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Abstract. We prove that twoC3 critical circle maps with the same rotation number in a spe-
cial setA areC1+α conjugate for someα > 0 provided their successive renormalizations
converge together at an exponential rate in theC0 sense. The setA has full Lebesgue measure
and contains all rotation numbers of bounded type. By contrast, we also give examples of
C∞ critical circle maps with the same rotation number that are notC1+β conjugate for any
β > 0. The class of rotation numbers for which such examples exist contains Diophantine
numbers.

1. Introduction

The purpose of this paper is to study certain rigidity questions concerning
critical circle mappings. This study is continued in [5].

In the qualitative theory of smooth dynamical systems, the notions of
rigidity and flexibility play an important role. The smooth systems are
usually classified according to the equivalence relation given by topo-
logical conjugacies: two smooth mapsf and g are topologically equiva-
lent if there exists a homeomorphismh of the ambient space such that
h ◦ f = g ◦ h. Such a homeomorphism maps orbits off onto orbits ofg.
One can also consider a stronger equivalence relation given by smooth con-
jugacies. This leads to a quantitative or geometric classification of smooth
dynamical systems, since a smooth conjugacy, being essentially affine at
small scales, preserves the small-scale geometric properties of the dynam-
ics. Hence each topological equivalence class is “foliated” by the smooth
conjugacy classes and the quotient space is themodulior deformation space
of the dynamics. The moduli space describes theflexibility of the dynam-

E. de Faria: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão
1010, Butantã, CEP05508-900 São Paulo SP, Brasil, e-mail: edson@ime.usp.br

W. de Melo: Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim
Botânico, CEP22460 Rio de Janeiro RJ, Brasil, e-mail: demelo@impa.br

This work has been partially supported by the Pronex Project on Dynamical Systems, by
FAPESP Grant 95/3187-4 and by CNPq Grant 30.1244/86-3.

Mathematics Subject Classification (1991):58F03, 58F23



340 Edson de Faria, Welington de Melo

ics. When this space reduces to a single point, we are in the presence
of rigidity.

In general, since eigenvalues at the periodic points are smooth con-
jugacy invariants, we can hope to find rigidity only in the absence of
periodic points. From this viewpoint, the simplest case to consider is
that of circle diffeomorphisms. Iff is a circle diffeomorphism without
periodic points thenf is combinatorially equivalent to a rigid rotation
Rρ : x 7→ x+ ρ (mod 1), in the sense that for eachN, the firstN elements
of an orbit of f are ordered in the circle in the same way as the firstN
elements of an orbit ofRρ. From Denjoy’s theorem it follows that iff is C2

(or at leastC1 and its derivative has bounded variation) thenf is topolog-
ically conjugate toRρ. By a fundamental result of Herman [11], improved
by Yoccoz [20], if the rotation numberρ satisfies a Diophantine condition
such as ∣∣∣∣ρ − p

q

∣∣∣∣ ≥ C

q2+β ,

for all rationalsp/q, with C > 0 and 0< β < 1, and if f is Cr , r ≥ 3,
then the conjugacy isC1 (it is in fact Cr−1−β−ε for everyε > 0). On the
other hand, Arnold proved that some such condition on the rotation number
is essential: there exist real analytic circle diffeomorphisms with irrational
rotation number such that the conjugacy with a rigid rotation is not even
absolutely continuous with respect to Lebesgue measure.

Maps with periodic points cannot be rigid, but we can analyze the
rigidity of some relevant invariant set, such as an attractor of the map.
This is the situation studied by Sullivan and McMullen in the context of
unimodal maps of the interval. They considered the so-called infinitely
renormalizable maps of bounded combinatorial type. For such maps, almost
all orbits are asymptotic to a Cantor set which is the closure of the critical
orbit. They proved that if two such maps are smooth enough and have the
same combinatorics then there exists aC1+α diffeomorphism of the real
line that conjugates the restriction of the maps to the corresponding Cantor
attractors. The tools they developed have been of fundamental importance
for the proofs of our results.

Perhaps the most famous rigidity result in Geometry is the celebrated
Mostow rigidity theorem. A special case of this theorem states that two
compact hyperbolic manifolds of dimension at least 3 which have the same
homotopy type are in fact isometric. Here a hyperbolic manifold is the
quotient spaceHn/0 of the hyperbolic spaceHn by a discrete group0 of
isometries. The hypothesis of the theorem implies the existence of a quasi-
conformal homeomorphism of the sphere at infinity that conjugates the
actions of the two groups there. Sucha-priori step may be regarded as
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a pre-rigidity result. The rigidity is then obtained by proving that this qc-
homeomorphism is in fact conformal,i.e. a Moebius transformation.

The situation for critical circle mappings fits perfectly into this frame-
work. A critical circle mapping is a homeomorphismf : S1 → S1 that
is of classCr , r ≥ 3, and has a unique critical pointc around which, in
someCr coordinate system,f has the formx 7→ xp, where p ≥ 3 is an
odd integer called thepower lawof f . Yoccoz proved in [21] that a critical
circle mapping without periodic points is topologically conjugate to an irra-
tional rotation. Later, in an unpublished work, he proved that the conjugacy
between two critical circle mappings with the same rotation number is in
fact quasisymmetric,i.e. there exists a constantK ≥ 1 such that, for all
pairs of adjacent intervalsI1, I2 of equal length|I1| = |I2|, we have

1

K
≤ |h(I1)|
|h(I2)| ≤ K .

This is in contrast with the diffeomorphism case where, without restric-
tion on the rotation number, the conjugacy may fail to be quasisymmetric
(see[16], p. 75). Yoccoz’s result, whose proof we present in §4 and Ap-
pendix B, is the exact analogue of the pre-rigidity step in the proof of
Mostow’s theorem.

Rigidity Conjecture. If f, g areC3 critical circle mappings with the same
irrational rotation number of bounded type and the same power-law at the
critical point, then there exists aC1+α conjugacyh betweenf and g for
some universalα > 0.

So far we have succeeded in proving this conjecture only when the maps
are real-analytic. Our proof involves real techniques developed in this paper,
and deformation of complex structures, developed in [5].

1.1. Summary of results

We now present a quick summary of our results. As already mentioned, we
prove two main new theorems concerning critical circle homeomorphisms.

The first theorem brings forth the connection between renormalization
and rigidity in the context of circle maps. It also indicates that the above
Rigidity Conjecture might be true for a much larger class of rotation numbers
than bounded type. The proof is given in §4.4.

First Main Theorem. There exists a setA of rotation numbers, having full
Lebesgue measure and containing all numbers of bounded type, for which
the following holds. Letf and g be topologically conjugateC3 critical
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circle maps, and leth be the conjugacy betweenf and g that maps the
critical point of f to the critical point ofg. If their common rotation number
belongs toA, and if their renormalizations converge together exponentially
fast in theC0-topology, thenh is C1+α for someα > 0.

The second theorem shows that we cannot expect the above Rigidity
Conjecture to be true without restriction on the rotation number. The proof
occupies §5 in its entirety.

Second Main Theorem. There exists an uncountable setB of rotation
numbers such that for anyρ ∈ B there existC∞ critical circle maps
f andgwith rotation numberρ with the property that the conjugacy between
f and g sending the critical point off to the critical point ofg is not
C1+β for anyβ > 0.

The setB is very small: its Hausdorff dimension is not greater than 1/2.
But it does contain Diophantine numbers, in somewhat remarkable contrast
with the case of circle diffeomorphisms. The saddle-node surgery proced-
ure we develop here is quite general, and can be used to produce similar
counterexamples to the rigidity of infinitely renormalizable unimodal maps
with special unbounded combinatorics.

All estimates performed in this paper rely heavily on thereal a-priori
boundsof M. Herman [12] and G.́Swia̧tek [18]. These bounds are revisited
in §3. Several technical consequences of the real bounds needed in this
paper, such as theCr−1 boundedness of the renormalizations of aCr critical
circle map, are gathered in Appendix A.

2. Preliminaries

We have three goals in this section. First, we present some of the basic
notations commonly used when studying circle maps. Second, we present
the notions of commuting pair and renormalization in the context of circle
maps, and discuss their relationship. Third, we state the distortion tools that
are necessary for proving the real bounds in §3.

2.1. Critical circle mappings

Following the tradition in this subject, we identify the unit circleS1 with
the one-dimensional torusR/Z. The obvious advantage of such identifica-
tion is that it allows us to use additive notation when dealing with circle
mappings.
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We briefly recall some standard facts concerning circle mappings. Given
a homeomorphismf : S1→ S1, we denote its rotation number byρ( f ). It
can be expressed as a continued fraction

ρ( f ) = [a0, a1, . . . , an, . . . ] = 1

a0+ 1

a1+ 1

· · ·
an + 1

· · ·

,

which can be finite or infinite, depending on whetherρ( f ) is rational or
irrational, respectively. The positive integersan are thepartial quotientsof
ρ( f ). They give rise to a sequence ofreturn timesfor f , recursively defined
by q0 = 1, q1 = a0 andqn+1 = anqn + qn−1 for all n ≥ 1 (for which an

exists – an assumption that will be implicit henceforth). Givenx ∈ S1 and
n ≥ 1, we denote byJn(x) the closed interval containingx whose endpoints
are f qn(x) and f qn−1(x). We also letIn−1(x) ⊆ Jn(x) be the closed interval
whose endpoints arex and f qn−1(x). Observe thatJn(x) = In(x) ∪ In−1(x)
for all n ≥ 1.

From the dynamics standpoint, we are not interested inall circle homeo-
morphisms, but only in those that possess a unique critical point inS1, being
local diffeomorphisms everywhere else. These are the so-calledcritical
circle maps. More precisely, letf : S1→ S1 be aCr homeomorphism, for
somer ≥ 1. We say thatf is a critical circle map if there existsc ∈ S1 (the
critical point) such thatf ′(c) = 0 and f ′(x) 6= 0 for all x 6= c. Moreover,
we require f to have apower-lawat c. This means that in a suitableCr

coordinate system around the critical point, ourf is represented by a map
of the form x 7→ x|x|p−1 + a, for some real numberp > 1 called the
power-law exponentof f . The class of allCr critical circle maps will be
denoted by Critr (S1).

Since the critical pointc of a critical circle map is a distinguished point
on the circle, we will writeIn andJn throughout, instead ofIn(c) andJn(c),
respectively.

2.2. Commuting pairs

We will study the successive renormalizations of a critical circle mapf .
Here, as in many other settings in dynamics, the word renormalization is
taken to mean a (suitably normalized) Poincaré first return map off to some
neighborhood of its critical point. Abstracting the essential features of such
first return maps yields the notion ofcommuting pair, due to O. Lanford [13]
and D. Rand [17]. We formulate this notion as follows.
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Definition. A Cr commuting pairconsists of two mappingsf− : [λ,0] →R,
whereλ < 0, and f+ : [0,1] → R, satisfying the following conditions.

[P1] Both f− and f+ areCr orientation-preserving homeomorphisms onto
their images.

[P2] We have f−(0) = 1, f+(0) = λ and 0< f−(λ) = f+(1) < 1.
[P3] We haveD f−(x) > 0 for all λ ≤ x < 0, andD f+(x) > 0 for all

0< x ≤ 1.
[P4] For each 1≤ k ≤ r , we haveDk( f+ ◦ f−)(0) = Dk( f− ◦ f+)(0).

A critical commuting pair is a commuting pair such thatD f−(0) = 0 =
D f+(0).

Although it is more customary to use the symbolsξ andη instead of f−
and f+, respectively, the present notation will be more convenient for our
purposes in this paper. It can be proved that, in the presence of the other
conditions, P4 is equivalent to the following.

[P′4] There exist open intervals1− ⊇ [λ,0] and1+ ⊇ [0,1], and Cr

homeomorphic extensionsF− : 1− → R and F+ : 1+ → R of
f− and f+ respectively, satisfyingF+ ◦ F−(x) = F− ◦ F+(x) for all
x ∈ 1− ∩ 1+ such thatF±(x) ∈ 1∓ (the set of suchx is an open
interval around 0).

This justifies the namecommuting pair. The class of allCr critical commut-
ing pairs will be denoted byPr . We shall henceforth identify a commuting
pair ( f−, f+) with a single mapf : [λ,1] → [λ,1], called theshadowof
the commuting pair, defined as follows,

f (x) =
{

f−(x), whenλ ≤ x ≤ 0

f+(x), when 0< x ≤ 1.

To each commuting pairf we associate an elementa ∈ N ∪ {∞} called
the height of f , in the following way. If there existsn ≥ 1 such that
f n+1(1) < 0 ≤ f n(1), then we seta = n; otherwise we seta = ∞. It is
clear that f has infinite height if and only if there exists 0< x < 1 such
that f (x) = x.

2.3. Renormalizing a commuting pair

Every commuting pairf with finite heighta such that f a(1) > 0 can be
renormalized, in the following sense. Let3 : R → R be the linear map
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x 7→ λx, let λ′ = f a(1)/λ < 0, and letR f : [λ′,1] → [λ′,1] be the map
defined by

R f (x) =
{
3−1 ◦ f ◦3(x), whenλ′ ≤ x ≤ 0

3−1 ◦ f a+1 ◦3(x), when 0< x ≤ 1.

This map is (the shadow of) a commuting pair(R f−,R f+), called thefirst
renormalizationof f . Equivalently,{

R f−(x) = 3−1 ◦ f+ ◦3(x), for all λ′ ≤ x ≤ 0

R f+(x) = 3−1 ◦ f a+ ◦ f− ◦3(x), for all 0≤ x ≤ 1.

The class of allCr critical commuting pairs which are renormalizable in
this sense will be denotedPr

1. In this way, we have a well-defined map
R : Pr

1→ Pr , the so-calledrenormalization operator. More generally, for
all n ≥ 1 we writePr

n = R−n(Pr ) for the set of allCr critical commuting
pairs which can be renormalizedn times. We havePr

n+1 ⊆ Pr
n for all n. We

are especially interested in the set of allinfinitely renormalizablecritical
commuting pairs, namely

Pr
∞ =

⋂
n≥1

Pr
n .

Given f ∈ Pr , leta0 = a be its height, and for eachn ≥ 1 such thatf ∈ Pr
n,

let an be the height ofRn( f ). This can be a finite or infinite sequence; in
any case, using the convention 1/∞ = 0, we define therotation numberof
f to be

ρ( f ) = [a0, a1, . . . , an, . . . ] = 1

a0+ 1

a1+ 1

· · ·
an + 1

· · ·

.

In particular,ρ(R f ) = [a1,a2, . . . ], that is, the renormalization operator
acts as the Gaussian shift on continued fractions.

2.4. Renormalizing a critical circle map

Let f be a critical circle map with critical pointc, and for eachk ≥ 0 such
that f qk(c) 6= c, let Ak : R → R/Z be the affine covering map such that
Ak([0,1]) = Ik, with Ak(0) = c and Ak(1) = f qk(c). For eachn ≥ 1 such
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that f qk(c) 6= c for all 0 ≤ k ≤ n, consider the Poincaré first return map
fn : In ∪ In−1→ In ∪ In−1, namely

fn(x) =
{

f q(x) whenx ∈ In

f Q(x) whenx ∈ In−1,

whereq = qn−1 andQ = qn. Defineλn to be the largest negative number
such thatAn−1(λn) = f Q(c) (one sees in fact thatλn = −|In|/|In−1|). Then
An−1([λn,0]) = In and An−1([0,1]) = In−1, and we can consider the map
fn : [λn,1] → [λn,1] given by fn = A−1

n−1 ◦ fn ◦ An−1. Here, it is implicit
that A−1

n−1 is the inverse branch that mapsIn∪ In−1 onto[λn,1]. This defines
(the shadow of) aCr critical commuting pair calledn-th renormalization
of f . It is well-defined provided the rotation number off has a continued-
fraction development of length at leastn+1 (in particular it is well-defined
for all n when the rotation number off is irrational). It is easy to see in this
case thatfk+1 = R fk for all 1 ≤ k ≤ n − 1. Moreover, ifa0,a1, . . . are
the partial quotients of the rotation number off then, from the recurrence
relations satisfied by the sequence of return timesqk, we see at once that
the height of fk is equal toak, and thatρ( fk) = [ak,ak+1, . . . ].
Remark.Note that the largest interval containingIn on which f qn−1 is
a diffeomorphism is[αn, c] where f an−1qn−1(αn) = f qn(c), that is,αn =
f qn−2(c). Similarly, the largest interval containingIn−1 on which f qn is
a diffeomorphism is[c, βn] where f qn(βn) = f qn−1(c).

2.5. TheCk metrics

The following is only one of several equivalent ways of defining aCk

distance between commuting pairs. We normalize our commuting pairs to
be defined on[0,1], using for eachf a fractional linear transformation
that mapsλ,0,1 respectively to 0, 1

2,1, and then use theCk norm of the
difference of the normalized pairs. TheCk distance betweenf andg defined
in this fashion is denoted bydk( f , g).

Let us be a bit more precise. If a functionϕ : [0,1] → R has a jump dis-
continuity atx = 1/2 but is elsewherek times continuously differentiable,
let ‖ϕ‖k = max{‖ϕ−‖k, ‖ϕ+‖k} whereϕ− is the restriction ofϕ to [0, 1

2]
andϕ+ is the restriction ofϕ to [12,1] . Given two elementsf : [λ,1] → R
and g : [µ,1] → R of Pr , and given 0≤ k ≤ r , let Aλ be the fractional
linear transformation which maps 0, λ,1 to 0, 1

2,1, respectively, and letAµ
be similarly defined. Then write

dk( f , g) = max
{|λ− µ|, ‖Aλ f A−1

λ − AµgA−1
µ ‖k

}
.
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fqn(c) c f qn−1(c)

fqn−1

f qn

Fig. 1. Two consecutive renormalizations off

Lemma 2.1. For each0≤ k ≤ r , dk is a metric.

Proof. The only thing not entirely obvious is thatdk( f , g) = 0 implies
f = g. But if dk( f , g) = 0 then on one handλ = µ, so thatAλ = Aµ, and on
the other handAλ f A−1

λ − AµgA−1
µ = 0, so thatf = A−1

λ AµgA−1
µ Aλ = g.

ut
Proposition 2.2. Let f : [λ,1] → [λ,1] and g : [µ,1] → [µ,1] be
elements of Pr∞, and suppose there exists aCr diffeomorphism
h : [λ,1] → [µ,1] such thath ◦ f = g ◦ h. Then for all k ≤ r − 1
the distancesdk (Rn( f ),Rn(g)) converge to0 at an exponential rate.

Proof. Let fn = Rn f and gn = Rn g. Then fn = h−1
n ◦ gn ◦ hn, where

hn is obtained fromh by restriction and affine rescaling. We will see below
(after we prove the real bounds for critical circle maps,cf.Theorem 3.1) that
{hn} converges exponentially in theCr sense to the space ofaffinemaps.
Therefore, we have thatdr−1( fn, gn)→ 0 exponentially fast. ut

2.6. Distortion tools

In §3 we will need some distortion tools to get real bounds for critical circle
maps. The most basic is the notion ofcross-ratio distortion. Given intervals
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M ⊆ T on the line or circle, their cross-ratio is defined as

D(M, T ) = |M| |T||L| |R| ,

whereL andR are the left and right components ofT \ M. The cross-ratio
distortion of a mapf (whose domain containsT) on the pair of intervals
(M, T ) is

B( f ;M, T) = D( f(M), f(T))

D(M, T )
.

Cross-ratios are always increased by a map with negative Schwarzian deriva-
tive. More precisely, iff is C3 andS f< 0 thenB( f ;M, T) > 1.

Lemma 2.3. (Cross-ratio distortion principle)
Given a mapf as above,m ≥ 1 and intervalsM ⊆ T such that f m|T is
a diffeomorphism onto its image, we have

B( f m;M, T ) ≥ exp
{
− σ

m−1∑
j=0

| f j (T)|
}
,

whereσ > 0 depends onf andmax0≤ j≤m−1 | f j (T)|.
For a proof of (a much more general version of) this principle, see [16],

p. 287. This fact will be used in combination with the following classical
distortion principle. For intervalsM ⊆ T as above we define thespaceof
M insideT to be the smallest of the ratios|L|/|M| and|R|/|M|.
Lemma 2.4. (Koebe distortion principle)
Given`, τ > 0 and a mapf as above, there existsK = K(`, τ, f ) > 1 of
the form

K =
(

1+ 1

τ

)2

expC` ,

whereC is a constant depending only onf , with the following property. IfT
is an interval such thatf m|T is a diffeomorphism and if

∑m−1
j=0 | f j (T )| ≤ `,

then for each intervalM ⊆ T for which the space off m(M) inside f m(T )
is at leastτ and for all x, y ∈ M we have

1

K
≤
∣∣∣∣D f m(x)

D f m(y)

∣∣∣∣ ≤ K .

Once again, see [16], p. 295, for a proof. Used in combination with
Lemma 2.3, the Koebe distortion principle allows one to propagate space
around under fairly general circumstances.
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3. The real a-priori bounds

In this section we establish reala-priori bounds for critical circle maps,
obtaining as a corollary the fact that their renormalizations are pre-compact
in theC1 topology. The results are well-known, and the reader will not fail
to notice the overlap with some of the material in [19] and [10].

Let f : S1→ S1 be a critical circle homeomorphism with critical pointc.
The iterates ofc are denoted byci = f i (c). Let In be the interval with
endpointsc andcqn that containscqn+2, as defined in Sect. 2. For simplicity,
we write I j

n = f j (In) for all j andn. The most basic combinatorial fact to
be remembered here is that the collection of intervals

Pn =
{

In−1, I 1
n−1, . . . , I qn−1

n−1

}
∪
{

In, I 1
n, . . . , I qn−1−1

n

}
constitutes a partition ofS1 modulo endpoints, called thedynamical parti-
tion of leveln associated tof . In order to get an actual partition we exclude
from each interval inPn its right endpoint, say, according to the standard
choice of orientation ofS1. LetPn(x) denote the atom of the partitionPn

that containsx (in particular,Pn(c) is either In or In−1 according to the
parity of n).

Theorem 3.1. (Real Bounds) Letf ∈ Crit r (S1) be a map with irrational
rotation number. There exist constantsC0 > 1 and 0 < µ0 < µ1 < 1
depending only onf such that

(a) If I andJ are any two adjacent atoms ofPn, thenC−1
0 |J|< |I |<C0|J|;

(b) For everyx ∈ S1, we have|Pn(x)| < µ1|Pn−1(x)|;
(c) If the rotation number off is of bounded type then|Pn(x)| > µn

0/C0;
(d) If the rotation number of f is of bounded type then|Pn(x)| >
|Pn−1(x)|/C0;

(e) If 0 < i ≤ j ≤ qn then the distortion of the restriction off j−i to
I i
n−1 = f i (In−1) is bounded byC0.

In particular, the critical commuting pairsRn f form a bounded sequence
in theC1 topology.

Later in this section we will see that the bounds in this theorem are
eventually universal.

3.1. Bounding space

In what follows, two positive numbersa andb are said to becomparable
modulo f , or simplycomparable, if there exists a constantC > 1, depending
only on our mapf , such thatC−1b ≤ a ≤ Cb. This relation is denoted
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by a � b. It is also convenient to writea 4 b to indicate thata ≤ Cb.
Comparability modulof is reflexive and symmetric, but not transitive since
the constants multiply. Hence, ifb1 � b2 � · · · � bN, we can only say that
b1 � bN if N is bounded (by a constant depending only onf ).

Lemma 3.2. For each n ≥ 0 there existz1, z2, z3, z4, z5 ∈ S1 with
zj+1 = f qn(zj ) such that|z1− z2| � |z2− z3| � |z3− z4| � |z4− z5|.
Proof. Let z ∈ S1 be a point such that| f qn(z)− z| ≤ | f qn(x) − x| for all
x ∈ S1. From Koebe’s principle applied successively tof −qn, f −2qn and
f −3qn, we have

|z− f qn(z)| < | f −qn(z)−z| < | f −2qn(z)− f −qn(z)| < | f −3qn(z)− f −2qn(z)|.
Moreover, by our choice ofz we have|z− f qn(z)| 4 | f −3qn(z)− f −2qn(z)|.
Therefore we can takez5 = f qn(z), z4 = z, . . . , z1 = f −3qn(z) as the
desired five points. ut
Lemma 3.3. Let z1, z2, . . . , z5 and w0, w1, . . . , w5 be points on the
circle such thatzj+1 = f qn(zj ) andw j+1 = f qn(w j ), and such thatw1

lies on the interval of endpointsz1 andz2 in the partition ofS1 determined
by thezi ’s. If |z1− z2| � |z2− z3| � |z3− z4| � |z4− z5|, then

|w0−w1| < |w1−w2| 4 |w2−w3| . (1)

Proof. Let ` = min |zj − zj+1|. If there is a j with 1 ≤ j ≤ 3 such
that |w j − w j+1| ≤ `/2, then we must have|w j−1 − w j | ≥ `/2 and
|w j+1 − w j+2| ≥ `/2 also. But then[w j , w j+1] has space on both sides
inside[w j−1, w j+2]. Applying f −( j−1)qn to these points and using the Koebe
principle, we get (1). If on the other hand there is noj with that property,
then|w1−w2| � |w2−w3| � |w3−w4|. Again, applying f −qn and using
Koebe we get (1). ut
Lemma 3.4. For all n ≥ 0 and all x ∈ S1, we have| f qn(x) − x| �
|x− f −qn(x)|.
Proof. To show that|x − f −qn(x)| ≥ C−1| f qn(x) − x|, let i ≤ qn be such
that f i (x) ∈ [z1, z2], wherez1, z2, . . . are the points given by Lemma 3.2.
Then letw0 = f i−qn(x), w1 = f i (x), etc. We know from Lemma 3.3 that
|w0−w1| < |w1−w2| 4 |w2−w3|. Applying f −i to these points and using
the Koebe distortion principle, we find a definitespacearound[x, f qn(x)]
inside [ f −qn(x), f 2qn(x)]. Therefore|x − f −qn(x)| < | f qn(x) − x|. The
proof of the opposite inequality is similar. ut

We arrive at the following fundamental fact first proved byŚwia̧tek [18]
and Herman [12].
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I
qn−qn−1

n−1 In In−1 I
qn−1

n−1

Iqnn−1

I
qn−1
n

Fig. 2. These six intervals are pairwise comparable

Lemma 3.5. Any two adjacent intervals in the dynamical partition of level
n of f are comparable.

Proof. First we prove that all intervals in Fig. 2 are pairwise comparable,
through the following steps.

(a) From Lemma 3.4, we know that|In−1| � |I qn−1
n−1 |and|I qn−qn−1

n−1 | � |I qn
n−1|.

(b) Since the dynamical symmetric ofIn, namely the intervalI−qn
n , is con-

tained inIn−1, we also have|In| 4 |In−1|.
(c) Since the dynamical symmetric ofIn−1, namely I−qn−1

n−1 is contained
in In ∪ I qn−qn−1

n−1 , we have|In−1| 4 |I qn−qn−1
n−1 |. Moreover, sinceI qn

n−1 ⊆
In∪ In−1, items (a) and (b) yield |I qn−qn−1

n−1 | 4 |In−1|. Therefore|In−1| �
|I qn−qn−1

n−1 |.
(d) Next, we claim that|In| � |I qn−1

n |. To see why, consider the diffeomor-
phism

f qn−qn−1 : In−1 ∪ I qn−1
n−1 → I qn−qn−1

n−1 ∪ I qn
n−1 .

By the cross-ratio inequality (Lemma 2.3) applied toM = I qn−1
n andT =

In−1 ∪ I qn−1
n−1 , we have|I qn−1

n | 4 |I qn
n | � |In|. Conversely, considering

the diffeomorphism

f qn−1 : I qn−qn−1
n−1 ∪ In→ I qn

n−1 ∪ I qn−1
n

and applying the cross-ratio inequality toM = I qn
n andT = I qn−qn−1

n−1 ∪
In, we get

|In| � |I qn
n | 4 |I qn+qn−1

n−1 | � |I qn−1
n | .

This proves our claim.
(e) Finally, we claim that|In−1| 4 |In|, thereby reversing the inequality

in (b). It is here that we use the critical point in a crucial way. Let
θn = |In|/|In−1|; we already know thatθn 4 1. Look at the intervals
I 1
n−1, I 1

n and I qn−qn−1+1
n−1 , all near the critical value off . By an argument
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similar to the one in (c), we have|I 1
n−1| � |I qn−qn−1+1

n−1 |. Moreover,
|I 1

n | � θ
p
n |I 1

n−1|, where p > 1 is the power-law off at the critical
point. Hence these three intervals have a cross-ratio comparable toθ

p
n .

On the other hand the mapf qn−1−1 carries them diffeomorphically onto
I qn−1
n−1 , I qn−1

n and I qn
n−1, respectively, whose cross-ratio is comparable to

|I qn−1
n |/|I qn

n−1|, which in turn is comparable toθn. Applying the Koebe
distortion principle, we see thatθ p

n < θn, and soθn < 1 as claimed.

This proves that all six intervals in Fig. 2 are comparable. To derive the re-
maining comparability relations, propagate this information using Koebe’s
distortion principle. ut
Proof of Theorem 3.1.Part (a) is Lemma 3.5 above. The remaining state-
ments are straightforward consequences of (a). ut

3.2. Beau property of renormalization

The bounds obtained in the proof of Theorem 3.1 depended onf , more
precisely on the space that each atom ofPn enjoys relative to its two
neighbors inPn. We now concentrate in proving that such bounds eventually
become universal. It suffices to prove that the space in question is eventually
universal. Bounds of this type are calledbeauby Sullivan.

Lemma 3.6. There existsn0 = n0( f ) such that for alln ≥ n0 the first
return map fn : Jn→ Jn satisfiesS fn(x) < 0 for all x ∈ Jn.

Proof. This is proved in Theorem A.4 of Appendix A. ut
Lemma 3.7. Givenε > 0, there existsn1 = n1( f, ε) > n0( f ) such that
the following holds for alln ≥ n1. Let1 ∈ Pn, let k ≥ 1 be an integer
such that f j (1) is contained in an element ofPn for all 1 ≤ j ≤ k, and
let 1∗ be the union of1 with its left and right neighbors inPn. Then we
have f k|1∗ = φ1 ◦ φ2 ◦ φ3 whereφ1 and φ3 are diffeomorphisms with
distortion bounded by1+ ε and φ2 is either the identity or a map with
negative Schwarzian derivative. In particular, ifε is small enough and if
In−1 6= 1 6= In, then the distortion off k|1 is bounded from below by
one-half.

Proof. Let n1 > n0 be such thatµn1−n0
0 << ε, whereµ0 is the constant of

Theorem 3.1. Forn ≥ n1,1 andk as in the statement, letJ ∈ Pn0 be such
that1 ⊆ J, let J∗ be the union ofJ with its two neighbors inPn0, and
note that the space of1∗ inside J∗ is bounded from below byC|J∗|/|1∗|,
for some constantC > 0. Let m ≥ 0 be the smallest integer such that
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f m(J) ⊆ Jn0. Then for all j ≤ m the map f j |J∗ is a diffeomorphism onto
its image and, by Theorem 3.1 (b) and the Koebe distortion principle, its
distortion on1∗ is bounded by

(
1+ C

|1∗|
|J∗|

)2

exp

{
C
|1∗|
|J∗|

}
≤ exp{Cµn1−n0

0 } ≤ 1+ ε .

Now, there are two possibilities. The first is thatm≥ k; in this case we can
takeφ1 = f k|1∗ andφ2 = φ3 = identity map. The second is thatm < k.
In this case we consider the first return mapfn0 : Jn0 → Jn0 and let` ≥ 0
be thelargestsuch that

f k = f k1 ◦ f `n0
◦ f k3 ,

wherek1 ≥ 0 andk3 ≥ 0. We then takeφ1 = f k1−1, φ2 = f ◦ f `n0
and

φ3 = f k3|1∗ (if k1 = 0 we take insteadφ2 = f `n0
andφ1 = identity). By

Lemma 3.6,Sφ2 < 0, and by the above remarks the distortions of bothφ1

andφ3 are bounded by 1+ ε in the appropriate domains. ut

Proposition 3.8. All bounds in Theorem 3.1 are beau. In other words,
there exist universal constantsK0 > 0 and 0 < λ0 < λ1 < 1 and some
n = n( f ) > 0 such that for alln ≥ n the constantsC0, µ0 and µ1 in
Theorem 3.1 can be replaced byK0, λ0 andλ1, respectively.

Proof. This is straightforward from Lemma 3.7. ut

Remark.From now on, whenever we say that a constant “depends only on
the real bounds”, we mean that the said constant is a universal function of
constantsK0, λ0 andλ1 given by this proposition.

4. How smooth is the conjugacy?

Now we turn to the first main result in this paper. The theorem states that
if the successive renormalizations of two critical circle maps with the same
rotation numberρ converge together at an exponential rate, then such maps
areC1+α conjugate for someα > 0, providedρ belongs to a certain full-
measure setA of rotation numbers (defined in §4.4). First, in order to get
bounds that do not depend on the maximum of the partial quotients of the
rotation number, we need to perform some “saddle-node” estimates and
constructions.
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4.1. Saddle-node geometry

Letabe a positive integer and11,12, . . . ,1a+1 be consecutive intervals on
the line or circle. By analmost parabolic mapof lengtha and fundamental
domains1 j , 1≤ j ≤ a, we mean a negative-Schwarzian diffeomorphism

f : 11 ∪12 ∪ · · · ∪1a → 12 ∪13 ∪ · · · ∪1a+1

such thatf(1 j ) = 1 j+1.
The basic geometric estimate on almost parabolic maps is due to

J.-C. Yoccoz.

Yoccoz’s Lemma. Let f : I → J be an almost parabolic map of lengtha
and fundamental domains1 j , 1 ≤ j ≤ a. If |11| ≥ σ |I | and |1a| ≥ σ |I |,
then

1

Cσ

|I |
min{ j,a− j }2 ≤ |1 j | ≤ Cσ

|I |
min{ j,a− j }2 ,

whereCσ > 1 depends only onσ .

For a proof, see Appendix B. We will use Yoccoz’s estimates to compare
two almost parabolic maps.

Proposition 4.1. Let f andg be two almost parabolic maps with the same
lengtha defined on the same interval. Then for allx ∈ 11( f ) ∩11(g) and
all 0≤ k ≤ a/2 we have∣∣ f k(x)− gk(x)

∣∣ ≤ C ‖ f − g‖0k3 . (2)

Proof. First note, using the mean-value theorem, that

∣∣ f k(x)− gk(x)
∣∣ =

∣∣∣∣∣∣
k−1∑
j=0

(
f k− j−1( f(gj (x)))− f k− j−1(gj+1(x))

)∣∣∣∣∣∣
≤

k−1∑
j=0

∣∣D f k− j−1(ξ j )
∣∣ ∣∣ f(gj (x))− g(gj (x))

∣∣ ,
whereξ j lies betweenf(gj (x)) andgj+1(x). Hence we have

∣∣ f k(x)− gk(x)
∣∣ ≤ ‖ f − g‖0

k−1∑
j=0

∣∣D f k− j−1(ξ j )
∣∣ . (3)

Let us estimate each summand in the right-hand side of (3). Letm =
m( j) be such thatξ j ∈ 1 j+m( f ), and assume also thatj +m ≤ a/2. This
last condition is always satisfied if the central fundamental domain ofg lies
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to the left of the central fundamental domain off (if this is not the case,
then reverse the roles off andg in (3) and throughout). Using Yoccoz’s
Lemma, we see that∣∣D f k− j−1(ξ j )

∣∣ � ( j +m)2

(a− k−m+ 1)2
≤
(

j +m

j + 1

)2

. (4)

Hence, it suffices to estimatem as a function ofj . For this purpose, let
n = n( j) be such thatgj+1(x) ∈ [ f j+n−1(x), f j+n(x)]. We claim that
m≤ n+1. There are two possibilities. The first is thatf(gj (x)) ≥ gj+1(x):
in this case we see easily that

ξ j ∈
[
gj+1(x), f(gj (x))

] ⊆ [ f j+n−1(x), f j+n+1(x)
]

and som ≤ n+ 1. The second is thatf(gj (x)) < gj+1(x). In this case we
haveξ j < gj+1(x) < f j+n(x) ∈ 1 j+n+1( f ), so once againm ≤ n + 1.
This proves our claim.

So now we must boundn as a function ofj . Again, there are two cases
to consider.

(a) We have [gj+1(x), gj+2(x)] ⊆ [ f j+n−1(x), f j+n(x)]. In this case
(Fig. 3a) Yoccoz’s Lemma gives us

1

j 2
≤ C

( j + n)2
,

which impliesn ≤ C j.

∆

f j+n−1(x)

gj+1(x)

f j+n(x)

gj+2(x)

f j+n+p(x)

(b)

(a)

f j+n−1(x) f j+n(x)

gj+1(x) gj+2(x)

Fig. 3. Boundingn as a function ofj
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(b) We have gj+2(x) > f j+n(x). In this case (Fig. 3b), f j+n(x) is
the first point in the f -orbit of x that lands inside the inter-
val 1 = [gj+1(x), gj+2(x)]. Let p be such that f j+n+i (x) ∈ 1

for i = 0,1, . . . , p− 1 but f j+n+p(x) /∈ 1. Then we have1 ⊆
[ f j+n−1(x), f j+n+p(x)], and this time Yoccoz’s Lemma gives us

1

j 2
≤ C

(
1

( j + n)2
+ 1

( j + n+ 1)2
+ · · · + 1

( j + n+ p)2

)
≤ C

j + n
.

Thereforen ≤ C j2 in this case.

In either case we see thatm ≤ C j2. Carrying this information back
to (4), we deduce that ∣∣D f k− j−1(ξ j )

∣∣ ≤ C j2 . (5)

Substituting (5) into (3), we arrive at (2), and the proof is complete. ut

4.2. A criterion for smoothness

One key ingredient in the proof of our First Main Theorem is a slight
extension of a result originally due to Carleson [2], namely Proposition 4.3
below. To formulate it, we need an auxiliary definition.

Definition. A fine gridis a sequence{Qn}n≥0 of finite partitions ofS1 which
satisfies

(a) EachQn+1 is a strict refinement ofQn;
(b) There existsa > 0 such that eachI ∈ Qn is the disjoint union of at

mosta atoms ofQn+1;
(c) There existsc > 0 such thatc−1|I | ≤ |J| ≤ c|I | for each pair of

adjacent atomsI, J ∈ Qn.

For example, the dynamical partitions{Pn} of a critical circle map with
rotation number of bounded type always form a fine grid, by Theorem 3.1.
We note the following easy lemma concerning a fine grid{Qn}.
Lemma 4.2. If I ∈ Qn, J ∈ Qn+1 and J ⊆ I , then(1+ c−1)|J| ≤ |I | ≤
aca|J|. In particular, there existC0 > 1 and 0 < λ0 < λ1 < 1 such that
C−1

0 λn
0 ≤ |I | ≤ C0λ

n
1, for all I ∈ Qn. ut

The constantsa, c,C0, λ0, λ1, are thefine constantsof {Qn}.
Proposition 4.3. Let h : S1 → S1 be a homeomorphism and let{Qn}n≥0

be a fine grid.
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(a) If there existsC > 0 such that∣∣∣∣ |I ||J| − |h(I )||h(J)|
∣∣∣∣ ≤ C ,

for each pair of adjacent atomsI, J ∈ Qn, for all n ≥ 0, thenh is
quasisymmetric.

(b) If there exist constantsC > 0 and0< λ < 1 such that∣∣∣∣ |I ||J| − |h(I )||h(J)|
∣∣∣∣ ≤ Cλn , (6)

for each pair of adjacent atomsI, J ∈ Qn, for all n ≥ 0, thenh is a
C1+α-diffeomorphism for someα > 0.

The proof of Proposition 4.3 will depend on the following fact from
elementary real analysis. Ifφ is a real-valued function in an interval or
oriented arc on the circle, letD+φ(x) = limt↓0 (φ(x+ t)− φ(t))/t be the
right derivativeof φ at x, if the limit exists.

Lemma 4.4. Let φn : [0,1] → R be a sequence of continuous, right
differentiable mappings such thatD+φn converges uniformly to anα-
Hölder continuous functionϕ : [0,1] → R, and such that eachD+φn

is Riemann-integrable. Ifφn converges uniformly toφ, then φ is C1+α
and Dφ = ϕ. ut
Proof of Proposition 4.3.We will prove (b) only, the proof of (a) being
somewhat easier. Letφn be the piecewise affineC0-approximations toh
determined by the vertices ofQn. Thenφn is differentiable on the right, and
D+φn is a step function. First we show that

{
D+φn

}
n≥0 is a uniform Cauchy

sequence, and then that the limit is Hölder continuous. Take an atomI of
Qn, and consider the decomposition

I = J1 ∪ J2 ∪ · · · ∪ Jp ,

with Jk ∈ Qn+1 consecutive and pairwise disjoint andp ≤ a. ThenD+φn

is constant onI andD+φn+1 is constant on eachJk, say
D+φn(t) = σ = |φn(I )||I | (t ∈ I )

D+φn+1(t) = σk = |φn+1(Jk)||Jk| (t ∈ Jk)
.

Thus, we have

σ |I | =
p∑

k=1

σk|Jk| ,
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and in particularσ ′ = minσk ≤ σ ≤ maxσk = σ ′′. Also,σ ′/σ ′′ ≤ σ/σk ≤
σ ′′/σ ′ for all k. Since by assumption|1− (σk+1/σk)| ≤ Cλn+1, an easy
telescoping trick gives us

σ ′′

σ ′
≤ (1+ Cλn+1)a ≤ 1+ Cλn+1 .

A similar lower bound holds true forσ ′/σ ′′. Therefore we have

1− Cλn ≤ σ

σk
≤ 1+ Cλn , (7)

for all k = 1,2, . . . p. This shows that the sequence
{
D+φn

}
n≥0 is uniformly

bounded, and moreover that for allm ≥ n ≥ 0 and allt ∈ S1, we have

∣∣D+φm(t)− D+φn(t)
∣∣ ≤ C

m−1∑
j=n

λ j <
C

1− λ λ
n . (8)

Hence
{
D+φn

}
n≥0 is a uniform Cauchy sequence as claimed. Letϕ =

lim D+φn, and letα > 0 be such thatλα0 = λ. We proveϕ is α-Hölder as
follows. It suffices to consider pointsx, y ∈ S1 whose distance is smaller
than infI∈Q0 |I |. Take the smallestn such thatx and y belong to distinct
elements ofQn. Then eithern = 0 or x andy lie in a common element of
Qn−1. Either way we have by (7)∣∣D+φn(x)− D+φn(y)

∣∣ ≤ Cλn . (9)

Combining (8) and (9), we deduce that

|ϕ(x)− ϕ(y)| ≤ ∣∣ϕ(x)− D+φn(x)
∣∣+ ∣∣D+φn(x)− D+φn(y)

∣∣
+ ∣∣D+φn(y)− ϕ(y)

∣∣
≤ C

1− λλ
n + Cλn + C

1− λλ
n ≤ Cλnα

0

≤ C|x− y|α ,
and soϕ is α-Hölder as claimed. ut
Remark. In the language of conditional expectations, the sequence
{D+φn}n≥0 satisfiesE

(
D+φn |Bn

) = D+φn+1, whereBn is theσ -algebra
generated byQn, and therefore constitutes amartingale. Thus, the existence
of a pointwisea.e. limit ϕ, merely as an integrable function, is a special
case of J. Doob’smartingale convergence theorem, see [1], p. 490.
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4.3. A suitable fine grid

The dynamical partitionsPn of a critical circle map f do not determine
a fine grid, unless the rotation number off is of bounded type. We will
however use these dynamical partitions to build a fine grid{Qn} for our
map f . The construction requires some preliminary definitions.

An elementI ∈ Pn is a saddle-nodeatom if it is the disjoint union of
some numbera ≥ 1000 of atoms ofPn+1.

Given two atomsPn+1 3 J ⊆ I ∈ Pn, the order of J inside I is one
plus the smallest number of atoms ofPn+1 on the right and left components
of I \ J.

Note that inside a saddle-node atomI ∈ Pn there are exactly two atoms
of Pn+1 of orderk for eachk ≤ a/2. Let N ≥ 0 be largest with the property
that 2N+1 < a/2. For each 0≤ i ≤ N, we defineMi , thei -th central interval
of I , to be the convex-hull[J, J∗] ⊆ I of the union of both atomsJ, J∗ of
order 2i . Note that these central intervals are nested (see Fig. 4). The left
and right components ofMi \ Mi+1, respectivelyLi andRi , are thelateral
intervalsof I . The central intervalMN is also called thefinal intervalof I .
The lateral intervals together with the final interval form a special partition
of I , thebalancedpartition of I .

Remark. It follows from Yoccoz’s lemma that|Li | � |Mi+1| � |Ri | for
all i .

Now we define an auxiliary partitioñPn, for eachn ≥ 1. The atoms of
P̃n are all atoms ofPn which are not saddle-node, together with the atoms

MN

MN−1

M2

M1

•

•

•

L0 R0

L1 R1

Fig. 4. Central and lateral intervals of a saddle-node atom
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of the balanced partitions of all saddle-node atoms ofPn. The partitionQn

that we want is constructed from̃Pn andPn as follows.

Proposition 4.5. There exists a fine grid{Qn} in S1 with the following
properties.

(a) Every atom ofQn is the union of at most 3 atoms ofQn+1.
(b) Every atom1 ofQn is a union of atoms ofPm for somem ≤ n, and

there are four possibilities:
(b1) 1 is a single atom ofPm;
(b2) 1 is a central interval of̃Pm;
(b3) 1 is the union of at least two atoms ofPm+1 contained in a single

atom ofP̃m.
(b4) 1 is a union of intervals which are simultaneously atoms ofPm

andP̃m.

Proof. The proof is by induction onn. The first partitionQ1 consists of all
atoms ofP1 which are not saddle-node atoms together with the intervals
L0, M1 and R0 of each saddle-node intervalI ∈ P1 (I = L0 ∪ M1 ∪ R0).
It is clear that each atom ofQ1 falls within one of the categories (b1)-(b4)
above.

AssumingQn defined, defineQn+1 as follows. Take an atomI ∈ Qn

and consider the four cases below.

(1) If I is a single atom ofPm then one of two things can happen:
(i) I is a saddle-node atom: In this case writeI = L0 ∪ M1 ∪ R0 as

above and takeL0, R0 and M1 as atoms ofQn+1. Note that the
lateral intervalsL0 andR0 are atoms of type (b1), while the central
interval M1 is of type (b2).

(ii) I is not a saddle-node atom: In this case writeI = L ∪ M ∪ R
whereL andRare the atoms ofPm+1 adjacent to the endpoints ofI
andM is the union of the other atoms ofPm+1 inside I . Add these
three intervals toQn+1, noting thatL andR are of type (b1), while
M is of type (b4).

(2) If I is a central interval of̃Pm which is not the final interval, consider the
next central interval of̃Pm inside I , sayM, and the two corresponding
lateral intervalsL and R such thatI = L ∪ M ∪ R, and declareL, R
andM members ofQn+1. Note thatL andR are of type (b3), while M
is of type (b2).

(3) If I is a union ofp≥ 2 consecutive atoms11, . . . ,1p of P̃m+1 inside
a single atom ofPm, divide it up into three approximately equal parts.
More precisely, writep = 3q + r and, whenr = 0 or 1, consider
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I = L ∪ M ∪ R where

L =
q⋃

j=1

1 j , M =
p−q⋃

j=q+1

1 j , R =
p⋃

j=p−q+1

1 j .

Whenr = 2, considerI = L ∪ M ∪ R where

L =
q+1⋃
j=1

1 j , M =
p−q−1⋃
j=q+2

1 j , R =
p⋃

j=p−q

1 j .

Note thatM is empty whenp= 2. In any case, we obtain two or three
new atoms ofQn+1 which are either single atoms ofPm+1, and therefore
of type (b1), or once again intervals of type (b3).

(4) If I is a union of intervals which are simultaneously atoms ofPm and
P̃m, divide it up exactly as in (3), obtaining either two or three new
atoms ofQn+1 which are either single atoms ofPm, and therefore of
type (b1), or once again intervals of type (b4).

This completes the induction. That{Qn}n≥0 constitutes a fine grid fol-
lows easily from the real bounds and the remark preceding this
proposition. ut

An immediate consequence of the mere existence of such a fine grid is
the fact that any two critical circle maps with the same rotation number are
quasisymmetrically conjugate.

Corollary 4.6. Let f andg be critical circle maps with the same irrational
rotation number, and leth be the conjugacy betweenf andg that maps the
critical point of f to the critical point ofg. Thenh is quasisymmetric.

Proof. Apply Proposition 4.3 (a) to the fine grid constructed above. ut

4.4. Proof of the First Main Theorem

We will proceed according to the following strategy. Given two critical circle
maps f andg with the same rotation number, consider the special partitions
Qn = Qn( f ) andQ̃n = Qn(g) given by Proposition 4.5. The conjugacyh
betweenf andg is an isomorphism between the corresponding fine grids.
We want to show that the coherence property (6) holds forh and{Qn}. The
statedC1+α smoothness ofh will then follow from Proposition 4.3.

To achieve our goal, we need to impose certain conditions on the common
rotation number off andg. Let us consider the setA ⊆ [0,1] of rotation
numbers whose partial quotients(an) satisfy

lim sup
n→∞

1

n

n∑
j=1

logaj < ∞ , (10)
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as well as

lim
n→∞

1

n
logan = 0 , (11)

and which also satisfy

1

n

k+n∑
j=k+1

logaj ≤ ω
(n

k

)
, (12)

for all 0 < n ≤ k, whereω(t) is a positive function (that depends on the
rotation number) defined fort > 0 such thattω(t)→ 0 ast → 0. This is the
class of rotation numbers for which we shall prove our theorem. Note that
all numbers of bounded type satisfy (10), (11) and (12). The number whose
partial quotients are given byan = k if n = 2k with k ≥ 1 andan = 1
otherwise is an explicit element ofA that is not of bounded type. This
number satisfies (12) withω(t) = 1/

√
t. It is a well-known consequence of

the fact that the Gauss map preserves a measure absolutely continuous with
respect to Lebesgue measure (the Gauss measure) and Birkhoff’s ergodic
theorem that both (10) and (11) hold Lebesgue almost everywhere (see [3],
page 175). Condition (12) also holds for Lebesgue almost all numbers if we
takeω(t) = C(1− log t), whereC> 0 depends on the number (this last fact
was communicated to us by C.G. Moreira – for a proof, see Appendix C).
Therefore our setA has full Lebesgue measure in[0,1].

In what follows we use the notationxn = xn( f ) = f qn(c). We also
assume that the critical pointc is the same for both maps. If the re-
normalizations fn and gn converge together exponentially fast then
|xn( f )− c|/|xn(g)− c| converges to a limit exponentially fast also. More
precisely, we have the following lemma.

Lemma 4.7. If ‖ fn − gn‖0 ≤ Cµk for some0 < µ < 1 and all n ≥ 0,
then the ratio|xn( f )− c|/|xn(g)− c| converges to a limit exponentially
fast. Moreover, for allm, k ≥ 1 we have∣∣∣∣ |Im( f )|

|Ik( f )| −
|Im(g)|
|Ik(g)|

∣∣∣∣ ≤ Cµmin{m,k} |Im( f )|
|Ik( f )| . (13)

Proof. The hypothesis tells us that∣∣∣∣ |In+1( f )|
|In( f )| −

|In+1(g)|
|In(g)|

∣∣∣∣ ≤ C1µ
n ,

for all n ≥ 1. Writing αn = |xn( f ) − c|/|xn(g) − c| = |In( f )|/|In(g)|,
and taking into account thatC−1

2 |In(g)| ≤ |In+1(g)| ≤ C2|In(g)| by the real
bounds (for someC2 > 1), we see that the above inequality is equivalent to∣∣∣∣αn+1

αn
− 1

∣∣∣∣ ≤ C3µ
n .
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This is the same asαn+1 = (1 + εn)αn where |εn| ≤ C3µ
n. Therefore

αn = α1
∏n−1

j=1(1+ ε j ), and this shows that limαn exists. Finally, note that
if m> k ≥ 1 then ∣∣∣∣αm

αk
− 1

∣∣∣∣ ≤
∣∣∣∣∣∣
m−1∏
j=k

(1+ ε j )− 1

∣∣∣∣∣∣
≤ C4

m−1∑
j=k

ε j < C5µ
k ,

and similarly for|1− αk/αm|, and these facts clearly imply (13). ut
Remark.Having established this lemma, we may assume, after conjugating
one of the maps (sayg) by a suitable smooth diffeomorphism, that the limit
of the ratios|In( f )|/|In(g)| is in fact equal to one. This will be our standing
hypothesis from now on (used at the end of the proof of Lemma 4.10 below).

Definition. Let fm : Jm( f ) → Jm( f ) be them-th first return map off
and letk 6= 0 be an integer such that|k| ≤ dam/2e (wheredxe denotes the
smallest integer≥ x). Therestricted domainof f k

m, denotedDm,k, is defined
as follows.

Dm,k =
Im ∪ [ f d

am
2 e−k

m (xm−1), xm−1], whenk> 0

[ fm(xm+1), f
d am

2 e−k
m (xm+1)], whenk ≤ −1 .

In less precise terms, the restricted domainDm,k is the the set of points
in Jm which can be iteratedk times by fm without ever goingacrossthe
central fundamental domain offm in Jm( f ) \ Jm+1( f ).

Lemma 4.8. For all x ∈ Dm,k we have|D f k
m(x)| ≤ K , where K ≥ 1

depends only on the real bounds.

Proof. Use Theorem 3.1 and Yoccoz’s Lemma. ut
Lemma 4.9. Letv be a vertex ofPk+p( f ) such thatv ∈ Jk( f ). Then there
existk ≤ m ≤ k+ p and1≤ N ≤ p such thatv can be represented in the
form

v = φ1 ◦ φ2 ◦ · · · ◦ φN(xm) ,

whereφ j = f
kj
mj for somek ≤ mj ≤ k+ p and |kj | ≤ damj /2e, and where

the pointφ j+1 ◦ · · · ◦ φN(xm) belongs to the restricted domain ofφ j for
each j .
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Proof. For simplicity of notation, we writeJi = Ji ( f ) in this proof. Let
k ≤ m1 ≤ k + p be largest with the property thatv ∈ Jm1 \ Jm1+1, and
let 0 < i ≤ am1 be such thatf i

m1
(v) ∈ Jm1+1. If i ≤ dam1/2e then let

k1 = −i ; otherwise letk1 = am1 − i . We getφ1 = f k1
m1

and a new vertex
v1 = f −k1

m1
(v) ∈ Jm1+1. If v1 ∈ Jk+p thenv1 = fk+p(xk+p−1) necessarily,

and we can stop. On the other hand, ifv1 /∈ Jk+p, then once again there
existsm2 in the rangem1 < m2 < k+ p such thatv1 ∈ Jm2 \ Jm2+1, and
we can proceed inductively. At the end of this process we get sequences
m1 < m2 < · · · < mN ≤ k + p (so N ≤ p) and v1, v2, . . . , vN with
v j ∈ Jmj \ Jmj+1, and for eachj an integerkj with |kj | ≤ damj /2e such that

v j+1 = f
−kj
mj (v j ). The last vertexvN is necessarilyxm for somem≤ k+ p.

Hence it suffices to takeφ j = f
kj
mj to get the desired representation. ut

From now on, we assume that the corresponding sucessive renormal-
izations of f and g approach each other exponentially, in other words
‖ fn − gn‖0 ≤ Cµn for some 0< µ < 1 and alln ≥ 0, just as stated in the
hypothesis of Lemma 4.7.

Lemma 4.10. There exists a constant0< µ∗ < 1 for which the following
holds. Letv ∈ Jk( f ) be a vertex ofPk+p( f ) and letw = h(v) ∈ Jk(g) be
the corresponding vertex ofPk+p(g). If ρ( f ) satisfies condition (11), then
we have

|v −w| ≤ C|Jk( f )|K pµk
∗ , (14)

whereK ≥ 1 is the constant of Lemma 4.8.

Proof. By Lemma 4.9 above, there exist pointsxm = xm( f ), ym = xm(g)
and a numberN ≤ p such that

|v−w| = |φ1 ◦ φ2 ◦ · · · ◦ φN(xm)− ψ1 ◦ ψ2 ◦ · · · ◦ ψN(ym)| ,
whereφ j = f

kj
mj andψ j = g

kj
mj , with k ≤ mj ≤ k+ p and|kj | ≤ damj /2e.

For eachi ≥ 1, let 3i, f be the affine mapx 7→ c + |I i ( f )|x, and de-
fine 3i,g in the same way. For eachi ≥ k, let Ai, f = 3−1

k, f ◦ 3i, f and

Ai,g = 3−1
k,g ◦3i,g. In order to estimate|v−w|, we shall estimate|v∗ −w∗|,

wherev∗ = 3−1
k, f (v) andw∗ = 3−1

k,g(w). To do this, for eachi ≥ k consider

the mapf ∗i : 3−1
k, f (Ji ( f ))→ 3−1

k, f (Ji ( f )) given by

f ∗i = 3−1
k, f ◦ fi ◦3k, f = Ai, f ◦ f i ◦ A−1

i, f ,

and letg∗i be similarly defined.
First we claim that for allx ∈ 3−1

k, f (Ji ( f )) ∩3−1
k,g(Ji (g)) we have∣∣ f ∗i (x)− g∗i (x)

∣∣ ≤ C1µ
k |I i ( f )|
|Ik( f )| . (15)
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To see why, note that by inequality (13) of Lemma 4.7 we have, for allz in
the domain of both renormalizationsf i andgi ,∣∣Ai, f (z)− Ai,g(z)

∣∣ = ∣∣∣∣ |I i ( f )|
|Ik( f )| −

|I i (g)|
|Ik(g)|

∣∣∣∣ |z|
≤ C2µ

k |I i ( f )|
|Ik( f )| .

Similarly, for all x ∈ 3−1
k, f (Ji ( f )) ∩3−1

k,g(Ji (g)) we have, again by (13),∣∣∣A−1
i, f (x)− A−1

i,g (x)
∣∣∣ = ∣∣∣∣ |Ik( f )|

|I i ( f )| −
|Ik(g)|
|I i (g)|

∣∣∣∣ |x|
≤ C3µ

k |Ik( f )|
|I i ( f )| |x| ≤ C4µ

k .

Here we have used that|x| ≤ |Ji ( f )|/|Ik( f )| ≤ C5|I i ( f )|/|Ik( f )| (recall
from the real bounds that|Ji ( f )| � |I i ( f )|). Also, by hypothesis we have
‖ f i − gi‖0 ≤ C6µ

k. Combining these three estimates with a standard
telescoping trick, we get (15), and the claim is proved.

Now letφ∗j = Amj , f ◦φ j ◦ A−1
mj , f andψ∗j = Amj ,g◦ψ j ◦ A−1

mj ,g
. Applying

(15) with i = mj and using Proposition 4.1, we have

∣∣φ∗j (x)− ψ∗j (x)∣∣ ≤ C7 |kj |3µk |Imj ( f )|
|Ik( f )| . (16)

By the real bounds, there exists 0< λ1 < 1 such that|Imj ( f )|/|Ik( f )| ≤
C8λ

mj−k
1 . Takingλ = max{µ, λ1}, we deduce from (16) that∣∣φ∗j (x)− ψ∗j (x)∣∣ ≤ C9 a3

mj
λmj . (17)

We can at last start our estimate of|v∗ −w∗|. First, note thatxm = 3m, f (1)
and ym = 3m,g(1). Writing x∗m = 3−1

k, f (xm) and y∗m = 3−1
k,g(ym), we see

after a simple computation that|x∗m − y∗m| ≤ C10λ
m. Combining this fact

with (17) and using Lemma 4.8, we get∣∣φ∗N(x∗m)− ψ∗N(y∗m)∣∣ ≤ ∣∣φ∗N(x∗m)− ψ∗N(x∗m)∣∣+ ∣∣ψ∗N(x∗m)− ψ∗N(y∗m)∣∣
≤ C9a

3
mN
λmN + C10Kλm .

From this, and since∣∣φ∗N−1(φ
∗
N(x
∗
m))− ψ∗N−1(ψ

∗
N(y
∗
m))
∣∣ ≤∣∣φ∗N−1(φ

∗
N(xm))− ψ∗N−1(φ

∗
N(x
∗
m))
∣∣+ ∣∣ψ∗N−1(φ

∗
N(x
∗
m))− ψ∗N−1(ψ

∗
N(y
∗
m))
∣∣ ,
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we deduce that∣∣φ∗N−1(φ
∗
N(x
∗
m))− ψ∗N−1(ψ

∗
N(y
∗
m))
∣∣ ≤

C9

(
a3

mN−1
λmN−1 + Ka3

mN
λmN

)
+ C10K2λm .

Proceeding inductively in this fashion, we get in the end

|v∗ −w∗| ≤ C9

N∑
j=1

K j−1a3
mj
λmj + C10K Nλm .

Using thatN ≤ p and takingC11= max{C9,C10}, we arrive at

|v∗ − w∗| ≤ C11K p

λm+
N∑

j=1

a3
mj
λmj

 . (18)

We have of courseλm ≤ λk. Moreover, sincek ≤ mj < mj+1 for all j , we
have

N∑
j=1

a3
mj
λmj <

∞∑
n=k

a3
nλ

n .

But since(an) satisfies condition (11), we know that lim(a3
n)

1/n = 1. In
particular, ifε > 0 is such that(1+ε)√λ = 1, there existsC12 = C12(ε) > 0
such thata3

n < C12(1+ ε)n for all n. Therefore

∞∑
n=k

a3
nλ

n < C12

∞∑
n=k

(
√
λ)n = C12

1−√λ (
√
λ)k .

Taking this back to (18) yields|v∗ −w∗| ≤ C13K p(
√
λ)k. Therefore, noting

that under the assumption given in the remark after Lemma 4.7 we have

|v −w| = |3k, f (v
∗)−3k,g(w

∗)| ≤ |Ik( f )| (|v∗ −w∗| + C14µ
k
)
,

and takingµ∗ =
√
λ, we get (14) as desired. ut

Lemma 4.11. There exists a constantM > 0 depending only on the real
bounds such that if1∗ ∈ Pk( f ) and1 ∈ Pk+p( f ) is contained in1∗, then

|1| ≥ M p(
ak+1ak+2 · · · ak+p

)2 |1∗| .

Proof. This again follows from Yoccoz’s Lemma and a simple inductive
argument. ut
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Definition. The level of an atom1 ∈ Qn( f ), denoted̀ (1), is the largest
m≤ n such that1 is contained in an atom ofPm( f ).

Lemma 4.12. If Qn( f ) contains an atom of levelm, then

n ≤ c0

m∑
j=1

log (1+ aj ) (19)

for some absolute constantc0 > 0. In particular, if the partial quotients of
ρ( f ) satisfy (10), thenm≥ c1n for some constant0< c1 < 1 that depends
only onρ( f ).

Proof. Let1 ∈ Qn( f )be an atom of levelm. Let11 ⊇12 ⊇ · · · ⊇1n= 1
be such that1k ∈ Qk( f ), and note that 1= `(11) ≤ `(12) ≤ · · · ≤
`(1n) = m. Given 1≤ l ≤ m, let i ands (maximal) be such that

`(1i+1) = `(1i+2) = · · · = `(1i+s) = l .

Then there existsI ∈ Pl( f ) such that each1 j with i + 1 ≤ j ≤ i + s
is a union of atoms ofPl+1( f ) inside I . From the very construction of
the partitionsQ j ( f ) (Proposition 4.5), we see that the number of atoms of
Pl+1( f ) inside1 j is at leasttwice the number of such atoms inside1 j+1,
for eachi + 1 ≤ j ≤ i + s− 1. Moreover,1i+s contains at least two such
atoms (otherwise its level would bel + 1). Since the total number of atoms
of Pl+1( f ) that lie insideI is at most 1+ al , it follows that 2s ≤ 1+ al ,
whences≤ log2 (1+ al ). This proves (19) withc0 = 1/ log 2.

Now, if ρ( f ) satisfies (10), then there existsB> 0 depending onρ( f )
such that

∑m
j=1 logaj ≤ Bm. Therefore

n ≤ c0

m∑
j=1

log(1+ aj ) ≤ c0 (B+ log 2)m ,

which proves the last assertion, withc1 = c−1
0 (B+ log 2)−1. ut

Lemma 4.13. If ρ( f ) satisfies (11) and (12) then there exists0 < β < 1
with the following property. IfL and R are adjacent atoms ofQn( f ) and
we havè (L) ≥ m and`(R) ≥ m, then∣∣∣∣ |L||R| − |h(L)||h(R)|

∣∣∣∣ ≤ Cβm . (20)

Proof. Write m = k+ p with p = dσke whereσ > 0 is a small constant
(its size will be determined in the course of the argument). We may assume
thatL ∪ R is contained in a single atom1 of Pk( f ). There are two cases to
consider.
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(a) If L ∪ R ⊆ Jk( f ), then the required coherence estimate (20) follows
from Lemma 4.10 and Lemma 4.11. To see this, letv1, v2, v3 ∈ Pk+p( f )
be the endpoints ofL and R, v2 being their common endpoint. Let
w1, w2, w3 be the corresponding endpoints ofh(L) andh(R). Then by
Lemma 4.10 we have|vi − wi | ≤ C0|Jk( f )|θk, whereθ = Kσµ∗ < 1
if σ is small enough. On the other hand, condition (12) tells us that

ak+1ak+2 · · · ak+p ≤ exp{pω(p/k)} ≤ exp{pω(σ)} .
Combining this fact with Lemma 4.11, we get

|v1− v2| ≥ M p(
ak+1ak+2 · · · ak+p

)2 |Jk( f )| ≥ M p

e2pω(σ)
|Jk( f )| .

The same lower bound holds for|v2− v3|. From these facts, we deduce
after some simple computations that∣∣∣∣ |L||R| − |h(L)||h(R)|

∣∣∣∣ = ∣∣∣∣ |v1 − v2|
|v2 − v3| −

|w1−w2|
|w2−w3|

∣∣∣∣
≤ C1

θke2pω(σ)

M p
≤ C2

(
θe2σω(σ)

Mσ

)k

≤ C3β
m
1 ,

whereβ1 =
(
θe2σω(σ)/Mσ

)1/(1+σ)
. Sinceθ < 1 andσω(σ) → 0 as

σ → 0, we see thatβ1 < 1 if σ is small enough.
(b) If L ∪ R is not contained inJk( f ), there existsj < qk+1 such thatf j is

a diffeomorphism on an interval containing1 and its two neighbors in
Pk( f ) and such thatf j (1) ⊆ Jk( f ). By the Koebe principle and the
real bounds, the distortion off j on L ∪ R is bounded by exp(C4µ

p
0)

(where 0< µ0 < 1 is the beau constant of Theorem 3.1). Therefore we
have ∣∣∣∣ |L||R| − | f j (L)|

| f j (R)|
∣∣∣∣ ≤ C5µ

p
0 ≤ C6µ

m
1 , (21)

whereµ1 = µσ/(1+σ)0 . Working similarly withh(L),h(R) ∈ Qn(g), we
get also ∣∣∣∣ |h(L)||h(R)| −

|gj (h(L))|
|gj (h(R))|

∣∣∣∣ ≤ C7µ
m
1 . (22)

Putting (21) and (22) together and using (a) we get inequality (20) with
the constantβ = max{µ1, β1}.
Hence in both cases (20) is established, and we are done. ut
The proof of our First Main Theorem is now almost complete. IfL and

R are adjacent atoms ofQn( f ) as above, then combining Lemma 4.12 with
Lemma 4.13 we deduce that the coherence condition (6) is satisfied with
λ = βc1. Therefore by Proposition 4.3 the conjugacyh is indeedC1+α for
someα > 0.
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5. Counterexamples toC1+α rigidity

Our purpose now is to constructC∞ counterexamples to the conjectured
C1+α rigidity of critical circle maps. We will consider critical circle maps
whose rotation numberρ( f ) = [a0,a1, . . . ,an, . . . ] satisfieslim sup

1

n
logan = ∞

an ≥ 2 for all n.
(23)

The class of all rotation numbers satisfying (23) will be denoted byB. It
can be shown that the Hausdorff dimension ofB is less than or equal to 1/2,
see [7]. On the other hand,B contains Diophantine numbers: for example,
the numberρ whose partial quotients arean = 22n

is Diophantine and
satisfies (23).

Theorem 5.1. For everyρ ∈ B there existC∞ critical circle maps f , g
with ρ( f ) = ρ(g) = ρ such that f and g are notC1+β conjugate for any
β > 0.

The proof will make use of aC∞ surgery procedure that we explain
below. These counterexamples have one additional feature: their successive
renormalizations do converge together at an exponential rate. This will be
clear from the construction.

5.1. Saddle-node surgery

Given f as above and a fixedn ≥ 1, let Jn = Jn( f ) = [ f qn(c), f qn−1(c)] ⊆
S1 be then-th renormalization interval off . Whenan is very large, the first
return mapfn : Jn→ Jn is an almost parabolic map of lengthan.

Let1(n)
1 be the fundamental domain of this almost parabolic map which

is adjacent toxn−1 = f qn−1(c), and let1(n)
j = f j−1

n (1
(n)
1 ), j ≤ an. Let

zn ∈ 1
(n)
1 be the point such thatf an

n (zn) = xn+2 = f qn+2(c), that is,
zn = f qn+2−anqn(c). Note that sincean ≥ 2, xn+2 is not an endpoint of
f an
n (1

(n)
1 ), and so by the real bounds it splitsf an

n (1
(n)
1 ) into two intervals

of comparable lengths. Hence the same holds forzn. Namely, zn splits
1
(n)
1 into two intervalsLn, Rn with |Ln| � |Rn|. In particular we have

τ|1(n)
1 | ≤ |Ln| ≤ (1− τ)|1(n)

1 | (and similarly forRn) for some constantτ
depending on the real bounds. We use this fact in the proof of Proposition 5.2
below.

Consider now another critical circle mapf̃ with the same rotation num-
ber as f , the interval J̃n = Jn( f̃ ), the first return map̃fn : J̃n → J̃n, the
point z̃n = f̃ qn+2−anqn(c̃) and the corresponding intervalsL̃n, R̃n. Also, let
Nn = dan/2e.
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Definition. The number∣∣∣∣∣ | f Nn−1
n (Ln)|
| f Nn−1

n (Rn)|
− | f̃

Nn−1
n (L̃n)|
| f̃ Nn−1

n (R̃n)|

∣∣∣∣∣
is called then-th order discrepancy betweenf and f̃ .

Proposition 5.2. Given aC∞ critical circle map f withρ( f ) ∈ B, consider
a functionσ(n)→∞ such that

lim sup
1

nσ(n)
logan = ∞ .

Then for all n ≥ 1, there exists a critical circle map̃f = F(n; f ) with
the same rotation number and critical point asf and having the following
properties.

(a) We havẽf j (c) = f j (c) for 0≤ j ≤ qn+1; in particular, Jn( f̃ ) = Jn =
Jn( f ).

(b) We havẽf = 8 ◦ f , where8 is a C∞ diffeo such that∥∥8±1− idS1

∥∥
Ck ≤ Bk|Jn|σ(n)−k+1

for all k, whereBk > 0 is constant depending only onk.
(c) Then-th order discrepancy betweenf and f̃ is≥ C|Jn|2σ(n).
(d) We haveJn+1( f̃ ) = Jn+1( f ) and f̃n+1 = fn+1; in particular, m-th

order discrepancy betweenf and f̃ is equal to zero for allm> n.

Proof. We modify f inside f −1(1
(n)
1 ) using aC∞ bump function so as to

movezn by a distance≥ C|1(n)
1 |1+σ(n) inside1(n)

1 . This we do as follows.
Let ϕ : [0,1] → [0,1] be aC∞ perturbation of the identity such that

|ϕ(x) − x| ≥ |1(n)
1 |σ(n) for all τ ≤ x ≤ 1− τ (andτ as above), and such

that |Dkϕ(x)| ≤ Bk|1(n)
1 |σ(n) for all 0 ≤ x ≤ 1 and allk ≥ 2. Define

φn : 1(n)
1 → 1

(n)
1 by φn = An ◦ ϕ ◦ A−1

n whereAn is the affine orientation-
preserving map that carries[0,1] onto 1(n)

1 . Note that|φn(zn) − zn| ≥
|1(n)

1 |1+σ(n). Moreover, sinceDkφn = |1(n)
1 |1−kDkϕ, we have∥∥∥φ±1

n − id
1
(n)
1

∥∥∥
Ck
≤ Bk

∣∣1(n)
1

∣∣σ(n)−k+1

for all k. Defineψn : 1(n)
an
→ 1(n)

an
as the conjugate ofφ−1

n by the diffeo

f an−1
n : 1(n)

1 → 1(n)
an

, namely

ψn = f an−1
n ◦ φ−1

n ◦ ( f an−1
n )−1 . (24)
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Using theCm Approximation Lemma (see Appendix A), we see from (24)
that ∥∥∥ψ±1

n − id
1
(n)
an

∥∥∥
Ck−1
≤ C

∥∥∥φ±1
n − id

1
(n)
1

∥∥∥
Ck
≤ Bk

∣∣1(n)
1

∣∣σ(n)−k+1
.

Define8 : S1 → S1 to be equal toφn on1(n)
1 , to ψn on1(n)

an
and to the

identity everywhere else. The critical circle map we look for isf̃ = 8 ◦ f .
Note that‖8±1 − idS1‖Ck ≤ Bk|1(n)

1 |σ(n)−k+1 for all k; since|1(n)
1 | � |Jn|

by the real bounds, this proves (b). It is also clear from the construction
that property (a) holds too. It follows in particular that the firstn + 1
partial quotients of the rotation number off̃ agree with those off . More
remarkable is that, because whatφn does is undone byψn, we have{

f̃ qn|In+1 = f qn|In+1

f̃ qn+1|In = f qn+1|In

.

In other terms, f̃n = fn, the n-th renormalizations agree. Therefore all
subsequent renormalizations agree as well. This shows thatρ( f̃ ) = ρ( f )
and also proves (d).

It remains to prove (c), so we estimate then-th order discrepancy between
f and f̃ from below. Since|zn − z̃n| ≥ |1(n)

1 |1+σ(n), a simple calculation
yields ∣∣∣∣∣ |Ln|

|Rn| −
|L̃n|
|R̃n|

∣∣∣∣∣ ≥ C|1(n)
1 |σ(n) ≥ C|Jn|2σ(n) , (25)

provided n is sufficiently large. Since, by the real bounds, the map
f N−1
n : 1(n)

1 → 1
(n)
Nn

has bounded distortion, and sincef̃n = fn, inequal-
ity (25) gives us∣∣∣∣∣ | f Nn−1

n (Ln)|
| f Nn−1

n (Rn)|
− | f̃

Nn−1
n (L̃n)|
| f̃ Nn−1

n (R̃n)|

∣∣∣∣∣ ≥ C|Jn|2σ(n) ,

and this proves (c). ut

5.2. The counterexamples

We now iterate the procedure given by Proposition 5.2 to prove our Second
Main Theorem (that is, Theorem 5.1). We start with aC∞ map f with
ρ( f ) ∈ B as before and selectn1 < n2 < · · · such that

lim
i→∞

1

niσ(ni )
logani = ∞ , (26)
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where σ(n) is as in Proposition 5.2. Now we generate a sequenceg0,

g1, . . . , gi , . . . recursively, starting withg0 = f , and taking, for alli ≥ 0,
gi+1 = F(ni+1, gi ), whereF(·, ·) is as given in Proposition 5.2. Eachgi is
a C∞ critical circle map withρ(gi ) = ρ( f ), andgi+1 = 8i+1 ◦ gi , where
8i+1 is aC∞ diffeo with∥∥∥8±1

i+1 − idS1

∥∥∥
Ck
≤ Bkθ

ni (σ(ni )−k+1) , (27)

for all k, where 0< θ < 1 is a constant depending only on the real bounds.
From (27) it follows that8 = lim8i ◦ · · · ◦81 exists as aC∞ diffeo, and
therefore so doesg= lim gi = 8 ◦ f as a critical circle map.

Using properties (c) and (d) of Proposition 5.2 for eachgi , we deduce
that theni -th order discrepancy betweenf andg satisfies∣∣∣∣∣ | f Ni−1

ni
(Lni )|

| f Ni−1
ni (Rni )|

− |g
Ni−1
ni

(L̃ni )|
|gNi−1

ni (R̃ni )|

∣∣∣∣∣ ≥ C|Jni |2σ(ni ) , (28)

whereNi = dani /2e, etc.
Now, let h : S1 → S1 be the conjugacy betweenf andg mapping the

critical pointc to itself. Supposeh wereC1+β for someβ > 0. Then the left-
hand side of (28) would be≤ C| f Ni−1

ni
(1

(ni )
1 )|β, where1(ni )

1 = Lni ∪ Rni .
But by Yoccoz’s Lemma, we have∣∣ f Ni−1

ni
(1

(ni )
1 )

∣∣ � 1

N2
i

|Jni | �
1

a2
ni

|Jni | . (29)

Combining the above with (28) and (29), we would get the inequality

a2β
ni
|Jni |2σ(ni )−β ≤ C .

But by the real bounds|Jn| ≥ Cµn for all n, where 0< µ < 1. Therefore,
taking logarithms, we would have

lim sup
logani

niσ(ni )
≤ 1

β
log

1

µ
, (30)

but this clearly contradicts (26). ut
Remark.A closer look at the construction performed above, especially at
expressions (27) and (30), reveals that if

lim sup
1

n
logan >

k

β0
log

1

µ

then one can construct a pair ofCk critical circle maps (whose renormal-
izations converge exponentially fast) that are notC1+β conjugate for any
β ≥ β0.
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Appendix A. Compactness of renormalizations

The real a-priori bounds proved in the Sect. 3 have produced a very import-
ant corollary, namely, that the renormalizations of an arbitraryC3 critical
circle map are uniformly bounded in theC1 topology. In this appendix
we will use further a-priori estimates, this time involving the Schwarzian
derivative, to prove that such renormalizations are uniformly bounded in
theCr−1 topology when the critical circle map isCr . Some technical tools
are necessary.

A.1. TheCm-Approximation Lemma

In what follows, m ≥ 1 will be a fixed integer andI, J ⊆ R fixed
closed intervals. We denote byCm(I ) the Banach space ofCm-mappings
f : I → R with the norm‖ f ‖m = max{‖Di f ‖0 : 0 ≤ i ≤ m}, where
‖φ‖0 = supx∈I |φ(x)|. Sometimes, when we need to emphasize the domain
of f , we write‖ f ‖I,m instead of‖ f ‖m. We consider also the closed, convex
subsetCm(I, J) ⊆ Cm(I ) consisting of thosef ’s such thatf(I ) ⊆ J.

Recall Leibnitz’s formula for thek-th derivative of a product of two
functions,

Dk(uv) =
k∑

j=0

(
k

j

)
D j u Dk− j v ,

from which it is clear that

‖uv‖m ≤ 2m‖u‖m‖v‖m (31)

wheneveru, v ∈ Cm(I ). Something similar holds for the composition of
twoCm mappings. Namely, we have Faa-di-Bruno’s formula (cf. [11], p. 42)

Dk( f ◦ g) =
k∑

j=1

Bj,k(D
1g, D2g, . . . , D j g) Dk− j+1 f ◦ g ,

where eachBj,k is a homogeneous polynomial of degreek − j + 1 on j
variables whose coefficients are non-negative numbers depending only on
k and j . It readily follows from this formula that ifψ ∈ Cm(I, J) and
φ ∈ Cm(J) then

‖φ ◦ ψ‖m ≤ A(m)‖φ‖m
m∑

k=1

‖ψ‖km , (32)

whereA(m) = max1≤k≤m max1≤ j≤k Bj,k(1,1, . . . ,1).
Another well-known fact we will need below is the following (cf.

[6], Th. 3.1). Supposem > 1 and consider the composition operator
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( f, g) 7→ f ◦ g as a map2 : Cm(J)×Cm−1(I, J)→ Cm−1(I ) . Then2 is
C1 and its Fréchet derivative is given by

D2( f, g) (u, v) = u ◦ g+ v D f ◦ g . (33)

Note thatCm(J)× Cm−1(I, J) ⊆ Cm(J)×Cm−1(I ); we consider this last
product endowed with the norm∣∣( f, g)

∣∣
I,J,m
= max{‖ f ‖J,m, ‖g‖I,m−1} .

Lemma A.1. For eachM > 0, there existsc(M) > 0 such that, if f1, g1 ∈
Cm(J)and f2, g2∈Cm−1(I, J)and if|( f1, f2)|I,J,m< M and|(g1, g2)|I,J,m<
M, then

‖ f1 ◦ f2− g1 ◦ g2‖m−1 ≤ c(M)
∣∣( f1− g1, f2− g2)

∣∣
I,J,m

.

Proof. By the mean value theorem,

‖ f1 ◦ f2− g1 ◦ g2‖m−1 ≤ sup
(φ,ψ)

‖D2(φ,ψ)‖ |( f1− g1, f2− g2)|I,J,m ,

where the supremum is taken over all(φ,ψ) in the line segment joining
( f1, f2) to (g1, g2) insideCm(J)×Cm−1(I, J), and where

‖D2(φ,ψ)‖ = sup
{‖D2(φ,ψ)(u, v)‖m−1 : |(u, v)|I,J,m ≤ 1

}
is the operator-norm ofD2(φ,ψ). Using (33), and then (31) and (32), we
have

‖D2(φ,ψ)(u, v)‖m−1 ≤ ‖u ◦ ψ‖m−1 + ‖v Dφ ◦ ψ‖m−1

≤ (‖u‖m−1 + 2m−1‖v‖m−1‖Dφ‖m−1
)

A(m− 1)
m−1∑
k=1

‖ψ‖km−1 .

From this, and taking into account that‖u‖m−1 ≤ ‖u‖m ≤ |(u, v)|I,J,m as
well as‖v‖m−1 ≤ |(u, v)|I,J,m, we deduce that

‖D2(φ,ψ)‖ ≤ A(m− 1)
(
1+ 2m−1‖Dφ‖m−1

) m−1∑
k=1

‖ψ‖km−1 .

Finally, since‖Dφ‖m−1 ≤ ‖φ‖m and|(φ,ψ)|I,J,m < M, we get

sup
(φ,ψ)

‖D2(φ,ψ)‖ ≤ A(m− 1)
(
1+ 2m−1M

) m−1∑
k=1

Mk = c(M) . ut

Let us denote byBm(I ;M) the ball of radiusM centered at the origin in
Cm(I ).
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Lemma A.2. (TheCm-Approximation Lemma)
For eachM > 0, there exist constantsεM > 0 and CM > 0 such that the
following holds for allε ≤ εM . Let11,12, . . . ,1n+1 be closed intervals on
the line or on the circle, and for each1 ≤ i ≤ n let fi , gi ∈ Cm(1i ,1i+1)

be such that

(a) For all 1≤ j ≤ k ≤ n, we havefk ◦ fk−1 ◦ · · · ◦ f j ∈ Bm(1 j ;M);
(b) We have

∑n
i=1 ‖ fi − gi‖m < ε.

Then for all k ≤ n we havegk ◦ gk−1 ◦ · · · ◦ g1 ∈ Bm−1(11;2M), and
moreover

‖ fk ◦ fk−1 ◦ · · · ◦ f1− gk ◦ gk−1 ◦ · · · ◦ g1‖m−1 ≤ CM

k∑
j=1

‖ f j − gj‖m .

Proof. In the notation of Lemma A.1, let us write

CM = max{1, c(2M), c(2M)c(3M)}
andεM = M/CM. We proceed by induction onk. Whenk = 1, we have
‖ f1−g1‖m ≤ ε and there is nothing to prove. Suppose the assertion is valid
for all j < k, and write (omitting the composition symbols)

‖ fk fk−1 · · · f1− gkgk−1 · · · g1‖m−1 ≤
k∑

j=1

‖ fk · · · f j+1gj gj−1 · · · g1− fk · · · f j+1 f j gj−1 · · · g1‖m−1 . (34)

Since |( f j , gj−1 ◦ · · · ◦ g1)|11,1 j ,m < 2M and also |(gj , gj−1 ◦
· · · ◦ g1)|11,1 j ,m < 2M, it follows from Lemma A.1 that

‖ f j gj−1 · · · g1− gj gj−1 · · · g1‖m−1 ≤ c(2M)‖ f j − gj‖m ,
for j = 1, . . . , k. In particular, by the induction hypothesis, we have for
all 1≤ j ≤ k− 1

‖ f j gj−1 · · · g1‖m−1 ≤ ‖gj gj−1 · · · g1‖m−1 + εM c(2M) < 3M .

Taking this back to (34) and applying Lemma A.1 again, we get

‖ fk fk−1 · · · f1− gkgk−1 · · · g1‖m−1

≤ c(2M)‖ fk − gk‖m+ c(2M)c(3M)
k−1∑
j=1

‖ f j − gj‖m

≤ CM

k∑
j=1

‖ f j − gj‖m ,

and this shows also that‖gkgk−1 · · · g1‖m−1 ≤ M + εMCM < 2M, thereby
completing the induction. ut
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A.2. Koebe principle revisited

We present a generalization of the classical Koebe non-linearity princi-
ple. This principle states that if aC3 diffeomorphism has non-negative
Schwarzian derivative on an open interval, then its non-linearity on any
smaller closed subinterval withspaceon both sides is bounded. The gen-
eralized version below seems to be new. We denote bySφ the Schwarzian
derivative ofφ.

Lemma A.3. Given positive constantsB and τ, there existsKτ,B > 0
such that the following holds. Ifφ is a C3-diffeomorphism of an interval
I ⊇ [−τ,1+ τ] into the reals and ifSφ(t) ≥ −B for all t ∈ I , then for all
t ∈ [0,1] we have ∣∣∣∣φ′′(t)φ′(t)

∣∣∣∣ ≤ Kτ,B .

Proof. Writing y = φ′′/φ′, so thatSφ = y′ − 1
2 y2, we have the differential

inequality

y′ ≥ 1

2
y2− B . (35)

Let 0 ≤ t0 ≤ 1 be a point where|y(t)| attains its maximum in[0,1] and
supposey0 = y(t0) is such that|y0| >

√
2B = β. If z(t) is the solution of the

differential equation corresponding to (35) with initial conditionz(t0) = y0,
then by a well-known comparison theorem we must havey(t) ≥ z(t) for all
t ≥ t0 andy(t) ≤ z(t) for all t ≤ t0. Now, if y0 > β then integration of the
ODE leads to

z(t) = β (y0+ β)+ (y0− β)eβ(t−t0)

(y0+ β)− (y0− β)eβ(t−t0)
.

Since this solution explodes at time

t1 = t0 + 1

β
log

(
y0+ β
y0− β

)
,

so doesy(t). Hencet1 /∈ I , i.e. t1− t0 > τ, which gives us

φ′′(t0)
φ′(t0)

= y0 < β
eβτ + 1

eβτ − 1
.

If insteady0 < −β, then we get

z(t) = β (β + y0)− (β − y0)eβ(t−t0)

(β + y0)+ (β − y0)eβ(t−t0)
,

and arguing as before fort ≤ t0 gives us

φ′′(t0)
φ′(t0)

= y0 > −β eβτ + 1

eβτ − 1
.
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Therefore the lemma is proved if we take

Kτ,B = βeβτ + 1

eβτ − 1
. ut

Remark.As B → 0, Kτ,B → 2/τ and we recover the classical Koebe
principle.

A.3. Bounding theC2 norms

As before, let f ∈ Critr (S1), r ≥ 3, be a critical circle map with critical
pointcof power-lawp > 1. Conjugatingf by a suitableCr -diffeomorphism,
we may assume that there exists a neighborhoodU ⊆ R/Z of c such that

f(x) = (x− c)|x− c|p−1+ a

for all x ∈ U , wherea is a constant. This will be our standing hypothesis
on f , and we will sometimes say thatf is acanonicalcircle map. Note in
this case that for allx ∈ U \ {c}, the Schwarzian derivative off equals

S f(x) = − p2 − 1

2(x− c)2
. (36)

We are interested in the mapsf qn−1−1 : I 1
n → I qn−1

n and f qn−1 : I 1
n−1→

I qn
n−1, for a fixedn ≥ 1. They extend as diffeomorphisms to maximal open

intervals J−n,1 ⊇ I 1
n and J+n,1 ⊇ I 1

n−1 respectively. When linearly rescaled
to unit size, these diffeomorphisms are called thecoefficientsof the n-th
renormalization off .

Let us be more precise. Consider then-th renormalization off , namely
the commuting pairfn : [λn,1] → R defined in Sect. 3. We writeJ−n,i =
f i−1(J−n,1) for each 1≤ i ≤ q = qn−1 and J+n, j = f j−1(J+n,1) for each
1≤ j ≤ Q = qn. We also writeJ−n,0 = f −1(J−n,1) andJ+n,0 = f −1(J+n,1). For
each 0≤ j ≤ Q, let3 j : R→ R/Z be the affine (orientation-preserving)
covering map such that3 j ([0,1]) = I j

n−1. Let 1−n be the component of
3−1

1 (J−n,1) that contains the interval[λn,0], and let1+n be the component of
3−1

1 (J+n,1) that contains the interval[0,1]. Then define{
F−n = 3−1

0 ◦ f q−1 ◦31 : 1−n → R

F+n = 3−1
0 ◦ f Q−1 ◦31 : 1+n → R

.

These are then-th renormalization coefficients off . Consider also the
so-calledfolding factorsof fn, namely the maps{

ϕ−n = 3−1
1 ◦ f ◦30 : 3−1

0 (J−n,0)→ R

ϕ+n = 3−1
1 ◦ f ◦30 : 3−1

0 (J+n,0)→ R
.
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Each of these maps is a homeomorphism with a unique critical point at zero.
One verifies at once that the mapsF−n = F−n ◦ ϕ−n andF+n = F+n ◦ ϕ+n are
Cr extensions off −n and f +n , respectively.

It will be useful to express the coefficientsF±n as long compositions of
rescaled diffeomorphisms in the following way. We will give the explicit
decomposition forF+n . A similar decomposition can be worked out forF−n .
Let us denote by1+n, j the component of3−1

j (J
+
n, j ) containing the unit

interval. Note in particular that1+n = 1+n,1. For eachj in the range 0≤
j ≤ Q− 1, let

f j = 3−1
j+1 ◦ f ◦3 j : 1+n, j → 1+n, j+1 .

We call such maps theelementary factorsofF+n . Each f j is aCr diffeomor-
phism such thatf j ([0,1]) = [0,1] (see Fig. 5). We have of courseϕ+n = f0,
but more importantly

F+n =
(
3−1

0 ◦3Q
) ◦ ( fQ−1 ◦ · · · ◦ f j ◦ · · · f1

)
. (37)

We note also that for allt ∈ 1+n, j
S fj (t) = S f

(
3 j (t)

) [
D3 j (t)

]2 = S f
(
3 j (t)

) |I j
n−1|2 , (38)

by the chain rule for the Schwarzian derivative.

Notation. Given J = [a,b] ⊆ R andτ > 0, we denote byJτ the interval
[c,d] ⊇ J such that(a− c)/(b− a) = (d− b)/(b− a) = τ. Note thatJ
hasspaceequal toτ inside Jτ .

c

In−1 Ijn−1

f

Ij+1
n−1

R/Z

Λj Λj+1

0 1 R

fj

∆+
n,j

Fig. 5. The elementary factors ofF+n
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Theorem A.4. (TheC2 bounds)
Let f ∈ Crit3(S1) be a critical circle map with arbitrary irrational rotation
number, letfn : [λn,1] → R be then-th renormalization off , and letF±n :
1±n → R be the coefficients offn. Also, let f j : 1+n, j → 1+n, j+1 be the
elementary factors ofF+n . There exist positive constantsB andτ depending
only on the real bounds forf such that the following statements hold for
all n ≥ 1.

(a) We have1−n ⊇ [λn,0]τ and1+n ⊇ [0,1]τ = [−τ,1+ τ].
(b) For all 0≤ j ≤ Q, we have1+n, j ⊇ [0,1]τ .
(c) We have|SF−n (t)| ≤ B for all t ∈ 1−n and|SF+n (t)| ≤ B for all t ∈ 1+n .
(d) More generally, for all1≤ j < k ≤ Q, we have|S( fk◦· · ·◦ f j )(t)| ≤ B

for all t ∈ 1+n, j .
(e) The C2 norms of the restrictionsF−n |[λn,0]τ/2 and F+n |[0,1]τ/2 are

bounded byB.
( f ) More generally, for all1 ≤ j < k ≤ Q, theC2 norm of the restriction

of fk ◦ · · · ◦ f j to the interval f j−1 ◦ · · · ◦ f1([0,1]τ/2) is bounded byB.
(g) TheC2 norms of f −n and f +n are bounded byB.

Moreover, if n is sufficiently large then both coefficients have negative
Schwarzian derivatives at all points of their respective domains.

The proof will use the following lemma concerning the dynamical par-
titionsPn. Let us denote byd(c, I ) the distance between an intervalI ⊆ S1

and the critical pointc. For eachn ≥ 1, let

Sn =
∑

I∈Pn\{In−1,In}

( |I |
d(c, I )

)2

. (39)

Lemma A.5. The sequenceSn is bounded (by a constant depending only
on f ).

Proof. Recall thatPn+2 is a strict refinement ofPn. From the real bounds,
we know that there exists a constant 0< λ < 1 depending only onf such
that, if I is inPn andJ ⊆ I is inPn+2, then|J| ≤ λ|I |. Hence∑

I⊇J∈Pn+2

|J|2 ≤
(

max
I⊇J∈Pn+2

|J|
)
|I | ≤ λ|I |2 .

Since we also haved(c, J) ≥ d(c, I ) wheneverJ ⊆ I , it follows that

Sn+2 ≤ λSn+
∑

Pn+23J⊆In−1\In+1

( |J|
d(c, J)

)2

+
∑

Pn+23J⊆In\In+2

( |J|
d(c, J)

)2

≤ λSn + λ
( |In−1|
|In+1|

)2

+ λ
( |In|
|In+2|

)2

.
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From this and the facts that|In−1| � |In+1| and |In| � |In+2| , we get
Sn+2 ≤ λSn + µ, whereµ is a constant depending only onf . But then, by
induction,

S2n ≤ λn−1S2+ µ

1− λ , S2n+1 ≤ λnS1+ µ

1− λ ,

and thereforeSn is bounded as claimed. ut
Proof of Theorem A.4.It is enough to prove this theorem under the assump-
tion that f is canonical. The existence ofτ > 0 such that (a) and (b) hold is
a consequence of the real bounds. Hence we proceed to prove (c) for F+n ,
the proof forF−n being completely similar. Makingτ smaller if necessary
and using the classical Koebe non-linearity principle, we can assume that
there existsC > 0 depending only on the real bounds forf such that

|D( f j · · · f1)(t)| ≤ C , (40)

for all t ∈ [−τ,1+ τ] and all j = 1, . . . ,Q− 1.
Let V ⊆ S1 be an open set whose closure does not containc and such

thatU ∪ V = S1. Also, let M = supx∈V |S f(x)|. We assume thatn is so
large that the largest interval inPn has length smaller than the Lebesgue
number of the covering{U,V}. Together with (37) and (38), iterated use of
the chain rule for the Schwarzian yields

SF+n (t) = S( fQ−1 · · · f j · · · f1)(t)

=
Q−1∑
j=1

S fj ( f j−1 · · · f1(t))
[
D( f j−1 · · · f1)(t)

]2
=

Q−1∑
j=1

S f(3 j f j−1 · · · f1(t))
∣∣I j

n−1

∣∣2 [D( f j−1 · · · f1)(t)
]2
.

We split this last sum into61(t) + 62(t), where61(t) is the sum over all
j ’s such thatI j

n−1 ⊆ U and62(t) is the sum over the remaining terms

(i.e. those withI j
n−1 ⊆ V). Then we have on one hand

|62(t)| ≤ C2M
∑

I j
n−1⊆V

∣∣I j
n−1

∣∣2 ≤ C2M max
1≤ j≤Q−1

∣∣I j
n−1

∣∣ . (41)

On the other hand, sinced(c, J+n, j ) � d(c, I j
n−1) for all j , we have by (36)

|61(t)| ≤ C2
∑

I j
n−1⊆U

∣∣I j
n−1

∣∣2[
d(c, J+n, j )

]2 ≤ C′Sn , (42)
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whereC′ is another constant depending only onf andSn is given by (39).
From (41) and (42) it follows that|SF+n (t)| is uniformly bounded, and this
proves (c). Moreover, since by (41)62(t) goes to zero withn while61(t) is
always negative and bounded away from zero, we deduce thatSF+n (t) < 0
for all n sufficiently large. The proof of (d) is entirely analogous.

To prove (e), let B0 be the upper-bound that we have just obtained for
|SF+n |. Applying Lemma A.3 toF+n , we get for allt ∈ [0,1]τ/2∣∣∣∣D2F+n (t)

DF+n (t)

∣∣∣∣ ≤ Kτ0,B0 ,

whereτ0 = τ/2(1+ τ) is the space of[0,1]τ/2 inside [0,1]τ . Therefore
‖D2F+n ‖0 ≤ Kτ0,B0‖DF+n ‖0 ≤ CKτ0,B0, by (40) above. This shows that
theC2 norm ofF+n is bounded as claimed. A similar argument proves (f ).
Finally, (g) follows from (e) and the fact that the folding factorsϕ±n are linear
blow-ups of a fixed power-law map. The theorem is therefore proved if we
takeB to be the largest of all the upper-bounds obtained in the argument.ut
Remark.We can go a bit further in (e), ( f ) and (g) and bound also theC3

norms. For this purpose, it suffices to note for instance that

D3F+n (t) = DF+n (t)

(
SF+n (t)+

3

2

[
D2Fn(t)

DFn(t)

]2
)
,

and then use (c) and (e). However, this argument does not generalize to get
bounds for higher derivatives. Our bootstrap argument in the next section
will follow a different route, based on theCm Approximation Lemma.

A.4. Bounding theCr−1 norms

We will show that the sequence of renormalizations of aCr critical circle
map is bounded in theCr−1 sense. The limits fall into (a compact subset of)
a special family of analytic critical commuting pairs known as the Epstein
class. Moreover, we will prove that such limits are attained at an exponential
rate in theCr−1 topology. The rate of convergence turns out to depend only
on the rotation number of the given critical circle map.

An Epstein mapis a homeomorphismϕ : I → J between closed
intervals on the real line such thatϕ−1 is the restriction of an analytic
univalent map8 : C(J′) → C(I ′), where I ′ ⊇ I and J′ ⊇ J are open
intervals. Here we use the notationC(1) = (C \ R) ∪ 1. For example,
every fractional linear transformation inPSL2(R) is an Epstein map when
restricted to an interval on the line which does not contain any of its poles.
Further examples include polynomial or rational diffeomorphisms with real
coefficients.
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Definition. A commuting pair f is said to be anEpsteincommuting pair if
f + = ϕ+ ◦ Q and f − = ϕ− ◦ Q, whereϕ+, ϕ− are Epstein maps andQ is
the power-law mapx 7→ xp (for somep> 1).

Theorem A.6. Letr ≥ 3and let f be aCr critical circle map with arbitrary
irrational rotation number. Then the sequence of renormalizations{Rn( f )}
is bounded in theCr−1 metric and convergesCr−1 exponentially fast to the
Epstein class.

The idea behind the proof of Theorem A.6 is quite simple. In the long
composition defining then-th renormalization of a critical circle map, we
replace the factors away from the critical point by suitable fractional linear
approximations, which are all Epstein maps. The factors which are close
to the critical point are already Epstein because the map is assumed to be
a power-law there. Therefore the entire new composition is an Epstein map.
The Moebius approximations have to be carefully chosen, however, so that
the total error involved, estimated with the help of theCm Approximation
Lemma, be exponentially small inn (the step of renormalization). We now
present the technical result which is needed.

Lemma A.7. Givenr ≥ 3and an orientation preservingCr -diffeomorphism
φ : I → R of a closed intervalI onto its image, there exist constants
`φ > 0 and Kφ > 0 with the following property. For each closed interval
1 ⊆ I of length|1| ≤ `φ, there exists a fractional linear transformation
T1 ∈ PSL2(R) with T1(1) = φ(1) such that,

(a) supx∈1
∣∣Dkφ(x)− DkT1(x)

∣∣ ≤ Kφ|1|3−k for k = 0,1,2.
(b) supx∈1

∣∣DkT1(x)
∣∣ ≤ Kφ for all 1≤ k ≤ r .

Proof. Let `φ be the constant

`φ = min

{
1, inf

x∈I

∣∣∣∣ φ′(x)φ′′(x)

∣∣∣∣} .
Take any closed interval1 ⊆ I with |1| ≤ `φ, and let x0 be the left
endpoint of1. Let T be the unique fractional linear transformation with
the same 2-jet asφ at x0. Thus, ifT(x) = (a(x− x0)+ b)/(c(x− x0)+ d)
with ad− bc = 1, then the coefficients are uniquely determined by the
conditions

T(x0) = b

d
= φ(x0) ,

T ′(x0) = 1

d2
= φ′(x0) , (43)

T ′′(x0) = −2c

d3
= φ′′(x0) .
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Moreover, for allk ≥ 1,

DkT(x) = (−1)k+1k!ck−1

[c(x− x0)+ d]k+1 . (44)

Since|x − x0| ≤ |1| ≤ `φ ≤ |φ′(x0)|/|φ′′(x0)| = |d|/2|c| for all x ∈ 1,
we have

1

2
|d| ≤ |c(x− x0)+ d| ≤ 3

2
|d| (45)

for each suchx. Combining (44) with the lower bound in (45), we get∣∣DkT(x)
∣∣ ≤ 2k+1k!|c|k−1

|d|k+1
= 4k!|φ′′(x0)|k−1

|φ′(x0)|k−2
,

for all x ∈ 1 and allk ≥ 1, and consequently

sup
x∈1

∣∣DkT(x)
∣∣ ≤ C0 = max

1≤k≤r
sup
x∈I

{
4k!|φ′′(x)|k−1

|φ′(x)|k−2

}
, (46)

when 1≤ k ≤ r . In particular, from

D2φ(x)− D2T(x) =
∫ x

x0

D3φ(t)dt −
∫ x

x0

D3T(t)dt ,

we deduce that∣∣D2φ(x)− D2T(x)
∣∣ ≤ ‖D3φ‖0 |x− x0| + 24|φ′′(x0)|2

|φ′(x0)| |x− x0|
≤ (‖D3φ‖0+ C0

) |1| ,
for all x ∈ 1. Integrating this inequality twice, using (43), we get

sup
x∈1

∣∣Dkφ(x)− DkT(x)
∣∣ ≤ C1|1|3−k , (47)

for k = 0,1,2, whereC1 = C0+ ‖D3φ‖0.
Looking at (46) and (47), we see thatT is almost what we want, but not

quite because in general it does not map1 ontoφ(1). To correct this flaw,
we replaceT by T1 = A ◦ T, where A is the unique affine, orientation-
preserving map that carriesT(1) ontoφ(1). We have

A(t) − t =
[ |φ(1)|
|T(1)| − 1

]
(t − T(x0)) , (48)

for all t ∈ T(1), becauseφ(x0) = T(x0). Letµ = |φ(1)|/|T(1)|. Since by
(47) we have||φ(1)| − |T(1)|| ≤ 2C1|1|3, and since by the upper-bound
in (45) we have

|T(1)|
|1| ≥ inf

x∈1
1

[c(x− x0)+ d]2 ≥
4

9d2
= 4

9
|φ′(x0)| ,



384 Edson de Faria, Welington de Melo

it follows that

|µ− 1| ≤ 9C1

2|φ′(x0)| |1|
2 .

Thus we see that, for allt ∈ T(I ),

|A′(t)− 1| = |µ− 1| ≤ 9C1

2 infx∈I |φ′(x)| |1|
2 = C2|1|2 ,

On the other hand, since|T(1)| ≤ ‖Dφ‖0|1|+2C1|1|3, and since|1| ≤ 1,
it follows from (48) that

|A(t) − t| ≤ C2 (‖Dφ‖0 + 2C1) |1|3 = C3|1|3 .
Therefore

|φ(x)−T1(x)| ≤ |φ(x)−T(x)|+|T(x)−A(T(x))| ≤ (C1+C3) |1|3 , (49)

and moreover, using the fact thatDkT1(x) = µDkT(x) for all k,

|Dkφ(x)− DkT1(x)| ≤ |Dkφ(x)− DkT(x)| + |µ− 1| |DkT(x)|
≤ C1|1|3−k + C0C2|1|2
≤ (C1+ C0C2) |1|3−k ,

(50)

for all x ∈ 1 andk = 1,2. Finally, for allk ≥ 1 we have

|DkT1(x)| ≤
(
1+ C2|1|2

) |DkT(x)| ≤ (1+ C2)C0 . (51)

Part(a) now follows from (49) and (50), while part(b) follows from (51),
provided we takeKφ = max{C1+ C3,C1+ C0C2, (1+ C2)C0}. ut
Proof of Theorem A.6.We now expand the outline given above and present
a complete proof of Theorem A.6. In the proof, we will denote byC0,C1, . . .

positive constants depending only on the real bounds forf . As before, we
may assume from the start thatf is canonical, and accordingly we consider
the covering{U,V} of S1 defined in the proof of Theorem A.4. Since the
folding factors of fn are power-law maps, and therefore already Epstein, it
suffices to prove that thecoefficientsof fn can be approximated by Epstein
maps, up to an error exponentially small inn in theCr−1 topology. We will
do this forF+n , the proof forF−n being the same.

As in the previous section, letf j : 1+n, j → 1+n, j+1, 1≤ j ≤ Q− 1, be
the elementary factors ofF+n . For each 1≤ j ≤ Q we define

1 j = f j−1 ◦ · · · ◦ f2 ◦ f1
([0,1]τ/4) ⊆ 1+n, j ,

whereτ is the constant of Theorem A.4. Note thatf j (1 j ) = 1 j+1. Let
1′j = 3 j (1 j ), and observe also thatI j

n−1 ⊆ 1′j ⊆ J+n, j .
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We introduce individual Epstein approximationsgj to each f j . There
are two cases to consider. It may happen that1′j ⊆ U , in which case we
simply takegj = f j . Otherwise, we have1′j ⊆ V. In this case, we let
Tj : 1′j → 1′j+1 be the Moebius approximation tof |1′j that we get apply-
ing Lemma A.7 to the restriction of f to V, and then take
gj = 3−1

j+1 ◦ Tj ◦3 j . Note thatgj (1 j ) = 1 j+1.

Claim 1. We have‖ f j − gj‖r ≤ C0|I j
n−1|2 for all j .

This is obvious whenI j
n−1 ⊆ U . When I j

n−1 ⊆ V, we have|I j
n−1| �

|I j+1
n−1|, because the derivative off onV is bounded away from zero, and we

also have|1′j | � |I j
n−1|. Moreover, for all 1≤ s≤ r and allx ∈ 1 j ,

Ds f j (x)− Dsgj (x) =
∣∣I j

n−1

∣∣s∣∣I j+1
n−1

∣∣ (Ds f(3 j (x))− DsTj (3 j (x))
)
.

Therefore the claim follows from Lemma A.7 (treat the casess = 1,2
separately).

Now, recall from Theorem A.4 that for all 1≤ j < k ≤ Q− 1 we have

‖ fk ◦ · · · ◦ f j‖2 ≤ B .

Claim 2. If n is sufficiently large then for all 1≤ j < k ≤ Q− 1 we have

‖ fk ◦ · · · ◦ f j − gk ◦ · · · ◦ gj‖1 ≤ C1 max
0≤i≤Q

∣∣I i
n−1

∣∣ . (52)

Taken0 so large thatC0 max|I j
n0−1| < εB, whereεB is the constant given

by Lemma A.2 when we takeM = B. Then from Claim 1 and (52), the
hypotheses of Lemma A.2 are satisfied, and we get for alln ≥ n0

‖ fk ◦ · · · ◦ f j − gk ◦ · · · ◦ gj‖1 ≤ CB

k∑
i= j

‖ fi − gi‖2 ≤ C0CB

k∑
i= j

∣∣I i
n−1

∣∣2
≤ C0CB max

0≤i≤Q

∣∣I i
n−1

∣∣ ,
whereCB is the constant of Lemma A.2 forM = B. This proves the claim.

In order to bootstrap theseC1 estimates up toCr−1 estimates, we apply
theCm Approximation Lemma once more, this time reversing the roles of
f j andgj , and withm = r . Thus, we need to verify the hypotheses of that
lemma in this new situation.

Claim 3. For all 1≤ j < k ≤ Q− 1, we have‖gk ◦ · · · ◦ gj‖r ≤ C2.

For brevity, writeGjk = gk ◦ · · · ◦ gj . ThenG−1
jk is univalent onC(1 jk),

where1 jk is an interval containingGjk(1 j ) with definite space on both
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sides, by our choice ofτ. Using Koebe’s one-quarter theorem, it is not
difficult to see that the domain� jk = G−1

jk (C(1 jk)) contains a rectangle
Wj = 1α

j × [−β, β], and thatd(∂Wj , ∂� jk) ≥ γ whereα, β and γ are
positive constants depending only onτ and the real bounds forf . Hence,
from the complex Koebe’s distortion theorem, we get∣∣∣∣∣ G′jk(z)

G′jk(w)

∣∣∣∣∣ ≤ exp

{
4

γ
diam(Wj )

}
≤ C3 ,

for all z, w ∈ Wj . This together with the mean-value theorem gives us
|G′jk(z)| ≤ C4, and therefore also|Gjk(z)| ≤ C5, for all x ∈ Wj . Now we
use Cauchy’s integral formula to bound all higher derivatives ofGjk. We
have for allx ∈ 1 j and alls≥ 1

|DsGjk(x)| = s!
2π

∣∣∣ ∫
∂Wj

Gjk(z)

(z− x)s+1
dz
∣∣∣ ≤ C5s!

π
(β+(1+2α)|1 j |) δ−s−1

j ,

whereδ j = inf x∈1 j d(x, ∂Wj ) = min{α|1 j |, β} ≥ δ = min{a,b}. There-
fore|DsGjk(x)| ≤ C6s!δ−s−1. This shows that‖Gjk‖r is bounded as claimed.

From Claims 1 and 3, the hypotheses of Lemma A.2 are therefore
satisfied, and we have

‖ fk ◦ · · · ◦ f j − gk ◦ · · · ◦ gj‖r−1 ≤ CC2

k∑
i= j

‖ fi − gi‖r

≤ C0CC2

k∑
i= j

∣∣I i
n−1

∣∣2
≤ C0CC2 max

0≤i≤Q

∣∣I i
n−1

∣∣ ,
this time for alln large enough so thatC0 max|I j

n−1| < εC2, whereCC2 and
εC2 are the constants of Lemma A.2 forM = C2. Since max|I j

n−1| decreases
exponentially withn, we are done. ut

Appendix B. Proof of Yoccoz’s Lemma

The main geometric idea behind the proof of Yoccoz’s Lemma is to use the
negative Schwarzian property off to squeezethe graph off between the
graphs of two Moebius transformations. The required estimate forf will
then follow from the corresponding estimate for Moebius transformations,
which we now state and prove.
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Consider the fractional linear transformationT(x) = x/(1+ x), and
givenε > 0, let Tε(x) = T(x)− ε. We are interested in certain quantitative
aspects of the orbitxn = Tn

ε (x0) for x0 = 1. Observe that this sequence is
strictly decreasing.

Lemma B.1. Let N > 0 be such thatxN+1 ≤ 0 < xN. Then we have
N � 1/

√
ε and moreoverxn − xn+1 � 1/n2 for n = 0,1, . . . , N.

Proof. Writing δn = Tn(x0)− Tn
ε (x0), we have

δn = ε+ δn−1(
1+ 1

n

)(
1+ 1

n − δn−1
) (53)

for all n = 1,2, . . . , N + 1. We claim that
nε

6
≤ δn ≤ nε . (54)

The last inequality is clear. To prove the first, we note from (53) that

δn ≥ ε+
(

n

n+ 1

)2

δn−1 .

By induction, this gives us

δn ≥ ε

(n+ 1)2
(
12 + 22+ · · · + n2

) = ε

(n+ 1)2
n(n+ 1)(2n+ 1)

6

≥ nε

6
,

which proves the claim. Now, from the fact thatxN+1 ≤ 0 < xN we have
the inequalities

δN <
1

N + 1
, δN+1 ≥ 1

N + 2
.

Then, using (54), we get

1

(N + 1)(N + 2)
≤ ε <

6

N(N + 1)
, (55)

which proves the first assertion.
Next, note that since[xN+1, xN] ⊆ [Tε(0), T−1

ε (0)
] = [−ε, ε/(1− ε)],

we have
ε < xN − xN+1 < 3ε (56)

Hence, by (55), we getxN − xN+1 � 1/N2 and the second assertion is
proved whenn = N. To prove it in general using this information, observe
that

xn − xn+1 = xn−1 − xn

(1+ xn−1)(1+ xn)
= xn−1 − xn(

1+ 1
n − δn−1

)(
1+ 1

n+1 − δn
)
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implies

xn − xn+1 ≥ n

n+ 2
(xn−1 − xn) .

By induction, this gives on one hand

xn − xn+1 ≥ 2

(n+ 1)(n+ 2)
(x0− x1) ≥ 1

(n+ 1)(n+ 2)
,

and on the other hand, using (55) and (56),

xn − xn+1 ≤ (xN − xN+1)

N−n∏
j=1

(
n+ j + 2

n+ j

)
<

54

(n+ 1)(n+ 2)
.

This proves the second assertion in all cases. ut
Now recall that f : 11 ∪12 ∪ · · · ∪1a → R satisfiesf(1 j ) = 1 j+1

for all j . Without loss of generality, we can assume thatf(x) < x for all x.
Thus, if we callx0 the right endpoint of11 and writexj = f j (x0), we
have1 j = [xj , xj−1] for all j . Since our mapf is a negative-Schwarzian
diffeomorphism, there exists a uniquez in the domain of f such that
ε = | f(z) − z| ≤ | f(x) − x| for all x. Since the statement we want to
prove is invariant under affine changes of coordinates, we may assume also
that z = 0 andx0 = 1. In this setting, we want to prove that|1 j | � 1/ j 2

for all j such that1 j ⊆ [0,1]. Note that f ′(0) = 1.
Next, let A be the Moebius transformation on the line such that

A(x0) = f(x0) and A(0) = f(0) and A′(0) = f ′(0) = 1. This determines
A uniquely, and in fact

A(x) = x

1+ λx
− ε ,

for someλ > 0. SinceS f< 0, we see thatA(x) ≤ f(x) for all x ∈ [0,1].
Likewise, letB be the Moebius transformation such thatB(xa) = f(xa),

B(0) = f(0) and B′(0) = f ′(0) = 1. This determinesB uniquely, and in
fact

B(x) = x

1+ µx
− ε ,

for someµ > 0. This time, sincexa < 0 andS f< 0, we havef(x) ≤ B(x)
for all x ∈ [0,1]. In particular,λ > µ. It is easy to see thatλ/µ ≤ cσ , where
cσ depends only on the constantσ in the statement.

Lemma B.2. Let x ∈ [0,1] and k > 0 be such thatA(x) < Bk(x). Then
k ≤ 1+ λ/µ.
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Proof. By induction we have

Bk(x) ≤ x

1+ (k− 1)µx
− ε .

ThereforeA(x) < Bk(x) implies(k− 1)µx < λx. ut
Now, let us writeαn = An(x0) and βn = Bn(x0). By Lemma B.2,

the number ofβ j ’s inside each interval of the form[αn+1, αn] is bounded
independently ofn. Moreover, sinceαn < xn < βn for all n, the num-
ber of xj ’s inside each[αn+1, αn] is also bounded independently ofn. To
prove that|1 j | � 1/ j 2, we proceed as follows. Let̀ > 0 be such that
β`+1 ≤ xj ≤ β` ≤ xj−1. Then Lemma B.2 says that` ≤ C j, and we have
also

|β`+1− β`| < |B(xj−1)− xj−1| < |xj − xj−1| .
Since by Lemma B.1 we have

|β`+1− β`| � 1

`2
≥ 1

C j2
,

it follows that |1 j | = |xj − xj−1| ≥ 1/C j2.
To prove an inequality in the opposite direction, letm be the largest

integer such thatαm > xj−1. Then, again by Lemma B.2, we havej ≤ Cm.
Since A(x) < f(x) < x for all x, we also have1 j ⊆ [αm+2, αm]. Using
Lemma B.1 once more, we deduce that

|1 j | ≤ C

m2
≤ C

j 2
.

This completes the proof of Yoccoz’s Lemma. ut

Appendix C. A full-measure condition on rotation numbers

We present here our account of C.G. Moreira’s probabilistic argument show-
ing that condition (12) holds for a set of full-measure in[0,1]. His original
probability estimates were done for Lebesgue measure in[0,1]. We prefer
to use instead a probability measure which is invariant under the Gauss
map, namely theGauss measure. These two measures are mutually abso-
lutely continuous, the density of the latter with respect to the former being
dx/(1+ x) log 2. With respect to the Gauss probability measure (the only
one we will use from now on), the partial quotientsan(θ) of θ ∈ [0,1] are
identically distributed random variables. We warn the reader that these are
not independent random variables; they are onlyasymptoticallyindepen-
dent, a fact that is perhaps best expressed by saying that the Gauss map is
mixing.
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Now, the probability that then-th partial quotientan(θ) be equal to
a given integerm≥ 1 is

pm = P [an(θ) = m] = 1

log 2
log

(
1+ 1

m(m+ 2)

)
<

2

m2
. (57)

From this, we see that the probability thatan(θ) be at leastm is smaller than
4/m. These facts form the basis for our estimates, and yield the following
lemma.

Lemma C.1. There exists a full-measure setE ⊆ [0,1] such that for each
θ ∈ E we havean(θ) < n2 for all sufficiently largen.

Proof. Let E = lim inf ([0,1] \ An), whereAn is the set of allθ ∈ [0,1]
such thatan(θ) ≥ n2. ThenP(An) < 4/n2, and since the series

∑
4/n2

converges, we deduce by the Borel-Cantelli lemma thatP(E) = 1. ut
We shall prove the following result, which establishes condition (12) for

almost all numbersθ ∈ [0,1] with ω(t) = Cθ(1− log t), whereCθ > 0.

Proposition C.2. Almost all numbersθ ∈ E satisfy, for all1≤ n ≤ k,

1

n

k+n∑
j=k+1

logaj (θ) ≤ Cθ

(
1+ log

k

n

)
, (58)

for some constantCθ > 0.

Proof. In attempting to prove the inequality (58) for a givenθ ∈ E, we may
assume thatk is so large thataj (θ) < j 2 for all j ≥ k. The remaining cases,
corresponding to the remaining finitely many pairs(n, k), are taken care of
by a suitable choice of the constantCθ .

Given(n, k), there are two possibilities to consider. The first possibility
is thatn2 < k. In this case we simply observe that

1

n

k+n∑
j=k+1

logaj (θ) ≤ 2 log(k+ n) < 5 log
k

n
,

for all sufficiently largek.
The second possibility is thatn ≤ k ≤ n2. Here, we shall prove that

with probability onethe left-hand side of (58) is bounded by 10. For this
purpose, let us consider the following pathologies.

(a) For a givenm ≥ 1, there are more than 2n pm partial quotientsak+i (θ)

with 1≤ i ≤ n such thatak+i (θ) = m (wherepm is as defined in (57)).



Rigidity of critical circle mappings I 391

By an elementary combinatorial argument, we see that this occurs with
probability at most

n∑
j=d2n pme

(
n

j

)
pj

m(1− pm)
n− j <

(e

4

)n pm

. (59)

The probability that this happens forsomem in the range 1≤ m ≤ n1/3

is therefore smaller than

n1/3×
(e

4

)2n1/3

<
1

n4

if n is sufficiently large.
(b) There are more thann2/3 partial quotientsak+i (θ) with 1 ≤ i ≤ n such

that ak+i (θ) > n1/3. By a similar reasoning to the one used in (a), we
see that this occurs with probability smaller than(e

4

)n1/3

<
1

n4

if n is sufficiently large.

Therefore, fixingn sufficiently large, the probability that there existsk
in the rangen ≤ k ≤ n2 such that one of the above pathologies occurs for
(n, k) is certainly less thann2 × (2/n4) = 2/n2. Since the series

∑
2/n2

converges, again by Borel-Cantelli we deduce that with probability one
there are no pathologies for(n, k) if k (and hencen) is sufficiently large.

Now, if there are no pathologies for(n, k), and noting that for 1≤ i ≤ n
we have

ak+i (θ) < (k+ i)2 ≤ (n2+ n)2 ≤ 4n4

if k is sufficiently large, we deduce that

1

n

k+n∑
j=k+1

logaj (θ) ≤ 1

n

bn1/3c∑
m=1

(2n pm) logm + n2/3

n
log (4n4)

<

bn1/3c∑
m=1

4 logm

m2
+ 1

n1/3
(2 log 2+ 4 logn) ,

which is less than 10 ifn is sufficiently large. This completes the proof.ut
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