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Abstract. Let (M, θ) be a compact CR manifold of dimension 2n + 1 with a contact
form θ, and L = (2 + 2/n)�b + R its associated CR conformal laplacien. The CR Yamabe
conjecture states that there is a contact form θ̃ on M conformal to θ which has a constant
Webster curvature. This problem is equivalent to the existence of a function u such that


Lu = u1+2/n

on M
u > 0 .

D. Jerison and J.M. Lee solved the CR Yamabe problem in the case where n ≥ 2 and (M, θ)

is not locally CR equivalent to the sphere S2n+1 of Cn . In a join work with R. Yacoub, the
CR Yamabe problem was solved for the case where (M, θ) is locally CR equivalent to the
sphere S2n+1 for all n. In the present paper, we study the case n = 1, left by D. Jerison and
J.M. Lee, which completes the resolution of the CR Yamabe conjecture for all dimensions.

1. Introduction

Let (M, θ) be a compact CR manifold of dimension 2n + 1 with a contact form θ .
Let L = (2 + 2/n)�b + R, be the conformal laplacian associated to (M, θ).

The CR Yamabe conjecture states that there is a contact form θ̃ on M conformal
to θ which has a constant scalar curvature R̃.

The CR Yamabe problem is equivalent to the existence of a positive function u
such that: 


Lu = u1+2/n

on M
u > 0 .

(1)

D. Jerison and J.M. Lee formulated the CR Yamabe problem in [1], [2] and [3] and
developed the analogy between it and the Yamabe problem in conformal Rieman-
nian geometry which had already been solved by T. Aubin [10] and R. Schoen [11].

N. Gamara: Université de Tunis, Faculté des Sciences, Département de Mathématiques,
Campus Universitaire 1060, Tunis, Tunisie

Mathematics Subject Classification (2000): 53C15, 53C21, 58E05, 58G30



106 Najoua Gamara

D. Jerison and J.M. Lee introduced the CR invariant:

λ(M) = inf
u∈S2

1(M)

{Aθ(u)/Bθ(u) = 1}, where S2
1(M)

is a Folland and Stein space,

Aθ(u) =
∫

M

(
(2 + 2/n)|du|2θ + Ru2)θ ∧ dθn (2)

the functional associated to the CR Yamabe equation, here |du|θ is the norm of
the cotangent vector du (see [1]) and Bθ(u) =

∫
M u2+2/nθ ∧ dθn . They solved the

Yamabe problem in special cases as summarized in the following result.

Theorem 3.4 [1] and Theorem A [2]: Let M be a compact, orientable, strictly
pseudoconvex integrable CR manifold of dimension 2n + 1, θ any contact form
on M.

(a) λ(M) depends of the CR structure of M, and not of the choice of θ .
(b) λ(M) ≤ λ(S2n+1), where S2n+1 ⊂ Cn+1 is the unit sphere with its standard

CR structure.
(c) If λ(M) < λ(S2n+1) and n ≥ 2, then equation (1) has a solution.
(d) If n ≥ 2 and M is not locally CR equivalent to S2n+1, then

λ(M) < λ(S2n+1), and thus the CR Yamabe problem can be solved on M.

In [7], we studied the case where (M, θ) is a CR compact manifold, locally CR
equivalent to the sphere of the same dimension and proved:

Theorem [7]: Let (M, θ) be a CR compact 2n + 1- dimensional manifold, locally
CR equivalent to the sphere S2n+1, then (1) has a solution.

In the present paper, we will be interested in the only remaining open case of the
CR Yamabe conjecture. We will prove:

Theorem 1: Let (M, θ) be a compact CR 3-dimensional manifold, not locally CR
equivalent to the sphere S3, then (1) has a solution.

The proof of Theorem 1 is based on a contradiction argument and involves
several steps.

In Sect. 2 we recall the definition of pseudohermitian normal coordinates for
an abstract CR manifold given by D. Jerison and J.M. Lee in [2]. This definition is
a refined version of the notion of normal coordinates (see [1]).

Since the asymptotic expansion of the Yamabe functional J on M

J(u) =
∫
(Lu)uθ ∧ dθ

(
∫

u4θ ∧ dθ)1/2

is expressed in terms of pseudohermitian curvature and torsion invariants. In order
to make the calculation as easy as possible, D. Jerison and J.M. Lee introduced
the pseudohemitian normal coordinates to simplify these invariants at a base point
and showed that the contact form θ can be chosen in a neigborhood of a base point
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so that, the pseudohermitian Ricci and torsion tensors and certain combinations
of their covariant derivatives, vanish at this base point (see Theorem 3.1 and
Proposition 3.12 of [2]).

In Sect. 3, we will be interested in the case n = 1, without any hypothesis of
CR conformal flatness.

We recall the extremals for the Yamabe functional J on the Heisenberg
groupH1:

φ(z, t) = 2|w+ i|−1(w = (t + i|z|2), (z, t) ∈ H1).

For ε > 0, we denote φε(z, t) = ε−1δ∗1/εφ(z, t) = 2ε|w + iε2|−1.The dilation δ∗1
ε

generalizes to all functions g(z, t) with δ∗1
ε

g(z, t) = g
( z
ε
, t
ε2

)
.

In pseudohermitian normal coordinates for some contact form θ near q ∈ M,
for |w| < 2r, we define a family of test functions fε(z, t) = ψ(w)φε(z, t)(ψ is
a cut-off function used to localize our function near the point q when ε → 0), and
a family of “almost solutions” ϕε to be the unique solutions on M of:

Lϕε = ( fε)
3.

We may assume that the Webster scalar curvature R, is strictly positive (one can
assume that, with a conformal change of contact form, R > 0 or R = 0 or R < 0.
The Yamabe problem is easily solved for the cases R = 0 and R < 0).

Let Hε = ε−1(ϕε − fε).
In Sect. 1, we show that

|Hε| ≤ c(1 + | log(ε2 + d2)|) on B(q, 2r).

Where d = d(x, q) = ρ(qx−1), x ∈ B(q, 2r) and ρ is the distance in H1.
In Sect. 2, we give bounds for the interaction

∫
ϕ3

a,εϕb,ε in terms of the corres-
ponding test functions.

In Sect. 3, we expand the functional J, near the set of potential critical points
V(p, ε′), for ε′ > 0 and p ∈ N∗. This set is defined in analogy with the Riemannian
case [6]:

V(p, ε′) =




u ∈∑+ such that there exists p concentration points
a1, ..., ap in M and p concentrations ε1, ..., εp ∈ [0, 1[

such that

∥∥∥∥u − 1

p
1
2 S

∑p
i=1 ϕai,εi

∥∥∥∥
H
< ε′, with εi < ε′

and εi j = εi
ε j

+ ε j
εi

+ d(ai,a j )
2

εiε j
≥ 1

ε′ for i �= j.




where

H = {
u ∈ S2

1(M)/

∫
|du|2θ < ∞ and

∫
u4 < ∞}

(S2
1(M) is a Folland-Stein space see [8]),

||u||H = ( ∫
M

(
4|du|2θ + Ru2)θ ∧ dθ

)1/2
,
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∑
+ = {u ∈ ∑

s.t u ≥ 0}, where
∑ = {u ∈ H s.t ||u||H = 1}; S the

Sobolev constant of H1 and d(x, y), if x and y are in a small ball of M of radius r
is || exp−1

x (y)||(|| · ||H1 is the norm in H1), with expx the CR exponential map for
the point x, d(x, y) is equal to r/2 otherwise.

We prove that for p ≥ p0 (i.e for p large enough), the energy J(
∑i=1

p αiϕai ,ε) ≤
p1/2S for ε small enough. And show that the function:

f p(ε) : Bp(M) −→ Wp

where Bp(M) = {∑p
i=1 αiδai ,

∑p
i=1 αi = 1, ai ∈ M}, with δai the Dirac mass at

ai , B0(M) = ∅, and Wp = {u ∈∑+ s.t J(u) ≤ (p + 1)1/2S}, defined by

f p(ε)(

p∑
i=1

αiδai ) =
∑p

i=1 αiϕai,ε∥∥∑p
i=1 αiϕai,ε

∥∥
H

is homologically trivial for p ≥ p0, (Proposition 8). On the other hand assuming
that equation (1) has no solution, we prove in Sect. 5 by using the result of [7]
Sect. 6, Proposition 22 that f p∗(ε) �= 0 for all p ∈ N∗, this gives a contradiction to
Proposition 8, and hence completes the proof of Theorem 1.

I am indebted to A. Bahri who suggested to me to study the CR Yamabe
conjecture. Our present paper shows how the techniques of critical points at infinity
can settle the case n = 1, without assuming that M is locally conformally flat. The
techniques apply to the other dimensions, the main observation is that the CR
Yamabe case for n = p is similar to the Riemannian one for n = 2p+2. Therefore
we are not going to provide the proof here for the case n > 1, since the sketch is
analogous to the one given for the case n = 1. Indeed, in order to compute the

CR Yamabe functional J(u) = (
∫
(Lu)u θ∧dθn)1+ 2

n∫
u2+ 2

n θ∧dθn
, we will use the same methods

given by A. Bahri and H. Brezis in [5] for the Riemannian case. We need no more
assumptions for the CR case n > 1, we have only to follow the sketch of the proof
for the case n = 1, with introducing where it is needed some required modifications
due to the dimension of the CR manifold.

The analysis of the Palais-Smale sequences for the CR Yamabe problem is
slightly different from the classical Yamabe problem, because some operations
(H1

0 -projections, for example) are not available at this point, in the CR framework.
We have shown in [7] how to overcome this difficulty and have an analysis of
the behaviour of the Palais-Smale sequences completely analogous to the classical
case. The results of [7] readily extend here and we will use them directly.

Our present result completes the resolution of the CR Yamabe conjecture for
all dimensions.

2. Pseudohermitian normal coordinates [2]

In order to give a precise asymptotic expression for the coresponding functional
to the equation (1) near a base point, D. Jerison and J.M. Lee have refined their
notion of normal coordinates defined in [1] by constructing in [2] new intrinstic
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CR normal coordinates for an abstract CR manifold. These coordinates are called
pseudohermitian normal coordinates.

The notions and results introduced and proved by D. Jerison and J.M. Lee are
parallel, with drastically different techniques, to the ones introduced by J.M. Lee
and T. Parker for the Riemannian Yamabe conjecture [4].

Let Hn = Cn ×R be the Lie group whose underlying manifold is Cn ×R (the
Heisenberg group) with coordinates (z, t). Hn is a pseudohermitian manifold with
holomorphic tangent bundleH spanned by the vector fields:

Zα = ∂

∂zα
+ i z̄α

∂

∂t
, α = 1, · · · , n ,

and standard contact form θ0 = dt + izαdz̄α − i z̄αdzα.
The characteristic vector field of θ0 is T = ∂

∂t , the admissible coframe dual
to Zα is {dzα}, and the Levi-form is given by hαβ̄ = 2δαβ̄, β̄ = β + n with
β = 1, · · · , n. The natural parabolic dilations on Hn are the CR-automorphisms
δs : Hn → H

n such that δs(z, t) = (sz, s2t) for s > 0.
The infinitesimal generator of this R+-action on Hn is the vector field:

P(z,t) = zα
∂

∂zα
+ z̄α

∂

∂z̄α
+ 2t

∂

∂t
= zαZα + z̄αZ ᾱ + 2tT.

The orbits of the dilations (except for the degenerate orbits where z = 0 or t = 0) lie
in parabolas through 0. For fixed (W, c) ∈ Hn , considering the curve γ : Hn → H

n

given by γ(s) = (sW, s2c), we have γ̇ (s) = s−1 Pγ(s) for s �= 0.
Using the fact that the pseudohermitian connection ∇ on Hn satisfies ∇Zα =

∇T = 0, we have
∇γ̇ γ̇ = 2cT . (2.1)

On a manifold M, a pseudohermitian structure yields a natural splitting TM =
H ⊕RT, H = Rel(H⊕ H̄), whereH ⊂ CTM is the holomorphic tangent bundle,
satisfying H ∩ H̄ = {0} and [H,H] ⊂ H, which determines a natural family of
parabolic dilations on any tangent space Tq M analogous to those on the Heisenberg
group, by setting δs(W + cT ) = sW + s2cT for W ∈ H, c ∈ R. The curves in Tq M
given by σW,c(s) = sW + s2cT are parabolas analogous to the curves γ .

Theorem 2.1 [2]: Let M be nondegenerate pseudohermitian manifold and q ∈ M.
For any W ∈ Hq and c ∈ R, let γ = γW,c denote the solution to the or-
dinary differential equation (2.1) on M with initial conditions γ(0) = q and
γ̇ (0) = W. We call γ the parabolic geodesic determined by W and c. Define the
parabolic exponential map ψ : Tq M → M by:

ψ(W + cT ) = γW,c(1) (2.2)

when defined. Then ψ maps a neighborhood of 0 in Tq M diffeomorphically to
a neighborhood of q in M and sends σW,c to γW,c.

D. Jerison et J.M. Lee defined on a strictly pseudo convex CR manifold a special
frame to be a holomorphic frame {Wα} ∈ H which is parallel along each curve
γW,c and for which hαβ̄ = 2δαβ̄, they called the dual admissible coframe a special
coframe. We then have
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Proposition 2.3 [2]: Any holomorphic frame at q ∈ M for which hαβ̄ = 2δαβ̄ can
be extended smoothly to a special frame {Wα} in a neighborhood of q. The dual
special coframe {θα} is parallel along each curve γW,c, and satisfies dθ = 2θα∧θᾱ.
Any two such extentions agree on their common domain.

The choice of a special frame {Wα} near q implies the existence of a dual
special coframe {θα} which determines an isomorphism:

λ : TqM −→ H
n

V �−→ λ(V ) = (θα(V ), θ(V )) = (zα, t)

and then we have a coordinate chart λoψ−1 in a neighborhood of q we call such
a chart pseudohermitian normal coordinates determined by {Wα}.

Identifying a neighborhood of q ∈ M with an open set in Hn by means of
pseudohermitian normal coordinates chart, we can consider θ and θα as one forms
on (a subset of) Hn . We then have:

Definition 1 [2]: A function or tensor ω on Hn is homogeneous of degree m with
respect to the dilations if and only if its lie derivative with respect to P satisfies
L P(ω) = mω.

If ϕ is any tensor field on Hn , we denote by ϕ(m) the part of its Taylor series
that is homogeneous of degree m in terms of the parabolic dilations. Each term
ϕ(m) satisfies L Pϕ(m) = mϕ(m), therefore if ϕ is a differential form, we have:

ϕ(m) = 1

m
(L Pϕ)(m) = 1

m
(P dϕ + d(P ϕ))(m) (2.3)

D. Jerison and J.M. Lee used the relation (2.3) to compute the homogeneous
parts of θ and θα:

Proposition 2.5 [2]: Let {Wα} be a special frame and {θα} the dual special
coframe. Then in pseudohermitian normal coordinates:

a) θ(2) = θ0; θ(3) = 0; θ(m) = 2
m (izαθᾱ − i z̄αθα)(m),m ≥ 4 ;

b) θα(1) = dzα; θα(2) = 0; θα(m) = 1
m

(
zβωβ

α + tAαβθ
β̄ − 1

2 zβ̄ Aαβθ
)
(m)

,

m ≥ 3;
c) ωβ

α
(1) = 0;ωβ

α
(m) = 1

m

(
Rβ

α
ρσ̄ (zρθσ̄ − zσ̄ θρ)+ 1

2 Aβγ,ᾱ(zγ θ − 2tθγ )

− 1
2 Aαγ,β(zγ̄ θ − 2tθγ̄ ) + i Aαγ (zβ̄θγ̄ − zγ̄ θβ̄) −i Aβγ (zγ θα − zαθγ )

)
(m)

,

m ≥ 2.

Where Aα,β are the components of the pseudohermitian torsion and ωα
β are

one forms satisfying: ∇Wα = ωα
β ⊗ Wβ , ∇ is the pseudohermitian connection

on M.
To compute the numerator and denominator of the CR Yamabe functional we

will use the approach used by D. Jerison and J.M. Lee who gave the Taylor series
of a contact form θ and a special coframe {θα} to high order at a point q ∈ M
in terms of the pseudohermitian curvature and torsion. Since the problem is CR
invariant, they had to choose the contact form θ so as to simplify the curvature
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and torsion at q as much as possible and determined how these can be simplified
by a choice of contact form and showed that a certain tensor Q constructed from
the pseudohermitian Ricci and torsion tensors can be made to vanish at q, together
with its symmetrized convariant derivatives of all orders.

Let θ be any contact form for M and let (z, t) be pseudohermitian normal
coordinates for θ contered at q.

Write Zα = ∂
∂zα + izᾱ ∂

∂t in these coordinates and -L0 = − 1
2 (ZαZ ᾱ + Z ᾱZα).

Notations: D. Jerison and J.M. Lee adopted the following index conventions in [2]

α, β, γ, ε, ρ, σ ∈ {1, · · · , n} ; a, b, c ∈ {1, · · · , 2n}; j, k, � ∈ {0, · · · , 2n}.
Let x = (t, z, z̄) with x0 = t, xα = zα, xᾱ = zᾱ and ᾱ = α + n.

Let θ0 = θ, W0 = T and Z0 = ∂
∂t

o ( j) =
{

2 if j = 0
1 for j �= 0

.

For a multi-index J = ( j1, · · · , js) denote by #J = s,

o(J ) = o( j1)+ o( j2)+ · · · + o( js), x J = x j1 · · · x js

Z J = Z js · · · Z j1 and ∂J = ∂s

∂x js ···∂x j1
.

These notations lead us to the following other definition: if zα is a coordinate,
then ©(zα) = 2 if α = 0 and ©(zα) = 1 if α > 0. Hence ©(zα) = o(α).
If Zα is on the other hand a base vector field then ©(Zα) = −2 if α = 0,
©(Zα) = −1 if α > 0. Hence ©(Zα) = −o(α). For an expression combining
coordinates and vector fields � = z j1 ....z jr Zi1 ....Zil , the order ©(�) is the sum∑r

k=1 o( jk)−∑l
k=1 o(ik).

D. Jerison and J.M. Lee use these convenient notations and show that, given two
operators�1 and�2 of degree l0, if�2 = �1+©(m),�2 reads as�1 to what is added
a combination of Zi1 ......Zil0

affected with coefficients ai1 .....il0
which are (in ρ as

function now, near 0 in a local chart) of the order of ργ with γ = m +∑l0
j=1 o(i j).

The symmetrization of an r-tensor with components BJ = B j1,··· , jr is the
symmetric tensor with components B<J> = 1

r!
∑

s∈Sr
Bσ(J ), Sr is the symmetric

group of r elements and σ(J ) = ( jσ(1), ...., jσ(r)).

Definition 2 [2]: On a pseudhermitian manifold (M, θ), let Q = Q j,kθ
jθk de-

note the real symmetric tensor whose components with respect to any admissible
coframe are:

Qαβ = Qαβ = (n + 2)i Aαβ, Qαβ̄ = Qβ̄α = Rαβ̄,

Qoα = Qα0 = Q̄oᾱ = Q̄ᾱo = 4Aαβ,
β + 2i

n + 1
R,α,

Q00 = 16

n
Im Aαβ,

βα − 4

n(n + 1)
�b R,
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where Rαβ̄ are the components of the Webster Ricci tensor, R is the Webster scalar
curvature, and the components of the pseudohermitian covariant derivatives of
a tensor are denoted by indices preceded by a comma.

We have the following key result:

Theorem 3.1 [2]: Let M be a strictly pseudo convex CR manifold . For any integer
N ≥ 2, there exists a choice of contact form θ such that all symmetrized covariant
derivatives of Q with total order ≤ N vanish at q, that is:

Q< jk,L> = 0 if o( jkL) ≤ N.

Writing θ = e2u θ̄ for some fixed contact form θ̄ , the one jet of u can be chosen
arbitrarily, once it is fixed, the Taylor series of u at q is uniquely determined by
this condition.

An application of this result is:

Proposition 3.12 [2]: Suppose θ is a contact form satisfying Theorem 3.1 [2] for
N = 4. Then the following relations hold at q:

(a) R = 0; Rαβ̄ = 0; Aαβ = 0;
(b) Aαβ,γ = 0;

(c) R,α = Aαβ,
β = Rαβ̄,

β̄ = 0;
(d) Rαβ̄,

αβ̄ = Aαβ,
αβ = �b R = R,0 = 0.

Let {Wα} be a special frame and {θα} the dual special coframe we display the
Taylor series of W j , which we write as

W j = sk
j Zk = sβj Zβ + sβ̄j Z β̄ + s0

j Z0 (2.4)

where W0 = T, Z0 = ∂
∂t and ᾱ = α + n and sum k = 0, 1, · · · , 2n. Recalling that

Wα(−1) = Zα, Wᾱ(−1) = Z ᾱ and W0(−2) = Z0, we find


sβ
α(0) = δ

β
α; sβ̄

ᾱ(0) = δ
β̄
ᾱ; s0

α(1) = sβ̄
α(0) = 0

sβᾱ(0) = s0
ᾱ(1) = 0; sβ0(−1) = sβ̄0(−1) = 0, s0

0(0) = 1.
(2.5)

If we apply θ� to (2.4) and consider terms of homogeneity m + o(�) − o( j)for
m > 0, we obtain:

s�j(m+o(�)−o( j)) = −
∑
i≥2

sk
j(m+o(k)−o( j)−1)θ

�
(o(�)+i)(Zk). (2.6)

As we will be interested in the case n = 1, let (W1, W1̄, W0) be a special frame

and (θ(1), θ
¯(1), θ) the dual special coframe we can write (see (2.4))

W1 = s1
1 Z1 + s1̄

1 Z 1̄ + s0
1 Z0

W1̄ = s1
1̄

Z1 + s1̄
1̄

Z 1̄ + s0
1̄

Z0.
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By using (2.5) and (2.6), Proposition 2.5 gives the following Taylor series of
W1 and W1̄:

W1 = Z + a(4)Z + b(4)Z̄ + c(5)Z0

W1̄ = Z̄ + a′(4)Z̄ + b′(4)Z + c′(5)Z0

where, a(4), b(4), a′(4) and b′(4) respectively c(5) and c′(5) have Taylor coeffi-
cients of order 4 and higher, respectively of order 5 and higher. Since Z and Z̄
count as order −1 we have: {

W1 = Z +©(3)
W1̄ = Z̄ +©(3)

. (2.7)

3. The case of a pseudohermitian manifold of dimension 3 not locally CR
equivalent to the sphere S3

The functions φ(z, t) = 2|w+ i|−1(w = t + i|z|2) are the extemals for the Yamabe
functional J on H1 ([3])

J(u) =
∫ (

4|du|2θ + Ru2
)
θ ∧ dθ

(
∫

M u4θ ∧ dθ)1/2
(3.1)

For each ε > 0, let us denote φε = ε−1δ∗1/εφ = 2ε|w+ iε2|−1. It is also an extremal

for J normalized so that
∫
H1 |φε|4θ ∧ dθ is a constant independent of ε.

Suppose that (z, t) are pseudohermitian normal coordinates for some contact
form θ near q ∈ M, defined for |w| < 2r for some r > 0. Define a family of test
functions:

fε(z, t) = ψ(w)φε(z, t) (3.2)

where ψ ∈ C∞
0 (C) is supported in the set {|w| < 2r} and ψ(w) = 1 for |w| < r

(a cut–off function), (Observe that fε has support near zero). Therefore, Z j fε and
higher order derivatives make sence.). Define a family of “almost” solutions ϕε to
be the unique solutions on M of:

Lϕε = ( fε)
3 (3.3)

let

Hε = ε−1(ϕε − fε) (3.4)

We start the proof of Theorem 1 with the following estimates:

Lemma 1: There exists c(r) independent of ε such that∣∣Z j fε
∣∣ (x) ≤ c(r)φε(x)ε

−o( j) and∣∣Z j Zk fε
∣∣ (x) ≤ c(r)φε(x)ε

−o( j)−o(k).
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Proof: We need to prove these inequalities on φε. We have φε = 1
ε
δ∗1
ε

φ. Hence

Z jφε = 1
ε
ε−o( j)δ∗1

ε

(Z jφ). It is very easy to check that
∣∣Z jφ

∣∣ (x) ≤ c φ(x).

Therefore,
∣∣Z jφε

∣∣ ≤ c ε−o( j)−1 |φε| ε ≤ c ε−o( j) |φε| . The second order deriva-
tives follow the same pattern.

In order to prove the existence of a solution for equation (1), we will use the
same methods given par A. Bahri and H. Brezis in [5]. The main observation is that
the CR case for n = 1 is similar to the Riemannian one for n = 4 given in Sect. 5
of [5]. We will therefore follow the line of proof of [5] and will mainly indicate the
modifications to Sect. 1’, 2’ and 3’ of [5].

The new sections are Sects. 1, 2, 3 and 4.

Section 1

Proposition 1: Hε has been defined in (3.4).
There exists a positive constant C such that for any x ∈ M and ε ≤ 1

|Hε(x)| ≤ C(1 + | log(ε2 + d2)|) if x ∈ B(q, 2r)

where d = d(x, q) = ρ(qx−1).

Proof: First we will estimate L Hε:

L Hε = (4�b + R)ε−1(ϕε − fε) = ε−1(4�b + R)ϕε − ε−1L fε.

Let us denote by (W, W̄ , T ) the special frame for q. For a real function f we have:

�b f = −( f,α
α + f,β̄

β̄
) = −1

2
(WW̄ f + W̄ W f ) = −1

2
( fαᾱ + fᾱα)

f,αα = hαβ̄ fαβ̄ , where hαβ̄ = Lθ(Wα, Wβ̄), we have hαβ̄ = 2δαβ̄, thus hαβ̄ = 1
2δ

αβ̄.
If we write the Taylor serie of the Webster scalar curvature, we have R =

R(0)+R(1)+ R(2)+........., R(0) = R(q) = 0 by Proposition 3.12 [2] . Identity (1.3)
and Propositions 2.5 and 3.12 of [2] yield that R(1) = 0. Thus R = ©(2), where
©(2) is a homogenous polynomial in ρ of degree at least 2. Since W = Z +©(3),
W̄ = Z̄+©(3) and R = ©(2), we have the following expression for the conformal
laplacian on M

L = 4�b + R = −2(Z Z̄ + Z̄ Z)+©(2),

where we are using the index convention of D. Jerison and J.M. Lee this implies,
using Lemma 1, that:

L Hε = ε−1[( fε)
3 − (−2(Z Z̄ + Z̄ Z)+©(2)) fε].

On B(0, r) ψ ≡ 1 and fε = φε,−2(Z Z̄ + Z̄ Z)φε = (φε)
3

Thus, |L Hε| ≤ ε−1O(ρ2)| fε| ≤ inf(1, c(r)
ρ2+ε2 ).

On c B(0, 2r), ψ = 0 thus fε = 0 L Hε = 0.
On B(0, 2r)− B(0, r),�b fε = �bψφε = (�bψ)φε + ψ(�bφε)+ Lθ∗(dψ, dφε)



The CR Yamabe conjecture the case n = 1 115

The leading term is ψ�bφε since φε is small. Hence,

|ψ�bφε| ≤ C(r)|�bφε| ≤ C(r)(φε)
3 ≤ C(r)ε3 ≤ C(r)ε

we have 


|�b fε| ≤ C(r)ε , |dφε| ≤ Cε

and
( fε)3 ≤ C′(r)ε.

(3.5)

Thus, |L Hε| ≤ C(r) and we derive:{
|L Hε| ≤ inf

(
1, C(r)

ρ2+ε2

)
on B(0, 2r)

|L Hε| = 0 on c B(0, 2r)
. (3.6)

We introduce the function W defined on M by:

LW(x) =
{

1
ρ2(q−1x)

if x ∈ B(q, r)

0 otherwise
. (3.7)

Using the maximum principle, we deduce the existence of a positive constant c′
such that:

|Hε(x)| ≤ c′W(x). (3.8)

We have the following estimates on W{|W | ≤ c(1 + | log d|) on B(q, 2r)
|W | ≤ c on c B(q, r)

. (3.9)

Indeed:
W satisfies (3.7) then W(z) ≤ A

∫ 1
ρ2(x)

1
ρ2((q−1z)−1x)

ρ3dρ + B where A, B are
positive constants.

We will divide the domain of integration in four parts:

(1)



ρ((q−1z)−1x) ≥ C1ρ(x)

and
ρ(x) ≥ C2ρ(q−1z)

(2)



ρ((q−1z)−1x) ≥ C1ρ(x)

and
ρ(x) ≤ C2ρ(q−1z)

(3)



ρ((q−1z)−1x) ≤ C1ρ(x)

and
ρ(x) ≤ C2ρ(q−1z)

(4)



ρ((q−1z)−1x) ≤ C1ρ(x)

and
ρ(x) ≥ C2ρ(q−1z)

where C1 and C2 are positive constants. We have:

(1)
∫

θ0 ∧ dθ0

ρ2(q−1z)ρ2((q−1z)−1x)
= c

∫
ρ(x)dρ(x)

ρ2((q−1z)−1x)
≤ 1

C2
1

∫
ρ≥C2ρ(q−1z)

dρ

ρ

∼ C logρ(q−1z).

In the second part (2) of the domain, we have: ρ((q−1z)−1x) ≥ C3ρ(q−1z) for
suitably constants C1,C2 and C3
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(2)
∫

θ0 ∧ dθ0

ρ2(x)ρ2((q−1z)−1x)
= C

C2
1

∫
ρ≥C3ρ(q−1z)

ρ(x)dρ(x)

ρ2((q−1z)−1x)

∼ C logρ(q−1z).

We observe now that, writing θ0 ∧ dθ0 = ρ3((q−1z)−1x)dρ((q−1z)−1x)dξ ,
where dξ is the area element on the ρ-unit sphere in H1.

W = A
∫

ρ((q−1z)−1x)dρ((q−1z)−1x)

ρ2(x)
+ B.

This shows that (1) and (2) are equivalent to (3) and (4).
(3.9) is thereby established.
Observe now that λ = ε−1 is large. We argue considering two cases:

First case: d(y, q) > ε(λρ > 1). Using (3.9), we have:

|Hε(y)| ≤ C(1 + log |d|) ≤ c(1 + | log(ε2 + d2)|)
Second case: d(y, q) < ε(λρ < 1).
We introduce Bε = {y ∈ M such that d(q, y) < ε < 1}.

Then

{
L Hε ≤ f on Bε

Hε ≤ g on ∂Bε
where




f ≤ Cε−1 fε
and

|g(y)| ≤ C(1 + | log d|) = C(1 + logλ)
.

We have then to estimate the function σ which satisfies:

Lσ = fχBε

We have:

σ(x) =
∫

Bε

Gq(x, y) fχBε(y)dy

where Gq(x, y) is the Green function for the conformal Laplacian L = 4�b +
R on q. Gq is positive and satisfy: Gq(z, t) = O(ρ−2(z, t)). A finer result is
established in the Appendix (Lemmas A1 and A2).

Let H̄ be the solution of

(∗)
{

L H̄ = f on Bε

H̄ = g on ∂Bε

we have {
L(H̄ − σ) = 0 on Bε and

H̄ − σ = h on ∂Bε

we deduce from the maximum principle that:

||H̄ − σ ||L∞(Bε) ≤ C||H̄ − σ ||L∞(∂Bε) = C||h||L∞(∂Bε)

≤ C sup
∂Bε

|H̄ − σ |.
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Thus:

||H̄||L∞(Bε) ≤ C sup
∂Bε

|H̄ − σ | + |σ |L∞(Bε)

≤ C sup
∂Bε

|H̄| + |σ |L∞(Bε)

and finally:

|Hε|L∞(Bε) ≤ |H̄|L∞(Bε) ≤ C sup
∂Bε

|H̄| + |σ |L∞(Bε).

Observe now that

Gq(x, y) = O(ρ−2)

and

σ(x) =
∫

Bε

Gq(x, y) fχBε(y)dy.

Hence

σ(x) =
∫
ρ<ε

O(ρ−2)
C(r)

(1 + ρ2)
ρ3dρ

and

||σ ||L∞(Bε) ≤ C(r)(1 + log(1 + ρ2)) ≤ C(r)(1 + log(1 + ε2)).

Hence

||Hε||L∞(Bε) ≤ C sup
∂Bε

|H̄| + C(r)(1 + log(1 + ε2))

||Hε||L∞(Bε) ≤ C′(r)(1 + | log(ε2 + d2)|).
Proposition 1 follows.

Section 2

Let η > 0 be given, let f̃ε = fε + ηε . (3.10)

Lemma 2: ϕε has been defined in (3.3)

i)
∫ (

4 |dϕε|2θ + Rϕ2
ε

)
θ ∧ dθ =

∫
|φ|4 θ0 ∧ dθ0 + O

(
ε2 log

1

ε

)
∫

|ϕε|4 θ ∧ dθ =
∫

|φ|4 θ0 ∧ dθ0 + O

(
ε2 log

1

ε

)
.

ii) There exists a positive constant C independant of η such that:

ϕε ≥ Cε.



118 Najoua Gamara

Proof: i)

∫ (
4 |dϕε|2θ + Rϕ2

ε

)
θ ∧ dθ =

∫
Lϕεϕεθ ∧ dθ =

∫
f 3
ε ϕεθ ∧ dθ

=
∫

f 4
ε θ ∧ dθ + O(ε

∫
f 3
ε Hεθ ∧ dθ).

Observe also that∫
|ϕε|4 θ ∧ dθ =

∫
f 4
ε θ ∧ dθ + O

(
ε

∫
ϕ3
ε Hεθ ∧ dθ

)
.

We need therefore only to estimate
∫

f 4
ε θ ∧ dθ, ε

∫
ϕ3
ε Hεθ ∧ dθ and

ε

∫
f 3
ε Hεθ ∧ dθ.

Since we have, (θ ∧ dθ)(4) = θ0 ∧ dθ0, and (θ ∧ dθ)(5) = 0, Proposition 2.5 of
[2] implies that in pseudohermitian normal coordinates (z, t) we have:

θ ∧ dθ = (1 + O(ρ2))θ0 ∧ dθ0

where ρ(z, t) = (|z|4 + t2)1/2 and O(ρ2) is a polynomial in ρ in which the terms
are of order at least 2, and the coefficients are expressions of pseudohermitian
curvature and torsion and their covariant derivatives. Then:∫ ∣∣ f 4

ε

∣∣θ ∧ dθ =
∫

B(0,2r)
|ψ|4|φε|4(1 + O(ρ2))θ0 ∧ dθ0

=
∫

B(0,r)
|φε|4θ0 ∧ dθ0 + O(

∫ r

0
|φε|4ρ5dρ)

+
∫

B(0,2r)−B(0,r)
|ψ|4|φε|4θ0 ∧ dθ0

+ O(

∫
B(0,2r)−B(0,r)

|ψ|4|φε|4ρ5dρ).

We have:

O(

∫ r

0
|φε|4dρ) = O(

∫ r/ε

0
|φ|4 ε2ρ5dρ) = O(

∫ r/ε

0
(1+ρ)−8ε2ρ5dρ) = O(ε2)

O(

∫
B(0,2r)−B(0,r)

|ψ|4|φε|4ρ5dρ) = (O
∫ 2r/ε

r/ε
(1 + ρ)−8ε2ρ2ρ3dρ) = O(ε2)

O(

∫
B(0,2r)−B(0,r)

|ψ|4|φε|4θ0 ∧ dθ0 = O(

∫ 2r/ε

r/ε
(1 + ρ)−8ρ3dρ) = O(ε4)
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and finally: ∫
B(0,r)

|φε|4θ0 ∧ dθ0 =
∫
H1

|φε|4θ0 ∧ dθ0

− O(

∫ +∞

r
|φε|4)θ0 ∧ dθ0

O(

∫ +∞

r/ε
|φ|4θ0 ∧ dθ0) = O(

∫ +∞

r/ε
(1 + ρ)−8ρ3dρ) = O(ε4).

We estimate now, for example:

ε

∫
ϕ3
ε Hεθ ∧ dθ ≤ Cε

∫
ϕ3
ε(1 + | log(ε2 + d2)|)θ ∧ dθ

≤ Cε log
1

ε

∫
ϕ3
εθ ∧ dθ.

Clearly, after the estimates on Hε, we can derive that
∫

ϕ3
εθ ∧ dθ behaves

like
∫

f 3
ε θ ∧ dθ + O(ε) which behaves like

∫
φ3
εθ0 ∧ dθ0 + O(ε) = O(ε). Thus,

ε

∫
ϕ3
ε Hεθ ∧ dθ = O(ε2 log

1

ε
).

ii) We have:

Lϕε = f 3
ε

and Gq ≥ γ > 0 where Gq is the Green function associated to the conformal
Laplacian L = 4�b + R on q (for a proof one can see the Appendix Lemma A.1)
thus

ϕε ≥ γ

∫
M

f 3
ε θ ∧ dθ ≥ C′ γε

2
> 0.

Lemma 3: There exist two positive constants α and β depending on η such that,
for q ∈ M and ε > 0 small enough, we have:

α f̃ε ≤ ϕε ≤ β f̃ε.

Proof:

ϕε = fε + εHε = f̃ε + εH̃ε

= f̃ε + εO(inf(C,C′| log(ε2 + d2)|))

If ε2 + d2 is small (ε2 + d2 < r0, 0 < r0 < r), ϕε ≥ f̃ε
2 .

Otherwise:
ε2 + d2 ≥ r0.

By Lemma 2, we know that: ϕε ≥ C γε
2 and f̃ε ≤ C′ε. Thus ϕε ≥ Cγ

2C′ f̃ε.



120 Najoua Gamara

On the other hand, we can write, εH̃ < C1
ε

ε2+d2 and derive the existence of β such

that ϕε ≤ β f̃ε. q.e.d.

Notations: For every a ∈ M, indexing the function φ,w,ψ, φε, fε, f̃ε, Hε and H̃ε

by a means that we consider the pseudohermitian normal coordinates (z, t) near
the base point a.

Theorem 2: For every η > 0 there exists a constant C(η), such that for every a
and b in M, for every 0 < ε ≤ 1

2 we have:∫
ϕ3

a,εϕb,ε ≥ (1 − C(η)ε1/3)

∫
( f̃a,ε)

3ϕb,ε.

Proof of Theorem 2: We have:∫
(Lϕa,ε)ϕb,εθ ∧ dθ =

∫
( fa,ε)

3ϕb,εθ ∧ dθ ≤
∫

( f̃a,ε)
3ϕb,εθ ∧ dθ,

and f̃a,ε = ϕa,ε − εH̃a,ε (see (3.4), (3.10)).
Then:

( f̃a,ε)
3 ≤ ϕ3

a,ε + C
(
ϕ2

a,εε|H̃a,ε| + (ε|H̃a,ε|)3).
On the other hand,

ϕ2
a,εε|H̃ε| ≤ c( f̃a,ε)

2ε|H̃a,ε|
and

ε|H̃a,ε| ≤ C f̃a,ε which implies (ε|H̃a,ε|)2 ≤ C( f̃a,ε)
2

and

(ε|H̃a,ε|)3 ≤ C( f̃a,ε)
2ε|H̃a,ε|.

This yields:

( f̃a,ε)
3 ≤ ϕ3

a,ε + C f̃
2

a,εε|H̃a,ε|
and ∫

(Lϕa,ε)ϕb,ε ≤
∫

ϕ3
a,εϕb,ε + C(η)ε

∫
( f̃a,ε)

2 f̃b,ε|H̃a,ε|θ ∧ dθ

Let

R = ε

∫
( f̃a,ε)

2 f̃b,ε|H̃a,ε|θ ∧ dθ. (3.11)

We break R in two pieces: on one hand, the contribution for d(x, a) < 2r. On
the other hand, the contribution when d(x, a) ≥ 2r. This second term can be
upperbounded as follows:

On the complement of B(a, 2r), |H̃a,ε| is bounded and f̃a,ε is bounded by ε.
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Therefore:

ε

∫
ρ≥2r

f̃
2

a,ε f̃b,ε|H̃a,ε|θ ∧ dθ ≤ Cε3
∫
ρ≥2r

f̃b,εθ ∧ dθ

≤ Cε3
∫

M
f̃b,ε ≤ Cε4.

Indeed,∫
M

f̃b,ε =
∫

c B(b,2r)
f̃b,ε +

∫
B(b,2r)

f̃b,ε ≤ cε+
∫
ρ≥ 2r

ε

ε5

ε2

ρ3dρ

ρ2 ≤ cε,

we also know that ∫
f 3
a,εϕb,ε ≥ cε

∫
f 3
a,ε ≥ cε2.

Hence

ε

∫
ρ≥2r

f̃
2

a,ε f̃b,ε|H̃a,ε|θ ∧ dθ ≤ ε2
∫

M
f 3
a,εϕb,εθ ∧ dθ.

We now study the first term:
We have:

c1
ε

|wa + iε2| ≤ f̃a,ε ≤ c2
ε

|wa + iε2|
where c1, c2 > 0. Thus, on B(a, 2r), we can replace f̃a,ε by φa,ε and H̃a,ε by

(1 + log |φa,ε
ε

|)c(η). We know that: f̃b,ε ≤ ψbϕb,ε + cε.
Thus,

R ≤ cε2
∫

f 3
a,εϕb,εθ ∧ dθ + cε2

∫
B(a,2r)

φ2
a,ε(1 + log |ε−1φa,ε|)

+ cε
∫

B(a,2r)∩B(b,2r)
φ2

a,εφb,ε inf(log(1 + |ε−1φa,ε|, 1)

Let us denote by (I) the second integral and by (II) the third integral in the right
hand side:

(I) ≤ cε2ε2
∫ r/ε

0
φ2

a

(
1 + log

1

ε2 + log |φa|
)
ρ3dρ

≤ cε4 log ε−1
∫ r/ε

0
φ2

aρ
3dρ = cε4 log ε−1.

Hence

(I) ≤ c(ε2 log ε−1)

∫
M

f̃
3

a,εϕb,εθ ∧ dθ.

We are left with (II).
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On the domain A = {x / φa,ε(x) ≥ ε2/3, d(x, a) < 2r and d(x, b) < 2r} we
have:

(II) ≤ ε

ε2/3

∫
H1

φ3
a,ε φb,ε θ0 ∧ dθ0 = ε1/3

∫
H1

φ3
a,ε φb,ε θ0 ∧ dθ0.

On cA, we have:

ε

∫
cA
φ2

a,εφb,ε ≤ εε4/3
∫

cA
φb,εθ0 ∧ dθ0 ≤ cε2 × ε4/3

≤ cε4/3
∫

f̃
3

a,εϕb,εθ ∧ dθ.

Clearly, ∫
ϕ3

a,εϕb,εθ ∧ dθ ≥ cε2.

If d(a, b) < r/2, we also can see that:∫
ϕ3

a,εϕb,ε ≥ 1

2

∫
H1

φ3
a,εφb,ε

since ∫
d(a,x)≥r

φ3
a,ε φb,ε ≤ cε4 ≤ c′ε2

∫
ϕ3

a,εϕb,ε.

Indeed, if d(a, b) ≤ r/2, r small,∫
ϕ3

a,εϕb,εθ ∧ dθ ≥ c1

∫
d(a,x)≤r

φ3
a,εφb,εθ0 ∧ dθ0.

If, on the other hand, d(a, b) ≥ r/2, then∫
H1

φ3
a,εφb,εθ0 ∧ dθ0 ≤

∫
d(a,x)≤r/4

φ3
a,εφb,ε +

∫
d(b,x)≤r/4

φ3
a,εφb,ε

≤ cε
∫

φ3
a,ε + cε3

∫
φb,ε

≤ cε2 ≤ c
∫

ϕ3
a,εϕb,ε.

Therefore we see that:∫
H1

φ3
a,εφb,εθ0 ∧ dθ0 ≤ c

∫
ϕ3

a,εϕb,εθ ∧ dθ.

Hence

R ≤ cε
∫

f̃
3

a,εϕb,εθ ∧ dθ + cε1/3
∫

ϕ3
a,εϕb,εθ ∧ dθ.

Thus

R ≤ c′ε1/3
∫

f̃
3

a,εϕb,εθ ∧ dθ.

The proof of Theorem 2 is thereby complete.
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Section 3

Expansion of the functional at infinity

G.B. Folland and E.M. Stein have introduced functional spaces for CR manifolds
analogous to Sobolev spaces for Riemannian manifolds, Sp

k (M) called Folland and
Stein spaces [8].

Let H = {
u ∈ S2

1(M) s.t
∫

M
|du|2θθ ∧ dθ < ∞ ,

∫
u4θ ∧ dθ < ∞}

.

∑ = {u ∈ H , s.t ||u||H = 1} where ||u||H = ( ∫
M

(
4|du|2θ + Ru2)θ ∧ dθ

)1/2

and
∑

+ = {u ∈∑ s.t u ≥ 0}.
For u ∈ H , we define the following functional:

J(u) =

∫
Luuθ ∧ dθ

(

∫
u4θ ∧ dθ)1/2

= N

D

let

I = 1

p

∑
i �= j

∫
ϕ3

ai
ϕa j θ ∧ dθ (3.12)

and S the Sobolev constant for H1 defined by

S =

∫
H1

4 |Zφ|2 θ0 ∧ dθ0

( ∫
H1

φ4θ0 ∧ dθ0
)1/2

we then have:

Proposition 2: For every p, and α1, · · · , αp, for every ε ≤ 1
p100

J(
p∑

i=1

αiϕai,ε ) ≤ (p + 1)1/2S

Remark: The aim of Sect. 3 is to improve the estimate provided by Proposition 2
so that, under some condition on p, we will derive that J(

∑p
i=1 αiϕai ,ε) is in fact

upperbounded by p1/2S.

Proof of Proposition 2: Let

N =
∫

M

(∑
αi f 3

ai ,ε

)× (
∑

α jϕa j ,ε) =
∫

M

(∑
αiϕ

3
ai,ε

)
(
∑

α jϕa j ,ε)

+
∫

M

∑
i

αi
(

f 3
ai ,ε

− ϕ3
ai ,ε

)
(
∑

j

α jϕa j,ε)

= ( ∫
M

(∑
αiϕ

3
ai,ε

)
(
∑

α jϕa j ,ε)
)
(1 + R)
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where R satisfies:

|R| ≤

∫
M

(∑
αi | f 3

ai,ε
− ϕ3

ai,ε
|)(∑

j

α jϕa j,ε)

∫
M

(∑
α2

i ϕ
4
ai,ε

)+ ∫
M

(∑
i �= j

αiα jϕ
3
ai,ε

ϕa j ,ε

) . (3.13)

Since we have ∣∣ f 3
ai ,ε

− ϕ3
ai ,ε

∣∣ ≤ ∣∣ f̃
3

ai,ε
− ϕ3

ai,ε

∣∣ ≤ ∣∣ f̃aiε
− ϕ3

ai ,ε

∣∣ f̃
2

ai,ε

≤ f̃
2

ai,ε
|H̃ai,ε| × ε .

Thus

|R| ≤
ε

∫
M

(∑
αi f̃

2
ai ,ε

|H̃ai,ε|
)∑

i
α jϕa j,ε

∑
α2

i

( ∫
M
ϕ4

ai,ε
θ ∧ dθ

)+∑
i �= j

αiα j

∫
ϕ3

ai ,ε
ϕa j,ε∑

α2
i

We know that:∫
ϕ4

ai,ε
= S2 + O(ε4)( and S > 1) and ϕa j,ε ≤ c f̃a j ,ε

.

Thus:

|R| ≤ ε

c
∫

M

(∑
αi f̃

2
ai ,ε

|H̃ai,ε|
)
(
∑

j
α j f̃ai,ε

)∑
α2

i (1 + I1)

where

I1 =
∑

i �= j αiα j

∫
ϕ3

ai,ε
ϕa j ,εθ ∧ dθ∑p

i=1 α
2
i

. (3.14)

We derive from Theorem 2 that

ε
∑
i �= j

αiα j

∫
M

f̃
2

ai,ε
f̃a j ,ε

|H̃ai,ε| ≤ C
∑
i �= j

αiα jε
1/3
∫

M
f̃

3
ai,ε

ϕa j ,ε

≤ C′ε1/3
∑
i �= j

αiα j

∫
M
ϕ3

ai,ε
ϕa j ,ε

≤ I1 O(ε1/3)(
∑

α2
i )

and

ε

∫
M

f̃
3

ai,ε
|H̃ai,ε| ≤ Cε

∫
M

f̃
3

ai,ε
= O(ε2).
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We thus have:

N ≤ (∑
i

αi

∫
ϕ3

ai,ε

)
(
∑

α j

∫
M
ϕa j ,ε) ·

·
(

1 + O(ε2)
(∑

α2
i

)+ I1 O(ε1/3)× (∑
α2

i

)
(1 + I1)

∑
α2

i

)

since O(ε1/3) upperbounds O(ε2) we have(
1 + O(ε2)

1 + I1
+ I1 O(ε1/3)

1 + I1

)
≤ 1 + O(ε1/3)

Thus

J(
p∑

i=1

αiϕai,ε ) ≤
∫

M

(∑p
i=1 αiϕ

3
ai,ε

)(∑p
j=1 α jϕa j,ε

)
θ ∧ dθ∥∥∑p

i=1 αiϕai,ε

∥∥2
4

(1 + O(ε1/3)).

On the other hand, we have the following result:

Lemma A.3 Appendix 2 [5]:

∫
M

(∑
αiϕ

3
ai,ε

)
(
∑

α jϕa j ,ε)θ ∧ dθ∥∥∑
i αiϕai,ε

∥∥2
4

≤
(∑

i

∫
αiϕai,ε∑
αkϕak,ε

ϕ4
ai,ε

)1/2

.

Thus ∫
M

∑
αiϕai,ε∑
α jϕai ,ε

ϕ4
ai,ε

≤
∑

i

∫
ϕ4

ai,ε
= p(S2 + O(ε4)).

Hence

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S(1 + O(ε1/3)).

The condition on ε implies the existence of a constant η such that

O(ε1/3) ≤ 1

10p1/2 .

The result follows.

We now have:

Proposition 3: There exists ν0 ∈ (0, 1), γ0 > 0, β > 0 such that for every p and
for every αi > 0 such that αi

α j
∈ (1 − ν0, 1 + ν0), for every 0 < ε ≤ 1, for every

a1, · · · , ap ∈ M satisfying:

I = 1

p

∑
i �= j

∫
ϕ3

ai,ε
ϕa j ,εθ ∧ dθ < β
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we have:

J(
p∑

i=1

αiϕai,ε) ≤
∑

α2
i(∑

α4
i

)1/2 S

[
(1 + O(ε2 log ε−1)− γ0

I

S2 (1 + O(ε1/3))

]
.

Proof of Proposition 3: Let us denote N the numerator of J(
∑p

i=1 αiϕai,ε). It is
equal to

N =
∫ (∑

αi f 3
ai ,ε

)
(
∑

α jϕa j,ε)θ ∧ dθ

=
∑

α2
i

∫
f 3
ai ,ε

ϕai,ε +
∑
i �= j

αiα j

∫
f 3
ai ,ε

ϕa j ,ε.

Using the estimates of Sect. 2, we give the following estimate, for the second term
of the right hand side

∑
i �= j

αiα j

∫
f 3
ai ,ε

ϕa j,ε ≤
∑
i �= j

αiα j

∫
f̃

3
ai ,ε

ϕa j ,ε

≤
∑
i �= j

αiα j(1 − c(η)ε1/3)−1
∫

ϕ3
ai ,ε

ϕa j ,ε.

We also know that:∫
f 3
ai ,ε

ϕai,ε =
∫

Lϕai ,εϕai,ε = S2 + O(ε2 log ε−1).

Therefore

N ≤
∑

α2
i (S

2 + O(ε2 log ε−1))

[
1 +

∑
i �= j αiα j (1 − c(η)ε1/3)−1

∫
ϕ3

ai,ε
ϕa j ,ε

(1 + O(ε2 log ε−1))S2
(∑

α2
i

)
]

.

Since αi
α j

∈ (1 − ν0, 1 + ν0), we have:

αi∑
α2

i

≤ 1 + ν0√
p

. (3.15)

Thus

N ≤
p∑

i=1

α2
i S2(1 + O(ε2 log ε−1))

[
1 + 1 + O(ε1/3)

S2 (1 + ν0)
2 I

]

we now turn to estimate the denominator:

D = ( ∫
M
(
∑

αiϕai,ε)
4θ ∧ dθ

)1/2
.

We will use the:
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Lemma A.2 Appendix 2 [5]: Let s > 2 be given, there exists γ > 1 such that for
any r1, · · · , rp > 0, we have:

(

p∑
i=1

ri)
s ≥

p∑
i=1

(ri)
s + γ

s

2

∑
i �= j

(ri)
s−1r j .

Using Lemma A.2 [5], we have: (s = 4)

D2 ≥
∫ ∑

α4
i ϕ

4
ai,ε

θ ∧ dθ + 2γ
∑
i �= j

∫
α3

i α jϕ
3
ai,ε

θ ∧ dθ.

Using again the estimate: ∫
M
ϕ4

ai ,ε
θ ∧ dθ = S2 + O(ε4)

we have:

D2 ≥
∑

i

α4
i (S

2 + O(ε4))

(
1 + 2γ

(1 − ν0)
4

S2 + 0(ε4)

∑
i �= j

∫
ϕ3

ai ,ε
ϕa j ,εθ ∧ dθ

)
.

Therefore:

D ≥ (∑
i

α4
i

)1/2
S(1 + O(ε2))

(
1 + 2γ(1 − ν0)

4 I

S2(1 + O(ε4))

)1/2

and

J(
p∑

i=1

αiϕai,ε) ≤
∑p

i=1 α
2
i S2(1 + O(ε2 log ε−1))

[
1 + (1 + O(ε1/3))(1 + ν0)

2 I
S2

]
(∑p

i=1 α
4
i

)1/2
S(1 + O(ε2))

[
1 + 2γ(1 − ν0)4(1 + O(ε4)) I

S2

]1/2 .

Thus

J(
p∑

i=1

αiϕai ,ε) ≤
∑p

i=1 α
2
i S(1 + O(ε2 log ε−1)

[
1 + (1 + O(ε1/3))(1 + ν0)

2 I
S2

]
(∑

α4
i

)1/2[1 + 2γ(1 − ν0)4(1 + O(ε1/3)) I
S2

]1/2 .

If u is a small number, we have:

1

(1 + u)1/2 ≤ 1 − 1

2
u.

Therefore, if I ≤ β small enough, we have:

J(
∑

αiϕai ,ε) ≤
∑

α2
i(∑

α4
i

)1/2 S(1 + O(ε2 log ε−1))

(
1 − (1 + O(ε1/3))γ0

I

S2

)

where:

γ0 = γ(1 − ν0)
4 − (1 + ν0)

2.

Since γ is larger than 1, we choose ν0 small enough so that:

γ0 > 0.
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We now have:

Proposition 4: For every ν0 ∈ (0, 1) there exists γ ′
1 > 0 such that, for every p and

for every p-tuple of αi ’s > 0 , i ∈ {1, 2, ...., p} such that αi
α j

∈ (1 − ν0, 1 + ν0) for

every (i, j), for every ε ≤ 1, for every a1, · · · , ap ∈ M, we have:

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S

(
1 − γ ′

1
I

p
(1 + O(ε1/3))

)
(1 + O(ε2 log ε−1)).

Proof: We start the proof as for Proposition 3, we have:

J(
p∑

i=1

αiϕai,ε)

≤
∑

α2
i(∑

α4
i

) 1
2

S(1 + O(ε2 log ε−1))

[
1 + (1 + O(ε1/3))(1 + ν0)

2 I
S2

]
[
1 + (1 + O(ε1/3))2γ(1 − ν0)4 I

S2

]1/2

we have two cases:
1. If I < β small enough, then by Proposition 3, we have:

J(
p∑

i=1

αiϕai,ε) ≤
∑

α2
i(∑

α4
i

)1/2 S(1 + O(ε2 log ε−1))
(
1 − γ ′

1 I(1 + O(ε1/3))
)

≤
∑

α2
i(∑

α4
i

)1/2 S(1 + O(ε2 log ε−1))

(
1 − γ ′

1
I

p
(1 + O(ε1/3))

)
.

We note that γ(1 − ν0)
4 ≥ (1 + ν0)

2 + θ1, where θ1 > 0 is a fixed constant if ν0 is
small enough (γ > 1).

2. If I ≥ β. Then, expanding, we have:

J(
p∑

i=1

αiϕai,ε) ≤
∑

α2
i(∑

α4
i

)1/2 S(1 + O(ε2 log ε−1))(1 − c(β)).

We would like to have:

γ ′
1

I

p
< c(β).

Observe that I
p ≤ C, where C is independent of p. Thus, we have to choose γ ′

1

such that γ ′
1 ≤ c(β)

C .

Proposition 5: Let ν0 ∈ (0, 1) be given. There exists a constant C′(ν0) such that,
for every p ∈ N∗, if ε ≤ C′(ν0)

p100 , then, for every p-tuple of αi ’s > 0, such that
αi
α j

∈ (1 − ν0, 1 + ν0) for every (i, j), and
αi0
α j0

/∈ (1 − ν0
2 , 1 + ν0

2 ) for a couple of

indices (i0, j0), we have:

J(
p∑

j=1

αiϕai,ε) ≤ p1/2S.
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Remark: The existence of two indices i0, j0 such that
αi0
α j0

/∈ (1− ν0
2 , 1+ ν0

2 ) implies

that p ≥ 2.

For the proof of Proposition 5, we will use the following result

Lemma 6 [5]: Given ν0 ∈ (0, 1), there exists C(ν0) > 0 such that , for every
p-tuple of αi ’s > 0, i ∈ {1, 2, · · · , p} satisfying

αi0
α j0

/∈ (1− ν0
2 , 1+ ν0

2 ) for a couple

of indices (i0, j0), then:

∑p
i=1 α

2
i(∑p

i=1 α
4
i

)1/2 ≤ p1/2
(

1 − C(ν0)

p

)
.

Proof of Proposition 5: The proof splits in two cases.

First case: I < β

We then use Proposition 3 and Lemma 6, Sect. 3 of [5]. We derive that:

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S

(
1 − C(ν0)

p

)[
1 + O(ε2 log ε−1)− γ0

I

S2 (1 + O(ε1/3))

]

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S

(
1 − C(ν0)

p

)
(1 + O(ε2 log ε−1)) .

The result follows in this case.

Second case: I ≥ β

We then apply Proposition 4, we thus have:

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S

(
1 − γ ′

1
β

S2 (1 + O(ε1/3))

)
(1 + O(ε2 log ε−1))

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S if ε <
1

p100 .

The proof of Proposition 5 is thereby complete.

Proposition 6: Let ν0 ∈ (0, 1) be given. For every p ∈ N∗ and for every
(α1, · · · , αp) satisfying

αi0
α j0

/∈ (1 − ν0
2 , 1 + ν0

2 ) for one couple of indices (i0, j0).

If ε < p−100, we have:

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S.

To prove Proposition 6, we need the following two results.
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Lemma 4: There exists γ1 > 0, such that for every αi ≥ 0, 1 ≤ i ≤ p, for every
p ∈ N∗and ε ≤ 1

J(
p∑

i=1

αiϕai,ε) ≤
∑

α2
i(∑

α4
i

)1/2 S(1 + O(ε2 log ε−1)+ γ1 I1).

Where:

I1 =
∑
i �= j

αiα j
∫
ϕ3

ai,ε
ϕa j,ε∑

α2
i

The proof of Lemma 4 is similar to the proof of Lemma 7, Sect. 3 of [5] replacing
On with O(ε2 log ε−1), n by 4 and S by S2.

Lemma 5: There exists γ ′
1 > 0, such that for every αi ≥ 0, i ∈ {1, 2, · · · , p}, for

every p

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S(1 + O(ε1/3))

(
1 − γ ′

1

p2
I1

)1/2

.

Proof of Lemma 5: The proof is similar of that Lemma 8, Sect. 3 of [5] replacing
(1 + O′

n) by (1 + O(ε1/3)), S by S2 and n by 4, the only modification with respect
to [5] occurs in the beginning when we come back to the proof of Proposition 2,
which gives here:

J(
p∑

i=1

αiϕai,ε) ≤
∫

M

(∑
i αiϕ

3
ai ,ε

)
(
∑

j α jϕa j ,ε)θ ∧ dθ

||∑p
i=1 αiϕai,ε||24

(1 + O(ε1/3))

≤
(∑

i

∫
M

αiϕai,ε∑
αkϕak,ε

ϕ4
ai,ε

)1/2

(1 + O(ε1/3))

Proof of Proposition 6: We use Lemma 5, Proposition 6 follows if I1 is larger than
C′′(ν0)/p. Indeed:

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S(1 + O(p−100/3))×
(

1 − C

p3

)
< p1/2S.

We thus assume in the sequel that: I1 ≤ C′′(ν0)/p. We then apply Lemma 6, Sect. 3
of [5] and Lemma 4.

By Lemma 4, we have

J(
p∑

i=1

αiϕai,ε) ≤
∑

α2
i(∑

α4
i

)1/2 S(1 + O(ε2 log ε−1)+ γ1 I1)
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and by Lemma 6, Sect. 3 of [5], we have:

J(
p∑

i=1

αiϕai,ε) ≤ p1/2S

(
1 − C(ν0)

p

)
(1 + O(ε2 log ε−1)+ γ1 I1)

≤ p1/2S

(
1 − C(ν0)

p

)(
1 + O(ε2 log ε−1)+ γ1

C′′(ν0)

p

)

we choose C′′(ν0) small enough so that:

O(ε2 log ε−1)+ γ1
C′′(ν0)

p
<

C(ν0)

2p

which ends the proof of Proposition 6.

Proposition 7: For every p ∈ N∗, for every A < p−100, there exists ε0(p, A) such
that, for every µ satisfying A ≤ µ ≤ p−100, for every αi > 0, 1 ≤ i ≤ p, we have

J(
p∑

i=1

αiϕai ,µ) ≤ p1/2S

provided Mini �= j d(ai, a j) < ε0(p, A) < 2r.

Proof: In the proof of Lemma 8 of [5], A. Bahri and H. Brezis proved that:

J(
p∑

i=1

αiϕai,µ)

≤ p1/2S(1 + O(µ2 logµ−1))

(
1 − C′

p
sup
i �= j

∫
ϕ3

ai,µ
ϕa j ,µθ ∧ dθ

)1/2

sup
i �= j

∫
ϕ3

ai,µ
ϕa j,µ ≥

∫
ϕ3

ai0 ,µ
ϕa j0 ,µ

,

where ai0 and a j0 are such that d(ai0 , a j0) < ε0(p, A).
Arguing as in the proof of Theorem 2, we have:
When ε0(p, A) goes to zero, the distance of ai0 to a j0 goes to zero with respect

to µ.

Thus,
∫

B(ai0 ,2r)
φ3

ai0 ,µ
φa j0 ,µ

θ0 ∧ dθ0 is lowerbounded by a constant α0 and:

J(
p∑

i=1

αiϕai,µ) ≤ p1/2S(1 + O(µ2 logµ−1))

(
1 − C′

p
α0

)1/2

.

Proposition 7 follows if µ < p−100.
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Section 4

For every p in N∗, let �p−1 = {(α1, · · · , αp), αi ≥ 0
∑p

i=1 αi = 1}.
For 0 < ν < 1, let �ν

p−1 = {(α1, · · · , αp) ∈ �p−1/
αi
α j

∈ [1 − ν, 1 + ν]
∀ i,∀ j}, ∂�ν

p−1 is the boundary of �ν
p−1.

Let Bp(M) = {∑p
i=1 αiδai , αi ≥ 0,

∑p
i=1 αi = 1, ai ∈ M}, where δai is the

Dirac mass at ai , with the convention B0(M) = ∅.
Fp(M) = {(a1, · · · , ap) ∈ M p/∃i �= j with a j = a j}, and σp the symmetric

group of order p, σp acts on Fp.
Let Tp, T 1

p be two σp-equivariant tubular neighborhoods of Fp in M p, such

that T̄p ⊂ Ṫ 1
p , let Vp = M p − Tp and V 1

p = M p − T 1
p , ∂Vp the boundary of

Vp (the existence of Tp and T 1
p is derived in the book by G. Bredon [9]) and

Wp =
{

u ∈∑+ / J(u) ≤ (p + 1)
1
2 S
}
.

Let f p(ε) for ε > 0 and p ∈ N∗, denote the map:

f p(ε) : Bp(M) −→
∑

+
p∑

i=1

αiδai �−→
∑p

i=1 αiϕai,ε∥∥∑p
i=1 αiϕai ,ε

∥∥
H

.

By Proposition 2, we know that if ε ≤ p−100, then f p(ε) maps Bp(M) in Wp,
hence (Bp(M), Bp−1(M)) into (Wp, Wp−1). Let ν0 be given by Proposition 3.

For this ν0 we consider C ≤ min(C(ν0),C′(ν0)), where C(ν) (respectively
C′(ν0)) is given in Proposition 5 (respectively Lemma 6, Sect. 3 of [5]).

Proposition 8: There exists p0 ∈ N∗ such that for any p ≥ p0 and any ε < C p−100

the map:

f p(ε) : (Bp(M), Bp−1(M)) → (Wp, Wp−1)

is homotopic to a map valued in (Wp−1, Wp−1) and is therefore homologically
trivial.

Proof of Proposition 8: For more details about this construction, one can see Sect. 4
of [5]. A. Bahri and H. Brezis constructed, for p large enough and for ε < C p−100,
a homotopy U such that:




U : [0, 1] × Bp(M) → Wp continuous
U(t, Bp−1) ⊂ Wp−1,∀ t ∈ [0, 1],U(0, ·) = f p(ε)(·)

U(1, Bp) ⊂ Wp−1.

We will give here the same construction of [5], adapted to our case.
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We consider in Bp(M) three sets A, B and C defined as follows: let a =
(a1, · · · , ap), α = (α1, · · · , αp) and ν0 ∈ (0, 1)

A = { p∑
i=1

αiδai/(a, α) ∈ Vp ×�
ν0
p−1

}

B = cA = { p∑
i=1

αiδai/(a, α) ∈
(
Tp ×�p−1 ∪ Vp × (

�p−1 −�
ν0
p−1

))}

C ⊂ Ȧ, C = { p∑
i=1

αiδai/(a, α) ∈ V 1
p ×�

ν0/2
p−1

}
.

Observe that B is a neighborhood of Bp−1(M) in Bp(M).
Let εp < C p−100 be given, where C ≤ min(C(ν0),C′(ν0)).
Let for (a, α) ∈ M p ×�p−1, ψ(a, α) be a continuous function valued in [0, 1],

equal to 1 on C to 0 on cA.
U(t, .) is defined as follows:

1. If
∑p

i=1 αiδai ∈ C, U(t,
∑p

i=1 αiδai ) =
∑p

i=1 αiϕai ,(1−t)ε+tεp

||∑p
i=1 αiϕai ,(1−t)ε+tεp ||H

.

2. If
∑p

i=1 αiδai ∈ B, U(t,
∑p

i=1 αiδai ) =
∑p

i=1 αiϕai ,ε

||∑p
i=1 αiϕai ,ε||H

= f p(ε)(
∑p

i=1 αiδai ) .

3. If
∑p

i=1 αiδai ∈ A − C, U(t,
∑p

i=1 αiδai ) =
∑p

i=1 αiϕai ,(1−tψ(a,α))ε+tψ(a,α)εp

||∑p
i=1 αiϕai ,(1−tψ(a,α))ε+tψ(a,α)εp ||H

.

Since εp is upperbounded by C p−100, any barycenter of ε and εp is upperbounded
by C p−100 and by Proposition 2 we derive that U(t, .) is valued in Wp; Bp−1(M)

is contained in B and U(t, Bp−1) = f p(ε)(Bp−1) ⊂ Wp−1, thus U(t, .) maps for
any t, (Bp, Bp−1) into (Wp, Wp−1).

To complete the proof of Proposition 8, we need to check that U(1, .) is valued
in Wp−1.

For this purpose we distinguish three cases:

1)
∑p

i=1 αiδai ∈ A − C i.e : (a, α) ∈ Vp ×�
ν0
p−1 and either a ∈ T 1

p or α /∈ �
ν0/2
p−1.

We choose T 1
p so that: if (a1, · · · , ap) ∈ T 1

p Mini �= j d(ai, a j) < ε0(p, A),
where A = Min(ε, εp) and ε0(p, A) is given in Proposition 7.

We have A < C p−100 and Proposition 7 holds, thus:

J(
p∑

i=1

αiϕai,µ) < p1/2S

for any µ satisfying A ≤ µ < p−100. Here we choose µ = (1 − tψ(a, α))ε +
tψ(a, α)εp. Then the result follows if (a1, · · · , ap) ∈ T 1

p .

If α = (α1, · · · , αp) /∈ �
ν0/2
p−1, we apply Proposition 5 with

ε = µ = (1 − tψ(a, α))ε+ tψ(a, α)εp ≤ C p−100 .
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2)
∑

αiδai ∈ C, we distinguish two subcases.

2.1) I = 1
p

∑
i �= j

∫
ϕ3

ai,εp
ϕa j ,εp < β, where β has been defined in Proposition 3.

2.2) or I ≥ β.
In case 2.1 holds, we have by Proposition 3

J(
∑

αiϕai,εp) ≤
∑

α2
i

(
∑

α4
i )

1/2 S
(
1 + O

(
ε2

p log ε−1
p

) − γ0 I
S2 (1 + O(ε1/3))

)
since∫

M
ϕ3

ai,εp
ϕa j,εp ≥ Cε2

p, thus I ≥ pCε2
p and

∑
α2

i

(
∑

α4
i )

1/2
≤ p1/2, we obtain

J(
∑p

i=1 αiϕai,εp) < p1/2S(1 + O(ε2
p log ε−1

p )− γ0 p C
S2 ε

2
p(1 + O(ε

1/3
p ))), we have

to choose εp such that

C
(
ε2

p log ε−1
p

)− pγ0ε
2
p < 0

provided εp < C p−100(εp ∼= e−C0 p) for p large enough.
In case 2.2) holds I ≥ β, we apply Proposition 4 with αi

α j
∈ (1 − ν0

2 , 1 + ν0
2 ),

thus

J(
∑

αiϕai,εp) < p1/2S

(
1 − γ ′

1
β

pS2

(
1 + O

(
ε

1/3
p
)))(

1 + O
(
ε2

p log ε−1
p

))
.

Thus

J(
∑

αiϕai,εp) < p1/2S, if εp < C p−100.

3)
∑p

i=1 αiδai ∈ B, we consider two subscases.

3.1) (a, α) ∈ Tp ×�p−1.

We use Proposition 7 with A = µ = ε.
Observe that Tp ⊂ T 1

p then if T 1
p is chosen small enough we have

Mini �= j d(ai, ai) < ε0(p, A),∀ (a1, · · · , ap) ∈ T̄p thus

J(
p∑

i=1

αiϕai ,ε) < p1/2S.

3.2) (a1, · · · , ap, α1, · · · , αp) ∈ Vp×(�p−1−�
ν0
p−1) there are at least two indices

i0 and j0 such that
α j0
α j0

/∈ (1 − ν0, 1 + ν0)

U(1,
p∑

i=1

αiδai ) =
∑

αiϕai,ε

||∑αiϕai,ε||H
.

We can apply Proposition 6, since ε < cp−100. This ends the proof of Proposition 7.
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Section 5

Topological Argument (see [5], [7])

Proof of Theorem 1: We prove Theorem 1 by contradiction, thus we suppose that
equation (1) has no solution.

The topological argument is based on a comparison of Bp(M) and the level
sets Wp of the functionnal J via f p(ε). We know that:

f p(ε) : (Bp, Bp−1) → (Wp, Wp−1)

is homologically trivial for p large enough (Proposition 8).
On the other hand, if there is no solution of the equation (1), the pair (Wp, Wp−1)

retracts by deformation on (Wp−1 ∪ Ap, Wp−1) with Ap ⊂ V(p, ε′), where

V(p, ε′) =




u ∈∑+ such that there exists p concentration points
a1, ..., ap in M and p concentrations ε1, ..., εp ∈ [0, 1[

such that

∥∥∥∥u − 1

p
1
2 S

∑p
i=1 ϕai,εi

∥∥∥∥
H
< ε′, with εi < ε′

and εi j = εi
ε j

+ ε j
εi

+ d(ai,a j )
2

εiε j
≥ 1

ε′ for i �= j.




where d(x, y), if x and y are in a small ball of M of radius r, is || exp−1
x (y)||H1

(|| · ||
H1 is the norm in H1), with expx the CR exponential map for the point x, and

d(x, y) is equal to r/2 otherwise. V(p, ε′) is a neighborhood of critical points at
infinity.

Thus, the functions of Ap are of the form �αiϕai ,εi + v, v small in the ‖‖H and
we can define a natural map of (Wp−1 ∪ Ap)− Wp−1 = Ap, which can be thought
of as Wp − Wp−1, into Vp ×

σp
�ν

p−1, for a suitable choice of Tp and ν (see Sect. 4

of [7]).
Therefore the model · · · ⊂ Bp−1(M) ⊂ Bp(M) ⊂ · · · can be compared via

f p(ε) to · · · ⊂ Wp−1 ⊂ Wp · · · If the equation (1) has no solution, we can derive
the:

Lemma 22 Sect. 5 [7]: For any p ∈ N∗ and ε < 1, let ωp denote the homology
orientation class (modulo 2) of the pair (Bp(M), Bp−1(M)). We have:

f p∗(ε)(ωp) �= 0

where

fp∗(ε) : H∗(Bp(M), Bp−1(M)) → H∗(Wp, Wp−1)

with H∗(·) denoting the homology group with Z2 coefficients.

This result contradicts Proposition 8. Thus, we derive that the equation (1) has
a solution, which proves Theorem 1.
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Appendix

Let M be a compact strictly pseudo-convex CR manifold of dimension 2n + 1.

Lemma A.1: Suppose λ(M) > 0. Then at each point q ∈ M the Green function
Gq for L exists and is strictly positive.

Proof: Consider for 2 ≤ s < r = 2 + 2/n the extremal problem

λs = inf
{

Aθ(φ), φ ∈ S2
1(M), Bθ,s(φ) = 1

}
in which Aθ is as in (2) and Bθ,s = ∫

M |φ|sθ ∧ dθn .
By Theorem 6.2 [1], we know that there exists a positive C∞, solution us to

the equation:
(2 + 2/n)�bus + Rus = λsus−1

s (A.1)

satisfying Aθ(us) = λs and Bθ,s(us) = 1.
Let then u > 0 be the smooth positive solution to the subcritical equation (A.1)

for s, 2 ≤ s < r = 2 + 2/n; and define a new contact form on M, θ ′ = u2/nθ . The
Webster scalar curvature R′ of θ ′ is given by:

R′ = u1−r Lu, L = r�b + R . (A.2)

Since λ(M) > 0, implies λs > 0, R′ is strictly positive. Thus the conformal
Laplacian L ′ = r�b + R′ is invertible and then the Green function G′

q for L ′
exists, (on all M: one can see Proposition 5.17 [1]).

If at its minimum G′
q ≤ 0, then G′

q would be constant by the maximum
principle, which is impossible since L ′G′

q = δq in the distributional sense where
δq is the Dirac measure at q.

Therefore G′
q is strictly positive. And if we set Gq(x) = u(q)u(x)G′

q(x) then
Gq is strictly positive and by the transformation law of the laplacian (one can see
[1]) L ′(v′) = u−(r−1)Lv, where v′ = u−1v; we have for any f ∈ C∞

0 (M)

u−1(q) f(q) =
∫

M
G′

q(x)L
′(u−1(x) f(x))θ ′ ∧ dθ ′n

=
∫

M
u−1(q)u−1(x)Gq(x)u

1−r(L f )urθ ∧ dθn

= u−1(q)
∫

M
Gq(x)L fθ ∧ dθn.

This is equivalent to LGq = δq . Thus Gq is the Green function for L.

Lemma A.2: Let n = 1, with the choice of θ such that Proposition 3.12 [2] be
satisfied. Let Gq be the Green function for L at q as in Lemma A.1. Then in
pseudohermitian normal coordinates (z, t) near q:

Gq(z, t) = Cρ−2(z, t)+ A + O(ρ(z, t)). (A.3)

Where A and C are constants.
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Proof: Let ε > 0 be small enough such that Bε(q) = {ρ(z, t) < ε} be contained in
the pseudohermitian normal coordinates (z, t) near q.

Let ! ∈ C∞(M) be a cut-off function such that:

!(z, t) =
{

1 for (z, t)Bε/2(q)
0 outside Bε(q)

.

And consider the function:

G̃q(z, t) = !(z, t)Gq(z, t)

Since Cρ−2(z, t) is a fundamental solution of L0 = −2(Z Z̄ + Z̄ Z) in H1, and
L = −2(Z Z̄ + Z̄ Z) + ©(2), in Bε/2(q) we have L(G̃q(z, t) − Cρ−2(z, t)) ∈
L∞(Bε/2(q)) and subelliptic regularity (one can see [8]) implies that

G̃q(z, t)− Cρ−2(z, t) ∈ Sk
2(Bε/2(q)), ∀k > 0,

where Sk
2 is a Folland-Stein space ([8]).

For β > 0 let �β(Bε/2(q)) be the Folland-Stein Hölder space. By Folland-
Stein Sobolev embedding theorem (Theorem 21.1 [8]). We have Sk

2(Bε/2(q)) ↪→
�β(Bε/2(q)), ∀β such that β = 2 − 2n+2

k > 0. Hence G̃q(z, t) − Cρ−2(z, t) ∈
�β(Bε/2(q)), ∀β < 2, which implies the existence of a constant A such that

G p(z, t) = Cρ−2(z, t)+ A + O(ρ).

The Webster scalar curvature R > 0 implies λ(M) > 0,and Lemma A.1 implies
that G p is strictly positive, thus we can consider that the constant C is positive.
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