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Abstract. We study solutions of first order partial differential relatiobs € K, where

u: @ ¢ R" - RM is a Lipschitz map anK is a bounded set im x n matrices, and
extend Gromov’s theory of convex integration in two ways. First, we allow for additional
constraints on the minors du and second we replace Gromows-convex hull by the
(functional) rank-one convex hull. The latter can be much larger than the former and this
has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our
work was originally motivated by questions in the analysis of crystal microstructure and we
establish the existence of a wide class of solutions to the two-well problem in the theory of
martensite.

1. Introduction

We study the existence of solutions of the partial differential relation
Due K a.e.inQ (1.1)
subject to the boundary condition
u=uv Q. 1.2

Here Q@ c R" is a bounded domainy: & — R™ is a Lipschitz map

and K ¢ M™" is a given subset of then x n matrices. Such prob-
lems (and their generalizations to manifolds and jet bundles) arise in
a number of areas in mathematics, Gromov’s monography [Gr 86] gives
an overview. Our main motivation stems from models of crystal microstruc-
ture (see [BJ 87,CK 88,BJ 92,Mu 98]). In these examp{esonsists of
several connected components and we are therefore interested in Lipschitz
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solutions while in many geometric applicatiofs solutions are relevant
(but see [Gr 86], 2.4.11).

After the striking work by Nash [Na 54] and Kuiper [Ku 55] on the
existence of nontrivial isometri€! immersions Gromov [Gr 73,Gr 86]
developed a very general theory, called convex integration, to address (1.1)
and (1.2). His main result for the Lipschitz case [Gr 86, p.218] assures,
roughly speaking, that nontrivial solutions of (1.1) and (1.2) exist if a suitable
convex hull ofK, called theP-convex hull, has sufficiently large interior
(see [MS 96,DM 96a,DM 96b,DM 97,DM 98,Sy 98] for related work). We
have recently learned that closely related ideas were already used (for the
special case of elliptic systems) in Scheffer’s thesis [Sch 74], see below for
further discussion. For set6 ¢ M™" P-convexity reduces to what was
called lamination convexity in [MS 96] (MatouSek and PlecfidP 98] use
the term set-theoretic rank-one convexity). A Bet M™*" is lamination
convex if for all matricesA, B € E that satisfy rkB — A) = 1 the whole
segment A, B] is contained inE. The lamination convex hulE’ is the
smallest lamination convex set that contathsThe relevance of rankl
convexity stems from the fact that ranldl matrices arise exactly as gradient
of mapsx — u(x - n) that only depend on one variable. These maps are the
building blocks in Gromov’s construction.

In this paper we generalize Gromov’s result in two directions. First we
show that one can impose a constraint on a minor (subdeterminabt).of
Such a constraint is stable under taking the lamination convex hull and
thus that hull has always empty interior when all elementk cfatisfy the
constraint. Therefore one cannot rely on openness to construct approximate
solutions but rather has to show that the constraint can be preserved at each
step of the construction.

Secondly we show that the lamination convex hull can be replaced by the
rank-one convex hull (called functionally rank-one convex hull in [MP 98])
which is defined by duality with rank1 convex functions. A function
f: M™M _— TR is rank-one convex if it is convex on every rank-one
segmenfA, B]. For a compact sé{ the rank—1 convex hull is defined as

K™ = {F e M™™M: f(F)<supf, Vf: M™™— R rank-one conve>}.
K

For an arbitrary setU we defineU'™ as the union of the hull&K'™, for

all compact setK c U. We note in passing that in the literature the
rank-one convex hull of an arbitrary sktis often defined agL)™. For

our purposes the separate definitions for compact and general sets are more
convenient (and in line with the situation for ordinary convexity). The differ-
ence between lamination convexity (defined set-theoretically) and rank-one
convexity (defined by duality with functions) may appear to be small since
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both notions agree for ordinary convexity but Corollary 1.5 below and the
recent construction of (variational) elliptic systems with nowhere regular
solutions [MS 99] show that the difference may be striking.

We now fixt € R and a minor (subdeterminaniyl : M™" — R.
We set

¥ = {F e M™": M(F) = t}. (1.3)

Theorem 1.1. LetU C X be open inX and bounded and let : @ C
R" — R™ be a piecewise linear Lipschitz map that satisfies

DveU'™ a.e. inQ.

Assume also the the parametéan the definition ofx is not zero. Then there
exists a Lipschitz map : 2 — R™ that satisfies

DueceU a.e. inof
u=uv on Q2.

The hypothesis that be piecewise linear can be replaced bye
CZe($2; R™) for somew > 0.
The same assertion holdssifis replaced byM™",

Remarks1. For the case without constrai6f can be replaced bg?. If

the constraint is on a minor of ordarthenC2“ can be replaced bg!

(cf. Lemma 6.3 below).

2. By simple scaling and covering arguments one can see tiaatbe chosen

so thafu(x) —v(X)| < e(X), wheres(X) is a given continuous function ¢
(which can vanish at the boundary). In Gromov’s terminology this means
thatv admits a fine approximation by solutionsbti € U.

To obtain results for sets that may not be open we use Gromov's concept
of an in-approximation.

Definition 1.2. Let X be given by (1.3) witlh = 0 and letK C X. A se-
guence of setd; C X is an in-approximation oK in ¥, if the U; are open
in X and the following three conditions are satisfied:

() the U; are uniformly bounded

(i) Ui c U,

(i) Ui — K inthe following sense: iF; € U; andF — F thenF € K.
Theorem 1.3. Let X be given by (1.3) with = 0 and letK C . LetU;

be an in-approximation oK in X. Suppose that : @ ¢ R" — R™is in
C2%(Q; R™M) (or piecewise linear) and that

Dv e U, in Q.
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Then there exists a Lipschitz map 2 — R™ that satisfies

Due K a.e.in®,
u=v on ox2.

The same assertion holds3ifis replaced byM™".

Remark The conditionv € CZ%(€2; R™) can be relaxed to € Ct., for the

case without constraint and @2 if the constraint is on a minor of order
One application of our results concerns the so-called two-well problem
in the theory of martensite (see [BJ 92,Sv 93]).

Corollary 1.4. Suppose thaf, B € M?*? satisfydetA = detB = 1 and
let K = SQ2)AU SQ2)B. Then the problem

Du e K a.e. ing,
ux) = Fx on o

has a solution ifF € int convK anddetF = 1.

The next example which was found independently by several
authors ([AH 86,CT 93,Sch 74,Ta 93]) illustrates the difference between
lamination convexity (defined set-theoretically) and rank-one convexity (de-
fined by duality). LetK be a subset of the diagonalx22 matrices given

by
9 e

(see Fig. 1). ThetK contains no rank-one connections and tKifs= K.
On the other han&'™ contains the squar® = {|F11| < 1, |F»| < 1} and
the segment$A; 1, J]. To see this letf be a rank-one convex function
that vanishes oK. Then f is convex along the horizontal and vertical
lines in Fig. 1 and hence attains its maximum o%n one of the corner
points of S, say atJ;. If F(J;) > 0 then convexity alon§A,, J,] yields the
contradictionf(Jy) > f(Jy).

One can easily check that the relatibn € K only admits the trivial so-
lution Du = const. Theorem 1.1 guarantees that there are mags— R?
which vanish a2 and whose gradient remains in an arbitrarily small open
neighbourhood oK.

Corollary 1.5. LetK be given by (1.4) and lgf € K™ ande > 0. Then
there existal : @ ¢ R? — R? such that

dist(Du, K) < ¢ a.e. ing,
ux) = Fx on 0<2.
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Fig. 1. The sef{ A1, Ay, Az, A4} is lamination convex but the rank-one convex hull contains
the shaded square and the line segmpditsAj 1]

The difference between rank-one convexity and lamination convexity is
also relevant for the study of x 2 elliptic systems

div D f(Dv) = 0 (1.5)

wherev : Q@ ¢ R? - R™and f : M™?2 — R is a smooth function
satisfying suitable ellipticity conditions. &2 is simply connected then (1.5)
is equivalent to the partial differential relation

Du e K (1.6)

whereu : @ — R?™ and

X Mx2 N (0 -1
Kz{(Y)eM2 2.Y_Df(X)J}, J_(l o>'

By a result of Ball [Ba 80] the strong ellipticity condition for (1.5) is
equivalent to the condition thdt contains no rank-one connection. Hence
K'® = K for strongly elliptic f. Nonetheless there exisk2 systems (even
in variational form) for whichK'™ is sufficiently nontrivial, and our ap-
proach can be used to construct “wild” solutions to such systems [MS 99].
We learned recently that a closely related construction appears in the thesis
of Scheffer [Sch 74]. He only discusses the nonvariational case in detalil
and only obtaindV*? solutions. Although his results are very interesting it
seems that this work was never published in a journal and therefore has not
received the attention it deserves.

Before discussing the main idea of the proof let us briefly mention other
related work. In [MS 96] we gave a short selfcontained proof of Gromov’s
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result for Lipschitz solutions, specialized to (1.1), (1.2) withc M™",
A slightly different approach based on Baire’s theorem has been pursued
by Dacorogna and Marcellini [DM 96a,DM 96b,DM 97], see also [Sy 98].

The cas&K = O(n) has been studied in detail in [Gr 86], Chapter 2.4.11;
for K = O(3) see also [CP 95]; applications of the latter approach to other
problems can also be found in [CP 97].

The proof of Theorem 1.1 relies on three steps, and a suitable approxi-
mation argument as in [MS 96] then leads to Theorem 1.3. In the first step
one considers a neighbourhobidof two rank-one connected matricés
andB and shows that any affine boundary condition with gradie pAinB]
can be realized. This is easy in the unconstrained case, but requires a careful
approximation if a constraint on a minor is imposed. A simple induction
argument yields a weaker version of Theorem 1.1 whEfds replaced by
U'c. In the second step we construct, under the hypothesis of Theorem 1.1,
maps that satisf{pu € U™ and for which set s€tx: Du(x) € U™\ U) has
small measure. We use a result of Pedregal [Pe 93] (see also [MP 98]) that
the points inK'™ are exactly the barycentres of certain probability measures
(called laminates). We prove (and that is one of the key points) that these
measures can be approximated by suitable combinations of Dirac measures
that are supported in an arbitrarily small neighbourhoodJjrof K’ (see
Theorem 3.1 below). In the third step we remove thegBet € U™\ U} by
a simple iteration.

Step 1 is discussed in Sect. 2 for the unconstrained case. Step 2 is
carried out in Sects. 3 and 4. In Sect. 5 we prove Theorems 1.1 and 1.3
and Corollary 1.4. Finally in Sect. 6 we carry out Step 1 for the case of
a constraint.

2. The unconstrained case for a neighbourhood of two matrices
We first establish a version of Theorem 1.1 for the simplest situation, a small
neighbourhood of two rank1 connected matrices.
Lemma 2.1. Let A and B bem x n matrices and suppose that
rank(B — A) = 1. (2.1)

Let

C=A-1MA+1B, wherex e (0,1).
Then for anys > 0 there exists a piecewise linear map 2 — R™ such
that

dist(tVu, {A,B})) <§ a.e.in®, (2.2)
supju(x) — Cx| < 4, (2.3)
Q

u(x) = Cx o0nos. (2.4)
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Proof. A simple construction was given in [MS 96]. We recall it for the
convenience of the reader. We will first construct a solution for a special
domainU. The argument will then be finished by an application of the Vitali
covering theorem.

By an affine change of variables we may assume without loss of gener-
ality that

A=-la®e, B=(1-1Na®e, C=0 and |a =1
Lete > 0, letV = (=1, D" ! x ((A — )&, 1e) and define: V — R™ by

—rax, if x, <0,

U(X) = —8)\.(1 - )")a+ { (1 — )\‘)a)(n if Xn = 0.

ThenVv € {A, B} andv = 0 atx, = ¢(A — 1) andx,, = ¢, butv does not
vanish on the whole boundafy. Next leth(x) = ex(1 — A)aZ[‘;ll [Xi].
Thenh is piecewise linear anfVh| = eA(1 — A)/n — 1. Setli = v + h.
Note thatll > 0 ondV and letU = {x € V : li(X) < 0}. Then

Uy Is piecewise linear, Gy =0,
dist(va, {A, B}) <er(l—A)v/n—1,
[G] < ex(1— ).

By the Vitali covering theorem one can exhaustby disjoint scaled
copies ofU. More precisely there exis§ € R" andr; > 0 such that the
setsU; = x; + rjU are mutually disjoint an¢t2 \ U;U;j| = 0. Defineu by

ot x = %)) if x € Uj,
Uk = {O else

ThenVu(x) = Vi(r; t(x — %)), if x € ;. It follows thatu is piecewise
linear, thatuj,, = 0 and thatu satisfies (2.2) for a suitable choice af
Moreover by choosing; < 1 one can also satisfy (2.3). O

3. Rank-one convex functions and rank-one convex hulls

In this section we fixm,n € N and we consider functions defined on
(subsets of) the spadd™ "of all realm x n matrices. We also fix a natural
number < min(m, n) and a real numbeét For X € M™" we letM(X) =
deI(Xij)i')j=1 and = {X ¢ M™" M(X) =t]}.

Let O ¢ M™" be an open and let: ©® — R be a function. We say
that f is rank-one convex ir©, if f is convex of each rank-one segment
contained inO. In a similar way, a functionf defined on ase® Cc =
which is open inX is rank-one convex i, if it is rank-one convex on
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each rank-one segment containeddin We will useP to denote the set
of all compactly supported probability measuresMi™". For a compact
setK ¢ M™" we useP(K) to denote the set of all probability measures
supported inK. Forv € P we denote by the center of mass af, i. e.
D= [ymen XA(X).

A measurev € P is alaminateif (v, f) > f(») for each rank-one
convex functionf : M™" — R. At the center of our attention will be the
setsM™(K) = {v € P(K), v is alaminatg¢, which are defined for any
compact seK ¢ M™",

Let O be an open subset &™ "or a subset o& which is open inx.
We now define an important subg&t©) of laminates, callethe laminates
of finite order in©. The definition is by induction:

1. For eachA € O, the Dirac mass aA, denoted by 5, belongs toZ(O).

2. ASSUMELy, ..., Am > O with Y2 = 1, and that = Z’j“:lkj(SAj be-
longs to£(O). Assume also thdiB;, B,] is a rank-one segment contained
in O, and that there is & s < 1 such thatl — s)B; + sB, = A. Then
the measurg = ZT‘:‘ll Lj8a;+(1—=9)Amdp, +SAmdp, also belongstd (0).

Let K be a compact subset M™"(resp. ofx). We recall that theank-
one convex huK'™ c M™" of K (respthe rank-one convex hifi™®* c ¥
of K relative toX) is defined as follows. A matriX does not belong t& "
(resp. toK™*) if and only if there existd : M™" — R (resp.f: & — R)
which is rank-one convex (resp. rank one convex.insuch thatf < 0
on K and f(X) > 0. It is not difficult to see thaK™ = {v; v € M"™(K)}
for any compactk ¢ M™". The inclusionc is obvious. The proof of
the inclusion> can be found in [Pe 93]; it can be also easily derived from
Lemma 3.2 and Lemma 3.5 below. We can now formulate the main result
of this section.

Theorem 3.1. LetK be a compact subset Bfand letv € M™(K). Assume
that the numbet appearing in the definition at is not zero. LeK = K=
be the rank-one convex hull &f relative toX and letO C X be open inX
such thatk ¢ O. Then there exists a sequengec L(0O) of laminates of
finite order inO such that they; converge weakliyto v in P.

The statement also remains true if we repl&edy M™" and K'®*
by K'.

As a preparation for the proof of the theorem, we prove the following
lemma.

Lemma 3.2. Let O be an open subset &1™" or a subset o2 which is
openinO.Letf: O — Rbeacontinuous functionand By f: O — RU
{—o0} be defined byR» f = sup{g, g: © — R is rankone convex ir©®
and < f}. Then, for eachX € O we haveRp f(X) = inf{(v, f), v €
L(0), andv = X}.
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Proof. Let us denote by the function in® defined byf (X) = inf{(v, f),
v € L(0), andb = X}. ClearlyRo f < f in ©. On the other hand, we
see from the definition of the s ) that it has the following property: if
v1, V2 € L(O) and the segmeriby, v,] is contained in®, then any convex
combination ofv; and v, is again inO. Using this, we see immediately
from the definitions thaf is rank-one convex i©® and henceRp f = f.

O

Proof of Theorem 3.1.Letv € M™(K) and letv = A be its center of
mass. We claim thaA € K. This can be seen as follows. First we note
that A € X, since (v, M) = M(v) by definition of M™(K). If A did
not belong toK, there would exist a rank-one convex functigron =
such thatg < 0 on K andg(A) > 0. This would mearn(v, g) < g(A),
which would give a contradiction if we knew that there exists a rank-one
convex functionf: M™" — R such that|f — g] < ¢ on K U {A},
where¢ is sufficiently small. The existence of sudhis guaranteed by
Lemma 3.6 below, and hence the clake K is proved. We now choose
a setU C X which is open inT and satisfiek c U c U c O. We
defineF = {u € L), u = A}. We claim the the wedkclosure of
JF containsv. To prove the claim, we argue by contradiction. Assume
does not belong to the weaklosure of F. SinceF is clearly convex, we
see from the Hahn-Banach Theorem that there exists a continuous function
f: U — R such that(v, f) < inf{(u, f), u € £L(U) andix = A}. By
Lemma 3.2, we have iffu, f), © € L(U)andi = A} = Ry f(A). We
see that the functiof = R, f: U — R is rank-one convex itJ and
satisfieg, f) < (v, f) < f(9). By Lemma 3.6 below, there exists, for each
¢ > 0, a rank-one convex functiof: M™" — R such thafF — f| < ¢

on K. We conclude that cannot belong to\™(K), a contradiction. The
proof is finished.

The rest of this section is devoted to the proof of the Lemma 3.6 below.
An important step in the proof of the lemma is the approximation of rank-
one convex functions oB by smooth rank-one convex functions, a problem
which we are now going to consider.

We first remark that any rank-one convex functibron M™" can be
approximated by functions of the form  f, wherep, = ¢ ™"p(x/¢), with
¢ being a standard mollifier. b > 0, the functionsp, * f are obviously
rank-one convex.

To approximate rank-one convex functions Brby smooth functions,
we will use a suitable variant of the simple mollification procedure just
described. However, our method will work only foe£ 0. Fort = 0 the
problem seems to be more subtle due to the singularitids in
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We can write eachm x n matrix X as a 2x 2 block matrix, X =

X1t x12 . . . .
(X21 22 | whereX!is anr x r matrix, X' is an(m —r) x r matrix,

etc. We recall that there is a natural action of the gr8iyr, R) on M™*"
Axll Ale
2L 22 (whereA € SL(r,R) and X € M™"M),
This action clearly leavek invariant and also maps any rank-one segment
into a rank-one segment.

Let E = {X e M™" X1 = 0}. We considelE as an additive group
which acts orM™" by X — X 4+ C, (whereX € M™" andC € E). This
action also preserves and all rank-one segments.

We consider a family of mollifiersp, : SL(r,R) — R which are
smooth, non-negative, and approximate the Dirac maksat — 0. Let
also ¢, be a family of mollifiers inE which have analogous properties.
For a continuous functiorf: ¥ — R we let f,(X) = fSL(r,R) fe f(A-
(X+C))p. (A, (C)dAdC whered AanddC denote the natural invariant
measure irSL(r, R) andE respectively. Itis easy to verify that for each rank-
one convexf: ¥ — R the functionsf, are again rank-one convex i,
smooth, and converge tbuniformly on compact subsets &f ase — 0.

given byA- X =

For X € ¥ we letn(X) be the unit normal tox satisfying n(X) -
VM(X) > 0. It is well known that forX € M™" which is sufficiently
close toX there is a uniquer(X) € X which is close toX such that
X = 7(X) + tn(w (X)), wheret = dist(X, ).

Let f: ¥ — R be a smooth, rank-one convex function. létbe
a neighbourhood o on which the projectionr introduced above is well-
defined. For > 0 andk > O we defineF = F,x: U — R by F. «(X) =
f(r (X)) + ¢|X|? + KIM(X) — t|?, where we use the notation introduced
above (see also the beginning of the section).

Lemma 3.3. Let K be a compact subset &f. In the notation introduced
above, for any > 0 there existk > 0 such that the functiofr = F, y is
rank-one convex in an open subset*" containingK.

Proof. We argue by contradiction. Suppose the statement fails. Then there
exists a sequenck, € U converging toA € K (ask — oo) and a sequence

Y, of rank-one matrices withyy| = 1 converging to a rank-one matri

with |Y| = 1 such thatD?F, x(Ax) (Yk, Yi) < 0. Sincef oz is smooth in

U andM is affine along all rank-one lines, we hal2#F,(A)(Y,Y) < 0

for eachl > 0. Using again thaf o & is smooth and\ is affine along all
rank-one lines, we see th¥tis a rank-one matrix belonging to the tangent
space ofx at A. Therefore the line described ty— A+1tY, t € Ris
contained inx. Using the assumption thdtis rank-one convex o, we
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infer thatDZFgJ (A (Y, Y) > ¢, acontradiction. The proof of Lemma 3.3 is
finished.

Lemma 3.4. Let K be a compact subset &f and letK = K™ be the
rank-one convex hull oK relative to X. Then there exists a rank-one
convexg: ¥ — Rsuchthag > 0in © andK = {X € £, g(X) = 0}. The
statement also remains true if we replaeoy M™" and K'* by K,

Proof. Forr > 0 we let denote by, the setX N {|X| < r}. We choose
R > 0 sothatk C Xg/; and defingg;: ¥r — R by

0:(X) =sup f(X), f: Tr > R,
f is rank-one convex iltr and f < dist(-, K) in Xg}.

The functiong;, is obviously non-negative and rank-one convexig
Moreover,{X € Xg, gi(X) =0} D K and from the definition oK we see
thatg; > 0 outsideK. We now define

(X) = max(g:(X), 12/ X| — 9R) whenX € g
I =112x— 9R whenX e =N {|X| > R}

Clearly g is rank-one convex o in a neighbourhood of any poiX € X
with | X] # R. Sinceg:(X) < 2|X| when|X| = R, we see that we have
g(X) = 12/ X| — 9 in a neighbourhood af N {| X| = R}. We infer thatg is
rank-one convex ol. The proof is easily finished.

Lemma3.5. Let K ¢ M™" be a compact set, le® be an open set
containingK'® (the rank-one convex hull &) and letf : O — R be rank-
one convex. Then there exigts M™" — R which is rank-one convex and
coincides withf in a neighbourhood oK '.

Proof. We use Lemma 3.4 to obtain a non-negative rank-one convex func-
tiong: M™" — Rsuchthak™ = {X, g(X) = 0}. Replacingf by f +c,

if necessary, we can assume tliat 0in a neighbourhood d{'. Fork > 0

we letUy = {X € O, f(X) > kg(X)}. We also letVk be the union of the
connected componentsdf which have a non-empty intersection wkHC.

It is easy to see that there exigts > 0 such thatvy, ¢ O. We now let
F(X) = f(X) whenX e Vi, andF(X) = kog(X) whenX € M™"\ V.. It

is easy to check that the functidghdefined in this way is rank-one convex
on M™xn, O

Lemma 3.6. Using the notation introduced at the beginning of this section,
let us assume that the numbeappearing in the definition ok is not
zero. LetK c X be a compact set, and €0 C X be a set open in

> which containsK = K™, the rank-one convex hull df relative
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to X. Let f: O — R be rank-one convex. Then, for each> 0, there
exists a rank-one convex functish M™" — R such that|F — f| < ¢
onK.

Proof. Using Lemma 3.4 we see that there exists a non-negative rank-one
convex functiorg: ¥ — RsuchthaK = {X € =, g(X) = 0}. Letus take
alarge (open) balB ¢ M™" containingK . As we saw above, there exists

a smooth rank-one convex functign ¥ — R such thaig — g| < ¢/4in

BN X. By Lemma 3.3 there exists a neighbourhddaf ¥ N Bin M™"

and a rank-one convex functi@: U — R such thalG — g| < ¢/2 onK.

We note that the rank-one convex hull of the Bet B is againx N B, and
therefore we can apply Lemma 3.5. The proof is finished easily.

4. The main approximation lemma

In this section we consider a precursor to Theorem 1.1. We show that for
affine boundary data — Fx with F € U'® there exists a piecewise linear
mapu whose gradient is always ' and most of the time iJ. A simple
iteration argument given in the next section will yield Theorem 1.1, and
another more subtle iteration yields Theorem 1.3.

Lemma 4.1. Let X be given by (1.3) withh £ 0. LetV be an open set
in X, let F € V' and lete > 0. Then there exists a piecewise linear map
u:Q cR"— R™such thatbu € V' a.e. inQ and

I{Du ¢ V}| < e[|,
u(x) = Fx on 0<2.

The same assertion holdsifis replaced byM™".

Proof. By definition there exists a compact getc V such thatF € K.
In view of [Pe 93] (see also Sect. 3) there exists a probability measure
v € M'(K) such thatF = v = (v,id). Using the action of the group
SL(r,R) x E on X defined in Sect. 3, we see th&t® is open inX.
Theorem 3.1 yields the existence of laminates of finite orges £(V')
that converge te in the weak topology and satisfy; = F.

It only remains to show that for eaghe L(V'), u = Z!Zl Aida and
eache > 0 there exists a piecewise linear map — R™ that satisfies
Du € V'® and

“{IDU—A-I <e)| - n(AiQl

u=mx on o<2. 4.2)

< ||, 4.1)
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We prove this assertion by induction over the order of the laminate.
For laminatesu = A8a + (1 — A)3g of order one the assertion follows
from Theorem 6.1 (and the fact th#t Du = 7z|$2|). Assume that the
assertion holds for laminates of order(or less) and lepw € £(V™) be
a laminate of ordek + 1. Then there exists a laminaj€ of orderk,

u o= Z!j A{SN and matricesA_1, A € V™ with rk(A — A1) =1 and
A_;=sA_1+ (1 —-9A,s¢< (0,1 such that

po=p' = M_g8n  +Sh_10a + (L= 9414
By the induction assumption there exists, for e&ch 0, a piecewise linear
mapv : 2 — R™ such thatDv € V'™

“{IDv— Al <8l =il < sigl,

v=w' X=X  0ondx.

Consider the seE C © where|Dv — A|_;| < é. ThenE is a countable
union of open sets on whichis affine (up to a set of measure two) and
| [E] — w(A_)IR| | < §|2]. Hence we may choose a sub&étsuch that
[1E'] — X-11R2| | < 28|2| andE' is a finite union of open set§; on which
v is affine.

Itremains to modify onthese sets. L& = Dujg,. Then|Fj — A/_,| <4,
and we claim that there exigB;, C; € V' such thatF; = sBj+
1 - S)CJ', rk(Bj — CJ) =1 andlBj — Al < Cs, |CJ — Al < Cs,
where C may depend oA _; but not ons. Indeed in the case without
constraint one cantak®; = A_1 + (Fj — A_), Ci=A+ (F, — A_)
and the assertioB;, C; € V' follows for a sufficiently small choice af.
If a constraint is imposed one can use the group actioR @s in Sect. 3
instead of the translation dd™ " to defineB; andC;.

Using Theorem 6.1 we can replaceon eachE; by a mapu which
satisfiess = vondEj, Du € V®and| |[{|Du—Bj| < 8}| —s|Ej| | < 8|Ejl,
[ {IDu—C;j| < 8}|—(1—9)|E;j| < S|Ej|. If §is chosen sufficiently small (in
dependence on, u and V') thenu satisfies (4.1) and (4.2). This finishes
the proof of the lemma for the case with constraint. The unconstrained case
is completely analogous and was treated in [MS 99]. O

5. Proof of the main results

Theorem 1.1 is obtained by an iteration of Lemma 4.1 which removes the
set whereDu ¢ V. Theorem 1.3 can be deduced from Theorem 1.1 by
a careful choice of approximationg” with Du®” e U;. The argument is

the same as in [MS 96]. Since it is short, we repeat it for the convenience
of the reader.
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Proof of Theorem 1.1.We only consider the situation with constraint since
the unconstrained case is analogous. Suppose first that the boundary data
are affinep(x) = Fx+a. Lete > 0. By Lemma 4.1 there exists a piecewise
linear mapu®: @ — R™ that satisfiesi'¥ = v on 9Q and

Du® e U, |{Du? ¢ U}| < ¢lQ.
Sinceu® is piecewise linear there exists a family of disjoint s@tssuch
that| 2\ |J | = 0 andufg, is affine. Let{Q("} be the subfamily of those

sets wherdu® ¢ U. Applying Lemma 4.1 to each s&t” we find maps
u® that satisfyu® = u® on 82" and

Du? e U™, |{Du{? ¢ U}| < &|Q"].
Let

Thenu® = v on a2, Du® e U a.e. and

{DU® ¢ U}| < £%|Q],
I{Du® =« DuUD}| < ¢|Q.

Repeating this process we find map§ such thau® = v in 3Q, Du® e
U a.e.

{DU® ¢ U}| < 42,
{Du® £ DUk} < Q).

In particular Du® — Du in measure andu € U a.e. This finishes the
proof for affinev.

If vis piecewise affine it suffices to apply the previous argument to
each region where is affine. Finally ifv € C5 N W then we can first
approximatev by a piecewise affine map (see Lemma 6.3 and the remarks

following it). O

Proof of Theorem 1.3.Again it suffices to consider affine boundary data

v = FX. For piecewise linear data one can argue on each region whgre
affine, and for general data one can use Lemma 6.3 to obtain a piecewise
linear approximation. LeF € U, § > 0. By Theorem 1.1 there exists

a piecewise linear mag? such thaDu® e U@ a.e.inQ, u® = vonaQ

and

U@ — vl < 8.



Convex integration and pde 407

Givenu® (with Du® e U®) ands; > 0 we obtaine;, 8,1 andui*d
inductively as follows. Let

Q = {x e Q: dist(x, 9Q) > 27"},

leto € C5°(R™) withfg: 1 beausual mollifierandlet (X) = e "o(X/¢).
Then there exist; < 27' such that

log * DU — DU? g < 27
Let
Sis1=min(27'g;, 8iei/2).
Then there exista®*? with Du/*b ¢ U(*D a.e. and
||u(i+1) _

UV < 8iva.

Since £ < oo we haveu” — U uniformly andu® = v on 3Q.
Moreover

R = [oq * (DU = DO 1, < [ Dog # U =D 1,
< S—CI j:2+18j < i—?éi — 0, asi — oo,

and thus

|Pu® = D] g, <[ DU? = DU 1,

+ | o, * DU — DHHLl(Qi) +R —0 asi — oo,

+ s * Du® — Du® HLl(Qi)

since|Du®| + |Du| < C. HenceDu®” — Duin L! and thusDu € K. O

Proof of Corollary 1.4. Let
T = {F e M*?: detF = 1}.
Then [Sv 93]
K = K'®* = % nconvK
and the sets

U; = X NnintconvK
Ui = {F € U;: 0 < dist(F, K) <27}

are an in-approximation df in .
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6. The basic construction with constraints
6.1. Main result

Theorem 6.1. Let A, B € M™" n,m > 2 and letM be a minor of order
r > 2. Suppose that

rankB— A) =1, M(A) = M(B) #0.
Let
C=(1-)MA+ 1B, wherex € (0, 1).

Then for anys > 0, there exists a piecewise linear map 2 — R" such
that

M(Du) = M(A) a.e.ing, (6.1)

dist(Du, [A, B]) < § a.e. ing, (6.2)
[{dist(Du, {A, B}) > §}| <4, (6.3)
supju — Cx| < 4, (6.4)

u = Cx onoag. (6.5)

Remarksl. If m = nis even one can construct symplectic maps rather than
volume preserving maps in a similar way. Also certain linear constraints
such divu = 0 or Du = (Du)T can be handled (cf. the constructionybf
andv in the proof of Lemma 6.2 below).

2. The proof employs approximation arguments that are simple but lead
to a construction that is hard to visualize. o= m = 2 a direct construc-
tion involving 20 gradients is possible. It even satisfies(dst, { A, B}) <48
ae inQ.

To prove Theorem 6.1 we first construct smooth functions that satisfy
(6.1)—(6.5) and then employ a general argument to approximate those by
piecewise linear functions. Moreover we may assWi@) = M(B) = 1.

Note that if suffices to establish (6.1)—(6.3) and (6.5)fo= (0, 1)". The
result for generaf2 and (6.4) can then be deduced by covering and scaling
as in the proof of Lemma 2.1.

6.2. Approximation b> maps

Lemma6.2. Let A, B, C as in Theorem 6.1 and suppose that (0, 1)",
r > 2and

M(A) = M(B) = 1.
Then there exists € C*(Q) that satisfies (6.1)—(6.3) and (6.5).
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Proof. We begin with the typical case
r=m=n, M(Du)=detDu.
After a linear change of variables we may assume
A=ld-1e®v, B=ld+1-MNeg®v, C=Id

Since detA = detC we must have); = v - ¢, = 0 and we may assume
1%/} 75 0.

The mapu is obtained as the flow of a divergence free vector field. Let
h : R — R be asmooth one-periodic function that satisfies [—X, 1—A],
{h” & {—=A,1—A}} N[0, 1] < é/4 and lety € C5°(U), U = (0, D", be
a suitable cut-off function. Define the vector fielde C3°(U; R") by

2

¥00 = —nooh (=)

b=ty = enOon (20) + i—z(azﬂ)h (%)

<
Il

2 .
v? =~ = - = @ ooh (2)
V2 &
vwW=-...=9v" =0

The small parameter > 0 will be chosen below. Consider the flowy
generated by:

d )
a‘/’t(x) = v(¢(X)), ¢o=Id.

We claim thatu = ¢, satisfies (6.1)—(6.3), (6.5). Indeed (6.1) and (6.5) hold
sincev is divergence free and has compact support.
To prove the remaining assertions let= D¢;. Then

d
aFt = (Dv o (pt)Ft, FO = |d (66)

Now

D0 = 0o (*-) (@@ v) + O)
and, fort € [0, 1],
[(@r(X) — X) - v| < tsuplv-v| < sup|p?| < Ce?,
sincev; = 0. Thus (6.6) yields

Du(x) = F1(x) = e-® + O(e),
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where

X-v
Lo =neoh” (Z=) e @ v).
&
Estimates (6.2) and (6.3) now follow from the propertiek after a suitable
choice ofp ande, since

g@®d _ |d +tagbif a-b=0.

This finishes the proof in the typical case=- m = n.
Now consider the case

r=m<n.

We may assume that the minlgrinvolves the firstmrows and columns. For
x € R"we letx = (X, X), wherex’ = (X1, ..., Xm), X = (Xmt1, - - -» Xn)
and similarly we writeF = (F’|F) for anm x n matrix F. We may assume

C=(d|0), A=C—2e,®v, B=C+(1—-1) e ®v.

Suppose first’ # 0. Then we may suppose # 0 and define the vector
field v as before. Consider the floyy given by

d . :
it = v(@ (), %), go(x) = X.

We claim thatu = ¢; has the desired properties. Indeed if we consider
Fi = Doy and®¢(X) = (¢t (X), X) we have

d / / / /
G = (Do F F, =Id,
d - - - ~
aFt = (Dv)' o q)t Ft + Dv FO = 0.

In particular we haveM(F;) = detF/ = 1 since ttDv)’ = 0. Moreover
|[P:(X) — X) - v] < Ce? and the other estimates follows as for the case
r=n=m.
If v = 0 one can still use the same construction provided ¢had
redefined as follows
X2 X-v
w00 = noon (2 + 57
& &
Finally consider the case
r<m.

We may suppose that

_(d|0 N A
C_(00>, a_(é>andvl_0|fa;é0.
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Letv?, ..., v" bethe vector field that is appropriate for the situation obtained
by deleting the rows + 1, ..., mand define mapg; : (0, )" — R™ by
d . .
a<p{(x) = o V' (g1 (), ... @[ (), X X",
Ph(X) = X', fori=1,....r,

and

d . .
A0 = A0 (@00, g{ 00, XX
Ph(x) =0, fori=r+1,...,m.

To see that the last equation yields the desired result one uses the fact that
[Dy; — &l issmallfori =2,...,r and thaty; = 0 if « # O. ]

6.3. Approximation by piecewise linear maps

To finish the proof of Theorem 6.1, we note that if we prove the result up
to condition (6.4), then (6.4) can be achieved by a suitable scaling and the
use of Vitali's covering theorem. Therefore it only remains to establish the
following approximation result.

Lemma 6.3. Let 2 be a bounded open setR' and letM be a minor of
orderr > 2 and leta > 0. Suppose thai € CZ%(22, R™) N WL (Q; R™)
and

M(Du)=1 inQ.

Then for every > 0 there exists a piecewise linear map Q2 — R™ that
satisfies

M(Dv)=1 in, (6.7)
[Du — Duf[L= <6, (6.8)
Uu=v 0noQ. (6.9)

Remarksl. If r = n, thenCZ can be replaced b@e.

2. 1f U is an open subset & = {F € M™" : M(F) = 1} andDu € U
then one can achieve in additi®w € U.
Consider first the typical case = n =r, M(Du) = detDu. The main
idea is that on a balB(a, r) wherer®[Dul], is sufficiently small one can
replacau by a map with the same boundary values that is affinB@unr /2).
To achieve the replacement one can first consider an interpolation between
u(a) + Du(a)x andu in B(a, r) \ B(a, r/2) and then use the following result
of Dacorogna and Moser to reestablish the constraint.



412 S. Miiller, V. Sverak

Lemma 6.4 ([DM 90]). LetU be a smooth and bounded domainRA.
Fork > 1anda € (0, 1) consider the set

X = {u e C**(U; R") : f detDu dx = |U|}.
U

There exists a neighbourhodflof the identity map irX and a smooth map
L :U — Ck*(U;RM such that for allu € &/ the mapLu is a diffeomor-
phism and
detDLu=1 in U,
Lu=u onodu.

MoreoverLid = id.

Proof. Choosing the neighbourhodd sufficiently small we may assume
that it consists of diffeomorphisms. By Lemma 4 of [DM 90] there exists
an operatord from a neighbourhood’ of the constant 1 iry¥ = {f €
ck1ly(Q) . fQ f = ||} to a neighbourhood of the identity X such that

detD®(f) = f inU,
®d(f)=id onau.
It easily follows from the construction @ via the contraction principle that
® is actually a smooth map (estimate (4) on p. 11 of [DM 90] is incorrect, but

their results are correct; for the present purpose it suffices that the estimate
in question holds withw; ||o replaced by wi ||k.«). Now definel by

Lu=®(f)ou, f=detDu™?,

Then Lu satisfies (6.10) and (6.11). Since multiplication and composition
are smooth operations @¢*(Q; R") and the mapi — u~tis smooth ir/,
the mapu — detDu~! is a smooth map fronty to V (if U is sufficiently
small), andZ is smooth. FinallyC id = id since®(1) = id. O

Corollary 6.5. For eachn € N,«a > 0, M > 0 there exist & > 0 such
that the following holds. IB(a,r) ¢ R", u € C*%(B(a,r); R") and

detDu =1 in 2,
r“[Duly <6, [DuflL~ < M,

then there exists & € CX%(B(a, r) \ dB(a, r/2)) such that

loc

detDl = 1,
DO = Du(0) inB(ar/2),
U=u ondB(a,r),

r~1u — ||~ + ||Du — Dl .~ < C(M)s.
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Proof. By scaling and translation we may suppese 0,r = 1, u(a) = 0.
First suppose thaDu(0) = Id. Forg € C§(B(0, 1)), ¢ = 1 onB(0, 1/2))
consider the interpolation

() = (X)X + (1 — @(x)u(x)

on By \ By If § < 8(n, @), then we can apply Lemma 6.4 and define

- X on B]_/z,
| £G4 on Bl\ B]_/z.

If F := Du(0) # Id then we can first consider= F~u, definev as
before and leti = F7. S_ince||F—1|| = ||adjF|| < CM"! the assertion
follows for 8§ < C"tM1"§(n, o). o

Proof of Lemma 6.3.1t suffices to show the following assertion:

There exists a constaét > 0 (which only depends om, m andr) with the
following property. For eaci > 0, eache > 0 and each paifu, 2) that
satisfies the hypotheses of the lemma there exists aine@ap/>> (2, R"),
a finite number of disjoint closed sefg C 2, a closed null seN and a
B > 0 such that

M(DlO) =1 in Q,
G‘Aj is affine,
[UA| = elql,

0 —ullwee <8,
~ 1,
0eCl(Q\ (NUUA),
0—ue Wy R,

Indeed ifthe assertion holds, then one can inductively obtain a decreasing
sequence of open se® and mapsi® such that©@ = u, u*+d —u® ¢
Wo' ™ (2 R,

U = u® e < 2771,
ut+ = y® one\ Qi
1Q2i11] = (1 - 0)[Qi],
and 2 \ €; is a finite union of closed sets (up to a closed null Ngton
each of whichu® is affine. It follows thau® — vin Wy™, u—v e Wy™

andv is piecewise linear. Moreovélty — U||yie < 8.
To prove the assertion we first consider the typical casen = m,

M(Du) = detDu.
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There exists open se®’ CC @' cC @ (whereCC denotes compact
inclusion, i.e.Q’ C Q etc.) with|Q"| > %|Q|. If o > 0Ois sulfficiently small
thenQ” can be covered by a lattice of disjoint open cubes of gitteat are
contained ir®’. TheC* norm ofu is uniformly bounded on the cubes. If
we choose sufficiently small then each cube contains a ball of raditcs
which Corollary 6.5 applies. This yields the assertionrfes n = m.

The same reasoning applies for general 2 if we replace Corollary 6.5
by Lemma 6.6 below. We only state it for= m, since forr < mone can
simply use usually interpolation by cut-off functions for the components
utt oo um, ]

To fix the notation we writex = (X', y) € R™ x R"™™ we denote the
derivative with respect to the firat components byp’ and the derivatives
with respect to the remaining components Dy. Finally we sometimes
write m x n matrices ag = (F/, G) € M™" x M"—mxm

Lemma6.6. LetV = B, x B, C R™ x R"™™and« > 0. Then there exist
8 > 0, M > 0 such that for allu € C%*(V; R™ the following holds. If

[Du— Du(O)||1e <3, sup/D'ul <M, detD'u=1,

then there exists a Lipschitz map V — R™ that satisfies

detD'v =1 inV,
Dv = Du(0) in By/2 x Byo,
v=u inQ\B]_XB]_,

sup|Dv — Du| < Cs,
v e C2¥2(V \ N),

whereN = (3By/, U 3By) x By.

The proof of Lemma 6.6 relies on Lemma 6.4 and the following charac-
terization of the nonuniqueness in Lemma 6.4.

Lemma 6.7. Suppose thak is abounded domain iR" with smooth bound-
ary. Fork > 2anda € (0, 1) consider the spaces
Xy = Cg:f‘r = {v e Ck¢(Q;R": divv=0in Q,v=0 on 89},
Yi:= DX%i= {p: CR*(;R"): ¢: © — Q diffeomorphism,
detDp =1 in Q,¢ =id on 02}

Then there exists a smooth diffeomorphisxp that maps a small neigh-
bourhood of0 in Xy onto a neighbourhood of the identity map¥i
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Proof. The Lemma follows from general results on the geodesic flow
in the group of volume preserving diffeomorphisms (see [Ar 66,EM 70],
[HKMRS 98]). Since we need to use ti¢* metric (rather than the stan-
dard L? metric) to enforce the boundary conditign= id on 92 (rather
thang(9Q2) = 92) we sketch the proof in the appendix.

Proof of Lemma 6.6.We first construct a magp that has the right properties
inthe inner cylindeBy , x B,. Animportant pointis thafBl/z detD'wdx =
|B1/2|. We then define an extensiog = ¥ (X)w + (1 —y(x'))u that agrees
with u outsideB; x B;. In general deD’'ug # 1. By Lemma 6.4 we can
replaceug(-, y) by a mapl(-, y) that satisfies ddd’u = 1 and agrees with
Uo(-, y) ond(By \ By/2). Finally we modifyd for |y| > 3/4 with the help
of the exponential map defined in Lemma 6.7 so that it agreesundti
Bl\ B]_/z X aBl
We may suppose that
F := Du(0) = (Id, 0
since otherwise we could consider
A, y) = u((FH)™x, y) - Gy,
whereF = (F’, G). In addition we may assumg0) = O.

Step 1:.Construction ofw.
Lety € C3°(Bs4), ¢y, = 1, and define

w(X',y) = (V)X + (1 — e(y)u(x, y),
Aly) =

detD'w(x’, y) dxX
IBy/2| JBy,

w(X, y) = 2~YM(y)n(x, y).
Thenw is as smooth as and
detD'w dX = |Byal,
B1/2
w(x,y) =X on B, x Byjz,
w(X,y) =u(xX,y) onB;x B\ Bgua.
Note thath € C2¢ although it may appear at first glance that one deriva-

tive is lost in the definition of.. Indeed, using the formula digof D' = 0
we obtain

[B1/oldy A = (cof D' : D'dy,w) dxX
B1/2

=/ (cof D' : dy,w @ V') dX,
0B1/2
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where '’ is the outer normal 0bB,,,. This yields the desired regularity
of A. Further inspection shows thDw — (id, 0)[1, < C§ and||Dw —
(id, 0)]|1.4 < C34. In particular all the maps(-, y) are diffeomorphisms of
B, if § > 0 is sufficiently small.

Step 2:Interpolation betweemw andu.
Letyr € C5°(By), Y18, = 1 and let

Uo(X, ) = Y (XHw(X, y) + (L = y(xXNHu(X’, y).
ThenDug(0) = (id | 0) and||Dug — (id | 0)||1,, < C$. In particular all the
mapsuo(-, y) are diffeomorphisms oB,. Moreover

U — w OnaBl/zx By,
0= u onoB; x By,

and
/ detD,UO dx = detD,UO dx — detD,UO dx’
B1\Bi/2 By B1/2
= / detD'udx — detD’w dx
B Bi/2
= |B1\ Byl

Step 3:Projection ofug onto volume preserving maps.
Let

Q2 =B\ By

For fixedy we can apply Lemma 6.4 wit replaced by (andn replaced
by m) to ug(-, y). Let

u('7 y) = ‘C’UO('7 y)
Then fork =1, 2
1GC, Vke.e < Clluo(, Y ke
< [ullka.v-
Moreover by Lipschitz continuity of
||u(a y) - u(, 9)||k,a/2,§2 S C ||u0('7 y) - UO(', 9)”1(,&,52
< Cllullcav ly — 912

Using the differentiability ofZ one finds similarly

IDLAC, y) — DLAC, ) lkt.ajze < C [Ullcav]y — 9172
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Hencell € C2%/2(Q’ x By).

Step 4:Modification ofi for |y| > 3/4.
For|y| > 3/4 define

nC,y) = (Uo(, V) Lo UC, y) = (U, )t o l(, y).
Thenn measures the ‘difference’ betweg@randu and

n(,y) =id 0onoQ = 9B U 3By
detD’n =1

Now lety € C3°(By1), ¥ = 1 onBy/g and let

v(-, Y) = G(’ Y) on 2 x 83/4

v, Y) =UC,Y) o expy(y) expt (. y)) 0N« x B\ Bya

U(', y) = U)(', y) on B]_/2 X Bl

v=u elsewhere.
Thenv has the desired properties. O
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Appendix: Proof of Lemma 6.7

Proof. The result is well-known to experts and a detailed proof in a more
general situation is given in [HKMRS 98]. We sketch a proof for the case
at hand for the convenience of the reader. The map exp will be constructed
as the time-one map of the flow generated by a suitable (time-dependent)
vector fieldv. If we were interested in volume-preserving diffeomorphisms
that satisfy merelyp(0Q2) = 92 we could takev as the solution of the
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incompressible Euler equations. To achigyg, = id we use a variant of

the Euler equations where the orthogonal projection onto divergence free
vector fields is taken with respect to th&} scalar product rather than the

L2 scalar product.

Arnold [Ar 66,AK 98] observed that the flow generated by the solutions
of the Euler equations corresponds to geodesics in the group of volume pre-
serving diffeomorphisms, equipped with a translation invariant metric given
by theL? scalar product on vector fields, see [EM 70] for a detailed analysis.
The flow discussed below corresponds to geodesics with respect to a metric
induced by anH} scalar product. This motivated the notation exp for the
map. We are grateful to J.E. Marsden for pointing out to us that the resulting
equations are known as the averaged Euler equations and that a detailed
study will appear in a series of papers beginning with [HKMRS 98].

To fix the notation letH = H&(Q; R"), with scalar productu, v) =
fQ Du Dv, and letY = {v € H : divv = 0} denote the closed subspace
of divergence free vector fields. The orthogonal complenyeistgiven by
(see e.g. [GR 86], Chapter I, Cor. 2.3)

Yt ={A;'Vp: pe L?(Q)}

where Ap = H} — H~!is the Dirichlet Laplacian. Fou € H the
orthogonal projectiorQu onto Y+ is given by

Qu=Ag'Vp,
wherep is the unique solution of
divAg'Vp =divu.
If we let
T =divAglv

thenT is an isomorphism of.3, = {p € L%(Q) : [, p = 0} onto itself
(see [GR 86], Chapter I, Cor. 2.3 and 2.4). Moreover by standard regu-
larity arguments one sees thhtis also an isomorphism &€k = {p €
Ck¢(Q) : [, p = 0} and Q is a bounded operator fro85* = {v €
Ck«(Q; R") : v = 00ndg} onto the subspaceyy, of divergence free
vector fields.

To motivate the definition of the flow consider a one-parameter family
of diffeomorphismsy : @ — @,t € | and letv = () o n L. For any
function f : | x Q@ — R define the material time derivative by

. d
f:atf+(v-D)f=[a(fom)}om‘l.
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In particular

V= (En) on . (A.1)

The simplest evolution equation would be= 0 but this does not preserve
the constraint of being divergence free. To keep the constraint a natural
approach is to look for an equation which yields

veYt
Now
Qv =Qdv+ Q(v- Dy

=0t Qv+ (v-D)Quv—[v-D, Qlv
= (Qu) —[v- D, QJu. (A.2)

Since we expect to remain divergence free (i.Qv = 0) this suggest to
study the equation

v=—[v- D, Qlv. (A.3)

The key point is now that the commutafor D, Q] does not lose derivatives
(although each term in the commutator does).

Claim: The map
(U,v) = Cyv := [u- D, QJv

is a bounded bilinear (and hence smooth) map fe@fi x Ck* — ck-
for k > 2.
Now (A.1) in conjunction with (A.3) yields the following initial-value

problem forn,
d? d
@Ut ZN(ﬂt, aﬂt) )

d
dt Tt

(A.4)
= Vg, No = Ida

where
N(@Q, w) = (Cwoq_lw o qfl) oq.

Since composition yields a smooth m@® x D* — CX¥*fork > 1the
claim implies that\ is smooth and by the general theory of odes in Banach
manifolds the initial value problem (A.4) has a solution for (—2, 2) if
lvollk.« is sufficiently small. Moreover the map expg +— 1, is smooth in
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a neighbourhood of 0 anB exp, = id. It suffices thus to verify that the
ne are volume preserving or, equivalently, thatemains divergence free,
provided thaty € Yy (see Lemma 6.7 for the notation). Lemma 6.7 then
follows from the implicit function theorem.

To see thab remains divergence free rewrite (A.3) as

ogv=—(w-Dv— (v-D)Qu+ Q[(v- D)v].
SinceQ? = Q this yields

oy Qu = Qo = —Q[(v- D)Qu]
and

(Qv) = Qv+ (v-D)Q Qu
= [U : D’ Q] QU.

SinceQug = 0, boundedness of the commutator and Gronwall’s inequality
imply that Qu = 0, hence diw = 0. To see this in detail one can define
the material descriptiotQu)m := Quo . Then(Qu)' = (&(Qu)m) o ni

and hence

d
a(Qv)m = ([U -D, Q] (Qu)m o 77t1> o Nt

d

d
—H(Qv)m ) g (QUm

dt

Ko

<C H(Qv)m

Ko

and(Qu)m(0) = Quo = 0.

It only remains to prove the claim that the bilinear map v) +—
[u- D, Qv is bounded fromCK* x CK* to C¥“. Note thatQ can be
written as

Q=A;vTldiv, T=dvAg'v.
The assertion now follows from repeated use of the (formal) commutator
relations
[A, B1By] = [A, B1]B: + By[A, B,
B[A B™']=—[A B]B™!
and
[u-D, DIf =u;9;VFf—V(u;d;f)
= —(Vuj)o; f,
[u- D, div] = u;9;(divi) — 9 (U;jd;divi)
—(0iuj)(9jv)).
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We leave it to the courageous reader to verify thatfor € C5° all formal
operations are justified. Note that

/(u-D)f =—/(divu)f
Q Q

and thus application ofu - D) does not preserv€y’ so that[A, T1is
not defined. Ifr denotes the projectioi — f — |_slz\ /o f, thenQ can
be written asQ = A;'VaT 'z div, and the commutatar[A, T~ 1] is
defined and has the desired properties. O



