
J. Eur. Math. Soc. 1, 393–422 c© Springer-Verlag & EMS 1999

S. Müller · V. Šverák

Convex integration with constraints and applications
to phase transitions and partial differential equations

Received April 23, 1999 / final version received September 11, 1999

Abstract. We study solutions of first order partial differential relationsDu ∈ K , where
u : � ⊂ R

n → R
m is a Lipschitz map andK is a bounded set inm× n matrices, and

extend Gromov’s theory of convex integration in two ways. First, we allow for additional
constraints on the minors ofDu and second we replace Gromov’sP−convex hull by the
(functional) rank-one convex hull. The latter can be much larger than the former and this
has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our
work was originally motivated by questions in the analysis of crystal microstructure and we
establish the existence of a wide class of solutions to the two-well problem in the theory of
martensite.

1. Introduction

We study the existence of solutions of the partial differential relation

Du ∈ K a.e. in� (1.1)

subject to the boundary condition

u = v ∂�. (1.2)

Here� ⊂ Rn is a bounded domain,u : � → Rm is a Lipschitz map
and K ⊂ Mm×n is a given subset of them × n matrices. Such prob-
lems (and their generalizations to manifolds and jet bundles) arise in
a number of areas in mathematics, Gromov’s monography [Gr 86] gives
an overview. Our main motivation stems from models of crystal microstruc-
ture (see [BJ 87,CK 88,BJ 92,Mu 98]). In these examplesK consists of
several connected components and we are therefore interested in Lipschitz
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solutions while in many geometric applicationsC1 solutions are relevant
(but see [Gr 86], 2.4.11).

After the striking work by Nash [Na 54] and Kuiper [Ku 55] on the
existence of nontrivial isometricC1 immersions Gromov [Gr 73,Gr 86]
developed a very general theory, called convex integration, to address (1.1)
and (1.2). His main result for the Lipschitz case [Gr 86, p. 218] assures,
roughly speaking, that nontrivial solutions of (1.1) and (1.2) exist if a suitable
convex hull ofK , called theP-convex hull, has sufficiently large interior
(see [MS 96,DM 96a,DM 96b,DM 97,DM 98,Sy 98] for related work). We
have recently learned that closely related ideas were already used (for the
special case of elliptic systems) in Scheffer’s thesis [Sch 74], see below for
further discussion. For setsK ⊂ Mm×n P-convexity reduces to what was
called lamination convexity in [MS 96] (Matoušek and Plecháč [MP 98] use
the term set-theoretic rank-one convexity). A setE ⊂ Mm×n is lamination
convex if for all matricesA, B ∈ E that satisfy rk(B− A) = 1 the whole
segment[A, B] is contained inE. The lamination convex hullElc is the
smallest lamination convex set that containsE. The relevance of rank−1
convexity stems from the fact that rank−1 matrices arise exactly as gradient
of mapsx 7→ u(x · n) that only depend on one variable. These maps are the
building blocks in Gromov’s construction.

In this paper we generalize Gromov’s result in two directions. First we
show that one can impose a constraint on a minor (subdeterminant) ofDu.
Such a constraint is stable under taking the lamination convex hull and
thus that hull has always empty interior when all elements ofK satisfy the
constraint. Therefore one cannot rely on openness to construct approximate
solutions but rather has to show that the constraint can be preserved at each
step of the construction.

Secondly we show that the lamination convex hull can be replaced by the
rank-one convex hull (called functionally rank-one convex hull in [MP 98])
which is defined by duality with rank−1 convex functions. A function
f : Mm×m → R is rank-one convex if it is convex on every rank-one
segment[A, B]. For a compact setK the rank−1 convex hull is defined as

Krc =
{

F ∈ Mm×m : f(F)≤sup
K

f, ∀ f : Mm×m→R rank-one convex

}
.

For an arbitrary setU we defineUrc as the union of the hullsKrc, for
all compact setsK ⊂ U. We note in passing that in the literature the
rank-one convex hull of an arbitrary setL is often defined as(L)rc. For
our purposes the separate definitions for compact and general sets are more
convenient (and in line with the situation for ordinary convexity). The differ-
ence between lamination convexity (defined set-theoretically) and rank-one
convexity (defined by duality with functions) may appear to be small since
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both notions agree for ordinary convexity but Corollary 1.5 below and the
recent construction of (variational) elliptic systems with nowhere regular
solutions [MS 99] show that the difference may be striking.

We now fix t ∈ R and a minor (subdeterminant)M : Mm×n → R.
We set

6 = {F ∈ Mm×n : M(F) = t}. (1.3)

Theorem 1.1. Let U ⊂ 6 be open in6 and bounded and letv : � ⊂
Rn→ Rm be a piecewise linear Lipschitz map that satisfies

Dv ∈ Urc a.e. in�.

Assume also the the parametert in the definition of6 is not zero. Then there
exists a Lipschitz mapu : �→ Rm that satisfies

Du ∈ U a.e. in∂�

u = v on�.

The hypothesis thatv be piecewise linear can be replaced byv ∈
C2,α

loc (�;Rm) for someα > 0.
The same assertion holds if6 is replaced byMm×n.

Remarks.1. For the case without constraintC2,α can be replaced byC1. If
the constraint is on a minor of ordern thenC2,α can be replaced byC1,α

(cf. Lemma 6.3 below).
2. By simple scaling and covering arguments one can see thatu can be chosen
so that|u(x)−v(x)| < ε(x), whereε(x) is a given continuous function on�
(which can vanish at the boundary). In Gromov’s terminology this means
thatv admits a fine approximation by solutions ofDu ∈ U.

To obtain results for sets that may not be open we use Gromov’s concept
of an in-approximation.

Definition 1.2. Let6 be given by (1.3) witht 6= 0 and let K ⊂ 6. A se-
quence of setsUi ⊂ 6 is an in-approximation ofK in 6, if theUi are open
in 6 and the following three conditions are satisfied:

(i) the Ui are uniformly bounded
(ii) Ui ⊂ Urc

i+1
(iii) Ui → K in the following sense: ifFi ∈ Ui and Fi → F thenF ∈ K .

Theorem 1.3. Let6 be given by (1.3) witht 6= 0 and let K ⊂ 6. Let Ui

be an in-approximation ofK in 6. Suppose thatv : � ⊂ Rn → Rm is in
C2,α(�;Rm) (or piecewise linear) and that

Dv ∈ U1 in �.
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Then there exists a Lipschitz mapu : �→ Rm that satisfies

Du ∈ K a.e. in�,

u = v on ∂�.

The same assertion holds if6 is replaced byMm×n.

Remark.The conditionv ∈ C2,α
loc (�;Rm) can be relaxed tov ∈ C1

loc for the
case without constraint and toC1,α

loc if the constraint is on a minor of ordern.
One application of our results concerns the so-called two-well problem

in the theory of martensite (see [BJ 92,Sv 93]).

Corollary 1.4. Suppose thatA, B ∈ M2×2 satisfydetA = detB = 1 and
let K = SO(2)A∪ SO(2)B. Then the problem

Du ∈ K a.e. in�,

u(x) = Fx on ∂�

has a solution ifF ∈ int convK anddetF = 1.

The next example which was found independently by several
authors ([AH 86,CT 93,Sch 74,Ta 93]) illustrates the difference between
lamination convexity (defined set-theoretically) and rank-one convexity (de-
fined by duality). LetK be a subset of the diagonal 2× 2 matrices given
by

K =
{
±
(

1 0
0 3

)
,±

(
3 0
0 −1

)}
(1.4)

(see Fig. 1). ThenK contains no rank-one connections and thusKlc = K .
On the other handKrc contains the squareS= {|F11| ≤ 1, |F22| ≤ 1} and
the segments[Ai+1, Ji ]. To see this letf be a rank-one convex function
that vanishes onK . Then f is convex along the horizontal and vertical
lines in Fig. 1 and hence attains its maximum overS in one of the corner
points ofS, say atJ1. If F(J1) > 0 then convexity along[A2, J2] yields the
contradiction f(J2) > f(J1).

One can easily check that the relationDu ∈ K only admits the trivial so-
lution Du = const. Theorem 1.1 guarantees that there are mapsu : �→ R2

which vanish at∂� and whose gradient remains in an arbitrarily small open
neighbourhood ofK .

Corollary 1.5. Let K be given by (1.4) and letF ∈ Krc andε > 0. Then
there existsu : � ⊂ R2→ R2 such that

dist(Du, K) < ε a.e. in�,

u(x) = Fx on∂�.
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Fig. 1.The set{A1, A2, A3, A4} is lamination convex but the rank-one convex hull contains
the shaded square and the line segments[Ji , Ai+1]

The difference between rank-one convexity and lamination convexity is
also relevant for the study ofm× 2 elliptic systems

div D f(Dv) = 0 (1.5)

wherev : � ⊂ R2 → Rm and f : Mm×2 → R is a smooth function
satisfying suitable ellipticity conditions. If� is simply connected then (1.5)
is equivalent to the partial differential relation

Du ∈ K (1.6)

whereu : �→ R2m and

K =
{(

X
Y

)
∈ M2m×2 : Y = D f(X)J

}
, J =

(
0 −1
1 0

)
.

By a result of Ball [Ba 80] the strong ellipticity condition for (1.5) is
equivalent to the condition thatK contains no rank-one connection. Hence
Klc = K for strongly elliptic f . Nonetheless there exist 2×2 systems (even
in variational form) for whichKrc is sufficiently nontrivial, and our ap-
proach can be used to construct “wild” solutions to such systems [MS 99].
We learned recently that a closely related construction appears in the thesis
of Scheffer [Sch 74]. He only discusses the nonvariational case in detail
and only obtainsW1,2 solutions. Although his results are very interesting it
seems that this work was never published in a journal and therefore has not
received the attention it deserves.

Before discussing the main idea of the proof let us briefly mention other
related work. In [MS 96] we gave a short selfcontained proof of Gromov’s
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result for Lipschitz solutions, specialized to (1.1), (1.2) withK ⊂ Mm×n.
A slightly different approach based on Baire’s theorem has been pursued
by Dacorogna and Marcellini [DM 96a,DM 96b,DM 97], see also [Sy 98].

The caseK = O(n)has been studied in detail in [Gr 86], Chapter 2.4.11;
for K = O(3) see also [CP 95]; applications of the latter approach to other
problems can also be found in [CP 97].

The proof of Theorem 1.1 relies on three steps, and a suitable approxi-
mation argument as in [MS 96] then leads to Theorem 1.3. In the first step
one considers a neighbourhoodU of two rank-one connected matricesA
andB and shows that any affine boundary condition with gradient in[A, B]
can be realized. This is easy in the unconstrained case, but requires a careful
approximation if a constraint on a minor is imposed. A simple induction
argument yields a weaker version of Theorem 1.1 whereUrc is replaced by
Ulc. In the second step we construct, under the hypothesis of Theorem 1.1,
maps that satisfyDu ∈ Urc and for which set set{x : Du(x) ∈ Urc \U) has
small measure. We use a result of Pedregal [Pe 93] (see also [MP 98]) that
the points inKrc are exactly the barycentres of certain probability measures
(called laminates). We prove (and that is one of the key points) that these
measures can be approximated by suitable combinations of Dirac measures
that are supported in an arbitrarily small neighbourhood (in6) of Krc (see
Theorem 3.1 below). In the third step we remove the set{Du ∈ Urc \U} by
a simple iteration.

Step 1 is discussed in Sect. 2 for the unconstrained case. Step 2 is
carried out in Sects. 3 and 4. In Sect. 5 we prove Theorems 1.1 and 1.3
and Corollary 1.4. Finally in Sect. 6 we carry out Step 1 for the case of
a constraint.

2. The unconstrained case for a neighbourhood of two matrices

We first establish a version of Theorem 1.1 for the simplest situation, a small
neighbourhood of two rank−1 connected matrices.

Lemma 2.1. Let A and B bem× n matrices and suppose that

rank(B− A) = 1. (2.1)

Let
C = (1− λ)A+ λB, whereλ ∈ (0,1).

Then for anyδ > 0 there exists a piecewise linear mapu : � → Rm such
that

dist(∇u, {A, B}) ≤ δ a.e. in�, (2.2)

sup
�

|u(x)− Cx| ≤ δ, (2.3)

u(x) = Cx on∂�. (2.4)
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Proof. A simple construction was given in [MS 96]. We recall it for the
convenience of the reader. We will first construct a solution for a special
domainU. The argument will then be finished by an application of the Vitali
covering theorem.

By an affine change of variables we may assume without loss of gener-
ality that

A = −λa⊗ en, B = (1− λ)a⊗ en, C = 0, and |a| = 1.

Let ε > 0, let V = (−1,1)n−1 × ((λ− 1)ε, λε) and definev : V → Rm by

v(x) = −ελ(1− λ)a+
{ −λaxn if xn < 0,
(1− λ)axn if xn ≥ 0.

Then∇v ∈ {A, B} andv = 0 atxn = ε(λ− 1) andxn = ελ, butv does not
vanish on the whole boundary∂V. Next leth(x) = ελ(1− λ)a∑n−1

i=1 |xi |.
Thenh is piecewise linear and|∇h| = ελ(1− λ)√n− 1. Setũ = v + h.
Note thatũ ≥ 0 on∂V and letU = {x ∈ V : ũ(x) < 0}. Then

ũ|U is piecewise linear, ũ|∂U = 0,

dist(∇ũ, {A, B}) ≤ ελ(1− λ)√n− 1,

|ũ| ≤ ελ(1− λ).
By the Vitali covering theorem one can exhaust� by disjoint scaled

copies ofU. More precisely there existxi ∈ Rn andri > 0 such that the
setsUi = xi + ri U are mutually disjoint and|� \ ∪iUi | = 0. Defineu by

u(x) =
{

ri ũ(r
−1
i (x− xi )) if x ∈ Ui ,

0 else.

Then∇u(x) = ∇ũ(r−1
i (x − xi )), if x ∈ �i . It follows thatu is piecewise

linear, thatu|∂� = 0 and thatu satisfies (2.2) for a suitable choice ofε.
Moreover by choosingri ≤ 1 one can also satisfy (2.3). ut

3. Rank-one convex functions and rank-one convex hulls

In this section we fixm,n ∈ N and we consider functions defined on
(subsets of) the spaceMm×nof all realm× n matrices. We also fix a natural
numberr ≤ min(m,n) and a real numbert. For X ∈ Mm×n we letM(X) =
det(Xi j )

r
i, j=1 and6 = {X ∈ Mm×n, M(X) = t}.

Let O ⊂ Mm×n be an open and letf : O → R be a function. We say
that f is rank-one convex inO, if f is convex of each rank-one segment
contained inO. In a similar way, a functionf defined on a setO ⊂ 6

which is open in6 is rank-one convex inO, if it is rank-one convex on
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each rank-one segment contained inO. We will useP to denote the set
of all compactly supported probability measures inMm×n. For a compact
set K ⊂ Mm×n we useP(K) to denote the set of all probability measures
supported inK . For ν ∈ P we denote bȳν the center of mass ofν, i. e.
ν̄ = ∫Mm×n Xdν(X).

A measureν ∈ P is a laminate if 〈ν, f 〉 ≥ f(ν̄) for each rank-one
convex functionf : Mm×n → R. At the center of our attention will be the
setsMrc(K) = {ν ∈ P(K), ν is a laminate}, which are defined for any
compact setK ⊂ Mm×n.

LetO be an open subset ofMm×nor a subset of6 which is open in6.
We now define an important subsetL(O) of laminates, calledthe laminates
of finite order inO. The definition is by induction:

1. For eachA ∈ O, the Dirac mass atA, denoted byδA, belongs toL(O).
2. Assumeλ1, . . . , λm ≥ 0 with

∑
λ j = 1, and thatν = ∑m

j=1λ j δAj be-
longs toL(O). Assume also that[B1, B2] is a rank-one segment contained
in O, and that there is 0≤ s ≤ 1 such that(1− s)B1 + sB2 = Am. Then
the measureµ =∑m−1

j=1 λ j δAj+(1−s)λmδB1+sλmδB2 also belongs toL(O).

Let K be a compact subset ofMm×n(resp. of6). We recall that therank-
one convex hullK rc ⊂ Mm×n of K (resp.the rank-one convex hullK rc,6 ⊂ 6
of K relative to6) is defined as follows. A matrixX does not belong toK rc

(resp. toK rc,6) if and only if there existsf : Mm×n→ R (resp. f : 6→ R)
which is rank-one convex (resp. rank one convex in6) such that f ≤ 0
on K and f(X) > 0. It is not difficult to see thatK rc = {ν̄; ν ∈Mrc(K)}
for any compactK ⊂ Mm×n. The inclusion⊂ is obvious. The proof of
the inclusion⊃ can be found in [Pe 93]; it can be also easily derived from
Lemma 3.2 and Lemma 3.5 below. We can now formulate the main result
of this section.

Theorem 3.1. LetK be a compact subset of6 and letν ∈Mrc(K). Assume
that the numbert appearing in the definition of6 is not zero. Let̃K = K rc,6

be the rank-one convex hull ofK relative to6 and letO ⊂ 6 be open in6
such thatK̃ ⊂ O. Then there exists a sequenceν j ∈ L(O) of laminates of
finite order inO such that theν j converge weakly∗ to ν in P.

The statement also remains true if we replace6 by Mm×n and K rc,6

by K rc.

As a preparation for the proof of the theorem, we prove the following
lemma.

Lemma 3.2. LetO be an open subset ofMm×n or a subset of6 which is
open inO. Let f : O→ R be a continuous function and letRO f : O→ R∪
{−∞} be defined byRO f = sup{g, g: O → R is rank-one convex inO
and ≤ f }. Then, for eachX ∈ O we haveRO f(X) = inf{〈ν, f 〉, ν ∈
L(O), andν̄ = X}.
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Proof. Let us denote bỹf the function inO defined byf̃ (X) = inf{〈ν, f 〉,
ν ∈ L(O), andν̄ = X}. Clearly RO f ≤ f̃ in O. On the other hand, we
see from the definition of the setL(O) that it has the following property: if
ν1, ν2 ∈ L(O) and the segment[ν̄1, ν̄2] is contained inO, then any convex
combination ofν1 and ν2 is again inO. Using this, we see immediately
from the definitions that̃f is rank-one convex inO and henceRO f = f̃ .

ut

Proof of Theorem 3.1.Let ν ∈ Mrc(K) and let ν̄ = A be its center of
mass. We claim thatA ∈ K̃ . This can be seen as follows. First we note
that A ∈ 6, since 〈ν,M〉 = M(ν̄) by definition ofMrc(K). If A did
not belong toK̃ , there would exist a rank-one convex functiong on 6
such thatg ≤ 0 on K and g(A) > 0. This would mean〈ν, g〉 < g(A),
which would give a contradiction if we knew that there exists a rank-one
convex function f : Mm×n → R such that| f − g| ≤ ε on K ∪ {A},
whereε is sufficiently small. The existence of suchf is guaranteed by
Lemma 3.6 below, and hence the claimA ∈ K̃ is proved. We now choose
a setU ⊂ 6 which is open in6 and satisfiesK̃ ⊂ U ⊂ Ū ⊂ O. We
defineF = {µ ∈ L(U), µ̄ = A}. We claim the the weak∗ closure of
F containsν. To prove the claim, we argue by contradiction. Assumeν

does not belong to the weak∗ closure ofF . SinceF is clearly convex, we
see from the Hahn-Banach Theorem that there exists a continuous function
f : Ū → R such that〈ν, f 〉 < inf{〈µ, f 〉, µ ∈ L(U) and µ̄ = A}. By
Lemma 3.2, we have inf{〈µ, f 〉, µ ∈ L(U) andµ̄ = A} = RU f(A). We
see that the functioñf = RU f : U → R is rank-one convex inU and
satisfies〈ν, f̃ 〉 ≤ 〈ν, f 〉 < f̃ (ν̄). By Lemma 3.6 below, there exists, for each
ε > 0, a rank-one convex functionF : Mm×n → R such that|F − f | ≤ ε
on K̃ . We conclude thatν cannot belong toMrc(K), a contradiction. The
proof is finished.

The rest of this section is devoted to the proof of the Lemma 3.6 below.
An important step in the proof of the lemma is the approximation of rank-
one convex functions on6 by smooth rank-one convex functions, a problem
which we are now going to consider.

We first remark that any rank-one convex functionf on Mm×n can be
approximated by functions of the formϕε∗ f , whereϕε = ε−mnϕ(x/ε), with
ϕ being a standard mollifier. Ifϕ ≥ 0, the functionsϕε ∗ f are obviously
rank-one convex.

To approximate rank-one convex functions on6 by smooth functions,
we will use a suitable variant of the simple mollification procedure just
described. However, our method will work only fort 6= 0. For t = 0 the
problem seems to be more subtle due to the singularities in6.
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We can write eachm × n matrix X as a 2× 2 block matrix, X =(
X11 X12

X21 X22

)
, whereX11 is anr × r matrix, X12 is an(m− r) × r matrix,

etc. We recall that there is a natural action of the groupSL(r,R) on Mm×n

given by A · X =
(

AX11 AX12

X21 X22

)
(whereA ∈ SL(r,R) and X ∈ Mm×n).

This action clearly leaves6 invariant and also maps any rank-one segment
into a rank-one segment.

Let E = {X ∈ Mm×n, X11 = 0}. We considerE as an additive group
which acts onMm×n by X→ X+C, (whereX ∈ Mm×n andC ∈ E). This
action also preserves6 and all rank-one segments.

We consider a family of mollifiersϕε : SL(r,R) → R which are
smooth, non-negative, and approximate the Dirac mass atI asε→ 0. Let
alsoψε be a family of mollifiers inE which have analogous properties.
For a continuous functionf : 6 → R we let fε(X) =

∫
SL(r,R)

∫
E f(A ·

(X+C))ϕε(A)ψε(C)dA dC, wheredAanddC denote the natural invariant
measure inSL(r,R)andE respectively. It is easy to verify that for each rank-
one convexf : 6 → R the functions fε are again rank-one convex in6,
smooth, and converge tof uniformly on compact subsets of6 asε→ 0.

For X ∈ 6 we let n(X) be the unit normal to6 satisfying n(X) ·
∇M(X) > 0. It is well known that forX ∈ Mm×n which is sufficiently
close to6 there is a uniqueπ(X) ∈ 6 which is close toX such that
X = π(X)+ tn(π(X)), wheret = dist(X,6).

Let f : 6 → R be a smooth, rank-one convex function. LetU be
a neighbourhood of6 on which the projectionπ introduced above is well-
defined. Forε > 0 andk > 0 we defineF = Fε,k : U → R by Fε,k(X) =
f(π(X)) + ε|X|2 + k|M(X) − t|2, where we use the notation introduced
above (see also the beginning of the section).

Lemma 3.3. Let K be a compact subset of6. In the notation introduced
above, for anyε > 0 there existsk > 0 such that the functionF = Fε,k is
rank-one convex in an open subset ofMm×n containingK .

Proof. We argue by contradiction. Suppose the statement fails. Then there
exists a sequenceAk ∈ U converging toA ∈ K (ask→∞) and a sequence
Yk of rank-one matrices with|Yk| = 1 converging to a rank-one matrixY
with |Y| = 1 such thatD2Fε,k(Ak)(Yk,Yk) ≤ 0. Since f ◦ π is smooth in
U and M is affine along all rank-one lines, we haveD2Fε,l(A)(Y,Y) ≤ 0
for eachl > 0. Using again thatf ◦ π is smooth andM is affine along all
rank-one lines, we see thatY is a rank-one matrix belonging to the tangent
space of6 at A. Therefore the line described byt → A+ tY, t ∈ R is
contained in6. Using the assumption thatf is rank-one convex on6, we
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infer thatD2Fε,l(A)(Y,Y) ≥ ε, a contradiction. The proof of Lemma 3.3 is
finished.

Lemma 3.4. Let K be a compact subset of6 and let K̃ = K rc,6 be the
rank-one convex hull ofK relative to6. Then there exists a rank-one
convexg: 6→ R such thatg ≥ 0 in6 and K̃ = {X ∈ 6, g(X) = 0}. The
statement also remains true if we replace6 by Mm×n and K rc,6 by K rc.

Proof. For r > 0 we let denote by6r the set6 ∩ {|X| < r }. We choose
R> 0 so thatK ⊂ 6R/2 and defineg1 : 6R→ R by

g1(X) = sup{ f(X), f : 6R→ R,

f is rank-one convex in6R and f ≤ dist( · , K) in 6R}.
The functiong1 is obviously non-negative and rank-one convex in6R.

Moreover,{X ∈ 6R, g1(X) = 0} ⊃ K and from the definition of̃K we see
thatg1 > 0 outsideK̃ . We now define

g(X) =
{

max(g1(X),12|X| − 9R) whenX ∈ 6R

12|X| − 9R whenX ∈ 6 ∩ {|X| ≥ R}

Clearlyg is rank-one convex on6 in a neighbourhood of any pointX ∈ 6
with |X| 6= R. Sinceg1(X) ≤ 2|X| when |X| = R, we see that we have
g(X) = 12|X| − 9 in a neighbourhood of6 ∩ {|X| = R}. We infer thatg is
rank-one convex on6. The proof is easily finished.

Lemma 3.5. Let K ⊂ Mm×n be a compact set, letO be an open set
containingK rc (the rank-one convex hull ofK ) and let f : O→ R be rank-
one convex. Then there existsF : Mm×n→ R which is rank-one convex and
coincides withf in a neighbourhood ofK rc.

Proof. We use Lemma 3.4 to obtain a non-negative rank-one convex func-
tion g: Mm×n→ R such thatK rc = {X, g(X) = 0}. Replacingf by f +c,
if necessary, we can assume thatf > 0 in a neighbourhood ofK rc. Fork> 0
we letUk = {X ∈ O, f(X) > kg(X)}. We also letVk be the union of the
connected components ofUk which have a non-empty intersection withK rc.
It is easy to see that there existsk0 > 0 such thatV̄k0 ⊂ O. We now let
F(X) = f(X) whenX ∈ Vk0 andF(X) = k0g(X) whenX ∈ Mm×n \Vk0. It
is easy to check that the functionF defined in this way is rank-one convex
on Mm×n. ut
Lemma 3.6. Using the notation introduced at the beginning of this section,
let us assume that the numbert appearing in the definition of6 is not
zero. LetK ⊂ 6 be a compact set, and letO ⊂ 6 be a set open in
6 which containsK̃ = K rc,6, the rank-one convex hull ofK relative
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to 6. Let f : O → R be rank-one convex. Then, for eachε > 0, there
exists a rank-one convex functionF : Mm×n → R such that|F − f | < ε

on K̃ .

Proof. Using Lemma 3.4 we see that there exists a non-negative rank-one
convex functiong: 6→ R such thatK̃ = {X ∈ 6, g(X) = 0}. Let us take
a large (open) ballB ⊂ Mm×n containingK̃ . As we saw above, there exists
a smooth rank-one convex functiong̃: 6 → R such that|g̃− g| < ε/4 in
B̄ ∩ 6. By Lemma 3.3 there exists a neighbourhoodU of 6 ∩ B̄ in Mm×n

and a rank-one convex functionG : U → R such that|G− g| ≤ ε/2 on K̃ .
We note that the rank-one convex hull of the set6 ∩ B̄ is again6 ∩ B̄, and
therefore we can apply Lemma 3.5. The proof is finished easily.

4. The main approximation lemma

In this section we consider a precursor to Theorem 1.1. We show that for
affine boundary datax 7→ Fx with F ∈ Urc there exists a piecewise linear
mapu whose gradient is always inUrc and most of the time inU. A simple
iteration argument given in the next section will yield Theorem 1.1, and
another more subtle iteration yields Theorem 1.3.

Lemma 4.1. Let 6 be given by (1.3) witht 6= 0. Let V be an open set
in 6, let F ∈ Vrc and letε > 0. Then there exists a piecewise linear map
u : � ⊂ Rn→ Rm such thatDu ∈ Vrc a.e. in� and

|{Du 6∈ V}| < ε |�|,
u(x) = Fx on ∂�.

The same assertion holds if6 is replaced byMm×n.

Proof. By definition there exists a compact setK ⊂ V such thatF ∈ Krc.
In view of [Pe 93] (see also Sect. 3) there exists a probability measure
ν ∈ Mrc(K) such thatF = ν = 〈ν, id〉. Using the action of the group
SL(r,R) × E on 6 defined in Sect. 3, we see thatVrc is open in6.
Theorem 3.1 yields the existence of laminates of finite orderν j ∈ L(Vrc)

that converge toν in the weak∗ topology and satisfyν j = F.
It only remains to show that for eachµ ∈ L(Vrc), µ =∑l

i=1 λiδAi and
eachε > 0 there exists a piecewise linear mapu : � → Rm that satisfies
Du ∈ Vrc and∣∣∣∣∣∣∣{|Du− Ai | < ε}

∣∣∣− µ(Ai )|�|
∣∣∣∣ < ε |�|, (4.1)

u = µ x on ∂�. (4.2)
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We prove this assertion by induction over the order of the laminate.
For laminatesµ = λδA + (1− λ)δB of order one the assertion follows
from Theorem 6.1 (and the fact that

∫
�

Du = µ |�|). Assume that the
assertion holds for laminates of orderk (or less) and letµ ∈ L(Vrc) be
a laminate of orderk + 1. Then there exists a laminateµ′ of order k,
µ′ =∑l−1

i=1 λ
′
iδA′i and matricesAl−1, Al ∈ Vrc with rk(Al − Al−1) = 1 and

A′l−1 = sAl−1 + (1− s)Al , s ∈ (0,1) such that

µ = µ′ − λ′l−1δA′l−1
+ sλ′l−1δAl−1 + (1− s)λ′l−1δAl .

By the induction assumption there exists, for eachδ > 0, a piecewise linear
mapv : �→ Rm such thatDv ∈ Vrc∣∣∣∣∣∣∣{|Dv− A′i | < δ}

∣∣∣− µ′(A′i )|�|∣∣∣∣ < δ|�|,
v = µ′ x = µ x on ∂�.

Consider the setE ⊂ � where|Dv − A′l−1| < δ. Then E is a countable
union of open sets on whichv is affine (up to a set of measure two) and
| |E| − µ(A′l−1)|�| | < δ|�|. Hence we may choose a subsetE′ such that
| |E′| − λl−1|�| | < 2δ|�| andE′ is a finite union of open setsEj on which
v is affine.

It remains to modifyvon these sets. LetFj =Du|Ej . Then|Fj−A′l−1|<δ,
and we claim that there existBj , Cj ∈ Vrc such that Fj = sBj+
(1− s)Cj , rk(Bj − Cj ) = 1 and |Bj − Al−1| < Cδ, |Cj − Al | < Cδ,
whereC may depend onAl−1 but not onδ. Indeed in the case without
constraint one can takeBj = Al−1 + (Fj − A′l−1), Cj = Al + (Fj − A′l−1)

and the assertionBj ,Cj ∈ Vrc follows for a sufficiently small choice ofδ.
If a constraint is imposed one can use the group action on6 as in Sect. 3
instead of the translation onMm×n to defineBj andCj .

Using Theorem 6.1 we can replacev on eachEj by a mapu which
satisfiesu = v on∂Ej , Du ∈ Vrc and| |{|Du−Bj | < δ}|−s|Ej | | < δ|Ej |,
| {|Du−Cj | < δ}|−(1−s)|Ej | < δ|Ej |. If δ is chosen sufficiently small (in
dependence onε, µ andVrc) thenu satisfies (4.1) and (4.2). This finishes
the proof of the lemma for the case with constraint. The unconstrained case
is completely analogous and was treated in [MS 99]. ut

5. Proof of the main results

Theorem 1.1 is obtained by an iteration of Lemma 4.1 which removes the
set whereDu /∈ V. Theorem 1.3 can be deduced from Theorem 1.1 by
a careful choice of approximationsu(i) with Du(i) ∈ Ui . The argument is
the same as in [MS 96]. Since it is short, we repeat it for the convenience
of the reader.
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Proof of Theorem 1.1.We only consider the situation with constraint since
the unconstrained case is analogous. Suppose first that the boundary datav

are affine,v(x) = Fx+a. Letε > 0. By Lemma 4.1 there exists a piecewise
linear mapu(1) : �→ Rm that satisfiesu(1) = v on ∂� and

Du(1) ∈ Urc, |{Du(1) /∈ U}| < ε|�|.
Sinceu(1) is piecewise linear there exists a family of disjoint sets�k such
that|� \⋃�k| = 0 andu(1)|�k

is affine. Let{�(1)j } be the subfamily of those

sets whereDu(1) /∈ U. Applying Lemma 4.1 to each set�(1)j we find maps

u(2)j that satisfyu(2)j = u(1) on ∂�(1)j and

Du(2)j ∈ Urc, |{Du(2)j /∈ U}| < ε|�(1)j |.
Let

u(2) =
{

u(1) on� \⋃�
(1)
j ,

u(2)j on�(1)j .

Thenu(2) = v on ∂�, Du(2) ∈ Urc a.e. and

|{Du(2) /∈ U}| < ε2|�|,
|{Du(2) 6= Du(1)}| < ε|�|.

Repeating this process we find mapsu(k) such thatu(k) = v in ∂�, Du(k) ∈
Urc a.e.

|{Du(k) /∈ U}| < εk|�|,
|{Du(k) 6= Duk−1)}| < εk−1|�|.

In particular Du(k) → Du in measure andDu ∈ U a.e. This finishes the
proof for affinev.

If v is piecewise affine it suffices to apply the previous argument to
each region wherev is affine. Finally ifv ∈ C2,α

loc ∩W1,∞ then we can first
approximatev by a piecewise affine map (see Lemma 6.3 and the remarks
following it). ut
Proof of Theorem 1.3.Again it suffices to consider affine boundary data
v = Fx. For piecewise linear data one can argue on each region wherev is
affine, and for general data one can use Lemma 6.3 to obtain a piecewise
linear approximation. LetF ∈ U(1), δ > 0. By Theorem 1.1 there exists
a piecewise linear mapu(2) such thatDu(2) ∈ U(2) a.e. in�, u(2) = v on∂�
and

‖u(2) − v‖∞ < δ.
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Given u(i) (with Du(i) ∈ U (i)) and δi > 0 we obtainεi , δi+1 and u(i+1)

inductively as follows. Let

�i = {x ∈ � : dist(x, ∂�) > 2−i },
let% ∈ C∞0 (Rn)with

∫
% = 1 be a usual mollifier and let%ε(x) = ε−n%(x/ε).

Then there existεi < 2−i such that

‖%εi ∗ Du(i) − Du(i)‖�i < 2−i .

Let

δi+1 = min (2−iεi , δiεi/2).

Then there existsu(i+1) with Du(i+1) ∈ U(i+1) a.e. and

‖u(i+1) − u(i)‖∞ < δi+1.

Since6δi < ∞ we haveu(i) → u uniformly andu(i) = v on ∂�.
Moreover

Ri =
∥∥%εi ∗ (Du(i) − Du)

∥∥
L1(�i )

≤ ∥∥D%εi ∗ (u(i) − u)
∥∥

L1(�i )

≤ c

εi

∞∑
j=i+1

δ j ≤ 2c

εi
δi → 0, asi →∞,

and thus∥∥Du(i) − Du
∥∥

L1(�)
≤ ∥∥Du(i) − Du

∥∥
L1(�\�i )

+ ∥∥%εi ∗ Du(i) − Du(i)
∥∥

L1(�i )

+ ∥∥%εi ∗ Du− Du
∥∥

L1(�i )
+ Ri → 0, as i →∞,

since|Du(i)| + |Du| ≤ C. HenceDu(i) → Du in L1 and thusDu ∈ K . ut
Proof of Corollary 1.4. Let

6 = {F ∈ M2×2 : detF = 1
}
.

Then [Sv 93]

Krc = Krc,6 = 6 ∩ convK

and the sets

U1 = 6 ∩ int convK

Ui =
{
F ∈ U1 : 0< dist(F, K) < 2−i

}
are an in-approximation ofK in 6.
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6. The basic construction with constraints

6.1. Main result

Theorem 6.1. Let A, B ∈ Mm×n, n,m≥ 2 and letM be a minor of order
r ≥ 2. Suppose that

rank(B− A) = 1, M(A) = M(B) 6= 0.

Let

C = (1− λ)A+ λB, whereλ ∈ (0,1).

Then for anyδ > 0, there exists a piecewise linear mapu : �→ Rn such
that

M(Du) = M(A) a.e. in�, (6.1)

dist(Du, [A, B]) ≤ δ a.e. in�, (6.2)

|{dist(Du, {A, B}) > δ}| ≤ δ, (6.3)

sup|u− Cx| ≤ δ, (6.4)

u = Cx on∂�. (6.5)

Remarks.1. If m= n is even one can construct symplectic maps rather than
volume preserving maps in a similar way. Also certain linear constraints
such divu = 0 or Du = (Du)T can be handled (cf. the construction ofψ
andv in the proof of Lemma 6.2 below).

2. The proof employs approximation arguments that are simple but lead
to a construction that is hard to visualize. Forn = m= 2 a direct construc-
tion involving 20 gradients is possible. It even satisfies dist(Du, {A, B})≤δ
a.e. in �.

To prove Theorem 6.1 we first construct smooth functions that satisfy
(6.1)–(6.5) and then employ a general argument to approximate those by
piecewise linear functions. Moreover we may assumeM(A) = M(B) = 1.
Note that if suffices to establish (6.1)–(6.3) and (6.5) for� = (0,1)n. The
result for general� and (6.4) can then be deduced by covering and scaling
as in the proof of Lemma 2.1.

6.2. Approximation byC∞ maps

Lemma 6.2. Let A, B,C as in Theorem 6.1 and suppose that� = (0,1)n,
r ≥ 2 and

M(A) = M(B) = 1.

Then there existsu ∈ C∞(�̄) that satisfies (6.1)–(6.3) and (6.5).
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Proof. We begin with the typical case

r = m= n, M(Du) = detDu.

After a linear change of variables we may assume

A= Id − λe1⊗ ν, B = Id + (1− λ)e1⊗ ν, C = Id.

Since detA = detC we must haveν1 = ν · e1 = 0 and we may assume
ν2 6= 0.

The mapu is obtained as the flow of a divergence free vector field. Let
h : R→ Rbe a smooth one-periodic function that satisfiesh′ ′ ∈ [−λ,1−λ],
|{h′′ 6∈ {−λ,1− λ}} ∩ [0,1]| < δ/4 and letη ∈ C∞0 (U), U = (0,1)n, be
a suitable cut-off function. Define the vector fieldv ∈ C∞0 (U;Rr ) by

ψ(x) = ε2

ν2
η(x)h

(x · ν
ε

)
v1 = ∂2ψ = εη(x)h′

(x · ν
ε

)
+ ε

2

ν2
(∂2η)h

(x · ν
ε

)
v2 = −∂1ψ = −ε

2

ν2
(∂1η)(x)h

(x · ν
ε

)
v3 = · · · = vr = 0.

The small parameterε > 0 will be chosen below. Consider the flowϕt

generated byv:

d

dt
ϕt(x) = v(ϕt(x)), ϕ0 = id.

We claim thatu = ϕ1 satisfies (6.1)–(6.3), (6.5). Indeed (6.1) and (6.5) hold
sincev is divergence free and has compact support.

To prove the remaining assertions letFt = Dϕt . Then

d

dt
Ft = (Dv ◦ ϕt)Ft, F0 = id. (6.6)

Now

Dv(x) = η(x)h′′
(x · ν
ε

)
(e1⊗ ν)+ O(ε)

and, fort ∈ [0,1],
|(ϕt(x)− x) · ν| ≤ t sup|v · ν| ≤ sup|v2| ≤ Cε2,

sinceν1 = 0. Thus (6.6) yields

Du(x) = F1(x) = eL(x) + O(ε),
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where

L(x) = η(x)h′′
(x · ν
ε

)
(e1⊗ ν) .

Estimates (6.2) and (6.3) now follow from the properties ofh after a suitable
choice ofη andε, since

et(a⊗b) = Id + t a⊗ b if a · b= 0.

This finishes the proof in the typical caser = m= n.
Now consider the case

r = m< n.

We may assume that the minorM involves the firstm rows and columns. For
x ∈ Rn we let x = (x′, x̃), wherex′ = (x1, . . . , xm), x̃ = (xm+1, . . . , xn)

and similarly we writeF = (F ′|F̃) for anm×n matrix F. We may assume

C = (Id |0), A = C− λe1⊗ ν, B = C+ (1− λ)e1⊗ ν.
Suppose firstν′ 6= 0. Then we may supposeν2 6= 0 and define the vector
field v as before. Consider the flowϕt given by

d

dt
ϕt(x) = v(ϕt(x), x̃), ϕ0(x) = x′.

We claim thatu = ϕ1 has the desired properties. Indeed if we consider
Ft = Dϕt and8t(x) = (ϕt(x), x̃) we have

d

dt
F ′t = (Dv)′ ◦8t F ′t F ′0 =Id,

d

dt
F̃t = (Dv)′ ◦8t F̃t + D̃v F̃0 = 0.

In particular we haveM(Ft) = detF ′t = 1 since tr(Dv)′ = 0. Moreover
|8t(x) − x) · ν| ≤ Cε2 and the other estimates follows as for the case
r = n = m.

If ν′ = 0 one can still use the same construction provided thatψ is
redefined as follows

ψ(x) = ε3η(x)h
(x2

ε
+ x · ν

ε2

)
.

Finally consider the case

r < m.

We may suppose that

C =
(

Id 0
0 0

)
, a=

(
αe1

â

)
andν1 = 0 if α 6= 0.
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Letv1, . . . , vr be the vector field that is appropriate for the situation obtained
by deleting the rowsr + 1, . . . ,m and define mapsϕt : (0,1)n → Rm by

d

dt
ϕi

t (x) = α vi
(
ϕ1

t (x), . . . , ϕ
r
t (x), x

r+1, . . . , xn
)
,

ϕi
0(x) = xi , for i = 1, . . . , r,

and

d

dt
ϕi

t(x) = âi v1 (ϕ1
t (x), . . . , ϕ

r
t (x), x

r+1, . . . , xn
)
,

ϕi
0(x) = 0, for i = r + 1, . . . ,m.

To see that the last equation yields the desired result one uses the fact that
|Dϕi

t − ei | is small fori = 2, . . . , r and thatν1 = 0 if α 6= 0. ut

6.3. Approximation by piecewise linear maps

To finish the proof of Theorem 6.1, we note that if we prove the result up
to condition (6.4), then (6.4) can be achieved by a suitable scaling and the
use of Vitali’s covering theorem. Therefore it only remains to establish the
following approximation result.

Lemma 6.3. Let� be a bounded open set inRn and let M be a minor of
order r ≥ 2 and letα > 0. Suppose thatu ∈ C2,α

loc (�,Rm) ∩W1,∞(�;Rm)

and

M(Du) = 1 in �.

Then for everyδ > 0 there exists a piecewise linear mapv : �→ Rm that
satisfies

M(Dv) = 1 in �, (6.7)

‖Du− Dv‖L∞ ≤ δ, (6.8)

u = v on∂�. (6.9)

Remarks.1. If r = n, thenC2,α
loc can be replaced byC1,α

loc .

2. If U is an open subset of6 = {F ∈ Mm×n : M(F) = 1} and Du ∈ U
then one can achieve in additionDv ∈ U.

Consider first the typical casem= n = r , M(Du) = detDu. The main
idea is that on a ballB(a, r) wherer α[Du]α is sufficiently small one can
replaceu by a map with the same boundary values that is affine onB(a, r/2).
To achieve the replacement one can first consider an interpolation between
u(a)+Du(a)x andu in B(a, r)\B(a, r/2) and then use the following result
of Dacorogna and Moser to reestablish the constraint.
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Lemma 6.4 ([DM 90]). Let U be a smooth and bounded domain inRn.
For k ≥ 1 andα ∈ (0,1) consider the set

X =
{

u ∈ Ck,α(U;Rn) :
∫

U
detDu dx= |U|

}
.

There exists a neighbourhoodU of the identity map inX and a smooth map
L : U → Ck,α(U;Rn) such that for allu ∈ U the mapLu is a diffeomor-
phism and

detDLu = 1 in U,

Lu = u on∂U.

MoreoverL id = id.

Proof. Choosing the neighbourhoodU sufficiently small we may assume
that it consists of diffeomorphisms. By Lemma 4 of [DM 90] there exists
an operator8 from a neighbourhoodV of the constant 1 inY = { f ∈
Ck−1,α(�) : ∫

�
f = |�|} to a neighbourhood of the identity inX such that

detD8( f ) = f in U,

8( f ) = id on∂U.

It easily follows from the construction of8 via the contraction principle that
8 is actually a smooth map (estimate (4) on p. 11 of [DM 90] is incorrect, but
their results are correct; for the present purpose it suffices that the estimate
in question holds with‖wi‖0 replaced by‖wi‖k,α). Now defineL by

Lu = 8( f ) ◦ u, f = detDu−1,

ThenLu satisfies (6.10) and (6.11). Since multiplication and composition
are smooth operations inCk,α(�;Rn) and the mapu 7→ u−1 is smooth inU ,
the mapu → detDu−1 is a smooth map fromU to V (if U is sufficiently
small), andL is smooth. FinallyL id = id since8(1) = id. ut
Corollary 6.5. For eachn ∈ N, α > 0,M > 0 there exist aδ > 0 such
that the following holds. IfB(a, r) ⊂ Rn, u ∈ C1,α(B(a, r);Rn) and

detDu = 1 in �,

r α[Du]α ≤ δ, ‖Du‖L∞ ≤ M,

then there exists ãu ∈ C1,α
loc (B(a, r) \ ∂B(a, r/2)) such that

detDũ = 1,

Dũ = Du(0) in B(a, r/2),

ũ = u on∂B(a, r),

r−1‖u− ũ‖L∞ + ‖Du− Dũ‖L∞ ≤ C(M)δ.
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Proof. By scaling and translation we may supposea= 0, r = 1,u(a) = 0.
First suppose thatDu(0) = Id. Forϕ ∈ C∞0 (B(0,1)), ϕ ≡ 1 on B(0,1/2))
consider the interpolation

û(x) = ϕ(x)x+ (1− ϕ(x))u(x)
on B1 \ B1/2. If δ < δ̄(n, α), then we can apply Lemma 6.4 and define

ũ =
{

x on B1/2,

Lû on B1 \ B1/2.

If F := Du(0) 6= Id then we can first considerv = F−1u, defineṽ as
before and let̃u = Fṽ. Since‖F−1‖ = ‖adjF‖ ≤ CMn−1 the assertion
follows for δ < C−1M1−nδ̄(n, α). ut
Proof of Lemma 6.3.It suffices to show the following assertion:

There exists a constant2 > 0 (which only depends onn,m andr ) with the
following property. For eachδ > 0, eachα > 0 and each pair(u,�) that
satisfies the hypotheses of the lemma there exists a mapũ ∈ W1,∞(�,Rn),
a finite number of disjoint closed setsAj ⊂ �, a closed null setN and a
β > 0 such that

M(Dũ) = 1 in�,

ũ|Aj is affine,∣∣⋃ Aj

∣∣ ≥ 2|�|,
‖ũ− u‖W1,∞ ≤ δ,

ũ ∈ C1,β
loc

(
� \ (N ∪⋃ Aj )

)
,

ũ− u ∈ W1,∞
0 (�;Rn).

Indeed if the assertion holds, then one can inductively obtain a decreasing
sequence of open sets�i and mapsu(i) such thatu(0) = u, u(i+1) − u(i) ∈
W1,∞

0 (�;Rn),

‖u(i+1) − u(i)‖W1,∞ ≤ 2−i−1δ,

u(i+1) = u(i) on� \�i ,

|�i+1| ≤ (1−2)|�i |,
and� \ �i is a finite union of closed sets (up to a closed null setNi ) on
each of whichu(i) is affine. It follows thatu(i) → v in W1,∞

0 , u− v ∈ W1,∞
0

andv is piecewise linear. Moreover‖v − u‖W1,∞ ≤ δ.
To prove the assertion we first consider the typical caser = n = m,

M(Du) = detDu.
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There exists open sets�′′ ⊂⊂ �′ ⊂⊂ � (where⊂⊂ denotes compact
inclusion, i.e.�′ ⊂ � etc.) with|�′′| ≥ 1

2|�|. If % > 0 is sufficiently small
then�′′ can be covered by a lattice of disjoint open cubes of size% that are
contained in�′. TheC1,α norm ofu is uniformly bounded on the cubes. If
we choose% sufficiently small then each cube contains a ball of radiusr to
which Corollary 6.5 applies. This yields the assertion forr = n = m.

The same reasoning applies for generalr ≥ 2 if we replace Corollary 6.5
by Lemma 6.6 below. We only state it forr = m, since forr < m one can
simply use usually interpolation by cut-off functions for the components
ur+1, . . . ,um. ut

To fix the notation we writex = (x′, y) ∈ Rm × Rn−m, we denote the
derivative with respect to the firstm components byD′ and the derivatives
with respect to the remaining components byDy. Finally we sometimes
write m× n matrices asF = (F ′,G) ∈ Mm×n × M(n−m)×m.

Lemma 6.6. Let V = B2× B2 ⊂ Rm× Rn−m andα > 0. Then there exist
δ > 0, M > 0 such that for allu ∈ C2,α(V;Rm) the following holds. If

‖Du− Du(0)‖1,α < δ, sup|D′u| ≤ M, detD′u = 1,

then there exists a Lipschitz mapv : V → Rm that satisfies

detD′v = 1 in V,

Dv = Du(0) in B1/2× B1/2,

v = u in � \ B1× B1,

sup|Dv− Du| < Cδ,

v ∈ C2,α/2(V \ N),

whereN = (∂B1/2∪ ∂B1)× B1.

The proof of Lemma 6.6 relies on Lemma 6.4 and the following charac-
terization of the nonuniqueness in Lemma 6.4.

Lemma 6.7. Suppose that� is a bounded domain inRn with smooth bound-
ary. For k ≥ 2 andα ∈ (0,1) consider the spaces

Xk := Ck,α
∂,tr :=

{
v ∈ Ck,α(�;Rn) : div v = 0 in �, v = 0 on ∂�

}
,

Yk := Dk,α
α,det:= {ϕ : Ck,α(�;Rn) : ϕ : �→ � diffeomorphism,

detDϕ = 1 in �,ϕ = id on ∂�}.

Then there exists a smooth diffeomorphismexp that maps a small neigh-
bourhood of0 in Xk onto a neighbourhood of the identity map inYk.
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Proof. The Lemma follows from general results on the geodesic flow
in the group of volume preserving diffeomorphisms (see [Ar 66,EM 70],
[HKMRS 98]). Since we need to use theH1 metric (rather than the stan-
dard L2 metric) to enforce the boundary conditionϕ = id on ∂� (rather
thanϕ(∂�) = ∂�) we sketch the proof in the appendix.

Proof of Lemma 6.6.We first construct a mapw that has the right properties
in the inner cylinderB1/2×B2. An important point is that

∫
B1/2

detD′wdx′ =
|B1/2|. We then define an extensionu0 = ψ(x′)w+ (1−ψ(x′))u that agrees
with u outsideB1 × B1. In general detD′u0 6= 1. By Lemma 6.4 we can
replaceu0(·, y) by a mapũ(·, y) that satisfies detD′u = 1 and agrees with
u0(·, y) on ∂(B1 \ B1/2). Finally we modifyũ for |y| ≥ 3/4 with the help
of the exponential map defined in Lemma 6.7 so that it agrees withu on
B1 \ B1/2× ∂B1.

We may suppose that

F := Du(0) = (Id,0)

since otherwise we could consider

û(x′, y) = u((F ′)−1x′, y)− Gy,

whereF = (F ′,G). In addition we may assumeu(0) = 0.

Step 1:Construction ofw.
Let ϕ ∈ C∞0 (B3/4), ϕ|B1/2 ≡ 1, and define

w̃(x′, y) = ϕ(y)x′ + (1− ϕ(y))u(x′, y),

λ(y) = 1

|B1/2|
∫

B1/2

detD′w̃(x′, y)dx′

w(x′, y) = λ−1/m(y)w̃(x′, y).

Thenw is as smooth asu and∫
B1/2

detD′w dx′ = |B1/2|,
w(x′, y) = x′ on B2× B1/2,

w(x′, y) = u(x′, y) on B2× B2 \ B3/4.

Note thatλ ∈ C2,α although it may appear at first glance that one deriva-
tive is lost in the definition ofλ. Indeed, using the formula div′ cof D′w̃ = 0
we obtain

|B1/2|∂yiλ =
∫

B1/2

(cof D′w̃ : D′∂yi w̃) dx′

=
∫
∂B1/2

(cof D′w̃ : ∂yi w̃⊗ ν′)dx′,
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whereν′ is the outer normal of∂B1/2. This yields the desired regularity
of λ. Further inspection shows that‖Dw̃ − (id,0)‖1,α ≤ C δ and‖Dw −
(id,0)‖1,α ≤ C δ. In particular all the mapsw(·, y) are diffeomorphisms of
B2 if δ > 0 is sufficiently small.

Step 2:Interpolation betweenw andu.
Letψ ∈ C∞0 (B1), ψ|B1/2 ≡ 1 and let

u0(x
′, y) = ψ(x′)w(x′, y)+ (1− ψ(x′))u(x′, y).

ThenDu0(0) = (id |0) and‖Du0 − (id |0)‖1,α ≤ C δ. In particular all the
mapsu0(·, y) are diffeomorphisms ofB2. Moreover

u0 =
{
w on∂B1/2× B2,

u on∂B1× B2,

and ∫
B1\B1/2

detD′u0 dx′ =
∫

B1

detD′u0 dx′ −
∫

B1/2

detD′u0 dx′

=
∫

B1

detD′u dx′ −
∫

B1/2

detD′wdx′

= |B1 \ B1/2|.

Step 3:Projection ofu0 onto volume preserving maps.
Let

� = B1 \ B1/2.

For fixedy we can apply Lemma 6.4 withU replaced by� (andn replaced
by m) to u0(·, y). Let

ũ(·, y) = Lu0(·, y).

Then fork = 1,2

‖ũ(·, y)‖k,α,� ≤ C ‖u0(·, y)‖k,α,�
≤ ‖u‖k,α,V .

Moreover by Lipschitz continuity ofL

‖ũ(·, y)− ũ(·, ŷ)‖k,α/2,� ≤ C ‖u0(·, y)− u0(·, ŷ)‖k,α,�
≤ C ‖u‖k,α,V |y− ŷ|α/2.

Using the differentiability ofL one finds similarly

‖Dl
yũ(·, y)− Dl

yũ(·, ŷ)‖k−l,α/2,� ≤ C ‖u‖k,α,V |y− ŷ|α/2.
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Henceũ ∈ C2,α/2(�′ × B2).

Step 4:Modification of ũ for |y| > 3/4.
For |y| > 3/4 define

η(·, y) = (u0(·, y))−1 ◦ ũ(·, y) = (u(·, y))−1 ◦ ũ(·, y).

Thenη measures the ‘difference’ betweenũ andu and

η(·, y) = id on ∂� = ∂B1 ∪ ∂B1/2

detD′η = 1.

Now letψ ∈ C∞0 (B1), ψ = 1 on B7/8 and let

v(·, y) = ũ(·, y) on�× B3/4

v(·, y) = u(·, y) ◦ exp(ψ(y) exp−1 η(·, y)) on�× B1 \ B3/4

v(·, y) = w(·, y) on B1/2× B1

v = u elsewhere.

Thenv has the desired properties. ut
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Appendix: Proof of Lemma 6.7

Proof. The result is well-known to experts and a detailed proof in a more
general situation is given in [HKMRS 98]. We sketch a proof for the case
at hand for the convenience of the reader. The map exp will be constructed
as the time-one map of the flow generated by a suitable (time-dependent)
vector fieldv. If we were interested in volume-preserving diffeomorphisms
that satisfy merelyϕ(∂�) = ∂� we could takev as the solution of the
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incompressible Euler equations. To achieveϕ|∂� = id we use a variant of
the Euler equations where the orthogonal projection onto divergence free
vector fields is taken with respect to theH1

0 scalar product rather than the
L2 scalar product.

Arnold [Ar 66,AK 98] observed that the flow generated by the solutions
of the Euler equations corresponds to geodesics in the group of volume pre-
serving diffeomorphisms, equipped with a translation invariant metric given
by theL2 scalar product on vector fields, see [EM 70] for a detailed analysis.
The flow discussed below corresponds to geodesics with respect to a metric
induced by anH1

0 scalar product. This motivated the notation exp for the
map. We are grateful to J.E. Marsden for pointing out to us that the resulting
equations are known as the averaged Euler equations and that a detailed
study will appear in a series of papers beginning with [HKMRS 98].

To fix the notation letH = H1
0(�;Rn), with scalar product(u, v) =∫

�
Du Dv, and letY = {v ∈ H : div v = 0} denote the closed subspace

of divergence free vector fields. The orthogonal complementY is given by
(see e.g. [GR 86], Chapter I, Cor. 2.3)

Y⊥ = {1−1
D ∇ p : p ∈ L2(�)}

where1D = H1
0 → H−1 is the Dirichlet Laplacian. Foru ∈ H the

orthogonal projectionQu ontoY⊥ is given by

Qu= 1−1
D ∇ p,

wherep is the unique solution of

div1−1
D ∇ p= div u.

If we let

T = div1−1
D ∇

then T is an isomorphism ofL2
av = {p ∈ L2(�) : ∫

�
p = 0} onto itself

(see [GR 86], Chapter I, Cor. 2.3 and 2.4). Moreover by standard regu-
larity arguments one sees thatT is also an isomorphism ofCk,α

av = {p ∈
Ck,α(�) : ∫

�
p = 0} and Q is a bounded operator fromCk,α

∂ = {v ∈
Ck,α(�; Rn) : v = 0 on∂�} onto the subspaceCk,α

∂,div of divergence free
vector fields.

To motivate the definition of the flow consider a one-parameter family
of diffeomorphismsηt : � → �, t ∈ I and letv = ( d

dtηt
) ◦ η−1

t . For any
function f : I ×�→ R define the material time derivative by

ḟ = ∂t f + (v · D) f =
[

d

dt
( f ◦ ηt)

]
◦ η−1

t .
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In particular

v̇ =
(

d2

dt2
ηt

)
◦ η−1

t . (A.1)

The simplest evolution equation would bev̇ = 0 but this does not preserve
the constraint of being divergence free. To keep the constraint a natural
approach is to look for an equation which yields

v̇ ∈ Y⊥.

Now

Qv̇ = Q ∂tv + Q(v · D)v
= ∂t Qv + (v · D)Qv− [v · D,Q]v
= (Qv)· − [v · D,Q]v. (A.2)

Since we expectv to remain divergence free (i.e.Qv = 0) this suggest to
study the equation

v̇ = −[v · D,Q]v. (A.3)

The key point is now that the commutator[v·D,Q] does not lose derivatives
(although each term in the commutator does).

Claim: The map

(u, v) 7→ Cuv := [u · D,Q]v
is a bounded bilinear (and hence smooth) map fromCk,α

∂ × Ck,α
∂ → Ck,α

∂

for k ≥ 2.
Now (A.1) in conjunction with (A.3) yields the following initial-value

problem forηt

d2

dt2
ηt = N

(
ηt,

d

dt
ηt

)
,

d

dt
ηt = v0, η0 = id,

(A.4)

where

N (q, w) = (Cw◦q−1w ◦ q−1) ◦ q.

Since composition yields a smooth mapCk,α
∂ × Dk,α

∂ → Ck,α
∂ for k ≥ 1 the

claim implies thatN is smooth and by the general theory of odes in Banach
manifolds the initial value problem (A.4) has a solution fort ∈ (−2,2) if
‖v0‖k,α is sufficiently small. Moreover the map exp: v0 7→ η1 is smooth in
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a neighbourhood of 0 andD exp|0 = id. It suffices thus to verify that the
ηt are volume preserving or, equivalently, thatv remains divergence free,
provided thatv0 ∈ Yk (see Lemma 6.7 for the notation). Lemma 6.7 then
follows from the implicit function theorem.

To see thatv remains divergence free rewrite (A.3) as

∂tv = −(v · D)v− (v · D)Qv+ Q[(v · D)v].
SinceQ2 = Q this yields

∂t Qv = Q∂tv = −Q[(v · D)Qv]
and

(Qv)· = ∂t Qv+ (v · D)Q Qv

= [v · D,Q]Qv.
SinceQv0 = 0, boundedness of the commutator and Gronwall’s inequality
imply that Qv ≡ 0, hence divv = 0. To see this in detail one can define
the material description(Qv)m := Qv ◦ ηt . Then(Qv)· = ( d

dt(Qv)m
) ◦ η−1

t
and hence

d

dt
(Qv)m =

(
[v · D,Q] (Qv)m ◦ η−1

t

)
◦ ηt

d

dt

∥∥∥∥(Qv)m∥∥∥∥
k,α

≤
∥∥∥∥ d

dt
(Qv)m

∥∥∥∥
k,α

≤ C

∥∥∥∥(Qv)m∥∥∥∥
k,α

and(Qv)m(0) = Qv0 = 0.
It only remains to prove the claim that the bilinear map(u, v) 7→

[u · D,Q]v is bounded fromCk,α
∂ × Ck,α

∂ to Ck,α
∂ . Note thatQ can be

written as

Q = 1−1
D ∇T−1 div, T = div1−1

D ∇.
The assertion now follows from repeated use of the (formal) commutator
relations

[A, B1B2] = [A, B1]B2+ B1[A, B2],
B[A, B−1] = −[A, B]B−1

and

[u · D, D] f = uj ∂ j∇ f −∇(uj∂ j f )

= −(∇uj )∂ j f,

[u · D,div] = uj ∂ j (∂ivi )− ∂i (uj ∂ j∂ivi )

= −(∂i u j )(∂ jvi ).
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We leave it to the courageous reader to verify that foru, v ∈ C∞0 all formal
operations are justified. Note that∫

�

(u · D) f = −
∫
�

(div u) f

and thus application of(u · D) does not preserveC∞av so that[A, T−1] is
not defined. Ifπ denotes the projectionf → f − 1

|�|
∫
�

f , then Q can

be written asQ = 1−1
D ∇πT−1π div, and the commutatorπ[A, T−1π] is

defined and has the desired properties. ut


