ idea gains an
extra edge in the infinite dimensional case which hardly can be matched
by a topological argument in the spirit of 3.B. and 3.C. (Eventually, the
topological proof will be rendered infinite dimensional as well, I believe.)

3.E. The converse to Ax’ theorem fails to be true : the mapx 7→ x2 is onto
but not one-to-one and(x1, x2) 7→ ((1+x1)

2, x1x2) is not even finite-to-one.

Also, this theoremdoes notextend to general complex analytic maps
Cn→Cn for n ≥ 2 as manifested by the famous Fatou example (see [Deg]).
Yet it may be true for special classes of such mapsf : Cn → Cn, e.g. for
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those where the differentialD f(x) (and/or its inverseD−1) grows slowly
(strongly subexponentially) forx→∞.

3.F. The first (as far as I checked the references) one-to-one⇒ onto result
was proven forreal polynomial mapsR2→ R2 in 1960 by D.J. Newman.
It was extended to real polynomial mapsRn → Rn by Bialynicki-Barula
and Rosenlicht and then to regular maps ofnormal (e.g. non-singular) real
algebraic varieties by Borel who was inspired by the Ax’ theorem (see
[New], [BB-R], [Ax], [Bor]). Notice, that Ax’ method applies to certain
non-closed fields, (see 5.F′, but not toR). The main point in the real case is
to observe that a regular mapf : X→ Y between smooth equidimensional
R-varieties has a well defined degree mod 2 over a Zariski open subset
in Y. It follows, Y\ f(X) is Zariski closed inY for injective mapsf and
then the mod 2 homology + iteration do the job for mapsf : X→ X (The
mod 2-degree idea was explained to me by Slava Kharlamov).

3.G. Constructible sets and maps. A subsetA in an algebraic variety
X is called locally closedif it is a difference A\6 where A and6 are
subvarieties inX, i.e. Zariski closed subsets. Notice, that this representation
can be made canonical withA being the Zariski closure ofA and6 = A\A.
Next, a subsetA ⊂ X is calledconstructibleif it is a finite union of locally
closed subsets. Notice, that this makes sense for a varietyX defined over any
field K if the words “set”, “subset” etc. refer to the setX(K) of K -points
of X. (We dealt before exclusively withK = C and did not distinguish
notationallyX andX(C)).

It is rather obvious thata pull-back of a constructible subset under
a regular map is constructible. What is deeper is the following classical

CIT : Constructible image theorem. If the fieldK is algebraically closed
then the image of a constructible subsetA ⊂ X(K) under a regular map
f : X→ Y is constructible inY(K) (see 3.19 in [Har]).

Basic example. Let A ⊂ Kn+1 be an affine subvariety. Then the projection
of A to Kn is constructible, providedK is analgebrically closedfield.

Now we can defineconstructible mapsf : X(K) → Y(K) as those
where the graphs0 f ⊂ X(K) × Y(K) are constructible subsets. In par-
ticular, one may speak ofconstructibly isomorphicspacesX(K) andY(K).
These meanX andY can be decomposed into mutually biregularly isomor-
phic constructible pieces. Then one easily sees that every varietyX(K) is
constructively isomorphic to a constructible subset in some affine spaceK N.

3.G′. Ax’ theorem for constructible maps. Let K be an algebraically
closed field andA⊂ X(K) be a constructible subset in an algebraic variety
X over K . Then every constructible selfmapping ofA is surjunctive.



Endomorphisms of symbolic algebraic varieties 121

The proof is identical to that of Ax’ theorem (see 5.F′′). What is amusing
is a combination of this theorem with the following

3.G′′. Conservation property. Consider a rational selfmapping ofX, i.e.
a regular mapf : U → X whereU is a Zariski open subset inX, i.e.

U = X\ N∪
i=1

Yi whereYi are irreducible subvarieties inX and whereX

itself is assumed irreducible.

CP. If f is one-to-one anddimYi ≤ d, i = 1, . . . , N then the complement
of the image, sayY′ = X\ f(U) can be covered by subvarietiesY′i , i = 0,
1, . . . , N, whereY′i are irreducible of dimension≤ d andY′0 is a union of
subvarieties of dimension≤ d− 1.

In fact, Ax’ argument reduces this to the case of finite fields (see 5.F)
where one applies the Lang-Weil theorem claiming that the number of
F-points in an irreducible variety of dimensiond is approximately(cardF)d

for most finite fieldsF (see App. C in [Har]).

Remark. This “conservation law” for the number of complementary com-
ponents can be alternatively obtained by the topological reasoning of Borel
but this requires a little effort.

3.G′′′. One may also try to count the complementary components of different
dimensions. This is possible, for example ifY = X\U andY′ = X\ f(U)
have isomorphicd-dimensional parts and then one can count the(d− 1)-
dimensional ones. Technically speaking, one should work in the con-
structible category and observe that CP makes sense and remains valid
for constructible mapsf : U → X.

Questions.(a) What is the maximal set of numerical invariants of varieties
in a given birational equivalence class reflecting the order relation inherent
in the above version of Ax’ theorem ? (The varieties obtained by blow-
ups at different non-singular rational points are apparently numerically
undistinguishable from one another as was pointed out to me by Fedia
Bogomolov).

(b) Let two algebraic varietiesX and Y admit embeddings to a third
one, sayX ↪→ Z andY ↪→ Z, such that the complementsZ\X and Z\Y
are biregular isomorphic. How far areX and Y from being birationally
equivalent ? When does there exist a constructible bijectionX↔ Y ?

Remark. One can make a Grothendieck group out of constructible iso-
morphism classes of algebraic varieties where[X]+[Y] = [Z] corresponds
to

X ∪ Y = Z with X ∩ Y = ∅ .
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The above questions (as well as the one in 5.F′′) pertain to the structure of
this group.

Observe that the Euler characteristic[X] 7→ χ(X) defines a homo-
morphism of the Grothendieck group toZ. There is hardly anything else
like the Euler characteristic, but the cardinalities ofFpi -points ofQ-varieties
serve a somewhat similar purpose (compare 5.F′′).

Also notice that one can strengthen the equivalence relation in the defin-
ition of the above Grothendieck group by allowing, besides biregular maps
on the strata (making up constructible bijections) the action of the Galois
group ofC (compare the end of 4F′′).

3.H. On the order relation X ⊂
6=

Y. Ax’ method allows one to operate with

algebraic varieties overC as if they were natural numbers with the order
relationm < n corresponding to the strict embedding relationX ⊂

6=
Y. In

particular, one can take minima, maxima, minmax etc for families of these
varieties as follows.

Let π : X → B be a morphism of varieties overC. Then there exists
a “maximal” fiber Xmax, i.e. π−1(b0) ⊂ X for someb0 ∈ B, such that
it admits no strict embedding into another fiberπ−1(b) for all b ∈ B.
Similarly, there exists a “minimal” fiberXmin such that noπ−1(b) strictly
embeds intoXmin.

One can bring the two statements together by considering two parametric
families of varieties, sayXb,c. Here one proves the existence of a “minmax”
point (b0, c0) ∈ B × C. This meansXb0,c0 is “maximal” in c and∀b∃c,
s.t. Xb0,c0 receivesno strict embedding fromXbc. Similarly one states and
prove the existence of maxminmax etc (see 5.H).

3.I. Ax theorem for subconstructible spaces.Given the notion of a con-
structible subset inKn, one goes on building new spaces as follows.

Take a constructible subsetA ⊂ Kn. Next, take a constructible subset
R ⊂ A× A ⊂ K2n which is anequivalencerelation, i.e. symmetric and
transitive. DefineB asA/Rand call theseB subconstructible spaces, where
(A, R) is called apresentationof B. A subsetB3 ⊂ B1 × B2 is called
subconstructibleif it lifts to a constructible subset in the corresponding
productA1×A2 ⊂ K2n. Then define subconstructible morphismsB1→ B2

as maps with subconstructible graphes.

3.I′. Theorem. Let U1 and U2 be subconstructibly isomorphic subspaces
in some subconstructible spaceB over an algbraically closed fieldK .
Then their complements have equal dimension, sayδ, and equal numbers of
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irreducible components of dimensionδ. In particular every subconstructible
selfmapping ofB is surjunctive.

About the proof. First we observe that the notion of dimension and of irre-
ducible components obviously extend to our category and so the statement
of the theorem makes sense. Then we reduce the general case to that of the
fields K = Fp (see 5.E′). Finally, we consider the minimal fieldFq ⊃ F p

for someq = pν so that the coefficients of polynomials involved in the
definition of B,U1,U2 and the isomorphismf : U1 ↔ U2 (Recall that
everything was defined in terms of algebraic subsets inCn (orC2n) appear-
ing as zero sets of some polynomials). Then the Galois group ofFp = Fq

overFq, generated by the Frobenius automorphismsx 7→ xq, acts onB and
this action preservesU1,U2 and commutes withf . Thus everything follows
from the fact thatB equals an increasing union of the periodic orbits of the
Galois-Frobenius action (compare 5.F).

Remark. The above theorem adds nothing new compared to 3C′-G′′′ as
everyB is subconstructibly isomorphic to a constructible subset inCn. Yet
the logic of the above definitions suggests something new for dim= ∞,
namely the notions ofsubproconstructible spaces and morphisms(see 4.F′′′
and 7.P).

3.J.The surjunctivity can be extended from mapsX(C)→ X(C) to regular
mapsX(C)→ Y(C) whereX(C) andY(C) are conjugate by some Galois
automorphisms ofC. In fact if X(C) ⊂

6=
g(X)(C) for some varietyX over

C andg ∈ Galois(C/Q) then Borel’s argument delivers strict embeddings
X(C) ⊂

6=
gk(X)(C) with the “homological” size of the complement aboutk.

Thus every regular mapf : X(C)→ g(X)(C) is surjunctive.

Remark. This extends with little effort to the (sub)constructible category.
In fact a model theoretic reduction to finite fields is also possible here. This
is rather obvious forX andY defined overQ and the general case can be
derived, I believe, along similar lines.

4. Approximation, surjunctivity and symbolic dynamics

One can sometimes prove surjunctivity of a selfmappingf : X → X by
suitably approximating it by a family of mapsfν : Xν → Xν which for
some reason are known to be surjunctive. For example, theseXν may be
f -invariant subsets inX. If their union equalsX then the surjunctivity of
all fν : f |Xν obviously implies surjunctivity off .
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4.A. Example : Surjunctivity over Fp. Recall that the fieldFp, i.e. the
algebraic closure of the prime fieldFp (consisting of residues modulo

a prime numberp), equals the increasing union of finite fieldsFp =
∞∪
ν=1
Fpν .

Then, for every regular selfmappingf of a varietyX overFp, we observe
that bothX and f are defined over someFpν0 and so the mapf : X(Fp)→
X(Fp) sends theFpν -points into themselves for allν ≥ ν0. Thus the maps
fν : X(Fpν )→ X(Fpν ), ν ≥ ν0, approximatef in the above sense as the
union ofFpν -points overν ≥ ν0 gives us exactly allFp-points of X, i.e.
X(Fp) = ∪

ν≥ν0
X(Fpν ). But the mapsfν = f |X(Fpν) are surjunctive as the

setsX(Fpν ) are finite and so the surjunctivity off follows.

Remark. Notice that onto⇒ one-to-one over eachFpν but this does not pass
to the unionFp =∪

ν
Fpν , unlike our surjunctivity implication “one-to-one

⇒ onto”.

4.B. Now, suppose,X is given a topology and the union ofXν ⊂ X is
dense inX. Then we can derive surjunctivity off from that of fν = f |Xν
provided we can prove that the imagef(X) ⊂ X is necessarily closed and
so “dense image”⇒ “onto”.

4.B′. Example. Let X be acompacttopological space andf : X → X
a continuous selfmapping. Supposef admits a familyXν ⊂ X, ν =
1,2, . . . , of finite f -invariant subsets whose union is dense inX. Then,
clearly, f is surjunctive.

4.B′′. Shift endomorphisms.Let Sbe a finite set (alphabet) andX = SZ,
where the infinite power space

SZ= . . .× S× S× . . .× S× S× . . .
is given the product topology (with respect to whichSZ is homeomorphic
to the Cantor set). The natural action ofZ on thisX is called“shift” or the
full Z-shift on the alphabetS. One may think of elements inSZ of doubly
infinite words with letters fromS. Then the generator 1∈ Z shifts each
letter to its neighbour’s place to the right.

. . . aabbababcacdab. . .
. . .aabbababcacdab. . .

↓ shift.

Here finite orbits of a group action are calledperiodic orbits and their
(finite!) cardinalities are calledperiods. For example orbits of period 5 for
the shift look like this

. . . abbdcabbdcabbdc. . .
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Obviously, there are only finitely many points of a given period, namely
pcardS points of periodp. Also it is clear that periodic points are dense inX.
Indeed every wordx ∈ X can be approximated byp-periodic wordsxp for
p = 1,2 . . . . To do this we just periodically repeat theinitial block of x.
Namely think ofx as anS-valued function,x = x(i) ∈ S, i ∈ Z, and define
xpq(i) by two conditions,

(1) xpq(i) = x(i) for i in the segment−q, . . . ,0, . . . , p− q,
(2) xpq(i + p) = xpq(i), i ∈ Z.

Thesexpq are clearlyp-periodic and ifq, p− q→∞ thenxpq → x in our
product topology.

Clearly, everyshift endomorphism, i.e. a continuousZ-equivariant map-
ping f : X→ X, sends each subsetXp ⊂ X of p-periodic points into itself
andso f is always surjunctive.

Notice, that there are lots and lots of shift endomorphisms. Indeed take
an arbitrary mapϕ : Sm+n+1→ Sand then definef : x 7→ y by

y(i) = ϕ(x(i −m), x(i −m+ 1), . . . , x(i), . . . , x(i + n))

(as we did in 2.C′′′ for regular mapsp). Clearly this f is continuous and
commutes with the shift. Conversely, one can easily show (compare (∗)
below) that every shift endomorphism comes this way. On the other hand
one has no clear picture yet of all shiftautomorphisms(see [He]).

4.C. “Varieties”, “regular maps” and the prodiscrete topology. We want
to generalize the above to infinite setsS, equipped with extra structures, e.g.
to algebraic varieties overC. So we start with some subcategory of the cate-
gory of sets, where the objects are called“varieties” and morphisms called
“regular” maps. The we take projective limits of our“varieties” and call
these “provarieties” and their morphisms, i.e. projective limits of “regular”
maps defined as in §2, are called“proregular” maps. In what follows, we
stick to projective limits over countable directed systems admitting a cofi-
nal subsystem isomorphic toN = {1,2, . . . } and so everything reduces to
projective limits of sequences,

X =lim← Xi for X1← X2← . . .← Xi ← . . . ,

as in §2. (But in our applications, we shall use the directed systems over
finite subsets of a countable set, compare §7).

Prodiscrete metric |x− x′| on X. We define a metric on eachXi , denoted
|xi−x′i | by |xi−x′i | = 2−i if xi 6= x′i and|xi−x′i | = 0 otherwise. Then we set

|x− x′| = ∞6
i=1
|xi − x′i | for sequencesxi , x′i ∈ Xi representingx, x′ ∈ X. The
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topology corresponding to|x− x′| is calledprodiscrete. Here convergence
xν →

ν→∞ x in X for x = (xi ) andxν = (xi )ν amounts to stabilization :

(xi )ν = xi for ν ≥ ν0 = ν0(x, i).

Clearly the metric space(X, |x − x′|) is complete.Furthermore,every
“proregular” map is uniformly procontinuousi.e. uniformly continuous
relative the metric|x− x′|.

And in the full category of sets (where all maps are allowed) the converse
is true : every uniformly procontinuous map is “proregular”. In particular,
every uniformly procontinuous0-equivariant mapf : S0 → T0, where
0 is a countable group andS and T are arbitrary sets, is given by a map
ϕ : SD→ T for some finite subsetD ⊂ 0, according to the recipe described
in 2.D′, i.e. by the formula

f(x)(γ) = ϕ(x(γδ)δ∈D) (∗)
where recallx ∈ S0 and y = f(x) ∈ T0 are viewed asS and T-valued
functions on0 and D is identified withγD via the translationδ → γδ,

δ ∈ D.

4.C′ “Subalgebraic” sets and their intersections. A subsetA ⊂ X is called
“algebraic” if it is a finite intersection of pull-backs of points of “regular”
maps fromX to some “varieties”. We also agree thatA= X is “algebraic”.
Then we define “subalgebraic” subsets as images of “algebraic” ones under
“regular” maps.

Definition of “SA”IP . We say that our category has“subalgebraic” in-
tersection property( “SA”IP) if every countable decreasing family ofnon-
empty“subalgebraic” subsets in eachX hasnon-emptyintersections.

Examples. (a) “SA”IP is obviously satisfied in the category of finite sets.

(b) “SA”IP is satisfid in the category of compact topological spaces and
continuous maps. In fact every (possibly uncountable) decreasing family of
non-empty compact sets has a non-empty intersection.

(c) Finite dimensional vector spaces over an arbitrary field and the affine
maps satisfy “SA”IP. This is clear.

4.C′′. SAIP for uncountable algebraically closed fields. Every subalgebraic
subset in an algebraic variety over an algebraically closed field is construc-
tible and then SAIP follows from the well knowncountable intersection
property.
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CIP. The intersection of a decreasing (possibly uncountable) family of
constructible subset in the set ofK -points of an algebraic varietyX over K
is non-empty, providedK is an uncountable algebraically closed field.

This is obvious for an irreducible one-dimensionalX, where the con-
structible subsets are all of the formX minus a finite subset. These can not
have an empty intersection asX is uncountable. Then the case of dimX ≥ 1
follows by an easy induction argument.

4.C′′′ Remark about K = R and ∗R. This CIP also holds for the real
numbers, (as well as for every real closed uncountable field), but it does not
apply to subalgebraic subsets. However, (as was pointed out to me by Udi
Hrushovski) CIP does hold for semialgebraic (and thus for subalgebraic)
subsets overK = ∗R, i.e. for the non-standard model∗R of real numbers
obtained as the ultraproduct of countably many copies ofR over a non-
principle ultrafilter (see Ch. 3 in [HML]). For example, the subsetsAn ⊂ ∗R
defined by the inequalitiesAn = {x ∈ ∗R | x ≥ n} have anon-empty

intersection
∞∩

n=1
An which consists of all “infinitely large” real numbers. In

fact, every (countable) first order theory admits asaturatedmodel where
CIP is valid for all subsets definable in this theory (see Ch. 3 in [HML]).

4.D. Closed image property (ClImP) for “proalgebraic” maps. If a cate-
gory of “varieties” and “regular” maps has the “subalgebraic” intersection
property then the image of an arbitrary “proregular” mapf : X→ Y for
X = lim

i→∞ Xi , X = lim
j→∞ Y′i is closed inY for the prodiscrete topology.

This is well known with the proof obtained by the standard compactness
argument. To see it in a nutshell we start with the following non-emptiness
property.

4.D′. If (Xi , i ∈ I) is a countable projective system in a“SA”IP-category
where all Xi are non-empty, then the projective limitX =lim← Xi is also
non-empty.

Proof. Let X j
i ⊂ Xi denote the imageπ ji (X j ) ⊂ Xi and X∞i =

∞∩
j=i

X j
i .

These subsets are non-empty by “SA”IP and we claim thatπi+1,i sends
X∞i+1 ontoX∞i for all i . In fact,π−1

i+1,i (x)∩X j
i+1 is non-empty for allx ∈ X∞i

and j ≥ i + 1 asx ∈ X∞i ⊂ X j
i . Hence, the intersectionπ−1

i+1,i (x) ∩ X∞i+1 is
also non-empty by “SA”IP and sox comes from somex′ ∈ X∞i+1. Finally the

above “onto” makes the projectionX→ Xi also onto and soX = lim← Xi is
non-empty.
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Proof of 4.D. Take y ∈ Y and let yj = π∞, j ∈ Yj for the projection
π∞, j : Y = Y∞ → Yj . Denote byXi (y) ⊂ X the pullback ofyj under
fi : Xi → Yj and observe that

y ∈ Closure f(X)⇐⇒ Xi (y) ∩ π∞,i (X) 6= ∅.
Hence, Xi (y) is non-empty and sinceπi+1,i (obviously) sendsXi+1(y)
to Xi (y), the spacesXi (y) make a projective system, such thatX(y) =
lim← Xi (y) = f −1(y).

Now 4.D′ applies to{Xi (y)} and shows thatf −1(y) is non-empty. Q.E.D.

Remark. Observe that “SA”IP was used inXi ’s and not inYj ’s. This is
similar to what happens to maps between topological spaces : to havef(X)
closed inY one needs compactness ofX but not ofY.

4.E. Surjunctivity of shift endomorphisms over residually finite groups.
A countable group0 is called residually finite if one of the following five
equivalent conditions is satisfied.

(1) There exists a family of subgroups of finite index0p ⊂ 0 such that
∩0p = {id}.

(2) There exists an embedding of0 into aprofinitegroup, i.e. to a projective
limit of finite groups.

(3) There is a continuous faithful action of0 on a compact space such that
the periodic (i.e. finite) orbits are dense.

(4) The periodic orbits for the natural (shift) action of0 on {0,1}0 are
dense.

(5) The periodic orbits inS0 are dense in the prodiscrete topology inS0

(which is the same as the infinite Cartesian product topology) for every
setS.

The equivalence of these properties is obvious and well known. The
most common is (1) and the one we need is (5). The implications (1)⇒ (5)
follows by the argument we used in 4.B′′ to prove the density of periodic
points in SZ. In the present case we take suitable fundamental domains
1p ⊂ 0 of the subgroups0p ⊂ 0 and extend the restrictionsx|1p to all of
0 by 0p-periodic functionsx = x(γ).

4.E′. Let our category of “varieties” and “regular” maps admit finite Carte-
sian products and define the infinite products as the projective limits of finite
ones. We assume our category is surjunctive, i.e. all “regular” selfmappings
of “varieties” are surjunctive, and that it satisfies the “subalgebraic” inter-
section property. For example, this can be the category of the complex
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algebraic varieties. Now ClImP and the general discussion in 4.B. trivially
imply the following

Residually finite Surjunctivity Theorem. Every “proregular” 0-equiva-
riant self-mappingf : X0→ X0 is surjunctive for all “varieties” X in our
category and all residually finite groups0.

The only point in the proof which still needs an explanation is a clarifi-
cation of the structure of the sets of periodic points. Here for every0p ⊂ 0,
we have the fixed point set for0p, denotedXp ⊂ X, whose points are often
called0p-periodic. This Xp can be identified with the set of maps of the
coset0/0p into X, or equivalently with the set ofX-valued functions on
a fundamental domain1p ⊂ 0. In any caseXp equals a finite Cartesian
power ofX, i.e Xp = X1p= Xq for q = card1p = card0/0p and our f
is surjunctive onXp.

4.E′′. Remarks and open questions. (a) There are many examples of residu-
ally finite groups to which the above applies, e.g. all finitely generated
subgroups in Lie groups are residually finite.

(b) If the conclusion of the theorem holds true for an incresing family of
group0ν then it obviously holds for0 = ∪0ν. Thus our theorem extends
to locally residually finite groups, i.e. those where every finitely generated
subgroup is residually finite. For example all countable subgroups in Lie
groups arè .r.f.

(c) The above surjunctivity theorem is well known forfinite sets X
and, probably, due to Gottschalk (compare [Hed]) who introduced the word
“surjunctive” and raised the following

Gottschalk problem [Gott, 1972]. Is every shift endomorphism ofS0 sur-
junctive for all finite setsS?

This question generalizes to every surjunctive category with finite Carte-
sian products. But the positive answer, probably, needs something like
“SA”IP even for such groups asZ.

(d) The category of real algebraic varieties is surjunctive but has no
“SA”IP. So we do not know how to prove (or disprove) surjunctivity of
R-endomorphisms ofX for residually finite groups0. Yet we gain “SA”IP
if we pass to the field∗R of nonstandard real numbers where “SA”IP holds
true and surjunctivity follows.

4.E′′. Generalizations. Suppose we have a family ofnormal subgroups
0p ⊂ 0, of possibly infinite index, such that∩

p
0p = {id}. Then we have by

the above argument,
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The Subgroup approximation theorem.If all quotient groups0′p = 0/0p

are surjunctive relative to a category of “varieties” with “SA”IP, then0 is
also surjunctive.

Here a group0 is called surjunctive (compare [Gott]) if every0-
equivariant “proregular” selfmappingf : X0 → X0 is surjunctive for all
“varieties” X in our category. (We tacitly assume here that finite Cartesian
products are defined in our category).

Another possible generalization concerns more general “proalgebraic
varieties” (which are not necessarily Cartesian powers) with0-actions. The
above argument applies whenever0p-periodic points are dense inX and
there are many interesting0-actions, e.g. on “subprovarieties” inX0where
periodic points are dense (compare 4.F′′′ and 7.P).

4.F. Diagonal intersection property and uniform injectivity. An injective
map between metric spaces, sayf : X→ Y is calleduniformly injectiveif
the inverse mapf −1 from f(X) ⊂ Y to X is uniformly continuous for the
metrics distY | f(X) and distX on X. In other words for eachε > 0 ∃ δ > 0,
such that distX(x, x′) ≥ ε⇒ distY( f(x), f(x′)) ≥ δ.

We are interested in the case of “proregular” mapsf between projective
limits X = lim← Xi and X′ = lim← Yj where our f : X → Y is given by

“regular” maps fi : Xi → Yj j = j(i). What we want to show is that in
certain categories the injective “proregular” maps are uniformly injective.

Definition. A subsetA ⊂ X × X is calledsubdiagonalif it is obtained by
pulling back the diagonal by the square of a mapf ′ in our category, say by
f ′ × f ′ : X′ × X′ → Y × Y, and then by pushing this pullback forward
to X by π ′ × π ′ : X′ × X′ → X × X for someπ ′ : X′ → X. We call
B ⊂ X × X codiagonalif there existsπ ′′ : X → X′′, such thatB equals
the pullback of the complement to the diagonal inX′′ × X′′ underπ ′′ ×π ′′.
Finally C ⊂ X × X is called -“algebraic” if it is the pull-back of a point
under the squareX× X→ X• × X• of some mapX→ X•.

Diagonal intersection property (DIP). This says that for every codiagonal
B ⊂ X× X and an arbitrary decreasing sequenceAi of subdiagonal subsets
in X × X, such thatAi ∩ B is nonempty for everyi = 1,2, the infinite

intersection
∞∩

i=1
Ai ∩ B is also non-empty. Furthermore, ifC ⊂ X × X is

-“algebraic” such thatAi ∩B∩C is non-empty for alli , then
∞∩

i=1
Ai ∩B∩C

is also non-empty.

4.F′. Clearly, algebraic varieties over an uncountable algebraically closed
field have DIP since all theseB and Ai ’s are constructible (see 3.G and
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4.C′). Also the category of linear spaces and affine maps over an arbitrary
field has DIP. But compact spaces do not have DIP (yet they have “SA”IP).

4.F′′. Proposition. In a category withDIP injectivity implies uniform injec-
tivity of “proregular” maps. In particular, this is true for proregular maps
of proalgebraic spaces overC.

Proof. If the projective limit f = lim← fi : X→ Y for fi : Xi → Yj is not

uniformly injective for our prodiscrete metric, then there existsi0, such that
∀i ≥ i0 ∃ x, x′ ∈ Xi such that

πi,i0(x) 6= πi,i0(x
′) (i)

fi (x) = fi (x
′). (ii ).

We observe that the set of pairs of points(x, x′) ∈ Xi × Xi satisfying (i)
equals the pullback of the complement of the diagonal inXi0 while the
pairs satifying (ii) make the pullbacks of the diagonal inYj × Yj . Hence
the projectionBi1 of the first set toXi1 × Xi1 for somei ≥ i1 ≥ i0, is
a codiagonal inXi1 × Xi1 independent ofi (as it equals(πi1,i0 × πi1,i0)

−1

((Xi0 × Xi0)\diagonal)) while the projections of the subsets defined by
(ii) make a decreasing sequenceAi1,i ⊂ Xi1 × Xi1 of subdiagonal subsets,
such thatBi2 ∩ Ai1,i 6= ∅ for all i = 1 . . . . Then the infinite intersection

Bi1 ∩ Ai1,∞ for Ai1,∞ =
∞∩

i=i1
Ai1,i is also non-empty and these intersections

make a projective system for the projections

πi2,i1 | Bi2 ∩ Ai1,∞ → Bi1 ∩ Ai1,∞,

where each point in the projective limit, denoted(x, x′) ∈ B∞ ∩ A∞,∞,
satisfiesx 6= x′ and f(x) = f(x′) by the very construction of our setsAi

andBi . Then we show that this projective limit is non-empty by intersecting
Bi2 ∩ Ai2,i with Ci2 = (πi2,i1 ×πi2,i1)

−1(z) for z ∈ Bi j ∩ Ai1,∞ and showing
(compare 4.D) that the resulting intersection remains non-empty as we send
i →∞ and pass toBi2 ∩ Ai1,∞ ∩Ci2. Thus the assumption of non-uniform
injectivity led us to non-injectivity off . Q.E.D.

The main moral of the above story is thatproregular maps of proalge-
braic varieties overC behave similar to (even slightly better than) continu-
ous maps between compact spaces: The images are closed and inverses of
injective maps are uniformly continuous.

In fact, this remains valid if we replaceC by any (countably) saturated
model of a given first order theory (see Ch. 3 in [HML]), e.g. by the field
∗R of non-standard real numbers.

This is well known to model theorists in a slightly different language as
was pointed out to me by Udi Hrushovski.
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Allowing Galois action. One can enlarge the category of regular maps
acting on K -points of algebraic varieties by composing them with Ga-
lois K -automorphisms preserving these varieties. For example one can
compose polynomial mapsf : Cm → Cn with the actions of automor-
phismsg1 andg2 in GalC (diagonally) acting onCm and onCn, i.e. taking
g2 fg1 : Cm→ Cn. Such composed maps still have the same essential fea-
tures as the regular ones :they preserve constructible subsets under taking
pullbacks and images. Thus the above density and the uniform injectivity
property remain valid in this extended category.In fact one can generalize
further by applying different Galois automorphisms to different components
of our manifolds. Moreover, one can allow (non-regular) constructible map-
pings with different Galois maps on different pieces of finite constructible
decomposition of the varieties in question; all that matters is the preservation
of constructible subsets under taking images and pullbacks.

4.F′′′. On subproalgebraic spaces.One may try to bring together the cate-
gories of compact spaces and continuous maps and of proalgebraic spaces
and proregular maps. The relevant objects are defined as quotients of proal-
gebraic spaces by equivalence relationsY = X/R whereR⊂ X × X must
be a proalgebraic (or proconstructible) subspace inX × X (compare 3.I).
Probably these quotients have the same basic properties as proalgebraic
spaces but I do not see at the moment interesting examples whereR suffi-
ciently mixes together the (prodiscrete) topology and the algebraic structure
on X. In fact it is not so easy to construct by hand “proalgebraic”equiva-
lencerelationsR ⊂ X × X as the transitivity ofR is hard to satisfy. (The
reader may ponder on how the plain quotientsX/R with profinite X and
R give rise to the immensely rich realm of compact spaces). On the other
hand quotients are easy to come by for profinite dimensional vector spaces.

4.G. Initial approximation of groups . Let1 be a countable set. Then each
exhaustion of1 by finite subsets, say�1 ⊂ �2 ⊂ . . . ⊂ �i ⊂ . . . with
∪�i = 1 gives us a (prodiscrete) metric on the set of subsets in1 viewed as
the space of{0,1}-valued functions on1. In fact, such exhaustion identifies
{0,1}1 with the projective limitX =lim← Xi for Xi = {0,1}�i and then

we use our metric|x − y| =6
i
|xi − yi | for |xi − yi | = 2−i ,0 as in 4.C.

Furthermore, the quotient sets of1 are determined by equivalence relations
R ⊂ 1 × 1 and so each exhaustion of1 × 1, where we use one of the
forms{�i ×�i } gives us a metric in the set of quotients of1.

We are going to use this metric on the set of factor groups of a given
countable free group with a given exhaustion. In fact, we shall truly need
this only for finitely generated groups0 with a given finite generating set,
thought of as a (possibly non-injective) map of a given finite set into0, say
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a : D → 0. Then the free groupFD spanned byD is exhausted by sets
of D-words of length≤ i that are�i = (D ∪ D−1) ∪ (D ∪ D−1)2 ∪ . . . ∪
(D ∪ D−1)i and so all groups0 with generatorsmarkedby D, (i.e. with
mapsD→ 0 generating0), appear as quotients ofFD. Thus we have our
metric, denoted|0 − 0′| on the set of thesemarkedgroups.

Initially subfinite and initially subamenable groups. Say that a finitely
generates group0 admitsan initial approximationby groups from a given
family, say{0α}α∈A, if for every finite generating setD ⊂ 0 there exists
a sequence of groups0αi ∈ {0α} and mapsai : D → 0αi , such that the
ai -marked groups0αi converge to0 in the above metric.

The idea is, that these0αi are “initially close” to0, as|0−0αi |≤2−i

signifies that one can not tell0 from 0αi by looking at the elements repre-
sentable byD-words of length≤ i .

Next, a (possibly infinitely generated)0 is called initially subfinite if
every finitely generated subgroup0′ ⊂ 0 admits an initial approximation
by finite groups. (Such groups were introduced in [Ve-Go] under the name
of “locally embeddable into finite groups”). Similarly, we defineintially
subamenablegroups, (where the definition of amenability for groups is
explained in 6.E).

Remark and example. Obviously, every residually finite group is initially
subfinite. And it is easy to show (see [Ve-Go]) that everyfinitely presented
initially subfinite group is residually finite. Andthe group0 of permutations
of Z generated byZ-translations and the permutations with finite supports
is finitely generated and initially subamenable without being residually
finite (see [Ve-Go]).

Surjunctivity and initial approximation . Let us consider again some cate-
gory of “varieties” and “regular” maps satisfying “SA”IP (see 4.C′) and DIP
(see 4.F).

4.G′. Initial approximation theorem for groups. If a finitely generated
group0 admits an initial approximation by a family of groups0α which are
surjunctive relative to our category then0 is also surjunctive.

4.G′′. Corollary . If 0 is initially subfinite, then every0-equivariant complex
proalgebraic endomorphismX0 → X0 is surjunctive (where, recallX
stands for an arbitrary complex algebraic variety). This follows from 4.C′′
and 4.F′′ (compare 4.E).

Remark on ∗R. It is unclear if the above remains true for proalgebraic
endomorphisms overR but everything works fine if we replaceR by the
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field ∗R of non-standard real numbers as follows from 4.C′′′. and 3.F.Thus
∗R-endomorphisms ofX0 are surjunctive for all normal∗R-varietiesX and
all initially subfinite groups0.

Remark on locally surjunctive groups. It is obvious that the union of an
increasing family of surjunctive groups is surjunctive. Therefore, if every
finitely generated subgroup in a countable group0 is surjunctive then so is0.
This somewhat enlarges the scope of applications of the above theorems.

Question. Are ∗R-endomorphisms surjunctive for amenable (and thus for
initially subamenable) groups0? We know this is true forC-endomorphisms
as it follows from our surjunctivity theorem 2.C′.

We start the proof of 4.G′. with a dynamical interpretation of our con-
vergence0α→ 0. We consider the shift space with an arbitrary “alphabet”
Sover the free groupF = FD generated byD ⊂ FD and observe that the
shifts over all quotient groups0 of FD imbeds into this shift,S0 ⊂ SF

consists of the functionsF → S invariant under the action of the normal
divisor R0 ⊂ F defining0 by 0 = F/R0.

4.G′′′. Convergence criterion.Convergence of factor groups0α = of F to
0 is equivalent to the Hausdorff convergence of the subsetsS0α ⊂ S0 to
S0 ⊂ SF for every non-empty setS.

Recall, that the spaceSF, being a projective limit, carries a prodiscrete
metric, defined via a given exhaustion�i of F = FD, where we may use
e.g.

�i = D ∪ D−1 ∪ (D ∪ D−1)2 ∪ . . . ∪ (D ∪ D−1)i .

Then one may use theHausdorff metricin the set of subsets ofS0. Recall,
that the Hausdorff convergenceS0α →

α→∞ S0 signifies that

(1) S0α is contained in anε-neighbourhood ofS0 for ε→ 0
α→∞ .

(2) S0α becomes arbitrarily dense nearS0 for α → ∞. That is the
ε-neighbourhood ofS0α containsS0 for all α ≥ α0 = α0(ε).

Next, we exhaust each factorgroup0 by projections of given�i ⊂ F to 0,
denoted�i (0) ⊂ 0. We observe that eachS�i (0) embeds toS0 by extending
function�i → Sby constants outside�i and eachS�i (0) ⊂ S0 is ε-dense
in S0 for ε = 2−i . Next if |0− 0′| ≤ 2−i , then�i (0) is identical to�i (0

′)
and soS�i (0) = S�i (0

′). This implies the Hausdorff convergenceS0α → S0

for 0 → 0α. And the converse (for non-emptyS) is equally clear (and,
actually, unneeded for our theorem).
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4.H. Expansiveness.An action of a group0 on a metric spaceX is called
ε-expansiveif

∀x 6= y ∈ X ∃ γ ∈ 0, s.t. dist(γ(x), γ(y)) ≥ ε.
In other words, the distance between every two different orbits is at leastε.

Now we look from this angle on the shift action of0 on S0 with our
prodiscrete metric defined with some exhaustion of0 on�i and observe
that

4.H′. The shift action isε-expansive forε = 1.

This is obvious and, of course, well known.

Finally, we call an action ofX on 0 expansiveif it is ε-expansive for
someε > 0.

4.H′′. Injectivity lemma. Let0 expansively act onX and let f : X → X
be a0-equivariant uniformly continuous map which is uniformly injective
(see 4.F)on some0-invariant subsetX0 ⊂ X. Let Xα be a sequence
of 0-invariant subsets coming close toX0, i.e. Xα is contained in the
δ-neighbourhood ofX0 where δ = δ(a) → 0 for α → ∞. Then f is
injective onXα for all sufficiently largeα.

Proof. In order to prove thatf(xα) 6= f(yα) for xα 6= yα ∈ Xα it suffices to
check this forx′α = γ(α j ) and y′α = γ(yj ) and suitableγ ∈ 0, since f is
0-equivariant. We choseγ so that dist(γ(xα), γ(yα)) becomes≥ ε for the
“expansive constant”ε and we takeα so large thatx′α andy′α lie δ-close to
X0 for a small enoughδ. Then we take pointsx′0 and y′0 in Y0 which are
δ-close tox′α andy′α so that dist(x′0, y′0) ≥ ε/2, as we could assumeδ ≤ ε/4.
Now, by the uniform injectivity off on X0, we have dist( f(x′0), f(y′0)) ≥ δ′
for someδ′ = δ′(ε) > 0 and by the uniform coninuity off we have

dist( f(x′α), f(y′α)) ≥ δ′ − ρ(δ)
for ρ(δ)→ 0 asδ→ 0. Thus f(α′α) 6= f(y′α) if δ is small enough which is
achieved with largeα. Q.E.D.

4.I. Proof of 4.G′. Our map f : S0 → S0, whose surjunctivity is in
question, is given by a mapϕ : SD→ Sas in 4.C. Then the sameϕ defines
anF-equivariant selfmapping ofSF for the free groupF = FD, denotedf̃ ,
which maps the subsetS0

′ ⊂ SF into itself for each factor group0′ of F.
Now, if 0α → 0, we have the Hausdorff convergenceS0α → S0 and then
the injectivity of f = f̃ |S0 yields injectivity of f̃ |S0α for largeα as f is
uniformly injective by 4.F′′. Then, by our assumption,f sends eachS0α
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ontoitself and then the Hausdorff convergenceS0α → S0 and continuity of
f imply that the mapf : S0 → S0 has dense image and surjectivity off
follows by 4.D.

4.J. Further applications and non-applications.Theorem 4.G′ applies,
besides the category of regular maps of complex algebraic varieties, to finite
dimensional vector spaces (over our arbitrary field) and affine maps between
these. On the other hand, there are surjunctive categories which have “SA”IP
but not DIP. For example the category of closed topological manifolds (or,
more generally, of pseudomanifolds, which includes real analytic spaces) is
surjunctive :no closed manifoldX can be strictly embedded into itself. These
manifolds, being compact, also satisfy “SA”IP and so the residually finite
groups0 are surjunctive relative to this category, i.e. every procontinuous
0-equivariant mapf : X0 → X0 is surjunctive and similar results hold
true for continuousmaps with respect to theordinary product topologyin
X0 (see [Gro]TIDS).

4.K. DIP and “SA”IP for projective limits. If some category (of “varieties”
and “regular maps”) satisfies “SA”IP then clearly, the same remains true for
the corresponding category built of “proalgebraic” spaces and “proregular”
maps in-so-far as our projective limits are taken over countable directed sets.
The same applies to “SA”IP where one should track down the definitions
slightly more carefully (hoping they were set up right). Here is a kind of
a corollary.

Let 01 and 02 be groups which are surjunctive relative to every sur-
junctive category satisfying“SA”IP and/or DIP. Then0 = 01 × 02 is also
surjunctive relative to this class of categories.

Unfortunately, I see no meaningful application. Yet one may try to gen-
eralize this to (more) general group extensions 1→ 0 j → 0→ 02→ 1
where such a result may be useful.

5. Reduction modulo a prime in finite and infinite dimension

We start with a brief recollection of the language of the first order theories.

5.A. A first order structure. Such a structure on a setA is given, by
definition, by a sequence ofrelationsR1, R2, . . . in variablesa,b, c . . . ∈ A,
say Ri is a relation inni variablesa1,a2, . . . ,ani ∈ A. Here “relation”
means either a subset inAni or, better, a{0,1}-function on Ani where
R(a1, . . . ,ani ) = 1 is interpreted as “R is satisfied bya1, . . . ,ani ” or as
“being true” whileR= 0, means “not satisfied” or “false”.
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5.B. Example of groups.The basic (algebraic) relations of the group theory
are R1(a,b, c) = {ab = c} and R2(ab) = {a = b−1}. Thus the relation
R1 : A3→ {0,1} define the multiplication table onA. Then one can derive
more complicated relations using conjunction and disjunction. For example,
{abc= d} is expressible as{(ab= e1) ∧ (e2c= d) ∧ (e1 = e2)}. Thus one
arrives at all algebraic relations like{(a2b3c−1d−3a5 = bcd) ∧ · · · }.

All of the above are calledquantifier freerelations. Now, bringing in
quantifiers, we may have something likeR = {∀x∃y, s.t. x = y−1}. We
think of this as a relation of zero number of variables, and it happens to be
true for all groupsA. But the relation{∀x∃y, s.t. y2 = x} is true forA = R
but not forA= Z.

To see the formalism clearer one needs a more complicated example,
such asR= R(a,b) = {∀x∃y, s.t. x2a= by2}. So thisR⊂ A× A consists
of the pairs(a,b), where for everyx ∈ A one can findy ∈ A, such that
x2a= by2.

Recall, that the variablesa,b, c, . . . here are calledfree and those at-
tached to quantifiers,x, y, . . . are calledbound. Notice, that given any
relation R(a,b, c,d,e, . . . ) (where we only indicate free variables) we
can form new relations binding (some of) these variables, e.g. by taking
R•(d,e, . . . ) = ∀a ∃b ∀c R(a,b, c,d,e, . . . ). (This is analogous to in-
tegration where, for example,

∫
(ax+ by+ cx2 + dy3 + ex+ · · · )dxdy

has x and y as “bound” variables anda,b, c,d,e, . . . are “free”. Then
one can “bind”a,b, c by further integrating overdadbdc. Similarly, one
“binds” variables in analysis by taking max and min over them, as in
max

x
min

y
(ax2+ by+ cxy. . . ).

5.C. Theories and models.A first order theoryis determined by some
basic relations which are given some names. For example “the product
relation” is the name for what we have in groups. Another name for this is
{ab= c}, wherea,b andc here are not interpreted yet as elements of any
set, but rather as letters similar top, r,o . . . in “product”. In general, we just
name the basic relations by some lettersR1, R2, . . . etc. In our examples
we have finitely many of these basic relations, but we can generate further
relations using conjunction and disjunction as earlier. Furthermore, we can
add quantifiers and have the full set of relations syntactically generated by
R1, R2 etc. such as

{∃x∀y, s.t. R1(x, y,a,b, c) ∨ R2(x,d)}.
Next amodel of a theorygiven by relationsR1, R2 . . . is a setA with some
relations in the earlier sense bearing the names ofR1, R2 etc. For example,
amodel of the semigroup theory, or just asemigroupis a setA with a ternary
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relation called “product relation” :A3 → {0,1} or {ab = c} ⊂ A3 or
anything you want, say just plainR, or Rproduct. What is important is the
possibility to compare this product for different setsA and eventually to
define various kinds of approximation of one model of a given theory by
a family of such models.

5.D. Initial approximation revisited. Let R1, R2, . . . be a sequence of
relations in a given theoryF which include the basic relations, take a model
A of T and a finite subsetD = {a, . . . ,an} ⊂ A. Now, given two such
models withD’s, sayA = (A, D) andA′ = (A′, D′) for D′ = {a′1, . . . ,a′n},
we look at the maximali , such that the relationsR1, R2, . . . , Ri hold true in
A with respect to the variablesai ∈ D ⊂ A, if and only if the corresponding
relations hold true fora′i . Then we set

“ dist ”(A, A′) = 2−i

for this maximali . It is not truly a distance, since “ dist ”= 0 does not
necessarily implyA = A′ but it certainly looks very much as a distance in
all other respects.

5.D′. Example : Convergence for groups.If F is the group theory and
R1, R2 . . . is the sequence ofall quantifier freerelations, then the above
distance is essentially the same we had in 4.G, where “essentially” means
the two metrics lead to the same notion of approximation.

Remark. One can refine the above metric by using an exhaustion ofA by
subsetsDj and defining “ dist′′(A, A′) with respect to such exhaustions as
2−m for the maximalm =

def
min(i, j), such that the firsti relations hold true

for the variables from the firstj subsetsD1, . . . , Dj in A andD′j , . . . , D′j
in A′ correspondingly.

5.E. Syntactic distance.Two models of a theory are called(elementary)
equivalentif they have identical sets of true formulas without free variables.

Example : Lefschetz principle. Every two algebraically closed fields of
the same characteristic are equivalent.

In other words, every elementary geometric statement which is true in
one fieldK is true in all of them.

Warning . Be careful, that your statement iselementary, i.e. expressible in
the language of the first order theory of fields. For example the statement:
“if a function f : K × K → K is a polynomial in each variable then it
is a polynomial” is true (and rather easy to prove) forK = C but not for
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K = Q. What is wrong here is speaking of “arbitrary functions onK × K ”
which are not expressible in the first order language of fields.

Next, for a given theoryF , we enumerate all relations without free
quantifiers and define dist(A, A′) between the equivalence classesA andA′
of models of our theories. That is

dist(A, A′) = “ dist ”(Ã, Ã′)

for some representatives̃A and Ã′ of A and A′ (where the implied setD is
empty).

5.E′. Extended Lefschetz principle.Let Kν be a sequence of equivalence
classes of algebraically closed fields of finite characteristics converging to
infinity. Thendist(K, Kν) → 0 for every algebraically closed fieldK of
zero characteristic.

This is standard (see [HML], Ch. 1, Proposition 2.8, for instance)
and rather obvious. The idea is that every finite sequence of relations
R1, R2, . . . , Ri contains{∀x, px = 0} only for finitely many primesp= pi

serving as characteristics ofKi .

5.E′′. Remark. We formulated the extended Lefschetz principle in “geom-
etric” terms. Algebraically speaking, it says that

if a relation R without free variables holds true for a sequence of alge-
braically closed fields with characteristics→ ∞ then it holds true for all
algebraically closed fields of characteristic zero. Conversely, the validity of
an R for a single algebraically closed field of characteristic zero, implies
that for all algebraically closed fields of characteristics≥ p0 = p0(R).

5.F. Proof of Ax’ theorem. Start with polynomial mapsf : Cn → Cn.
Clearly, the statements

Rsur( f) = “ f is onto” and

Rinj( f) = “ f one-to-one”

are expressible in the first order language with the coefficients off serving as
free variables and the variablesx ∈ Cn being bound variables. For example
for f = ax2 + bx+ c being onto is expressible by{∀y∃x, s.t.ax2 + bx
+c= y}. Then, the surjunctivity relation forf , i.e. R•( f) = Rsur( f) ∨
R⊥inj( f), whereR⊥ means negation ofR is also of the same nature. On the
other hand, the desired relation∀ fR• f is not of the first order as we are not
allowed to quantify over polynomials, only over variables. But everyf of
a given degree≤ d is given by a string of variables that are the coefficients
of f and so∀ fR•( f) is expressible by asequenceof first order formulas



140 M. Gromov

without free variables, namely∀ fdR•( fd) for fd referring to polynomials
of degree≤ d.

Now the general case of the Ax theorem reduces to the case of the fields
Fp = ∪Fpi where the surjunctivity is obvious (compare 4.A).

5.F′. Remark on the role of finite fields.Not everyR which holds for all
finite fields is necessarily held forC. (For example onto implies one-to-one
for finite fields but not for all infinite fieldsK .) However, this is true for
all K which can be approximated byFpi for our metric dist. These are the
fields which are equivalent (e.g. isomorphic) toultraproducts of finite fields
(see [Ax]1 and [HML], Ch 3).

What is special about the surjunctivity relation{∀ fR•( f)} is the stability
of this under increasing union of fields. Thus all fields which are elementary
equivalent to unions of ultraproducts of finite fields enjoy the surjunctivity
of polynomial endomorphisms.

5.F′′. Ax’ theorem for constructible maps.We have proved surjunctivity so
far only for polynomial mapsKn → Kn for an algebraically closed field. But
the same argument applies to all constructible selfmapsf of constructible
subsetsX ⊂ K N. Actually, every suchX and the mapf : X → X are
defined by a finite set of first order formulas and so the extended Lefschetz
principle reduces everything toFp. Then a simple argument shows thatf
is given by a collection of rational maps, each mapping some stratum ofX
to X, and so ourf mapsX(Fpi ) into itself for all sufficiently largei . Hencef
is surjunctive overFpi and the extended Lefschetz principle applies. Notice,
that this version of Ax’ theorem yields all surjunctivity statements overC
claimed in §3 for regular, constructible and subconstructible maps.

Question.Let X andY be (smooth projective) algebraic varieties defined
over a number field. Suppose

cardX(Fpi ) = cardY(Fpi )

for all sufficiently large p and i . How far do [X] and [Y] lie in the
Grothendieck group(s) defined in 3.G′′ ?

5.G. Surjunctivity for families of maps (compare [Ax]2). Let Xb be a con-
structible family of constructible sets, i.e.Xb = π−1(b) ∈ X for a con-
structible mapπ : X → B. Then we say that a mapf : X → X sending
each fiberXb to Xb′, for b′ = b′(b) ∈ B, is one fiber surjunctiveif ∃b ∈ B,
such that the mapf : Xb→ Xb′ is surjunctive.

If the underlying field is algebraically closed, then every constructible
f is one fiber surjunctive.
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This is obvious by the above proof of Ax’ theorem.

5.H. Maximal and minimal fibers. We want to show, that the above family
Xb contains a maximal fiberXmax= Xb0 which admits no strict embedding
f into any other fiberXb and similarly, we look for a minimal fiberXmin

receiving no strict embeddings fromXb, ∀b ∈ B (see 3.H). But now
watch out : the relation{∃b0∀ f . . . } has non-first order “∀ f ′′ under the
existence quantifier and it cannot (at least not obviously so) be reduced to
first order formulas of the field theory. But if we limitf to maps defined by
polynomials of degree≤ d, or, equivalently, defined by first order formulas
of size≤ d, we have a bona fide first order relation{∃b0∀ fd . . . } to which
the basic principle applies. Furthermore, our one fiber surjunctivity relation
is stable under union of fields, at least in the case we need, i.e. for the field
K = Fp =∪

i
Fpi . To see this consider the setFd of all strict embeddings

between the fibersXb ⊂ X defined via polynomials of degrees≤ d. This

Fd appears as a constructible set in someFN
p and we have the tautological

map defined onX′ ×Fd for X′ = π−1(B′), whereB′ ⊂ B corresponds to all
non-maximal fibers, byτ : (x, f) 7→ f(x) ∈ X× Fd. Now non-existence of
Xmax amounts toB′ = B which gives us an endomorphism ofX×Fd which
is not one fiber surjunctive. Similarly, non-existence of the minimal fiber
leads to the same conclusion for the action ofτ on the setτ−1(X′′) where
X′′ = π−1(B′′) for B′′ ⊂ B consisting of all non-minimal fibers. Thus we
prove the validity of

{∃bmax∀ fd . . . } and{∃bmin∀ fd . . . }
for all algebraically closed fieldsK . What remains, is to satisfy these re-
lations for infinitely manyd’s which amounts to taking intersections of
subsets ofb’s satisfying{b ∈ B|∀ fd . . . } for all d. But we know, that in-
tersections of non-empty chains of constructible subsets are non-empty for
uncountable algebraically closed fieldsand thus we prove the existence of
Xmax and Xmin for such fields. Similarly, we prove, for example, the exis-
tence of max

c
min

b
Xbc claimed in 3.H, i.e. the relations{∃b0, c0,∀b,∀ f :

Xbc0 → Xb0c0 is surjunctive and∀c∃b such that∀ f : Xb0c0 → Xbc is
surjunctive} for all uncountable algebraically closed fields (I did not look
for counterexamples for countable fields). Then one proceeds with min-
maxmin, maxminmaxmin, etc. In all cases, one first limits oneself to the
setsFd of strict embeddings between the fibers of degrees≤ d and shows
that these can not be too large over our parameter spaceB×C× D× . . . ,
where the bound comes from what we have for families of finite sets. In
fact the underlying idea comes from varietiesX defined overQ. These can
be reduced modp for all sufficiently largep ≥ p0(X). Then we can assign
the numberscp,i (X) = cardX(Fpi) for all large p andi measuring the size
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of X in some sense. For example, ifX ⊂
6=

X′ thencpi (X) < cpi (X
′) for all

sufficiently largep andi .

Sobering remark. All this may look quite interesting but one should keep
in mind that

(1) The existence of a strict embeddingX ⊂
6=

X′ is a strong condition. No

surprise there are so few of them !
(2) Constructible order relationson algebraic varieties are rare beasts with

a rather primitive anatomy (see Observation below) allowing the reduc-
tion of all minmax properties back to the Ax theorem.

Observation. Consider an order relation onB, denoteda � b, such that
the set of pairs satisfyinga � b, denoted{�} ⊂ B× B is constructible in
B× B. Denote byBi ⊂ B the subset of thoseb ∈ B for which there exists
a chaina1 � a2 � . . . � ai � b. Clearly, this is a constructible subset inB
(as we assume here the underlying field is algebraically closed.)

If i is sufficiently large, depending on the relation, then there exists
a Zariski dense open subsetU ⊂ Bi and a constructible equivalence re-
lation, say{∼} ⊂ U × U which equals to our order onU, i.e. {∼} =
{�} ∩U ×U ⊂ Bi × Bi .

Proof. There exists, by the Hilbert theorem, ani , such thatBi+1 ⊂ Bi is
Zariski dense inBi . This is ouri with U ⊂ Bi being the maximal open
subset such thatU × U is contained in the intersection of{�} and{≺} in
Bi × Bi , where{≺} is obtained from{�} by the involution(a,b)→ (b,a)
of Bi × Bi ).

Corollary. If the relation admits arbitrary long chainsa1 � a2 � . . . � ai

then there exists a pointb ∈ B, such thatb� b.

Remark. The above can be applied, besides the relationa �
d

b given by

(the existence of) strict embeddingsXa→ Xb of degree≤ d, to surjective
non-injective mapsXa → Xb or to equidimensional mapsXa → Xb of
topological degree≥ 2, or to surjective maps from subsets,Xa ⊃6= Ya→ Xb,

etc., where one should bound the algebraic degrees of our maps byd in order
to keep the order relationa �

d
b constructible. Eventuallyd→∞ and we

arrive atb ∈ B with b � b by intersecting countably many constructible
sets as we did earlier.

5.I. Initialization of surjectivity for proregular maps. Given a proregular
map f : X → Y =lim← ( fi : Xi → Yj ), i, j ∈ N, we want to express
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the onto property, as well as one-to-one and eventually surjunctivity, by
a sequence of first order relations. Here is such a sequence of relations.

Initial surjectivity. A proregular mapf , or rather the projective system of
maps definingf , is called(i, j+)-surjectiveif the image of fi : Xi → Yj

contains the image of the projectionπ j+, j : Yj+ → Yj where j+ is assumed
≥ j = j(i). Then f is calledinitially surjective if ∀i∃ j+, s.t. f is (i, j+)-
surjective.

Notice that the above makes sense for a general “proregular” map. The
particular structure ofXi ,Yj and fi is irrelevant at the moment. Also observe
the following trivial implication

surjectivity H⇒ initial surjectivity

if the projectionsYj → Yj−1 are onto for all j . Moreover

density of f(X) ⊂ Y⇒ initial surjectivity (?)

provided the projective systemX j is image stable according to the following
definition.

Image stability. Call a projective system{Xi } (i0, i0 + `)-image stableif
πi0+k,i0(Xi0+k) = πi0+`,i0(Xi0+`) ⊂ Xi for all k ≥ `. Then call{Xi } image
stableif ∀i0∃` s.t. it is(i0, i0+ `)-image stable.

The above (?) obviously holds in every category of “proregular” maps
with “density” referring to the prodiscrete topology inY. What is slightly
less trivial isthe validity of (?) for proalgebraic varieties over uncountable
algebraically closed field (and saturated models, in general) without the
image stability assumption.

Indeed, if fi (Xi ) ⊂ Yj contains the intersection of the images,∩
j ′≥ j

π j ′, j (Yj ′) ⊂ Yj , then∃ j ′0, s.t. f(Xi ) ⊃ π j ′0i ′(X′j ′0). This follows from the

countable intersection property for constructible sets (see 4.C′′).

Also observe the opposite implication,

initial surjectivity ⇒ surjectivity, (?′)

provided the category in question satisfies“SA”IP.

In fact, this follows by our proof of 4.D.

The spacesX∗, X+ and a topological interpretation of initial surjec-
tivity . Denote byX∗ the disjoint union of the spacesXi with the metric
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|x − x′| defined as follows. Add a dummy element, say 0, to eachXi and
embed the extendedXi to their projective limit in the obvious way,

xi 7→ (xi ,0,0, . . . ) ∈ X t 0=lim← (Xi t 0).

Then the prodiscrete metric onX t 0 restricts to allXi ⊂ X t 0 and is
denoted by|x− x′| as earlier. Clearly,X ⊂ Xt0 equals the set of the limits
of all convergent sequences{xi ∈ Xi }. Alternatively one could introduce
X+ = (metric completion ofX∗) for the metric|x − x′| on X∗ and then
definethe projective limitX = X∞ =lim← Xi as the complementX+\X?.

Now we observe that

(a) Xi+1 is contained in theε-neighbourhood ofXi ⊂ X∗ for ε = 2−i .

(b) the map f∗ : X∗ → Y∗ associated to a projective system of maps
{ fi : Xi → Yj } is uniformly continuous for our metrics onX∗ and
on Y∗.

(c) a projective system of maps{ fi : Xi → Yj } is initially surjective
iff for every ε > 0 there existsj , such thatYj is contained in the
ε-neighbourhood off(X∗) ⊂ Y∗

(d) a projective system{Xi } is image stable iffX ⊂ X+ equalsthe Haus-
dorff limit of the subsetsXi ⊂ X∗ ⊂ X+ for i → ∞, which amounts
in the present case to the following property : for everyε > 0 ∃i , such
that Xi is contained in theε-neighbourhood ofX+.

5.I′. Reduction of surjectivity modulo a prime p → ∞. Suppose our
X,Y and f are defined overZ so that we may speak of reduction modulop
and definef(Fpν ) : X(Fpν )→ Y′(Fpν ) for all p andν. In fact we shall only
needp≥ p0 andν ≥ ν0 and so all we say will equally apply to provarieties
and maps defined over a number field.

If there exists a sequence of finite fieldsKν = Fpνν for infinitely many
positive integersν ∈ {ν} = {ν1 < ν2 < . . . } and pν → ∞ for ν → ∞,
such that the mapf(Kν) are surjective, thef(C) is also surjective, provided
the projective systems{Yj (Kν)} are uniformly image stable, i.e. ∀ j0∃` s.t.
{Yj (Kν)} are (j0, j0+ `) image stable for allν.

Proof. The surjectivity and the uniform image stability obviously imply
uniform initial surjectivityof the projective system of maps definingf(Kν),
i.e. ∀i∃ j+ such thatf(Kν) is (i, j+)-surjective for allv. This implies, that
f(Fpνν ) is also(i, j+)-surjective, at least for all largeν by the following
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Trivial Lemma. Let f : A → B and π : B+ → B be morphisms of
varieties overZ (or over any number field for this matter). Then for all suf-
ficiently largep andν, the inclusion of the imagesf(A(Fpν ) ⊃ π(B+(Fpν ))

implies that f(A(Fp)) ⊃ π(B+((Fp)).

Now f(C) is also(i, j+)-surjective by the extended Lefchetz Principle
(see 5.E′) and (?′) applies. Q.E.D.

Counterexample.One can not go by without the uniform image stability
condition. Indeed look at the mapz 7→ πi (z) = zi (zi − 1). This is onto
over K = C but if K is a finite field withq elements,q = (prime)ν, and
i = q − 1, thenπi maps all ofK to 0 ∈ K . Thus the projective limit of
the sequenceK ←

π1
K ←

π2
. . . ←

πi
K ←

πi+1
. . . equals{0}. It follows that the

obvious map ofX = {0}, viewed as the projective limit of the sequence
{0} ← {0} ← . . . , to Y = lim(K, πi ) is surjective over every finite fieldK
but it is not surjective overK = C.

One can make the above even more convincing withξ j : K2 → K
defined byξ j : (z1, z2) 7→ π j (z1)+ ( j + 1)gj (z1, z2) wheregj is a generic
polynomial of degree 2j without constant term with integer coefficients.
This ξi is surjectiveoverC and has (unlikeψ j ) irreducible fibers, while
viewed over the finite fieldK with q-elements it mapsK2 to{0} for j = q−1.
Now we takeϕ1 = ξ1 : K2 → K , thenϕ2 = ξ2 × ξ2 : K4 → K2, next
ϕ3 = (ξ3 × ξ3) × (ξ3 × ξ3) : K8 → K4 and so on. All these maps are
surjective forK = C with irreducible fibers, while the projective limit of
this systemYj = K2 j

over each finite fieldequals{0}. Thus the obvious
map f : {0} → lim← Yj is surjective over all finite fields but not overC.

5.J. Uniform irreducibility of fibers . The image stability overK boils
down to showing that certan regular maps, sayY′j+1 → Y′j are all onto
overK , i.e. have non-empty fibers over allK -points inY′j for j = 1,2, . . . .
If K is a finite field, then non-emptiness of a variety (fiber)A can be derived
from non-emptiness and irreducibility ofA over K by the corollary due
to Lang of the celebrated theorem of A. Weil. On the other hand, if some
Z-variety is irreducible overC, then it is also irreducible over all fields of
sufficiently large characteristicκ = κ(A). What, in general, is missing, is
a bound on thisκ independent ofj and for this we need some uniformity
of the C-irreducibility with respect toj . Actually, when we turn to our
applications (see §7) we shall be able to work with only finitely manyj ’s
at a time. Mor generally we could require the mapsY′j+1→ Y′j , viewed as
fibrations, to be induced from a single fibration,5 : Z→ B (possibly with
non-connected base) with irreducible fibers. Then thisZ → B will have
irreducible fibers over the fields with characteristic≥ κ ≥ κ(5 : Z → B)
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and then this irreducibility will be transmitted to allY′j+1→ Y′j induced by
regular mapsY′j+1→ B.

Warning . ConsiderZ ⊂ C3 given by the equationz1z2 = b and non-
equationb 6= 0. This obviously fibers overB = C\{0} with irreducible
fibers. And this irreducibility remains intact over any field of arbitrary
characteristic. However, if we take someinteger pointb0 ∈ C\{0} then the
fiber over this point, i.e.z1z2 = b0, becomes reducible over each fieldK
where the characteristic dividesb0. This happens because the embedding
{•} 7→ b0 ∈ C\{0} does not define any embedding{•} 7→ K\{0} if the
characteristic ofK dividesb0. Yet everything works fine for affine and/or
projective varieties defined overZ, where allZ-morphisms can be reduced
modulo each prime. For example, if we take the affine realization ofB =
C\{0} asB• ⊂ C2 given by the equationbc= 1, then the(z1, z2)-fibers of
Z• = {z1z2 = b, bc= 1} over B• retain irrducibility over allZ-points of
Z reduced modulo any prime. In fact, thisZ• has only 4 integer points, all
with the coordinates±1.

Example. ConsiderX ⊂ (Cn)∞ given by equations{gi (xi , xi+1) = 0}
where each variablex1, x2, . . . , xi , xi+1, . . . runs overCn andgi are poly-
nomial (maps) with integer coefficientsCn×Cn→ Ck. Then the truncated
subvarietiesXi ⊂ (Cn)i form a projective system where, each projection
Xi+1→ Xi can be obviously induced from the projections of the variety

Zi = {xi , xi+1 | gi (xi , xi+1) = 0} ⊂ Cn ×Cn

to B = Cn, 5i : (xi , xi+1) 7→ xi . Now, if these projectionsZi → B have
irreducible fibers, and if the degrees and the coefficients of all polynomialspi

are bounded by a constant independent ofi (e.g. allgi are mutually equal),
then any propolynomial endomorphismf of X with integer coefficients
which is onto onFpν -points ofX, (i.e. F(Fpν ) : X(Fpν )→ X(Fpν ) is onto)
for ν → ∞ and pν → ∞ is also onto onC-points of X, as a simple
argument using the Lang-Weil theorm shows.

Remark. We do not formulate the most general notion of uniform irre-
ducibility. When we refer to it we mean some condition on the fibers of our
maps overC which suffices for irreducibility overFp for large p when we
invoke the extended Lefschetz principle. Recall, what we eventually need
is the image stability of our projective system{Yj } onFpν -points for large
p andν and this property is trivially satisfied for the projective system of
the Cartesian powers,Yj = YNj , regardless of irreducibility ofY. So we
sometimes include this case in the “uniform fiber irreducibility” category.

5.K. Z-families over proconstructible spaces.It may happen we have
to study not an individual proregular mapf : X → Y but a family of
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those, sayfµ : X → Y whereµ runs over some proconstructible moduli
space defined overZ. In other words we have a class of mapsf defined by
infinitely many first order formulas of the field theory where the spacesX
andY may also be taken from some classes described by such formulas. For
example, one may look at polynomial endomorphisms ofX from the above
example where the admissibleX’s are those where allgi are mutually equal
and where the admissiblef ’s are given by (sequences of) polynomials,
each having exactly 55 non-zero coefficients. The question is whether the
“onto” property for a given map from this class onKν-points for all ourKν

implies that forC. This can be reduced to a single map of larger spaces,
sayF : X → X ′, whereX andX ′ are fibered over some proconstructible
moduli space of spaces and maps (compare 5.G) andF is fiber preserving.
So all we have done for individual mapsf applies toF = { fµ}, where
some caution is needed in the treatment of uniform irreducibility of fibers
of the maps in the projective system definingX ′. We shall not persue this
suject matter in full generality but shall treat it on the case by case basis.

5.L. Injectivity and initial injectivity. We start with a proregular map
f : X→ Y between proalgebraic varieties defined overZ and ask ourselves
if injectivity of f onC-points implies that for sufficiently many finite fields
Kν = Fpνν , i.e. for finite fields of arbitrarily large characteristicspν and
degreesν over the respective prime fieldsFpν .

Definition. Call a projective system of maps{ fi : Xi → Yi } (i0, i+)-
injective for given i0 = 1, . . . , and i+ ≥ i0, if πi+,i0(x) 6= πi+,i0(x

′) ⇒
fi+(x) 6= fi+(x

′) for all x, x′ ∈ Xi . Then call{ fi} initially injective if ∀i0∃i+
s.t.{ fi } is (i0, i+)-injective.

This is (obviously) equivalent to theeventual uniform injectivityof the
associated mapf∗ : X∗ → Y∗ which means that for everyε > 0 ∃δ > 0
andi = 1, . . . , such that

|x− x′| ≥ ε⇒ | f∗(x)− f∗(x′)| ≥ δ

for all x, x′ ∈ X∗\
i−1∪
j=1

X j .

It follows that

uniform injectivity of f = lim← fi ⇒ initial injectivity of { fi} (∗)
provided the projective system{Xi } is image stable(see 5.I).

Corollary. If our category has DIP, then

injectivity of f ⇒ initial injectivity of { fi }. (∗∗)
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In particular(∗∗)holds for proregular maps over uncountable algebraically
closed fields.

5.L′ When does “(i o, i+)-injective” imply “injective”. It is obvious that
initial injectivity implies injectivity. But what we need is the implication

(i0, i+)-injective ⇒ injective (∗′)
for fixed but possibly largei0 andi+. It is immediate that(i0, i+)-injectivity
yields the following “ε0-injectivity” of f : X→ Y,

|x− x′| > ε0 = 2−i0 ⇒ f(x) 6= f(x′) for all x, x′ ∈ X.

Then we recall (see 4.H) that this is sufficient for injectivity in the presence
of an expansive action on X so we arrive at the following

Lemma. If X is endowed with uniformly continuous and expansive action
of a group0 then there existsi0, such that for everyi+ ≥ i0 (i0, i+)-
injectivity implies injectivity for all0-equivariant uniformly continuous
maps f : X→ Y.

This applies, in particular, to0-invariant “subvarieties” inX = X0 with
the shift action of0 on X.

Remark. The above remains true for certain expansiveorbit structureson
X not associated to groups (which are implicitly present in §7).

5.L′′. Injectivity reduced modulo p. Let f : X→ Y be a proregular map
between proalgebraic varieties, everything defined overZ, such that f is
injective on the setX(C) of C-points of X. Then, assuming the projective
systemXi definingX is image stable, we conclude that the mapf is initially
injective and thus(i0, i+)-injective for some pairs(i0, i+) with i0 → ∞.
Now, the(i0, i+)-injectivity is expressible by first order formulas and so the
map f is also(i0, i+)-injective onX(Fp) for all p≥ p0 = p0(i+), according
to the extended Lefschetz principle. Finally, if we are in a situation where
(i0, i+)-injectivity ⇒ injectivity, e.g. for subshiftsX ⊂ X0, we conclude
to injectivity of f on X(Fp) and thus to injectivity onX(Fpν ) for all ν and
p≥ p0.

Remarks.The above trivially extends to proconstructible varieties and maps
defined overZ or, more generally, over algebraic number fields. Also, as in
the case of surjectivity, one may apply the above discussion to proalgebraic
and proconstructible families of maps defined overZ (or more generally for
classes of varieties and maps defined by first order formulas).
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5.M. Reducing surjunctivity modulo p. Given an injective mapf :X→Y
as above, we want to establish its surjectivity onC-points provided we
know that injectivity⇒ surjectivity for Kν-points for Kν = Fpνν for a se-
quenceν, pν → ∞. This, in fact, can be done under the following three
assumptions.

(1) The systemXi definingX is image stable onC-points ofXi .
(2) There existsi0, such that(i0, i+)-injectivity⇒ injectivity onFp-points

of X for eachi+ > i0 and for all p ≥ p0 = p0(i0).
(3) The systemYj is uniformly fiber irreducible overC.

Indeed (1) gives us the implication

injectivity ⇒ (i0, i+)-injectivity,

onC-points ofX for all i = 1,2... and somei+ = i+(i0). Next this passes to
Fp by the extended Lefschetz principle and then yieldsFp-injectivity which
trivially implies Fpν -injectivity for p > p0. The latter injectivity implies
Fpν -surjectivity by our assumption, which then yields initialFpν -surjectivity
due to (3) as we indicated in 5.J. Finally, this yields initial surjectivity and,
hence, surjectivity on theC-points (see 5.I′).

5.M′. Surjunctivity for families. Often we want to prove surjunctivity for
a (pro)regular mapf defined overC, rather than overZ (or any number
field for this matter). For example, Ax’ theorem claims surjunctivity for
all C-endomorphisms of algebraicC-varieties. And in our case we may
encounterarbitrary 0-equivariantC-proregular self-mappings ofX = X0.
We handle this matter as earlier by including our mapf , andX if necessary,
into a family, say fb : Xb → X′b, whereB is a proalgebraic space defined
overZ (or over a number field) or more geneally, a proconstructible space
eventually defined by first order formulae. Thus we have the global mapping
F = { fb} : X → X ′ for X = ∪

b∈B
Xb andX ′ = ∪

b∈B
X′b ,where now all

objects,F , X andX ′ can be defined overZ (e.g. by first order formulas).
however, the problem we face now has changed. Instead of the implication
“one-to-one⇒ onto” forF , we want to prove this for everyfb-constituent
of F individually. This is done by restrictingF toY ⊂ X consisting of the
union of Xb over the partA ⊂ B, defined by the condition

{b ∈ A| fb one-to-one onXb(C)}.
Now, our mapF restricted toY, sayF : Y → Y ′ for Y ′ = ∪

b∈A
X′b, is

injective and if we can prove it is surjective, we shall arrive at the desired
surjunctivity of the originalf = fa0. This works perfectly well in the case
of ordinary (finite dimensional) varieties overC, sinceA ⊂ B as well as
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Y ⊂ X andY ′ ⊂ X ′ are defined by first order relations and so bothY and
Y ′ are constructible spaces defined overQ and eventually overZ. But, in
general, for proalgebraic varieties and maps, injectivity is not expressible
by first order formulas, unless we have injectivity↔ initial injectivity. And
this implication is ensured, as we know (see 5.L) by the image stability
of X. Thus we must choseY ⊂ X andY ′ ⊂ X ′ more carefully, so that all
Xb,b ∈ A, retain the needed properties ofX, X′ and our f ′ : X → X′,
namely (1) and (3) of 5.K. which are given by (infinitely many) first order
formulas. And as for (2), this is of a combinatorial nature and must be
required independently for all maps under scrutinity. Here is our example
where everything goes smoothly along these lines.

5.M′′. Proof of 2.C′ for 1 = 0. Let f : X0 → X0 be a0-equivariant
proregular map defined overC and observe that the above discussion yields
the following conclusion.

(??) f is surjunctive onC-points of ourX = X0, provided every continuous
0-equivariant selfmappingS0→ S0 is surjunctive for every finite setS.

In fact, each f is given by a single regular mapϕ : Xd → X for
d = cardD and D ⊂ 0 being a finite subset (see 4.C). We includeX into
a familyX = {Xb}, of varieties overB whereB andX live over a number
field (which can be reduced further toZ with the first order language) and
we denote by8b the set of all regular mapsϕb : XN

b → Xb of degree≤
degree(ϕ). then we take the infinite Cartesian power ofX over B time
8 = ∪

b∈B
8b, i.e.X = ∪

b∈B
(X0b ×8b). ThisX is defined over a number field

(which can be reduced toZ in our first order language) and we have a natural
proregular mapF = { fb} : X → X also defined over a number field (or
Z if one wishes) which sends each fiberX0b × 8b into itself. By the map
(x, ϕb) 7→ ( fb(x), ϕb) where fb is built out ofϕb : Xd

b → Xb as usual (see
4.C). Now the surjunctivity discussion from 5.K′. applies and (??) follows.

What remains to prove 2.C′ for 1 = 0 is the following result from
symbolic dynamics.

5.M′′′. Let Sbe a finite set,0 an amenable group andX′ ⊂
6=

S0 be a closed

0-invariant subset. Then the topological entropy of the0-action on X′
satisfies the strict inequality

ent(X′ : 0) < ent(S0 : 0)(= log cardS).

This is standard for0 = Z and well known to experts (e.g. to Benjy
Weiss) for all amenable0 (compare 8.D). In fact we shall establish this in
a more general situation (without explicitly referring to the entropy) in the
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course of the proof of the surjunctivity theorem 7.G′ for initially amenable
graphs1 (see 7.L′).

Now surjunctivity of the shift endomorphisms is trivial as a strict em-
bedding ofS0 to S0 would land on a compact, and hence closed, subsetX′
in S0 and we would haveS0 = X′ ⊂

6=
X = S0 which contradicts the above

strict inequality for the entropy.

Remarks. (a) Our proof of (??) equally applies to1 with an action of
a locally compact group with finitely many orbits as in 2.C′ and the 2.C′
follows with an obvious generalization fo 5.K′′′. (See §7 for a more general
results).

(b) surjunctivity of amenable groups implies that for initially sub-
amenable ones (see 4.G′ and 6.E) and so surjunctivity of all proregular (and
also proconstructible)0-equivariant selfmappingsX0 → X0 is ensured for
all initially subamenable groups0.

6. Infinite graphs : symetries, amenability, asymptotic dimension

We collect here basic definitions concerning infinite graphs1. Later on we
look at projective systems parametrized by1 (or rather by finite subsets
in 1) and augment the purely graph theoretic properties of1 by extra data
coming from these projective systems.

6.A. Partial symmetries and limits of graphs.From now on1 denotes
a countable, usually infiniteconnected, graph where we do not notationally
distinguish between the graph and the set of its vertices denotedδ ∈ 1.
This is possible, strictly speaking, only if our graph hasno loopsand anat
most oneedge betweeneach pairof vertices. So, to simplify the life, we
assume1 does have these two properties (and we leave to the reader the
adjustment needed for general graphs1 with loops and multiple edges).

We define dist1 = dist(δ, δ′) on1 as the minimal length of a path of
edges joiningδ and δ′ in 1. This is an integer valuedmetric on 1 if 1
is connected. Otherwise1 becomes somewhere infinite, namely it gives
infinite distance between different connected components but this does not
prevent one from using it as a metric on each component. Notice that dist1

carries the same information as the graph structure on1.
In general, we do not expect1 to have non-trivial automorphisms, i.e.

isometries for the metric dist1, but it may have manypartial isometries,
namely bijective maps between subsets in1 preserving the metric dist1.
For example let us assume that1 hasbounded valency, i.e. each vertex
δ ∈ 1 has at mostd adjacent edges for somed < ∞ independent ofδ.
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Then, clearly, for everyr < ∞ there are at mostfinitely manyisometry
classes ofr -balls in1 where ther -hall D = D(δ, r) ⊂ 1 aroundδ ∈ 1 is
defined by

D = {δ′ ∈ 1|dist(δ, δ′) ≤ r }.
Thus we have infinitely many mutually isometricr -balls in eachinfinite
graph1 and we are interested in isometries between such balls, denoted
γ : D↔ D′.

Such isometries allow one to define limits1• of a fixed graph1 with
a given sequence of pointsδi ∈ 1, i = 1,2, . . . called markingsin 1,
going to infinity (in1) for i →∞. To construct this1• = lim

i→∞ (1, δi ) we

need isometries between certain balls aroundδi , namelyγi : D(δi , ri ) ↔
D(δi+1, ri ), for some sequenceri → ∞. We may assume (by restricting
some isometries to smaller concentric ballsD(δi , r ′i ) if necessary) thatr i

increase withi and then compose eachγi with the inclusionD(δi+1, ri ) ⊂
D(δi+1, ri+1). Thus we get a sequence of isometric embeddings, still de-
notedγi ,

D(δ1, r1)
γ1
↪→ D(δ2, r2)

γ2
↪→ . . .

γi−1
↪→ D(δi , ri )

γi
↪→

and then the union, or rather the inductive limit of these balls, is denoted
1• = lim

i→∞ (1, δi ), or, more precisely, lim
i→∞ (1, δi , γi ). This limit carries the

obvious graph structure or, equivalently, a metric coming from that in the
balls D(δi , ri ). (In fact the metric space1• equals the Hausdorff limit of the
marked metric spaces(1, δi ), (see [GLP]). Notice, that ifδi do not go to
infinity, i.e. remain in a finite subset in1, then the graph1• is isomorphic
to1, but we typically obtain uncountably many graphs1• corresponding to
various sequencesδi →∞ in1. We are primerly interested in locally finite
graphs1 where the conditionδi → ∞ is equivalent to dist(δ0, δi ) → ∞.
Observe that not every sequenceδi gives rise to1• as we need the above
mutually isometric balls aroundδi of radii→ ∞ but such sequences are
abundant if1 has bounded valency. In fact, every sequenceδi in such a1
obviously admit a subsequence where the required balls exist.

Observe next that every limit graph1• is locally isometric to 1 in
the sense that each ballD• in 1• of radiusr < ∞ is isometric to some
r -ball in1. In fact1• is exhausted by the ballsD(δ•, ri ) ⊂ 1• around the
distinguished point (marking) corresponding to the sequence{δ•} and these
balls are tautologically isometric to the ballsD(δi , ri ) ⊂ 1. Conversely,
every graph1′ locally isometric to1 is (globally) isometric to some limit
graph1• of 1 corresponding to certainδi and γi . This is obvious. It is
equally obvious, that the local isometry is a partial order relation between
graphs, written1′ ≺ 1, but this is not, in general, an equivalence relation.
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In fact, there are special graphs1, called (dynamically)minimal, such that
1′ ≺ 1 implies1 ≺ 1′ and the following fact is standard.

6.A′. Minimality Lemma. Every graph1of bounded valency admits a min-
imal limit graph1• i.e. a minimal graph1• satisfying1• ≺ 1.

This is proven with Zorn’s lemma by a usual compactness argument. In
fact, this can also be derived from the existence of a minimal leave saturated
subset in a compact foliated space. (Here it is the Hausdorff moduli space
of marked graphs1 with valencies bounded by some constant, see [GLP]).
Also recall the following obvious (and well known)

6.A′′. Criterion for minimality. A graph1 of bounded valency is minimal
if and only if for very ballD in 1 of radiusr < ∞ there exists a number
R = R(D) < ∞, such that everyR-ball D+ ⊂ 1 contains anr -ball
D′ ⊂ D+ (non-concentric toD+ in general) isometric toD (where “only
if” does not need “bounded” valency).

6.B. Additional structures on 1, local order and distinguished isom-
etries. Given an additional structure on1, e.g. a coloring of1 into finitely
many colors, we may limit our isometries to these preserving our structure
and thus obtain a subset of partial isometries of1. A particularly important
structure in this respect isa local orderon1, i.e. an ordering of the edges at
each vertexδ ∈ 1. If the graph1 is locally finite, this local order eliminates
non-trivial isometries fixing a point in1. In fact, there is at most one (if any)
isometry between ballsD ↔ D′ sending the center ofD to that of D′ and
preserving the local orders in these balls induced from a preassigned local
order in1. On the other hand, such ordering does not drastically reduce the
overall partial symmetry of1 as every ball of finite radius admits at most
finitely manydifferent local orders. In particular, if1 is a locally ordered
graph of bounded valency, it still satisfies the following

Precompactness property.Every infinite sequence of points in1 contains
a subsequence, sayδi ∈ 1, such that each ball of radiusi aroundδi , i.e.
D(δi , i) admits an order preserving isometryγi to the ball D(δi+1, i). In
particular, these exists a limit1• of the marked locally ordered graphs
(1, δi ) and this1• carries a natural (limit) structure of marked locally
ordered graph.

In fact, there are at most finitely many isomorphism classes of ordered
balls in1 which yields the compactness property.

Similarly, the minimality lemma and the minimality criterion trivially
generalize to graphs with extra structures where the relevant role of these
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structures is a limitation on local isometries in1. This can be expressed
with the following

6.B′. Pseudogroups0 of isometries of graphs1. Such a pseudogroup
0 is defined as a distinguished subset of partial isometries of1, called
0-isometriesand denoted as earlierγ : � → �′ for γ ∈ 0 and some�
and�′ from1 (depending onγ ) where the following four axioms must be
satisfied.

(A) 0 contains the identity map Id� : �→ � for every� ⊂ 1.
(B) γ ∈ 0⇒ γ−1 ∈ 0
(C) If γ : �→ �′ andγ ′ : �′ → �′′ are in0 then alsoγ ′γ : �→ �′′ is

in 0.
(D) For everyγ ∈ 0, γ : �→ �′ its restrictionγ : �0→ �′0 = γ(�0) is

also in0 for all �0 ⊂ �.

If, for example,0 is an isometry group acting on1 then 0 can be
restricted to all subsets� ⊂ 1 for γ : � → �′ = γ(�) thus giving us
a pseudogroup in the above sense. But usually our pseudogroups do not
come from global isometries of1.

0-limits 1• of1. These are defined with sequences of pointsδi ∈ 1 and0-
isometriesγi : D(δi , ri )→ D(δi+1, ri ) whereri →∞. Such a limit graph
1• = lim

i→∞ (1, δi , γi ) can be thought of as an increasing union (inductive

limit) of the balls D(δi , ri ) embedded into each other byγi and so1•
comes along with a markingδ• ∈ 1• corresponding to the sequence{δi }
as well as embeddingsD(δ•, ri ) → 1 sending these ball bijectively (and
isometrically) ontoD(δi , ri ) ⊂ 1. This distinguishes a certain pseudogroup
acting on1• , denoted0•, which consists of isometriesγ ∈ 0 pulled from
1 to1• via the above bijections between balls. So we see that(1•, 0•) is
locally 0-isometricto1 = (1,0) in an obvious sense.

The following definitions 6.C,D distinguish sufficiently large pseu-
dogroups0 which will be needed for the surjunctivity property in §7.G.

6.C. Cofiniteness.Dealing with0-isometries between balls,γ : D → D′
we shall insist on the center going to the center and call balls0-isometricif
there exists such an isometryγ ∈ 0 between them. We call a pseudogroup
0 cofiniteon1 if for every r = 0,1, . . . , there are at most finitely many
mutually non-0-isometric balls of radiusr .

Example. If 0 comes from an isometry group acting on1 then, clearly, it
is cofinite if and only if the (global) action of the group has finitely many
orbits in0.
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6.C′. Compactness.If 0 is a cofinite pseudogroup on1 then every infinite
sequence of points in1 obviously admits a subsequence, sayδi ∈ 1, such
that the ballD(δi , i) is0-isometric toD(δi+1, i) for all i = 1,2, . . . .

Recall that the resulting limit graph1• = lim
i→∞ (1, δi , γi ) also possesses

(the limit) pseudogroup structure and it islocally 0-isometric to1.

6.D. Dense pseudogroups0 and quasihomogeneity.We say that two
pointsδ andδ′ in 1 arer -equivalentwith respect to0 if the r -balls around
these points are0-isometric. Then (the action of)0 is calleddense on1 if,
for everyr = 0,1, . . . , eachnon-emptyr -equivalence class of points in1,
say1′ ⊂ 1 constitutes anet in1. that is, there exists anR= R(1′) <∞,
such that1′ meets every ball of radiusR in 1.

Notice that this condition is similar to the one used in the above mini-
mality criterion. In fact one observes that there are some distinguished (tau-
tological) isometries between some balls in1• and in1. Using these, one
generates a new (huge)pseudogroup0∗ acting on (subsets in) thedisjoint
union1∗ of all 0-limits 1• of 1. Namely0∗ is the minimal pseudogroup
acting on1∗ which restricts to0 on1 and which contains the above men-
tioned distinguished isometries (that areD(δ•, ri )→ D(δi , ri ) ⊂ 1 for the
balls D(δ•, ri ) → D(δi , ri ) ⊂ 1• = lim

i→∞ (1, δi , ρi )) for all 1•. Thus one

can speak of local0∗-isometry relation between different limits1•1 and1•2
of1 (which are connected components of1∗)where the implied isometries
from r -balls of1•1 to 1•2 must belong to0∗. Then one defines the order
relation1•1 � 1•1 as earlier and (easily) proves the minimality criterion for
0-graphs1 with the cofiniteness condition staying for “bounded valency”.

Finally a graph1 is calledquasi-homogeneouswith respect to a given
pseudogroup0 if the (partial !) action of this0 on1 is cofinite and dense.

If 0 comes from an isometry group with finitely many orbits in1, then1
is obviously quasi-homogeneous with respect to0, as cofiniteness implies
density in this case. This is not true in general; however, we have here the
following generalization of the minimality lemma.

If 1 is a locally finite graph and0 is cofinite on1, then some0-limit
(1•, 0•) of1 is quasi-homogeneous.

There is nothing new here to the proof compared to 6.A′ (and we do not
even need this for our surjunctivity theorem. The role of this lemma is to
illuminate the notion of quasihomogeneity.

6.E. Amenability, uniform amenability and initial subamenability . De-
fine the boundary∂� ⊂ 1 for each� ⊂ 1 as the set of pointsδ ∈ 1where
the unit ballD(δ,1) ⊂ 1 intersect� as well as the complement1\�.
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An exhaustion of1 by finite subsets�i ⊂ 1, i = 1,2, . . . , is called
amenableif

card∂�i/ card�i → 0 for i →∞.
This means that large “domains”�i in 1 have relatively small boundaries.

Then a graph1 is calledamenableif it admits an amenable exhaustion.
Intuitively, 1 is amenable if it has “negligible boundary at infinity”.

This notion applies, in particular, to Cayley graphs of finitely generated
groups0 and coincides with the traditional definition of amenability for0:
a group0 is called amenable if every continuous action of0 on compact
topological space admits an invariant measure. (All this is well known, see
[Gree] for instance). In particular amenability of a Cayley graph1 does not
depend on the choice of generators in0which are involved in the definition
of 1.

6.E′. Call a graph1 uniformlyamenable if there exists a functionR(r, ε) =
R1(r, ε), for r = 1,2, . . . , and ε > 0, such that for eachr -ball D =
D(δ, r) ⊂ 1 there exists a subset� in 1 pinched betweenD and the
concentricR-ball D+ = D(δ, R), i.e. D ⊂ � ⊂ D+, such that

card∂� ≤ ε card�

Clearly, the uniform amenability implies amenability. In fact,1 is uni-
formly amenable if and only if all limit graphs1• (i.e. all connected graphs
locally isometric to1) are amenable, where “if” needs the assumption of
1 having bounded valency. The proof is straightforward and as far as our
applications go we could postulate the uniform amenability of all1• to start
with (see 7.G).

6.E′′. A graph1 is calledinitially subamenableif for every r = 1,2, . . . ,
everyε > 0 and every finite subsetD ⊂ 1 (where one can restrict oneself
to balls D ⊂ 1) there exists a graph1′ with a finite subset�′ε ⊂ 1′ such
that

(a) 1′ is r -locally isometric to1 on�′ε. That is allr -ballsD(δ′, r), δ′ ∈ �′ε,
are isometric to somer -balls in1.

(b) �′ε contains an isometric copy ofD, i.e. someD′ ⊂ �′ε is isometric
to D

(c) card∂�′ε/ card�′ε ≤ ε.

For example, if1 admits a sequence of free isometric actions by groups
0i on1 such that the quotients1i = 1/0i are amenable (e.g. finite) graphs,
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such that for everyfinite subsetD ⊂ 1 there exists ani where the quotient
map1→ 1i is injectiveon D. Then, clearly,1 is initially subamenable.

Next, we say that1 is uniformly initially subamenable if there exists
a function R = R1(r, ε) for r = 1,2, . . . andε > 0, with the following
property. For every subsetD ⊂ 1 of diameter≤ r there exists a graph1′
and a finite subset�′ ⊂ 1′ of diameter≤ Rsatisfying the above conditions
(b) and (c) and the following strengthened version of (a)

(a+) 1′ is r -locally isometric on�′ to the R-neighbourhoodD+R ⊂ 1

of D, i.e. eachr -ball D(δ′, r), δ′ ∈ �′, must be isometric to some ball
in D+R.

Notice that(a+) is equivalent to (a) for quasihomogeneous graphs1

and only such graphs will appear in our applications.

6.E′′′. If a graph1 comes along with an extra structure, e.g. a local order, one
modifies the above definitions in the obvious way by requiring1′ to carry
the same kind of structure and where all (local) isometries in question must
preserve this structure. The most important structure for us is a distinguished
pseudogroup0 of isometries of1 where one may think of1′ appearing in
the definition of (uniform) initial amenability as some graph glued out of
r -balls in1 by some isometries from0 on some subsets of these balls.

Example.The Cayley graph1 of a finitely generated group0 is (uniformly)
initially subamenable for the natural0-structure on1, iff 0 is initially
subamenable. But it may (?) happen1 is initially amenable as a graph
without0 being initially subamenable.

6.F. Asymptotic dimension growth of metric spaces.Let1 be an arbitrary
metric space (e.g. a connected graph) and definethe dimension of1 on the
scaleλ, for a real numberλ > 0, denoted dim(1|λ) as the minimal number
N such that1 can be covered byN+1 subsets, say10,11, . . . ,1N where
each1i decomposes into the union ofuniformly boundedsubsets separated
by distances≥ λ. Thus1i =∪

j
Bi j for j running over some (usually infinite)

index setJ, where

(a) diamBi j ≤ const<∞, for all i, j , (recall, diamB =
def

sup
b,b′∈B

dist(b,b′))

(b) dist(Bi j , Bi j ′) ≥ λ for all i = 0, . . . , N and all pairs j and j ′ 6= j ,
where dist(B, B′) =

def
inf
b,b′

dist(b,b′) for b ∈ B andb′ ∈ B′.

What we are actually interested in is the asymptotic behavior of dim(1|λ)
for λ→∞. This is a very robust invariant unsensitive to changing bounded
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pieces of1. For example every net1′ ⊂ 1 has the same asymptotic be-
haviour of dim(1′|λ) as dim(1|λ). In particular every net1 ⊂ Rn has
dim(1|λ) = n for all sufficiently largeλ. The same is true for nets in
the n-dimensional hyperbolic space and in everyn-dimensional symmet-
ric space of non-compact type as well (see [Gro]AI ). But in general, one
has a poor idea of the growth of dim(1|λ). (Of course, it is obvious that
dim(1|λ) ≤ constλ for graphs1 of bounded valency but one does not know
how dim(1|λ) can grow, for example, if1 equals the universal covering of
a finite aspherical 2-dimensional polyhedron).

6.F′. On locality of dim(1|λ). Observe thatevery graph1• locally (i.e.
r -locally for all r > 0) isometric to1 hasdim(1•|λ) ≤ dim(1|λ) for all
λ > 0, provided1 has bounded valency.

However, this does not give usany estimate on dim(1•|λ) if 1• is
r -locally isometric to1 with a givenr � λ. This suggests another dimen-
sion

dimloc(1|λ) =
def

lim sup
r→∞

dim(1•r |λ)
where1•r runs over all graphsr -locally isometric to1.

It is clear that
dimloc(1|λ) ≥ dim(1|λ)

for all λ and in many cases the two dimensions are equal or, at least, have
the same asymptotic growth forλ → ∞. But it is unknown what is the
relation between these dimensions in general.

Example. The nets1 inRn obviously have dimloc(1|λ)=dim(1|λ)=n for
all largeλ. Probably, dimloc(1|λ) = dim(1|λ) for all connected Lie groups
with invariant Riemannian metrics and largeλ as well as for homogeneous
Riemannian manifolds in general.

Remark. The above definitionof dimloc is not, a priori, quasi-isometry invari-
ant forλ→∞. This could be remedied either by defining dim′loc(1|λ, L, ρ)
=sup

1′
dimloc(1

′|λ) where1′ runs over all metric spaces admittingρ-nets

which areL-bilipschitz equivalent to certainρ-nets in1. Then one could
sendλ → ∞, extract some asymptotic invariant from dim′loc(1|λ, L, ρ)
and finally sendL, ρ→∞. For instance one could take

lim sup
L,ρ→∞

lim sup
λ→∞

dim′loc(1|λ, L, ρ)

or
lim sup
L,ρ→∞

lim sup
λ→∞

λα dim′loc(1|λ, L, ρ)
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for a givenα ≤ 0.

A more logical definition would be as follows. Consider all1• where
everyr -ball admits aρ-netL-bilipschitz equivalent to aρ-net in somer -ball
in 1. Set

dimr (1|λ, L, ρ) = sup
1•

dim(1|λ)
over all such1• and let

dim•loc(1|λ, L, ρ) = lim sup
λ→∞

dimr (1|λ, L, ρ).

Then proceed as earlier by first sendingλ→∞ and then lettingL, ρ→∞.

All these dimensions seem to coincide for simple examples but the
overall picture remains unclear.

7. Proalgebraic varieties over infinite graphs

We start with an observation showing that graphs enter rather naturally once
we start looking at proalgebraic varieties. For example, consider a proregular
mapping between products, sayf : X→ Y for X = ×

δ∈1
Xδ andY = ×

δ∈1
Yδ,

where1 is a countable set andXδ andYδ are algebraic varieties. Such anf
is given by a system of regular mappingsfδ : X→ Yδ for all δ ∈ 1 where
each fδ actually depends on finitely many variables amongxδ ∈ Xδ, say on
xb for b ∈ B = B(δ) ⊂ 1. Thus we have a finite subsetB = B(δ) ⊂ 1
assigned to eachδ ∈ 1 and we make agraphwith the vertex set1 by joining
δ1 andδ2 with an edge iff the intersectionB(δ1) ∩ B(δ2) is non-empty.

The structure of this graph1 is the main combinatorial characteristic
of f and we shall persue our quest for surjunctivity in the graph theoretic
language of1.

Remark. There is a finerdirected graph structureon1whereδ1 andδ2 are
joint by an arrowδ1→ δ2 wheneverδ1 ∈ B(δ2). But we shall be oblivious
to this in the present article.

A special case of the above graph structure on1 arises when we have
a proalgebraic subvarietyZ in C1, whereδ1 andδ2 are joined by an edge
whenever there is a polynomial, among those definingZ, which depends
simultaneously on the variablesxδ1 andxδ2. Here every edge is labelled by
(a vector of) complex numbers, the coefficients of polynomials involving
xδ1 and xδ2. This essentially augments the pure combinatorics of1 and
a similar labelling for the abovef : X → Y is needed for answering the
surjunctivity question.
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7.A. Graphs, metrics and finite propagations.We consider a connected
graph1 with the metric dist= dist1 as is measured by the length of edge
paths in1. Typically, our1 is an infinite locally finite graph of bounded
valency (compare 2.D and 6.A).

Our main objects of study are projective systems{X�} over finite subsets
� ⊂ 1, in particular, subsystem of products which we callsubproduct
systems. Here the ambient system of products consists of the products of
the “fibers” Xδ = X{δ} over subsets� ⊂ 1 where X� ⊂ ×

δ∈�
Xδ for all

� ∈ 1. Thus the subproduct property says that the mapX�→×
δ∈�

Xδ, that

is the product of the projectionsX� → Xδ, is injective for allδ ∈ � and
all � ⊂ 1. And we agree in all cases that the space corresponding tothe
empty setconsists of a single point,X∅ = {•}.

We say that a subproduct system has propagation≤ ` if the inclusion
x ∈ X� for a givenx ∈ ×

δ∈�
Xδ ⊃ X� is detectible by looking at the balls

of radii ≤ ` around all points in�. That is,x ∈ X� if and only if the
restrictionsof x to the intersections� ∩ D(δ, `) are contained inX�∩D(δ,`)

for all δ ∈ �, where, recall, the ballD(δ, `) is defined as

D(δ, `) = {δ′ ∈ 1|dist(δ, δ′) ≤ `}
and where the word “restriction” refers to the projectionX�→ X�∩D(δ,`) as
x’s in the product areviewed as functions(or sections)δ 7→ x(δ) ∈ Xδ on1.
Then “bounded propagation” means “propagation≤ `” for some` < ∞.
Notice that this corresponds to the notion of “finite type” customary applied
to subshift of the full shift space in the framework of the symbolic dynamics.

Similarly, a morphism between projective systems over1, { f� : X�→
Y�−} is called ofpropagation≤ `, if it is determined by mapsfD for the
balls D = D(δ, `) for all δ ∈ 1. More precisely (and more generally) we
require that the subset�− = �−(�) ⊂ 1 consists of all̀ -interior points
in �, whereδ ∈ � is called`-interior if D(δ, `) ⊂ �. In particular, if{Y�}
is a subproduct system, then the above can be equivalently expressed by
saying that the value ofy = f�(x) at each pointδ is determined by the
restrictionx|D(δ, `), i.e. the values ofx on the ballD(δ, `). Then we speak
of bounded propagation as earlier if` <∞ and we apply this terminology
to projective limitsX and maps between these,f =lim← f� : X→ Y.

7.A′. Basic example(compare 2.D). LetX andY be infinite product spaces
over 1, say X = ×

δ∈1
Xδ and Y = ×

δ∈1
Yδ. Suppose we have mapsϕδ :

×
δ′∈Dδ

Xδ′ → Yδ, for Dδ = D(δ, `), assigned to all pointsδ ∈ 1. This defines
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a map f : X → Y, where x 7→ y such that the value ofy at each
δ ∈ 1 equalsϕδ(x|D). Thus a collection of “finitary” objects, our mapsϕδ,
defines a “transcendental” mapf : X → Y. Clearly, suchf has bounded
propagation and this is the only remnant of the finitary origin off .

7.A′′. Generalization of subproducts.Let us replace one point sets{δ} by
the ballsD(δ, `) of a fixed radius̀ and consider the Cartesian product of
the projection fromX� to X�(δ) for �(δ) = � ∩ D(δ, `), that is5�(`) :
X� →×

δ∈�
X�(δ). We say that our system is ageneralized subproduct, if

there exists̀ <∞, such that the maps5�(`) are injective for all� ⊂ 1.
This generalization comes naturally in the bounded propagation framework
but it is not truly necessary. In fact, it can be reduced to the subproduct
case by introducing an auxiliary projective system{X+`� =def

X�+`}, where

�+` ⊂ 1 denotes thè -neighbourhoodof �, i.e. the union of the balls
B(δ, `) around allδ ∈ �. Thus everything we shall eventually prove for
subproduct systems could be extended to generalized subproducts.

7.B. Holonomy over1. Let{X�}�⊂1 be a projective system over a graph1.
A holonomy maph between (projective systems over) ballsD andD′ in 1
is given by the following data

(i) an isometryγ = γh : D→ D′ sending the center ofD to that ofD′,
(ii) a bijective map from the projective system{X�}�⊂D to {X�′ }�′⊂D′.

This means there are bijective mapsh� : X� → X�′ for all � ⊂ D
and�′ = γ(�) which commute with the restriction mapsX�1 → X�2

and X�′1 → X�′2 for all pairs�1 and�2 ⊂ �1 in D (where, recall
“restriction maps” refer to projectionsπ�1,�2 constituting our projective
system).

The most important holonomy map amongh� is hD and we often writeh
instead ofhD.

A holonomy over1 is defined as a setH of holonomy maps defined
between certain (pairs of) ballsD andD′. The balls admitting holonomies
between them are calledequivalent. Notice that equivalent balls areisomet-
ric but the converse does not have to be true. Also we do not assume the
uniqueness of holonomyh between two given equivalent balls. (Actually
this non-uniqueness causes some technical complications by making certain
constructions non-canonical).

(Pseudogroup) Axioms for holonomy.We assume below that our holono-
mies satisfy the following four axioms (compare 6.B′).

(1) The identity IdD, given by the identity mapD → D and the identity
mapX�→ X�, � ⊂ D, is in H for all balls D ⊂ 1.
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(2) h ∈ H ⇔ h−1 ∈ H
(3) If h andh′ are in H whereh is defined betweenD and D′ andh′ is

betweenD′ and D′′, then their compositionh′ ◦ h defined betweenD
and D′′ is also inH.

(4) If a ball D0 is contained inD then the (obvious) restriction of each
holonomy fromD to D0 belongs to the holonomy overD0 (whereD0

is not necessarily a concentric ball).

Notice that we do not bother to define the holonomy over non-balls� ⊂ 1
but this could be easily done by restricting those from ballsD ⊃ �. This
being done, we obtain a pseudogroup0 = 0(H) acting on1 consisting of
all γ = γh, h ∈ H.

7.B′. Holonomies commuting with endomorphisms.Suppose we have an
endomorphism of a projective system over1, say{ f� : X�→ X�−}where
we assume�− ⊂ � for all � ⊂ 1. A holonomy in this situation refers to
h’s which commute withf . (Similarly one may speak of holonomies for
maps between different systems or for extra structures in{X�} not coming
from maps, but we deal mostly with endomorphisms in this paper).

7.B′′. Rigid holonomy. A holonomy is calledrigid if there isat most oneh
covering givenγ : D→ D′ where “covering” meansγ = γh.

Basic example of holonomy.(Compare 2.D). Let the graph1have bounded
valency, i.e. at mostd < ∞ edges issuing from every vertex. Suppose we
have a partition of1 into N subsets11, . . . ,1N such that the points
δ ∈ 1k, k = 1, . . . , N have the same valency in1, saydk for all δ ∈ 1k.
Furthermore, we assume that we are given alocal orderon1, i.e. an ordering
of the edges adjacent to each vertex and thus an ordering of the neighbour
points toδ, call themδc(δ) ∈ D(δ,1)with c= 0,1, . . . ,dk whereδ0(δ) = δ.
Next let X be an algebraic variety and letpk : Xdk+1→ X be some regular
maps fork = 1, . . . , N. Then thesepk define an endomorphismf of the
Cartesian powerX = X1 as follows, f : x 7→ y where the value ofy
at each pointδ ∈ 1k, k = 1, . . . , N, is given by the values ofx at the
neighbouring pointsδc = δc(δ), c = 0, . . . , δk via pk according to the
following rule (compare 2.D),

y(δ) = pk(x(δ0), x(δ1), . . . , x(δdk)).

This map f clearly has bounded propagation with the implied` = 1. Then
the structure off as well as the structure of the corresponding endomor-

phism of the projective system of the Cartesian powersX�
def= X�, say

{ f� : X� → X�−}, where�− equals the 1-interior of�, is determined,
besides the given finite set of polynomialspk, by the pure combinatorics of



Endomorphisms of symbolic algebraic varieties 163

the graph1, the partition1 = ∪1k and the local ordering of1. Thus every
isometryγ : D→ D′ preserving the partition and the local order on1 lifts
to a maph : XD → XD′ compatible with the mapsf� where “lifts” mean
γh = γ . In other words thish serves as a holonomy map for the projective
system{ f� : X�→ X�−}.

Now we declare two pointsδ1 and δ2 in 1 `-equivalentif the balls
D(δ1, `) and D(δ2, `) are equivalent with respect to0 = 0(H) in the
sense of 7.B which amounts here to the existence of the above isometry
D(δ1, `) → D(δ2, `) compatible with the partitions. Clearly there are at
most finitely many`-equivalence classes of points in1 for every ` =
1,2, . . . . Thus we have lots of holonomy forinfinite graphs1 as we may
have sequencesδi of mutually `-equivalent points in1 going to infinity
(compare §6).

Observe that the holonomy in this example is quite rigid : there is at most
oneh corresponding to an isometryD → D′ and this is further enhanced
by the local order in1 as the local order preserving isometryD → D′,
sending the center ofD to the center ofD′ is, obviously, unique (if existing
at all), as we have already mentioned in 6.B.

7.C. Holonomy orbit completion. Let {X�} be a projective system with
a holonomyH over1. A sequence of ballsDi = D(δi , i) ⊂ 1, δi ∈ 1, i =
1,2, . . . , is calledholonomicif, for everyi = 2,3, . . . the (concentric) ball
D−i = D(δi , i−1) is0(H)-equivalentto Di−1, i.e. if there exists an isometry
γ = γh ∈ 0(H) from D−i to Di−1. Given such a sequence we can organize
the spacesX•i =def

XDi into a projective system by composing the restriction

mapsXDi → XD−i with some holonomy mapshi : XD−i → XDi−1 = X•i−1.
Thus every choice ofhi gives us a projective system denoted{π•i : X•i →
X•i−1}. For example, if we takeδi = δ0 independent ofi . Then the balls
D(δ, i) give us an exhaustion of1 (if 1 is connected as we always assume)
and if hi = IdD(δ,i) for all i , the projective limitX• =lim← X•i equals our

original X =lim← X� “viewed from the pointδ0”. (Shifting “the point of

view” and sending it to infinity in all possible ways lead to our “orbit
completion” defined below). Also nothing essentially new happens ifδi

stay in a bounded subset in1 but everything may change ifδi → ∞,
i.e. if dist(δ0, δi ) → ∞ for i → ∞. Here we have a sequence of balls
Di = D(δi , i) ⊂ 1 and of embeddingsDi ↪→ Di+1 given byγ−1

hi+1
. These

define the limit graph1• =lim→ (1, δi , γ
−1
hi+1
) which is essentially the union

∞∪
i=1

Di (see 6.A). Since our holonomy mapshi : XD−i → Xdi−1 for D−i =
D(δi , i−1) are, in fact, isomorphisms of the projective systemsX� andX�′
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for all � ⊂ D−i and�′ = γh(�) ⊂ Di−1 we have not only the sequenceX•i
but the whole projective system{X•�•}�•⊂1• . If the holonomy is rigid, i.e.
completely determined by the metric (or combinatorial) structure in1, then
this {X•�•} emerges as the limit of{X�} when we move our reference point
δi ∈ 1 to infinity. If the original system{X�} is homogeneous, then the
limit {X•�•} is, of course, isomorphic to{X�} and we do not get anything
new. In general,1• is locally isometricto 1, that is every ball in1• is
isometric to some ball in1 (but not, necessarily, vice versa, see 6.A). Yet
the global geometry of1• may be far from that of1 and {X•�•} may be
even further away from{X�}, although{X•�•} is locally isomorphic to{X�}
(compare 6.A).

7.C′. SpacesX◦ and Xt ⊂ X◦. We denote byX◦ = X◦(H) the disjoint
union of the spacesX• =lim← X•i over all holonomic sequences of balls

Di ⊂ 1 and all sequences of holonomieshi : XD−i → XDi−1. This X◦,
called theholonomy completionof {X�} and/or of X =lim← X�, can be

naturally represented as a projective limitX◦ =lim← X◦i where eachX◦i equals

the disjoint union of the spacesXDi labelled by sequences of holonomies

hi : XD−i → XDi−1, hi−1 : XD−i−1
→ XDi−2, . . . ,h2 : XD2− → XD1

and the union is taken over all such sequences. ThisX◦ may be very big
and not convernient to work with. For example, it does not carry, in general,
a natural proalgebraic structure when we start with a projective system of
algebraic varietiesX�. But it may contain subspaces which are “small” and
yet “sufficiently representative”.

Projective systems{Xti }. Suppose, for everyi , we are given a collection
Dti of balls D in 1 of radiusi and denote byXti = XtDti the disjoint union

of the spacesXD over all D ∈ Dti . We assume, for each ballD ∈ Dti ,
there existsD′− ∈ Dti−1 such that the concentric(i − 1)-ball D− ⊂ D is
0(H)-equivalent toD′−. Then for eachD ∈ Di we compose the restriction
map XD → XD− with some holonomyXD− → XD′−, D′− ∈ Dti−1, and
thus obtain a mapXti → Xti−1. All these make a projective system denoted

(πti = Xti → Xti−1)and the projective limitXt =lim← Xti obviously embeds

into X◦.

Example. If X = X0 for a group0, with the holonomy generated by the
natural (shift) action of0 on X, thenX◦ = X×0N . In fact, we have a unique
holonomyh : XD → XD′ for every two ballsD and D′ of equal radii as
D′ = γD for someγ ∈ 0. Thus every sequence of pointsγi ∈ 0 admits
a sequence of holonomies over thei -balls aroundγi andX◦ identifies with
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the disjoint union of the copies ofX indexed by all sequences{γi } ∈ 0N .
But in the case ofX = X0 one can reduceX◦ back toX, exactly because
it consists of disjoint and mutually non-interacting copies ofX. In fact,
one can divideX◦ by the group0N naturally acting onX◦ and arrive at
X = X◦/0N .

Group H◦. In general, every holonomyH gives rise to a huge group, denoted
H◦ and acting onX◦, where everyh◦ ∈ H◦ is, by definition, a function on
the set of all ballsD ⊂ 1 assigning to eachD a holonomy maph between
D and another ballD′ ⊂ 1. Such functionsh(D)make a semigroup for the
natural composition

D −→
h(D)

D′ −→
h′(D′)

D′′

and the invertible elements constitute our groupH◦. Clearly, thisH◦ acts on
holonomic sequences of balls and then it acts on sequences of holonomies
between these balls by conjugation. ThusH◦ acts onX◦ but the quotient
X◦/H◦ may be rather pathological such asC/GalC , for example. So it is
better to deal with the following

“Fundamental domains”. A projective system{Xti } is called a “funda-
mental domain” forH in {X◦i } if for eachi -ball D ⊂ 1 there exists a0(H)-
equivalent ball in the collectionDti associated to this{Xti }. We also express
this property by saying thatXt =lim← Xti is a “fundamental domain” inX.

But such anXt, in general, is not a true fundamental domain forH◦ as the
H◦-orbit of Xt may be smaller than all ofX◦. This is due to the possible
non-uniqueness of a holonomy between balls. In fact, given a holonomic
sequence of balls,D1, . . . , Di , . . . , one may have a priori two sequences
of holonomieshi ,h′i : XD−i → XDi−1, such that there is no holonomies

h◦i = XDi → XDi satisfyingh′i = h◦i hi (h◦i )
−1 for all i . (Of course suchh◦i

exist for i ≤ i0 but there may be a problem withi → ∞). On the other
hand, no difficulty of this kind appears if the holonomyH is rigid (as in the
above case ofX = X0 whereX itself serves as a fundamental domain in
X◦ and where the action ofH◦ on X◦ reduces to that of0N .) Also notice
that in the rigid caseX◦ itself is of the formXt for Di being the collection
of all i -balls in1 for i = 0,1,2, . . . , but it is not so in general.

7.C′′. Cofiniteness and density.A holonomy H is calledcofinite if the
action of the pseudogroup0(H) is cofinite on1 in the sense of 6.C. Simi-
larly, H is calleddenseif 0(H) is dense on1.

If the holonomy is cofinite, then the system{X◦i } admits afundamental
domain{Xti } with finite setsDi for all i = 1, . . . .
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Among theseXt there are minimal ones where eachDi contains exactly
one representative in the0(H)-equivalence class ofi -balls. Sometimes such
a minimal Xt is unique up to an isomorphism (given by someh0 ∈ H◦).
In general, however, given two such domains which are projective limits
lim← XtDi

and lim← XtD′i , all we can claim is an isomorphism of these projective

systems up to a given finite leveli0, but this isomorphism does not always
survive wheni0→∞ as we mentioned earlier.

What is good about these “finite” fundamental domains in any case is
them beingproalgebraicwhen we start with a projective system ofalgebraic
varietiesX�.

In general, every fundamental domainXt in X◦ (regardless of its “finite-
ness”) gives a good view onX◦ from each pointδ ∈ 1. In particular if{X�}
comes with an endomorphismf , then the initial injectivity of f t does not
depend on a particular choice of a fundamental domain(Xt, f t) and, in
fact, is equivalent to the initial injectivity off ◦ for the natural representation
(X◦, f ◦) =lim← (X◦i , f ◦i ) as in 7.C′.

7.D. Holonomy in the proalgebraic category.Let {X�}�⊂1 be a projective
system of algebraic varieties over a fieldK which may harbour additional
structures, such as an endomorphism{ f�} of {X�}. We want to keep track
of all symmetries, i.e. all “isomorphisms” between the projective systems
{X�}�⊂D ↔ {X′�}�′⊂D′ for all balls in D and D′ in 1 of equal radii,
where “isomorphisms” must be compatible with extra structures, e.g. with
endomorphismsf� of X�. The obvious “isomorphisms” to consider are
biregular mappings overK (compatible with{ f�} if this is required) and
holonomies of this kind are calledregular.

For example, if{X�} is a subproduct system, sayX� ⊂ X�, � ⊂ 1,
we may start with the obvious lifts of isometriesγ : D → D′ to regular
mapsh : XD → XD′ whereh identifiesthe X-components inXD and in

XD′ according toγ . Then we select thoseγ for which h sendsX� to X�′
for all � ⊂ D and�′ = γ�, and commutes with allf�.

The above holonomy can be enlarged by adding extra (non-identities)
regular maps betweenX = Xδ and X = X′δ, which can lead to a non-
rigid regular holonomy. Yet the rigidity can sometimes be recaptured by
incorporating the holonomy groups intoX�’s (see 7.0).

Galois holonomy.We want to eventually relax the notion of`-equivalent
points δ and δ′ in 1 replacing the (essential) equality of our projective
systems over ballsD = D(δ, `) and D′ = D(δ′, `) by their elementary
equivalenceor, for K = C, by theGalois equivalence. For example two



Endomorphisms of symbolic algebraic varieties 167

cubic polynomialsp = x2 + y3+ ay+ b and p′ = x2 + y3+ a′y+ b′ on
C2 arenot biregular equivalent forgenerica′ 6= a andb′ 6= b. Yet there is
an automorphism ofC sending(a,b) to (a′,b′), if a′ andb′ as well asa and
b are algebraically independent. Thusp and p′ are Galois equivalent.

The Galois equivalence overC (or over any algebraically closed field for
this matter) adequately represents thesyntactic (elementary) equivalenceof
the corresponding algebra-geometric objects expressed in the first order
language of the field theory. This equivalence between two objects means,
that everything we may say in this language which is true for the first object
is also true for the second one.

Definitions of Galois holonomyHGal. Let{X�}�⊂1 be a projective system
of K -points of algebraic varietiesX� over K with a system of endomor-
phism f� : X� → X�− for all finite � ⊂ 1 and some (possibly empty)
�− = �−(�) ⊂ 1. Then the absolute Galois group GalK = Aut K acts on
{X�}. A Galois holonomy mapover a pair of ballsD andD′ in1 is given by
the following data : a center preserving isometryγ : D→ D′ and a bireg-
ular equivalence of the projective systems{X�}�⊂1 to {gX�′ }�′=γ�⊂D′ for
someg ∈ GalK , where the biregular equivalence is supposed to preserve
all extra structures, such asf� if these are present in the picture.

Accordingly, δ1 andδ2 in 1 are calledGalois `-equivalent, if there is
a Galois holonomy map overD(δ1, `) andD(δ2, `).

If K is algebraically closed, then “Galois`-equivalence” can be renamed
into “elementarỳ -equivalence”, but we stick to the former even though we
are primerly interested inK = C. Accordingly we use the notationHGal for
the (maximal) holonomy consisting ofall biregular maps composed with
all Galois automorphisms of the fieldK(= C).
7.E. Local and global stability. A projective system{X�}�⊂1 is called
(globally) `-stable (compare the image stability in 5.I) if for every triple of
finite subsets�0 ⊂ �1 ⊂ �2 in1 the image of the projectionπ2,0 : X�2 →
X�0 equals the image ofπ1,0 : X�1 → X�0, provided�1 contains the
`-neighbourhood of�0. In particular the 0-stability amounts to surjectivity
of the projections (or restrictions)X� → X�0 for all finite � ⊂ 1 and
�0 ⊂ � ⊂ 1. In other words everyx0 ∈ X�0 can be extended to� ⊃ �0.
Similarly, the`-stability for ` > 0 says, in effect, that everyx0 ∈ X�0 can
be extended from thè-interior�−`0 of�0 to every� ⊃ �0, i.e. there exists
x ∈ X� such thatx|�−`0 = x0|�−`0 . Here , a priori, we allow only finite
subsets�, but by repeating the process we can extendx0 from �−`0 to all
of 1, i.e. to constructx ∈ X =lim← X� with the projection toX�−`O

equal to

x0|�−`0 .
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Terminology : “stable and `-stable”. When we say “stable” we mean
“there exists̀ , such that{X�} is `-“stable” and similarly we understand
other forms of stability considered in the following sections.

Stability and mixing. Our stability is similar to the uniform mixing prop-
erty (see [Ru-We]) for topological dynamical systems, such as subshifts in
X = X0 for a group0with the natural (shift) action onX. In fact our notion
of stability (as well as its variations displayed below) extend to a more
general framework of foliated spacesX, (where the leaves in our present
case come with structures of graphs1• locally isomorphic to a given1).

7.E′. Localization of stability. We say that a projective system isL-locally
`-stableif the above extension ofx0 ∈ X�0 from�−`0 to� ⊃ �0 is possible
for all � ⊂ 1 with diam� ≤ L and all�0 ⊂ �. It is obvious that

if a system{X�}of propagation≤ `0 is L-locally0-stable forL ≥ 4`0+2
then it is (globally)̀ -stable.

In fact, we can extendx0 from �0 ∩ B1 to x′1 on B1 for every B1 with
diamB1 ≤ L, and then definex1 on�1 = �0 ∪ B−2`0

1 by the conditions
x1|�0 = x0 and x1|B−2`

1 = x′1|B−2`
1 . The `0- propagation bound ensures

this x1 is indeed contained inX�1 and the inequalityL ≥ 4`0+ 1 allows us
to chooseB1 such that�1 is strictly greater than�0. For example, one could
take the ballD(δ1, L/2) for B1 with δ outside�0 and then the resulting
�1 = �0 ∪ D(δ, L/2− 2`0) containsδ1.

B1

B1
−2l0

Ω0

Fig. 3.

Then we can addB2 to getting�2 ⊃6= �1 and so on until we reach

a desired� ⊃ �0.

Now let us extend this argument tò> 0. Here we have an extra
complication as we have to replace�0 by its `-interior at every stage of
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the extension and so as we go from�0 to � adding B1, B2, . . . , Bk we
reduce�0 to�−k`

0 with k depending on (the size of)� ⊃ �0. Notice, that
this problem would be less severe if the subsetsBj , j = 1, . . . , k, were
disjoint and far from each other, farther than 2`0. In this case we could make
our extension independently around eachBj thus reducing�0 only to�−`0 .
More generally, if we could obtain all of1 and thus each� ⊃ �0 by adding
subsets10, . . . ,1N to�0 where each1i is a union of disjointBi j which
are mutually far from each other, we would get an extension from�

−(N+1)`
0

to�. So we invoke the idea of asymptotic dimension (see 6.F) and arrive at
the following

7.E′′. Localization of`-stability. Let1have sublinear growth of the asymp-
totic dimension, i.e. dim(1|λ)/λ→ 0 for λ → ∞. Then for everỳ 0 and
` there existL and L+ = `+(L, `,1) , such that everyL-locally `-stable
projective system of propagation≤ `0 is (globally)`+-stable.

In fact, the assumption on dim(1|λ) gives us subsets10, . . . ,1N, such
that their 2(`0+ `)(N+1)-interiors cover1 and such that each1i consists
of far away Bi j ’s where “far away” means dist≥ 2`0. Then the above
argument works and delivers̀+ = `(N + 1).

Density of periodic points.Suppose we have a sequence of graphs1r , r =
1,2, . . . ,with projective systems{Xr

�}�⊂1r which arer -locally isomorphic
to{X�}�⊂1 and such that the original system on ther -ball Dr =D(δ0, r)⊂1
is identified withXr on some ballDr

r = D(δr , r) ⊂ 1r .

Example. Consider a group0r acting on1 and on {X�}, such that
dist1(δ, γδ) ≥ 2r for all δ ∈ 1 andγ 6= id in 0r . Then one could take
1r = 1/0r with the (naturally defined) quotient systemXr over1r sat-
isfying the above conditions. Then the spaceXr = lim← Xr

�, � ⊂ 1r ,

can be identified with the space of0r -invariant (or0r -periodic) points in
X = lim← X�, � ⊂ 1.

In general, pointsx ∈ Xr , called1r -points in X, can be viewed as
periodic points inX, although there is no embeddingXr ⊂ X. Yet, the
spaceXr

Dr
r

identifies with Xr
Dr

and so it makes sense to ask whether (the
union of all)1r -points aredensein X, where we view bothX andXDr

r
as

subsets in the metric spaceX+ defined in 5.I. Thus the density of1r -points
means that eachx ∈ X restricted toDr can be extended fromr0-interior of
Dr

r = Dr to all of1r wherer0→ 0 with r →∞.

Clearly, the`-stability of the systems{Xr
�} for some` independent of

r is sufficient for this density but thè-stability of {X�} on 1 does not,
a priori, suffice. However, the above localization argument shows that if
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dimloc(1|λ) hassublinear growth then1r -points are dense inX, provided
the original system{X�} over1 is stable.

There is one simple case where the assumption on dimloc is unneeded.
One can assume instead that ourX admits anabsolutely invariantelement
x0 ∈ X which passes toXr

0 ⊂ Xr over all1r . For example, if we deal
with 1r = 1/0r this must be anx ∈ X fixed by all groups0r . Then the
`-stability of X� on the ballDr ⊂ 1 identified with Dr

r ⊂ 1r allows an
extension of eachx from the ballDr

r−` to1r by making itx0 outsideDr
r .

7.E′′′. Strong`-stability. Let us introduce another version of the`-stability
allowing localization witout extra assumptions on1.

Definition. A projective system is calledstrongly`-stableif the following
condition (loc) is sufficient for extendability ofx0 from�0 to� for all finite
subset�0 and� ⊃ �0 in 1.

(loc). For everyδ ∈ �0 the restrictionx0|�0 ∩ D(δ, `) is extendableto
D(δ, `).

Clearly, this strong̀ -stability implies thè -stability.

Strong localization lemma.If a system isL-locally strongly`-stable for
L ≥ 2`+ 1 then it is stronglỳ -stable.

In fact, this follows by the same (trivial) argument we used to localize
the 0-stability.

Corollary. Strong stability implies density of (“periodic”)1r -points in the
context of the previous section.

Remark. Stability is a rather transparent property if the underlying graph is
a tree, e.g. the Cayley graph of a free group,Z for instance. In fact stability
for free groups is essentially equivalent tothe topological mixing property
which is satisfied by “generic” subproduct systems (compare [Ru-We] and
see [Gro]TIDS for further discussion). But the picture is not so clear for
general graphs (and groups) where exhibiting meaningful stable systems
is not totally trivial even for (Cayley graphs of) groups likeZn, n ≥ 2
(compare [Gro]TIDS).

7.F. Vertical irreducibility. Our preoccupation with the localization of
stability was motivated by necessity of expressing this property in the first
order language where we can apply the extended Lefschetz principle re-
ducing algebra geometric problems overC to those overF p. Then we need
a further reduction, tofinite subfieldsFpν ⊂ Fp, and this is achieved with
the following
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Definition. A projective system (ofK -points) of algebraic varieties,
{X�}�⊂1, over a fieldK is called̀ -vertically irreducibleif the fibers (i.e. the
pull-backs of the points) of the projection (restriction) mapX�+` → X� are
irreducible for all� ⊂ 1 (where, recall�+` stands for thè-neighbourhood
of �).

We shall see that this property overFp combines with a suitably localized
`-stability and yields̀ -stability onFpν-points of our projective system by
the Weil-Lang theorem (see 5.J and 7.K′′).

7.G. Surjunctivity theorem for quasi-homogeneous endomorphisms
over amenable graphs.Let1 be a countable connected graph and{ f� :
X� → X�−}�⊂1 be a projective system ofC-varieties and regular maps.
We make the following assumptions on our objects.

I. Bounded propagation.{X�} is a subproduct system of bounded propa-
gation and the system of maps{ f�} has also bounded propagation.

This means that everything is detectable by looking at our objects re-
stricted to the balls in1 of a fixed (possibly large) radius̀0 . Thus our
“transcendental” mapf : X → X is determined by1 and the count-
able collection of elementary objects that are finite projective systems
{ f� : X�→ X�−}�⊂D(δ,`0) for all δ ∈ 1.

II. Density of the Galois holonomyHGal on1. This means, that for every
` = 1,2 . . . , every non-empty Galois̀-equivalence class in1 is a net in1
in the sense of 6.D.

In other words every algebraic̀-propertyof { f�} observed at some point
δ0 ∈ 1, i.e. a property of{ f�}�⊂D(δ,`0), will recur in the vicinity of each
point δ ∈ 1.

III −. Cofiniteness of Galois holonomyHGal. This requires that for each
` there are at most finitely many mutually Galois (i.e. elementary) non-`-
equivalent pointsδ ∈ 1.

So, eventually,f is determined by afinitecollection of projective systems
{ f�} over balls D(δi , `), i = 1, . . . , N, representing all̀ -equivalence
classes. But unfortunately we do not know how to handle the “Galois
ambiguity” lurking behind the definition of this̀-equivalence and so we
shall need a stronger cofiniteness condition stated in III below.

III. Rigid cofiniteness of H on1. This requires the existence of a regular
rigid holonomyH on { f� : X�→ X�} which is cofinite.

If we have a rigid cofiniteH, then the projective system over all of1 can
becanonicallyreconstructed from its restriction to some largeL-ball D⊂1,
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where the restricted{ f�}�⊂D is augmented byH restricted to the pairs of
`-balls D(`) andD′(`) in D = D(L) (which are not necessarily concentric
to D(L)). Now we can truly claim that our transcendentalf : X → X is
given by an (elementary) algebraic object, that is( f, H)|D. This is important
in our modulop reduction argument which applies only to the properties of
algebraicobjects expressible in the elementary language of the field theory.
(Notice that the elementary property off |D which we prove, some kind of
“initial surjunctivity”, is obtained with an appeal to the transcendentalf .
Thus one can think of our approach in two complementary ways. On one
hand, we establish some (surjunctivity) property of atranscendentalobject,
our f , by applying theelementarytheory of fields to the algebraic objects
(i.e. f, H|D). On the other hand, we derive someelementary algebraic
propertyof f |D by transcendental means(which are not so transcendental
after all as they reduce to counting points in a finite projective system
over larger domains� ⊃ D in 1, where we extend our system using the
holonomyH on D).

IV. Stability. This means̀ -stability for somè ≥ 0 (which can be set equal
to the propagatioǹ0 of our system).

V. Vertical irreducibility. Here “vertical” reads “̀-vertical for somè ≥ 0”.

Notice that this condition fails to be true for product projective systems
such as{X�} = {X�} whereX is a reducible algebraic variety and where
our surjunctivity theorem (stated below) holds with no problem. One could
somewhat artificially bring the two cases together by allowing{X� = X′�×
X�} for some vertically irreducible system{X′�} and arbitrary (possibly
reducible)X. In fact it is not hard to formulate a comprehensive condition
of “controlled vertical reducibility” sufficient for our theorem, but we leave
this to the pleasure of the reader.

VI. Amenablility. We require thatthe graph1 is initially uniformly sub-
amenable with respect to the pseudogroup0 = 0(H) associated to our rigid
holonomyH.

Recall (see 6.E) that uniform amenability on1 (which refers to no0)
suffices for this. Also observe that the uniformity is not needed for the
essential part of our reasoning.

Now we return to the Galois holonomyHGal that is the set ofall Galois
holonomy mapsXD → XD′ and let (X◦, f ◦) denote the corresponding
holonomy completion ofX. Recall, that(X◦, f ◦) appears as the disjoint
union of projective systems of the form{X•�•, f�•}�•⊂1• where1• is some
limit of marked graphs(1, δi ) for δi → ∞ and the system{X•�•, f�•} is
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a limit (essentially, a prodiscrete limit, where “convergence” means “sta-
bilization”, compare 4.C) of(X�, f�) marked by pointsδi ∈ 1 going to
infinity.

7.G′. Surjunctivity Theorem. Let a projective system of complex algebraic
varietiesX� and regular mapsf� : X�→ X�− over a graph1 satisfy the
above conditions I-VI, that are

I. Bounded propagation of{X�} and{ f�}.
II. Density of the Galois holonomy on1.
III. Cofiniteness of a regular rigid holonomyH on1.
IV. Stability of{X�}.
V. Vertical irreducibility.
VI. Uniform initial subamenability of1.

Then the mapf ◦ :X◦ → X◦ is surjunctive for(X◦, f ◦)=(X◦, f ◦)(HGal),
i.e.

f ◦is injective⇒ f ◦ is surjective. (o)

Furthermore, the mapsf t : Xt → Xt are also surjunctive for all funda-
mental domainsXt for HGal in X◦ (where, observef t = f ◦|Xt),

f t is injective⇒ f t is surjective. (t)
About the proof. We shall (essentially) reduce (o) and (t) to a similar
property of projective systems offinitesets by applying a reduction modulo
p argument to a suitable fundamental domainXt ⊂ X◦. This reduction
goes in three steps.

(1) Translation of (o) and (t) into the first order language of the field theory.
(2) Invoking the extended Lefschetz principle and thus reducing theC-

problem to the correspondingFp-problems for all primesp.
(3) Passing fromFp to finite subfieldsFpν ⊂ Fp.

The step (1) is performed in 7.H-J′′′ where the key role is played by I
(i.e. bounded propagation) and III− (Galois cofiniteness which is weaker
than III). These conditions say, in effect, that our projective system is deter-
mined by finite (local in1) data and the combinatorics of1. One also uses
`-stability at this stage, but this is a rather technical matter.

The full strength of III, i.e. confiniteness of a rigidregular holonomy
is needed at the next stage when we apply the Lefschetz principle. One
seems to need here regular rather than Galois holonomy as the latter does
not belong to the first order language of the field theory.

The condition V, i.e. the vertical irreducibility, is used at the step (3)
where it ensures (by the Lang-Weil theorem) a suitable stability of the
projective system ofFpν -varieties.
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Notice that neither II (Galois density) nor VI (amenability) has been
used so far. The initial amenability is used to prove surjunctivity of certain
endomorphisms of projective system of finite sets (that areFpν -points of
our varieties) by a counting argument (with some kind ofentropylurking
behind the scene) where a suitably adjusted II makes this counting work in
the desired way. Actually one could drop II altogether with the following
weakening of the conclusion.

7.G′′. If f ◦ is injective, then there exists a (limit) projective system{X•�•,
f�•}�•⊂1• locally isomorphic to the original one, where the mapf • =
lim← f •�• is surjective. This can be written as

f ◦ is injective⇒ somef • is surjective. (o→ •)
(Here “locally” means ”r -locally for all r = 1,2, . . . ,”).

Finally, we confess that our proof of 7.G′ and 7.G′′ do not use the
reduction modulop all way, as we make a shortcut at some moment which
limits our considerations to projective systems over some auxiliaryfinite
graph1′′ rather than the original (infinite)1 (see 7.L). On the other hand
such a full reduction is considerd for its own sake in 7.N with some extra
assumptions on{X�}.

Why f ◦ and f t? It would be more pleasant to prove the surjunctivity
for f itself rather than forf ◦ and/or f t. The technical reason of bringing
in these maps is the need for1-uniform injectivityof f as is explained in
the next section. (Probably, there are some examples wheref itself is not
surjunctive under our assumptions but these must be rather exceptional).

7.H. 1-uniform injectivity. Every exhaustion{�i } of 1 representsX as
the projective limit of a sequence, namely ofXi = X�i and every such
representation defines our prodiscrete metric|x− x′| on X (see 4.C). Now,
for eachδ ∈ 1 we exhaust1 by i -balls�i = D(δ, i) ⊂ 1 and denote by
|x− x′|δ the resulting metric inX.

If we think of x ∈ X as (Xδ-valued) functions on1, then the metric
|x − x′|δ reflects our perception of (pairs of) functions viewed from the
point δ. We clearly see any distinction betweenx andx′ at the pointsδ in
1 nearδ, but asδ• goes further away fromδ the functionsx andx′ come
closer eventually merging in our eyes for dist(δ•, δ)→∞. (Recall, that the
inequality|x − x′|δ ≤ 2−i is equivalent tox|D(δ, i) = x′|D(δ, i))).

Observe, that every two metrics|x− x′|δ1 and|x− x′|δ2 are bi-Lipschitz
equivalent. In fact, the ratio between the two is (obviously) bounded by
2dist(δ1,δ2). Thus every finite set of these metrics is as good as any single
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one. But the totality of these metrics forδ ranging over all of1 carries
more topological information than our individual metrics|x− x′|δ. We are
especially concerned withuniform injectivity of our maps f : X → X
distinguished according to the following quite general

Definition. Consider a spaceX with a family of metrics denoted|x−x′|δ,
δ ∈ 1, and call a selfmappingf of X 1-uniformly injectivewith respect
to this family if for everyε > 0 there existsε′ = ε′(ε) > 0, such that
|x− x′|δ ≥ ε⇒ | f(x)− f(y)|δ ≥ ε′ for all δ ∈ 1 (compare 4.F).

Lemma. If the system{X�, f�} ofC-varieties and regular maps is Galois
cofinite(see III− in 7.G) then injectivity off ◦ implies1-uniform injectivity
of f as well as1-uniform injectivity of everyf • : X• → X•.

Proof. Let us choose a particular fundamental domainXt for HGal with
finte sets of ballsDti , such that

(a) if a ballD = D(δ, i) has dist(δ, δ0) ≤ i+1 for a fixed point (marking)
δ0 ∈ 1 , then it is contained inDti .

(b) The ball D′− we take with the aboveD (see 7.C′ for notations) is
D− = D(δ, i − 1) and the holonomyXD− → XD− must be the identity.
Thus the (vertical) arrows in the projective system{Xti } become eventually
the old restriction maps for the inclusion between concentric balls of large
radii.

Since the setsDi are finite, the spacesXti , being finite unions of algebraic
varieties, are also algebraic and the projectionsXti → Xti−1 are composi-
tions of regular maps with Galois automorphisms. Thus the injectivity of the
map f t = lim f ti (which is a “part” of f ◦) implies its uniform injectivity
for the prodiscrete metric attached to this projective system{Xti }. On the
other hand, the1-uniform injectivity of { f� : X� → X�−} is equivalent,
essentially by definition, to uniform injectivity of yet another system, de-
noted{X∗i , f ∗i }, whereX∗i equals the disjoint union ofXDi over all i -balls
D ⊂ 1 with the projectionsX∗i → X∗i−1 corresponding to the restriction
to the concentric balls and withf ∗i being made offDi in the obvious way.
Thus X∗ =lim← X∗i equals the disjoint union of copies ofX marked by the

pointsδ ∈ 1 and so thisX∗ maps intoXt with this map being isometric
on each copy ofX in X∗ and with f ∗ going to f t. This is possible due to
our choice ofXt (motivated by a possibility to have such a map). It easily
follows that the uniform injectivity off t implies this property off ∗ and
consequently the1-uniform injectivity of f . Q.E.D.

Now we introduce a “mixed” surjunctivity property off via the follow-
ing implication

f is1-uniformly injective⇒ f ◦ is surjective. (?)o
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The above lemma obviously leads to the following

Corollary . The implication(?)o yields the(o)-part of the surjunctivity
theorem

(?)o⇒ (o).

(And (t)of that theorem also follows from(?)o for stableprojective systems
over1 as we shall see below).

Notice that surjectivity off ◦ amounts to the surjectivity of allf • “locally
isomorphic” to f . In particular,(?)◦ tells us that

1-uniform injectivity of f ⇒ surjectivity of f (?)−

and we shall see later on that(?−)⇒ (?) as well as(?)− ⇒ (t) for stable
systems{X�}. This reduces our surjunctivity theorem to proving(?)− under
the assumptions I-VI.

7.H′. Remarks on1-uniform continuity etc. If we reverse the inequalities
in the definition of the1-uniform injectivity we arrive at the notion of a1-
uniformly continuous map, such that

|x− x′|δ ≤ ε⇒ | f(x)− f(x′)|δ ≤ ε′

for someε′ = ε′(ε) independent ofδ, all δ ∈ 1 and allx, x′ in X. Similarly
one defines1-uniform Lipschitzproperty for f

| f(x)− f(x′)|δ ≤ C|x− x′|δ
for a constantC independent ofδ ∈ 1 and allδ ∈ 1.

Observe, that iff =lim← f�, where the system of maps{ f�} over a graph

1 has propagation bounded by`, then f is 1-uniformly Lipschitz with
C = 2`.

It is also clear that the converse is true for maps between product spaces
X = ×

δ∈1
Xδ andY = ×

δ∈1
Yδ . Namely

1-Lipschitz for f ⇒ bounded propagation for{ f�}.
Finally observe that one can reconstruct the graph structure on1 by looking
at the metrics|x− x′|δ. Namely,δ0 andδ1 are joined by an edge, if and only
if the corresponding metrics are 2-Lipschitz equivalent

1
2|x− x′|δ0 ≤ |x− x′|δ1 ≤ 2|x− x′|δ0.

If one replaces “2-Lipschitz” by “C-Lipschitz” with someC ≥ 2 one gets
another graph, say1C where edges correspond to paths of length≤ log2 C
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in 1. This1C is quite similar to1 (it is quasiisometricto it) and so the
choice of (large !)C is not so essential. (This suggests a similar construction
of a graph structure on an arbitrary set1 of metrics on a spaceX).

7.I. Uniform initial injectivity and the proof of the implications (?)− ⇒
(?)o, (?)o⇒ (t) and(?)⇒ (o)+ (t). We say that a projective system of
maps{ f� : X� → Y�−}�⊂1 is (i0, i+)-injectiveat δ ∈ 1, where 0≤ i0 ≤
i+ if the map fD+ : XD+ → YD−+ , over the ballD+ = D(δ, i+), (where,

recall D−+ = D(δ, i+ − `0)) does not identify points inXD+ with non-equal
projections toXD(δ,i0). That is

x|D(δ, i0) 6= x′|D(δ, i0)⇒ fD−+(x) 6= fD−+(x
′)

for all x andx′ in fD+.

We say that our system{ f�} isuniformly initially injective on1 if ∀i0∃i+
s.t. it is(i0, i+)-injective at allδ ∈ 1.

Remark. If {X�} is asubproductsystem then the uniform(0, i+)-injectivity
obviously implies(i0, i0+ i+)-injectivity and so there is no need to look at
i0 > 0.

(a) Lemma.If a system{ f }� over a graph1 is uniformly initially injective,
then the system{ f ◦} (and thus every system{ f ti }) is initially injective in the
sense of 5.L. Conversely, if{ f ti } is initially injective for some fundamental
domain{ f ti } in {X◦i }, then the system{ f�} is uniformly initially injective
on1.

This is obvious and true for all projective systems over graphs, just
unwind the definitions.

Uniform image stability and the `-stability. A projective system{X�}�⊂1
is called(i0, i0 + `)-stableat δ ∈ 1 if the image of the restriction map
(projection) XDk → XD0 for Dk = D(δ, i0 + k) and D0 = D(δ, i0) does
not depend onk for k ≥ `. This stability on 1 means stability at evry
δ ∈ 1 anduniform image stabilitysignifies that∀i0∃`, s.t. the system is
(i0, i0+ `)-stable on1.

It is immediate that for each̀= 0,1, . . .

`-stability⇒ uniform image stability,

since thè -stability (defined in 7.E) says that for all finite subsets�0 ⊂ 1
and all� containing thè -neighbourhood�+`0 ⊃ �0, the image of the
restriction mapX�→ X�0 does not depend on�.
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On the other hand the uniform image stability perfectly matches the
notion of the image stability from 5.I according to the following

(b) Obvious lemma. If a projective system{X�}�⊂1 is uniformly image
stable then all systems{Xti } as well as{X0

i } are image stable. Conversely, if
some fundamental domain{Xt} is image stable, then{X�} is1-uniformly
image stable.

Now we recall that endomorphismsf of image stableprojective systems
(obviously) satisfy (compare 5.L)

f is uniformly injective⇔ f is initially injective (+)
andproregular maps overC satisfy (see 5.L)

injectivity⇒ initial injectivity. (∗)
In fact, we want to apply the latter implication to a projective system
{ f ti = Xti → Xti } whereXti are constructed for the holonomyHGal with
finite collections of ballsDti for all i . Here everyXti is a finite union
of algebraic varietiesXD, D ∈ Dti , and so it is an algebraicC-variety
itself. Yet our projectionsπti : Xti → Xti−1 are notC-regular maps as
they are composed with Galois automorphisms applied to the components
XD of Xti . However (∗) still holds true (see 4.F′′) since our projections,
albeit contaminated by Galois automorphisms, still preserve constructible
subset under direct and inverse images. (Alternatively, one could “unwind”
the Galois part inπti , i.e. to construct a truly proalgebraic system, say
{ f̃ ti : X̃ti → X̃ti } that is equivalant to{ f ti : Xti → Xti } by bijective
(Galois) mapsXti ↔ X̃ti commuting with fi ’s.) Thus forfiniteDti we have

injectivity of f t ⇒ uniform injectivity of f t.

(c) Conclusion. Let {X�, f�}�⊂1 be a stable projective system ofC-
varieties with cofinite Galois holonomy. Then injectivity off t on some
“fundamental domain”Xt ⊂ X◦ for HGal implies uniform initial injectivity
of { f�} on1,

injectivity of f t ⇒ uniform initial injectivity of{ f�}.

Proof. We can assume, taking a smaller “subdomain” inXt if necessary,
that Xt is made out ofXti with finite Dti and so the above implications
work. Then we conclude with (+) thatf t is initially injective and applying
(a) we arrive at the uniform initial injectivity of{ f�} on1. Q.E.D.

Remark. Observe that the reverse implications are obvious,

uniform initial injectivity of{ f�}on1⇒ uniform injectivity of f
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and

uniform initial injectivity of { f�} on 1 ⇒ uniform injectivity of f ◦ and
all f t.

for an arbitrary holonomyH on {X�, f�}.
Now let us modify our implication(?)− to the following one, denoted

(?) in sequel.

uniform initial injectivity of{ f�}on1⇒ surjectivity of f = lim← f�. (?)

We shall prove(?) in the remaining part of §7 forall projective systems
of C- varieties satisfying the assumptions I-VI of the surjunctivity theorem.
Here we only observe that(?) in this generality yields the surjunctivity
theorem,

(?)⇒ (o)+ (t).
In fact, if the system{ f�} is uniformly initially injective then so are also
all (limit) systems{ f •�•}�•⊂1• which are locally isomorphic to{ f�} . It is
equally clear that the assumptions I-VI, due to their locality and uniformity,
also pass from{ f�} to all { f •�•} and so(?) for all systems satisfying I-VI
yields(?•), i.e. the following implication follows from(?),

uniform initial injectivity of{ f�}on1⇒ surjectivity of all f • (?•).

Then, obviously

surjectivity of all f • ⇒ surjectivity of f ◦ ⇒ surjectivity of all f t,

while (c) reduces the left hand side of(?) to that of(t). Q.E.D.

Finally, we observe that this argument also shows that(?)− → (?)◦
and (?)◦ ⇒ (t), but we do not care about this anymore as we now deal
exclusively with(?).

7.J. Initialization and localization of (?). We want to reduce(?) to a prop-
erty of the projective system{ f� : X�→ X�−}�⊂1 expressible in the first
order language of the field theory and we start by adjusting the notion of
initial surjectivity from 5.I to1. We say that the system{ f�}�⊂1 is (i, i+k)-
surjectiveat δ ∈ 1 if the image fD(XD) ⊂ XD−`0 contains the image of
the restriction map (projection)XD+k → XD−`◦ , whereD denotes the ball
D(δ, i) in 1, andD−`◦ = D(δ, i − `0), D+k = D(δ, i + k) and wherè 0

is the propagation of{ f�}. Then we introduce the following “initialization”
of (?) denoted(?)i = (?)i (δ0, i+, k1)

(0, i+)-injectivity of{ f�}on1⇒ (i, i + k1)-surjectivity atδ0. (?)i
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7.J′. Lemma. Let δ0 ∈ 1 be an arbitrary point,i+ = 1,2 . . . , a number
andk1 = k1(i) be an arbitrary function. Then the implications(?)i for all
i = 1,2 . . . , yield (?). In fact one only needs(?)i for i ≥ j0, i.e.

∞∧
i= j0

(?)i ⇒ (?)

for everyi+ = 1,2 . . . .

Proof. Uniform initial injectivity amounts to(0, i+)-injectivity for somei+
while surjectivity follows from(i, k1(i))-surjectivity valid for all largei by
(?′) in 5.I. : Q.E.D.

7.J′′. Restricting (?)i to a ball. Take theR-ball DR = D(δ0, R) ⊂ 1, let
D−R = D(δ0, R− `0− i+) and consider the following implication, denoted
(?)i (R) = (?)i (R; δ0, i+, k1 = k1(i)),

(0, i+)-injectivity of{ f�}on D−R⇒ (i, i + k1)-surjectivity atδ0 (?)i (R)

where we assume that

R≥ R1(i) = i + k1(i)+ `0+ i+. (∗)
It is obvious that

(?)i (R)⇒ (?)i

for everyi , and everyR satisfying(∗).
Next we modify(?)i (R) by replacing “(i, i + k1)-surjectivity atδ0” by

“(i, i + k1)-surjectivity on the ballD(δ1, ρ) ⊂ DR for someδ1 ∈ DR−2ρ =
D(δ0, R−2δ) where “on the ball” means “at all point in this ball”. We write
the resulting implication as

(0, i+)-injectivity onD−R⇒ (i, i + k1)-surjectivity on someD(δ1, ρ).

(?)i (R, ρ)

7.J′′′. Lemma. For eachi = 1,2 . . . , there existsρ0 = ρ0(i), such that for
everyρ > ρ0 and everyR ≥ 2ρ + i + k1(i) + `0 + i+, the implication
(?)i (R, ρ) yields?i (R),

(?)i (R, ρ)⇒ ?i (R).

Proof. If the system{ f�} is not (i, i + k1)-surjective atδ0, then each ball
of radiusρ ≥ ρ0(i) in 1 contains a pointδ where{ f�} is not (i, i + k1)-
surjective. This follows from the density of the Galois holonomy (see II
in 7.G) since the(i, i + k0)-surjectivity is (obviously) a Galois invariant
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property (actually it is invariant under arbitrary automorphisms of{ f�} but
it seems silly to go beyond Galois when we deal with algebraic varieties).

7.K. Reduction(?)i (R, ρ)modulo p. Observe that the implication?i (R, ρ)
is a sentence in the first order language of the field theory or at least it
becomes such a sentence if we limit the degrees of all varietiesX�, � ∈ DR,
and mapsf�. Since our system has propagation≤ `0 it is sufficient to bound
the degrees of allX� and f� for diam� ≤ 10̀ 0. We denote such a bound by
d0 (which also incorporate the dimensions of the fibersXδ for all δ ∈ DR).
Also, we have to bound the degrees of the holonomy mapsXD → XD′.
Since we deal with rigid holonomies, these maps are determined by their
constituentsXδ→ Xδ′ for all δ ∈ D and so we only have to bound degrees
of the latter maps which we do withd0 again. So we define?i (R, ρ,d0)as the
above implication?i (R, ρ) limited to systems{X�, f�} where the degrees
of X�, f� andH are bounded in the above(`0-local) sense. This restricted
?i (R, ρ,d0) = ?i (i+, k1, R, ρ,d0) is a bona fide first order sentence in the
elementary field theory. We want to establish this?i (R, ρ,d0) for large R
under the following assumptions.

I R. The propagation of{X�} and { f�} on DR are bounded by`0. This
means, for our subproduct system{X�}, that x ∈ X� for a given
� ⊂ DR−`0, iff the restriction ofx to � ∩ D(δ, `0) is contained in
X�∩D(δ,`0) for all δ ∈ �. And similarly, the value off(x) at each
δ ∈ DR−`0 is determined by the values ofx on the`0-ball aroundδ.

II R. No assumption onHGal.
III R. Holonomy on DR corellated with 0. We consider some pseudo-

group of isometries acting on1, denote it0 (where, eventually,0 =
0(H) for our regular holonomyH) and we assume that the system
{X�, f�}�⊂DR admits a rigid holonomyHR with 0(HR) = 0|DR.

IVR. Stability. We assume our system{X�}�⊂DR to be`-stable for some
` which, to save notation, we set equal to the propagation`0.

VR. Vertical irreducibility. This means̀ -vertical irreducibility onDR

with ` = `0.

Now the time came to introduce the following

Technical definition. Say that a graph1with a distinguished pseudogroup
of isometries0 is locally surjunctive over afamily of fields{K} if ∀`0, i+, i,
d0 ∃k1∀ρ ∃R1 s.t. for ∀R > R1 the assumptionsI R, III R, IVR and VR on
a projective system ofK -points of K -varieties over an arbitraryR-ball in
1 yield the implication?i (R, ρ,d0) = ?i (i+, k1, `0, ρ, R,d0) for all fields
K ∈ {K}.

Notice that̀ 0 enters into the conditionsI R, IVR andVR. We also agree
that “irreducibility” always means “irreducibility over the algebraic closure
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of the field K in question. Also, it must be understood that the(`0-local)
degrees of our projective system and of the holonomy are bounded byd0 in
the above sense.

Now we use the extended Lefschetz principle and reduce?i (R, ρ,d0)

modulo p as follows.

7.K′. If a graph1 of bounded valency is locally surjunctive over a family
{Fp} with infinitely many primesp, then it is locally surjunctive over every
algebraically closed field of characteristic0, in particular, overC.

We express this schematically by

?i (R, ρ)/{Fp} ⇒ ?i (R, ρ)/C (p⇒ C)

Next, we want to go fromFp to finite fieldsFpν and we do it with the
following

7.K′′. Lemma. If 1 is locally surjunctive over a family of finite fields{Fpν}
where everyp which appears in this family comes along with arbitrary
large exponentsν, (i.e. ifFpν0 ∈ {Fpν} then alsoFpνi ∈ {Fpν} with arbitrary
largeνi ), then1 is also locally surjunctive over{Fp}.

Proof. SinceFp =∪
i
Fpνi for νi → ∞ everything is trivial except for the

(strong)`-stability. The problem is that a projective system defined over
Fpν0 may be`-stable on the corresponding system of theFp-points but not
on Fpν-points for any (finite)ν > ν0. Consequently a morphism may be
(i, i + k)-surjective on theFp-points without being such onFpν -points. But
our vertical irreducibility condition, which says, in effect, thatFp-varieties,
which are fibers of projections (restriction maps) in our projective system,
are absolutely irreducible and hence, must be non empty overFpν when
they are non emptyFp by the Lang-Weil theorem. A word of caution is
needed here. The Lang-Weil theorem, which claims that every absolutely
irreducible varietyV over Fpν has aFpν-point needs this variety to be
projective. We do not assume our varietiesV are projective, but we allow to
enlargep and/orν if necessary, and then the Lang-Weil theorem holds for
all (possibly non-projective)V. This suffices for the proof of the Lemma,
which can be written as

?i (R, ρ)/{Fpν} ⇒ ?i (R, ρ)/{Fp}. (p⇒ p)

Then we combine ((p⇒ C)) and (p⇒ p) and see that local surjunctivity
of (1,0) overC, reduces to that over finite fields, i.e.

?i (R, ρ)/{Fpν} ⇒ ?i (R, ρ)/C.
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On the other hand we know that∧
i
?i (R, ρ) yields the surjunctivity theorem

(overC) and so all that is left is to prove?i (R, ρ) over finite fields. In fact we
are going to prove the following purely combinatorial Lemma concerning
projective systems of finite sets over initially amenable finite graphsD.

7.L. Consider a locally finite graph1 (which here may be finite as well as
infinite) of bounded valency with a distinguished finite subsetD ⊂ 1 and
a pseudogroup0 of isometries acting on1 such that for some (large but
fixed) r > 0 and everyε > 0 there exists a graphD′ with a finite subset
�′ε ⊂ 1′ satisfying the following three conditions (compare 6.E′′).

(a) �′ε is r -locally 0-isometric toD in 1. This means everyr -ball in 1′
with the center in�′ε is 0-isometric to some ball in1 with the center
in D.

(b) �′ε contains a0-isometric copy ofD.
(c) card∂�′ε/ card�′ε ≤ ε.

Next, let{X�}�⊂1 be a projective subproduct system of finite sets over
1 with selfmappings{ f� : X� → X�−} commuting with the projections
in the system, such that the following conditions are satisfied.

I D. The propagation of{X�, f�} is bounded by some number`0 ≤ r/4.
In particular, this means�− = �−`0 for all � ⊂ 1.

III D. The system{X�, f�} admits a rigid holonomy with0(H) = 0.
IV . Local stability. The system{X�} is 2r -locally `0-stable.

Then{ f�} satisfy the following property.

7.L′. Local combinatorial surjunctivity. If the system of maps{ f�} is
(0, i+)-injective on1 for somei+ ≤ r/4, then there exists a ballDρ =
D(ρ, δ) ⊂ 1 with δ ∈ D andρ = r/4 such that the mapfDρ : XDρ → fD−ρ
sendsXDρ onto the image of the restriction mapXDρ → fD−ρ for D−ρ =
D(δ, ρ − `0).

Proof. We proceed in three steps.

Step 1. Reducing the general case to that where0 preserves some local
ordering on1. This is done by first limiting1 to the r -neighbourhood
D+ ⊂ 1 (the rest of1 takes no part in the action anyway) and then
considering the disjoint union, say1t of the copies ofD+ corresponding to
all possible local orderings (see 6.B) ofD+. This1t comes with a natural
local ordering and a pseudogroup0t preserving this ordering. Namely0t
consists of thoseγ : �1→ �2 from0 (where�1 and�2 may lie in different
copies sayD+1 and D+2 of D+) which preserve the local ordering on1t.
The system{X�, f�} obviously extends to1t and so we may assume from
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now on that0 itself preserves a local order on1 to start with. (Notice, that
we needed local finiteness of1 at this point to haveD+ finite). So we do
assume that1 = D+ is locally ordered,0 preserves the order and1′ is
locally ordered as well (where we can use any local order on1′ we wish,
as the copies ofD+ in 1t give all possibilities).

Step 2. Extension{X�, f�} to1′. Now, for each�′ ⊂ 1′ contained in some
r -ball D(δ′, r), for δ′ ∈ �′, we have0-isometryγ ′ : �′ → � ⊂ D(δ, r) for
someδ ∈ D and thisγ ′, if it exists for some�, is unique as it preserves local
order. Then we candefineX�′ and f�′ by declaringX�′ = X�, f�′ = f�.
Finally we defineX�′ for all (larger) subsets�′ in 1′ by postulating the
subproduct property of the new system and the propagation≤ `0 condition.
Since`0 is significantly smaller thanr , this uniquely defines our extended
system. It is also clear that the extended system{ f�′ } is (0, i+)-injective
sincei+ is small compared tor .

Step 3. Proving that there exists a ballD′ρ = D(δ′, r/4) ⊂ 1′, δ′ ∈ �′,
such that fD′ρ sendsXD′ρ onto the image of the projection(restriction)
XD′ρ → XD′ρ−`0

. This is the main step which is performed by a simple entropy
style counting argument presented below which works ifε is sufficiently
small.

Suppose we have some pointsδ′1, δ
′
2, . . . , δ

′
N in ther -interior of�′ε with

mutual distances≥ 2r such that the above onto property fails to the true
for all balls D(δ′i , r/4), i = 1, . . . , N. Denote byXi the images of the
projections (restrictions)XD(δ′i ,ρ) → XD(δ′i ,ρ−`0), ρ = r/4, i = 1, . . . , N,
and consider the projectionπi from X = X�′ε to theseXi . The local stability
of our system extended to1 gives us ther -local `0-stability on�′ε. this
implies (by a trivial globalization argument as in 7.E′) that the product map

π1× π2× · · · × πN : X→ X1× X2× · · · × XN

is onto. Furthermore, for eachi = 1, . . . , N the fibers of the projection
πi : X→ Xi satisfy

cardπ−1
i (x) ≥ α cardX (∗)i

for all x ∈ Xi and someα = α(1) > 0 independent of1′. In fact

α−1 ≤max
Dr

∩
δ∈Dr

cardXδ (+)

for all r -balls Dr in D or, equivalently, in�. In fact the stability of our
system on the ballDi = D(δ′i , r/2) reduces (∗)i to a similar lower bound
on the cardinality of the “complementary space” toXi . This space, sayYi ,
is defined as the image of the restriction mapX�′ε → X�′i for �′i = �′ε\Di .
Here it is obvious that

cardYi ≥ α cardX
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with the above bound onα−1.

The inequality (∗)i shows that missing a single pointxi ∈ πi (X) ⊂ Xi

by the mapfD′ρ bounds the image of the mapf�′ε by

card f�′ε (X) ≤ (1− α) cardX.

We want to iterate thisN times and obtain the inequality

card f�′ε (X) ≤ (1− α)N cardX, (∗)N

where we need, roughly speaking, the inequalities(∗)i to be independent
for i = 1, . . . , N. In other words, we need a quantitative version of the onto
claim for the above mapπ1× π2× · · · × πN : X→ X1 × X2 × · · · × XN

incorporatingN independent versions of(∗)i as follows.

Take somexi ∈ Xi , for all i = 1,2, . . . , N, and setX(i) = i∩
j=1

π−1
i (xi ).

In other words,X(i) equals the pull-back of(x1, x2, . . . , xi ) ∈ X1 × X2 ×
· · · × Xi under the mapπ1× π2× · · · × πi : X→ X1× X2× · · · × Xi

Now we claim the following refinement of (∗)
cardX(i) ≥ α cardX(i − 1) (∗)ii

for all i = 2,3, . . . , N, andα−1 bounded by (+) as earlier.

Proof of (∗)ii . We argue as in the proof of(∗)i with the spaceX(i − 1)
playing the the role ofX. Namely, we denote by5i the restriction ofπi−1

to X(i − 1) and observe thatX(i) = 5−1
i (Xi ). To apply our previous rea-

soning to5i : X(i − 1) → Xi we need thisX(i − 1) to emerge as the
projective limit of a projective system over�′ε where this system must be
`0-stable on the ballDi = D(δ′i , r/2). We define this system{X�′(i − 1)},
�′ ⊂ �′ε, as a subsystem in{X�′ } wherex ∈ X�′ is contained inX�′(i) ⊂
X�′ if and only if the restriction ofx to D(δ′j , r/4− `0) equalsxj for j =
1,2, . . . , i−1. Notice that this condition makes sense only ifD(δ′j , r/4− `0)

⊂ �′; otherwise, it is a vacuous (and, in particular,X�′(i − 1) = X�′ if
D(δ′j , r/4− `0) ⊂\ �′ for all j = 1,2, . . . , i − 1). Clearly, this projective
system{X�′(i)} equals to the old{X�′ } on Di and so the proof of(∗)i yields
(∗)ii as well. Q.E.D.

Now, obviously(∗)ii ⇒ (∗)N exactly as we wanted it. On the other hand
the (0, i+)-injectivity of { f�} implies that the cardinality of this image is
bounded from below by

card f�′ε (X) ≥ cardX�′−



186 M. Gromov

where�′− ⊂ �′ε denotes here the(`0+ i+)-interior of�′ε. Next, we invoke
the bound on card∂�′ε, that is

card∂�′ε ≤ ε card�′ε

and the bound on cardXδ′ by a constantC depending on1 but not on1′.
It follows that

cardX�′−(X) ≥ cardX/Cε card�′ε

and so
(1− α)N ≥ 1/Cε card�′ε .

But, recall,α (as well asC) is fixed, independently of1′ whileε can be made
arbitrarily small. Then, unless∂�′ε is empty and everything is obvious, each
connected component of1′ grows in diameter asε→ 0 and so we can find
as many disjoint balls as we want in�′ε. Moreover, since the graphs1′ have
uniformly bounded valences, we can find in each of themN ≥ β card�′ε
balls D(δ′i , ρ), i = 1, . . . , N, whereβ > 0 does not depend on1′, such
that these balls lie in ther -interior of �′ε and have dist(δi , δ j ) ≥ 2r for
i 6= j . Thus we arrive at the inequality

(1− α)β card�′ε ≥ 1/Cε card�′ε

which leads to a contradiction for card�′ε → ∞ andε → 0. So we must
admit the existence of a ballD′ρ = D(δ′, r/4) in �′ε where fD′ρ goesonto
the image of the restriction map fromXD′ρ to XD′ρ−`0

.

Finally, we recall that our system over1′ is locally isomorphic to the
original system over1 and so such a ball already exists in1.

7.M. Conclusion of the proof of the surjunctivity theorem. It is obvious
that the local combinatorial surjunctivity yields?i (R, ρ) over all finite fields
and with the above ((p⇒ C)) and (p⇒ p)) we obtain?i (R, ρ)/C for all i .
This yields the desired (o) and (t) in 7.G′, as was shown in the preceding
sections. Q.E.D.

Finally we observe that initial amenability of a Cayley graph ofq group
0 implies this property for0 and so our claims on surjunctivity over0
follows from (o) with the discussion in 6.E.

7.N. Lefschetz principle for the global surjunctivity. Our reduction of
the surjunctivity overC to a combinatorial injectivity took place after the
problem had been reduced to a first order proposition. It would be more
esthetically pleasing to have such a reduction in the original setting which
is transcendental but is not overburdened by nested quantifiers. Here are
several such reductions. We start with the (almost) homogeneous situation
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where a locally compact group acts on a countable set1withe finitely many
orbits and with compact isotropy subgroups. (One can assume here1 is
a locally finite graph and0 ⊂ isom1). Then

(A) If for every finite setF all continuous0-equivariant selfmappings
of F1 are surjunctive, then such are also all0-equivariant proregular
maps f : X1 → X1 whereX is an arbitrary algebraicC-variety. In fact
one can claim here surjunctivity of all proconstructible selfmappings of
X1 for all K -constructible spacesX whereK is an arbitrary uncountable
algebraically closed field.

Next we look at0-equivariant endomorphisms of certain0-invariant
subsetsY ⊂ F1 and X ⊂ X1. These appear as projective limits of0-
invariant projective subsystems{Y� ⊂ F�} and{Y� ⊂ X�}. We observe
that1 admits a0-equivariant locally finite graph structure and so we can at-
tribute such property as stability, bounded propagation etc. to these systems
and thus toX andY.

(A1) Let surjunctivity be satisfied by all stable0-equivariantY ⊂ F1 of
bounded propagations (i.e. for all stable subshifts of finite type) and all finite
setsF. Then one also has surjunctivity for all0-equivariant proregular maps
of stable and vertically irreducible0-invariant proalgebraic subvarieties of
bounded propagationX in X1, whereX is the set ofK -point of an arbitrary
algebraic variety overK for K being an uncountable algebraically closed
field and where we additionally assume thatdim(1|λ) grows sublinearly
for λ→∞, i.e. lim sup

λ→∞
λ−1 dim(1|λ) = 0.

Remark. Such properties as bounded propagation, stability etc, we attribute
to Y andX, refer, in fact to the projective system defining these spaces.

(A ′1) The same as above with “strongly stable” instead of “stable” and
with no assumption ondim(1|λ) anymore.

Notice that in both cases (A1) and (A′1) one may allow arbitrary pro-
constructible endomorphisms over uncountable algebraically closed fields.
Actually, one can admit more general fields, such as increasing unions of
ultraproducts ofFpν with p, ν → ∞, and proregular maps. (Probably one
can replace “proregular” by prodefinable in this case).

This proof of these is indicated below in 7.N′. (Notice that for all we
know the combinatorial surjunctivity assumption may always be satisfied
in the cases we consider and so these reductions have a purely academic
interest at the present moment).

Now we generalize the above by considering a graph1 with a given
pseudogroupof isometries, say0 acting on1. We study projective systems



188 M. Gromov

over 0 with rigid holonomiesH, such that0(H) = 0, and where the
holonomy must be regular (or at least, constructible) when we deal with
X ⊂ X1 for algebraic varietiesX. Here, given an endomorphismf of X,
we also need to look at allf • : X• → X• locally isomorphic to f •, e.g.
coming from the projective systems{X•�•, f •�• }�•⊂1• over all graph1•
locally 0-isomorphic to1, for the above (fixed)0. Then we deal with the
following weak surjunctivity

all f • are injective⇒ some f • is surjective.

Notice that this is equivalent to thestrong surjunctivity,

all f • are injective⇒ all f • are surjective

in the presence of an auxiliary (possibly non-regular, e.g. Galois) holonomy
which is dense on1 (compare discussion in 7.G′ concerning II).

(B,B1,B′1) The above(A), (A1) and(A ′1) extend to the present case with
“surjunctivity” replaced by “weak surjunctivity”. And this is also true for
the strong surjectivity if the holonomyH is dense as well as cofinite on1.

Here again we do not know ifall maps in question arealwayssurjunctive
but making counterexamples seem more feasable with non-homogeneous
graphs1.

7.N′. About the proofs. We have seen in sections 7.J-J′′′ how surjunctivity
over1 reduces to a finitely statement?i (R, ρ) which admits a reduction
to a finite field. What we need to do now is to go backward and tode-
rive ?i (R, ρ) from the global surjunctivity, at least over finite fields (or in
the combinatorial framework in general). This is done by unwinding our
argument in 7.J-J′′′ where the key step is a deriving surjectivity from ini-
tial surjectivity. This needs stability of our system which is, a priori,not
a first order property. Butr -local stability is eventually expressible in the
first order language as well as the strongr -local stability. And we know
(see 7.E-E′′′) that the latter is localizable while the former is localizable if
dim(1|λ) grows sublinearly. So the reduction modulop is possible in these
cases. We leave the reader at this point to the (questionable) pleasure of
browsing through all our quantifiers and checking that everything works as
expected.

7.O. About non-rigid holomies.Non-rigidity of a holonomy is manifested
by the presence of non-trivialholonomy groupsH0(�), � ⊂ 1, where
H0(�) ⊂ H consists of allh : X� → X� with γh : Id : � → �. These
H0(�)make a projective system of groups over1where each groupH0(�)

acts on the spaceX� and, moreover, on the whole projective (sub)system
{X�′ }�′⊂�.
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Examples (a). LetX� = (Cn)� and the holonomy is defined with all
linear maps between the fibersXδ = Cn → Cn = Xδ for all δ, δ′ ∈ 1.
Then H0(�) = (GLn)

� is an algebraic group algebraically acting on the
spaces(Cn)� = Cn card�.

(b) The ultimate regular holonomy in the above example is given by the
groupAn of all biregular automorphisms ofCn. It is not an algebraic group
for n ≥ 2.

There is an obvious way to rigidify a holonomy, just replace�� by
X� = X�/H0(�). The resulting quotient spaces are “almost algebraic” for
an algebraic groupH0(�), namely, these are constructible spaces. So we can
admit non-rigid algebraic holonomies as well as those which are contained
in algebraic ones. Here one must be careful to make sure that injectivity
and surjectivity of our maps do not suffer from the above factorization. For
this we need all restriction mapsH0(�)→ H0(�−) to be onto which can
always be achieved with stablization by redefining

H0
new(�) = ∩ (images of the projection fromH0(�+) for all �+ ⊃ �).

Also, if we do not want to leave the category of algebraic varieties, we can
replace the “fibers”Xδ = X{δ} acted upon byH0

δ by Zariski open subsets
Yδ ⊂ (Xδ)N for large N such that the diagonal action ofH0

δ on Yδ is free
(assuming the actions ofH0

δ on Xδ are faithful) and thus making quotients
Yδ/H0

δ look more agreable.

7.P. Further directions. It seems that a natural framework for our sur-
junctivity theorem is given by the category of subproalgebraic spaces, i.e.
suitable quotients of proalgebraic spaces withapproximateactions of cer-
tain pseudogroups satisfying some “stability” (including expansiveness,
a kind of uniform mixing and possiblyε-shadowing) and amenability (which
may be unnecessary) conditions. (One may start here withalgebraic sofic
systems, i.e. images of subproduct systems with finite propagation under
proregular morphisms with finite propagation).

In fact it may be worthwhile to start with reformulating our surjunctivity
theorem in terms of the spacesX = lim← X� and X◦ themselves without

dirctly mentioning X�. All this does not seem hard to accomplish but I
have not worked out satisfactory examples (and making up examples looks
like a non-trivial issue) to justify the efforts needed for such generalization.
But what appears to me more exciting is developing a general view (for-
get surjunctivity!) on the equivariant proalgbraic category, e.g. visualizing
“symbolic algebraic geometry” of0-invariant proalgebraic subvarieties in
X0 and0-equivariant proregular maps between these varieties.
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8. Appendix: Garden of Eden, entropy and surjunctivity

Recently, Antonio Machi explained to me that the dynamical surjunctivity
problem surfaced earlier in cellular automata under the name ofGarden of
Eden theorem. Here, following the idea of Moore and Myhill (but not their
terminology), we say that a mapf from a subproduct spaceX ⊂ ×

δ∈1
Xδ to

someY is preinjective, if f(x) 6= f(x′) ⇒ x 6= x′ providedx(δ) = x′(δ)
for all but finitely manyδ ∈ 1 (wherex(δ) stands for the projection of
x ∈ X ⊂ Xδ to Xδ). For example, ifX is a linear space of functionsx on1
and f is a linear operator, then “preinjective” amounts to “injective on the
subspace of functionsX0 ⊂ X having finite support”. (In the language of
“Garden of Eden” one speaks ofmutually erasable patternsx andx′. This
meansx 6= x′, yet f(x) = f(x′), wherex(δ) = x′(δ) for δ ∈ 1\ (finite
subset). Then preinjectivity expresses the absence of mutually erasable
patterns.)

Clearly, preinjectivity is much weaker than injectivity; yet it is often
good enough to imply surjectivity. For example, let0 be a finitely generated
amenable group,X be a finite set andf : X0 → X0 a continuous equivariant
map (which necessarily has finite propagation).

8.A. Theorem.(see [Ce-Ma-Sca]).The mapf is surjective if and only if it
is preinjective.

8.A′. Remarks.(a) This result for0 = Zn is due to Moore and Myhill and
is called theGarden of Eden theoremwherex ∈ X0 is called aGarden
of Eden configurationif it is not in the image off . Thus “non-surjective”
acquires a nostalgie overtone: “no way to reach the Garden of Eden”. (The
implication

surjective⇒ preinjective

was proven by Moore in [Moo] followed by the converse implication

preinjective⇒ surjective

observed by Myhill in [Myh]. Notice that the latter sharpens the surjunctivity
as defined by Gottschalk.)

(b) Machi and Mignosi has proven earlier (see [Ma-Mi]) these results
for groups0 of subexponential growth.

(c) The proof of the theorem in all cases depends on an entropy type
computation similar to what we do in 7.L. Actually the meaning of the
theorem becomes clearer if the entropy enters the statement as well as the
proof so we give a definition of entropy suitable for this purpose.
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8.B. Entropy. Let X ⊂ ×
δ∈1

Xδ be a subproduct space and�i ⊂ 1, i =
1,2, . . . , be a sequence of finite subsets. LetXi = X�i ⊂ ×

δ∈�i

Xδ denote the

“restriction” of X to�i , i.e. the projection ofX to the finite product×
δ∈�i

Xδ

and set

ent(X) = ent(X : {�i }) =lim inf
i→∞

card−1(�i ) log(cardXi ).

Clearly, the entropy is monotone for inclusions between subsets, i.e. all
X′ ⊂ X have

entX′ ≤ entX ,

and more significant inequalities of this nature are indicated below.

8.C. Monotonicity. Let 1 be an infinite connected graph of bounded va-
lency (as in §6) and consider a map ofbounded propagationbetween two
subproduct spaces, sayf : X → Y for X ⊂ ×

δ∈1
Xδ andY ⊂ ×

δ∈1
Yδ, where

“bounded propagation” means that the valuey(δ) for y = f(x) and a given
δ ∈ 1, depends only on the values ofx on the`-ball D(δ, `) ⊂ 1 for some
` <∞ independent ofδ.

8.C′. If the sequence�i is amenable, i.e.card∂�i/ card�i −→
i→∞ 0, (see 6.E),

the cardinalities ofXδ are bounded, i.e.sup
δ∈1

cardXδ < ∞, and the mapf

is surjective, then
entY ≤ entX

i.e. ent f(X) ≤ entX for all maps f .

Proof. The cardinality ofYi = Y�i does not exceed that ofX�+`i
, where

�+`i denotes as earlier thè-neighbourhood of�i , i.e.�+`i = �i ∪ ∂`�i

where∂`� denotes thè-iterated boundaryof �, i.e. the set of the centers
of the`-balls which meet� as well as the complement of�. Clearly, the
amenability of�i and the bounds on the valency of1 and the cardinality
of Xδ make

lim
i→∞ card∂`�i/ card�i = 0 ,

and (A) trivially follows as the contribution from∂`�i to log cardY�i is
bounded by card∂`�i (log sup cardXδ) which is O(card�i ).

Splicable spaces.Given� ⊂ 1 and two “functions”x0 andx1 in ×
δ∈1

Xδ
we define theirspliceover� as the functionx on1 which equalsx0 on�
andx1 outside�. We say that a subspaceX ⊂ ×

δ∈1
Xδ is `-splicableif the
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conditionsx0, x1 ∈ X andx0 = x1 on∂`� imply x ∈ X for all finite subsets
� ⊂ 1.

Example.If X equals the projective limit of aǹ-stable (see 7.E) projective
system over1 of propagation≤ ` then, clearly,X is `-splicable.

8.C′′. If X is `-splicable for somè and f : X →×
δ∈1

Yδ is a preinjective

map of bounded propagation thenY = f(X) hasentY = entX.

Proof. If entY< entX, then cardY�i is much smaller than cardX�i+` for
large i and so there are two functionsx0 andx1 which are different on�i

but such thatf(x0) = f(x1) on�i . Moreover, one can assume thesex0 and
x1 are equal on∂`�i as the latter condition only has a minor effect on the
cardinalities for largei . Then the splicex of x0 andx1 is also inX, where
x andx1 now equal at infinity and have equal images inY. Thus makingf
not preinjective. Q.E.D.

8.D. Strict monotonicity. Now, let us express the computation at Step 3 in
7.L′ in the language of entropy. We consider infinitely manyρ-ballsDj ⊂ 1,
j = 1, . . . which constitute a net in1, i.e. someR-neighbourhood of their
union equals all of1. Then we consider a subsetX′ in a subproduct space
X ⊂ ×

δ∈1
Xδ such thatX′ ⊂ X is strictly smaller thanX on every ballDj ,

i.e. X
′
D j
⊂
6=

XD j .

8.D′. If X is a stable space of bounded propagation (i.e. it equals the
projective limit of a system{X� ⊂ ×

δ∈�
Xδ} with these properties) then

entX′ < entX ,

where the entropy is measured with respect to a given amenable sequence
�i ⊂ 1 and where we assume as earlier that the valency of1 and the
cardinalities ofXδ are bounded.

Proof. We may assume (throwing away some balls if necessary) that the
mutual distances between the balls are large say≤ 10̀ for ` being the
stability and the propagation constant. We take our balls within some large
amenable�i , sayDj1, . . . , DjN , N = Ni = N(�i ), and consider the map
from Xi = X�i to the product ofX jk = XD jk

as in 7.L′. Here again this
map

π1× π2× . . . πN : Xi → X j1 × . . .× X jN
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is onto. Moreover, missing a single point in eachX j diminishes the cardi-
nality of Xi by at least a factor 1− α for a fixedα > 0. Thus

cardX
′
�i
≤ (1− α)Ni cardX�i ,

where lim
i→∞ inf Ni / card�i > 0 due to the density of the ballsDj in 1, and

our claim follows.

8.E. Preinjectivity corollary. Let f : X →×
δ∈1

Yδ be a map of bounded

propagation where the corresponding projective system of maps{ f� :
X�→×

δ∈�
Yδ} admits a rigid dense holonomy. Then the equalityent f(X) =

entX implies that f is preinjective.

Proof. If f is not preinjective, there exists a system of ballsDj making a net
in1, and of pairsf(xj ) of functionsxj andx′j 6= xj in X, such that eachx′j
equalsxj outsideDj and f(x′j ) = f ′(xj ) for all j . Actually, the existence
of a single ball follows from the definition of (non)preinjectivity and then
the holonomy carries them densely spread in1. Then we takeX′ ⊂ X
consisting of thosex, where no restriction ofx to any Dj equalsxj | Dj

(but may be equal tox′j ). Clearly f(X′) = f(X) while ent(X′) < ent(X) by
8.5.A. Thus entf(X) = ent f(X′) ≤ ent(X′) < ent(X) by 8.4.A.

8.E′. Surjectivity corollary. Let f : X → Y be the projective limit of
a system{ f� : X� → Y�} of finite propagation admitting a dense rigid
holonomy where{Y�} is stable. Then the equalityentY = ent f(X) implies
that f is surjective.

Proof. If the imageY′ = f(X) ⊂ X misses somey ∈ Y, there exists
a ball D, such thaty|D does not equaly′|D. Then the dense holonomy
carriesD densely over1, where 8.5.A applies to the resulting ballsDj and
our Y′ ⊂ Y which is smaller thanY on eachDj . Q.E.D.

8.F. Garden of Eden theorem for stable spaces.Now, let bothX andY be
stable subproduct spaces of bounded propagation andf : X→ Y be a map
(coming from a projective system of mapsf� : X� → Y�) of bounded
propagation and admitting dense rigid holonomy.

8.F′. If entX = entY (e.g. if X = Y) then f is surjective if and only if it is
preinjective.

Proof. If f is surjective, i.e. f(X) = Y, then entX = ent f(X) which
implies preinjectivity according to 8.E. Conversely, iff is preinjective,
then entX = ent f(X) by 8.C′ and thenf is surjective by 8.E′.
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Notice that 8.F′ generalizes 8.A in three respects. First of all 8.6. A ap-
plies to certain subproduct systems which are not product (or full shift)
spaces. Second of all we need only partial symmetry of{ f� : X� → Y�}.
And finally the equalityX = Y is relaxed to the numerical relation entY =
entX.

8.G. Examples of non-injective preinjective maps.The simplest such
map is the difference operator onX = KZ, for any fieldK , by f : x(z) 7→
x(z+1)−x(z). Clearly this f is surjective and preinjective but not injective
as constants go to zero. More generally, ifγ0 ∈ 0 is a non-torsion element
in an arbitraryγ0, then the operatorf : x(γ) 7→ x(γ0 γ) − x(γ) is also
preinjective (and surjective but not injective). Furthermore, if0 = 01× Z,
then every “Cauchy operator” has this property,f : x 7→ ∂x + F(γi x),
where∂x = x − z0 x, for z0 being a non-trivial element inZ, acting by
translation, i.e.z0 x(γ) = x(z0 γ) ·γi , i = 1, . . . , k are some elements in01,
andF is an arbitrary functionKk→ K .

Finally, the Laplace operator1 : R0 → R0 is preinjective but not
injective for every (possibly pure torsion) finitely generated group0. In
fact, if a functionx = x(γ) with finite support satisfies1x = 0, then

〈x,1(x)〉0 =
deg

∑
γ∈0

x(γ)1(x)(γ) = 0

and then by the standard computation (or by the definition of1),

〈x,1(x)〉0 = 〈gradx,gradx〉0
where

gradx = (x− γ1 x, x− γ2 x, . . . x− γk x)

for a system of generatorsγi of 0.

Probably, such a Laplace operator, (or the associated diffusion operator)

x 7→
k∑

i=1
γi x is typically preinjective also onX = K0 for finite fields K .

For example, if for every finite subsetB ⊂ 0 (serving as the support ofx)
there is a translateγ B which meet the generating ball{γ1, . . . γk} ⊂ 0 at
a single point, then clearly, the diffusion operator is preinjective (as every
x : 0→ K with supportB must vanish).

8.H. Dynamical meaning of preinjectivity. Given a0 action on a metric
spaceX, the orbits of pointsx and x′ are calledasymptotic, if dist(γ(x),
γ(x′))→ 0 for γ → ∞. Then one may speak of preinjective mapsf :
X→ Y as those where

x 6= x′ ⇒ f(x) 6= f(x′)
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for the points with asymptotic orbits. Then the Garden of Eden theorem
can be generalized to a suitable class of hyperbolic actions but for groups
0 which are much “greater” thatZ most of such actions are, probably,
subshifts anyway.

8.I. Remarks on non-amenable groups.(a) Theorem 8.A fails to be true
for non-amenable groups (where being residually amenable or residually
finite does not help at all unlike our earlier surjunctivity discussion). There
are examples in [Ma-Mi] attributed to D.E. Muller of the failure of both
implications preinjective⇒ surjective and surjective⇒ preinjective for free
products of cyclic groups. Actually Machi conjectured (privately) that such
a failure must be characteristic for non-amenability.

(b) A closely related example, pointed out to me by Benjy Weiss, is
of a surjective shift mapf : X → X × X where X is the full shift over
the free group. Again the existence of such maps seems probable for all
non-amenable groups. More specifically letK be (a finite or infinite) field,

0 a group andf : (K p)
0→ (Kq)0 a0-equivariantK -linear map of bounded

propagation. If0 is non-amenable andf is “sufficiently generic”, thenf
is expected to be onto for allp ≥ 2. (This is easy to show for free groups
and, probably for all hyperbolic groups.) Here we are going to prove the
following weaker statement.

8.I′. If 0 a finitely generated non-amenable group, then there exists a sub-
shift of finite typeZ ⊂ 80+, for some finite set8+ such that for every setX
there exists a surjective0-equivariant mapf : Z× X0 → Z × (X× X)0

of bounded propagation.

Proof. The characteristic (and easy to prove) feature of non-amenability
of 0 is the existence of a “compressing vector field”ϕ, i.e. a mapϕ :
0 → 0 whereϕ(γ) γ−1 is contained in a finite subset8 ⊂ 0, such that
cardϕ−1(γ) ≥ 2 for all γ ∈ 0. In other wordsϕ “compresses”0 by at
least factor of two while the displacement dist(γ, ϕ(γ)) remains bounded
by sup dist

γ∈8
(id, γ). Now, givenϕ, one orders the pull-backsϕ−1(γ) for

all γ ∈ 0 and assign to eachx(γ) ∈ X0 the values ofx at the two first
(for our ordering) pull-backsϕ−1(γ) ⊂ 0. This gives us a surjective map
fϕ+ : X0 → (X × X)0 of bounded propagation, whereϕ+ denotesϕ
augmented by the ordering. Of course, thisf is not0-equivariant but the
totality of them forall ϕ+ is equivariant. Namely, we consider the pairs
ϕ+ = (ϕ,ordering), where we allow allϕ’s with a fixed finite subset8 ⊂ 0
and all orderings of the pull-backs ofϕ−1(γ), γ ∈ 0. Now our mapf sends
(ϕ+, x) 7→ (ϕ+, fϕ+(x)) in an equivariant way and the proof is concluded.
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Remark. It seems that the above spaceZ admits no0-invariant meas-
ure which makes its presence especially annoying. On the other hand, the
existence of surjective morphismX → X × X must be typical for many
subshifts of finite type over non-amenable groups, measure or no measure.

8.J. Question.Does the Garden of Eden theorem generalize to the proalge-
braic category?

First, one asks if preinjective⇒ surjective, while the reverse implication
needs further modification of definitions.

Here it is worth noticing that the equivalence

preinjective⇔ surjective

remains valid for linear mapsf : (Kn)0 → (Kn)0 for an arbitrary fieldK
and an amenable group0, where instead of the entropy one may use the
mean dimension (see [Gro]TIDS) and where instead of0 one may work over
amenable graphs1 as in 8.F.

Acknowledgements.I am grateful to the referee for several clarifying remarks.
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