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Abstract. We prove that twe3 critical circle maps with the same rotation number in a spe-
cial setA areclte conjugate for some > 0 provided their successive renormalizations
converge together at an exponential rate ir@fsense. The séthas full Lebesgue measure

and contains all rotation numbers of bounded type. By contrast, we also give examples of
C critical circle maps with the same rotation number that aredidt® conjugate for any

B > 0. The class of rotation numbers for which such examples exist contains Diophantine
numbers.

1. Introduction

The purpose of this paper is to study certain rigidity questions concerning
critical circle mappings. This study is continued in [5].

In the qualitative theory of smooth dynamical systems, the notions of
rigidity and flexibility play an important role. The smooth systems are
usually classified according to the equivalence relation given by topo-
logical conjugacies: two smooth mafisand g are topologically equiva-
lent if there exists a homeomorphisimof the ambient space such that
ho f = goh. Such a homeomorphism maps orbitsfobnto orbits ofg.

One can also consider a stronger equivalence relation given by smooth con-
jugacies. This leads to a quantitative or geometric classification of smooth
dynamical systems, since a smooth conjugacy, being essentially affine at
small scales, preserves the small-scale geometric properties of the dynam-
ics. Hence each topological equivalence class is “foliated” by the smooth
conjugacy classes and the quotient space imbeulior deformation space

of the dynamics. The moduli space describesflédbility of the dynam-
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ics. When this space reduces to a single point, we are in the presence
of rigidity.

In general, since eigenvalues at the periodic points are smooth con-
jugacy invariants, we can hope to find rigidity only in the absence of
periodic points. From this viewpoint, the simplest case to consider is
that of circle diffeomorphisms. Iff is a circle diffeomorphism without
periodic points thenf is combinatorially equivalent to a rigid rotation
R, : X = X+ p (mod 1), in the sense that for ead, the firstN elements
of an orbit of f are ordered in the circle in the same way as the fitst
elements of an orbit dR,. From Denjoy’s theorem it follows that if is C?

(or at leastC! and its derivative has bounded variation) thieis topolog-
ically conjugate toR,. By a fundamental result of Herman [11], improved
by Yoccoz [20], if the rotation number satisfies a Diophantine condition
such as

for all rationalsp/g, withC > 0and O< 8 < 1,andiff isC',r > 3,

then the conjugacy i€* (it is in fact C'~1~#~¢ for everye > 0). On the
other hand, Arnold proved that some such condition on the rotation number
is essential: there exist real analytic circle diffeomorphisms with irrational
rotation number such that the conjugacy with a rigid rotation is not even
absolutely continuous with respect to Lebesgue measure.

Maps with periodic points cannot be rigid, but we can analyze the
rigidity of some relevant invariant set, such as an attractor of the map.
This is the situation studied by Sullivan and McMullen in the context of
unimodal maps of the interval. They considered the so-called infinitely
renormalizable maps of bounded combinatorial type. For such maps, almost
all orbits are asymptotic to a Cantor set which is the closure of the critical
orbit. They proved that if two such maps are smooth enough and have the
same combinatorics then there exist€8 diffeomorphism of the real
line that conjugates the restriction of the maps to the corresponding Cantor
attractors. The tools they developed have been of fundamental importance
for the proofs of our results.

Perhaps the most famous rigidity result in Geometry is the celebrated
Mostow rigidity theoremA special case of this theorem states that two
compact hyperbolic manifolds of dimension at least 3 which have the same
homotopy type are in fact isometric. Here a hyperbolic manifold is the
quotient spacél"/T" of the hyperbolic spacE" by a discrete group of
isometries. The hypothesis of the theorem implies the existence of a quasi-
conformal homeomorphism of the sphere at infinity that conjugates the
actions of the two groups there. Suakpriori step may be regarded as
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a pre-rigidity result. The rigidity is then obtained by proving that this qc-
homeomorphism is in fact conformale. a Moebius transformation.

The situation for critical circle mappings fits perfectly into this frame-
work. A critical circle mapping is a homeomorphisin: St — St that
is of classC", r > 3, and has a unique critical poiataround which, in
someC' coordinate systemf has the formx — xP, wherep > 3 is an
odd integer called thpower lawof f. Yoccoz proved in [21] that a critical
circle mapping without periodic points is topologically conjugate to an irra-
tional rotation. Later, in an unpublished work, he proved that the conjugacy
between two critical circle mappings with the same rotation number is in
fact quasisymmetrici.e. there exists a constamit > 1 such that, for all

pairs of adjacent intervall, I, of equal length ;] = |I,|, we have
1 - Ih(l)] K.
K = |h(y)|

This is in contrast with the diffeomorphism case where, without restric-
tion on the rotation number, the conjugacy may fail to be quasisymmetric
(see[16], p. 75). Yoccoz's result, whose proof we present in 84 and Ap-
pendix B, is the exact analogue of the pre-rigidity step in the proof of
Mostow’s theorem.

Rigidity Conjecture. If f, g are C3 critical circle mappings with the same
irrational rotation number of bounded type and the same power-law at the
critical point, then there exists &2 conjugacyh betweenf and g for
some universak > 0.

So far we have succeeded in proving this conjecture only when the maps
are real-analytic. Our proof involves real techniques developed in this paper,
and deformation of complex structures, developed in [5].

1.1. Summary of results

We now present a quick summary of our results. As already mentioned, we
prove two main new theorems concerning critical circle homeomorphisms.

The first theorem brings forth the connection between renormalization
and rigidity in the context of circle maps. It also indicates that the above
Rigidity Conjecture might be true for a much larger class of rotation numbers
than bounded type. The proof is given in 84.4.

First Main Theorem. There exists a st of rotation numbers, having full
Lebesgue measure and containing all numbers of bounded type, for which
the following holds. Letf and g be topologically conjugateC® critical
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circle maps, and leh be the conjugacy betweeh and g that maps the
critical point of f to the critical point ofg. If their common rotation number
belongs ta), and if their renormalizations converge together exponentially
fast in theCO-topology, therh is C1** for somew > O.

The second theorem shows that we cannot expect the above Rigidity
Conijecture to be true without restriction on the rotation number. The proof
occupies 85 in its entirety.

Second Main Theorem. There exists an uncountable SBtof rotation
numbers such that for any € B there existC* critical circle maps

f andg with rotation numbep with the property that the conjugacy between
f and g sending the critical point off to the critical point ofg is not
C# for anyp > 0.

The sefB is very small: its Hausdorff dimension is not greater thad. 1
But it does contain Diophantine numbers, in somewhat remarkable contrast
with the case of circle diffeomorphisms. The saddle-node surgery proced-
ure we develop here is quite general, and can be used to produce similar
counterexamples to the rigidity of infinitely renormalizable unimodal maps
with special unbounded combinatorics.

All estimates performed in this paper rely heavily on teal a-priori
boundsof M. Herman [12] and GSwiatek [18]. These bounds are revisited
in 83. Several technical consequences of the real bounds needed in this
paper, such as tf@ ! boundedness of the renormalizations @f critical
circle map, are gathered in Appendix A.

2. Preliminaries

We have three goals in this section. First, we present some of the basic
notations commonly used when studying circle maps. Second, we present
the notions of commuting pair and renormalization in the context of circle
maps, and discuss their relationship. Third, we state the distortion tools that
are necessary for proving the real bounds in §3.

2.1. Critical circle mappings

Following the tradition in this subject, we identify the unit circ with

the one-dimensional tord®/Z. The obvious advantage of such identifica-
tion is that it allows us to use additive notation when dealing with circle
mappings.
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We briefly recall some standard facts concerning circle mappings. Given
a homeomorphisnf : St — S', we denote its rotation number by f). It
can be expressed as a continued fraction

p(f)z[a()’ a‘l"“ b an’"']= ’
20+
&+ ————

1
a+ —

which can be finite or infinite, depending on whetherf ) is rational or
irrational, respectively. The positive integexsare thepartial quotientsof
p(f). They give rise to a sequencerefurn timedor f, recursively defined
bygo = 1,01 = a andgn+1 = agn + gn—1 for all n > 1 (for which a,
exists — an assumption that will be implicit henceforth). Gixea S' and
n > 1, we denote by, (x) the closed interval containingwhose endpoints
are f%(x) and f%-1(x). We also letl,_1(X) € J,(X) be the closed interval
whose endpoints aveand f%-1(x). Observe thatl,(X) = 1,(X) U I5_1(X)
foralln > 1.

From the dynamics standpoint, we are not interestedl itircle homeo-
morphisms, but only in those that possess a unique critical poit ineing
local diffeomorphisms everywhere else. These are the so-catltcal
circle maps More precisely, letf : S' — S be aC" homeomorphism, for
somer > 1. We say thaff is a critical circle map if there existse S' (the
critical point) such thatf’(c) = 0 and f/(x) # 0O for all x # c. Moreover,
we require f to have apower-lawat ¢c. This means that in a suitable’
coordinate system around the critical point, duis represented by a map
of the formx — x|x|P~! + &, for some real numbep > 1 called the
power-law exponendf f. The class of allC" critical circle maps will be
denoted by Crit(St).

Since the critical point of a critical circle map is a distinguished point
on the circle, we will writel , and J, throughout, instead df,(c) and J,(c),
respectively.

2.2. Commuting pairs

We will study the successive renormalizations of a critical circle nhap
Here, as in many other settings in dynamics, the word renormalization is
taken to mean a (suitably normalized) Poincaré first return mapgmsome
neighborhood of its critical point. Abstracting the essential features of such
first return maps yields the notion cbmmuting pairdue to O. Lanford [13]

and D. Rand [17]. We formulate this notion as follows.
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Definition. A C"'commuting paiconsists of two mappingt_: [1, 0] — R,
wherer < 0, andf, : [0, 1] — R, satisfying the following conditions.

[P;] Both f_andf, areC' orientation-preserving homeomorphisms onto
their images.

[P,] Wehavef_(0) =1, f,(0)=irand0< f_(A) = f,. (1) < 1.

[Ps] We haveDf_(x) > Oforallx < x < 0,andDf,(x) > 0O for all
O0<x<l1.

[Ps] Foreach 1< k < r, we haveDX(f, o f_)(0) = D*(f_ o f;)(0).

A critical commuting pair is a commuting pair such thaf_(0) = 0 =
D f,(0).

Although it is more customary to use the symhbpkndy instead off_
and f,, respectively, the present notation will be more convenient for our
purposes in this paper. It can be proved that, in the presence of the other
conditions, R is equivalent to the following.

[P,] There exist open intervala_ 2 [A,0] and A, 2 [0, 1], andC'
homeomorphic extensions_ : A — RandF, : A, — R of
f_ and f, respectively, satisfyingr, o F_(x) = F_ o F,(x) for all
X € A_N Ay such thatF.(x) € A; (the set of suclx is an open
interval around 0).

This justifies the nameommuting pairThe class of alC" critical commut-
ing pairs will be denoted b?". We shall henceforth identify a commuting
pair (f_, f,) with a single mapf : [, 1] — [A, 1], called theshadowof
the commuting pair, defined as follows,

f_(X), wheni <x<0
f(X) =
f,(x), whenO<x <1

To each commuting paif we associate an elemeate N U {oo} called

the heightof f, in the following way. If there exist®i > 1 such that
f"1(1) < 0 < f"(1), then we seth = n; otherwise we seh = oo. It is

clear thatf has infinite height if and only if there exists© X < 1 such
that f (X) = X.

2.3. Renormalizing a commuting pair

Every commuting pairf with finite heighta such thatf2(1) > 0 can be
renormalized in the following sense. Le : R — R be the linear map
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X AX, let) = f3Q)/x < 0,and letR f : [/, 1] — [)/, 1] be the map
defined by

A™lo f o AX), when)' <x <0
Rf(x) =

A71lo falo A(x), whenO< x < 1.

This map is (the shadow of) a commuting pd& f_, R f, ), called thdfirst
renormalizationof f. Equivalently,

RI_(x) = A™1o fL o A(X), forall .’ <x<0
Rf,(X) = A™to f20 f_oA(x), forallO<x <1

The class of allC' critical commuting pairs which are renormalizable in
this sense will be denotel. In this way, we have a well-defined map
R : P; — P, the so-calledenormalization operatorMore generally, for
all n > 1 we writeP;, = R~"(P") for the set of allC" critical commuting
pairs which can be renormalizedimes. We havéy , € P, for all n. We
are especially interested in the set ofiafinitely renormalizablecritical
commuting pairs, namely

P, = [)Ph-

n>1

Givenf € P', letay = abe its height, and for each> 1 such thatf € P},

let a, be the height ofR"(f). This can be a finite or infinite sequence; in
any case, using the conventioyd = 0, we define theotation numbeiof

f to be

p(f)=[a07 a-la“-’an,---]:

an + —
In particular,p(R f) = [a1, &, ... ], that is, the renormalization operator
acts as the Gaussian shift on continued fractions.
2.4. Renormalizing a critical circle map

Let f be a critical circle map with critical poirt, and for eaclk > 0 such
that f9%(c) # ¢, let A : R — R/Z be the affine covering map such that
A0, 1]) = Iy, with A¢(0) = cand Ac(1) = f%(c). For eacm > 1 such
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that f9%(c) # cfor all 0 < k < n, consider the Poincaré first return map
fo:lhUlh1 — 1h U lh_1, namely

fq(x) whenx < I,
fn(X) =
fR(x) whenx e ly_1,

whereq = g,_1 and Q = q,. Definei, to be the largest negative number
such thatA,_1(1,) = fQ(c) (one sees in factthat, = —|1,|/|In_1]). Then
An_1([An, OD) = Iy and An_1 ([0, 1]) = I_1, and we can consider the map
fn : [An, 1] = [An, 1l given by f, = AL o fh0 Ay . Here, itis implicit
thatA,j_ll is the inverse branch that malsJ I,_1 onto[ 4, 1]. This defines
(the shadow of) &' critical commuting pair callech-th renormalization
of f. It is well-defined provided the rotation number bhas a continued-
fraction development of length at least 1 (in particular it is well-defined
for all n when the rotation number dfis irrational). It is easy to see in this
case thatfy,; = R fx forall 1 < k < n — 1. Moreover, ifay, &, ... are
the partial quotients of the rotation number fothen, from the recurrence
relations satisfied by the sequence of return tiopesve see at once that
the height offy is equal toey, and thato( fy) = [ax, a1, - - - -

Remark.Note that the largest interval containirlg on which f%-1 js
a diffeomorphism ijap, c] where fén-1%-1(¢,) = f(c), that is,an =
fa-2(c). Similarly, the largest interval containink,_; on which f% is
a diffeomorphism igc, B,] where f(8,) = f9%-1(c).

2.5. TheCK metrics

The following is only one of several equivalent ways of defining€'a
distance between commuting pairs. We normalize our commuting pairs to
be defined or0, 1], using for eachf a fractional linear transformation
that mapsk, 0, 1 respectively to 0%, 1, and then use th€X norm of the
difference of the normalized pairs. TB& distance betweef andg defined
in this fashion is denoted kg ( f, g).

Let us be a bit more precise. If a functign [0, 1] — R has a jump dis-
continuity atx = 1/2 but is elsewher& times continuously differentiable,
let |@llk = maxX{|l¢ |l lleT Ik} whereg™ is the restriction ofp to [0, %]
andg™ is the restriction o to [%, 1]. Giventwo elementd : [A, 1] - R
andg : [u, 1] — R of P', and given O< k < r, let A, be the fractional
linear transformation which maps ®, 1 to Q, % 1, respectively, and led,
be similarly defined. Then write

de(f. 9 = max{|r —pul, [AFAT = AvgA ik} -
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Fig. 1. Two consecutive renormalizations of

Lemma 2.1. For eachO < k <, di is a metric.

Proof. The only thing not entirely obvious is thdk(f, g) = 0 implies
f =g.Butifdc(f, g) = Othenonone hand = p, sothatA, = A,,andon
the other hanad, f A”* — A, gA ! = 0, sothatf = AT1A, gA T A, = g.

]

Proposition 2.2. Let f : [A,1] — [A,1] and g : [u, 1] — [, 1] be
elements of P, and suppose there exists &' diffeomorphism
h :[A, 1] — [u,1] such thatho f = goh. Thenforallk <r —1
the distancesl (R"( ), R"(g)) converge td at an exponential rate.

Proof. Let f, = R"f andg, = R"g. Then f, = h 1o g, o hy, where

h,, is obtained fromh by restriction and affine rescaling. We will see below
(after we prove the real bounds for critical circle magsTheorem 3.1) that
{hn} converges exponentially in thHe" sense to the space affine maps.
Therefore, we have that_,( f,, gn) — 0 exponentially fast. O

2.6. Distortion tools

In 83 we will need some distortion tools to get real bounds for critical circle
maps. The most basic is the notionoobss-ratio distortion Given intervals
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M C T on the line or circle, their cross-ratio is defined as

DM, T) = IM]IT]
’ LITR

whereL andR are the left and right components Bf\ M. The cross-ratio
distortion of a mapf (whose domain contain§) on the pair of intervals
(M, T)is
D(f(M), £(T))

D(M, T)

Cross-ratios are always increased by a map with negative Schwarzian deriva-
tive. More precisely, iff is C2andSf< 0thenB(f; M, T) > 1.

B(f: M, T) =

Lemma 2.3. (Cross-ratio distortion principle)
Given a mapf as abovem > 1 and intervalsM < T such thatf™|T is
a diffeomorphism onto its image, we have

m—-1
B(F™ M. T) = exp|{ —o Y ITI(TI} .
j=0

whereo > 0 depends orf andmaxy<jm-_1 | fi1(T)).

For a proof of (a much more general version of) this principle, see [16],
p. 287. This fact will be used in combination with the following classical
distortion principle. For interval$! C T as above we define thepaceof
M insideT to be the smallest of the ratipk|/|M| and|R|/|M].

Lemma 2.4. (Koebe distortion principle)
Givent, T > 0and a mapf as above, there exists = K(¢, 7, f) > 1 of
the form

1 2
K = (1+—) expCe ,
T

whereC is a constant depending only dn with the following property. IT
is aninterval such thaf ™| T is a diffeomorphism and [';‘;O | fI(T)| < ¢,
then for each intervaM C T for which the space of (M) inside f™(T)
is at leastr and for allx, y € M we have

1 - D f™(x)
K = [Dfm(y)
Once again, see [16], p. 295, for a proof. Used in combination with

Lemma 2.3, the Koebe distortion principle allows one to propagate space
around under fairly general circumstances.
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3. The real a-priori bounds

In this section we establish reatpriori bounds for critical circle maps,
obtaining as a corollary the fact that their renormalizations are pre-compact
in the C! topology. The results are well-known, and the reader will not fail
to notice the overlap with some of the material in [19] and [10].

Let f: St — S'be acritical circle homeomorphism with critical pomt
The iterates ot are denoted by, = fi(c). Let I, be the interval with
endpointsc andc, that containgy, ,, as defined in Sect. 2. For simplicity,
we write |4 = fi(l,)) for all j andn. The most basic combinatorial fact to
be remembered here is that the collection of intervals

1 on—1 1 -1
e PR R g IO [P ER

constitutes a partition o' modulo endpoints, called ttdynamical parti-
tion of leveln associated td . In order to get an actual partition we exclude
from each interval irP, its right endpoint, say, according to the standard
choice of orientation oB!. Let P,(x) denote the atom of the partitidh,
that containsx (in particular, P,(c) is eitherl, or lI,_; according to the
parity ofn).

Theorem 3.1. (Real Bounds) Lef e Crit"(S') be a map with irrational
rotation number. There exist constartg > 1 and0 < ug < pu1 < 1
depending only orf such that

(&) If I andJ are any two adjacent atoms @fn,thenC5l|J| <[l <ColJ|;
(b) For everyx e St we havgP,(X)| < wa|Pn_1(X)|;

(c) If the rotation number of is of bounded type the®,(x)| > ©g/Co;
(d) If the rotation number off is of bounded type thenP,(x)| >
[Pa-1001/Co; N
(e If 0 <i < | < 0, then the distortion of the restriction of!~' to

Il = fi(In_1) is bounded byo.

In particular, the critical commuting pair®" f form a bounded sequence
in the C* topology.

Later in this section we will see that the bounds in this theorem are
eventually universal.

3.1. Bounding space
In what follows, two positive numbers andb are said to beomparable

modulof, or simplycomparableif there exists a consta@t > 1, depending
only on our mapf, such thatC~'b < a < Ch. This relation is denoted
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by a =< b. It is also convenient to writa < b to indicate thata < Ch.
Comparability moduldf is reflexive and symmetric, but not transitive since
the constants multiply. Hence,bf < b, < --- < by, we can only say that
b, < by if N is bounded (by a constant depending onlyfgn

Lemma 3.2. For eachn > O there existz;, zo, z3, 1, z5 € St with
zjy1 = f9(zj) suchthalzy — 25| < |22 — 23| < |23 — Z| < |24 — Zg].

Proof. Let z € S' be a point such thgtf (z) — z| < | f%(x) — x| for all
x e St. From Koebe’s principle applied successively fto®, f—2% and
f =30 we have

1= t"@)| = [N (@) —2| = | f 22— f %) = [N 2N(2).

Moreover, by our choice afwe havez— f9(z)| < | f 30 (z) — f ~2In(z)|.

Therefore we can takes = f9(z), zs = z,..., zy = f~30(2) as the
desired five points. ]
Lemma 3.3. Let z, 2, ..., zs and wo, w1, ..., ws be points on the

circle such thatzj, = f%(zj) andwj, = f%(w;), and such thatw;
lies on the interval of endpointg and z, in the partition of St determined
by thez's. If |z — 20| < |2 — 3] < |Z3 — Z4] < |24 — Z5], then

lwo — w1| = |wy — wa| < w2 — wal . QD

Proof. Let £ = min|z; — zj,4]. If there is aj with 1 < j < 3 such
that |w; — wj;1| < ¢/2, then we must havéw; 1 — wj| > ¢/2 and
lwj11 — wji2| > £/2 also. But ther[w;, wj;1] has space on both sides
inside[w;_1, wj42]. Applying f—(i-Dan to these points and using the Koebe
principle, we get (1). If on the other hand there is jnaith that property,
then|wy — wo| < |wy — w3| < |ws — wyl. Again, applyingf ~9 and using
Koebe we get (1). O

Lemma3.4.For all n > 0 and all x € S, we have| f%(x) — x| <
X — f=(x)|.

Proof. To show thatix — f~%(x)| > C~|f%(x) — x|, leti < g, be such
that f1 (X) € [z1, Z2], wherezy, z,, ... are the points given by Lemma 3.2.
Then letwg = fi=%(x), w; = f'(x), etc. We know from Lemma 3.3 that
lwo—w1| = |w1—ws| < |wy—ws|. Applying f ~' to these points and using
the Koebe distortion principle, we find a defingpacearound[x, f%(x)]
inside [ f ~%(x), f2n(x)]. Therefore|x — f~%(x)| = |f%(x) — x|. The
proof of the opposite inequality is similar. O

We arrive at the following fundamental fact first provedS))yiatek [18]
and Herman [12].
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Fig. 2. These six intervals are pairwise comparable

Lemma 3.5. Any two adjacent intervals in the dynamical partition of level
n of f are comparable.

Proof. First we prove that all intervals in Fig. 2 are pairwise comparable,
through the following steps.

(@) FromLemma 3.4, we know thélt, 1| =< [I "7} and|I " " < |13,

(b) Since the dynamical symmetric bf, namely the interval, ™, is con-
tained inl,_1, we also havél,| < |Ih-1].

(c) Since the dynamical symmetric d)ﬁ 1, hamelyl ~ q” ! is contained
in 1, U I " we havell, 1| < |17 Moreover, sincd ", C
InUln_1, items @) and @) yield [I "% 1| < |In_1l. Thereforgl,_1| =
[ .

(d) Next, we claim thatl,| =< |I."*|. To see why, consider the diffeomor-
phism

an—Qn 1. |n 1 U an 1 Ir?iIQn—l U Ir?il

By the cross-ratio inequality (Lemma 2.3) appliedto= |t andT =
ln_1 U I we have|l" ™| < |1 = |1,]. Conversely, considering
the diffeomorphism

On—1 . |9 —0n-1 Un On—1
fon-1 IOt gy

and applying the cross-ratio inequality k6 = 1" andT = I";"* U
I, we get

q+q
R N I | NP R I | P

This proves our claim.

(e) Finally, we claim that|l,_1|] < |Inl|, thereby reversing the inequality
in (b). It is here that we use the critical point in a crucial way. Let
On = |Inl/I1n-1]; we already know tha#,, < 1. Look at the intervals
11 ., 1 and1® %% all near the critical value of . By an argument
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similar to the one ind), we have|l% ;| =< [1%%*" Moreover,
1} =< 68111 |, wherep > 1 is the power-law off at the critical
point. Hence these three intervals have a cross-ratio comparatfe to
On the other hand the mad-1—* carries them diffeomorphically onto
Iht, 1 and 1", respectively, whose cross-ratio is comparable to
|Ir?”‘1|/|lr?il|, which in turn is comparable t@,. Applying the Koebe
distortion principle, we see thaf = 6,, and s®, = 1 as claimed.

This proves that all six intervals in Fig. 2 are comparable. To derive the re-
maining comparability relations, propagate this information using Koebe’s
distortion principle. O

Proof of Theorem 3.1Part @) is Lemma 3.5 above. The remaining state-
ments are straightforward consequencesapf ( O

3.2. Beau property of renormalization

The bounds obtained in the proof of Theorem 3.1 depended, anore
precisely on the space that each atomRf enjoys relative to its two
neighbors irP,. We now concentrate in proving that such bounds eventually
become universal. It suffices to prove that the space in question is eventually
universal. Bounds of this type are calledauby Sullivan.

Lemma 3.6. There exists1g = ng(f) such that for alln > ng the first
return mapf, : J, — J, satisfiesS f,(x) < Ofor all x € Jj.

Proof. This is proved in Theorem A.4 of Appendix A. O

Lemma 3.7. Givene > 0, there exista; = n.(f, &) > np(f) such that
the following holds for alln > n;. Let A € P,, letk > 1 be an integer
such thatfi(A) is contained in an element 6%, for all 1 < j <k, and
let A* be the union ofA with its left and right neighbors ifP,. Then we
have fK|A* = ¢1 o ¢ o ¢p3 Where¢, and ¢3 are diffeomorphisms with
distortion bounded by 4+ ¢ and ¢, is either the identity or a map with
negative Schwarzian derivative. In particulareiiis small enough and if
o1 # A # |, then the distortion off¥|A is bounded from below by
one-half.

Proof. Letn; > ng be such thaiy! ™ << ¢, wherepy is the constant of
Theorem 3.1. Fon > n;, A andk as in the statement, I&t e P,, be such
that A € J, let J* be the union of] with its two neighbors irP,,, and
note that the space @* inside J* is bounded from below b@Z|J*|/|A*|,

for some constan€ > 0. Letm > 0 be the smallest integer such that
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f™(J) € Jn,- Then for allj < mthe mapf’|J* is a diffeomorphism onto
its image and, by Theorem 3.b)(and the Koebe distortion principle, its
distortion onA* is bounded by

A2 A*
<1+C||J*||) exp{C||J*||} < exp(Cugt ™} < 1+e.

Now, there are two possibilities. The first is tmat> k; in this case we can
takeg; = fX|A* and¢, = ¢3 = identity map. The second is that < k.
In this case we consider the first return mgp: J,, — Jy, and let¢ > 0
be thelargestsuch that

fk=flo fl o fls,

wherek; > 0 andks > 0. We then takep, = fk1, ¢, = f o f,fo and
¢s = f%5|A* (if ky = O we take instead, = f! and¢; = identity). By
Lemma 3.6,Sp, < 0, and by the above remarks the distortions of hpth
and¢sz are bounded by % ¢ in the appropriate domains. O

Proposition 3.8. All bounds in Theorem 3.1 are beau. In other words,
there exist universal constants; > 0 and0 < Ay < A1 < 1 and some

n = n(f) > 0 such that for alln > n the constantCy, o and w1 in
Theorem 3.1 can be replaced Ky, 1o and 1, respectively.

Proof. This is straightforward from Lemma 3.7. O

Remark.From now on, whenever we say that a constant “depends only on

the real bounds”, we mean that the said constant is a universal function of

constantKy, Ao andi; given by this proposition.

4. How smooth is the conjugacy?

Now we turn to the first main result in this paper. The theorem states that
if the successive renormalizations of two critical circle maps with the same
rotation numbep converge together at an exponential rate, then such maps
areCY@ conjugate for some > 0, providedp belongs to a certain full-

measure seh of rotation numbers (defined in 84.4). First, in order to get
bounds that do not depend on the maximum of the partial quotients of the

rotation number, we need to perform some “saddle-node” estimates and

constructions.
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4.1. Saddle-node geometry

Letabe apositive integeramtl;, A,, ... , Ag. 1 be consecutive intervals on
the line or circle. By aralmost parabolic mapf lengtha and fundamental
domainsAj, 1 < j < a, we mean a negative-Schwarzian diffeomorphism

fZA]_UAzu---UAa — AzUAgU---UAa+1

such thatf(A;) = Ajia.
The basic geometric estimate on almost parabolic maps is due to
J.-C. Yoccoz.

Yoccoz's Lemma. Let f : | — J be an almost parabolic map of lengsh
and fundamental domainsj, 1 < j < a. If |[A1| > o|l| and|Aa| > o]l],

then
1 ] [

-~ - - .5 A o+ _ .7
c, mntja—ir = M= Cmingaz e
whereC, > 1 depends only on.

For a proof, see Appendix B. We will use Yoccoz’s estimates to compare
two almost parabolic maps.

Proposition 4.1. Let f andg be two almost parabolic maps with the same
lengtha defined on the same interval. Then forak A1(f) N A;(g) and
all 0 < k <a/2we have

| £500 — g*0] < CIIf —gllok®. )
Proof. First note, using the mean-value theorem, that

k—1
[T — g* (0| = (971 (fg (0)) — 171! (x))
=0

J

k-1

> DI ED | [ fd ) — 9! (%))

j=0

IA

’

whereg; lies betweenf(g! (x)) andg!*1(x). Hence we have

k—1
| 500 — g*00| < IIf —dllo Y [DF<T71E)]| . ©)
j=0
Let us estimate each summand in the right-hand side of (3)mLet

m(j) be such that; € Aj (), and assume also that- m < a/2. This
last condition is always satisfied if the central fundamental domagylies
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to the left of the central fundamental domain Df(if this is not the case,
then reverse the roles df andg in (3) and throughout). Using Yoccoz’s
Lemma, we see that

IDfRI71E)| = 4

@-k-m+12 = \j+1

Hence, it suffices to estimate as a function of_j. For this purpose, let
n = n(j) be such thag!*(x) e [fI*"1(x), fI™"(x)]. We claim that
m < n+ 1. There are two possibilities. The first is thiaty (x)) > g'*+1(x):
in this case we see easily that

g e [0 X, f@ )] c [FIT ), FIH (%)

and som < n + 1. The second is that(g! (x)) < gi*%(x). In this case we
haveg; < g/*1(x) < fI™"(x) € Ajna(f), so once agaim < n+ 1.
This proves our claim.

So now we must bound as a function ofj. Again, there are two cases
to consider.

(@ We have[git1(x), git2(x)] < [fiT"1(x), fi*"(x)]. In this case

(Fig. 3a) Yoccoz’s Lemma gives us
1 C

< -
2 7 (+n?’

(j +m)? _ (j+m>2

which impliesn < Cj.

(a)
gj+1(gf/\gj+2($)
fj+”‘1(v+"(x)

g’" (z) g’ (x)

fren=i(z) f1m (@) frEnt(z)

P A —
Fig. 3. Boundingn as a function of]
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(b) We havegit?(x) > fit"(x). In this case (Fig. B, fit"(x) is
the first point in the f-orbit of x that lands inside the inter-
val A = [g"*t1(x), g t?(x)]. Let p be such thatfl+"(x) ¢ A
fori=0,1,...,p—1 but fI*"P(x) ¢ A. Then we haveA C
[ fi+n=1(x), f1+1*+P(x)], and this time Yoccoz's Lemma gives us

1 <C< 1 N 1 P 1 ) - C
27 \g+m?  (j+n+1)2 (j+n+p?2/) " j+n’
Thereforen < Cj? in this case.

In either case we see that < Cj2. Carrying this information back
to (4), we deduce that

IDf*I1Ep| < Cj2. ©)

Substituting (5) into (3), we arrive at (2), and the proof is complete. O

4.2. A criterion for smoothness

One key ingredient in the proof of our First Main Theorem is a slight
extension of a result originally due to Carleson [2], namely Proposition 4.3
below. To formulate it, we need an auxiliary definition.

Definition. A fine gridis a sequencgQn }n=o of finite partitions ofSt which
satisfies

(a) EachQn,, is a strict refinement of,;

(b) There existaa > 0 such that each € @9, is the disjoint union of at
mosta atoms ofQp, 1;

(c) There existsc > 0 such thatc™|I| < |J| < ¢|l| for each pair of
adjacent atoms, J € Q,,.

For example, the dynamical partitiofiB,} of a critical circle map with
rotation number of bounded type always form a fine grid, by Theorem 3.1.
We note the following easy lemma concerning a fine ¢&x}.

Lemma4.2.1f | € Q,, J € QnprandJ C I, then(l+cH|J| < |lI]| <
ac?|J|. In particular, there exisCy > 1 and0 < xg < A; < 1 such that
Colad < |1 < Corl, forall I € Qp. O

The constants, c, Cy, Ag, A1, are thefine constantef {Q,}.

Proposition 4.3. Leth : S' — S' be a homeomorphism and 189,}n-0
be a fine grid.
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(&) If there existsC > 0 such that
I hadl| _

13 (DI —

for each pair of adjacent atomk J € Q,, for all n > 0, thenh is
quasisymmetric.
(b) If there exist constant€ > 0and0 < A < 1 such that
I Ih()]
— ———| < CA", (6)
131 1h(d)|
for each pair of adjacent atomis J € 9y, for all n > 0, thenh is a
Cl*e-diffeomorphism for some > 0.

The proof of Proposition 4.3 will depend on the following fact from
elementary real analysis. # is a real-valued function in an interval or
oriented arc on the circle, l@*¢(x) = limy o (#(X +t) — ¢(1))/t be the
right derivativeof ¢ atXx, if the limit exists.

Lemma4.4. Let ¢ : [0,1] — R be a sequence of continuous, right
differentiable mappings such thd*¢, converges uniformly to am-
Holder continuous functiorp : [0,1] — R, and such that eaclD*¢,
is Riemann-integrable. 16, converges uniformly t@, then ¢ is C*«
and D¢ = ¢. O

Proof of Proposition 4.3We will prove () only, the proof of &) being
somewhat easier. Let, be the piecewise affin€°-approximations td
determined by the vertices &,,. Theng, is differentiable on the right, and
D™ ¢y is a step function. First we show th{eiD+¢n}n>0 is a uniform Cauchy
sequence, and then that the limit is Holder continuous. Take an katafm
Qn, and consider the decomposition

| = JULU---UJ,,

with J € Qn,1 consecutive and pairwise disjoint apd< a. ThenD" ¢,
is constant ol andD" ¢, is constant on eacly, say

D¥¢n(t) = 0 = 7|¢r|‘|(||)| tel)
D¥¢nsa(t) = ok = —|¢”J|“jlf|‘]k)| (te k) '

Thus, we have

p
olll = okl
k=1
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and in particulaw’ = minoy < 0 < maxok = ¢”. Also,o’' /0" < o/oy <
0" /o’ for all k. Since by assumptiofil — (oy41/0%)| < CA"™1, an easy
telescoping trick gives us

4

U_/ < (1+C)Ln+l)a < 1+C)\n+1.
o

A similar lower bound holds true far’'/o”. Therefore we have

1—c < 2 < 140m, (7)
ok
forallk = 1,2, ... p. This shows that the sequenid@* ¢, } _ is uniformly
bounded, and moreover that for all> n > 0 and allt € St, we have

m—1
i C
+ +
[D¥¢m() — D¥gn(®] < cgw < T 8)
Hence{D*¢y},_, is a uniform Cauchy sequence as claimed. pet

lim D*¢,, and lete > 0 be such thaty = A. We provey is a-Holder as
follows. It suffices to consider points y € St whose distance is smaller
than inficg, |1]. Take the smallest such thatx andy belong to distinct
elements ofQ,. Then eithem = 0 or x andy lie in a common element of
On_1. Either way we have by (7)

IDT¢n(x) — D¥pn(y)| < CA". ©)
Combining (8) and (9), we deduce that
lp(X) — p(Y)| < [e(X) — DTn(X)| + |DTpn(X) — DT (y)|

+ |DTn(y) — 0(y)|
C C
< — A"4CA"+ — A" < CA
=10t +1—x - 770
< Clx—y|*,

and sop is a-Holder as claimed. O

Remark.In the language of conditional expectations, the sequence
{D"¢n}n=o satisfiesE (DF ¢, | Bn) = Dt éni1, WhereB, is theo-algebra
generated by, and therefore constitutesraartingale Thus, the existence

of a pointwisea.e. limit ¢, merely as an integrable function, is a special
case of J. Doob’snartingale convergence theoresee [1], p. 490.
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4.3. A suitable fine grid

The dynamical partitiong?, of a critical circle mapf do not determine
a fine grid, unless the rotation number bfis of bounded type. We will
however use these dynamical partitions to build a fine §@d} for our

map f. The construction requires some preliminary definitions.

An elementl € P, is asaddle-nodeatom if it is the disjoint union of
some numbea > 1000 of atoms ofP, ;.

Given two atomsP,,1 2 J € | € Py, theorder of J insidel is one
plus the smallest number of atoms/af, ; on the right and left components
of I\ J.

Note that inside a saddle-node atbra P, there are exactly two atoms
of P41 of orderk for eachk < a/2. LetN > 0 be largest with the property
that ! < a/2. ForeachG< i < N, we defineM;, thei-th central interval
of |, to be the convex-hullJ, J*] C | of the union of both atoms, J* of
order 2. Note that these central intervals are nested (see Fig. 4). The left
and right components dfl; \ M; 1, respectivelyL; andR;, are thelateral
intervalsof | . The central intervaMy is also called thdinal intervalof |.

The lateral intervals together with the final interval form a special partition
of 1, thebalancedpartition of .

Remark. It follows from Yoccoz's lemma thatL;| < |M;1| < |R| for
alli.

__ Now we define an auxiliary partitio®,, for eachn > 1. The atoms of
P, are all atoms ofP, which are not saddle-node, together with the atoms

L() RO
M

L, Ry
S M2 R

— My_1—

My

Fig. 4. Central and lateral intervals of a saddle-node atom
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of the balanced partitions of all saddle-node atom®pfThe partitionQ,
that we want is constructed frof, and P, as follows.

Proposition 4.5. There exists a fine gridQ,} in St with the following
properties.

(a) Every atom 0, is the union of at most 3 atoms 6%, 1.
(b) Every atomA of 9, is a union of atoms dPy, for somem < n, and
there are four possibilities:
(b)) A isasingle atom oP;
(b,) A is a central interval ofPm;
(bs) Adisthe union of at least two atoms®f,,1 contained in a single
atom of Py,.
(bg) A is a union of intervals which are simultaneously atom®gf
and Pp,.

Proof. The proof is by induction on. The first partitionQ, consists of all
atoms ofP; which are not saddle-node atoms together with the intervals
Lo, M; and Ry of each saddle-node intervhle P; (I = Lo U M1 U Ry).
It is clear that each atom @; falls within one of the categorie®{)-(b,)
above.

Assuming @, defined, defingd,,,; as follows. Take an atorh € Q,
and consider the four cases below.

(1) If I is a single atom ofP, then one of two things can happen:

(i) I is a saddle-node atom: In this case wiite- Lo U M; U Ry as
above and také. g, Ry and M; as atoms of9,,;. Note that the
lateral intervaldo and Ry are atoms of typely), while the central
interval My is of type ©5).

(i) I is not a saddle-node atom: In this case witite- L UM U R
whereL andR are the atoms dP,,; adjacent to the endpoints bf
andM is the union of the other atoms &%, inside|. Add these
three intervals t@,,, 1, noting thatL and R are of type §,), while
M is of type ©g).

(2) If I isacentral interval~013m which is not the final interval, consider the
next central interval oPy, insidel, sayM, and the two corresponding
lateral intervalsL and R such thatt = L UM U R, and declard., R
andM members 0@, 1. Note thatL and R are of type b3), while M
is of type ©,).

(3) If I is aunion ofp > 2 consecutive atom&;, ... , A, of 73m+1 inside
a single atom ofP, divide it up into three approximately equal parts.
More precisely, writep = 39 + r and, whenr = 0 or 1, consider
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| = LUMURwhere

q p—q p
L=a . M= [Ja.rR= |J 4.
j=1

j=0+1 j=p—g+1
Whenr = 2, consided = L UM U Rwhere

g+1 p—g-1 p
L=Ja.Mm= Ja.R= [J A4
j=1 j=0+2 j=p—q

Note thatM is empty whenp = 2. In any case, we obtain two or three
new atoms o2, ; which are either single atoms 8%, 1, and therefore
of type (by1), or once again intervals of typéd).

(4) If 1 is a union of intervals which are simultaneously atom$gfand
Pm, divide it up exactly as in (3), obtaining either two or three new
atoms of Q.1 which are either single atoms &, and therefore of
type (), or once again intervals of typb,].

This completes the induction. The®,}n-0 constitutes a fine grid fol-
lows easily from the real bounds and the remark preceding this
proposition. O

An immediate consequence of the mere existence of such a fine grid is
the fact that any two critical circle maps with the same rotation number are
guasisymmetrically conjugate.

Corollary 4.6. Let f andg be critical circle maps with the same irrational
rotation number, and lelh be the conjugacy betwednand g that maps the
critical point of f to the critical point ofg. Thenh is quasisymmetric.

Proof. Apply Proposition 4.34) to the fine grid constructed above. O

4.4, Proof of the First Main Theorem

We will proceed according to the following strategy. Given two critical circle
mapsf andg with the same rotation number, consider the special partitions
Qn = On(f)andQ, = 9,(g) given by Proposition 4.5. The conjugalky
betweenf andg is an isomorphism between the corresponding fine grids.
We want to show that the coherence property (6) holdé famd{Q,}. The
statedC** smoothness df will then follow from Proposition 4.3.

To achieve our goal, we need to impose certain conditions onthe common
rotation number off andg. Let us consider the sét C [0, 1] of rotation
numbers whose partial quotier(a,) satisfy

n
lim sup % > loga; < oo, (10)

n—oo le
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as well as

1
lim —loga, = 0, (11
n—oo N
and which also satisfy
k+n
1 n
= E loga; < w(E) : (12
j=k+1

for all 0 < n < k, wherew(t) is a positive function (that depends on the
rotation number) defined far> 0 such thatw(t) — 0 ast — 0. This is the

class of rotation numbers for which we shall prove our theorem. Note that
all numbers of bounded type satisfy (10), (11) and (12). The number whose
partial quotients are given bg, = kif n = 2 with k > 1 anda, = 1
otherwise is an explicit element df that is not of bounded type. This
number satisfies (12) with(t) = 1//1. It is a well-known consequence of

the fact that the Gauss map preserves a measure absolutely continuous with
respect to Lebesgue measure (the Gauss measure) and Birkhoff’s ergodic
theorem that both (10) and (11) hold Lebesgue almost everywhere (see [3],
page 175). Condition (12) also holds for Lebesgue almost all numbers if we
takew(t) = C(1—logt), whereC > 0 depends on the number (this last fact
was communicated to us by C.G. Moreira — for a proof, see Appendix C).
Therefore our seh has full Lebesgue measure[ity 1].

In what follows we use the notatiox, = x,(f) = f9%(c). We also
assume that the critical poird is the same for both maps. If the re-
normalizations f, and g, converge together exponentially fast then
IXn(f) — c|/|Xn(g) — c| converges to a limit exponentially fast also. More
precisely, we have the following lemma.

Lemma4.7. If || f, — gnllo < CuX for some0 < u < 1and alln > 0,
then the ratio|x,(f) — ¢|/|x,(g) — c| converges to a limit exponentially
fast. Moreover, for alin, k > 1 we have

() [Im(Q)] i ()]
. C min{m,k} ] 13
Ol @l = 7 D 9
Proof. The hypothesis tells us that
e (F)] _ In+1(9)] - CoyP
[In ()] (@l | —

for all n > 1. Writing an = [Xn(f) — ¢|/IXa(9) — ¢l = [In(D)I/I1n(D],
and taking into account thﬁlgl| ()] < lIhe1(9)] < Colln(g)| by the real
bounds (for som€, > 1), we see that the above inequality is equivalent to

9

Uny1

-1 < Cgun.

Un
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This is the same asn,1 = (1 + &n)an Where|ey| < Cau". Therefore
on = o1 ]_[?j(l + ¢j), and this shows that lima, exists. Finally, note that
if m> k> 1then

m—1

Om
— -1 < (I+e) -1
-1 = [Tave

m—1

< C4Z<9j < Couf,
j=k
and similarly for|1 — ax/am|, and these facts clearly imply (13). O

Remark. Having established this lemma, we may assume, after conjugating
one of the maps (say) by a suitable smooth diffeomorphism, that the limit
of the ratiog I,(f)|/|In(Q)| is in fact equal to one. This will be our standing
hypothesis from now on (used at the end of the proof of Lemma 4.10 below).

Definition. Let fy, @ Jn(f) — Jn(f) be them-th first return map off
and letk # 0 be an integer such thi& < [an/2] (where[X] denotes the
smallest integer x). Therestricted domairof fnﬁ, denotedDy, , is defined
as follows.

[k
ImU[fm (Xm-1), Xm-1], whenk > 0

mie T Eak
[ fn(Xmt1), fm 2 (Xm+1)],  whenk < —1.

In less precise terms, the restricted dom@j is the the set of points
in Jy which can be iterate times by f,, without ever goingacrossthe
central fundamental domain df, in Jn(f) \ Imea(F).

Lemma4.8. For all X € Dy we have|Dfn‘§(x)| < K, whereK > 1
depends only on the real bounds.

Proof. Use Theorem 3.1 and Yoccoz's Lemma. O

Lemma 4.9. Letv be a vertex o, ,(f) such that € J(f). Then there
existk < m < k+ pandl < N < psuch thatv can be represented in the
form

V= ¢ro¢ppo---0dN(Xm),
whereg; = f,ﬁ"j for somek < m; < k+ pandk;j| < [am; /21, and where

the pointg;,1 o --- o ¢n(Xm) belongs to the restricted domain ¢f for
eachj.
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Proof. For simplicity of notation, we writeJ; = J;(f) in this proof. Let
k < my < k+ p be largest with the property thate Jy, \ Jn,+1, and
let 0 < i < am, be such thatf (v) € Jn1. If i < [an,/2] then let
ki = —i; otherwise lek; = an, —i. We getg; = fnﬁll and a new vertex
v1 = foK ) € Jnga. If v1 € Jepp thenvy = figp(Xerp-1) Necessarily,
and we can stop. On the other handyif¢ J.p, then once again there
existsmy in the rangem; < mp < k+ p such thatv; € Jyn, \ In,+1, and
we can proceed inductively. At the end of this process we get sequences
m <m < -+ <my <k+4+ p(soN < p) anduvy, vy, ..., vy With
vj € Im; \ Jm;+1, and for eachj an integek; with [k;| < [am, /2] such that
Vi1 = f,;jkj (vj). The last vertexy is necessarilyky, for somem < k+ p.
Hence it suffices to takg; = f,ﬁ"j to get the desired representation. O

From now on, we assume that the corresponding sucessive renormal-
izations of f and g approach each other exponentially, in other words
| fn — gnllo < Cu" for some O< u < 1 and alln > 0, just as stated in the
hypothesis of Lemma 4.7.

Lemma 4.10. There exists a constaft< . < 1 for which the following
holds. Letv € J(f) be a vertex ofP; () and letw = h(v) € J(g) be
the corresponding vertex @ ,(9). If p(f) satisfies condition (11), then
we have

lv—w| < ClI(FKPuE, (14

whereK > 1is the constant of Lemma 4.8.

Proof. By Lemma 4.9 above, there exist pointg = Xm(f), Ym = Xm(Q)
and a numbeN < psuch that

[v—w| = [p1opro---0dN(Xm) — Y10 Y20 -0 Yn(Ym)| ,

whereg; = f,ﬁ"j andy; = gﬁ%j,with k<mj <k+ pandlkj| < [am,/2].
For eachi > 1, let A; s be the affine max +— ¢+ [l;(f)|x, and de-
fine Ajg in the same way. For eadh> k, let A = A} o Aj ¢ and
Ag= AlZé o Aj g. In order to estimatey — w|, we shall estimate* — w*|,
wherev* = At (v) andw* = A5 (w). To do this, for each > k consider
the mapf* : A7 (J(f) — A T(Ji(F)) given by

f* = AI:]]Z ofioAks = A fo fi oAi_!:]l',

and letg" be similarly defined.
First we claim that for alk € A1 (J () N A 5(J(9)) we have

ki CHI

f*(x) — g Copk 1
| £5(0 — g'(¥)| < Ciu ) (15
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To see why, note that by inequality (13) of Lemma 4.7 we have, far iall
the domain of both renormalizationfs and g;,

I B ||i(f)|_|h(g)|‘
A1) = AgD| = (D) (9 z
(D]
= P

Similarly, for allx € A, (J()) N A, 5(J(9)) we have, again by (13),

o D] O
AT = A = [T Ili(g)l‘ o
k||k(f)| k
< Cau D] [X| < Cau’”.

Here we have used that| < |Ji(f)|/[1k(T)| < Cs|li(F)|/[1k(f)| (recall
from the real bounds thad; ()| < |l;()]). Also, by hypothesis we have
[ fi — gllo < CeuX. Combining these three estimates with a standard
telescoping trick, we get (15), and the claim is proved.

Now letg? = Am, o¢jo AL’ andyf = Am gotjo ALl .. Applying
(15) withi = m; and using Proposition 4.1, we have

. . [ (F)]
|¢j (X) — ¥ | < C7|kj|3ﬂkm .

By the real bounds, there exists<0A; < 1 such thatlm (f)[/[1k(f)| <
Cngj - TakingAr = max{u, A1}, we deduce from (16) that

(16)

|67 (0 — ¥ (0| < Coaf, A™ . (17)

We can at last start our estimate| of — w*|. First, note thak, = Am (1)
andym = Amg(D). Writing X, = At (Xm) andy;, = Ay g(Ym), We see
after a simple computation thét), — y=| < Ci0A™. Combining this fact
with (17) and using Lemma 4.8, we get
[nG) — VRO = om0 — vR 6| + [ 06 — ¥ (Vi)
< Cgaﬁmkm“‘ + CloK)\.m .

From this, and since

|61 (@R OG) — Vi (WR (Y| <
|61 (B (Xm)) — V1 (B KD + [V B X)) — Vi (PR )|



366 Edson de Faria, Welington de Melo

we deduce that

|6 2 (@R OG) — YR (R ()| <
Co (83, , 2™ + Kab, A™) + C1oK?A™.

Proceeding inductively in this fashion, we get in the end

N
[v* —w*| < CQZ Kj_lar?;]j)umj +C]_OKN)\.m.
=1

Using thatN < p and takingC,; = maxXCg, C10}, we arrive at

N

v* — w*| < clle(xm+Za§njme . (18)

=1

We have of course™ < AX. Moreover, sincéd < m; < mjy4 for all j, we
have

[e9]

N
aﬁ]jkmj < Zaﬁ’k”.
-1

n=k

J

But since(a,) satisfies condition (11), we know that li@3)¥" = 1. In
particular, ife > 0is suchthatl+¢)v/A = 1, there exist€, = Cio(g) > 0
such thag3 < Cy(1+ ¢)" for all n. Therefore

1-Vi

Taking this back to (18) yieldg* — w*| < C13K P(+/2)K. Therefore, noting
that under the assumption given in the remark after Lemma 4.7 we have

YA < €Y WA = 2 (WK,
n=k

n=k

v—wl = A1) = Agw| < [I(F)] (Jv* = w*| + Cran) .
and takingu, = v/A, we get (14) as desired. O

Lemma 4.11. There exists a constat > 0 depending only on the real
bounds such that h* € P (f) andA € Py, p(f) is contained inA*, then

p
Al = M A%
2
(ak+lak+2 e ey p)

Proof. This again follows from Yoccoz's Lemma and a simple inductive
argument. ]
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Definition. The level of an atomA € Q,(f), denoted/(A), is the largest
m < n such thatA is contained in an atom ().

Lemma 4.12. If Q,(f) contains an atom of leveh, then

n < coy log(l+a) (19
j=1

for some absolute constagg > 0. In particular, if the partial quotients of
p(f) satisfy (10), themn > c;n for some constar@ < ¢; < 1that depends
only onp(f).

Proof. LetA € Q,(f)beanatomofleveh.LetA; DA, D .- DA = A
be such thatAy € Ok(f), and note that 1= £(A1) < £(Ap) < --- <
£(An) = m. Given 1< | < m, leti ands (maximal) be such that

L(Air) = L(Aiy2) = -+ = UAigs) = |

Then there exist$ € Pi(f) such that eaclz; withi +1 < j <i +s
is a union of atoms of?,1(f) inside |. From the very construction of
the partitionsQ; (f) (Proposition 4.5), we see that the number of atoms of
Pia(f) inside A is at leastwicethe number of such atoms insids .1,
for eachi + 1 < j <i+ s— 1. Moreover,Aj,s contains at least two such
atoms (otherwise its level would ther 1). Since the total number of atoms
of P11(f) that lie insidel is at most 1+ a, it follows that 2 < 1+ a,
whences < log, (1 + &). This proves (19) witlty = 1/ log 2.

Now, if p( f) satisfies (10), then there exidds> 0 depending om(f)
such thafy_["; loga; < Bm. Therefore

m
N <Gy log(l+a) < c(B+log2m,
j=1

which proves the last assertion, with= cgl(B +log2~t. O

Lemma 4.13. If p(f) satisfies (11) and (12) then there exifts < 1
with the following property. IL and R are adjacent atoms o, (f) and
we have/(L) > mand£(R) > m, then
IL|  |h(L)|
— ———| < Cp". (20
IRl Th(R)]
Proof. Write m = k + p with p = [ok] whereo > 0 is a small constant
(its size will be determined in the course of the argument). We may assume
thatL U Ris contained in a single ator of Py( f). There are two cases to
consider.
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@ If LURC J(f), then the required coherence estimate (20) follows
from Lemma4.10 and Lemma4.11. To see thisydety, vz € Piyp(f)
be the endpoints of and R, v, being their common endpoint. Let
w1, wa, w3 be the corresponding endpointshaiL) andh(R). Then by
Lemma 4.10 we have; — wi| < Co|J(f)|6¥, whered = Ko, < 1
if o is small enough. On the other hand, condition (12) tells us that

A18i2  Aip < EXPPo(p/K)} < exp{pw(o)} .

Combining this fact with Lemma 4.11, we get

MP MP
lv1 — va| > 5 [ k(F)l > mle(f)l-
(ak+1ak+2 s Oy p)
The same lower bound holds far — vs|. From these facts, we deduce
after some simple computations that

IL] [hD)] _ [ —v2|  [wi —wy
IRl [h(R)] lvo —v3| w2 — ws|
gke2po(o) ge2o(@)\ N
< Ci—p Scz( Ma) = GCsp7',

where 8, = (Gez"‘“(‘”/M")l/(H“). Sinced < 1 andow(c) — 0 as
o — 0, we see thgB, < 1 if o is small enough.
(b) If L U Ris not contained i ( f), there exist§ < g1 such thatf is
a diffeomorphism on an interval containirgand its two neighbors in
Pu(f) and such thatf 1(A) € J(f). By the Koebe principle and the
real bounds, the distortion df! on L U R is bounded by ex{€4:15)
(where O< ug < 1isthe beau constant of Theorem 3.1). Therefore we
have ,
Ll 1)
IR IR
wherepu, = Mg/(”"). Working similarly withh(L), h(R) € 9,(9), we
get also

< Csuf§ < Ceul, (21

LI 19 (h(L)) m
- — < C .
AR~ jgith®yl| = 7
Putting (21) and (22) together and usiay e get inequality (20) with
the constang = max{ 1, B1}.

Hence in both cases (20) is established, and we are done. O

(22

The proof of our First Main Theorem is now almost completd. Hnd
R are adjacent atoms @I, ( f) as above, then combining Lemma 4.12 with
Lemma 4.13 we deduce that the coherence condition (6) is satisfied with
A = B%. Therefore by Proposition 4.3 the conjugdtys indeedC** for
somex > 0.
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5. Counterexamples toC* rigidity

Our purpose now is to constru€™ counterexamples to the conjectured
C* rigidity of critical circle maps. We will consider critical circle maps
whose rotation numbes(f) = [ag, @, ... , an, ... ] satisfies

1
li —1 =
imsup—loga, = oo 23

an > 2 for all n.

The class of all rotation numbers satisfying (23) will be denotedbit
can be shown that the Hausdorff dimensioiia$ less than or equal tg/2,
see [7]. On the other hani, contains Diophantine numbers: for example,
the numberp whose partial quotients ara, = 22" is Diophantine and
satisfies (23).

Theorem 5.1. For everyp € B there existC* critical circle maps f, g
with p(f) = p(g) = p such thatf and g are notC*# conjugate for any
B> 0.

The proof will make use of &£ surgery procedure that we explain
below. These counterexamples have one additional feature: their successive
renormalizations do converge together at an exponential rate. This will be
clear from the construction.

5.1. Saddle-node surgery

Given f as above and afixau> 1, letJ, = J,(f) = [f9%(¢), f9-1(C)] C
S' be then-th renormalization interval of . Whena, is very large, the first
return mapf, : J, — J, is an almost parabolic map of lengdh.

Let A(ln) be the fundamental domain of this almost parabolic map which
is adjacent tax,_; = f®-1(c), and letAl” = 1THAM), | < an. Let
z, € A" be the point such thaf2(z,) = X2 = f¥2(c), that is,

z, = f%+2=@d(c), Note that sincea, > 2, Xn42 IS not an endpoint of
far(A), and so by the real bounds it splif§"(Al") into two intervals

of comparable lengths. Hence the same holdszforNamely, z, splits

A" into two intervalsLy,, R, with |Ly| =< |R,|. In particular we have
7]A"| < |La| < (1= p]AP| (and similarly forR,) for some constant
depending on the real bounds. We use this fact in the proof of Proposition 5.2
below.

Consider now another critical circle mdpwith the same rotation num-
ber asf, the intervald, = Ju (), the first return magf,, : J, — Jn, the
point #, = f%-+2-a% (§) and the corresponding intervals,, R,. Also, let
Nn = [an/2].
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Definition. The number

R (DI R A (SD]
" (R [T (R

is called then-th order discrepancy betwednand f.

Proposition 5.2. Given aC® critical circle map f with p(f) € B, consider
a functiono(n) — oo such that

lim sup

| ~ 0.
o) 9% = o

Then for alln > 1, there exists a critical circle maﬁ = F(n; f) with
the same rotation number and critical point &sand having the following
properties.

(@) We havefi(c) = fi(c)for 0 < j < guya; in particular, Jo(f) = J, =
Jn().
(b) We havef = @ o f, whered is aC* diffeo such that

< Bk| Jn |cr(n)7k+l

| % —ids |

for all k, whereBy > 0 is constant depending only ¢n

(c) Then-th order discrepancy betweehand f is > C|J,|2™.

(d) We haved,,1(f) = Ja(f) and frpr = fopq; in particular, m-th
order discrepancy betweehand f is equal to zero for alm > n.

Proof. We modify f inside f1(A{") using aC> bump function so as to
movez, by a distance= C|A{”|"°™ inside Al". This we do as follows.

Lety : [0,1] — [0, 1] be aC® perturbation of the identity such that
lp(x) — x| > |A{]°™ forall T < x < 1 — 7 (andt as above), and such
that |D*p(x)| < By|AY|°™ for all 0 < x < 1 and allk > 2. Define
dn: AV — AV by ¢ = A, 0 9 o A-TwhereA, is the affine orientation-
preserving map that carrig®, 1] onto A, Note that|@n(z,) — zn| >
|AY 1™ Moreover, sinceD¥p, = |A” |1 KDkg, we have

for all k. Definey, : ALY — AY as the conjugate af,! by the diffeo
fa-t: AV — A, namely

o(n)—k+1

¢t —id < BJAY]

()
Al ck

Y = fa o to(fh=t, (24)
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Using theC™ Approximation Lemma (see Appendix A), we see from (24)
that
o(n)—k+1

ot —id < ByA|

+1 ;
v~ idg

< C’
Ck—l -

()
A ck

Define® : St — S' to be equal tap, on A{”, to ¥ on AL and to the
identity everywhere else. The critical circle map we look fof is- ® o f.
Note that||®*! — idg ||ck < By AV |7™ =K+ for all k; since| AL | < | J,|
by the real bounds, this provek)(It is also clear from the construction
that property &) holds too. It follows in particular that the first + 1
partial quotients of the rotation number 6fagree with those of . More
remarkable is that, because wiggtdoes is undone by, we have

{fqn||n+1 = fqn||n—~-1

fonir)], = foer],

In other terms,f, = f,, the n-th renormalizations agree. Therefore all
subsequent renormalizations agree as well. This showfiat= p(f)
and also proved).

Itremainsto proved), so we estimate theth order discrepancy between
f and T from below. Sincdz, — z,| > |A{"|**™, a simple calculation
yields

Ll Ll
IRal Ry
provided n is sufficiently large. Since, by the real bounds, the map

fN-1: AfY — AW has bounded distortion, and sinég = f,, inequal-
ity (25) gives us

> CIAT™ > ClJ, ™, (25)

Nh—1 FNn-1/1
|an 71(Ln)| . |InN 71(I:n)| 2 C|Jn|2<y(n) ,
" (RO ™ (Ry)I
and this provesd). m|

5.2. The counterexamples

We now iterate the procedure given by Proposition 5.2 to prove our Second
Main Theorem (that is, Theorem 5.1). We start witlC& map f with
o(f) € B as before and selent < n, < --- such that

lim
i—o0 Njo(N;)

loga, = oo, (26)
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where o(n) is as in Proposition 5.2. Now we generate a sequence
O ..., G, ... recursively, starting witlyy = f, and taking, for all > 0,
Oi+1 = F(nit1, G), whereF(-, -) is as given in Proposition 5.2. Eachis
a C critical circle map withp(gi) = p(f), andgiy1 = ®j,1 o gi, where
®j, 1 is aC™ diffeo with

|

H-ids| = Beremen, 27)

for all k, where O< 6 < 1 is a constant depending only on the real bounds.
From (27) it follows that® = lim ®; o - - - o ®; exists as &£ diffeo, and
therefore so doeg = lim g; = ® o f as a critical circle map.

Using propertiesd) and @) of Proposition 5.2 for eacl, we deduce
that then;-th order discrepancy betwednandg satisfies

[ Lol |gmi—l<Em>|‘
o HR)L gy T (Ry)

whereN; = [ay, /2], etc.

Now, leth : St — S' be the conjugacy betweehandg mapping the
critical pointcto itself. Supposé wereC*+# for someg > 0. Then the left-
hand side of (28) would be C|fN-1(A{")[#, whereA!™ = L, UR,.
But by Yoccoz’s Lemma, we have

> ClJy >, (28)

1
@
Combining the above with (28) and (29), we would get the inequality

aﬁiﬁum |20(ni)—/-‘5 < C.

- . 1
|t al™)| = 1l = 1l (29
|

But by the real boundgl,| > Cu" for all n, where O< u < 1. Therefore,
taking logarithms, we would have

nio(n;) B

but this clearly contradicts (26). ]

lim sup

Remark. A closer look at the construction performed above, especially at
expressions (27) and (30), reveals that if
. 1 k 1
limsup—loga, > —log—
n Bo T
then one can construct a pair ©f critical circle maps (whose renormal-
izations converge exponentially fast) that are @5t# conjugate for any

B = Bo.
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Appendix A. Compactness of renormalizations

The real a-priori bounds proved in the Sect. 3 have produced a very import-
ant corollary, namely, that the renormalizations of an arbit@#ycritical

circle map are uniformly bounded in th@! topology. In this appendix

we will use further a-priori estimates, this time involving the Schwarzian
derivative, to prove that such renormalizations are uniformly bounded in
the C"~* topology when the critical circle map ". Some technical tools

are necessatry.

A.1l. TheC™-Approximation Lemma

In what follows, m > 1 will be a fixed integer and,J < R fixed
closed intervals. We denote I6y/"(1) the Banach space @&™-mappings
f : I — R with the norm|| f |, = max||D' flo: O <i < m}, where
l$llo = sup,, l@(X)|. Sometimes, when we need to emphasize the domain
of f, we write|| f ||, m instead of f||m. We consider also the closed, convex
subsetlC™(l, J) € C™(l) consisting of thosd’s such thatf(l) C J.

Recall Leibnitz's formula for thek-th derivative of a product of two

functions,
k

K\ . .
DX(uv) = (.)D'u DKy
2\
from which it is clear that

[uvllm < 27(|ullmllv]im 3D

wheneveru, v € C™(l). Something similar holds for the composition of
two C™ mappings. Namely, we have Faa-di-Bruno’s formula (cf. [11], p. 42)

k

D¥(fog) = ) Bjk(D'g.D?g.....DIgy D" fog,
j=1

where eachB;  is a homogeneous polynomial of degiee- j + 1 on j
variables whose coefficients are non-negative numbers depending only on
k and j. It readily follows from this formula that ify € C™(l, J) and

¢ € CM(J) then

m
g o Vlm < AMBlm D _ IV (32
k=1
where A(m) = max <x<m MaX<j<k Bjx(1,1,...,1).

Another well-known fact we will need below is the followingf(
[6], Th. 3.1). Supposan > 1 and consider the composition operator
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(f,g) — fogasamam : C™(J) x C™ (1, J) - C™1(l).Then®is
C! and its Fréchet derivative is given by

DO(f,g) (U, v) = Uog+vDfog. (33
Note thatC™(J) x C™ (1, J) € C™(J) x C™1(1); we consider this last
product endowed with the norm

[(£, 9, 3 = maXl fllam, 19l m-1) -

Lemma A.1. For eachM > 0, there existx(M) > 0 such that, iff;, g; €
C™J) and f2, go e C™ X1, J) and if|( f1, f2)]1,m< M and|(ga, )1, 3m <
M, then

Ifio fa—gioGllm1 < c(M)|(fr—g1, f2— G|, ;-

Proof. By the mean value theorem,

[fro fo—010Qlm-1 < suplIDO(®, V)| [(f1 — 91, T2 — G2)l1,am .
(9. ¥)

where the supremum is taken over @hl, ) in the line segment joining
(f1, f2) to (g1, Qo) insideC™(J) x C™1(1, J), and where

IDO®, ¥)II = sup{IDO(¢, ¥)(U, V)llm-1: (U, v)]13m < 1}

is the operator-norm dD® (¢, ¥). Using (33), and then (31) and (32), we
have

IDO@, ¥)(U, V)Im-1 = U0 Ylm-1+ [lvDPo Yllm-a

m—1

< (ullm-1 + 2" M vllm-1 1 Dpllm-1) AM—=1) > [yl 4 -
k=1

From this, and taking into account thid|lm-1 < [[Ullm < [(U, V)|;.3m &S
well as||v|lm-1 < |(u, v)||.3.m, We deduce that

m—1

IDO@. W < AM—1) (1+2" Y Dpllms) S IVII5; .

k=1

Finally, since||D@llm-1 < [[¢llm and|(#, ¥)|1.am < M, we get

m—-1
sup[DO@, Y)| < Am—1) (1+2™'M) Y M = ¢(M). O
@) —

Let us denote bB™(I; M) the ball of radiusV centered at the origin in
c™(l).
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Lemma A.2. (TheC™-Approximation Lemma)

For eachM > 0, there exist constants,, > 0 andCy > 0 such that the
following holds for alls < ey. LetAq, Ay, ..., Anyq be closed intervals on
the line or on the circle, and for each<i < nlet fj, g € C™(Aj, Ai;1)
be such that

(@ Foralll< j <k<n,wehavefyo fi_jo---0 fj € B"(A}; M);
(b) We havey_, || fi — gillm < &

Then for allk < n we havege o gx_1 0 --- o g1 € B™%(A; 2M), and
moreover

k
Ifko fiao--ofi—Gkotkao--otlma < Cu > I —gjllm-
j=1

Proof. In the notation of Lemma A.1, let us write
Cv = max{1, c(2M), c(2M)c(3M)}

andey = M/Cy. We proceed by induction ok Whenk = 1, we have
I f1 — 01llm < ¢ and there is nothing to prove. Suppose the assertion is valid
for all j < k, and write (omitting the composition symbols)

I fkfeg - f1— k-1 Gullm-1 <
K
ZH foo o fj410)095-1--- 01— f- -« fjpafjgj—1- - Rllm-1. (34)
=1

Since [(fj, gj-1 0 --- o O1)laa;m < 2M and also [(gj, gj-1 ©
- odn)|a;a;.m < 2M, it follows from Lemma A.1 that
Ifjgj-1--- 01— gjgj-1- - Gillm-1 < c@M)[|fj — gjlIm,
for j = 1,...,k. In particular, by the induction hypothesis, we have for
all<j<k-1
I figj—1---gillm-1 < 9j9j-1---Gallm-1+emCc(2M) < 3M .
Taking this back to (34) and applying Lemma A.1 again, we get

I fifk - f1— OkOk—1- - - Ga1llm—1
k-1

< c@M)|l fk — Gkllm + c(2M)c(3M) Z ;i — 9jllm
j=1

k
< Cu ) Ifi—gjllm

j=1
and this shows also thdkOk_1- - - 91llm—1 < M + emCn < 2M, thereby
completing the induction. O
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A.2. Koebe principle revisited

We present a generalization of the classical Koebe non-linearity princi-
ple. This principle states that if &2 diffeomorphism has non-negative
Schwarzian derivative on an open interval, then its non-linearity on any
smaller closed subinterval witkpaceon both sides is bounded. The gen-
eralized version below seems to be new. We denot&bthe Schwarzian
derivative ofg.

Lemma A.3. Given positive constant8 and z, there existsK,;g > 0
such that the following holds. I is a C3-diffeomorphism of an interval
| D [—1, 1+ t]into the reals and iSp(t) > —Bforall t € I, then for all
t € [0, 1] we have

¢'®| _
Py

Proof. Writing y = ¢” /¢, so thatSp = y' — %yz, we have the differential
inequality

,B -

1

Let 0 < tp < 1 be a point whergy(t)| attains its maximum irfi0, 1] and
supposey, = Y(to) is such thatyy| > +/2B = B. If z(t) is the solution of the
differential equation corresponding to (35) with initial conditiz(ty) = Yo,
then by a well-known comparison theorem we must haite> z(t) for all
t > to andy(t) < z(t) for all t < to. Now, if yo > B then integration of the
ODE leads to

2t) = B (Yo + B) + (Yo — P!~

Yo+ B) — (Yo — Beft-t0) |

Since this solution explodes at time

1
t1:t0+—log(y0+'3> s

B Yo— B
so doesgy(t). Hencet; ¢ 1, i.e.t; —tg > 7, which gives us
(ﬁ//(to) eﬂt + 1
e < .
pto 0P o1

If insteadyy < — 8, then we get
(B+ Yo) — (B — yo)&'' ™

Zt == )
® 'B(ﬂ + Yo) + (B — Yo)&ft
and arguing as before for< ty gives us
(4 e+ 1
¢"(to) Vo> —p

¢'(to) et -1
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Therefore the lemma is proved if we take
e +1

Keg =
8=Fg 1

Remark.As B — 0, K; g — 2/t and we recover the classical Koebe
principle.

A.3. Bounding th€? norms

As before, letf e Crit"(Sh), r > 3, be a critical circle map with critical
pointcof power-lawp > 1. Conjugatingf by a suitableC" -diffeomorphism,
we may assume that there exists a neighbortioad R /Z of ¢ such that

fx) = x—0o)x—cPt+a
for all x € U, wherea is a constant. This will be our standing hypothesis

on f, and we will sometimes say thdtis acanonicalcircle map. Note in
this case that for alk € U \ {c}, the Schwarzian derivative df equals

pP-1
2(x—0)?2 "’

We are interested in the magg-2~1: 1} — " and fo—1: |1, —
Ir?”l, for a fixedn > 1. They extend as diffeomorphisms to maximal open
intervals J.; 2 I1 and J, 2 I, respectively. When linearly rescaled
to unit size, these dlffeomorphlsms are called toefficientsof the n-th
renormalization off.

Let us be more precise. Consider ti#h renormalization off , namely
the commuting pairf, : [An, 1] — R defined in Sect. 3. We writ§ ; =
fi=1(J;,) for each 1< i < g = Oz and J;, = fi=1(J3})) for each
1<j=<Q=qnWealsowrite],, = f~1(J; ) andJ o= 13+ ). For
each0< j < Q,letAj: R — R/Z be the affine (orlentatlon preserving)
covering map such thaAJ-([O, 1)) = I,l_l. Let A, be the component of
Al‘l(Jrfl) that contains the intervék,,, 0], and letA be the component of
A7) that contains the intervg0, 1]. Then define

Sfx) = — (36)

Fr=Agtof0 oA i A7 - R
Fir=AtofQ oA A - R

These are the-th renormalization coefficients of. Consider also the
so-calledfolding factorsof f,,, namely the maps

on =A7t o folAo: Agt(Jp) = R
gr =A7t o foAo: Agt(dT) — R
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Each of these maps is a homeomorphism with a unique critical point at zero.
One verifies at once that the mas = F,, o ¢, andF; = F,| o ¢ are
C' extensions off ;- and f, respectively.

It will be useful to express the coefficienfs" as long compositions of
rescaled diffeomorphisms in the following way. We will give the explicit
decomposition forF,+. A similar decomposition can be worked out {8 .

Let us denote byA;j the component ofAj‘l(J,jfj) containing the unit
interval. Note in particular thatt = A;il. For eachj in the range 0<
j<Q—1let

fj = Aj_-ij:lo f OAJ' IA:!J- — A:.,J'+1'
We call such maps thedementary factorsf 7. Eachf; is aC" diffeomor-
phism such thaf; ([0, 1]) = [0, 1] (see Fig. 5). We have of courgg = fo,
but more importantly

]-"rJ]r=(AaloAQ)o(fQ_lo---ofjo---fl). (37)

We note also that for atle AY j

Sfi® = ST(A;®) [DA;O] = ST(A;®) 11) 412, (38)
by the chain rule for the Schwarzian derivative.

Notation. GivenJ = [a,b] € R andt > 0, we denote byl* the interval
[c,d] 2 Jsuch thata—c)/(b—a) = (d — b)/(b—a) = r. Note thatJ
hasspaceequal tor inside J*.

T S (3

R/Z

+
A"y]'

Fig. 5. The elementary factors o
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Theorem A.4. (TheC? bounds)

Let f e Crit3(Sh be a critical circle map with arbitrary irrational rotation
number, letf, : [An, 1] — R be then-th renormalization off , and letF+ :
Ay — R be the coefficients of,. Also, letf; : A7, — A;,., be the
elementary factors of,". There exist positive constarisandt depending
only on the real bounds fof such that the following statements hold for

alln> 1.

(@) We haveA, D [Aq, 0" and A D [0, 1]F = [—7, 1+ 7].

(b) Forall0< j < Q,we haV(—\A,J{_,j D [0, 1°.

(c) We haveSF; ()| < Bforallt € A, and|SF(t)| < Bforallt € A

(d) More generally, foralll < j <k < Q,we havegS(fo---ofj) ()| < B
forallt e Ay ;.

(6) The C2 norms of the restrictionsF |[An, 0]72 and F;|[0, 1]%/2 are
bounded byB.

(f) More generally, for alll < j < k < Q, theC? norm of the restriction
of fyo---o fjtotheintervalf;_jo---o f([0, 1]7/?) is bounded byB.

(9) TheC2 norms off~ and f+ are bounded byB.

Moreover, ifn is sufficiently large then both coefficients have negative
Schwarzian derivatives at all points of their respective domains.

The proof will use the following lemma concerning the dynamical par-
titions P,,. Let us denote by(c, 1) the distance between an intervac S
and the critical point. For eacln > 1, let

B 1 \?
S <d<c,|>)‘ =9

l€Pn\{In-1,In}

Lemma A.5. The sequenc&, is bounded (by a constant depending only
on f).

Proof. Recall thatP, ., is a strict refinement oP,,. From the real bounds,
we know that there exists a constankQ. < 1 depending only orf such
that, if | isinP, andJ C | isin Py, then|J| < A|l|. Hence

SR < ( max |J|)|I| < IR
12J€Pny2

12JePny2

Since we also have(c, J) > d(c, | ) wheneverd C |, it follows that

19 \? 19
o2 S ASE D (d(cJ)) > (d(c,J)>

Pn+233CIn-1\Int+1 n+23JCIn\Ins2

In_1)\? Inl \?
5)»514—)»('”“) +)L(|n|) )
||n+l| ||n+2|
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From this and the facts that, 1| =< |ln1] @and|ln] =< [ln2| , we get
S2 < AS + u, wherep is a constant depending only dn But then, by
induction,

_ 2 “
< )\‘nl —_ < )\‘n —_
Sn < SZ+1—A Sny1 < Sl+1—k

and therefores, is bounded as claimed. O

Proof of Theorem A.4tis enough to prove this theorem under the assump-
tion that f is canonical. The existence of- 0 such thatg) and p) hold is

a consequence of the real bounds. Hence we proceed to m)dee ',

the proof forF, being completely similar. Making smaller if necessary
and using the classical Koebe non-linearity principle, we can assume that
there existC > 0 depending only on the real bounds fosuch that

ID(fj--- fO®] =C, (40)

forallte[-r,1+t]andallj=1,...,Q — 1.

Let YV C S' be an open set whose closure does not comtaind such
thatt/ UV = S Also, letM = sup., |Sf(x)|. We assume that is so
large that the largest interval iR, has length smaller than the Lebesgue
number of the coverin§{, V}. Together with (37) and (38), iterated use of
the chain rule for the Schwarzian yields

SFI(t) = S(foog--- fj-- f)(®

Q-1
= Y Sh(fj_1- 1) [D(fj_1--- D ®]
j=1
Q-1 ,
= Y SHA) i fu®) [104] [D(Fa--- O]

j=1
We split this last sum int@&;(t) + Z2(t), whereX(t) is the sum over all
j’'s such thatl,{_l C U and Zy(t) is the sum over the remaining terms
(i.e. those withl|_; < V). Then we have on one hand

S0 < CM Y [1LF < M max [I},]. @

1<j=Q-1
1SV

On the other hand, sinaic, Jrfj) = d(c, |rj171) for all j, we have by (36)

(A

——— <C'§, (42
[dce. 37T

D] < C* >

j
|n_1§U
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whereC’ is another constant depending only brand §, is given by (39).
From (41) and (42) it follows thatSF (t)| is uniformly bounded, and this
proves €). Moreover, since by (41X,(t) goes to zero witm while X4(t) is
always negative and bounded away from zero, we deduc&#att) < 0
for all n sufficiently large. The proof ofd) is entirely analogous.

To prove €), let By be the upper-bound that we have just obtained for
|SF|. Applying Lemma A.3 taFf, we get for allt € [0, 1]7/2

‘ D2F, (1)
— | = 70,Bo0 »
DFF(®

wherety = 1/2(1 + 1) is the space of0, 1]/? inside [0, 1]°. Therefore
ID2FFllo < Kyl DF o < CKyy 5y, by (40) above. This shows that
the C2 norm of £+ is bounded as claimed. A similar argument prove (
Finally, (g) follows from (€) and the fact that the folding factogg are linear
blow-ups of a fixed power-law map. The theorem is therefore proved if we
take B to be the largest of all the upper-bounds obtained in the argument.

Remark.We can go a bit further ingj, () and @) and bound also th€?®
norms. For this purpose, it suffices to note for instance that

3[D2F M7
D3FF(t) = DFF(t) | SFF®H + = . :
0 n<>< f0+ 5 B
and then usec] and €). However, this argument does not generalize to get
bounds for higher derivatives. Our bootstrap argument in the next section
will follow a different route, based on theé™ Approximation Lemma.

A.4. Bounding th€" ! norms

We will show that the sequence of renormalizations & ecritical circle

map is bounded in thé'~* sense. The limits fall into (a compact subset of)

a special family of analytic critical commuting pairs known as the Epstein

class. Moreover, we will prove that such limits are attained at an exponential
rate in theC'~* topology. The rate of convergence turns out to depend only
on the rotation number of the given critical circle map.

An Epstein mapis a homeomorphisnp : | — J between closed
intervals on the real line such that? is the restriction of an analytic
univalent map® : C(J) — C(l"), wherel’ > | andJ’ O J are open
intervals. Here we use the notatidi{A) = (C \ R) U A. For example,
every fractional linear transformation RSL(R) is an Epstein map when
restricted to an interval on the line which does not contain any of its poles.
Further examples include polynomial or rational diffeomorphisms with real
coefficients.
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Definition. A commuting pairf is said to be afEpsteincommuting pair if
ffT=¢ptoQandf~ =¢ oQ,wherep", ¢~ are Epstein maps ar@ is
the power-law map — xP (for somep > 1).

Theorem A.6. Letr > 3and letf be aC' critical circle map with arbitrary
irrational rotation number. Then the sequence of renormalizat{@iy f )}
is bounded in th€'~! metric and converge€' ! exponentially fast to the
Epstein class.

The idea behind the proof of Theorem A.6 is quite simple. In the long
composition defining tha-th renormalization of a critical circle map, we
replace the factors away from the critical point by suitable fractional linear
approximations, which are all Epstein maps. The factors which are close
to the critical point are already Epstein because the map is assumed to be
a power-law there. Therefore the entire new composition is an Epstein map.
The Moebius approximations have to be carefully chosen, however, so that
the total error involved, estimated with the help of (b8 Approximation
Lemma, be exponentially small m(the step of renormalization). We now
present the technical result which is needed.

Lemma A.7. Givenr > 3and an orientation preservin@' -diffeomorphism
¢ : | — R of a closed intervall onto its image, there exist constants
¢y > 0and K, > 0 with the following property. For each closed interval
A C | of length|A| < ¢,, there exists a fractional linear transformation
Ta € PSL(R) with To(A) = ¢(A) such that,

(@) supca |DFp(X) — DETA(X)| < KylAP K fork=0,1,2.
(b) supu [D*TA(X)| < Kgforalll<k<r.

Proof. Let ¢, be the constant

¢ (X) }
"X )

Take any closed intervah < | with |A| < ¢,, and letxy be the left
endpoint of A. Let T be the unique fractional linear transformation with
the same 2-jet ag at Xo. Thus, if T(X) = (a(Xx — Xg) + b)/(c(X — Xg) + d)
with ad — bc = 1, then the coefficients are uniquely determined by the
conditions

ly = min{l, inf

xel

b
T(xo) = g = ¢

1
T'(X0) = E - ¢'(Xo) , (43)

T = —5 = ¢000).
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Moreover, for allk > 1,
(_1)k+lk!ckfl
[c(x — Xo) + d]*"t

Since|x — Xo| < |A] < £y < |¢'(X0)|/1¢" (Xo)| = |d|/2c| for all X € A,
we have

D*T(x) =

(44)

%Idl < je(x—=Xo) +d| = gldl (45
for each suchx. Combining (44) with the lower bound in (45), we get
2Kkl 4K ¢ (xo) KT

AT T T g (ko) <2
forall x € A and allk > 1, and consequently

{4k!|¢"(X)|k‘l}
@'k |

IDT(x)| <

sup|D¥T(x)| < Co = max su

XeA 1=k=r ye|

(46)
when 1< k <. In particular, from

D?¢(x) — D?T(x) = f D34(t) dt — f D3T(t) dt ,

X0 0
we deduce that
249" (X0)|?

ID3¢llo X — Xol + ————— |X — Xo|

D? — DT
[D*¢00 - DT ¢ (%0)]

IA

IA

(ID%pllo + Co) 1A],
for all x € A. Integrating this inequality twice, using (43), we get

sup| D“¢(x) — DT(x)| =< CylAP, 47
XeA
fork =0, 1, 2, whereC, = Co + || D3¢ |o.

Looking at (46) and (47), we see thhais almost what we want, but not
guite because in general it does not mapnto¢(A). To correct this flaw,
we replaceT by TA = Ao T, whereA is the unique affine, orientation-
preserving map that carri@§A) ontog(A). We have

lp(A)]
A -t = | ———-1
O [IT(A)I

forallt € T(A), because(Xg) = T(Xp). Letu = |¢(A)|/|T(A)|. Since by
(47) we have|p(A)| — |T(A)|| < 2C4|AJ3, and since by the upper-bound
in (45) we have

| T(A)] = inf 1 4

] (t—Txo)) , (48)

N Yoh [c(X — Xg) + d]? = oF

— 4 /
= §|¢(Xo)|,
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it follows that

9C, 5
-1 < A
== oo
Thus we see that, for dlle T(l),
/ 9C, 2 2
AW -1 = |u—1 < ———|A]” = C|A|7,
= 2t ool A T A

On the other hand, sin¢&(A)|
it follows from (48) that

IA

| Dellol Al +2C1| A3, and sincgA| < 1,

|A(t) —t| < C (|ID¢llo +2C1) |A]® = ClA]3.
Therefore
lp(X) —Ta(X)| < [#(X) — T+ T(X) — AT(X)| < (C1+C3) |AI*, (49)

and moreover, using the fact thatT, (x) = «D¥T(x) for all k,

IA

IDXp(x) — DXT(X)| + [ — 1] |ID*T(x)|
C1| AP K 4+ CoCylA |2 (50)
< (C1+CoCp) |APK,

|DXp(x) — DKTA(X)|

IA

for all x € A andk = 1, 2. Finally, for allk > 1 we have
IDTa)| = (L+CalAl?) DT < (1+C2)Co. (5D

Part(a) now follows from (49) and (50), while patb) follows from (51),
provided we take{, = max{C; + C3, C; + CoC», (14 C,)Co}. O

Proof of Theorem A.6\e now expand the outline given above and present
a complete proof of Theorem A.6. In the proof, we will denot&lyC, . ..
positive constants depending only on the real boundd fés before, we
may assume from the start thais canonical and accordingly we consider
the covering{i{, V} of St defined in the proof of Theorem A.4. Since the
folding factors of f,, are power-law maps, and therefore already Epstein, it
suffices to prove that thepefficientof f, can be approximated by Epstein
maps, up to an error exponentially smalkiin the C'~* topology. We will
do this for 7", the proof for¥,; being the same.

As in the previous section, lefy : Ay, — A, 1< j<Q—1,be
the elementary factors ;. For each 1= j < Q we define

AJ' = fj,lo ..o frofy ([O, 1]r/4) - AT

nj>

where< is the constant of Theorem A.4. Note thft(Aj) = Aj,4. Let
A} = Aj(A)), and observe also thgf ; € A} € J ;.
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We introduce individual Epstein approximatiogs to eachf;. There
are two cases to consider. It may happen thatc ¥/, in which case we
simply takeg; = f;. Otherwise, we have\’ C V. In this case, we let
Tj : A} — Al be the Moebius approximation g A’; that we get apply-
ing Lemma A.7 to the restriction off to V, and then take
gj = Aj7+ll o TJ' o Aj. Note thatgj(Aj) = Aj1.

Claim 1. We have|| f; — gjllr < Coll) ;2 forall j.

This is obvious wherl!_, € &. Whenl! , € V, we have|l]_,| =
|Ir’:11|, because the derivative dfon)V is bounded away from zero, and we
also hanA’j| = [I}_,|. Moreover, for all 1< s <r and allx € Aj,

|S

|
Dst(X) _ DsgJ (X) — | nj;ll
| In—l |

(D*f(Aj(x) — DTj(A(X)) -

Therefore the claim follows from Lemma A.7 (treat the cases 1,2
separately).
Now, recall from Theorem A.4 thatforall4 j < k < Q — 1 we have

I fco--ofill2<B.
Claim 2. If nis sufficiently large then for all ¥ j < k < Q — 1 we have
”fko'”OfJ_gko”'Ogj”lSCloﬂgé“:‘*l‘. (52
Takeng so large tha€Cy max|| jo_ll < eg, Wheresg is the constant given

by Lemma A.2 when we tak&1 = B. Then from Claim 1 and (52), the
hypotheses of Lemma A.2 are satisfied, and we get far allng

k k
Ifio--ofj—go---ogili<Ce Y IIfi—all2<CoCa |1h 4|

i=j i=j

|
< CoCsg Jmax lnal -
whereCy is the constant of Lemma A.2 fé = B. This proves the claim.

In order to bootstrap thesg' estimates up t€" ! estimates, we apply
the C™ Approximation Lemma once more, this time reversing the roles of
f; andg;, and withm = r. Thus, we need to verify the hypotheses of that
lemma in this new situation.

Claim3. Forall1< j <k =< Q—1,wehave|gco---ogjl <Co.

For brevity, writeGjx = gxo - - - o0 gj. ThenGJTk1 is univalent orC(A jx),
where Aj is an interval containings j(Aj) with definite space on both
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sides, by our choice of. Using Koebe’s one-quarter theorem, it is not
difficult to see that the domaif = ij(l((C(Ajk)) contains a rectangle
W; = A x [=B, Bl, and t_hatd(8W,-, 0R2jk) > y wherea, g andy are
positive constants depending only erand the real bounds fofr. Hence,
from the complex Koebe’s distortion theorem, we get

ljk(z)
G/jk(w)

4
< exp{;diam(wj)} < Cs,

for all z,w e W;. This together with the mean-value theorem gives us
|Gk(2)] < C4, and therefore alsflGk(2)| < Cs, for all x € Wj. Now we
use Cauchy’s integral formula to bound all higher derivative&gf We
have for allx € Aj and alls> 1

s! Gik(2 Css! e
S . _ i LS o ) —s—1
DG = o \/BWJ_ Zooei 04 = - BHIr2wIA D

wheres; = infyca; d(x, dWj) = min{a|Aj|, B} > § = min{a, b}. There-
fore| DSG jk(X)| < Cesl85~1. This shows thatG i ||, is bounded as claimed.

From Claims 1 and 3, the hypotheses of Lemma A.2 are therefore
satisfied, and we have

A

k
Ifxo--ofj—dko---ogjlli-1 < Ce, Y _IIfi—gills
i=]

IA

k
CoCc, Y 14
i=]

CoCc, max |1}
0 CZOsisQ| n-1

A

’

this time for alln large enough so th&l, max| Irj,71| < &c,, WhereCc, and

ec, are the constants of LemmaA.2 fiok = C,. Since maxl]_,| decreases
exponentially withn, we are done. ]

Appendix B. Proof of Yoccoz's Lemma

The main geometric idea behind the proof of Yoccoz’'s Lemma is to use the
negative Schwarzian property 6éfto squeezehe graph off between the
graphs of two Moebius transformations. The required estimatd faill

then follow from the corresponding estimate for Moebius transformations,
which we now state and prove.
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Consider the fractional linear transformatidiix) = x/(1 + x), and
givene > 0, let T, (x) = T(X) — . We are interested in certain quantitative
aspects of the orbit, = T."(xo) for Xo = 1. Observe that this sequence is
strictly decreasing.

LemmaB.1. Let N > 0 be such thatxy.1 < 0 < Xy. Then we have
N = 1/./e and moreovex, — X1 =< 1/n?forn=0,1,... , N.

Proof. Writing 8, = T"(Xp) — T."(Xo), we have

8n—1
Sh=c+ (33
’ (1+5) @+ 5 —dn-1)
foralln=1,2,..., N+ 1. We claim that
n
Eg < 8, < ne. (54

The last inequality is clear. To prove the first, we note from (53) that

n 2
on > Sn_1 -
n_8+(n+1) n—1

By induction, this gives us

£ e nin+1)2n+1)
S 124224 ... 2) =
nz(n+l)2( +224 .-+ n?) TEET 5
ne
>_7
-6

which proves the claim. Now, from the fact thaf,; < 0 < XN we have
the inequalities

1
N+2°

In < N1 >

N+1'
Then, using (54), we get
1 6
<€ < T
(N+D(N+2) N(N + 1)
which proves the first assertion.

Next, note that sincp1, Xn] € [Te(0), T, H(0)] = [—¢, /(1 — )],
we have

(595

E < XN — XN4+1 < 3e (56)

Hence, by (55), we gety — Xn+1 = 1/N? and the second assertion is
proved whem = N. To prove it in general using this information, observe
that

Xn,]_ — Xn . anl - Xn
Q+x-)@+X0) (145 —8na) (14 537 — )

Xn — Xnt1 =
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implies

n
Xp — Xns1 > Xn—1 — Xn) -
n n+1 — I’]+2( n—1 n)
By induction, this gives on one hand

1

X —Xl)im,

n— Xpt1 = m (Xo

and on the other hand, using (55) and (56),

N—n .
n+j+ 2) 54
Xp— Xny1 < (Xn — X . < :
n—Xn+1 = (XN N+1)jl:[1( Nt N+ Dn+2)
This proves the second assertion in all cases. ]

Now recall thatf : AU AU --- U Ay — R satisfiesf(Aj) = Ajq
for all j. Without loss of generality, we can assume th@af) < x for all x.
Thus, if we callxg the right endpoint ofA; and writex; = fl(xp), we
haveA; = [X;, Xj_1] for all j. Since our mapf is a negative-Schwarzian
diffeomorphism, there exists a uniquein the domain off such that
e = |f(2) — 2| < |f(X) — x| for all x. Since the statement we want to
prove is invariant under affine changes of coordinates, we may assume also
thatz = 0 andxp = 1. In this setting, we want to prove thak;| =< 1/j2
for all j such thatA; € [0, 1]. Note thatf’(0) = 1.

Next, let A be the Moebius transformation on the line such that
A(Xg) = f(Xg) and A(0) = f(0) and A'(0) = f’(0) = 1. This determines
A uniquely, and in fact

for somei > 0. SinceS f < 0, we see thaAA(x) < f(x) for all x € [0, 1].

Likewise, letB be the Moebius transformation such tieak,) = f(Xa),
B(0) = f(0) andB’(0) = f’/(0) = 1. This determine® uniquely, and in
fact

B(x) =

1+MX_8

for someu > 0. This time, sincez < 0 andS f < 0, we havef(x) < B(X)
forall x € [0, 1]. In particular > u. Itis easy to see that/u < c,, where
¢, depends only on the constanin the statement.

Lemma B.2. Letx € [0, 1] andk > O be such thatA(x) < B¥(x). Then
k<1l+4A/u.
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Proof. By induction we have
X
BK < - - @
® = ko ux ¢

ThereforeA(x) < BX(x) implies (k — 1)ux < AX. O

Now, let us writea, = A"(Xg) and 8, = B"(xg). By Lemma B.2,
the number ofg;’s inside each interval of the forravn, 1, an] is bounded
independently oh. Moreover, sincex, < X, < B for all n, the num-
ber of x;’s inside eacHan;1, an] is also bounded independently of To
prove that|A;| =< 1/j? we proceed as follows. Let > 0 be such that
Be+1 < Xj < B¢ < Xj_1. Then Lemma B.2 says that< Cj, and we have
also

[Beyr — Bel < IBXj—1) — Xj_1| < [Xj — Xj_1] .
Since by Lemma B.1 we have
1B Bel 1.2
€+l 14 — EZ - CJZ k)
it follows that|A | = |xj — Xj_1| > 1/Cj2.

To prove an inequality in the opposite direction, tetbe the largest
integer such thaty, > X;_1. Then, again by Lemma B.2, we haye< Cm.
Since A(X) < f(x) < x for all x, we also haveA; C [amy2, am]. Using
Lemma B.1 once more, we deduce that

C C
A}l < e =< F .
This completes the proof of Yoccoz's Lemma. O

Appendix C. A full-measure condition on rotation numbers

We present here our account of C.G. Moreira’s probabilistic argument show-
ing that condition (12) holds for a set of full-measurd@1]. His original
probability estimates were done for Lebesgue measuj@, itj. We prefer

to use instead a probability measure which is invariant under the Gauss
map, namely th&auss measurel' hese two measures are mutually abso-
lutely continuous, the density of the latter with respect to the former being
dx/(1 + x) log 2. With respect to the Gauss probability measure (the only
one we will use from now on), the partial quotiematg6) of 6 < [0, 1] are
identically distributed random variables. We warn the reader that these are
not independent random variables; they are cagymptoticallyindepen-

dent, a fact that is perhaps best expressed by saying that the Gauss map is
mixing
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Now, the probability that then-th partial quotienta, () be equal to
a given integem > 1is

1 1 2

From this, we see that the probability tlzgte) be at leasin is smaller than
4/m. These facts form the basis for our estimates, and yield the following
lemma.

Lemma C.1. There exists a full-measure detC [0, 1] such that for each
6 € E we havea,(9) < n? for all sufficiently largen.

Proof. Let E = liminf ([0, 1] \ An), where A, is the set of alb € [0, 1]
such thata,(6) > n? ThenP(A,) < 4/n?, and since the seri€s 4/n?
converges, we deduce by the Borel-Cantelli lemma &) = 1. O

We shall prove the following result, which establishes condition (12) for
almost all numberg € [0, 1] with w(t) = Cy(1 — logt), whereC, > 0.

Proposition C.2. Almost all number$ € E satisfy, for alll < n <k,

1 k+n k
= Z loga;j(®) < Cy <1+Iog ﬁ) , (58)

j=k+1
for some constant, > O.

Proof. In attempting to prove the inequality (58) for a givee E, we may
assume thak is so large thaa; (9) < j2forall j > k. The remaining cases,
corresponding to the remaining finitely many pdinsk), are taken care of
by a suitable choice of the constaiy.

Given(n, k), there are two possibilities to consider. The first possibility
is thatn? < k. In this case we simply observe that

k+n

k

- E logaj(#) < 2log(k+n) < 5log—,

n. n
j=k+1

for all sufficiently largek.

The second possibility is that < k < n?. Here, we shall prove that
with probability onethe left-hand side of (58) is bounded by 10. For this
purpose, let us consider the following pathologies.

(a) Foragivenm > 1, there are more tham2y, partial quotientsy.; (6)
with 1 <i < nsuch thaty,;(6) = m (wherepy, is as defined in (57)).
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By an elementary combinatorial argument, we see that this occurs with
probability at most

n

MVpia—pi < ()™ 59
jzéjpm]@pm( " < (3) (59

The probability that this happens fsomem in the range < m < n%/3
is therefore smaller than

1/3
o (< 2
if nis sufficiently large.
(b) There are more tham’/® partial quotientsy.; (6) with 1 <i < n such
thatay,i (9) > n¥/3. By a similar reasoning to the one used &), (we
see that this occurs with probability smaller than

<§)nl/3 _ n_];l

if nis sufficiently large.

Therefore, fixingn sufficiently large, the probability that there exigts
in the rangen < k < n? such that one of the above pathologies occurs for
(n, k) is certainly less thamn? x (2/n* = 2/n2. Since the serie3_ 2/n?
converges, again by Borel-Cantelli we deduce that with probability one
there are no pathologies fam, k) if k (and hence) is sufficiently large.

Now, if there are no pathologies fan, k), and noting thatfor ki < n
we have

aui(® < k+)? < (NP4+n)? < an*

if k is sufficiently large, we deduce that

k+n n¥/3]

1 1 n2/3
- Z loga;(®) < — Z(Zn pn) logm + — log (4n%)
j=k+1 m=1
In*/®)

4logm 1
Z Tz + m(ZIogZ—i—Mogn) ,
m=1

which is less than 10 if is sufficiently large. This completes the proafi
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