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Abstract. We study some problems of optimal distribution of masses, and we show that
they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar
state functions, we show the equivalence with a mass transport problem, emphasizing its
geometrical approach through geodesics. The case of elasticity, where the state function is
vector valued, is also considered. In both cases some examples are presented.

1. Introduction

The analysis of the behaviour of elastic structures has always been a central problem
in Mathematics and in Engineering. Since the beginning of the mathematical theory
of elasticity it was possible to consider from a rigorous point of view the problem
of finding the structure that, for a given system f of loads, gives the best resistance
in terms of minimal compliance. In other words, an elastic structure is optimal if
the corresponding displacement u is such that the total work

∫
f · u dx is minimal.

However, even if the setting of the problem does not require particular mathematical
tools, only in the last two decades there has been a deep understanding of shape
optimization problems from a mathematical point of view. This was mainly due
to the dramatic improvement in the field impressed by the powerful theories of
homogenization and �-convergence which have been developed meanwhile.

What became clear soon was that in a large number of situations the optimal
shape does not exists, and the existence of an optimal solution must be intended only
in a relaxed sense. The form of the relaxed optimization problem was first studied
(see [21,22]) in the so called scalar case where the physical problem only involves
state variables with value in R, like the problem of optimal mixtures of two given
conductors. In this case the relaxed solutions have been completely studied, and
identified as symmetric matrices with bounded and measurable coefficients, whose
eigenvalues satisfy some suitable bounds. A similar result was also obtained in the
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elasticity problem (see for instance [15]) for optimal mixtures of two homogeneous
and isotropic materials.

Moreover, in almost all cases which have been considered, the optimal relaxed
solution is not isotropic (i.e. the optimal matrix is not of the form a(x)I , being I
the identity matrix), and this was interpreted by saying that an optimal shape does
not exist and minimizing sequences are composed by laminates.

We want to emphasize that the case of optimal elastic structures, or also simply
the study of optimal shapes of a given conductor, seem to have an additional diffi-
culty with respect to the problem of optimal mixtures. Indeed, the first correspond
to the case of optimal mixtures when one of the two materials (or conductors) has
the elasticity constants (or the conductivity coefficient) equal to zero. In this case,
due to a lack of uniform ellipticity, it is known that among all possible relaxed
problems, obtained as limits of sequences of elliptic problems on classical do-
mains, there are some that are not of local type, and it is not clear if these nonlocal
relaxed solutions could be optimal. This interesting direction of research has been
developed recently in [3] and [20], and has deep connections with the theory of
Dirichlet forms.

Here we adopt a different point of view and we consider, instead of the shape
optimization problem, the mass optimization problem which consists in finding
the best distribution of a given amount of elastic material, in order to achieve the
minimal compliance. The unknown mass distribution is then a nonnegativemeasure
which may vary in the class of admissible choices, with total mass prescribed,
and support possibly constrained in a given design region. Dealing with general
measures pushed us to develop in [5] a general framework of variational calculus on
measures, bases on a new notion of tangent bundle for a measure, which includes
and unifies the classical cases of low dimensional manifolds (membranes, string,
junctions, . . . ).

The phenomenon of appearance of low dimensional network structures was
already remarked (see [1]) in the cases of optimal mixtures of two materials, when
the percentage of the strong one tends to zero. Moreover, because of capacitary
arguments, concentrated loads are forbidden in the classical framework, but they
become admissible as soon as we allow the conductivity coefficient to be singular,
or more generally a measure. Then in the framework of our mass optimization
problems, we are allowed to consider the general case when for a load we take
a given measure.

A first result is that we obtain the existence of an optimal mass distribution for
which the elastic compliance is minimal. This optimal measure may present the
interesting feature to be composed by terms of different dimensions. Moreover,
we characterize these optimal solutions by means of a generalized version of the
Monge-Kantorovich partial differential equation which describes the mass transfer
problem. A first announcement of the results we obtained appeared in a short
note [6].

The plan of the paper is the following. In Sect. 2 we present the mass opti-
mization problem in a quite general framework and we show the existence of an
optimal solution in the class of measures. In Sect. 3 we deduce a necessary and
sufficient condition for the optimality that we call Monge-Kantorovich equation
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by analogy with the PDE which occurs in mass transportation problems. Section 4
is fully devoted to the scalar case where an optimal measure can be constructed
by means of geodesic transport rays. Finally, in Sect. 5 we treat some examples
from elasticity as well as some scalar cases; in this last situation we show how
the equivalence with mass transportation problems allows us to obtain the explicit
construction of optimal measures also in cases when Dirichlet regions or obstacles
are present.

2. The mass optimization problem

The optimization problem we are going to describe consists in finding the best
distribution of a given total mass in order to minimize the elastic compliance under
the action of a given force field. In order to take into account also forces which may
concentrate on lower dimensional sets we consider a force field f ∈M(Rn;Rn),
the class of all Rn-valued measures on Rn with finite total variation and with
compact support. The class of smooth displacements we consider is the Schwartz
space D(Rn;Rn) of C∞ functions with compact support; similarly, the notation
D′(Rn;Rn) stands for the space of vector valued distributions and, for a given
nonnegative measure µ, L p

µ(Rn;Rd) denotes the space of p-integrable functions
with respect to µ with values in Rd .

For a given displacement u : Rn → Rn we denote by j(Du) the stored elastic
energy density associated to u and we assume:
(2.1) j is convex;
(2.2) j is positively p-homogeneous, with p > 1;
(2.3) j(z) = j(zsym) where zsym is the symmetric part of z;

(2.4) there exist two positive constants α1 and α2 such that

α1|zsym|p ≤ j(z) ≤ α2|zsym |p ∀z ∈ Rn×n .

For instance, in the case of a homogeneous isotropic linearly elastic material, the
function j is given by

(2.5) j(z) = β|zsym|2 + α

2
|tr(zsym)|2

where α and β are the so called Lamé constants.
It is convenient to introduce the convex 1-homogeneous function

ρ(z) = inf
{
t > 0 : j(z/t) ≤ 1/p

};
by the homogeneity of j we have

j(z) = 1

p

(
ρ(z)

)p
.

Thus, for a given mass distribution µ the stored elastic energy of a smooth dis-
placement u ∈ D(Rn;Rn) is given by

J(µ, u) =
∫

j(Du) dµ = 1

p

∫ (
ρ(Du)

)p
dµ
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so that the total energy is
J(µ, u)− 〈 f, u〉.

Sometimes we write e(u) instead of (Du)sym , so that the stored energy functional
can be also written as

J(µ, u) =
∫

j
(
e(u)

)
dµ = 1

p

∫ (
ρ(e(u))

)p
dµ.

The scalar product between n × n matrices is defined by

z : ξ =
n∑

i, j=1

zi jξi j ;

in this way we can also introduce the Fenchel conjugate of j

j∗(z) = sup
{
z : ξ − j(ξ) : ξ ∈ Rn×n}

and the polar function associated to ρ:

ρ0(z) = sup
{
z : ξ : ρ(ξ) ≤ 1

}
.

It is then easy to obtain the equality

j∗(z) = 1

p′
(
ρ0(z)

)p′ ∀z ∈ Rn×n .

We consider mass distributionsµwhich are nonnegativemeasures on Rn whose
support is contained in the so called design region which is a given closed subset
K of Rn . It should also be noticed that the problem above is a variational model
which describes the behaviour of light structures, where the force due to their own
weight can be neglected. Finally, in order to take into account possibly prescribed
Dirichlet boundary conditions, we denote by U the set of smooth admissible dis-
placements, which we assume to be a given convex cone ofD(Rn;Rn). Therefore,
the infimum

(2.6) E(µ) = inf
{ ∫

j(Du) dµ− 〈 f, u〉 : u ∈ U
}

can be considered as the energy associated to the mass distribution µ. The compli-
ance C(µ) is then defined as

C(µ) = −E(µ).

It must be noticed that we may have C(µ) = +∞ for some measures µ; this hap-
pens for instance in the case U = D(Rn;Rn) when the force field f concentrates
on sets of dimension smaller than n−1 and the mass distribution µ is the Lebesgue
measure. However, these “singular” measures µ are ruled out from our discussion
because we look for the minimization of the compliance C(µ). Indeed, we consider
the optimization problem

(2.7) min
{
C(µ) : µ ∈M+(Rn),

∫
dµ = m, sptµ ⊂ K

}
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where the total amount of mass m is prescribed, as well as the design region K .
Our goal is to obtain an existence result for problem (2.7) and to characterize its
solutions by means of necessary and sufficient conditions of optimality (that we
shall call in next section Monge-Kantorovich equation).

It is convenient to introduce the polar cone of distributions

U0 = {
T ∈ D′(Rn;Rn) : 〈T, u〉 ≤ 0 ∀u ∈ U};

then by standard duality arguments (see for instance [12]) the compliance C(µ)

can be written in the form

(2.8) C(µ) = inf
{ ∫

j∗(σ) dµ : σ ∈ L p′
µ (Rn;Rn×n), f + div(σµ) ∈ U0

}
.

It is straightforward that the infimum in (2.8) is actually a minimum as soon as
C(µ) is finite.

Let us introduce now the quantity

(2.9) I( f,U, K ) = sup
{〈 f, u〉 : u ∈ U, j(Du) ≤ 1/p on K

}
which can be related to a locking material approach (see [11]).

Proposition 2.1. For every nonnegative measure µ with
∫

dµ = m and sptµ ⊂ K
we have

(2.10) C(µ) ≥
(
I( f,U, K )

)p′

p′m1/(p−1)
.

Proof. If C(µ) = +∞ the inequality is trivial. If C(µ) is finite the infimum in (2.8)
is a minimum; let us denote by σ a solution: then by Fenchel inequality we have
for every u ∈ U

C(µ) =
∫

j∗(σ) dµ ≥
∫

σ : Du dµ−
∫

j(Du) dµ.

Therefore, since f + div(σµ) ∈ U0, we obtain∫
σ : Du dµ = −〈div(σµ), u〉 ≥ 〈 f, u〉

so that

C(µ) ≥ 〈 f, u〉 −
∫

j(Du) dµ ∀u ∈ U .

Since U is a cone and j is positively p-homogeneous, we also have

C(µ) ≥ t〈 f, u〉 − t p
∫

j(Du) dµ ∀u ∈ U, ∀t ≥ 0.
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Hence, taking the supremum over all u ∈ U with j(Du) ≤ 1/p on K we deduce

C(µ) ≥ tI( f,U, K ) − t p m

p
.

A further supremum over all t ≥ 0 finally gives the desired inequality (2.10). ��

We want to show now that in (2.10) the equality is actually attained for some
measure µ; this will provide, as a consequence, an existence result for the mass
optimization problem (2.7).

Proposition 2.2. There exists a nonnegative measure µ with
∫

dµ = m and
sptµ ⊂ K such that

C(µ) ≤
(
I( f,U, K )

)p′

p′m1/(p−1)
.

Proof. We have

(2.11) I( f,U, K ) = sup
{〈 f, u〉 : u ∈ U, ρ(Du) ≤ 1 on K

}
and, again by duality arguments, we can write

(2.12)

I( f,U, K ) = inf
{ ∫

ρ0(λ) : λ ∈M(Rn;Rn×n), spt λ ⊂ K, f + divλ ∈ U0
}

where the integral is intended in the sense of convex functionals on the space of
measures (see for instance [17,7]). As before, as soon as I( f,U, K ) is finite, the
infimum in (2.12) is a minimum. If we denote by λ a solution and set

µ = m

I( f,U, K )
ρ0(λ),

by Radon-Nikodym theorem we obtain thatλ=σµ for a suitableσ∈L p′
µ (Rn;Rn×n).

We have sptµ ⊂ K ,
∫

dµ = m, f + div(σµ) ∈ U0, and ρ0(σ) = I( f,U, K )/m
µ-a.e., so that by (2.8)

C(µ) ≤
∫

j∗(σ) dµ = 1

p′

∫ (
ρ0(σ)

)p′
dµ =

(
I( f,U, K )

)p′

p′m1/(p−1)
. ��

Summarizing, we have proved the following result.

Theorem 2.3. Assume that I( f,U, K ) is finite. Then the following facts hold:

i) The mass optimization problem (2.7) admits a solution µ and we have

C(µ) =
(
I( f,U, K )

)p′

p′m1/(p−1)
.
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ii) If µ is a solution of the mass optimization problem (2.7) then one has

(2.13)

I( f,U, K ) = min
{ ∫

ρ0(σ) dµ : σ ∈ L1
µ(R

n;Rn×n), f + div(σµ) ∈ U0
}

and every optimal σ in (2.13) verifies

(2.14) ρ0(σ) = I( f,U, K )

m
µ-almost everywhere.

iii) Conversely, if λ is a solution for (2.12), then the nonnegative measure µ :=
m

I( f,U, K )
ρ0(λ) is optimal for (2.7).

We will discover in the next section that the field σ solution of (2.13) is
in fact related to the gradient of the optimal displacement u (for (2.6)) through
a constitutive equation involving some notion of tangent space to µ.

Let us emphasize some few facts about what we obtained in this section.
A remarkable issue is that by Theorem 2.3 ii) and iii) the optimal measures µ

can be deduced from solutions of problem (2.12), hence they do not depend on
the growth exponent p of the energy density j but only on the convex level set
{ξ∈Rn×n :ρ(ξ)≤1}. Moreover, when µ is an optimal mass distribution, by (2.14)

the associated stress density j∗(σ) = 1
p′
(
ρ0(σ)

)p′ is constant (the same will be true
for the µ-strain energy density, as defined in Sect. 3).

According to the independence seen above of optimal measuresµ of the growth
exponent p, it seems natural to consider problems (2.9) and (2.12) as the candidates
for being the limit as p → +∞ of the primal strain problem (2.6) and the dual
stress problem (2.8) respectively. This idea, heuristically stated above, has been
used in [18] for obtaining numerical approximations of solutions to several shape
optimization problems.

3. The Monge-Kantorovich equation

In this section we discuss the existence of a relaxed solution for problem (2.9) and
the related necessary and sufficient conditions of optimality. This will produce what
we call Monge-Kantorovichequation. From now on, for simplicity, we assume that:

- K is a closure of a smooth connected bounded open subset � of Rn ;
- U = {

u ∈ D(Rn;Rn) : u = 0 on �
}

where � is a closed subset of �.

The quantity I( f,U, K ) will be then denoted by I( f,�,�). We remark that under
the assumptions above the class U0 turns out to be

U0 = {
T ∈ D′(Rn;Rn) : spt T ⊂ �

}
.

It is convenient to introduce now the class Lip1,ρ(�,�) as the closure, in C(�;Rn),
of t he set {u∈D(Rn;Rn) :ρ(Du)≤1 on �, u=0 on �}. It has to be noticed that
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when ρ(z) ≥ |z| then every function in Lip1,ρ(�) is locally Lipschitz continuous
on �; on the other hand, if ρ(z) = |zsym| this is no more true, due to the lack of
Korn inequality for p = +∞ (see for instance [10]).

We define the relaxed formulation of problem (2.9) as

(3.1) sup
{〈 f, u〉 : u ∈ Lip1,ρ(�,�)

}
and the finite dimensional linear space of all rigid displacements vanishing on �

R� = {
u(x) = Ax + b : b ∈ Rn, A ∈ Rn×n

skew, u = 0 on �
}
.

Proposition 3.1. Let � and � be defined as above. Then the supremum in problem
(2.9) is finite if and only if

(3.2) 〈 f, u〉 = 0 ∀u ∈ R�.

In this case, problem (3.1) admits a solution and

sup (2.9) = max (3.1).

Proof. The first assertion is a well known fact (see for instance [2]). To conclude
the proof we just need to prove the existence of a solution of problem (3.1) under
condition (3.2). Let q > n and let P� be any linear continuous projector from
Lq(�;Rn) into the closed finite dimensional subspaceR�; arguing by contradic-
tion and using the Korn inequality and the Rellich compactness theorem it is easy
to obtain the inequality

(3.3) ‖u − P�u‖Lq(�) ≤ C
[
‖e(u)‖Lq(�) +

∫
�

|u| dx
]
.

Let now (uh) be a maximizing sequence for problem (2.9); thanks to assumption
(3.2) we may assume that P�(uh) = 0 for every h. By using Korn’s inequality
again and (3.3) we obtain that (uh) is relatively compact in C(�) and so all its
cluster points belong to Lip1,ρ(�,�), vanish on �, and solve (3.1). ��

In order to well define the optimality conditions for problem (2.7), we need to
introduce the function space of displacements of finite energy related to a general
measure µ. Since the dimension of the measure µ is not a priori fixed, we have to
develop a general scheme which encompasses the theories of elastic membranes,
elastic strings, junctions of multidimensional structures, etc. In particular, we have
to generalize the usual notions of tangential gradient and tangential strain which
naturally occur when one deals with variational problems on smooth surfaces.
Following a scheme similar to the one already used in [5] and in [6], given a measure
µ and an open subset U of Rn we define the space of admissible stresses

X p′
µ

(
U;Rn×n

sym

) = {
σ ∈ L p′

µ

(
U;Rn×n

sym

) : div(σµ) ∈M(Rn;Rn)
}
.
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It turns out that this space is local in the sense that

φσ ∈ X p′
µ

(
U;Rn×n

sym

) ∀φ ∈ D(Rn), ∀σ ∈ X p′
µ

(
U;Rn×n

sym

)
,

so that its closure in L p′
µ can be written as

{
σ ∈ L p′

µ

(
U;Rn×n

sym

) : σ(x) ∈Mµ(x)
}

where
Mµ(x) = µ− ess

⋃{
σ(x) : σ ∈ X p′

µ

(
U;Rn×n

sym

)}
.

Here µ − ess stands for the µ essential union, according to Bouchitté and Vala-
dier [7], see also [5]. If we denote by Pµ(x) the orthogonal projector on Mµ(x) with
respect to the usual scalar product on matrices, for every function u ∈ D(U;Rn)

we may then define the tangential strain eµ(u) as

eµ(u)(x) = Pµ(x) Du(x).

We notice that for µ-a.e. x ∈ U we have eµ(u)(x) ∈ Mµ(x). In the case of
a smooth manifold S in Rn of dimension k ≤ n, which corresponds to the measure
µ = Hk S, it is easy to obtain that the tangential strain eµ defined above is given
by

eµ(u)(x) = PS(x) (Du)sym PS(x)

wherePS(x) is the orthogonal projection on the tangent space to S at x, and Mµ(x)
is the set

Mµ(x) =
{
PS(x) ξ PS(x) : ξ ∈ Rn×n

sym

}
.

It turns out that the definition above of eµ only depends on the equivalence class
µ-a.e. of u, as the following lemma shows.

Lemma 3.2. Let uh ∈ D(U;Rn) be a sequence such that uh → 0 uniformly on U
and eµ(uh) → ξ in L p

µ(U;Rn×n
sym ). Then ξ = 0.

Proof. As eµ(uh)(x) belongs to the closed subspace Mµ(x), we also have ξ(x) ∈
Mµ(x) for µ-a.e. x ∈ U . Let now σ ∈ X p′

µ (U;Rn×n
sym ); then

∫
ξ : σ dµ = lim

h→+∞

∫
eµ(uh) : σ dµ = − lim

h→+∞〈uh , div(σµ)〉 = 0

since div(σµ) is a bounded measure and uh → 0 uniformly. The equality above can

be extended to all σ in the closure of X p′
µ (U;Rn×n

sym ), that is to all σ ∈ L p′
µ (U;Rn×n

sym )

with σ(x) ∈ Mµ(x), and this clearly concludes the proof. ��

Thanks to the lemma above the linear operator

u ∈ D(U;Rn) �→ eµ(u) ∈ L p
µ

(
U;Rn×n

sym

)
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is closable as an operator from C(U;Rn) into L p
µ(U;Rn×n

sym ). In the following we

still denote by eµ the closed operator from C(U;Rn) into L p
µ(U;Rn×n

sym ) which
extends the tangential strain, in the sense of proposition above.

Now we can define the Banach space of all finite energy displacementsD1,p
0,µ(U)

as the domain of the operator eµ endowed with the norm

‖u‖
D1,p

0,µ(U )
= ‖u‖C(U ) + ‖eµ(u)‖L p

µ(U ).

Remark 3.3. We notice that if (uh) is a sequence which converges to u uniformly on
U and such that eµ(uh) is bounded in L p

µ, then by the closedness of the operator eµ
and the reflexivity of L p

µ(U;Rn×n)we have that u ∈ D1,p
0,µ(U) and eµ(uh) → eµ(u)

weakly in L p
µ(U;Rn×n).

Since D1,p
0,µ(U) is also the completion of D(U;Rn) with respect to the norm

above, the integration by parts formula

(3.4)
∫

eµ(u) : σ dµ = −〈u, div(σµ)〉

holds for every u ∈ D1,p
0,µ(U) and every σ ∈ X p′

µ (U;Rn×n
sym ). Notice that for all such

pairs (u, σ) we have

(3.5) eµ(u)(x) ∈ Mµ(x), σ(x) ∈ Mµ(x) for µ-a.e. x ∈ U.

As a variant of the argument used in [5] we obtain the relaxed form of the stored
energy functional J(µ, u)

(3.6) J(µ, u) = inf
{

lim inf
h→+∞ J(µ, uh) : uh → u uniformly, uh ∈ D(U;Rn)

}

=
{∫

U jµ
(
x, eµ(u)

)
dµ if u ∈ D1,p

0,µ(U)

+∞ otherwise

where

jµ(x, z) = inf
{

j(z + ξ) : ξ ∈ (Mµ(x)
)⊥}

.

Remark 3.4. Let us specify the spaces D1,p
0,µ(U), the operators eµ, and the energy

densities jµ in some particular situations.

a) If µ is the Lebesgue measure over some regular open subset U of Rn , then
eµ(u) coincides with the usual strain tensor (Du)sym and jµ(x, z) = j(z) for

a.e. x ∈ U . Moreover, thanks to Korn inequality,D1,p
0,µ(U) = W1,p

0 (U;Rn).
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b) Ifµ is the 2-dimensional Hausdorff measure on a smooth surface S of R3 having
ν(x) as a unit normal vector, then eµ(u) represents the usual tangential strain

eµ(u) = (I − ν ⊗ ν)e(u)(I − ν ⊗ ν)

and jµ(x, z) gives, in the case (2.5), the well known membrane stored energy
density (see [5])

jµ
(
x, eµ(u)

) = αβ

α+ 2β
|tr eµ(u)|2 + β|eµ(u)|2.

c) In the case of a measure µ given by the 1-dimensional Hausdorff measure on
a smooth curve� with unit tangent vector τ then eµ(u) represents the tangential
deformation Duτ · τ and jµ(x, z) is, in the case (2.5), simply proportional to
|Duτ · τ|2 (see [5]) and precisely

jµ
(
x, eµ(u)

) = β(3α+ 2β)

2(α+ β)
|Duτ · τ|2.

Remark 3.5. We can actually define the initial energy starting from displacements
which belong to

{
u ∈ C1(U;Rn) : u = 0 on ∂U

}
instead ofD(U;Rn). Indeed, by

the same approximation procedure of lemma below, we can show that every such
function belongs to D1,p

0,µ(U) and satisfies µ-a.e. the equality eµ(u) = Pµ(x) Du.
Therefore we obtain the same expression (3.6) for the relaxed functional

(3.7) J(µ, u) = inf

{
lim inf
h→+∞ J(µ, uh) : uh → u uniformly,

uh ∈ C1(U;Rn), uh = 0 on ∂U

}
.

Let us now go back to the optimization problem (3.1).

Lemma 3.6. For every measure µ ∈M+(�) we have the inclusion

Lip1,ρ(�,�) ⊂
{

u ∈ D1,p
0,µ(R

n \�) : jµ
(
x, eµ(u)

) ≤ 1/p µ-a.e. on Rn \�
}
.

Proof. Let u ∈ Lip1,ρ(�,�) and let (uh) be an approximating sequence in
D(Rn;Rn) such that

uh → u uniformly on �, ρ(Duh) ≤ 1 on �, uh = 0 on �.

Take vh = αhuh where αh ∈ C∞(Rn; [0, 1]) satisfies:

αh(x) = 0 if dist(x,�) < 1/h, αh ↑ 1 on Rn \�, |uh ||Dαh | ≤ C.

This is possible because (uh) converges uniformly to u which vanishes on �. Then
vh ∈ D(Rn \ �;Rn) and, since αh converges uniformly to 1 on every compact
subset of Rn \�, we have vh → u in C(�;Rn). In addition, from the equality

e(vh) = αhe(uh)+ (uh ⊗ Dαh)
sym
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we deduce that
(
eµ(vh)

)
is uniformly bounded in L p

µ(Rn\�;Rn×n). The closedness

of the operator eµ implies (see Remark 3.3) that u ∈ D1,p
0,µ(R

n \ �) and that the

weak limit of
(
eµ(vh)

)
coincides with eµ(u).

To prove that jµ(x, eµ(u) ≤ 1/p µ-a.e. on Rn \ � we apply the relaxation
formula (3.6) to the sequence (uh) and we use a localization argument to obtain
that ∫

U
jµ
(
x, eµ(u)

)
dµ ≤ lim inf

h→+∞

∫
U

jµ
(
x, eµ(uh)

)
dµ ≤ 1

p
µ(U)

holds actually for every open subset U of Rn \�. This gives the inequality

jµ
(
x, eµ(u)

) ≤ 1/p µ-a.e. on Rn \�. ��

Proposition 3.7. Let µ be a solution of the mass optimization problem (2.7). Then
µ does not charge the Dirichlet region �, i.e. µ(�) = 0. Moreover, if u and σ are
solutions of problems (3.1) and (2.13) respectively, then

(3.8)
m

I
σ(x) ∈ ∂ jµ

(
x, eµ(u)

)
µ-a.e. on Rn

(3.9) jµ
(
x, eµ(u)

) = 1/p and j∗µ(x,mσ/I ) = 1/p′ µ-a.e. on Rn

where I = I( f,�,�) and ∂ jµ(x, ·) denotes the subdifferential of the convex
function jµ(x, ·). Consequently, σ is a solution of the dual problem (2.8) and the
rescaled function (I/m)1/(p−1)u is a solution of the relaxed problem

(3.10) min
{

J(µ, v) − 〈 f, v〉 : v ∈ D1,p
0,µ(R

n \�)
}

where the functional J is defined in (3.6).

Proof. By Lemma 3.6 the function u belongs to D1,p
0,µ(R

n \�). On the other hand,

f +div(σµ) = 0 on Rn \� and therefore σ ∈ X p′
µ (Rn \�;Rn×n

sym ). The integration
by parts formula (3.4) together with Fenchel inequality then gives

(3.11)

I = 〈 f, u〉 =
∫

Rn\�
eµ(u) : σ dµ ≤ I

m

∫
Rn\�

[
jµ
(
x, eµ(u)

)+ j∗µ
(

x,
mσ

I

)]
dµ.

Noticing that j∗µ(x, ·) = j∗(·) on Mµ(x) (see the definitions of jµ and Mµ) and
that σ(x) ∈ Mµ(x) (see (3.5)), by Theorem 2.3 we obtain

j∗µ
(

x,
mσ

I

)
= j∗

(
x,

mσ

I

)
= 1

p′
(m

I

)p′ |ρ0(σ)|p′ = 1

p′
.

On the other hand, by Lemma 3.6 we have jµ
(
x, eµ(u)

) ≤ 1/p on Rn \�, so that,
dividing by I in (3.11), we have

1 ≤ 1

m
µ(Rn \�) = 1

m

(
m − µ(�)

)
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which implies µ(�) = 0. Therefore (3.11) gives

m = m

I

∫
eµ(u) : σ dµ ≤

∫ [
jµ
(
x, eµ(u)

)+ j∗µ
(

x,
mσ

I

)]
dµ ≤ m

which implies (3.8) and (3.9). ��

Summarizing, we have proved that if µ solves the mass optimization problem
(2.7) and u and σ are solutions of problems (3.1) and (2.13) respectively, then the
triple (u,mσ/I, Iµ/m) solves what we call Monge-Kantorovich equation

(3.12)




i) f + div(σµ) = 0 on Rn \�
ii) σ ∈ ∂ jµ

(
x, eµ(u)

)
µ-a.e. on Rn

iii) u ∈ Lip1,ρ(�,�)

iv) jµ
(
x, eµ(u)

) = 1/p µ-a.e. on Rn

v) µ(�) = 0.

We shall now prove the vice versa. Notice that by conditions i) and iv) the field
σ(x) (as well as eµ(x)) belongs to the subspace Mµ(x) for µ-a.e. x. Moreover, as
announced at the end of Sect. 2, it turns out that by condition iv) the tangential
strain energy jµ

(
x, eµ(u)

)
is constant for optimal mass distributions µ.

Lemma 3.8. Let h : Rd → [0,+∞] be a convex positively p-homogeneous
function and let v,w ∈ Rd be such that h(v) = 1/p and w ∈ ∂h(v). Then
h∗(w) = 1/p′ and v ·w = 1.

Proof. We have

h∗(w) = v ·w− h(v) = sup{tv · w− t ph(v) : t > 0}.
Hence the supremum above is achieved for t = 1, which implies that v · w =
ph(v) = 1. Thus

h∗(w) = (1 − p)h(v) = 1/p′. ��

Theorem 3.9. If the triple (u, σ, µ) solves the Monge-Kantorovich equation (3.12),
then u is a solution of problem (3.1) and the measure mµ/I is a solution of the mass
optimization problem (2.7). Moreover, (I/m)1/(p−1)u is a solution of the relaxed
displacement problem (3.10) and Iσ/m is a solution of the stress problem (2.8),
both related to the measure mµ/I.

Proof. We prove first that u is a solution of (3.1) and that µ(Rn) = I . Let (uh) be
a sequence in D(Rn;Rn) converging to u uniformly on �, with e(uh) uniformly
bounded on �, and vanishing on �. With an argument similar to the one used
in the proof of Lemma 3.6 we may assume that every uh actually vanishes in
a neighbourhood of � (depending on h). Then we have



152 Guy Bouchitté, Giuseppe Buttazzo

〈 f, u〉 = lim
h→+∞〈 f, uh〉 = − lim

h→+∞〈div(σµ), uh〉

= lim
h→+∞

∫
σ : e(uh) dµ = lim

h→+∞

∫
σ : eµ(uh) dµ

=
∫

σ : eµ(u) dµ

where we have used the fact that eµ(uh) converges to eµ(u) weakly in L p
µ (see

Remark 3.3). Therefore, since σ ∈ ∂ jµ
(
x, eµ(u)

)
, we obtain

(3.13) 〈 f, u〉 =
∫ [

jµ
(
x, eµ(u)

)+ j∗µ(x, σ)
]

dµ.

By Lemma 3.8 and condition iv) in (3.12), we have j∗µ(x, σ) = 1/p′ so that (3.13)
yields

〈 f, u〉 = µ(Rn).

We can repeat the computation above by using in (3.13) the Fenchel inequality
instead of the equality, and we obtain

〈 f, v〉 ≤ µ(Rn) ∀v ∈ Lip1,ρ(�,�).

This proves that u solves problem (3.1) and therefore 〈 f, u〉 = I( f,�,�) = µ(Rn).
Let us show now that ν is optimal for problem (2.7). Indeed, setting t =

(I/m)1/(p−1), we have

C(ν) ≤ 〈 f, tu〉−J(ν, tu) = 〈 f, tu〉−
∫

jν
(
x, eν(tu)

)
dν = tI−t p m

p
= I p′

p′m1/(p−1)

and so the optimality of ν follows from Theorem 2.3. To conclude the proof it is
now enough to apply the last statement of Proposition 3.7. ��

4. The scalar case

In this section we restrict the results obtained in Sects. 2 and 3 to the scalar case.
We recall that in this framework the mass optimization problem turns out to be
a model for the problem of finding the best distribution µ of a given conductor in
a given design region � in order to maximize the energy

E(µ) = inf
{ ∫

j(Du) dµ− 〈 f, u〉 : u ∈ D(Rn), u = 0 on �
}

among all admissible µ, constrained to have a prescribed total mass, that is∫
dµ = m, and a support into the design region, that is sptµ ⊂ �. Here the

term f represents a given heat sources density, which we assume to be a given
signed measure on � with finite total variation. The term scalar comes from the
fact that the state variable u (the temperature in the thermic model above) takes its
values in R. This allows to simplify the optimality equation (3.12) and to interpret
it as the optimality condition for a Monge-Kantorovich mass transport problem.
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Consequently, we will find in some cases explicit solutions to the mass and shape
optimization problems through the study of optimal transport rays.

We assume here that the design region � is a connected bounded open subset
of Rn with a Lipschitz boundary and that � is a closed subset of �. Moreover, for
simplicity we assume that j(z) = 1

p |z|p with p > 1, which gives, with the notation

of Sect. 2, ρ0(z) = ρ(z) = |z|. In this case, instead of Lip1,ρ(�,�) we simply
write Lip1(�,�). We may verify that the analogous of Theorem 2.3 still holds in
the scalar case, with the obvious modifications, and the quantity in (2.9) becomes

sup
{〈 f, u〉 : u ∈ Lip1(�,�)

}
.

Therefore, a measure µ is optimal for problem (2.7) if and only if there exists
a vector field σ ∈ L∞µ (�,Rn) such that λ = σµ solves problem (2.12), which in
this case takes the form

I( f,�,�) = inf
{ ∫

|λ| : λ ∈M(�;Rn), − divλ = f on Rn \�
}
.

Moreover, the field σ satisfies |σ | = I( f,�,�)/m. As the optimal measure µ

depends of the total mass m through a multiplicative factor, we will go further
assuming the normalization condition m = I( f,�,�).

In order to derive the Monge-Kantorovich equation we have to rephrase the
construction made in Sect. 3 when considering a gradient vector operator Du
instead of the matrix operator e(u). In this case the scheme, as depicted in [6], is
simpler and

X p′
µ (�;Rn) = {

σ ∈ L p′
µ (�;Rn) : div(σµ) ∈M(Rn)

}
.

The set Mµ(x) is now a linear subspace of Rn , that we call tangent space to µ at x
and we denote by Tµ(x). The tangential gradient of a smooth function u ∈ D(Rn)

is defined now through the orthogonal projector Pµ(x) on Tµ(x)

Dµu(x) = Pµ(x) Du(x)

and by an argument similar to the one of Lemma 3.2 we can show that the operator
Dµ is closable. This allows us to define the space of functions with finite en-
ergy, which contains all Lipschitz functions on �. Therefore Dµu is well defined
for every Lipschitz function u as an element of L∞µ (�;Rn) and the optimality
conditions (3.12) become as stated in [6]:

(4.1)




i) − div(Dµ(u)µ) = f on Rn \�

ii) u ∈ Lip1(�,�)

iii)
∣∣Dµ(u)

∣∣ = 1 µ-a.e. on Rn

iv) µ(�) = 0.

Here, due to the fact that the energy density function j is isotropic, we obtain
that every smooth solution u of (4.1) satisfies Dµu = Du µ-almost everywhere.
Indeed, from ii) and iii) for µ-a.e. x we have 1 = |Dµu| ≤ |Du| ≤ 1, so that
|Du − Dµu|2 = |Du|2 − |Dµu|2 = 0.
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Our aim is to derive an explicit expression for solutions µ of the mass op-
timization problem in terms of optimal transport measures γ associated to the
Monge-Kantorovich mass transport problem. We begin by showing (this is spe-
cific to the scalar case) that the class Lip1(�,�) can be completely characterized
through the geodesic semi-distance defined on �×� by

(4.2)
d�,�(x, y) = sup

{|ϕ(x)− ϕ(y)| : ϕ ∈ Lip(Rn), |Dϕ| ≤ 1 on �, ϕ = 0 on �
}
.

This semi-distance will play the role of cost function in the Monge-Kantorovich
mass transport problem.

Proposition 4.1. The following facts hold for the semi-distance d�,�.

i) d�,�(x, y) = |x − y| whenever x, y ∈ � \� and |x − y| is small enough;
ii) d�,�(x, y) ≤ C|x − y| for all x, y ∈ �, where C is a suitable constant which

depends only on �;
iii) if � is empty, then d�,� coincides with the usual geodesic distance

δ�(x, y) = min
{ ∫ 1

0
|γ ′(t)| dt : γ ∈ Lip([0, 1];�), γ(0) = x, γ(1) = y

}
;

iv) if � is nonempty, then

d�,�(x, y) = inf
{
δ�(x, y)∧ (δ�(x, ξ1)+ δ�(y, ξ2)

) : ξ1, ξ2 ∈ �
}
.

Proof. The only nontrivial part is the proof of iv). The inequality ≤ in iv) follows
immediately from iii) and from the triangle inequality for d�,�. In order to prove
the opposite inequality denote by c(x, y) the right-hand side in iv) and, given
x, y ∈ �, consider the function

ϕ(z) = 1

2

(
c(x, z)− δ�(x,�)− c(y, z)+ δ�(y,�)

)
.

It is easy to see that it satisfies ϕ = 0 on �, |Dϕ| ≤ 1 on �, and |ϕ(x)− ϕ(y)| =
c(x, y). Therefore, by the definition (4.2) we obtain d�,�(x, y) ≥ c(x, y) which
concludes the proof. ��

Notice that the minimum in iii) is always achieved, but in general, due to the
presence of the obstacle �, it can be nonunique, (see Example 5.7 and Fig. 6). We
denote by G(x1, x2) the set of all curves γ([0, 1]) where γ minimizes the geodesic
distance δ�(x1, x2) in iii), and we call the elements of G(x1, x2) geodesic rays. If
� is nonempty, we have to modify the definition of geodesic in order to fit with the
semi distance d�,�. In view of iv), we denote by D�(x1, x2) the following set of
two components curves:

D�(x1, x2) =
⋃

(ξ1,ξ2)∈�2

{
S1 ∪ S2 : S1 ∈ G(x1, ξ1), S2 ∈ G(x2, ξ2)

}
,
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and define

(4.3) G�(x1, x2) =




G(x1, x2) if d�,�(x1, x2) < δ�(x1, x2),

D�(x1, x2) if d�,�(x1, x2) > δ�(x1, x2),

G(x1, x2) ∪ D�(x1, x2) if d�,�(x1, x2) = δ�(x1, x2).

Then by the assertion iv) of Proposition 4.1, we obtainH1(S) = d�,�(x1, x2) and
H1(S ∩�) = 0 for every S ∈ G�(x1, x2).

Proposition 4.2. The following facts hold.

i) We have u ∈ Lip1(�,�) if and only if u = 0 on � and

(4.4) |u(x)− u(y)| ≤ d�,�(x, y) ∀x, y ∈ �.

In particular, by Proposition 4.1 ii), every function in Lip1(�,�) is Lipschitz
continuous.

ii) For a function u ∈ Lip1(�,�) and two points x, y ∈ �, we have |u(x) −
u(y)| = δ�,�(x, y) if and only if

|DSu| = 1 H1-a.e. on S, for every S ∈ G�(x, y).

iii) The multifunction (x, y) �→ G�(x, y) defined on �× � and ranging into the
family of compact subsets of � embedded with the Hausdorff metric topology
is upper semicontinuous, hence Borel regular (we refer to the book by Castaing
and Valadier [8] for all details about multifunctions and Hausdorff topology).

Proof. Let u ∈ Lip1(�,�) and let (uh) be an approximating sequence in D(Rn)

converging to u uniformly on � and such that uh = 0 on � and |Duh | ≤ 1 on �.
Then by the definition (4.2) of d�,� we obtain for all x, y ∈ �

|uh(x)− uh(y)| ≤ d�,�(x, y)

and (4.4) follows as h →+∞.
Conversely, let u verify (4.4) with u = 0 on �. By Proposition 4.1 ii), u is

Lipschitz continuous on �, and by Proposition 4.1 i), |Du| ≤ 1 Lebesgue a.e.
on �. By a procedure similar to the one used in Lemma 3.6 we may construct
a sequence (uh) in D(Rn) which approximates u uniformly, such that uh = 0 on
� and |Duh | ≤ 1 on �.

To prove the second assertion, take u ∈ Lip1(�,�) and x, y ∈ � such that
|u(x)− u(y)| = d�,�(x, y). Let S ∈ G�(x, y) and assume first that S is a geodesic
curve γ joining x to y, so that d�,�(x, y) = δ�(x, y) = H1(S). In this case, we
have

|u(x)− u(y)| = ∣∣u(γ(0))− u
(
γ(1)

)∣∣ = ∣∣∣ ∫ 1

0
Du
(
γ(t)

) · γ ′(t) dt
∣∣∣

≤
∫

S
|DSu| dH1 ≤ H1(S) = d�,�(x, y).
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Thus the previous inequality becomes an equality and so |DSu| = 1 must hold
H1-a.e.on S. In the other case, S = S1 ∪ S2 where S1, S2 are geodesic curves
joining x to x′, y to y′ where x′, y′ are suitable points in �. In the same way as
above the conclusion follows from the following inequalities

|u(x)− u(y)| ≤ |u(x)− u(x′)| + |u(y)− u(y′)|
≤
∫

S1∪S2

|DSu| dH1 ≤ H1(S) = d�,�(x, y).

In order to prove assertion iii), in view of (4.3) and by the continuity of δ�− d�,�,
it is enough to prove separately the upper semicontinuity for the multifunctions G
and D�. Let us consider a sequence {(xh, yh)} converging to (x, y) in �×�. Let
Sh be a geodesic curve between xh and yh and assume that {Sh} (or a subsequence
{Shk }) converges to some S in the Hausdorff convergence. By Proposition 4.1 ii),
the length of Sh is bounded uniformly by some constant L. Then there exists
a parametrization γh : [0, 1] �→ Rn of Sh with γh(0) = xh and γh(1) = yh , such
that |γ ′h| ≤ L. Therefore, {γh} is bounded in W1,∞(0, 1) and any uniform limit
point γ will satisfy γ([0, 1]) = S, γ(0) = x, γ(1) = y and

H1(S) =
∫ 1

0
|γ ′|(t) dt ≤ lim inf

h→∞

∫ 1

0
|γ ′h |(t) dt ≤ lim sup

h→∞
δ�(xh, yh) = δ�(x, y).

Thus S belongs to G(x, y) and the upper semicontinuity property of G is proved.
The case of D� can be treated in a similar way by considering Sh = S1,h ∪ S2,h
where S1,h (respectively S2,h ) is a geodesic curve joining xh to ξ1,h (respectively
yh to ξ2,h) with (ξ1,h, ξ2,h) ∈ �2. Then, as � is compact, we may assume, pos-
sibly passing to subsequences, that (ξ1,h, ξ2,h) converges to some (ξ1, ξ2) and that
(S1,h, S2,h) converges to a pair of curves (S1, S2) joining x to ξ1 and y to ξ2. Then
we apply the previous step to conclude that each Si is a geodesic curve, so that
S1 ∪ S2 belongs to D�(x, y). ��

Let us now consider the mass transport problem associated to the cost function
d�,�. Given two measures λ1, λ2 ∈M+(�) such that λ1(�) = λ2(�) we define
the distance

(4.5) �(λ1, λ2) = min
{ ∫

d�,�(x, y) γ(dx, dy) : γ ∈ �(λ1, λ2)
}

where �(λ1, λ2) is the class of measures ofM+(�×�) whose marginals are λ1
and λ2, i.e.

λ1(B) = γ(B ×�) and λ2(B) = γ(�× B) for every Borel set B ⊂ �.

Remark 4.3. By the continuity of d�,� on the compact set � × �, we find easily
that the minimum in (4.5) is achieved. Moreover, thanks to the first assertion of
Theorem 4.5 below, it turns out that � defines a homogeneous semidistance on
probability measures on �: indeed

�(λ1, λ2) = sup
{ ∫

ϕ dλ1 −
∫

ϕ dλ2 : ϕ ∈ Lip1(�,�)
}
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is a 1-homogeneous subadditive function of λ1 − λ2 vanishing if and only if the
support of λ1−λ2 is contained in �. We may extend� by setting�(λ1, λ2) = +∞
if λ1(�) $= λ2(�).

Remark 4.4. In the case � = ∅ and � = Rn the function � in (4.5) is the
Kantorovich distance between λ1 and λ2. A celebrated result is that in this case the
distance �(λ1, λ2) can be expressed by

(4.6) inf
{ ∫

|x − T(x)| dλ1(x) : T #(λ1) = λ2

}
whenever this last is finite, where the infimum is taken over all transport mappings
T : Rn → Rn and T # is the push-forward operator. For the conditions on λ1 and
λ2 which imply the existence of an optimal transport map T in (4.6) we refer to the
recent books [14,23]. For variants of this result in case of different cost functionals
appearing in (4.6) we refer to [16].

The next result makes the link between the semidistance � and the quantity
I( f,�,�) defined in (2.9) which is directly related to the Monge-Kantorovich
problem of Sect. 3.

Theorem 4.5. The following facts hold.

i) If two measures λ1, λ2 ∈M+(�) are such that λ1(�) = λ2(�), then setting
f = λ1 − λ2 we have

�(λ1, λ2) = �( f +, f −) = I( f,�,�).

ii) Let f ∈M(�) and let c = ∫
d f . We denote by ν any probability measure on

� in case it is not empty. We have

I( f,�,�) = inf
{
�(λ1, λ2) : λ2 − λ1 = f on � \�

}

=



�( f +, f −) if � = ∅(+∞ if c $= 0)

�( f +, f − + cν) if � $= ∅ and c ≥ 0

�( f + − cν, f−) if � $= ∅ and c ≤ 0.

Proof. First we notice that, for elements of M+(�) such that λ1(�) = λ2(�),
λ′1(�) = λ′2(�), we have

(4.7) �(λ1, λ2) = �
(
λ′1, λ′2

)
whenever λ′1 − λ′2 = λ1 − λ2 on � \�.

Indeed, as d�,� vanishes on �×� and on the diagonal, without changing the cost
functional, we may add (or subtract) to every competitor γ in (4.5) the measure δ

given by

〈δ, ϕ〉 :=
∫
�\�

ϕ(x, x) νi(dx)+ 1

m

∫
�×�

ϕ(x, y) ν1 ⊗ ν2(dx, dy)

where νi := λ′i−λi and m := ∫
� νi (i = 1, 2), without changing the cost functional.
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Then the first equality of i) is deduced from (4.7) by taking λ′1 = f +, λ′2 = f −.
In fact, if � is nonempty, we may start with a non balanced signed measure f
(c = ∫

d f ), and replace in (4.7) λ′1 by f −−cν if c < 0 (respectively λ′2 by f −+cν
if c > 0) where ν is a probability measure on �. In this case, we obtain

�(λ1, λ2) =
{
�( f +, f − + cν) if c > 0

�( f + − cν, f−) if c < 0,

whenever λ2 − λ1 = f on � \ �. Hence the second equality of i) and ii) are
consequences of the following claim: for every signed measure f on �

(4.8) I( f,�,�) = inf
{
�(λ1, λ2) : λ2 − λ1 = f on � \�}.

We introduce the following function G defined on C(�×�):

G(p) := inf
ϕ∈C(�)

{−〈 f, ϕ〉 : ϕ = 0 on �,

ϕ(y)− ϕ(x)+ p(x, y) ≤ d�,�(x, y) on �×�

}
.

It turns out that G is convex and, by the characterization of Lip1(�,�) given in
Proposition 4.2, we have G(0) = −I( f,�,�) (here p plays the role of a perturba-
tion parameter). Let us compute the Moreau-Fenchel conjugate of G in the duality(
M(�×�), C(�×�)

)
. Given γ ∈M(�×�) whose marginals are denoted by

λ1, λ2, we have

G∗(γ) = sup
{ ∫

p dγ − G(p) : p ∈ C(�×�)
}

= sup
{∫

�×� p dγ + ∫� ϕ d f : ϕ = 0 on �,

ϕ(y)− ϕ(x)+ p(x, y) ≤ d�,�(x, y) on �2

}

=



∫
�×�

d�,�(x, y) dγ+supϕ=0 on �

{ ∫
�×�

(ϕ(x)−ϕ(y)) dγ+∫
�
ϕ d f

}
if γ ≥ 0

+∞ otherwise

=


∫
�×�

d�,�(x, y) dγ if γ ≥ 0 and λ2 − λ1 = f on � \�

+∞ otherwise.

Thus claim (4.8) amounts to showing that G(0) = − inf G∗ = G∗∗(0). The
inequality G∗∗(0) ≤ G(0) being always true, we have to prove that G(0)≤ G∗∗(0).
We may assume that G(0) > −∞ (i.e. I( f,�,�) < +∞). As G is convex and
finite at 0, the claim (4.8) will be a consequence of the lower semicontinuity of G
at 0. Let {ph}h∈N be a sequence in C(�×�) such that ph converge uniformly to 0.
Then there exists a sequence {ϕh} in C(�) such that

(4.9) G(ph) > −
∫
�

ϕh d f − 1

h
, ϕh = 0 on �,

ϕh(y)− ϕh(x)+ ph(x, y) ≤ d�,�(x, y) on �2.
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Then by the assertion ii) of Proposition 4.1, there holds for every (x, y) ∈ �2 and
for a suitable constant C:

(4.10) |ϕh(x)− ϕh(y)| ≤ C|x − y| + ‖ph‖∞.

As ‖ph‖∞ tends to 0, (4.10) implies that the sequence {ϕh} is equicontinuous
on �. Then, setting ch := ϕh(x0) for a fixed x0 ∈ �, we deduce the boundedness
of the set {ϕh(x) − ch} for every x ∈ �. By Ascoli-Arzelà’s theorem, the set
{ϕh − ch : h ∈ N} is precompact in C(�).

In the case � $= ∅, we may take x0 ∈ �; then ch = 0 and by (4.9) any cluster
point ϕ of {ϕh : h ∈ N} satisfies ϕ = 0 on � and ϕ(y)−ϕ(x) ≤ d�,�(x, y) on �2.
Thus, for a suitable subsequence hk, we obtain

lim inf
h

G(ph) = lim
k

G(phk) ≥ lim inf
k

∫
�

−ϕhk d f ≥ −
∫
�

ϕ d f ≥ G(0).

The case � = ∅, can be concluded in the same way noticing that, by the as-
sumption −G(0) = I( f,�,�) < +∞, the measure f has average zero and then∫
(ϕh − ch) d f = ∫

ϕh for every h. ��

We are now able to reconstruct optimal mass distributions µ from the optimal
transport measures γ for (4.5). This means that the optimal µ is fibrated by the
subset of geodesic along which the transport takes place.

Theorem 4.6. Let f ∈M(�) and let γ be a solution of (4.5) being (λ1, λ2) any
pair such that λ2 − λ1 = f on � \�. Then for every Borel selection (x, y) �→ Sxy

of the multifunction G�, the measure µ defined by

(4.11) 〈µ, ϕ〉 =
∫
�×�

( ∫
Sxy

ϕ dH1
)

dγ(dx, dy), ϕ ∈ C(�)

is optimal for problem (2.7) with m = I( f,�,�). Moreover, denoting by τSxy the
unit tangent vector to Sxy (oriented from x to y), the field σ := Dµu given in (4.1)
can be represented as the Radon-Nikodym derivative with respect to µ of the vector
measure

(4.12) 〈σµ,�〉 :=
∫
�×�

( ∫
Sxy

� · τSxy dH1
)

dγ(dx, dy), ψ ∈ C(�;Rn).

Proof. As all curves S ∈ G�(x, y) lie in � and satisfyH1(S∩�) = 0, it is clear that
the measureµ defined by (4.11) is supported in � and that µ(�) = 0. According to
our observations preceding (4.1), we may assume that I = I( f,�,�) = m. Then,
since the density σ given by (4.12) satisfies |σ | = 1 µ-a.e., we have by (4.11) and
Proposition (4.2)∫

�

|σ | dµ =
∫
�

µ =
∫
�×�

H1(Sxy) γ(dx, dy)

=
∫
�×�

d�,�(x, y) γ(dx, dy) = I( f,�,�) = m.
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Therefore λ := σµ solves (2.12) provided σ satisfies the condition − divσµ = f
on Rn \�. Let us apply (4.12) to � = Dϕ where ϕ is a test function inD(Rn). We
obtain

〈− divσµ, ϕ〉 =
∫
�×�

( ∫
Sxy

Dτxyϕ dH1
)
γ(dx, dy)

=
∫
�×�

(
ϕ(y)− ϕ(x)

)
γ(dx, dy)

=〈λ2 − λ1, ϕ〉.
Thus the measure− divσµ = λ2 − λ1 agrees with f on Rn \�. The optimality of
µ follows by applying to λ := σµ the assertion iii) of Theorem 3.3. ��

Remark 4.7. A meaningful consequence of this result is that there exist optimal
measures µ supported by the geodesic hull of K := spt f ∪ �, that is by the
set ∪{G�(x, y) : (x, y) ∈ K × K}. An interesting question is the validity of
the converse implication: does the optimality of µ imply its representation under
the form (4.11), being γ an optimal transport measure? This question has been
solved in [14] in the case of a Lipschitz source term f verifying the condition
spt f+ ∩ spt f − = ∅, � = Rn and � = ∅ (then K is the convex hull of spt f ),
by using a quite involved approximation procedure and by solving an ODE along
geodesic rays.

5. Some examples

In this section we present some examples of optimal structures both in the scalar
case as well as in the case of elasticity. The optimality of the described structures
will be tested through the Monge-Kantorovich conditions (3.12).

Example 5.1. We start with the following problem in elasticity: distribute in R2

a given amount of mass in order to minimize the elastic compliance related to the
force field f = δAτ1 + δBτ2 + δCτ3 described in figure below.

Fig. 1. The force f
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A first guess for the optimal measure µ, when we deal with the usual stored
energies of the linear isotropic elasticity, could be choosing any of the two one-
dimensional structures of figure below, where the total mass is prescribed, and the
one-dimensional density of µ on bars is constant.

Fig. 2. Two structures that are not optimal

By the results of Sect. 3 we know that a mass distribution µ is optimal if and
only if a multiple of it satisfies the Monge-Kantorovichequation (3.12) which reads
in this case:

(5.1)




i) − div(σµ) = f on R2

ii) σ ∈ ∂ jµ
(
x, eµ(u)

)
µ-a.e. on R2

iii) u ∈ Lip1,ρ(R
2)

iv) jµ
(
x, eµ(u)

) = 1/p µ-a.e. on R2.

Let us consider the case of a linear isotropic stored energy

(5.2) j(z) = α

2
|tr(zsym)|2 + β|zsym|2

where α and β are the Lamé constants in dimension two. A straightforward calcu-
lation shows that for a given total mass m the compliances of the two structures µ1
and µ1 of Fig. 2 coincide; we shall now prove that none of them is optimal, that is

inf
{
C(µ) : µ ∈M+(R2),

∫
dµ = m

}
< C(µ1) = C(µ2).

By rescaling the mass we may take for instance the case µ = µ1 = H1 S and
we argue by contradiction that is we assume the existence of some u ∈ Lip1,ρ(R

2)

such that (u, µ) satisfies (5.1). Equations i), ii), iv) determine the tangent component
of u on S = OA∪OB ∪OC up to a constant that we fix in order to have u(0) = 0.
We have jµ

(
eµ(u)

) = 1/2 H1-a.e. on S, and setting c = 2 jµ(τi ⊗ τi) (which by
isotropy does not depend on the index i), we deduce

(5.3) j∗(η⊗ η) = 1

2c
for every unit vector η.
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Moreover, we obtain for the tangential component v(s) = u(sτi) · τi on S

1

2
jµ(τi ⊗ τiv

′) = |v′|2 c

2

which gives

(5.4) v(s) = sc−1/2.

Since u is defined on the whole R2 and satisfies (5.1) iii) by applying Lemma 3.6
with the two dimensional Lebesgue measure,we must have

(5.5) j
(
e(u)

) ≤ 1/2 a.e. on R2.

Let us now consider the matrix

σ0(x) =




e1 ⊗ e1 on triangle AOB

e+ ⊗ e+ on triangle AOC

e− ⊗ e− on triangle COB

where e1 = AB/|AB|, e+ = AC/|AC|, e− = BC/|BC|. We have for every t ∈ R

1/2 ≥ j
(
e(u)

) ≥ tσ0 : e(u)− t2 j∗(σ0) = tσ0 : e(u)− t2

2c

where we have used (5.3) in the last equality. By integration, denoting by � the
triangle ABC, by n(x) a unit vector normal to S, and to ∂�, and by [·] the jump
across S, we obtain

(5.6)
|�|
2

≥ t
∫
�

σ0 : e(u) dx − t2|�|
2c

= t
∫

S
[σ0n] · u dH1 + t

∫
∂�

(σ0n) · u dH1 − t2|�|
2c

.

By construction σ0n = 0 on ∂�, and the jump [σ0n] is purely tangential:

[σ0n] =
√

3

2
τi on Si .

Thus, (5.4) and (5.5) yield

1 ≥ t
√

3

|�|√c

∫
S
|x| dH1 − t2

c
= t

√
3

|�|√c

|S|2
6

− t2

c

and so, taking the supremum with respect to t,

1 ≥ 1

48

|S|4
|�|2 .

Since 12|�| = √
3|S|2 the last inequality is an equality, which implies that all

previous inequalities are actually equalities. In particular we obtain for a suitable
t ∈ R

j
(
e(u)

)+ j∗(tσ0) = tσ0 : e(u)
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which gives

e(u) = ∂ j∗(tσ0) = t

2β
σ0 − tα

4β(α+ β)
I.

From this last relation we deduce that the three matrices e1⊗ e1, e+⊗ e+, e−⊗ e−
must be rank one connected and have to satisfy the equalities


(e1 ⊗ e1)τ1 = (e+ ⊗ e+)τ1

(e1 ⊗ e1)τ2 = (e− ⊗ e−)τ2

(e+ ⊗ e+)τ3 = (e− ⊗ e−)τ3

which is impossible.

Remark 5.2. By repeating the argument above for a stored energy density j(z)which
is p-homogeneous, isotropic and convex, we can show that if the structures of Fig. 2
are optimal, then there exist three matrices A1 ∈ ∂ j∗(e1⊗e1), A+ ∈ ∂ j∗(e+⊗e+),
A− ∈ ∂ j∗(e− ⊗ e−) such that 


A1τ1 = A+τ1

A1τ2 = A−τ2

A+τ3 = A−τ3.

Remark 5.3. If we consider the so called two-dimensional Michell energy density

(5.7) j0(z) = 1

2
|||zsym|||2

where ||| · ||| denotes the operator norm on symmetric matrices, the corresponding
stress potential is given by

j∗0 (σ) =
1

2
(|t1| + |t2|)2

where t1 and t2 denote the eigenvalues of the symmetric matrix σ . Then we have
for every unit vector ξ

j0(I )+ j∗0 (ξ ⊗ ξ) = 1

that is I ∈ ∂ j∗0 (ξ⊗ ξ) for every ξ ∈ R2. Therefore the structures of Fig. 2 solve the
Monge-Kantorovich equation (5.1) with u(x) = x, hence they are optimal.

Remark 5.4. The structures of Fig. 2 turn out to be optimal among all one-
dimensional structures; indeed for a one-dimensional structure µ the two energies
j and j0 of (5.2) and (5.7) coincide and so, by Remark 5.3 the optimum is reached
on the ones of Fig. 2. As a consequence, we can assert that for the case (5.2)
of linear elasticity, no one-dimensional structure gives the optimum. A numerical
computation by F. Golay and Seppecher (see [18]) shows for the case (5.2) the
following optimal mass distribution.
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Fig. 3. The two-dimensional optimal mass distribution

We consider now some examples for optimal conductivity problems where the
state function u is scalar, and so the Monge-Kantorovich conditions (3.12) reduce
to (4.1). In each of the following three examples we shall specify the optimal
transport measure γ and the optimal mass distribution µ given by (4.11).

Example 5.5. Let us consider a continuous plane curve S in polar coordinates,
r = h(θ), with length L, and let f be the heat sources density made by a one-
dimensional constant density on the curve S and a point concentration at the origin,
that is

f = H1 S − LδO .

Then, the unique admissible transport γ is given by

γ = H1 S ⊗ LδO

so that the optimal pair (µ0, u0) is given by

µ0 = c

r

√
h2(θ)+ |h′(θ)|2H2 R , u0 = r

c

for a suitable constant c > 0, where R is the set 0 ≤ r ≤ h(θ). In case h is a BV
function presenting a jump [h−, h+] at some θ0, then the additional concentration
c(h+ − r ∨ h−)H1 occurs on the corresponding ray, which shows that optimal
measures may have terms of lower dimension. In Fig. 4 we display the optimal
density µ0 for a particular plane curve.

Example 5.6. We consider now the case of a rectangle R = [0, L] × [0, 1] in R2,
we take the Dirichlet region � = [L/3, 2L/3] × {1} and the source term f given
by the one-dimensional densities 2 on the left side and−1 on the right side, that is

f = 2H1 ({0} × [0, 1])−H1 ({L} × [0, 1]).
Note that in this example the average of f is not zero, so that some measure on
� must be considered in the mass transport problem as a compensation term. The
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Fig. 4. The optimal mass distribution

problem specified in Theorem 4.5 is solved if we take, with the same notation used
there:

γ = 2H1 ({0} × [0, x0]
)⊗H1 ({L} × [0, 2x0]

)
+ 2H1 ({0} × [x0, 1])⊗ kAδA + kBδB ⊗H1 ({L} × [2x0, 1])

where A = (L/3, 1), B = (2L/3, 1), kA = 2(1 − x0), kB = 1 − 2x0. Here the
point x0 depends on L according to the formula

x0 =
(

9 −√
9 + 28L2

12

)+
.

The optimal measure µ is then deduced from γ through (4.11). Figure 5 below
represents the optimal measure µ in the case L = 1.
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Fig. 5. The optimal mass distribution for L = 1
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Example 5.7. We consider now a case when the design region is not convex;
the geodesic rays will then no longer be unique and rectilinear. We take for �

the complement of the unit disk in R2 and we take for the source term a one-
dimensional constant density on the segment S = {

(−2, t) : |t| ≤ 1
}

and a point
concentration at the point A = (1, 0), that is

f = H1 S − 2δA.

The optimal transport measure γ is in this case simply

γ = H1 S ⊗ 2δA

but, due to the nonconvexity of �, and hence to the presence of an obstacle for
geodesic rays, the optimal mass distribution µ is of the form

µ = α(x)H2 �+ β(x)H1 ∂�

for suitable densities α(x) and β(x). Figure 6 below gives a representation of the
optimal measure µ.

1
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Fig. 6. The optimal mass distribution with an obstacle

We conclude this section by addressing some perspectives and open questions
that seem to us challenging.

In the scalar case we have seen in Remark 4.7 that there are (actually we believe
it is true for all) optimal measures supported by the geodesic hull of spt f ∪ �

with respect to the semi-distance d�,�. In particular, in the case where the design
region � coincides with Rn , if spt f is bounded we obtain that sptµopt is bounded
as well. This last issue seems to be reasonable to occur also in the case of elasticity,
and numerical computations support this conjecture. However, up to now we have
been unable to prove this fact, even in the particular case of Example 5.1.

Another question is related to the behaviour of shape optimization problems for
linear elasticity, where we restrict the class of admissible measures to the ones of
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the form 1ω dx with m = meas(ω) a small parameter. The question is to determine
the limit problem as m → 0, in the sense of �-convergence, for the rescaled
compliances

Cm(µ) = mC(mµ)

(
being µ = 1

m
1ω dx

)
.

The form of the limit problem has only been conjectured in [1] in the cases n = 2
and n = 3 for the linear isotropic elasticity, and is related to the Michell problem
in the case n = 2.

A final question is concerned with a deep difference between the scalar case
and the case of elasticity: in the first one optimal solutions are related to geodesic
transport rays, whereas in the second one we do not even know the connection with
any kind of transport problem. The reason is that in general the class Lip1,ρ(�,�)

introduced in Sect. 3 cannot be characterized through a two-points condition similar
to the one of Proposition 4.2 i). However, the case of Michell energy density (5.7)
seems to be an exception: indeed if ρ(z) = |||zsym||| we have

u ∈ Lip1,ρ(R
n) ⇐⇒ (

u(x)− u(y)
) · (x − y) ≤ |x − y|2

and some of the duality arguments of the scalar case could be applied to this case
as well. This matter will be the object of a forthcoming paper.
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