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Abstract. Our purpose in this paper is to provide a general approach to model selection via
penalization for Gaussian regression and to develop our point of view about this subject.
The advantage and importance of model selection come from the fact that it provides
a suitable approach to many different types of problems, starting from model selection
per se (among a family of parametric models, which one is more suitable for the data at
hand), which includes for instance variable selection in regression models, to nonparametric
estimation, for which it provides a very powerful tool that allows adaptation under quite
general circumstances. Our approach to model selection also provides a natural connection
between the parametric and nonparametric points of view and copes naturally with the fact
that a model is not necessarily true. The method is based on the penalization of a least
squares criterion which can be viewed as a generalization of Mallows’ Cp. A large part
of our efforts will be put on choosing properly the list of models and the penalty function
for various estimation problems like classical variable selection or adaptive estimation for
various types of lp-bodies.

1. Introducing model selection from a nonasymptotic point of view

Choosing a proper parameter set is a difficult task in many estimation problems.
A large one systematically leads to a large risk while a small one may result in
the same consequence, due to unduly large bias. Both excessively complicated or
oversimplified models should be avoided. The dilemna of the choice, between many
possible models, of one which is adequate for the situation at hand, depending on
both the unknown complexity of the true parameter to be estimated and the known
amount of noise or number of observations, is often a nightmare for the statistician.
The purpose of this paper is to provide a general methodology, namely model
selection via penalization, for solving such problems within a unified Gaussian
framework which covers many classical situations involving Gaussian variables.
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Our approach to model selection via penalization has been inspired by the
pioneering paper of Barron and Cover (1991) and first introduced in the context
of density estimation in Birgé and Massart (1997). It was then developed at length
by Barron et al. (1999) for various estimation problems concerning independent
data but at the price of a lot of technicalities. Focusing on the simplest situation
of Gaussian settings allows to describe the main specificities of our method with
less technical efforts, to better emphasize the ideas underlying our approach and
to get much more precise results with shorter proofs. Generalizations have been
developed for general regression (possibly non-Gaussian) settings by Baraud (1997
and 2000) and Baraud et al. (1997 and 1999) and for exponential models in density
estimation by Castellan (1999). A penalization method based on model complexity
and which is close to ours can be found in Yang (1999).

1.1. A few classical Gaussian statistical frameworks

Let us begin our illustration of the difficulties the statistician is faced to, when
choosing a proper model for an estimation problem, by a brief review of some
popular Gaussian settings.

1.1.1. Gaussian linear regression

Gaussian linear regression is a statistical framework in which we observe a Gaus-
sian vector Y ∈ Rn with coordinates Yi satisfying

Yi =
N∑

λ=1

βλXλ
i + σξi for 1 ≤ i ≤ n, (1.1)

where the random variables ξi are i.i.d. standard normal while the Xλ
i s are determin-

istic observable quantities and the βλs, 1 ≤ λ ≤ N, unknown real parameters. We
moreover assume here that σ is known. This corresponds to a situation where one
observes some real variables (here “variable” is taken in its physical sense, not the
probabilistic one) X1, . . . , X N and Y at n different times or under n different cir-
cumstances. This results in n groups of values of those variables (X1

i , . . . , X N
i ,Yi)

for 1 ≤ i ≤ n, each group corresponding to a time of observation or a particular
experiment. We denote by Y = (Yi)1≤i≤n and X1, . . . , X N the corresponding vec-
tors. In this setting the main assumption is that the variable of interest Y is a linear
(but otherwise unknown) function of the explanatory variables X1, . . . , X N plus
some random perturbation. We want to estimate the parameters βλ or equivalently
the mean µ = E[Y ] of the Gaussian vector Y , assuming that it belongs to the
N-dimensional linear subspace of Rn generated by X1, . . . , X N .

As a particular case, corresponding to N = 1 and X1
i = 1 for 1 ≤ i ≤ n, there

is only one unknown parameter β1 = θ and we observe n i.i.d. random variables
with distribution N (θ, σ2). It is well-known, then, that the best we can do (from
the minimax or some Bayesian point of view) is to estimate θ by the maximum
likelihood estimator θ̂ = n−1 ∑n

i=1 Yi and that the resulting quadratic risk for
estimating θ is E

[
(θ̂ − θ)2

] = n−1σ2. Rewriting the risk in terms of the parameter
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µ and its estimator µ̂ (with µ̂i = θ̂ for all i), we get

E

[
‖µ̂ − µ‖2

n

]
= n−1σ2, (1.2)

where‖·‖n denotes the normalized Euclidean norm inRn, i.e. ‖µ‖n =n−1 ∑n
i=1 µ2

i ,
which we introduce here instead of the usual one for the sake of coherence: with
this norm, θ̂ and µ̂ have the same risk and, if all coordinates µi of µ are bounded
independently of i, then ‖µ‖n also remains bounded independently of n.

1.1.2. Fixed design Gaussian regression

Analogous to the previous setting, but with a different flavour, is the fixed design
Gaussian regression. Let s be some bounded function on [0, 1] and 0 ≤ x1 ≤ x2 ≤
· · · ≤ xn ≤ 1 a sequence of observation points in [0, 1] (the design). In this setting,
we observe the finite sequence

Yi = s(xi) + σ ξi , 1 ≤ i ≤ n, (1.3)

where the random variables ξi , 1 ≤ i ≤ n are also i.i.d. standard normal. We want
to estimate the function s by ŝ, based on the set of observations {Yi}1≤i≤n with
risk E

[‖ŝ − s‖2
n

]
where ‖ · ‖n again denotes the normalized Euclidean norm, i.e.

‖t‖n = n−1 ∑n
i=1 t2(xi). This normalization allows an easy comparison with the

functional L2-norm since ‖t‖n is close to the norm of t in L2([0, 1], dx) provided
that n is large, the design is regular and t is smooth. If we assume that s belongs
to some N-dimensional linear space of functions with basis (ϕ1, . . . , ϕN ), we are
back to the Gaussian linear regression setting (1.1) with Xλ

i = ϕλ(xi).

1.1.3. The white noise framework

The natural generalization of the fixed design regression, when the unknown func-
tion s is observed in continuous time, rather that at discrete points xi , is the so-called
white noise framework, which is supposed to give a probabilistic model for a deter-
ministic signal observed with additional Gaussian noise. Its use has been initiated
by Ibragimov and Has’minskii in the late seventies and it has then been popularized
and extensively studied during the last 20 years by the “Russian school” as a toy
model for many more complicated frameworks. One observes a path of the process

Y(z) =
∫ z

0
s(x) dx + εW(z), 0 ≤ z ≤ 1, (1.4)

where W is a standard Brownian motion originating from 0 and s is an unknown
function inL2([0, 1], dx). Equivalently, Y can be viewed as the solution, originating
from zero, of the stochastic differential equation dY(z) = s(z) dz + ε dW(z). We
look for estimators ŝ of s (i.e. functions of Y and the known parameters like ε)
belonging to L2([0, 1], dx) with quadratic risk given by E

[‖ŝ − s‖2
]

where ‖ · ‖
denotes the norm in L2([0, 1], dx).
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1.1.4. The Gaussian sequence framework

The white noise framework is not connected to any specific orthonormal basis of
L2([0, 1], dx) but, once we have choosen such a basis {ϕλ}λ∈
 with 
 = N� =
N \ {0}, it can be transformed into the so-called Gaussian sequence framework.
This means that we observe the filtered version of Y through the basis, i.e. the
sequence of stochastic integrals Yλ = ∫ 1

0 ϕλ(z) dY(z), for λ ∈ 
, where Y is the
process defined by (1.4). This is a Gaussian sequence of the form

Yλ = βλ + ε ξλ, λ ∈ 
, (βλ)λ∈
 ∈ l2(
). (1.5)

Here βλ = 〈s, ϕλ〉 and the random variables ξλ are i.i.d. standard normal. One
can identify s with the sequence (βλ)λ∈
 and estimate it by some ŝ ∈ l2(
) with
a risk E

[‖ŝ − s‖2
]
. The norm ‖ · ‖ is now the norm in l2(
) and the problem is

equivalent to the previous one. SinceE[Yλ] = βλ the problem of estimating s within
the framework described by (1.5) can also be considered as an infinite-dimensional
extension of the Gaussian linear regression where we want to estimate the mean µ

of Y ∈ RN .
The interest and importance of the Gaussian sequence framework are due to

the fact that, for proper choices of the basis {ϕλ}λ∈
, smoothness properties of the
parameter s ∈ L2([0, 1], dx) in (1.4) can be translated into geometric properties
of s ∈ l2(
) in (1.5) via the identification s = (βλ)λ∈
. Let us illustrate this
fact by the following classical example. For α some positive integer and R > 0,
the Sobolev class Wα(R) on the torus R/Z is defined as the set of functions
s on [0, 1] which are the restriction to [0, 1] of periodic functions on the line
with period 1 satisfying ‖s(α)‖ ≤ R. Given the trigonometric basis ϕ1 = 1 and,
for j ≥ 1, ϕ2 j(z) = √

2 cos(2π jz) and ϕ2 j+1(z) = √
2 sin(2π jz), it follows

from Plancherel’s formula that s = ∑
λ∈
 βλϕλ belongs to Wα(R) if and only

if
∑∞

j=1(2π j)2α
[
β2

2 j + β2
2 j+1

]
≤ R2 or equivalently if the sequence (βλ)λ∈


belongs to the ellipsoid

E(α, R) =
{
(βλ)λ∈


∣∣∣∣∣
∑
λ∈


(
βλ

aλ

)2

≤ 1

}
, (1.6)

with

a1 = +∞ and a2 j = a2 j+1 = R(2π j)−α for j ≥ 1.

This means that, via the identification between s ∈ L2([0, 1], dx) and its coordi-
nates vector (〈s, ϕλ〉)λ∈
 ∈ l2(
), one can view a Sobolev ball as a geometric
object which is an infinite dimensional ellipsoid in l2(
).

1.2. Model selection: motivations and purposes

1.2.1. Variable selection in regression

Let us go back to the framework of Sect. 1.1.1 where we want to estimate µ = E[Y ]
with some estimator µ̂(Y) and loss function ‖µ − µ̂‖2

n . In this case, the most
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classical estimator µ̂ of µ is the maximum likelihood estimator, which is also the
least squares estimator, i.e. the orthogonal projection of Y onto the linear space
generated by the vectors {Xλ}1≤λ≤N , and its risk is given by E

[‖µ̂ − µ‖2
n

] =
Nσ2/n. This is satisfactory when N is small but certainly not if N is large and
only a small number of the N explanatory variables are really influential. Let
us for instance assume that, in (1.1), βλ = 0 for λ �∈ m where m is a subset of
{1; . . . ; N}. Then, using the orthogonal projection µ̂m of Y onto the linear span Sm
of {Xλ}λ∈m as an estimator of µ, instead of µ̂, leads to the substantially reduced
risk |m|σ2/n if |m|/N is small. This actually remains true if the assumption
that βλ = 0 for λ �∈ m only holds approximately. Indeed, for any subset m
of {1; . . . ; N},

E

[
‖µ̂m − µ‖2

n

]
= |m|σ2/n + ‖µm − µ‖2

n, (1.7)

where µm denotes the orthogonal projection of µ onto Sm , and the risk of µ̂m
may be substantially smaller than Nσ2/n provided that |m|/N is small and
‖µm − µ‖2

n not large as compared to σ2/n. In any case, it would be advisable
to choose a value of m which minimizes, at least approximately, the right-hand
side of (1.7).

Unfortunately, this approach is definitely irrealistic from a practical point of
view. Even if one suspects that only a small proportion of the N explanatory
variables are really influential and that a good choice of m would lead to an
improved risk, such a set is typically unknown. It follows from (1.7) that this set
should be small in order to keep the so-called variance term |m|σ2/n small. But
if it is too small, there is a serious chance that we omit some influential variables
which would result in a possibly large bias term ‖µm − µ‖2

n . At the opposite,
including in the model all the explanatory variables Xλ that we believe may have
some influence on Y , i.e. the whole set of variables X1, . . . , X N , makes the bias
vanish, but at the price of a much larger variance term when N is not small. We
are then faced to the problem of finding a suitable set m of influential variables
which is neither too small nor too large. This is a typical problem of variable
selection which can be formalized in the following way: given some familyM of
subsets of {1; . . . ; N}, how can we choose an element m ∈M which is as good
as possible, i.e. minimizes, at least approximately, the risk (1.7), although µm is
not known to the statistician. It may look strange, at this stage of our reflexion, to
choose someMwhich is not the family of all subsets of {1; . . . ; N}, but a possibly
smaller one. There are at least two good reasons for that. One is connected to some
situations where the variables are naturally ordered and it is therefore meaningful
to retain the first D variables for some D ≤ N. In this case M is the family
of all sets of the form {1; . . . ; D} for 0 ≤ D ≤ N (D = 0 corresponding to
the empty set). This is the problem of ordered variable selection, as opposed to
complete variable selection whenM contains all subsets of {1; . . . ; N}. A further
reason for distinguishing between the two problems is the fact that it is much
more difficult to guess an optimal value of m in the case of complete variable
selection that in the case of ordered variable selection because M is then much
larger.
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1.2.2. Curve estimation and adaptation

The same problem of identifying a reasonably small number of “significant” pa-
rameters also occurs in curve estimation, i.e. the estimation of an unknown function
like s in (1.4) or (1.5) (via the identification s = (βλ)λ∈
). Going back to the es-
timation of the function s from the Gaussian sequence (1.5) under the assumption
that it belongs to the ellipsoid E(α, R) defined by (1.6), we recall the classical
solution to this problem: fix some positive integer D and estimate βλ by Yλ for
1 ≤ λ ≤ D and by 0 for λ > D. The resulting estimator ŝD = ∑D

λ=1 Yλeλ, where
(eλ)λ∈
 denotes the canonical basis in l2(
), is called the projection estimator on
the D-dimensional linear space SD generated by {e1; . . . ; eD}. It follows from the
monotonicity of the sequence (aλ)λ∈
 that

∑
λ>D β2

λ ≤ a2
D+1, which implies that

the risk of ŝD can be bounded by

E

[
‖s − ŝD‖2

]
≤ Dε2 + a2

D+1. (1.8)

If we choose D = Dopt as a function of α, R and ε in order to minimize the right-
hand side of (1.8), which means setting Dopt approximately equal to (R/ε)2/(2α+1),
we get a risk bound of the form C(Rε2α)2/(2α+1). Of course, this is only an upper
bound for the risk of ŝD but it cannot be substantially improved, at least uniformly
over E(α, R). To see this, let us recall that a classical and popular way of comparing
estimators is to compare their maximal risk with respect to some given subset T
of the space of parameters. From this point of view, an estimator is “good” if its
maximal risk over T is close to the minimax risk.

Definition 1. Given a random quantity Y depending on some known parameter
ε and some unknown parameter s in some Hilbert space H with norm ‖ · ‖, the
minimax quadratic risk RM(T , ε) over some subset T of H, is given by

RM(T , ε) = inf
ŝ

sup
s∈T
Es

[
‖ŝ − s‖2

]
, (1.9)

where the infimum is taken over all possible estimators ŝ, i.e. measurable functions
of Y with values in H, which possibly also depend on T and ε, and Es denotes the
expectation of functions of Y when s obtains.

We shall see in Sect. 6.2 below that RM(E(α, R), ε) is of the order of (Rε2α)2/(2α+1),
which implies that ŝD is a good estimator of s provided that D has been correctly
chosen (equal to Dopt).

Once again, the previous approach (choosing D = Dopt) is not practically
feasible since s being unknown, α and R and therefore Dopt are unknown too. If
α = α0 and we assume, for simplicity, that R = 1 is known, we get a risk bound
Cε4α0/(2α0+1) if D = Dopt. Since α0 is unknown, we have to guess it in some way.
If our guess α is smaller than α0 we shall choose a too large value of D resulting
in a larger risk of the form Cε4α/(2α+1). At the opposite, choosing a too small
value of D which is far from minimizing the right-hand side of (1.8) may lead to
a risk which is much larger than the expected Cε4α0/(2α0+1). Let us observe that the
problem we are faced with, namely, the choice of D or equivalently of a set of basis
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vectors {e1; . . . ; eD} can be viewed as a problem of ordered variable selection, as
defined in the previous section, but with an infinite number of variables since D is
now unbounded.

The previous example is actually typical of a broad class of estimation problems
where the unknown s to be estimated can be a density, a regression function,
a spectral density, the intensity of a point process, the drift of a diffusion, the
support of a multivariate density, the hazard rate in survival analysis, etc . . . . All
these problems are curve estimation problems but, as opposed to the estimation
of a distribution function from i.i.d. observations, they are ill-posed in the sense
that if one does not put some restrictions on s, for instance that s belongs to
some given Sobolev ball, one cannot find an estimator which is “uniformly good”
for all s simultaneously. Up to the seventies, the typical approach for building
uniformly good estimators was to assume that s did belong to some known set of
functions S. But then, the prior knowledge of S influences both the construction
of the estimators and their performances.

Adaptive estimation tends to solve this dilemna by providing procedures which
have good performances, more precisely, that have a risk which is of the order
of the minimax risk, on some previleged family of subsets of a large parameter
set. In our previous example the large parameter set was l2(
) and the previleged
subsets were the ellipsoids. Adaptive procedures include adaptive spline smoothing
(see Wahba, 1990 for a review), unbiased cross-validation as proposed by Rudemo
(1982) and further developed by many authors, soft and hard thresholding methods
as initiated by Efroimovich and Pinsker (1984) and further developed by Donoho
and Johnstone in a series of papers starting with Donoho and Johnstone (1994), (see
references in Donoho and Johnstone, 1998) and by Kerkyacharian and Picard (see,
for instance, Kerkyacharian and Picard, 2000 and the references therein), Lepskii’s
method starting with Lepskii (1990, 1991) and adaptive local polynomial fit as
initiated by Katkovnik (1979) (see a detailed account and recent developments in
Nemirovski, 2000). For a recent survey of various approaches to adaptation, we
refer to Barron et al. (1999, Sect. 5).

1.2.3. The purpose of model selection

As illustrated by the two previous examples, a major problem in estimation is con-
nected with the choice of a suitable set of “significant” parameters to be estimated.
In the regression case, one should select some subset {Xλ}λ∈m of the explanatory
variables; for the Gaussian sequence problem we just considered, one should select
a value of D and only estimate the D parameters β1, . . . , βD. In both cases, this
amounts to pretend that the unknown parameter (µ or s) belongs to some model
(Sm or SD) and estimate it as if this were actually true, although we know this is not
necessarily the case. In this approach, a model should therefore always be viewed
as an approximate model.

In both cases, we have at hand a family of models (the linear spaces Sm or
SD) and the risk (or a risk bound) corresponding to a given model appears – see
(1.7) and (1.8) – to be the sum of two components: a variance component which
is proportional to the number of parameters that we have put in the model, i.e. the
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dimension of the model and a bias term, which is an approximation term, resulting
from the use of an approximate model and which corresponds to the square of the
distance from the true parameter to the model. An optimal model is one which
optimally balances the sum of these components and therefore minimizes the
risk (1.7) or the risk bound (1.8). Unfortunately, such an optimal model is not
available to the statistician since it depends (through the approximation term) on
the unknown parameter. We shall therefore look for a genuine statistical procedure
m̂(Y) or D̂((Yi)i≥1) to select a model from the data only in such a way that the risk
of the estimator corresponding to the selected model is close to the optimal risk,
i.e. the minimum value of the risk among all possible models.

Model selection actually procedes in two steps: first choose some family of
models Sm with m ∈M together with estimators ŝm with values in Sm . In general,
ŝm derives from a classical estimation procedure, here the maximum likelihood,
under the assumption that the model Sm is true (s ∈ Sm). Then use the data to
select a value m̂ of m and take ŝm̂ as the final estimator. A “good” model selection
procedure is one for which the risk of the resulting estimator is as close as possible
to the minimal risk of the estimators ŝm,m ∈M.

1.3. The nonasymptotic point of view: a link between parametric
and nonparametric problems

A prototype for a parametric problem is the estimation of µ = E[Y ] from (1.1)
when N is small, for instance under the assumption that µi = θ for all i (Prob-
lem 1), while a prototype for a nonparametric problem is the estimation of s from
(1.4) under the assumption that it belongs to some functional class, like a Sobolev
ball. Equivalently, one can estimate s in the Gaussian sequence framework (1.5)
assuming that it belongs to the ellipsoid given by (1.6) (Problem 2). There are a few
good reasons to distinguish between parametric and nonparametric problems: typ-
ically parametric applies to situations involving a fixed finite number of unknown
real parameters (this is the case of our first example with one single parameter θ)
while nonparametric refers to estimation of infinite dimensional quantities, like
a function from a Sobolev ball. Another difference is connected with convergence
rates of the risk from an asymptotic point of view (when n−1 or ε go to zero). In
order to make a fair comparison between Problems 1 and 2, let us observe that
Problem 1 with a risk given by E

[‖µ̂ − µ‖2
n

]
is equivalent to Problem 1’, namely

the estimation of s from (1.5) with ε = σ/
√

n, si = θ/
√

n for 1 ≤ i ≤ n and si = 0
otherwise, θ being unknown. The respective risks for Problems 1’ and 2 are then ε2

and C(Rε2α)2/(2α+1) (this last value is in fact an upper bound for the risk, but we
have already mentioned that, up to the constant C, it cannot be improved uniformly
over the ellipsoid). The rate ε2 (or n−1) is the typical rate of convergence of the
risk for parametric problems while the rate, for nonparametric problems, is slower,
depending on the “size” of the set of parameters, which, for the ellipsoids E(α, 1)
is controlled by α.

This asymptotic approach, letting ε go to 0 in (1.4) or n go to infinity in (1.1),
which explains for this distinction between parametric and nonparametric prob-
lems, is a quite popular one for curve estimation or model selection. Unfortunately,
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it can be terribly misleading, even with a fairly small value of ε (for a related
discussion, see Le Cam and Yang 1990, pp. 99–100). Our point of view in this
paper is quite different. We want to work with ε or n−1 as they are and not let them
go to zero. This does not mean that we do not consider in priority small values of
ε or large values of n, but only that we want to measure precisely the effect of the
different quantities involved in the problem, in view of their size as compared to
ε or n. For instance, in Problem 2, it is important to quantify the influence of R
whatever the relative sizes of R and ε since both of them are important to describe
the difficulty of estimating s. Omitting the effect of R while letting ε go to zero
and saying that the rate of convergence of the risk to zero is of order ε(4α)/(2α+1)

can be somewhat misleading.
If we compare Problems 1’ and 2 from this nonasymptotic point of view and

focus on the estimation procedures we used in both situations, the difference be-
comes much less obvious. To estimate s in Problem 1’ we project the sequence
(Yi)1≤i≤n onto the one-dimensional linear space S spanned by

∑n
λ=1 eλ and to

estimate s in Problem 2, we do the same with the D-dimensional linear space
spanned by {e1; . . . ; eD} with D � (R/ε)2/(2α+1). In the parametric case, we use,
for our estimation procedure, a model S with a fixed dimension (independent of n)
which contains the true parameter while the model SD depends on ε in the non-
parametric situation and is not supposed to contain s. If we consider both problems
from a nonasymptotic point of view, n and ε are fixed and the difference vanishes.
Indeed we treat Problem 2 as a D-dimensional parametric problem although s is
infinite-dimensional. The analogy is even more visible if one introduces, for Prob-
lem 1’, a second estimation procedure which consists in projecting the data onto
the 0-dimensional space S0 = {0}, with risk θ2. The second solution is certainly
better when nθ2 < σ2. This shows that, in this case, one should rather use a non-
parametric approach and an approximate model (here S0) although we are faced
with a truely parametric problem. Estimating θ from one observation Y ∼ N (θ, 1)
if we suspect that θ is small is not, in a sense, more a parametric problem than
estimating s in a Sobolev ball.

The same point of view obviously applies to the variable selection problem of
Sect. 1.2.1. If, for instance, n = 100, there is a major difference between the case
N = 2, which can be considered as a parametric problem with two parameters,
and the case N = 80, which should actually be considered as a nonparametric one.
More generally, one can view the situation as parametric if (1.7) is minimum when
m = {1; . . . ; N} (all variables are really influential) and nonparametric otherwise
(some variables can be omitted without damage). This is in accordance with the
practical point of view tending to put more explanatory variables in (1.1) when one
has more observations.

These examples show that there is indeed no difference, from a nonasymp-
totic point of view, between a parametric problem with a “large” (with a proper
definition of this term) number of parameters and a nonparametric problem. The
difficulty of estimation (the size of the risk) is not connected with the parametric
nature of the problem but rather with the ratio between the number of observations
and the number of “significant” parameters. Model selection, which introduces
many finite dimensional models, true or not, simultaneously, treats both paramet-
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ric and nonparametric problems in the same way without any distinction. It uses
finite-dimensional (parametric) models to estimate infinite-dimensional objects
and introduces approximate models to estimate finite-dimensional parameters, as
in the nonparametric case. From this point of view, the assumption that there exists
a “true” model (one containing s) becomes useless since a model is only some
(possibly good but also possibly poor) approximation of the reality.

To illustrate this discussion and give a flavour of the types of results we ob-
tain, let us conclude by providing a simplified version, restricted to the Gaussian
sequence framework, of our main result to be stated in Sect. 3.2.

Theorem 1. Given a sequence of variables (Yλ)λ∈
 (with 
 = N�) satisfying (1.5)
for an unknown value of the parameter s = (βλ)λ∈
 ∈ l2(
), a countable family
M of nonvoid finite subsets m of N�, a number K > 1 and a family of nonnegative
numbers Lm for m ∈ M satisfying the condition

∑
m∈M exp(−|m|Lm) = � <

+∞, we define the function pen on M, the model selector m̂ and the estimator
s̃ = (β̃λ)λ∈
 by

pen(m) = Kε2|m|
(

1 +√
2Lm

)2
, m̂ = argmin

m∈M

[
−
∑
i∈m

Y2
i + pen(m)

]

and β̃λ = Yλ1lλ∈m̂ for λ ∈ 
. Then the quadratic risk of s̃ is bounded by

E

[
‖s − s̃‖2

]
≤ C(K )


 inf

m∈M



∑
λ �∈m

β2
λ + pen(m)


+ ε2�


 ,

where C(K ) denotes some positive function of K.

In order to understand the meaning of this result, one should keep in mind the fact
that the risk of the maximum likelihood estimator ŝm , with coordinates Yλ1lλ∈m ,
corresponding to the assumption that s ∈ Sm = {t = (θλ)λ∈
 | θλ = 0 for λ /∈ m}
is given by

∑
λ �∈m β2

λ + |m|ε2. It follows that, if L = supm Lm < +∞, then

E

[
‖s − s̃‖2

]
≤ C(K, L,�) inf

m∈M
E

[
‖s − ŝm‖2

]
.

Our theorem immediately applies to the family of models SD, D ∈ N� defined in
Sect. 1.2.2 with L D = 1 for all D, which leads to � = e/(e − 1). It then easily
follows from (1.8) and (1.6) that, if K = 2, the resulting estimator s̃ satisfies

E

[
‖s − s̃‖2

]
≤ C

[(
Rε2α

)2/(2α+1) + ε2
]
,

for some constant C independent ofαand R. This corresponds, up to some constant,
to the minimax risk over the ellipsoid given by (1.6) provided that R is not too
small (more precisely that R ≥ ε) and s̃ is therefore adaptive over all Sobolev balls
of radius R ≥ ε.
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1.4. Some historical remarks

A prototype for criteria used in model selection is Mallows’ Cp, as described
in Daniel and Wood (1971). A similar approach, based on penalized maximum
likelihood estimation, which is due to Akaike (1973 and 1974) applies to much
more general situations, each model Sm being possibly nonlinear, although defined
by a finite number Dm of parameters. In the Gaussian regression framework, when
σ is known and the models are linear, Akaike’s and Mallows’ methods coincide. In
any case both approaches are based on the minimization of a penalized criterion.

Since the publication of these seminal works, many other penalized criteria for
model selection have been developed for solving various types of model selection
problems. For instance, several criteria essentially based on asymptotic or heuristic
considerations are used in pratice to select influential variables. Besides Akaike’s
AIC one should in particular mention its improvement AICc by Hurvich and Tsai
(1989) or Schwarz’s BIC (Schwarz, 1978) among others. Many such criteria can
be found in the book by McQuarrie and Tsai (1998).

In the existing literature, one can distinguish between two very different points
of view, although both based on asymptotic considerations. A first one assumes
a finite number of parametric models, one of which being “true” in the sense that
it does contain the true unknown s. In this case, the number of observations goes
to infinity while the list of models remains fixed and one looks for criteria which
allow, asymptotically, to identify the true model. One then adds to the remaining
sum of squares, penalties of the form K(n)Dm , where Dm denotes the dimension
of model Sm , and one tries to recover asymptotically the “true” model. See for
instance Schwarz (1978) and Nishii (1984). An opposite philosophy is to use model
selection criteria to estimate s belonging to some infinite-dimensional space, which
means handling a nonparametric problem. A typical result in this direction is due to
Shibata (1981) in the context of (1.5). He shows, under appropriate assumptions on
the list of models and s, that the quadratic risk of the estimator selected according
to Mallows’ Cp criterion is asymptotically equivalent to the risk of the estimator
corresponding to the best model. This striking result can be obtained at the price
of the following restrictions: the largest dimension of the models should tend to
infinity slower than ε−1, s should not belong to any model and the list of models
should not be too large (the number of models of a given dimension D can be
a polynomial but not an exponential function of D). Further results in this direction
can be found in Li (1987) and Kneip (1994). See also Polyak and Tsybakov (1990).

1.5. A brief overview of this paper

For the sake of simplicity and to avoid redundancy, our first aim will be to define
(in Sect. 2) a unified Gaussian framework to deal with all the examples we have
considered in Sect. 1.1 simultaneously. Then, in Sect. 3, we shall develop, within
this framework, our approach to model selection and set up a general method (via
penalization) for choosing one model within a (potentially large) family of such.
The properties of the resulting estimators are given below in Theorem 2, which is
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a generalized version of Theorem 1. Obviously, the performances of s̃ depend on
the strategy, i.e. the family of models {Sm}m∈M and the associated weights Lm we
have chosen. Different strategies should be selected for different needs or to take
into account various types of a priori information on the unknown parameter s.
Since each strategy has its advantages and disadvantages, it would be desirable to
be able to mix them in order to retain the best of each one. A general way towards
this aim will then be presented in Sect. 4.

The remainder of the paper will be devoted to applications of our main result
(Theorem 2) including ordered and complete variable selection with applications
to threshold estimators and adaption for sets of functions of increasing complexity
such as Sobolev and Besov balls, among others. We shall follow here the approach
of Donoho and Johnstone (1994b, 1996 and 1998) which amounts, via the choice
of a convenient basis, to work within the Gaussian sequence framework, replacing
families of functions by suitable geometric objects in the space l2(N

�). We have
already seen that Sobolev balls could be interpreted as ellipsoids. In the same way,
Besov balls can be turned to some special cases of lp-bodies, which will lead us to
study various adaptive strategies for different types of lp-bodies. Our results will, in
particular, complement those of Donoho and Johnstone (1994b) and provide fully
adaptive estimators for (almost) all Besov balls simultaneously. We shall conclude
with some remarks on the choice of the constant K involved in the penalty, showing
that K < 1 may lead, in some cases, to definitely poor results.

2. Model selection for Gaussian models

2.1. A generic Gaussian framework

We now want to provide a unified treatment for various problems connected with
Gaussian measures and, in particular, for all the frameworks we have considered
in Sect. 1.1.

Let us first consider the linear regression. Setting 〈t, u〉 = n−1 ∑n
i=1 tiui for

t, u ∈ Rn and s = ∑N
λ=1 βλXλ in (1.1), we get for any t ∈ H = Rn ,

〈t,Y 〉 = 〈s, t〉 + εZ(t) with Z(t) = 1√
n

n∑
i=1

ξi ti and ε = σ√
n
.

Since the ξi ’s are i.i.d.N (0, 1), Z is a centered and linear Gaussian process indexed
by H such that Cov(Z(t), Z(u)) = 〈t, u〉.

Similarly, the discrete-time process (Yi)1≤i≤n defined by (1.3) can be associated
to a linear operator on the Hilbert space H of functions t on {x1; x2; . . . ; xn} with
the scalar product 〈t, u〉 = n−1 ∑n

i=1 t(xi)u(xi) by the formula

t �→ 1

n

n∑
i=1

Yi t(xi) = 〈s, t〉 + εZ ′(t) with Z ′(t) = 1√
n

n∑
i=1

ξi t(xi) and ε = σ√
n
.

Since the ξi ’s are also i.i.d. N (0, 1), the process Z ′ is again linear with the same
distribution as Z .
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Analogously, for each t ∈ l2(
) with a finite number of nonzero coordinates,
one can write ∑

λ∈


Yλtλ = 〈s, t〉 + εZ ′′(t) with Z ′′(t) =
∑
λ∈


ξλtλ.

Here 〈·, ·〉 denotes the scalar product in l2(
) and Z ′′ is again a centered linear
Gaussian process with the same covariance structure as Z since the last sum is
actually a finite one. The only difference is that we have restricted Z ′′ to the linear
subspace S of l2(
) of those elements that have only a finite number of nonzero
coordinates in order that the series which defines it converge in R. Here ε2 plays
the role of σ2/n in the previous examples.

Let us finally consider the case of (1.4). An alternative, but equivalent formu-
lation is in the form of the stochastic differential equation

dY = s(x) dx + ε dW with Y(0) = 0. (2.1)

If the Brownian motion W is defined on some probability space (�,A,P), one can
deduce from the process Y given by (2.1) a linear operator from the Hilbert space
H = L2([0, 1], dx) to L2(�,A,P) given by

t �→
∫ 1

0
t(z) dY(z) = 〈s, t〉 + εZ ′′′(t) with Z ′′′(t) =

∫ 1

0
t(z) dW(z),

where 〈·, ·〉 now denotes the scalar product in H. The process Z ′′′(t) is again
a centered Gaussian process (in the L2 sense) indexed by H and with covariance
structure given by the scalar product on H. The functional t �→ Z ′′′(t) is linear as
an operator fromH to L2(�,A,P) but, as in the previous example, we shall restrict
Z ′′′ to some linear subspace S ofH in order to get a version such that t �→ Z ′′′(t)(ω)
is linear on S for almost every ω ∈ �. Fortunately, we do not need that the process
Z ′′′ be defined on the whole Hilbert space H and, as we shall see below, restricting
Z ′′′ to some subspace S of H will be enough for our purposes.

This suggests to introduce the following infinite dimensional extension of
a standard Gaussian vector in a Euclidean space adapted from Dudley (1967).

Definition 2. Given a linear subspace S of some Hilbert space H with its scalar
product 〈·, ·〉, a linear isonormal process Z indexed by S is an almost surely linear
centered Gaussian process with covariance structure Cov(Z(t), Z(u)) = 〈t, u〉.
The a.s. linearity means that one can find a subset �′ of � such that P(�′) = 1 and
αZ(t)(ω)+ βZ(u)(ω) = Z(αt + βu)(ω) whatever ω ∈ �′, α, β ∈ R and t, u ∈ S.
Proposition 1. Given some orthonormal system {ϕλ}λ∈
 inH, there exists a linear
isonormal process indexed by the linear spaceS = {t = ∑

λ∈
 θλϕλ | |{λ | θλ �= 0}|
< +∞}.
Proof. Choose a set (ξλ)λ∈
 of i.i.d. standard normal random variables and define
Z on S by Z(t) = ∑

λ∈
 θλξλ, which is a finite sum. ��
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One can then define an infinite dimensional analogue of a Gaussian vector with
covariance matrix proportional to the identity. From a statistical point of view, it
provides a natural framework for generalizing to an infinite dimensional setting the
problem of estimating the mean of a Gaussian vector.

Definition 3. Given a linear subspace S of some Hilbert spaceH we call Gaussian
linear process on S with mean s ∈ H and variance ε2 any process Y indexed by S
of the form

Y(t) = 〈s, t〉 + εZ(t) for all t ∈ S, (2.2)

where Z denotes a linear isonormal process indexed by S.

It follows from the preceding considerations that observation of the sets of variables
{Yi}1≤i≤n corresponding to the statistical frameworks (1.1) and (1.3) is equivalent
to observing a Gaussian linear process. This still holds true for (1.5) and also for
(2.1) (see below) provided that S has been suitably chosen.

2.2. Back to the Gaussian sequence framework

We have seen in the previous section that the Gaussian sequence (1.5) can be turned
to a Gaussian linear process, but the reverse operation will also prove extremely
useful in the sequel, in particular for adaptive curve estimation. Consider the
Gaussian linear process Y(t) = 〈s, t〉 + εZ(t) where s belongs to some infinite
dimensional separable Hilbert space H with orthonormal basis {ϕλ}λ∈
, 
 = N�

and t belongs to the subspace S of Proposition 1, one can always write by linearity

Y(t) =
∑
λ∈


βλθλ + ε
∑
λ∈


θλZ(ϕλ) if s =
∑
λ∈


βλϕλ.

This means that, once the basis {ϕλ}λ∈
 has been fixed, Y can be viewed, identifying
s with (βλ)λ∈
 and t with (θλ)λ∈
, as a process indexed by the subspace S = {t =
(θλ)λ∈
 | |{λ | θλ �= 0}| < +∞} of H = l2(
). Moreover, since the basis {ϕλ}λ∈


is orthonormal, Y can be written as

Y(t) =
∑
λ∈


θλ β̂λ with β̂λ = βλ + εξλ,

for some sequence (ξλ)λ∈
 of i.i.d. standard normal random variables. Obviously,
the process Y is entirely determined by the sequence (β̂λ)λ∈
 which is a Gaussian
sequence as defined by (1.5). We shall therefore call Gaussian sequence framework
associated with the basis {ϕλ}λ∈
 the random sequence (βλ + εξλ)λ∈
 with un-
known parameter s = (βλ)λ∈
. The advantage of the Gaussian linear process over
the Gaussian sequences comes from the fact that it is independent of the choice
of a particular basis. To a single Gaussian linear process, one can associate many
Gaussian sequences and this will prove useful for curve estimation.
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2.3. Linear models, projection estimators and oracles

Our purpose, given a Gaussian linear process Y on S with unknown mean s ∈ H
and variance ε2, is to recover s from a realization of the process Y which means
building an estimator s̃ which is a function of Y and ε as a substitute for s. The
quality of this reconstruction will be measured, in the sequel, in terms of the
quantity Es[�(‖s̃ − s‖)] where Es denotes the expectation of functions of Y when
Y is defined by (2.2) and � is a nondecreasing function on R+ with �(0) = 0, our
reference being the classical quadratic risk which corresponds to �(x) = x2.

2.3.1. Linear models

In order to design our estimator, we shall introduce a countable family of models
{Sm}m∈M. By model, we mean hereafter a finite dimensional linear subspace ofH,
possibly of dimension 0, i.e. reduced to the set {0}. We assume that all our models
are subsets of S, which is not a restriction since, if S is spanned by the union of
the Sm’s, there always exists a linear isonormal process Z(t) indexed by S. Indeed,
given a linear subspace S of some Hilbert space H which is the linear span of
a countable family {Sm}m∈M of finite dimensional linear subspaces of H, one
can always build, using an orthonormalization procedure, an orthonormal system
{ϕλ}λ∈N� such that any element t ∈ S can be written as a finite combination
t = ∑

λ∈
t
θλϕλ with |
t | < +∞. It then suffices to apply Proposition 1.

Given some model Sm with dimension Dm , an estimator s̃m with values in Sm
is any measurable application s̃m(Y ) with values in Sm and its quadratic risk at s is
given by

Es

[
‖s̃m − s‖2

]
= ‖sm − s‖2 + Es

[
‖s̃m − sm‖2

]
, (2.3)

where sm denotes the projection of s onto Sm . Let now see what can be expected
from such an estimator from the minimax point of view, since it is well known
that one cannot base an optimality criterion on a pointwise risk comparison. Since
‖sm − s‖ is deterministic, an optimization of the risk amounts to an optimization
of Es

[‖s̃m − sm‖2
]

among estimators with values in Sm . Because of this last
restriction, we have to modify slightly the definition of the minimax risk. We
define the minimax risk for estimating the projection sm of s onto Sm under the
restriction that s ∈ Sm + t where t ∈ S⊥

m as inf s̃m sups∈Sm+t Es
[‖s̃m − sm‖2

]
where

s̃m is restricted to take its values in Sm . A trivial modification of the classical proof
of the fact that X is minimax for estimating µ ∈ RDm when X = µ + εξ , ξ is a
Dm-dimensional standard Gaussian vector and ε > 0 is known, based on the fact
that the restrictions of Y to Sm and S⊥

m are independent, shows that

inf
s̃m

sup
s∈Sm+t

Es

[
‖s̃m − sm‖2

]
≥ ε2 Dm .

Therefore by (2.3),

inf
s̃m

sup
s∈Sm+t

Es

[
‖s̃m − s‖2

]
≥ ‖t‖2 + ε2 Dm . (2.4)
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2.3.2. Projection estimators

One can actually design a simple estimator which is minimax on the model Sm , i.e.
achieves the bound (2.4) for all ts simultaneously.

Definition 4. Let Y be a Gaussian linear process indexed by a linear subspace S
of some Hilbert space H with unknown mean s ∈ H and known variance ε2. Let
S be a finite dimensional linear subspace of S and let us set γ(t) = ‖t‖2 − 2Y(t).
One defines the projection estimator on S to be the minimizer of γ(t) with respect
to t ∈ S.

Given a model Sm with dimension Dm , the projection estimator ŝm on the model Sm
is actually unique and can be computed as follows. Choose some orthonormal basis
{ϕλ}λ∈
m of Sm and set t = ∑

λ∈
m
θλϕλ. By linearity, minimizing γ(t) amounts

to minimize
∑

λ∈
m

[
θ2
λ − 2θλY(ϕλ)

]
which clearly results in

ŝm =
∑
λ∈
m

β̂λϕλ with β̂λ = Y(ϕλ) = 〈s, ϕλ〉 + εZ(ϕλ). (2.5)

Moreover, since sm = ∑
λ∈
m

〈s, ϕλ〉ϕλ,

ŝm = sm + ε
∑
λ∈
m

Z(ϕλ)ϕλ and ‖ŝm − sm‖2 = ε2
∑
λ∈
m

Z(ϕλ)
2. (2.6)

Since the Z(ϕλ)s are i.i.d. standard normal and |
m | = Dm we derive from (2.3)
that

Es

[
‖ŝm − s‖2

]
= ‖sm − s‖2 + ε2 Dm . (2.7)

This shows simultaneously that (2.4) is an equality and that the projection estimator
ŝm is optimal from the minimax point of view.

Remark. Even if ŝm is minimax, at least as an estimator of sm , when Dm ≥ 3 one
can actually design, using Stein’s method (see Stein, 1956), estimators s̄m which
improve on ŝm in the sense that they satisfy Es

[‖s̄m − s‖2
]
< ‖sm − s‖2 + ε2 Dm

whatever s, although such an improvement, because of (2.4), cannot hold uniformly
with respect to s. Moreover those estimators are more complicated than ŝm . We
shall, from now on, restrict ourselves to projection estimators both because of the
simplicity of their representation by (2.5) which allows an easy computation, and
because of their definition as minimizers over the models of the criterion γ(t) =
‖t‖2 − 2Y(t). This second property is indeed the milestone of our construction.

2.3.3. Ideal model selection and oracles

Let us now consider a family of modelsF = {Sm}m∈M and the corresponding fam-
ily of projection estimators {ŝm}m∈M. Since the quadratic risk Es

[‖ŝm − s‖2
] =

‖sm − s‖2 + ε2 Dm of the estimator ŝm is optimal from the minimax point of view,
it can be viewed as the benchmark for the risk of an estimator with values in the
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Dm-dimensional linear space Sm . We can then conclude that, from this point of
view, an ideal model Sm(s) should satisfy

‖sm(s) − s‖2 + ε2 Dm(s) = inf
m∈M

{
‖sm − s‖2 + ε2 Dm

}
. (2.8)

Such a procedure m(s) which depends on the unknown parameter to be estimated
cannot of course be used as a statistical model selection procedure. This is why,
following Donoho and Johnstone (1994), we call such an ideal procedure an oracle
and measure the statistical quality of the family F at s in terms of the following
index:

Definition 5. Given a family of linear models F = {Sm}m∈M in some Hilbert
spaceH with respective dimensions Dm, a function s ∈ H and a positive number ε,
we define the oracle accuracy of the family F at s as

aO(s,F, ε) = inf
m∈M

{
‖sm − s‖2 + ε2 Dm

}
,

where sm is the orthogonal projection of s onto Sm.

An ideal estimator ŝ, i.e. an estimator which, for each s, is as good as the best
projection estimator in the set {ŝm}m∈M, would be one satisfying Es

[‖ŝ − s‖2
] =

aO(s,F, ε) for all s ∈ H. Unfortunately, just as oracles typically do not exist as
genuine statistical procedures, ideal estimators do not exist either and we shall
content ourselves to try to design almost ideal estimators, i.e. genuine statistical
procedures s̃ = ŝm̂ based on a model selection procedure m̂(Y ) with values inM
which approximately mimics an oracle in the sense that one can find a constant C
such that Es

[‖s̃ − s‖2
] ≤ CaO(s,F, ε) for all ε > 0 and s ∈ H. Even this aim

is too ambitious in general. There is in particular a situation for which one can
easily see that it is hopeless to get such a risk bound, namely when {0} ∈ F and
s = 0. Then aO(F, 0, ε) = 0 and such a risk bound would imply that s̃ = 0,
P0 a.s., Ps denoting the distribution of Y when (2.2) holds. Since all measures Ps

are mutually absolutely continuous, then Es
[‖s̃ − s‖2

] = ‖s‖2 for all s. A more
sophisticated argument could show that the same holds true if one excludes 0 but
let aO(s,F, ε) be arbitrarily small. Therefore we shall have to content ourselves
with a weaker inequality, namely

Es

[
‖s̃ − s‖2

]
≤ C

[
aO(s,F, ε) + ε2

]
whatever ε > 0 and s ∈ H. (2.9)

The additional term ε2 allows s and therefore aO(s,F, ε), to be arbitrarily close to
zero without causing the troubles mentioned above. Let us finally notice that
if ‖s‖ ≥ δε for some δ > 0, then aO(s,F, ε) ≥ ε2

(
1 ∧ δ2

)
and therefore

aO(s,F, ε)+ε2 is comparable to aO(s,F, ε) via the inequality aO(s,F, ε)+ε2 ≤[
(1 ∧ δ2)−1 + 1

]
aO(s,F, ε).

Even if we exclude the preceding situation and only consider values of s such
that ‖s‖ ≥ ε, there are cases, depending on the choice of the classF , for which it is
impossible to obtain an inequality like (2.9), with a moderate value of C, uniformly
on the set of those s such that ‖s‖ ≥ ε. This is in particular true when the class
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F is “large” in some suitable sense. In particular, complete variable selection (as
defined in Sect. 1.2.1) among a set of N variables leads to an unimprovable value
of C of order log N as will be shown in Sect. 5.2.

2.4. Mallows’ heuristics and penalized projection estimators

Mallows, in a conference dating back to 1964, according to Daniel and Wood (1971,
p. 86), proposed a method for solving the model selection problem, now refered
to as Mallows’ Cp (see Mallows, 1973). The heuristics underlying his method are
as follows. An ideal model selection procedure minimizes over M the quantity
‖sm − s‖2 + ε2 Dm , or equivalently

‖sm − s‖2 + ε2 Dm − ‖s‖2 = −‖sm‖2 + ε2 Dm . (2.10)

Since, by (2.5), ŝm can be written as sm + εWm where Wm is a standard Dm-
dimensional Gaussian vector E

[‖ŝm‖2
] = ‖sm‖2 + ε2 Dm and therefore ‖ŝm‖2 −

ε2 Dm is an unbiased estimator of ‖sm‖2. Replacing in (2.10) ‖sm‖2 by this estimator
leads to Mallows’ Cp criterion which amounts to minimize −‖ŝm‖2 + 2ε2 Dm

over M. Mallows actually gave no proof of the properties of his method and
one had to wait until Shibata (1981) to get a proof that such a method works,
at least from an asymptotic point of view. Unfortunately, and we shall prove this
precisely in Sect. 7.2 below, Mallow’s Cp is only suitable for families {Sm}m∈M
of models which are not “too large” (in a sense that we shall make precise later).
It is therefore necessary, in order to get model selection methods which are valid
for arbitrary countable families of models, to consider more general criteria of the
form −‖ŝm‖2 + pen(m) to be minimized with respect to m ∈M, “pen” denoting
a nonnegative penalty function defined onM. The remainder of this paper will be
devoted to the evaluation of the performances of those estimators which minimize
such criteria and to the discussion of those choices of the penalty function that lead
to sensible and sometimes optimal results of a form similar to (2.9).

3. The performances of penalized projection estimators

3.1. The precise framework

We want to introduce and study some model selection based estimation procedures
for the unknown mean of the linear Gaussian process Y given by Definition 3.

Definition 6. Given a finite or countable family {Sm}m∈M of finite dimensional
linear subspaces of S, the corresponding family of projection estimators ŝm built
from the same realization of the process Y according to Definition 4 and a nonneg-
ative function pen defined onM, a penalized projection estimator (associated to
this family of models and this penalty function) is defined by s̃ = ŝm̂ , where m̂ is
any minimizer with respect to m ∈M (if it exists) of the penalized criterion

crit(m) = −‖ŝm‖2 + pen(m). (3.1)
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Remarks.

• We do not assume that all the models are different, i.e. that the mapping
m �→ Sm is one to one. It might look strange to allow such a redundancy in
the list of models. Indeed, if m and m′ are such that Sm = Sm′ with pen(m) �=
pen(m′), the definition of m̂ implies that the model with the smaller penalty
will always be prefered and therefore that the one with the larger penalty
could be removed without affecting the estimation procedure. This remains true
when both penalties are equal: one can obviously remove one of the models.
Nevertheless, the consideration of redundant families of models will turn to
be useful from a computational point of view, since it sometimes provides an
easier description of ŝm̂ , as we shall see in Sect. 4.1 below.

• We allow the collection to contain zero-dimensional models Sm = {0}, in which
case Dm = 0 for the corresponding m.

• An equivalent definition of the pair (m̂, s̃) is

argmin
m,t

[(
‖t‖2 − 2Y(t)

)
− log(1lt∈Sm) + pen(m)

]
with log 0 = −∞. (3.2)

3.2. The main result

Our aim is now to prove that a proper choice of the penalty function in (3.1) leads to
some upper bounds for the risk of the corresponding penalized projection estimator
that we can compare to the oracle accuracy.

Theorem 2. Let Y be a Gaussian linear process indexed by a linear subspace
S of some Hilbert space H with unknown mean s ∈ H and known variance ε2,
{Sm}m∈M be a finite or countable family of finite dimensional linear subspaces
of S with respective dimensions Dm and {Lm}m∈M be a family of weights, i.e.
nonnegative real numbers, satisfying the condition

� =
∑

m∈M�

exp[−Dm Lm] < +∞ withM� = {m ∈M | Dm > 0}. (3.3)

Let us then choose a penalty function pen(·) onM such that

pen(m) ≥ Kε2 Dm

(
1 +√

2Lm

)2
for all m ∈M and some K > 1. (3.4)

The corresponding penalized projection estimator s̃ given by Definition 6 almost
surely exists and is unique. Moreover it satisfies

Es

[
‖s̃ − s‖2

]
≤ 4K(K + 1)2

(K − 1)3

[
inf

m∈M

{
d2(s, Sm) + pen(m)

}
+ (K + 1) ε2�

]
,

(3.5)
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where d(s, Sm) denotes the distance of s to the space Sm. More generally, if �

is a nondecreasing function defined on R+ such that �(0) = 0 and �(x + y) ≤
A[�(x) + �(y)] for all x, y ≥ 0 and some positive constant A, then

Es

[
�
(
‖s̃ − s‖2

)]
≤ C1(A, K ) inf

m∈M

{
�
(

d2(s, Sm)
)

+ �(pen(m))
}

+ C2(A, K )��
(
ε2), (3.6)

for some suitable functions C1 and C2 of A and K, independent of s, ε and �.

Proof. Recalling from Definition 4 that γ(t) = ‖t‖2−2[〈s, t〉+εZ(t)] and assuming
that for any m′ ∈ M we have chosen some orthonormal basis {ϕλ}λ∈
m′ of Sm′ ,
we derive from (2.5) and the linearity of Z that

γ(ŝm′) =
∑

λ∈
m′

[
β̂

2
λ − 2 β̂λ[〈s, ϕλ〉 + εZ(ϕλ)]

]
= −

∑
λ∈
m′

β̂
2
λ = −‖ŝm′ ‖2, (3.7)

whatever m′ ∈M. We now fix some m ∈M and defineM′ = {m′ ∈M | crit(m′)
≤ crit(m)}. If m′ belongs to M′, we derive from (3.7) that γ(ŝm′) + pen(m′) ≤
γ(ŝm)+pen(m), which yields by Definition 4, γ(ŝm′)+pen(m′) ≤ γ(sm)+pen(m)

where sm is the projection of s onto Sm . Since for all t ∈ S, γ(t) + ‖s‖2 =
‖s − t‖2 − 2εZ(t), we derive that, whatever m′ ∈M′,

‖s − ŝm′ ‖2 ≤ ‖s − sm‖2 + 2ε[Z(ŝm′) − Z(sm)] − pen(m′) + pen(m). (3.8)

In order to control Z(t)−Z(sm) uniformly for t ∈ Sm′ and m′ ∈M′, we use a classi-
cal inequality due to Cirel’son, Ibragimov and Sudakov (1976) (see Ledoux, 1996,
for the specific form we use below as well as many related deviation inequalities).
Since the variance of the Gaussian process t �→ ‖t − sm‖−1[Z(t) − Z(sm)] is
identically equal to one, it follows from this inequality that, whatever λm′ > 0,

P

[
sup

t∈Sm′

Z(t) − Z(sm)

‖t − sm‖ ≥ E
[

sup
t∈Sm′

Z(t) − Z(sm)

‖t − sm‖

]
+ λm′

]
≤ exp

[
−λ2

m′
2

]
.

(3.9)

Introducing the D-dimensional linear space S = Sm + Sm′ and some orthonormal
basis ψ1, . . . , ψD of S, we derive from the Cauchy-Schwarz Inequality and the
linearity of Z on S ⊂ S that

sup
t∈Sm′

Z(t) − Z(sm)

‖t − sm‖ ≤ sup
u∈S

Z(u)

‖u‖ = sup
α∈RD

∑D
j=1 α j Z(ψ j)(∑D

j=1 α
2
j

)1/2 =

 D∑

j=1

Z2(ψ j )




1/2

.

Setting λ2
m′ = 2(Lm′ Dm′ +ξ)with ξ > 0 in (3.9) and observing that D ≤ Dm+Dm′ ,

we get

P

[
sup

t∈Sm′

Z(t) − Z(sm)

‖t − sm‖ ≥ √
Dm + Dm′ + λm′

]
≤ exp(−Lm′ Dm′ − ξ).
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Summing all those inequalities with respect to m′ ∈M� and using (3.3) we derive
that except on a set �ξ of probability bounded by � exp(−ξ),

Z(t) − Z(sm) ≤ ‖t − sm‖
[
[Dm + Dm′ ]1/2 + [2(Lm′ Dm′ + ξ)]1/2

]
≤ ‖t − sm‖

[√
Dm′

(
1 +√

2Lm′
)

+√
Dm +√

2ξ
]
,

uniformly with respect to t ∈ ∪m′∈M� Sm′ = ∪m′∈MSm′ . Let us now fix some
η ∈ (0, 1). Using repeatedly the fact that 2ab ≤ a2c + b2c−1 for any c > 0 and the
definition of pen(·), we derive, since ‖t − sm‖ ≤ ‖t − s‖ + ‖s − sm‖, that, except
on �ξ ,

2ε[Z(t) − Z(sm)]
≤ 2ε‖t − sm‖

[√
Dm′

(
1 +√

2Lm′
)

+√
Dm +√

2ξ
]

≤ ε2

1 − η

[
(1 + η)Dm′

(
1 +√

2Lm′
)2 + (

1 + η−1) (√Dm +√
2ξ
)2
]

+ (1 − η)
[
(1 + η)‖t − s‖2 + (

1 + η−1)‖s − sm‖2
]

≤ 1 + η

(1 − η)K
pen(m′) + 2ε2

(
1 + η−1

)
1 − η

(Dm + 2ξ)

+ (1 − η2)‖t − s‖2 + (
η−1 − η

)‖s − sm‖2.

Together with (3.8), this inequality, applied with t = ŝm′ implies that, except on
�ξ and whatever m′ ∈M′,

η2‖s − ŝm′ ‖2 + K − 1 − η(1 + K )

(1 − η)K
pen(m′)

≤ (
1 + η−1 − η

)‖s − sm‖2 + 2ε2
(
1 + η−1

)
1 − η

(Dm + 2ξ) + pen(m). (3.10)

Choosing η small enough to get K > 1 + η(1 + K ), we derive that, on the set �c
ξ ,

supm′∈M′ {pen(m′)} < +∞, which means that there exists a number y such that
M′ ⊂M(y) = {m′ ∈M | pen(m′) ≤ y}. Now observe that if m′ ∈M(y), then
2Kε2Lm′ Dm′ ≤ y and therefore

� ≥
∑

m′∈M(y)

exp[−Lm′ Dm′ ] ≥ |M(y)| exp
[

− y

2Kε2

]
.

We then conclude thatM(y) is finite andM′ as well, which implies that there exists
a minimizer m̂ of crit(m′) overM′ and therefore overM. Let us now turn to the
unicity of the penalized projection estimator. If Sm′ = Sm′′ and pen(m′) = pen(m′′),
then obviously crit(m′) = crit(m′′) but then ŝm′ = ŝm′′ and if pen(m′) �= pen(m′′),
then crit(m′) �= crit(m′′). Therefore, in order to prove unicity, it is enough to show
that crit(m′) �= crit(m′′) a.s. as soon as Sm′ �= Sm′′ . This is a consequence of
the fact that, in this case, ε−2

[‖ŝm′ ‖2 − ‖ŝm′′ ‖2
]

is the difference between two
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independent non-central χ2 variables, which easily follows from (2.5). Therefore,
on the set �c

ξ , there exists almost surely a unique penalized projection estimator
s̃ = ŝm̂ . Since Ps[�ξ] is arbitrarily small, a.s. existence and unicity follow. Now
setting η = (K − 1)/(K + 1), we derive from (3.10) applied to m′ = m̂ that, on
the set �c

ξ ,

(
K − 1

K + 1

)2

‖s − s̃‖2

≤ K2 + 4K − 1

K2 − 1
‖s − sm‖2 + pen(m) + 2K(K + 1)ε2

K − 1
(Dm + 2ξ),

and therefore, since Kε2 Dm ≤ pen(m),

‖s − s̃‖2

≤ (K + 1)2

(K − 1)3

[
K2 + 4K − 1

K + 1
‖s − sm‖2 + (3K + 1) pen(m) + 4K(K + 1)ε2ξ

]
,

except on the set �ξ . Consequently, there exists a nonnegative random variable V
with P[V > ξ] ≤ � exp(−ξ) for ξ > 0 and therefore E[V ] ≤ �, such that

‖s − s̃‖2 ≤ 4K(K + 1)2

(K − 1)3

[
‖s − sm‖2 + pen(m) + (K + 1)ε2V

]
,

and (3.5) follows by integration since m is arbitrary. To get (3.6) we observe that

�
(
‖s − s̃‖2

)
≤ �

(
4K(K + 1)2

(K − 1)3

[
‖s − sm‖2 + pen(m) + (K + 1)ε2V

])

≤ C1(A, K )
[
�
(
‖s − sm‖2

)
+ �(pen(m))

]
+ C′(A, K )�

(
ε2V

)
.

Since �
(
2 jε2

) ≤ (2A) j�
(
ε2
)

for j ≥ 1, we derive by integration that

E

[
�
(
ε2V

)] ≤ �
(
ε2)
P[0 < V ≤ 1] +

∑
j≥1

�
(
2 jε2)

P
[
2 j−1 < V ≤ 2 j]

≤ ��
(
ε2)


1 +

∑
j≥1

(2A) j exp
( − 2 j−1)


 ,

and (3.6) follows since m is arbitrary. ��

3.3. First comments about the choice of the penalty

Let us first observe that the values of the weights for m /∈M� are irrelevant. Their
introduction is actually unnecessary and has been made for notational convenience,
in order to avoid to distinguish between two cases. One can, for instance, set Lm = 0
when Dm = 0.
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One then notices that the upper bounds (3.5) and (3.6) in Theorem 2 suggest,
together with (3.4), a choice of penalty of the form

pen(m) = Kε2 Dm

(
1 +√

2Lm

)2
for all m ∈M and some K > 1, (3.11)

where the weights Lm satisfy (3.3) for a reasonable value of�, say � ≤ 1, although
the number one has no magic meaning here. In any case, from the asymptotic point
of view, � should remain bounded when ε tends to zero. With such a choice of the
penalty, one derives from (3.5) the cruder bound

Es

[
‖ŝm̂ − s‖2

]
≤ 4K(K + 1)3

(K − 1)3

[
inf

m∈M

{
d2(s, Sm) + ε2 Dm

(
1 +√

2Lm

)2
}

+ ε2�

]
.

(3.12)

This implies that a proper choice of the penalty function leads to a risk bound which
only depends, up to some constant C(K ), on the family of models and weights
{(Sm, Lm)}m∈M. This suggests to introduce the following

Definition 7. Given some linear subspace S of some Hilbert space H, we call
strategy a finite or countable family {(Sm, Lm)}m∈M where for all m ∈ M,
Sm denotes a Dm-dimensional linear subspace of S and Lm a nonnegative number
such that

∑
{m∈M | Dm>0} exp(−Lm Dm) = � < +∞. Given a strategy S, its

accuracy index aI (s,S, ε) at point s is then defined as

aI (s,S, ε) = inf
m∈M

{
d2(s, Sm) + ε2 Dm(Lm + 1)

}
+ �ε2. (3.13)

One can now rewrite (3.12) in the following form: given a strategy and a penalty
function satisfying (3.11), the corresponding penalized projection estimator satis-
fies

Es

[
‖s̃ − s‖2

]
≤ C0(K ) aI (s,S, ε), (3.14)

for a suitable function C0 of K .

3.3.1. How to choose K?

Given the family {Lm}m∈M, one can raise two natural questions concerning the
choice of K :

• is the restriction K > 1 necessary;
• how to choose K in order to minimize the risk of s̃.

One can immediately see from (3.12) that our upper bound for the quadratic risk of
the penalized estimator s̃ converges to infinity when K tends to one which suggests
that the answer to the first question is actually “yes”. We shall indeed show below
in the context of variable selection (see Sect. 7) that 1 is a compulsary lower bound
for K if we require our estimator to have good performances. This naturally leads
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to advise against a choice of K smaller than one that is very likely to cause some
disaster since then the model selection procedure m̂ systematically chooses models
with close to largest dimension. This phenomenon, which will be theoretically
proven in Sect. 7 is quite spectacular in simulations.

The answer to the second question is much more delicate and cannot be solved
by a simple optimization procedure performed on the right-hand side of (3.12)
since the factor f(K ) = 4K(K + 1)3(K − 1)−3 which appears there is far from
being optimal: the resulting value of K would then be irrelevant. Nevertheless, the
behaviour of f(K ) can be used to give a rough idea of how not to choose K ! The
fact that f(K ) tends to infinity when K tends to one suggests to avoid values of K
close to one. Moreover, since f(K ) tends to infinity with K , too large values of K
should be also avoided. But the two problems are clearly not symmetrical! Indeed,
our risk bound increases linearly with K for large K while K smaller than one can
truly make the risk blow up as shown in Sect. 7.

The search for an optimal value of K (at least asymptotically) requires a differ-
ent proof which is more complicated and also specific to this particular framework
of Gaussian model selection. It will therefore be postponed to a forthcoming paper,
Birgé and Massart (2001). Let us just mention here that K = 2 should be recom-
mended in most situations. In this case, the only difference between our penalty and
Mallows’ is the introduction of the weights Lm . The advantage of the proof that we
have chosen here is that it can be extended, of course with additional technicalities,
to other frameworks, like density estimation, since it emphasizes the link between
concentration inequalities and the calibration of the penalty.

3.3.2. The role of the weights Lm

The choice of the weights Lm appears to be much more delicate than the choice of
K since there is no optimal solution to this problem. Indeed, in view of minimizing
the risk bound (3.5), given a penalty of the form (3.11) and a value of K , one
should choose the Lms as small as possible such that � ≤ 1. This is obviously an
ill-posed problem since its solution requires the knowledge of d2(s, Sm) for all m.
The simplest way of choosing the Lms is to take them constant, i.e. Lm = L > 0
for all m. Then,

� =
∑
D≥1

|{m ∈M | Dm = D}|e−DL .

Since we have imposed � ≤ 1, such a solution is feasible provided that the
number of models having a given dimension is finite and not too large, namely if
D−1 log |{m ∈M | Dm = D}| is bounded. If so, one can take

L = sup
D≥1

D−1 log |{m ∈M | Dm = D}| + log 2.

This strategy, which treats all dimensions in the same way, can easily be refined by
choosing Lm as a function of the dimension of Sm , i.e. Lm = L(Dm) for a suitable
function L satisfying∑

D≥1

|{m ∈M | Dm = D}|e−DL(D) ≤ 1.
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Of course, if there is an infinite number of models of some dimension D, the
preceding strategy cannot work. Even if it is not so, some more sophisticated
strategies may look attractive. If one suspects that the true s is close to some
particular models, one is then tempted to give small weights to these models, in
order to minimize the risk if our guess is true. This approach, based on some a priori
information brought by the statistician, is quite analogue to the choice of a prior
distribution in a Bayesian setting. This analogy will be made more explicit in the
next section.

The influence of the various strategies (constant or variable weights) we just
mentioned will actually be discussed in greater details when dealing with the
numerous examples below. Let us just make here the following general remark:
since (3.3) does not involve any model of dimension 0, the presence of such a model
in the collection has actually no influence on the choice of the penalty for those ms
such that Dm > 0 and one can always choose pen(m) = 0 whenever Dm = 0. On
the other hand, since the bound in (3.6) can only be improved if one enlarges the
number of models without modifying � and the penalty function, it is always wise
to include a zero-dimensional model in the collection.

3.4. A Bayesian interpretation of penalization

In order to discuss this point and for the sake of simplicity, let us forget the Gaussian
linear processes for a while and go back to the simpler problem of estimating the
mean s of a multidimensional Gaussian vector Y ∈ Rn with covariance matrix
σ2 In , where In denotes the identity matrix. We assume that we have at hand an at
most countable collection {Sm}m∈M of linear subspaces of Rn and that all those
spaces are distinct. As we mentioned in Sect. 3.1, one can always remove the
duplicate models without changing the value of the penalized estimator. We denote
by ν the Lebesgue measure on Rn , by νm the Lebesgue measure on Sm (which is
the Dirac measure δ0 when Dm = 0) and set µ = ∑

m∈M νm . Let us then define

Mm = {m′ ∈M | Sm′ �⊇ Sm} and S′
m =


 ⋃

m′∈Mm

Sm′


⋂

Sm .

Since νm(Sm′ ∩ Sm) = 0 when m′ ∈ Mm , then νm(S′
m) = 0. As a consequence,

a version of the density dνm/dµ can be taken as 1lSm\S′
m

. Let us now specify the
prior “distribution” that we want to put on the parameter space ∪m∈MSm . We first
choose some prior θ onMwith θ({m}) = θm and

∑
m∈M θm = 1. Then we assume

that, given the value of m, s is “uniformly” distibuted on Sm , which means that it
has the density 1 with respect to νm . This is obviously an improper prior. In other
words, the prior “distribution” of s is taken as

∑
m∈M θmνm , which has a density∑

m∈M θm1lSm\S′
m

with respect to µ. We recall that given s, the observation Y ∈ Rn

is normal with mean s and covariance matrix σ2 In . Therefore, the joint density of
Y and s with respect to ν ⊗ µ is given by(

2πσ2)−n/2 ∑
m∈M

θm1lSm\S′
m
(s) exp

(
− n

2σ2 ‖y − s‖2
n

)
,
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where ‖ · ‖n is the normalized Euclidean norm as in Sect. 1.2 and the posterior
density of s given Y is proportional to∑

m∈M
θm1lSm\S′

m
(s) exp

(
− n

2σ2 ‖s − Y‖2
n

)
.

Now observe that if s ∈ (Sm \ S′
m)∩ Sm′ with m′ �= m, then Sm′ ⊃ Sm and therefore

s ∈ S′
m′ . This implies that the sets Sm \ S′

m are all disjointed. Moreover,

sup
s∈Sm\S′

m

(
−‖s − Y‖2

n

)
= −‖ŝm − Y‖2

n = ‖ŝm‖2
n − ‖Y‖2

n , a.s. with respect to ν.

Therefore the posterior mode is almost surely equal to ŝm̂ with

m̂ = argmax
m∈M

{
log(θm) + n‖ŝm‖2

n/(2σ
2)
}
.

Equivalently, it can be written as

m̂ = argmin
m∈M

[
−‖ŝm‖2

n − 2n−1σ2 log(θm) + C
]
,

where C is an arbitrary constant, which means that ŝm̂ is exactly the penalized
projection estimator with penalty function pen(m) = −2n−1σ2 log(θm) + C, or
equivalently

θm = exp

(
C − pen(m)

2ε2

)
with ε = σ√

n
.

Since θ is a probability distribution onM,

C = −2ε2 log

( ∑
m∈M

exp
[
− pen(m)/

(
2ε2)]) .

The assumptions (3.3) and (3.4) clearly imply the convergence of the series which
may very well diverge if K < 1 in (3.4).

The previous comparison shows that the penalized projection estimator is the
mode of the posterior distribution in a Bayesian framework with an improper
“uniform” prior distribution on each model and a prior probability for model
Sm proportional to exp

[− pen(m)/
(
2ε2

)]
. The choice of the weights therefore

amounts to the choice of a prior distribution on the family of models. We shall not
go further in this direction and investigate the properties of the posterior distribution.

4. How to select good strategies?

4.1. Mixing several strategies

The choice of a strategy heavily depends on the type of problem we consider or the
type of result we are looking for. For instance, as we shall see below, one should
use different strategies for solving the problems of ordered and complete variable
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selection, as defined in Sect. 1.2.1. Going back to our initial example, developed
in Sects. 1.1.4 and 1.2.2, of a function s belonging to some unknown Sobolev ball
Wα(R), we have seen in Sect. 1.5 that a good strategy to estimate s is based on the
family of models SD, D ∈ N where SD is the linear span of the D first elements
of the trigonometric basis {ϕi}i≥1 defined in Sect. 1.1.4 (S0 = {0}), with weights
L D = 1 for all D ≥ 1. The resulting estimator is minimax, up to constants, over all
Sobolev balls of radius R ≥ ε. Unfortunately, such a strategy is good if s belongs
to some Sobolev ball, but it may be definitely inadequate when s belongs to some
particular Besov ball. In this case, one should use quite different strategies, for
instance a thresholding method (which, as we shall see, is a specific strategy for
complete variable selection) in connection with a wavelet basis, rather than the
trigonometric one.

These examples are illustrations of a general recipe for designing simple strate-
gies in view of solving the most elementary problems of adaptation: choose some
orthonormal basis {ϕλ}λ∈
 and a countable family M of finite subsets m of 
,
then define Sm to be the linear span of {ϕλ}λ∈m and find a family of weights Lm

satisfying (3.3). Once again, the choice of a proper value of m can be viewed
as a problem of variable selection from an infinite set of variables which are the
coordinates vectors in the Gaussian sequence framework associated with the basis
{ϕλ}λ∈
. Obviously, the choice of a basis influences the approximation properties
of the induced families of models. For instance the Haar basis is not suitable for
approximating functions s which are “too smooth” (such that

∫ 1
0 [s′′(x)]2 dx is not

large, say). If we have at hand a collection of bases, the choice of a “best” basis
given s, ε and a strategy for estimating within each of the bases corresponds to the
minimal value of the accuracy index at s and this “best basis” typically depends on
the unknown s. Therefore one would like to be able to use all bases simultaneously
rather than choosing one in advance. This is, in particular, a reason for prefering
the Gaussian linear process approach to the Gaussian sequence framework.

The problem of the basis choice has been first considered and solved by Donoho
and Johnstone (1994c) for selecting among the different threshold estimators built
on the various bases. The following theorem provides a generic data driven way of
mixing several strategies in order to retain the “best one”.

Theorem 3. Let J be a finite or countable set and µ a probability distribution
on J . For each j ∈ J we are given a collection {Sm}m∈M j of finite dimen-
sional linear models with respective dimensions Dm and a collection of weights
{Lm, j}m∈M j and we assume that the distribution µ satisfies

∑
j∈J

µ({ j})

 ∑

{m∈M j | Dm>0}
exp[−Dm Lm, j ]


 = � < +∞.

Let us consider for each j ∈ J a penalty function pen j (·) onM j such that

pen j(m) ≥ Kε2 Dm

(
1 +√

2Lm, j

)2
with K > 1,
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and the corresponding penalized projection estimator s̃ j = ŝm̂ j where m̂ j mini-

mizes the penalized criterion −‖ŝm‖2 + pen j (m) overM j . Let ĵ be a minimizer
with respect to j ∈ J of

−‖s̃ j‖2 + pen j(m̂ j) + 2xK

1 − x
ε2l j with K−1 < x < 1 and l j = − log[µ({ j})].

The resulting estimator s̃ = s̃ ĵ then satisfies

Es

[
‖s̃ − s‖2

]
≤ C(x, K )

[
inf
j∈J

{
R j + 2xK

1 − x
ε2l j

}
+ (xK + 1) ε2�

]
,

with

C(x, K ) = 4xK(xK + 1)2

(xK − 1)3 and R j = inf
m∈M j

{
d2(s, Sm) + pen j(m)

}
.

Proof. LetM = ⊕
j∈JM j × { j} and set for all (m, j) ∈M such that Dm > 0,

L ′
(m, j) = Lm, j + D−1

m l j . Then

∑
{(m, j)∈M | Dm>0}

exp[−Dm L ′
(m, j)] = �.

Let pen((m, j)) = pen j(m) + [(2xK )/(1 − x)]ε2l j , for all (m, j) ∈ M. Using√
a + b ≤ √

a + √
b, we derive that

(√
Dm +√

2Lm, j Dm + 2l j

)2 ≤ Dm

(
1 +√

2Lm, j

)2 + 2l j + 2
√

2l j Dm,

which implies since 2
√

2l j Dm ≤ 2l j x/(1 − x) + Dm(1 − x)/x that

(√
Dm + √

2Lm, j Dm + 2l j

)2 ≤ x−1 Dm

(
1 +√

2Lm, j

)2 + 2l j/(1 − x).

It then follows that

pen((m, j)) ≥ xKε2
[

x−1 Dm

(
1 +√

2Lm, j

)2 + 2l j/(1 − x)

]

≥ xKε2
(√

Dm + √
2Lm, j Dm + 2l j

)2
,

and therefore

pen((m, j)) ≥ xKε2 Dm

(
1 +

√
2L ′

(m, j)

)2
. (4.1)

We can now apply Theorem 2 to the strategy defined for all (m, j) ∈ M by
the model Sm and the penalty pen((m, j)). By definition, the resulting estimator is
clearly s̃ and the risk bound follows from (3.5) with K replaced by xK > 1 because
of (4.1). ��
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Remarks.
• The definition of M that we used in the proof of the theorem may lead to

situations where the same model Sm appears several times with possibly differ-
ent weights. This is why we emphasized, in the presentation of the framework
preceding Theorem 2, the fact that such a redundancy was allowed.

• Note that the choice of a suitable value of x leads to the same difficulties as the
choice of K and one should avoid to take xK close to 1 (see Sect. 3.3.1).

The preceding theorem gives indeed a solution to the problems we considered
before. If one wants to mix a moderate number of strategies one can build a
“superstrategy” as indicated in the theorem, with µ the uniform distribution on
J , and the price to pay in the risk is an extra term of order ε2 log(|J |). In this
case, the choice of ĵ is particularily simple since it should merely satisfy ‖s̃ ĵ ‖2 −
pen ĵ (m̂ ĵ ) = sup j∈J

{‖s̃ j‖2 − pen j(m̂ j)
}
. If J is too large, one should take

a different “prior” than the uniform on the set of available strategies. One should
put larger values of µ({ j}) for the strategies corresponding to values of s we believe
are more likely and smaller values for the other strategies. As for the choice of the
weights Lm (see Sect. 3.4), the choice of µ has some Bayesian flavour.

As a matter of conclusion, let us mention that the problem of mixing several
estimation methods in order to get the best of each is not new. Our approach to
this problem seems to be new but it is limited to a specific class of estimators,
namely penalized projection estimators. More general points of view appear in
Yang (2000) and Catoni (2000), based on previous ideas of Barron (1987), as well
as in Nemirovski (2000, Chaps. 5 and 6).

4.2. Adaptation in the minimax sense

Now that we have at hand a powerful tool (Theorem 3) to mix strategies associated
with different bases or with a single one, it remains to decide what are the good
strategies within a given basis. As we already noticed in Sect. 2.3.3 a natural
benchmark for measuring the performance of penalized projection estimators, is
the oracle accuracy given by Definition 5. If S is a strategy with bounded weights,
i.e. Lm ≤ L for all m ∈ M, it follows from (3.13) that the accuracy index is
comparable to the oracle accuracy via the inequality

aI (s,S, ε) ≤ [(1 ∨ �) + L]
[
aO(s,S, ε) + ε2

]
. (4.2)

Note here that although the oracle accuracy does not depend on the weights Lm ,
the notation aO(s,S, ε) is perfectly meaningful. An advantage of this approach is
that this comparison with the oracle makes sense for all s. On the other hand, it has
at least two serious drawbacks:

• this comparison becomes meaningless when the family {Lm}m∈M is un-
bounded or is misleading when either L or � is large since the right-hand
side of (4.2) can then be substantially larger than the accuracy index;

• it provides no information on the comparison between s̃ and some arbitrary
estimator, which typically does not belong to the family {ŝm}m∈M.
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The above criticisms of “oracle inequalities” such as (4.2) suggest to consider
other optimality criteria in order to judge of the quality of penalized projection
estimators. As mentioned in Sect. 1.2.2, one such criterion is the minimax risk over
suitable subsets T of H, as defined by (1.9). From this point of view, the perform-
ance of an estimator ŝε (generally depending on ε) can then be measured by the ratio

R(ŝε,T , ε) = sup
s∈T
Es

[‖ŝε − s‖2
]

RM(T , ε)
,

and the closer this ratio to one, the better the estimator. In particular, if this ratio is
bounded independently of ε, the family of estimators {ŝε}ε>0 will be called approxi-
mately minimax with respect to T . Many approximately minimax estimators have
been constructed for various sets T . As for the case of Sobolev balls, they typically
depend on T which is a serious drawback. One would like to design estimators
which are approximately minimax for many T s simultaneously, for instance all
Sobolev balls Wα(R), with α > 0 and R ≥ ε. The construction of such adaptive
estimators has been the concern of many statisticians (see Barron et al. 1999, Sect. 5
for a detailed discussion of adaptation with many bibliographic citations).

In order to see to what extent our method allows to build adaptive estimators
in various situations, we shall consider below a number of examples and for any
such example, use the same construction. Given a class of sets {Tθ}θ∈� we choose
a family of models {Sm}m∈Mwhich adequately approximate those sets. This means
that we choose the models in such a way that any s belonging to some Tθ can be
closely approximated by some model of the family. Then we choose a family
of weights {Lm}m∈M satisfying the condition (3.3) for some reasonably small
value of �. Theses choices completely determine the construction of the penalized
projection estimator s̃ (up to the choice of K which is irrelevant in term of rates
since it only influences the constants). In order to analyze the performances of the
resulting estimator, it is necessary to evaluate, for each θ ∈ � and each s ∈ Tθ the
accuracy index aI (s,S, ε) since

R
(
ŝε,Tθ , ε

) ≤ C sup
s∈Tθ

aI (s,S, ε)

RM(Tθ, ε)
.

In order to bound the accuracy index, we first have to compute the distances d(s, Sm)

for each m ∈M, which derive from Approximation Theory, then procede to the
minimization with respect to m ∈M.

4.3. Choice of collections of models and Approximation Theory

In order to understand how to choose “good” families of models, let us consider
some particular weighting strategy for which it is especially easy to understand the
behaviour of the accuracy index. If for any integer D there is only a finite number of
models of dimension D one can choose Lm as a function L(Dm) of the dimension
which satisfies∑

D≥1

|{m ∈M | Dm = D}| exp[−DL(D)] = � < +∞. (4.3)
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This leads to

aI (s,S, ε) = inf
D≥0

{
ε2[DL(D) + D + �] + inf

{m∈M | Dm=D}
d2(s, Sm)

}
. (4.4)

Taking (4.3) into account, we see that controlling the accuracy index forces us to
make some compromises between the number of models of the same dimension and
their approximationcapabilities since a large number of models of dimension D po-
tentially reduces the value of inf{m∈M | Dm=D} d2(s, Sm) but requires a large value
for L(D) or �. Moreover we would like to control the accuracy index for as many
s simultaneously as possible. It is precisely one of the main purposes of Approxi-
mation Theory to provide linear or nonlinear approximation procedures for various
types of regular functions. Most of the constructive methods of approximation that
we know amount to select some coefficients from infinite dimensional expansions
on one single basis such as polynomials, piecewise polynomials, trigonometric
polynomials, wavelets, splines, . . . (and it is here that the basis choice comes
in) and naturally lead to collections of finite dimensional linear models Sm for
which inf{m∈M | Dm=D} d2(s, Sm) can be controlled in term of the various moduli
of smoothness of s. Results from Approximation Theory will therefore be at the
heart of our choices of suitable families of models for curve estimation.

5. Finite-dimensional variable selection

In order to define some basic strategies that will be the milestones for further de-
velopments and to analyze in a more concrete way the role of the weights and the
difference between our criterion and Mallows’ Cp, let us go back to one of the prob-
lems that motivated this work: variable selection for a Gaussian linear regression.

Translating (1.1) into our framework, we start from an observation of the
process Y(t) = 〈s, t〉 + εZ(t), where t varies in the linear span SN of some system
{ϕ1, . . . , ϕN } of linearly independent (but not necessarily orthonormal) vectors
and s is unknown in H. Variable selection then amounts to choose a proper value
of 
m as a subset of 
 = {1; . . . ; N} (with N ≥ 2 in order to avoid trivialities),
from the observation of Y . In short, we look for an efficient reconstruction of s,
taking into account the noise level and the number N of available variables, in the
form

∑
λ∈
m

βλϕλ which means that Sm is the linear span of {ϕλ}λ∈
m . We focus
here on two typical and, in some sense, extremal situations:

• Ordered variable selection amounts to restrict to subsets 
m of 
 of the form
{1; . . . ; m} with 1 ≤ m ≤ N. In this case, one takes M = {1; . . . ; N}.
Such a variable selection problem is especially meaningful for time-depending
variables or variables which are algebraic or trigonometric polynomials.

• Complete variable selection considers all subsets 
m = m of {1; . . . ; N}. In
this caseM = P({1; . . . ; N}).

5.1. Oracle type inequalities

Here, we want to compare the risk bounds (3.5) to the oracle accuracy when the
penalty is chosen according to (3.11). Of course, this comparison heavily depends
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on the choice of the weights Lm but, in principle, on K also. Since the dependence
with respect to K of bound (3.5) is very crude, we shall make no attempt to be
precise in the following evaluations and shall content ourselves with comparisons
of risks bounds up to multiplicative constants depending on K . Taking (3.14)
into account, we shall focus on the evaluation of the accuracy index for various
strategies. In the sequel we shall use various quantities depending on the parameters
involved in our strategies. Such a quantity will systematically be denoted by C or
more precisely C(·, · · · , ·) to indicate that its value only depends on the parameters
appearing as its arguments. Its value may change from line to line.

5.1.1. Ordered variable selection

Constant weights Let us begin with the simplest weighting strategy. Choosing

Lm = L > 0 for m ∈M gives (3.3) with � <
(
eL − 1

)−1
and (3.13) then leads

to a strategy S with accuracy index bounded by

aI (s,S, ε) ≤ inf
m∈M

{
d2(s, Sm) + ε2m (1 + L)

}
+ ε2(eL − 1

)−1
. (5.1)

Since aO(s,F, ε) ≥ ε2, one gets aI (s,S, ε) ≤ C(L) aO(s,F, ε). It should also
be noted that all penalties of the form K ′mε2 with K ′ > 1, which correspond to
suitable choices of the pair (K, L), are allowed, including that of Mallows, namely
K ′ = 2.

Variable weights In order to improve on (5.1), we can introduce weights which
depend on the dimension. Let us, for instance, set Lm = θ2m−1/2 for some θ > 0.
Then (3.3) holds with � < �θ = ∑+∞

D=1 exp
(− θ2

√
D
)

which leads to a strategy
S with accuracy index bounded by

aI (s,S, ε) ≤ inf
m∈M

{
d2(s, Sm) + ε2m

(
1 + θ2m−1/2

)}
+ �θε

2. (5.2)

Straightforward computations show that, if L = log
[
1 + exp

(
θ2
)
/2
]

and θ2 ≥ 3,

then �θ <
(
eL − 1

)−1
which allows an easy comparison with (5.1): if m0 denotes

a minimizer of d2(s, Sm) + ε2m(1 + L) overM, bound (5.2) is better than bound
(5.1) whenever L > θ2m−1/2

0 . It should also be noted that, when K = 2, our
penalty can be viewed as a corrected version of Mallows’ Cp, which is equivalent
to it when m goes to infinity.

In both situations (constant or variable weights), we have proved that an oracle
inequality of the form (2.9) holds for suitable choices of the penalty. This shows that
those penalized projection estimators are optimal in the sense that, up to constants,
they are minimax over any space Sm with m ∈ M. Nevertheless, the preceding
study tends to indicate that suitably chosen variable weights should be prefered to
constant weights.

5.1.2. Complete variable selection and thresholding

A quite different situation occurs when one allows m = 
m to be any subset of
{1; . . . ; N}, Sm being the linear span of {ϕλ}λ∈
m with Dm = |m|. When the
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system {ϕλ}λ∈
 is orthonormal, we shall denote by β̂λ the estimated coefficient
Y(ϕλ). Then by (2.5) ŝm = ∑

λ∈m β̂λϕλ for all m ∈M.

Constant weights If we choose constant weights, namely Lm = L for all m ∈M,
we get

� =
N∑

D=1

(
N

D

)
e−L D = (

1 + e−L)N − 1.

In order that � remains bounded independently of N one has to take L/ log N ≥
1 + o(1) when N → +∞. This also means that the use of Mallows’ Cp criterion,
which requires that L be smaller than 3/2 − √

2 leads to � > 1.9N − 1 and
the resulting risk bound is therefore irrelevant when N is large. At this point,
one can suspect that Mallows’ criterion might not be suitable for complete variable
selection with a large number of variables and should rather be replaced by a penalty
of the form pen(m) = K |m|ε2

(
1 + √

2L
)2 with L = log N which warrants that

� < (1 + log N) ∧ (e − 1) and that accuracy index of the corresponding strategy
is bounded by

aI (s,S, ε) ≤ inf
m∈M

{
d2(s, Sm) + ε2|m|[1 + log N]

}
+ �ε2 (5.3)

≤ [1 + log N]
[
aO(s,F, ε) + ε2

]
. (5.4)

We then miss a factor 1 + log N with respect to the oracle accuracy.
Let us now turn to computational issues when the system {ϕλ}λ∈
 is orthonor-

mal and first show that

aO(s,F, ε) =
∑
λ∈


(
β2
λ ∧ ε2

)
. (5.5)

Indeed,

aO(s,F, ε) = inf
m∈M

{∑
λ/∈m

β2
λ + ε2|m|

}
= ‖s‖2 + inf

m∈M
∑
λ∈m

(
−β2

λ + ε2
)
. (5.6)

The infimum is reached by m� = {
λ
∣∣β2

λ > ε2
}
. Plugging this value of m� in (5.6)

gives (5.5) and (5.4) therefore becomes

aI (s,S, ε) ≤ [1 + log N]
[∑
λ∈


(
β2
λ ∧ ε2

)
+ ε2

]
. (5.7)

As to the penalized projection estimator, while its computation apparently re-
quires an optimization over a family of models of cardinality 2N which does not
seem numerically feasible when N is large, it turns out, when the system {ϕλ}λ∈


is orthonormal, to be easily computed. Indeed, since the penalty is proportional
to the dimension of the model, i.e. pen(m) = T 2|m| for some positive number
T = √

K
(
1 + √

2 log N
)
ε, the minimization with respect to m ∈ M of the
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penalized criterion −‖ŝm‖2 + pen(m) is similar to the one involved in the compu-
tation of the oracle accuracy. It amounts, according to (2.5) to the minimization of∑

λ∈
m

[− β̂
2
λ + T 2

]
and m̂ is therefore given by m̂ = {λ ∈ 
 | | β̂λ| > T }. This

results in a threshold estimator of the form

s̃T = ŝm̂ =
∑
λ∈


β̂λ1l{| β̂λ|>T } ϕλ, (5.8)

which means that one only keeps in the expansion of s̃ the coefficients β̂λ which
have a large enough absolute value, larger than the threshold T . These estimators
have been investigated in great details by Donoho and Johnstone (1994a), at least
from an asymptotic point of view (when N tends to infinity). They have shown
(Theorem 4, p. 439) that the choice T = TN = (2 log N)1/2ε leads to

Es

[
‖s − s̃TN ‖2

]
≤ κN

[∑
λ∈


(
β2
λ ∧ ε2

)
+ ε2

]
when s =

∑
λ∈


βλϕλ, (5.9)

where the ratio κN/(2 log N) converges to 1 as N goes to infinity. Apart from
the multiplicative factor C0(K )[1 + log N]/κN , which is bounded, the inequality
resulting from the combination of (3.14) and (5.7) is the same as (5.9) .

Note that we were unable to prove an oracle inequality of the form (2.9) with
a universal constant C. It is actually impossible to get such an inequality due to the
following result of Donoho and Johnstone (1994a, Theorem 3) which, according
to (5.5), can be written as

lim inf
N →+∞

1

log N

[
inf

ŝ
sup
s∈SN

Es
[‖s − ŝ‖2

]
aO(s,F, ε) + ε2

]
≥ 2,

ŝ denoting an arbitrary estimator. This shows that complete variable selection is
definitely more difficult than ordered variable selection. A further consequence of
this lower bound is that (5.9) is asymptotically optimal in this minimax sense, i.e.

lim sup
N →+∞

1

log N

[
sup
s∈SN

Es
[‖s − s̃TN ‖2

]
aO(s,F, ε) + ε2

]
= 2. (5.10)

It should be noticed that bound (5.7) may be too pessimistic. Indeed, using
(5.3) one gets instead

aI (s,S, ε) ≤
∑
λ∈


(
β2
λ ∧ ε2[1 + log N]

)
+ (e − 1)ε2, (5.11)

which can be substantially better than (5.7) as can be seen when s = ε
∑

λ∈m ϕλ

where m ∈ M \ ∅. As a conclusion, we see that it is more clever to use bounds
(3.5) or (3.13) as they stand rather than trying to put them in the form (2.9), which
may be misleading when C is large.
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Variable weights As in the case of ordered variable selection, it is possible to
improve on (5.3) by simply introducing weights which depend on the dimension,
i.e. Lm = L(|m|). This leads to

� =
N∑

D=1

(
N

D

)
exp[−DL(D)] ≤

N∑
D=1

(
eN

D

)D

exp[−DL(D)]

≤
N∑

D=1

exp
[
−D

[
L(D) − 1 − log

(
N

D

)]]
.

Hence the choice L(D) = 1+θ+log(N/D)with θ > 0 leads to� ≤ ∑∞
D=1 e−Dθ =[

eθ − 1
]−1

. Choosing θ = log 2 for the sake of simplicity we derive the following
bound for the accuracy index:

aI (s,S, ε) ≤ inf
m∈M

{
d2(s, Sm) + ε2|m| [1 + log(2N/|m|)]}+ ε2, (5.12)

which is better than (5.3) when |m| �= 1 and only slightly worse (from a factor 1.7)
when |m| = 1. This implies that the accuracy index of our new strategy satisfies
analogues of (5.11) and (5.7) and therefore the corresponding estimator s̃ satisfies
an analogue of (5.10), namely

lim sup
N →+∞

1

log N

[
sup
s∈SN

Es
[‖s − s̃‖2

]
aO(s,F, ε) + ε2

]
≤ C(K ). (5.13)

On the other hand, the variable weights penalized projection estimator is also
rather easy to compute when the system {ϕλ}λ∈
 is orthonormal. Indeed

inf
m∈M

{
−
∑
λ∈m

β̂
2
λ + Kε2|m|

(
1 +√

2L(|m|)
)2
}

= inf
0≤D≤N

{
− sup

{m | |m|=D}

∑
λ∈m

β̂
2
λ + Kε2|D|

(
1 +√

2L(|D|)
)2
}

= inf
0≤D≤N


−

D∑
j=1

β̂
2
τ( j) + Kε2|D|

(
1 + √

2L(|D|)
)2


 (5.14)

where β̂
2
τ(1) ≥ . . . ≥ β̂

2
τ(N) are the squared estimated coefficients of s in decreasing

order. This suggests to introduce the following notations:

Definition 8. Given a set of real numbers {bi}i∈I indexed by some finite set I
with cardinality N, one denotes by {b( j)(I )}1≤ j≤N the same set of numbers in
decreasing order of their absolute values which means that |b(1)(I )| ≥ |b(2)(I )| ≥
. . . ≥ |b(N)(I )|. For 1 ≤ D ≤ N, I[D] is then the subset of I of those indices
corresponding to the elements {b( j)(I )}1≤ j≤D, i.e.

|I[D]| = D and |bi| ≥ |b j | for all i, j with i ∈ I[D], j /∈ I[D]. (5.15)
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Formally, the definition of I[D] depends primarily on the numbers bi although
they do not appear in the notation, for the sake of simplicity. This will not cause
any ambiguity in the sequel since we shall always consider quantities of the form∑

i /∈I [D] b2
i (say) and the indices then systematically apply to the elements which

were used to define the corresponding sets. Going back to (5.14) we see that
minimizing crit(m) amounts to select a value D̂ of D which minimizes

−
D∑

j=1

β̂
2
( j)(
) + Kε2|D|

(
1 +√

2L(|D|)
)2

.

This finally leads to m̂ = 
[D̂].

5.2. Minimax and adaptive properties of the variable weights strategies

From the global minimax point of view introduced by Donoho and Johnstone,
the threshold estimator which is a penalized projection estimator with constants
weights and the penalized projection estimator with variable weights have similar
performances (apart from the asymptotic constants) – compare (5.10) and (5.13) –.
However this point of view may be somewhat misleading since inequalities like
(5.9) or (5.11) can be substantially improved for some values of s when replacing
the threshold estimator which corresponds to the constant weights strategy by the
penalized projection estimator s̃ which corresponds to the variable weights strategy.
In order to understand what type of improvement is possible, let us now consider
a less global minimax point of view. For this purpose we introduce the spaces
SD of those functions s that have at most D ≥ 1 nonzero coefficients, namely
SD = ∪{m∈M | |m|=D}Sm . Comparing the performances of estimators with respect
to SD appears to be rather natural in the context of complete variable selection. In
order to get precise results, we assume all along this section the system {ϕλ}λ∈
 to
be orthonormal.

Defining s̃ as the variable weights penalized projection estimator described in
the previous section, one derives from (5.12) and (3.14) that

sup
s∈SD

Es

[
‖s̃ − s‖2

]
≤ C0(K )ε2[D + D log(2N/D) + 1]. (5.16)

It is interesting to notice that such a bound is not achievable with constant weights.
To see this, we recall that the corresponding penalized projection estimator is
a threshold estimator s̃T given by (5.8). When T = √

K
(
1 + √

2 log N
)
ε, (5.11)

combined with (3.14) leads to a risk bound which is weaker than (5.16) since

sup
s∈SD

∑
λ∈


(
β2
λ ∧ ε2[1 + log N]

)
= Dε2[1 + log N].

One can prove a more concrete result in the form of a lower bound for the risk of
any threshold estimator s̃T (i.e. any penalized projection estimator with constant
weights). Very similar computations appear in the Appendix of Donoho and John-
stone (1994a) and the lectures of Johnstone (1998), but since they aim at getting
upper bounds, they are not stated in a form which is suitable to our needs.
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Proposition 2. Let T > 0, s̃T be the threshold estimator defined by (5.8), m an
arbitrary subset of {1; . . . ; N} and δλ = ±1 for λ ∈ m. If s = T

∑
λ∈m δλϕλ, then

Es

[
‖s̃T − s‖2

]
≥ |m|

2

(
T 2 + ε2) + N − |m|

2
ε2

(
T

√
2

ε
√
π

∨ 1

)
exp

(
− T 2

2ε2

)
.

(5.17)

Proof. We can assume without loss of generality, that s = T
∑

λ∈m ϕλ. Then

Es

[
‖s̃T − s‖2

]
=

∑
λ∈m

Es

[(
T − β̂λ1l{| β̂λ|>T }

)2
]

+
∑
λ �∈m

Es

[
β̂

2
λ1l{| β̂λ|>T }

]

= |m|E
[(

T − (T + εξ)1l{|(T+εξ)|>T }
)2
]

+ (N − |m|)ε2
E

[
ξ21l{|εξ|>T }

]
.

In order to conclude, it suffices to observe that(
T − (T + εξ)1l{|(T+εξ)|>T }

)2 ≥ T 21l{ξ≤0} + ε2ξ21l{ξ>0},

and apply the next elementary lemma. ��
Lemma 1. If ξ is standard normal and t ≥ 0, then

E

[
ξ21l{ξ>t}

]
≥
(

t√
2π

∨ 1

2

)
exp

(
− t2

2

)
.

It follows from Proposition 2 with m = ∅ that whenever T ≤ ε
√

2c log N with
c < 1, the risk at zero of the threshold estimator is at least

(
ε2/2

)
N1−c which

is much larger than the expected ε2 log N. This suggests to focus on threshold
estimators with a large enough level T of thresholding, say T ≥ ε

√
log N , in

which case it follows from (5.17) that

sup
s∈SD

Es

[
‖s̃T − s‖2

]
≥ ε2(D/2)(1 + log N). (5.18)

In particular, when D = N, the threshold estimator looses a log N factor from the
risk of s̃ as shown by (5.16). More generally, when T ≥ ε

√
log N and D ≥ 1,

sups∈SD
Es

[‖s̃T − s‖2
]

sups∈SD
Es

[‖s̃ − s‖2
] ≥ C(K )

1 + log N

1 + log(N/D)
. (5.19)

This last inequality suggests that variable weights should be prefered to constant
weights but one can even prove a more convincing result demonstrating the supe-
riority of the variables weights strategy, namely the fact that it is adaptive over the
family of all spaces SD. The following theorem shows that it is minimax, up to
constants, over all the spaces SD with D ≥ 1 simultaneously and that (5.16) cannot
be improved.
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Theorem 4. There exist two positive universal constants κ and κ′ such that the
minimax risk RM(SD, ε) over SD – as defined by (1.9) – satisfies

κε2 D[1 + log(N/D)] ≤ RM(SD, ε) ≤ κ′ε2 D[1 + log(N/D)], (5.20)

for all ε > 0, N ≥ 1 and 1 ≤ D ≤ N.

Since the upper bound derives from (5.16), we only have to prove the lower bound
result, which is an immediate consequence of the following theorem (the proof of
which is given in Sect. 8.2) with b2 = 1 + log(N/D).

Theorem 5. Let {ϕλ}λ∈
 with 
 = {1, 2, . . . , N} be an orthonormal system in H
and for 1 ≤ D ≤ N,MD be the collection of all subset of cardinality D of 
. We
denote by B(N, D, b) with b > 0 the subset of H containing all the points s of the
form s = ∑

λ∈m βλϕλ where m is any element ofMD and |βλ| ≤ bε for all λ ∈ m.
Then the minimax risk over B(N, D, b) satisfies

RM(B(N, D, b), ε) ≥ ε2 D

216

[(
18b2) ∧ 5 log

(
N

D
∨ 650

)]
.

6. Infinite-dimensional variable selection

6.1. From function spaces to sequence spaces

It is now part of the statistical folklore that, for a suitable choice of an orthonormal
basis {ϕλ}λ∈
 (
 = N�) of some Hilbert space H of functions, properties of the
elements of H can be translated into properties of their coefficients in the space
l2(
). One should look at Meyer (1990) for the basic ideas and Donoho and
Johnstone (1998, Sect. 2) for a review. Many classical functional classes in some
L2 space H can therefore be turned to specific geometric objects in l2(
) via the
natural isometry between H and l2(
) given by s ↔ (βλ)λ∈
 if s = ∑

λ∈
 βλϕλ.
In particular Sobolev balls could be interpreted in terms of ellipsoids (with respect
to the trigonometric basis) and balls in Besov spaces can be turned to special types
of lp-bodies when expanded on suitable wavelet bases (see Sect. 8.1 below). As
shown in Sect. 2.2, once we have chosen a suitable basis, a Gaussian linear process
can be turned to an associated Gaussian sequence of the form

β̂λ = βλ + εξλ, λ ∈ 
, (6.1)

for some sequence of i.i.d. standard normal variables ξλ. We shall therefore con-
centrate here on the search for good strategies for estimating s = (βλ)λ∈
 ∈ l2(
)

from the sequence ( β̂λ)λ∈
 under the assumption that it belongs to various types
of lp-bodies.

The study of minimax and adaptive estimation in the Gaussian sequence frame-
work has been mainly developed by Pinsker (1980) and Efroimovich and Pinsker
(1984) for ellipsoids and by Donoho and Johnstone (1994a, b, 1995, 1996 and
1998) for lp-bodies. Let us now recall the corresponding definitions.
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Definition 9. Let p be some positive real number and a = (aλ)λ∈
 (
 = N�) be
a nonincreasing sequence of numbers in [0,+∞], converging to 0 when λ → +∞
and such that ∑

λ∈


a2p/(p−2)
λ < +∞ if p > 2. (6.2)

The lp-body E(p, a) is the subset of R
 given by

E(p, a) =
{

s = (βλ)λ∈


∣∣∣∣∣
∑
λ∈


∣∣∣∣βλ

aλ

∣∣∣∣p

≤ 1

}
, (6.3)

with the convention that 0/0 = 0 and x/(+∞) = 0 whatever x ∈ R. An l2-body is
called an ellipsoid.

It is important here to notice that the ordering, induced by 
, that we have cho-
sen on {ϕλ}λ∈
, plays an important role since lp-bodies are not invariant under
permutations of 
.

If follows from classical inequalities between the norms in l2(
) and lp(
)

that E(p, a) ⊂ l2(
) when p ≤ 2. If p > 2, (6.2) warrants that E(p, a) ⊂ l2(
).
More precisely, it follows from Hölder’s Inequality that if s ∈ E(p, a),

∑
λ>N

β2
λ =

∑
λ>N

(
β2
λ

a2
λ

)
a2
λ ≤

(∑
λ>N

∣∣∣∣βλ

aλ

∣∣∣∣
p
)2/p (∑

λ>N

a2p/(p−2)
λ

)1−2/p

≤
(∑

λ>N

a2p/(p−2)
λ

)1−2/p

. (6.4)

The results developed in the next sections essentially parallel and complement
those obtained by Donoho and Johnstone in a series of papers devoted to asymp-
totic evaluation of the minimax risk for various lp-bodies and adaptation (see
Donoho and Johnstone 1994a, b, 1995, 1996 and 1998). Their approach, based on
thresholding methods, is essentially asymptotic while ours is not. The asymptotic
viewpoint allows them to get precise asymptotic values while we have to content
ourselves with rougher evaluations, up to more or less precise multiplicative con-
stants. As a counterpart, we are able to deal with more general situations that their
assumptions exclude (see the case of lp-balls below or the case α = 1/p − 1/2
for Besov bodies). Moreover, we shall see in Sect. 6.3.4 below that the search for
exact asymptotic minimaxity may lead to serious drawbacks.

The methods we use are also different. While hard thresholding, which is at
the heart of their results, is a particular case of penalization, penalization includes
many other strategies which will allow us to derive adaptation results over much
larger classes. As far as we know, such results could not be derived using standard
thresholding methods. In any case, it will immediately be clear to any reader who
is familiar with the works of Donoho and Johnstone that our point of view has been
strongly influenced by theirs.
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In our treatment of the Gaussian sequence model associated with the basis
{ϕλ}λ∈
, we shall stick to the following notations: the family {
m}m∈M is a count-
able family of finite subsets of 
 = N� and for each m ∈M, Sm is the linear span
of {ϕλ}λ∈
m ; if 
m = ∅, then Sm = {0}. Selecting a value of m amounts to select
a set 
m or equivalently some finite subset of the coordinates. Our purpose will
be to define proper collections {
m}m∈M of subsets of 
 together with weights
Lm satisfying (3.3) for which the accuracy index aI (s,S, ε) defined by (3.13) can
be bounded when s belongs to some typical lp-bodies. Such computations, which
require the evaluation of d2(s, Sm) involve the approximation properties of the
models Sm in the collection.

6.2. Adaptation with respect to lp-bodies for p ≥ 2

We first introduce a strategy which is suitable when s belongs to some unknown
ellipsoid (case p = 2) or more generally some unknown lp-body with p ≥ 2. This
strategy is given byM = N,
0 = ∅,
m = {1, 2, . . . ,m} for m > 0 and (Lm)m≥1
is any bounded nonnegative sequence satisfying (3.3) (such as Lm = L > 0 for all
m or Lm = θ2m−1/2). If L = supm≥1{Lm}, one immediately derives that, whatever
s ∈ l2(
),

aI (s,S, ε) ≤ inf
m∈N

{∑
λ>m

β2
λ + ε2m(1 + L)

}
+ ε2�.

Since
∑

λ>m β2
λ converges to zero when m goes to infinity, it follows that aI (s,S, ε)

goes to zero with ε and our strategy leads to consistent estimators for all s ∈ l2(
).
Let us now assume that s belongs to some lp-body E(p, a) ⊂ l2(
) such that

(6.2) holds if p > 2. If we define

a′
λ = aλ if p = 2 and a′

λ =

∑

j≥λ

a2p/(p−2)
j




1/2−1/p

≥ aλ if p > 2,

(6.5)

we deduce from the monotonicity of the sequence a when p = 2 and from (6.4)
otherwise that d2(s, Sm) ≤ a′2

m+1. Consequently we get for all s ∈ E(p, a), p ≥ 2

aI (s,S, ε) ≤ inf
m∈N

{
a′2

m+1 + ε2m(1 + L)
}

+ ε2� with L = sup
m≥1

{Lm}. (6.6)

The following proposition, the proof of which is essentially based on the results
by Donoho et al. (1990), implies that, given 0 < η ≤ 1, our penalized projection
estimator s̃ is, up to a constant depending only on η, K, L and �, simultaneously
minimax among all possible lp-bodies E(p, a) which satisfy p ≥ 2 and a1 ≥ ηε

(and therefore a′−1
1 ε ≤ η−1).

Proposition 3. Let RM(E(p, a), ε) be the minimax risk over the lp-body E(p, a)
with p ≥ 2 and a1 > 0, S be the above strategy and pen(m) be given by (3.11).
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Then the resulting penalized projection estimator s̃ satisfies

sup
s∈E(p,a)

Es

[
‖s − s̃‖2

]
≤ C′(K ) [(1 + L) ∨ �]

[
1 ∨

(
a′−1

1 ε
)]2

RM(E(p, a), ε)

for some positive constant C′(K ).

Proof. On the one hand, it follows from (3.14) and (6.6) that

sup
s∈E(p,a)

Es

[
‖s − s̃‖2

]
≤ C(K ) [(1 + L) ∨ �] inf

m∈N

{
a′2

m+1 + ε2(m + 1)
}
. (6.7)

On the other hand, since p ≥ 2, E(p, a) is orthosymmetric, compact, convex
and quadratically convex, according to the terminology of Donoho et al. (1990).
Now let A be an arbitrary finite subset of 
 and ŝA the corresponding projection
estimator ŝA = ∑

λ∈A β̂λϕλ. The maximal risk of such an estimator then derives
from (2.7):

sup
s∈E(p,a)

Es

[
‖s − ŝA‖2

]
= |A|ε2 + sup

s∈E(p,a)

∑
λ∈
\A

β2
λ.

It follows from Donoho et al. (1990, Corollary p. 1428) that the minimax risk over
E(p, a) satisfies

4.44RM(E(p, a), ε) ≥ inf
A⊂


sup
s∈E(p,a)

Es

[
‖s − ŝA‖2

]

= inf
A⊂


{
|A|ε2 + sup

s∈E(p,a)

∑
λ∈
\A

β2
λ

}
.

If |A| = m, it follows from the monotonicity of the sequence (aλ) that

sup
s∈E(p,a)

∑
λ∈
\A

β2
λ ≥ sup

s∈E(p,a)

∑
λ>m

β2
λ = a′2

m+1,

since the bound (6.4) is sharp in the sense that there exists an s ∈ E(p, a) for which
the equality holds. We can therefore derive that

4.44RM(E(p, a), ε) ≥ inf
m∈N

{
mε2 + a′2

m+1

}
. (6.8)

The conclusion follows from a comparison between (6.7) and (6.8). ��

6.3. Estimation in arbitrary lp-bodies

6.3.1. Presentation of a new strategy and the corresponding estimator

We now only want to assume that s ∈ E(p, a) for some unknown values of the
sequence a = (aλ)λ∈
 and the positive parameter p.
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The strategy We choose forM the collection of all finite subsets m of 
 and set

m = m and Nm = sup m; then, if m �= ∅, 1 ≤ Dm = |m| ≤ Nm . Finally, in order
to define the weights, fix some θ > 0 and set for all m �= ∅, Lm = L(Dm, Nm)

with

L(D, N) = log
(

N

D

)
+ (1 + θ)

(
1 + log N

D

)
.

Let us now check that (3.3) is satisfied with � bounded by some �θ depending
only on θ . We first observe thatM\∅ is the disjoint union of all the setsM(D, N),
1 ≤ D ≤ N, where

M(D, N) = {m ∈M | Dm = D and Nm = N}, (6.9)

and that

|M(D, N)| =
(

N − 1

D − 1

)
≤
(

N

D

)
≤
(

eN

D

)D

,

from which we derive that

� ≤
∑
N≥1

N∑
D=1

|M(D, N)| exp[−D log(N/D) − (1 + θ)(D + log N)]

≤
∑
N≥1

∑
D≥1

exp[−θD]N−θ−1 ≤ e−θ

1 − e−θ

∫ +∞

1/2
x−θ−1 dx

≤ e−θ

1 − e−θ

2θ

θ
= �θ. (6.10)

Computation of the estimator If one chooses pen(m) as in (3.11), it is a function
of Dm and Nm and can therefore be written as pen′(Dm, Nm). In order to compute
the penalized projection estimator s̃ = ŝm̂ one has to find the minimizer m̂ of

crit(m) = −‖ŝm‖2 + pen(m) = −
∑
λ∈m

β̂
2
λ + pen′(Dm, Nm).

Given N and D, the minimization of crit(m) over the setM(D, N) amounts to the

maximization of
∑

λ∈m β̂
2
λ over this set. Since by definition all such m’s contain

N and D − 1 elements of the set {1, 2, . . . , N − 1}, it follows that the minimizer
m(D, N) of crit(m) overM(D, N) is the set containing N and the indices of the

D−1 largest elements β̂
2
λ for 1 ≤ λ ≤ N −1 or more formally, using Definition 8,

inf
m∈M(D,N)

crit(m) = crit(m(D, N)) = −
∑

λ∈m(D,N)

β̂
2
λ + pen′(D, N),

with m(D, N) = {N} ∪ {1, 2, . . . , N − 1}[D − 1]. The computation of m̂ then
results from an optimization with respect to N and D. In order to perform
this optimization, let us observe that if J = max {1, 2, . . . , N}[D] < N, then
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∑
λ∈m(D,N) β̂

2
λ ≤ ∑

λ∈m(D,J ) β̂
2
λ. On the other hand, it follows from the definition

of L(D, ·) that L(D, J ) < L(D, N) and therefore crit(m(D, N)) > crit(m(D, J )).
This implies that, given D, the optimization with respect to N should be restricted
to those N’s such that max {1, 2, . . . , N}[D] = N. It can easily be deduced from

an iterative computation of the sets {β̂2
λ}λ∈{1,2,... ,N}[D] starting with N = D. It then

remains to optimize our criterion with respect to D.

6.3.2. Bounding the accuracy index

In this section we want to prove various upper bounds for the accuracy index which
will prove useful in the sequel. As usual, C(θ) will denote some constant depending
only on θ , but which may vary from line to line. First applying (3.13) with m = ∅
and therefore Dm = 0, we get

aI (s,S, ε) ≤ C(θ)
(
‖s‖2 + ε2

)
, (6.11)

which is a useful bound when ε−1‖s‖ is not large.
In order to deal with the other cases, we observe that log N/D < log(N/D) +

0.37 for any pair of positive integers D ≤ N, which implies that

L(D, N) ≤ (2 + θ) log

(
N

D

)
+ 1.37(1 + θ). (6.12)

If we restrict to those ms such that Nm = Dm , then Lm ≤ 1.37(1 + θ). Moreover,

∑
λ>N

β2
λ ≤

(∑
λ>N

|βλ|p

)2/p

≤ a2
N+1 for 0 < p ≤ 2, (6.13)

which leads to the following analogue of (6.6),

aI (s,S, ε) ≤ C(θ) inf
N≥1

{
a2

N+1 + ε2 N
}
. (6.14)

By the arguments used in the preceding section, this bound remains valid when
p > 2 provided that aN+1 is replaced by a′

N+1 as defined by (6.5). This means that
an analogue of Proposition 3 still holds for the new estimator s̃, namely

sup
s∈E(p,a)

Es

[
‖s − s̃‖2

]
≤ C(K, θ)

[
1 ∨

(
a′−1

1 ε
)]2

RM(E(p, a), ε) for p ≥ 2,

and s̃ is minimax, up to some constant C(K, θ, η), over all lp-bodies such that
p ≥ 2 and a1 ≥ ηε > 0.

Let us now turn to a more general bound which will allow us to deal with
lp-bodies for p < 2. This bound is based on the following:
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Lemma 2. Given N nonnegative numbers {bi}i∈I such that
∑

i∈I bp
i ≤ Rp with

0 < p ≤ 2, an integer Q satisfying 0 ≤ Q ≤ N − 1 and the set I[Q] given by
Definition 8, one gets, recalling that the numbers b(1)(I ) ≥ . . . ≥ b(N)(I ) represent
a permutation of the set {bi}i∈I ,

∑
i /∈I [Q]

b2
i =

N∑
j=Q+1

b2
( j)(I ) ≤ R2(Q + 1)1−2/p.

Proof. The result being clearly true when Q = 0, we can assume that Q ≥ 1. Let
b = b(Q+1)(I ). Then b ≤ b( j)(I ) whatever j ≤ Q and therefore (1 + Q)bp ≤ Rp.
We then conclude from

N∑
j=Q+1

b2
( j)(I ) ≤ b2−p

N∑
j=Q+1

bp
( j)(I ) ≤

(
Rp

1 + Q

)2/p−1

Rp. ��

We can now derive the following upper bound for the accuracy index:

Proposition 4. Let s belong to some lp-body E(p, a) with p < 2 and S be the
strategy defined in Sect. 6.3.1. Then

aI (s,S, ε) ≤ C(θ) inf{(D,N) | 1≤D≤N}

{
a2

N+1 + a2
D D1−2/p + ε2 D

[
log

(
N

D

)
+ 1

]}
.

(6.15)

Proof. SettingM̄(J, M) = ∪J≤N≤MM(J, N)whereM(J, N) is defined by (6.9),
we derive from (6.12), (6.10) and (3.13) that

aI (s,S, ε)

≤ inf{(J,N) | 1≤J≤N}

{(
inf

m∈M(J,N)
d2(s, Sm)

)
+ ε2 J[L(J, N) + 1]

}
+ �θε

2

≤ C(θ) inf{(J,M) | 1≤J<M}

{(
inf

m∈M̄(J,M)

d2(s, Sm)

)
+ ε2 J

[
log

(
M

J

)
+ 1

]}
.

Let us fix some pair (J, M) and some m ∈ M̄(J, M). It follows from (6.13) that

d2(s, Sm) =
∑
λ>M

β2
λ +

∑
1≤λ≤M
λ/∈m

β2
λ ≤ a2

M+1 +
∑

1≤λ≤M
λ/∈m

β2
λ,

and therefore, setting IM = {1, 2, . . . , M},
aI (s,S, ε) ≤ C(θ) inf

J≥1
inf

M>J
F(J, M), (6.16)

with

F(J, M) = inf
m∈M̄(J,M)

d2(s, Sm) + ε2 J

[
log

(
M

J

)
+ 1

]

≤ a2
M+1 +

M∑
λ=J+1

β2
(λ)(IM ) + ε2 J

[
log

(
M

J

)
+ 1

]
.
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Let us now observe that if 1 ≤ D ≤ J + 1 ≤ M,

M∑
λ=D

β
p
(λ)(IM ) ≤

M∑
j=D

|β j |p ≤ ap
D.

It then follows from Lemma 2 with N = M − D + 1, R = aD and Q = J − D + 1
that

M∑
λ=J+1

β2
(λ)(IM ) ≤ a2

D(J − D + 2)1−2/p.

Let us now define

.x/ = inf{n ∈ N | n ≥ x}, (6.17)

and fix D = .(J + 1)/2/ and N = .(M − 1)/2/. Then J − D + 2 ≥ D and
J/2 < D ≤ J , which implies that

F(M, J ) ≤ a2
N+1 + a2

D D1−2/p + 2ε2 D

[
log

(
2N + 1

D

)
+ 1

]
.

Finally, since N ≥ D implies that M> J and log(2N+1)+1≤(1+log3)(log N+1),
(6.15) follows from (6.16). ��

6.3.3. Adaptation over lp-balls

Following the terminology of Donoho and Johnstone (1994b) we define the lp-ball
L(p, N, R) ⊂ l2(
) of dimension N and radius R, with N ∈ N�, R > 0 and
0 < p ≤ 2 as

L(p, N, R) =
{

s = (βλ)λ∈


∣∣∣∣∣
N∑

λ=1

|βλ|p ≤ Rp and βλ = 0 for λ > N

}
.

(6.18)

The performances of our strategy when s belongs to some unknown lp-ball
L(p, N, R) of dimension N ≥ 2 (in order to avoid trivialities) are described
by the following proposition.

Proposition 5. Let s belong to some lp-ball L(p, N, R) with N ≥2 and 0< p<2.
Let ρp > 1.76 be the unique solution of the equation ρp logρp = 2/p. The
accuracy index of our strategy can then be bounded by

aI (s,S, ε) ≤ C(θ)Rpε2−p
[

1 + log

(
Nεp

Rp

)]1−p/2

, (6.19)

when √
log N ≤ R/ε ≤ ρ

−1/2
p N1/p; (6.20)
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by

aI (s,S, ε) ≤ C(θ)
(

R2 + ε2
)

when R < ε
√

log N; (6.21)

and by

aI (s,S, ε) ≤ C(θ) ε2 N when R > ερ
−1/2
p N1/p. (6.22)

Moreover the minimax risk over L(p, N, R) is bounded from below by

RM(L(p, N, R), ε) ≥ κ1 Rpε2−p
[

1 + log

(
Nεp

Rp

)]1−p/2

when (6.20) holds;

RM(L(p, N, R), ε) ≥ κ1 R2 when R < ε
√

log N;
and

RM(L(p, N, R), ε) ≥ κ1ρ
−1
p Nε2 when R > ερ

−1/2
p N1/p,

where κ1 denotes some universal constant.

Proof. Since the lp-ball L(p, N, R) is a particular case of an lp-body E(p, a) with
aλ = R for 1 ≤ λ ≤ N and aλ = 0 for λ > N, it follows from (6.15) that

aI (s,S, ε) ≤ C(θ) inf
1≤D≤N

{
R2 D1−2/p + ε2 D[log(N/D) + 1]

}
. (6.23)

In order to minimize the right-hand side of (6.23), one should choose some D
which approximately equates the two terms R2 D1−2/p and ε2 D[log(N/D) + 1].
This leads to the choice

D =
⌈(

R

ε

)p [
log

(
Nεp

Rp

)]−p/2
⌉

with .x/ given by (6.17), (6.24)

provided that D satisfies to 1 ≤ D ≤ N. Since (6.24) defines a nondecreasing
function of R/ε, this condition is satisfied when (6.20) holds and we then derive
(6.19) from (6.23). Otherwise (6.21) follows from (6.11) since p < 2 and (6.22)
from (6.14).

The proof of the lower bounds for the minimax risk is based on Theorem 5. If
we choose b = Rε−1 D−1/p, the setB(N, D, b) defined in this theorem is contained
inL(p, N, R) and since D is arbitrary between 1 and N, we derive from Theorem 5
that

RM(L(p, N, R), ε) ≥ κ sup
1≤D≤N

[(
R2 D1−2/p

)
∧
(

Dε2[1 + log(N/D)]
)]

.

Since the minimum is obtained, as before, by approximately equating R2 D1−2/p

and ε2 D[log(N/D) + 1], the same computations lead to the lower bounds results.
��
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6.3.4. A paradox about sharp asymptotic minimaxity

It is interesting to compare these results with the evaluations given by Theorem 3
and Corollary 4 of Donoho and Johnstone (1994b). They only consider the case
R = 1 but a proper rescaling of the observations easily reduces the general situation
to this one. Since they keep the radius of the balls fixed, their asymptotics let ε

go to zero but it is equivalent to keep ε fixed and let R go to infinity. From this
alternative point of view their result can be restated as follows.

Theorem 6 (Donoho and Johnstone). Let L(p, N, RN ), N ≥ 1 be a sequence of
lp-balls with 0 < p < 2 such that, when N goes to infinity,

RN −→ ∞; NR−p
N −→ ∞ and R−2

N log
(

NR−p
N

)
−→ 0. (6.25)

Then

RM(L(p, N, RN ), ε) = Rp
N

[
2ε2 log

(
Nεp/Rp

N

)]1−p/2 [1 + o(1)] (6.26)

and

sup
s∈L(p,N,RN )

Es

[
‖s − s̃TN ‖2

]
= RM(L(p, N, RN ), ε)[1 + o(1)],

where s̃TN denotes the threshold estimator defined by (5.8) with threshold

TN = ε
[
2 log

(
Nεp/Rp

N

) + α log
[
2 log

(
Nεp/Rp

N

)]]1/2
, α > p − 1. (6.27)

This is an extremely precise result on the one hand and also a truly asymptotic one
on the other hand in the sense that it definitely rules out the situations described by
(6.21) and (6.22) and is even more restrictive than (6.20). Under the assumptions
of the theorem, (6.19) holds and produces, together with (3.14), a nonasymptotic
analogue of (6.26), namely, fixing K and θ , the bound

RM(L(p, N, RN ), ε) ≤ K ′ Rp
Nε2−p [1 + log

(
Nεp/Rp

N

)]1−p/2
for all N ≥ 1.

We actually get from Proposition 5 a complete nonasymptotic counterpart to the
results of Donoho and Johnstone in the form of the following

Corollary 1. The estimator s̃ derived from the strategy described in Sect. 6.3.1,
with a penalty given by (3.11) satisfies

sup
s∈L(p,N,R)

Es

[
‖s̃ − s‖2

]

≤ C(K, θ)
[
1 ∨ ε

R
∨ ρp1l(0,R)

(
ρ

−1/2
p εN1/p

)]
RM(L(p, N, R), ε).
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Since the bracketted factor, which controls the ratio between the risk of our esti-
mator and the minimax risk remains bounded unless R is too close to zero which
implies that ε−2 RM is small, as we already noticed, or when R is large and p close
to zero since ρp → +∞ when p → 0, it follows that s̃ is uniformly minimax for
almost all lp-balls. One should also notice that the construction of s̃TN requires the
knowledge of RN and p, which is not the case for s̃.

There is another rather surprising phenomenon that occurs concerning the
sharp asymptotically minimax threshold estimators s̃TN of Theorem 6. On the
one hand, it immediately follows that, if sN ∈ L(p, N, RN ) and sN has no more
that DN nonzero coordinates, the risk of s̃ is, by (3.13) and (6.12) bounded by
C(K, θ)ε2 DN [1 + log(N/DN )], independently of RN . On the other hand, an ap-
plication of Proposition 2 with TN given by (6.27) shows that the risk of s̃TN at sN

is bounded from below by

EsN

[
‖s̃TN − sN‖2

]
≥ C′(1 − DN/N)Rp

N ε2−p [log
(
Nεp/Rp

N

)](1−α)/2
.

Choosing Rp
N = Nδ for some δ ∈ (0, 1), which is compatible with (6.25), and

DN/N ≤ c < 1, we derive from (6.26) that

RM(L(p, N, RN ), ε) = Nδε2−p[2(1 − δ) log N]1−p/2[1 + o(1)],
while

EsN

[
‖s̃TN − sN‖2

]
≥ C′′Nδε2−p(log N)(1−α)/2[1 + o(1)].

Therefore, apart from some power of log N which is arbitrary small when α is
close enough to p − 1, the risk at sN is equal to the minimax risk while s̃ has
a substantially better performance at sN when N−δ DN is small.

It is indeed not necessary to build a sophisticated estimator like s̃ to get such an
improvement over s̃TN . A simple change of the level of thresholding would do. Set,
for instance, UN = √

K
(
1 + √

2 log N
)
ε with K > 1. If Rp

N = Nδ, an application
of (3.13) together with Lemma 2 shows that

sup
s∈L(p,N,RN )

Es

[
‖s̃UN − s‖2

]
≤ C(K )Nδε2−p(log N)1−p/2

and

EsN

[
‖s̃UN − sN‖2

]
≤ C′(K )DNε2 log N.

This means that s̃UN is again minimax, up to constants, but substantially improves
over s̃TN when DN is not too large. This result can be viewed as a serious adver-
tisement against the use of the minimax point of view without extreme caution.
It also shows that the search for sharp asymptotically minimax estimators may be
a bad idea, leading to otherwise vastly suboptimal performances. In the particular
situation at hand, the search for sharp asymptotic minimaxity forces to choose
a level of thresholding which is clearly too small in many other respects. A larger
one would preserve the asymptotic minimaxity, only loosing the sharp asymptotic
constant, and improving the estimator otherwise.
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6.3.5. The case of extended Besov bodies

In the case of general lp-bodies, we cannot, unfortunately, handle the minimization
of the right-hand side of (6.15) as we did for (6.6) since it involves aD and aN+1
simultaneously. We now need to be able to compare a2

D D1−2/p with aN+1 which
requires a rather precise knowledge about the rate of decrease of aλ as a function
of λ. This is why we shall restrict ourselves to some particular lp-bodies.

Definition 10. Given parameters M′, α, p, r and R with M′ ∈ N�, 0 < p < 2,
α ≥ 1/p − 1/2, R > 0, r ∈ R and r > 0 when α = 1/p − 1/2, we define the
extended Besov body B(M′, α, p, r, R) as the lp-body E(p, a) with coefficients

aM′+k =
{

Rk−(α+1/2−1/p)[b + log k]−r for k ≥ 1,
+∞ for 1 − M′ ≤ k ≤ 0,

(6.28)

and

b = −r

α + 1/2 − 1/p
∨ 1.

The restrictions on r and the definition of b are made in order to ensure that
the sequence (aλ)λ∈
 be nonincreasing. We exclude the case p = 2 since then
a Besov body is merely an ellipsoid and this case has already been considered.
When r = 0 we shall speak of classical Besov bodies (compare with Donoho and
Johnstone, 1998), since they are the geometric objects which correspond to balls in
Besov spaces when (ϕλ)λ∈
 is a suitable wavelet basis (see Sect. 8.2 for details).
Extended Besov bodies are natural extensions which allow to handle more general
objects without additional efforts.

The classical case: α > 1/p − 1/2 As far as we know, statistical estimation in
Besov bodies, up to now, has been limited to the case α > 1/p − 1/2 which is the
easiest one. In order to avoid to deal with exceptional cases, which would make
the conclusions unnecessarily long and complicated, we shall assume that the ratio
R/ε is not too small. We can then prove:

Proposition 6. Let S be the strategy defined in Sect. 6.3.1 and assume that 0 <

p < 2, α + 1/2 − 1/p > 0, and that R/ε is large enough, namely that

R/ε ≥ e and " = (R/ε)
2

2α+1 [log(R/ε)]
−(2r+1)

2α+1 ≥ 2M′. (6.29)

Then,

sup
s∈B(M′,α,p,r,R)

aI (s,S, ε) ≤ CR2(ε/R)
4α

2α+1 [log(R/ε)]
2(α−r)
2α+1 , (6.30)

and

RM(B(M′, α, p, r, R), ε) ≥ C′ R2(ε/R)
4α

2α+1 [log(R/ε)]
−2r

2α+1 , (6.31)

where the constants C,C′ depend on M′, α, r, p (and C also depends on θ).
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Proof. From (6.15) and (6.28) we derive, restricting ourselves to N ≥ D ≥ 2M′,
the following bound for the accuracy index

aI (s,S, ε) ≤ C inf
{(D,N) | 2M′≤D≤N}

{
N−2(α+1/2−1/p)R2[b + log N]−2r

+ D−2αR2[b + log D]−2r + ε2 D[log(N/D) + 1]
}
.

We then choose D = ."/ and N =
⌈
"

α
α+1/2−1/p

⌉
. Then N ≥ D ≥ 2M′ ≥ 2

from which we derive (6.30). On the other hand, B(M′, α, p, r, R) contains the
lp-body with coefficients satisfying aλ = R′ = RD−(α+1/2−1/p)[b + log D]−r for
M′ + 1 ≤ λ ≤ M′ + D with D ≥ 1 and aλ = 0 otherwise, which can be identified
to some lp-ball L(p, D, R′). Let us now set

A = R/ε and Dα+1/2 = cA(log A)−r with c ≥ 1,

where c denotes a suitably chosen constant. Then D ≥ " ≥ 2 and it follows from
(6.29) that (r + 1/2) log(log A) < log A, hence

log c + (1 + 2r)−1 log A ≤ (α + 1/2) log D ≤ log c + (1 + |r|) log A.

This implies that, for c ≥ c0(α, r, p),

R′

ε
= c−1

(
log A

b + log D

)r

D1/p ≤ ρ
−1/2
p D1/p.

Let us choose c to be the smallest value such that D is an integer and c ≥ c0. Then,

c1(α, r, p)ε ≤ R′ ≤ ερ
−1/2
p D1/p.

It then follows from Proposition 5 that

RM(B(M′, α, p, r, R)) ≥ RM(L(p, D, R′))
≥ κ1 R′2 [(ε/R′)2−p ∧ 1

]
≥ c2(α, r, p)R′pε2−p

= c2 R2(ε/R)2−p D−p(α+1/2−1/p)[b + log D]−pr,

which gives (6.31) from our lower bounds on D and R/ε. ��

We can conclude that the upper bound (6.30) matches the lower bound (6.31), up
to a power of log(R/ε). As we shall see below, the lower bound is actually sharp
and a refined strategy, especially designed for estimation in Besov bodies, can
improve the upper bound. For classical Besov bodies, r = 0 and the minimiax risk
is known to be of the order of R2(ε/R)(4α)/(2α+1) as indicated by our lower bound
(see Donoho and Johnstone, 1998).
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The borderline case: α = 1/p − 1/2 The case α = 1/p − 1/2 and r > 0
which, to our knowledge, has never been previously considered in statistics, is
more delicate to handle because N cannot be taken as a power of R/ε any more but
should be much larger. Still assuming that R/ε is large enough, we procede to the
minimization of the right-hand side of (6.15) which amounts to minimize, since
then b = 1,

[1 + log N]−2r + D−2α[1 + log D]−2r + (ε/R)2 D[log(N/D) + 1].
It follows from monotonicity arguments that one should approximately equate

those three terms, which leads to log N � (
D(ε/R)2

)−1/(1+2r)
and finally to

D =
⌈
(R/ε)

2r
α(1+2r)+r [log(R/ε)]

−r(1+2r)
α(1+2r)+r

⌉
;

log N =
⌈
(R/ε)

2α
α(1+2r)+r [log(R/ε)]

r
α(1+2r)+r

⌉
.

We conclude that, if R/ε is large enough to ensure that N ≥ D ≥ 2M′,

sup
s∈B(M′,α,p,r,R)

aI (s,S, ε) ≤ CR2(ε/R)
4rα

α(1+2r)+r [log(R/ε)]
−2r2

α(1+2r)+r . (6.32)

One can immediately notice that this rate is not at all the analogue of (6.30) when
α=1/p−1/2, the rate (neglecting the logarithmic terms) becoming 4rα/[α(1+2r)
+ r] instead of 4α/[2α + 1], which is worse. This is a situation where we are not
able to get the corresponding lower bounds and therefore we have no idea about
the optimality of (6.32).

6.4. A special strategy for extended Besov bodies

6.4.1. The strategy and the estimator

Let us recall from the previous section that we have at hand a strategy for model
selection in the Gaussian sequence model which is, up to constants, minimax over
lp-bodies for p ≥ 2 and all lp-balls whatever p, but fails to be minimax for classical
Besov bodies since its risk contains some extra log(R/ε) factors. We want here to
design a new strategy, especially directed towards estimation in extended Besov
bodies, which will be minimax for all extended Besov bodies with coefficients
given by (6.28) when α > 1/p − 1/2.

The strategy The construction of the models is based on a decomposition of

 = N� into a partition 
 = ∪ j≥−1
( j) with 
(−1) = {1, . . . , M′}, µ0 = 1 and


( j) = {M′ + µ j ,. . ., M′ + µ j+1 − 1} with 2 j ≤ µ j+1 − µ j ≤ M2 j for j ≥ 0.
(6.33)
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Typically, the basis {ϕλ}λ∈
 is a wavelet basis and such a partition is induced by
the structure of this basis as will be recalled in Sect. 8.1, but this is definitely not
necessary and decompositions based on piecewise polynomials could be considered
as well (see for instance Birgé and Massart, 2000). We also have to choose a real
parameter θ > 2 (the choice θ = 3 being quite reasonable) and set for J, k ∈ N,

K(J, k) =
⌊

2−k(k + 1)−θ |
(J + k)|
⌋

with 0x1 = sup{ j ∈ N | j ≤ x}.

It follows that ⌊
M2J (k + 1)−θ

⌋
≥ K(J, k) > 2J(k + 1)−θ − 1, (6.34)

which in particular implies that K(J, k) = 0 for k large enough (depending on J).
Let us now set for J ∈ N

MJ =

m ⊂ 


∣∣∣∣∣∣m =

 ⋃

−1≤ j≤J−1


( j)


⋃

⋃
k≥0


′(J + k)




 ,

with


′(J + k) ⊂ 
(J + k) and |
′(J + k)| = K(J, k).

Clearly, each m ∈MJ is finite with cardinality Dm = M(J ) satisfying

M(J ) = M′ +
J−1∑
j=0

|
( j)| +
∑
k≥0

K(J, k)

and therefore by (6.34)

M′ + 2J ≤ M(J ) ≤ M′ + M2J


1 +

∑
n≥1

n−θ


 . (6.35)

It also follows from Proposition 4 of Birgé and Massart (2000) that

|MJ | ≤ exp
[
cθ M2J

]
, (6.36)

with some constant cθ depending only on θ . Let us now setM = ∪J≥0MJ and
Lm = cθ M + L with L > 0 for all m. Then by (6.35) and (6.36)

∑
m∈M

e−Lm Dm ≤
∑
J≥0

|MJ | exp
[
−cθ M2J − L2J

]
≤
∑
J≥0

exp
[
−L2J

]
= �L ,

and it follows that (3.3) is satisfied with � ≤ �L .
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The construction of the estimator Since s̃ = ŝm̂ one has to compute the minimizer

m̂ of crit(m) = pen(m) −∑
λ∈m β̂

2
λ. First observe that m always includes 
(−1).

Therefore the β̂λs with λ ∈ 
(−1) can be omitted in the sum. Second, the penalty
function, as defined by (3.11), only depends on J when m ∈ MJ since Lm is
constant and Dm = M(J ). Setting pen(m) = pen′(J ) when m ∈MJ , we see that

m̂ is the minimizer with respect to J of pen′(J ) − ∑
λ∈m̂ J

β̂
2
λ where m̂ J ∈ MJ

maximizes
∑

k≥0
∑

λ∈
′(J+k) β̂
2
λ with respect to m ∈ MJ . Since the cardinality

K(J, k) of 
′(J + k) only depends of J and k, one should choose for the 
′(J + k)
corresponding to m̂ J the subset of 
(J +k) of those K(J, k) indices corresponding

to the K(J, k) largest values of β̂
2
λ for λ ∈ 
(J + k). In practice of course, the

number of coefficients β̂λ at hand, and therefore the maximal value of J is bounded.
A practical implementation of this estimator is therefore feasible and has actually
been completed by Misiti, Misiti, Oppenheim and Poggi (1996).

6.4.2. The performances of the estimator

We are now in a position to prove the following

Proposition 7. Let the sequence (aλ)λ∈
 be given by (6.28) and let s=∑λ∈
 βλϕλ

be an element of H which satisfies either

sup
j≥0




∑
λ∈
( j)

∣∣∣∣βλ

aλ

∣∣∣∣p

 ≤ 1 if α > 1/p − 1/2, (6.37)

or ∑
j≥0

∑
λ∈
( j)

∣∣∣∣βλ

aλ

∣∣∣∣p

≤ 1 if α = 1/p − 1/2. (6.38)

Let S be the strategy defined in Sect. 6.4.1. Then, assuming that R/ε ≥ δ > 1 and
that either (6.38) with r > θα or (6.37) holds, we get

aI (s,S, ε) ≤ CR2(ε/R)
4α

2α+1 [log(R/ε)] −2r
2α+1 . (6.39)

If (6.38) holds with 0 < r ≤ θα, we get

aI (s,S, ε) ≤ CR2(ε/R)
4r

2r+θ . (6.40)

In both cases, the constant C depends on θ, δ and the parametersα, p, r, M and M′.

Proof. For each j ≥ 0 we set B j =
[∑

λ∈
( j) |βλ|p
]1/p

and, following Defin-

ition 8, denote the coefficients |βλ| in decreasing order, for λ ∈ 
(J + k), k ≥ 0
by |β( j)(
(J+k))|. The arguments we just used to define m̂ J immediately show that

inf
m∈MJ

d2(s, Sm) =
∑
k≥0

µJ+k+1−µJ+k∑
j=K(J,k)+1

β2
( j)(
(J+k)),
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and it follows from Lemma 2 and (6.34) that
µJ+k+1−µJ+k∑

j=K(k,J )+1

β2
( j)(
(J+k)) ≤ B2

J+k[K(J, k) + 1]1−2/p

≤ B2
J+k2J(1−2/p)

[
2J ∧ (k + 1)θ

](2/p−1)
,

from which we get

inf
m∈MJ

d2(s, Sm) ≤
∑
k≥0

B2
J+k2J(1−2/p)

[
2J ∧ (k + 1)θ

](2/p−1)
. (6.41)

We also observe, using (6.28), that

aM′+µJ+k ≤ R2−(J+k)(α+1/2−1/p)[b + (J + k) log 2]−r , (6.42)

since by (6.33) µJ+k ≥ 2J+k. Now, under (6.37) BJ+k ≤ supλ∈
(J+k) aλ =
aM′+µJ+k and it then follows from (6.41) that

inf
m∈MJ

d2(s, Sm)

≤ R22−2Jα
∑
k≥0

2−2k(α+1/2−1/p)[b + (J + k) log 2]−2r
[
2J ∧ (k + 1)θ

](2/p−1)
.

(6.43)

Now, distinguishing between the cases r ≥ 0 and r < 0, we observe that

[b + (J + k) log 2]−r ≤ (J + 1)−r ([b(k + 1)]−r ∨ [log 2]−r) ,
which implies that the series in (6.43) converges with a sum bounded by C(J+1)−2r

where C = C(α, p, r, θ). Using (6.35) and (3.13), we can then bound the accuracy
index by

aI (s,S, ε) ≤ C(α, p, r, θ, M, M′) inf
J≥0

{
2Jε2 + R2(J + 1)−2r2−2Jα}. (6.44)

We then set "(x) = x
2

2α+1 (log x)
−2r

2α+1 and J = inf
{

j ≥ 0
∣∣2 j ≥ "(R/ε)

}
. Then

2J = ρ"(R/ε) with 1 ≤ ρ < 2 ∨ [
infx≥δ "(x)

]−1 from which we derive (6.39).
If (6.38) holds, then b = 1 and we use the fact that∑

k≥0

[
BJ+k

aM′+µJ+k

]2

≤
∑
k≥0

[
BJ+k

aM′+µJ+k

]p

≤ 1

to derive from (6.41) and (6.42) that

inf
m∈MJ

d2(s, Sm) ≤ 2J(1−2/p)
∑
k≥0

[
BJ+k

aM′+µJ+k

]2 [
2J ∧ (k + 1)θ

](2/p−1)
a2

M′+µJ+k

≤ R22J(1−2/p) sup
k≥0

{[
2J ∧ (k + 1)θ

](2/p−1) [1 + (J + k) log 2]−2r
}

≤ CR22−2Jα sup
k≥0

{[
2J ∧ (k + 1)θ

]2α [J + k + 1]−2r
}
,
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since r > 0 and α = 1/p − 1/2. We conclude by noticing that

sup
k≥0

{[
2J ∧ (k + 1)θ

]2α [1 + J + k]−2r
}

≤ C

{
(J + 1)−2r if r > θα;
22J(α−r/θ) if 0 < r ≤ θα.

This implies that (6.44) and therefore (6.39) remain valid if r > θα and that

aI (s,S, ε) ≤ CR2 inf
J≥0

{
2J(ε/R)2 + 2−2Jr/θ

}
when 0 < r ≤ θα, which leads to (6.40). ��
Let us now analyze what are the consequences of this result. We first notice
that the set of elements s satisfying (6.37) contains the extended Besov body
B(M′, α, p, r, R) which means that (6.39) holds when s ∈ B(M′, α, p, r, R) with
α > 1/2 − 1/p. On the other hand, the lower bound (6.31) also holds when s
satisfies either (6.37) or (6.38) and (6.29) holds. This implies the following

Corollary 2. The strategy defined in Sect. 6.4.1 is minimax, up to constants, over
all extended Besov bodies B(M′, α, p, r, R) such that either α > 1/p − 1/2 or
α = 1/p − 1/2 and r > θα, provided that R/ε is large enough for (6.29) to hold.

Let us conclude this section by two remarks. First, when α > 1/p − 1/2, it is
not more difficult to estimate on the larger set of those s which satisfy (6.37)
than on the lp-body B(M′, α, p, r, R). We shall see in Sect. 8.1 below that this
larger set corresponds, in term of function spaces, to some Besov balls of the form{
t | |t|Bα∞(L p) ≤ R

}
. This means that our method is indeed adaptive over all the balls

of this type, provided that α > 1/p − 1/2 and R/ε is not too small. On the other
hand, as opposed to the strategy developed in Sect. 6.3.1, the present one is not
suitable for estimation over lp-balls. This is indeed not a problem since Theorem 3
allows us to mix both strategies and get a new one which will be simultaneously
adaptive for lp-balls and Besov bodies.

7. Lower bounds for the penalty term

Our aim in this section is to show that a choice of K < 1 in (3.11) may lead
to penalized projection estimators which behave in a quite unsatisfactory way.
This means that the restriction K > 1 in Theorem 2 is, in some sense, necessary.
It actually follows from the forthcoming results that the condition K > 1 in
Theorem 2 is sharp and that a choice of K smaller than one should be avoided. The
study of the limiting case K = 1 is definitely more involved and beyond the scope
of this paper.

7.1. A small number of models

We first assume that, for each D, the number of elements m ∈M such that Dm = D
grows at most subexponentially with respect to D. In such a case, (3.3) holds with
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Lm = L for all L > 0 and one can apply Theorem 2 with a penalty of the form
pen(m) = Kε2

(
1 + √

2L
)2

Dm , where K − 1 and L are positive but arbitrarily
close to 0. This means that, whatever K ′ > 1, the penalty pen(m) = K ′ε2 Dm

is allowed. Alternatively, the following result shows that if the penalty function
satisfies pen(m̄) = K ′ε2 Dm̄ with K ′ < 1, even for one single model Sm̄ , provided
that the dimension of this model is large enough (depending on K ′), the resulting
procedure behaves quite poorly if s = 0.

Proposition 8. Consider some collection of models {Sm}m∈M such that∑
m∈M

e−xDm < ∞, for any x > 0. (7.1)

For any pair of real numbers K, δ ∈ (0, 1), there exists some integer N̄, depending
only on K and δ, with the following property. If s = 0 and

pen(m̄) ≤ Kε2 Dm̄ for some m̄ ∈M with Dm̄ ≥ N̄, (7.2)

then, whatever the value of the penalty pen(m) for m �= m̄, either

i) infm∈M crit(m) = −∞ and m̂ is not defined;

or

ii) m̂ = argminm∈M crit(m) is well-defined but then

P0

[
Dm̂ ≥ (1 − K)

2
Dm̄

]
≥ 1 − δ and E0

[ ‖s̃‖2 ] ≥ (1 − δ)(1 − K )

4
Dm̄ε2.

Proof. Let us define, for any m ∈ M, the nonnegative random variable χm by
χ2

m = ε−2
∥∥ŝm

∥∥2. Then,

crit(m) − crit(m̄) = ∥∥ŝm̄
∥∥2 − ∥∥ŝm

∥∥2 + pen(m) − pen(m̄) for all m ∈M,

and therefore, by (7.2),

ε−2[crit(m) − crit(m̄)] ≥ χ2
m̄ − χ2

m − KDm̄ . (7.3)

The following proof relies on an argument about the concentration of the variables
χ2

m around their expectations. As in the proof of Theorem 2, we can use the
Cirel’son-Ibragimov-Sudakov concentration inequality for χm . Indeed choosing
some orthonormal basis {ϕλ, λ ∈ 
m} of Sm and recalling that s = 0, we have
χ2

m = ∑
λ∈
m

Z2(ϕλ), which means that χm can be interpreted as the supremum
of
∑

λ∈
m
aλZ (ϕλ) over the set of all vectors a inR
m with

∑
λ∈
m

a2
λ = 1. Hence,

the Cirel’son-Ibragimov-Sudakov inequality implies that for any positive x,

P0

[
χm ≥ E0 [χm] + √

2x
]

≤ e−x, (7.4)

and

P0

[
χm ≤ E0 [χm] − √

2x
]

≤ e−x . (7.5)
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A proper integration of the resulting tail inequality P0 [|χm − E0 [χm]| ≥ u] ≤
2e−u2/2 with respect to u, leads to

E0

[
χ2

m

]
− (
E0[χm])2 = E0

[
(χm − E0 [χm])2

]
≤ 2

∫ ∞

0
e−z/2dz = 4,

and therefore, since E0
[
χ2

m

] = Dm ,

Dm − 4 ≤ (
E0[χm])2 ≤ Dm . (7.6)

Let us now set

η = (1 − K) /4 < 1/4; D = 2Dm̄η < Dm̄/2; L = η2/12 (7.7)

and assume that N̄ is large enough for the following inequalities to hold:

e−L D
∑

m∈M
e−L Dm ≤ δ; L D ≥ 2/3. (7.8)

Since the last inequality implies that D > 128, we can introduce the event

�̄ =

 ⋂

Dm<D

{
χm ≤ √

Dm +√
2L (Dm + D)

}
⋂ 

 ⋂
Dm≥D

{
χm ≥ √

Dm − 4 −√
2L (Dm + D)

} .

Combining (7.6) with either (7.4) if Dm < D or (7.5) if Dm ≥ D, we get by (7.8)

P0
[
�̄c] ≤

∑
m∈M

e−L(Dm+D) ≤ δ.

Moreover, on �̄, χ2
m ≤ (

1 + 2
√

L
)2

D, for all m such that Dm < D and, by
(7.7) and (7.8), χm̄ ≥ √

Dm̄ − 4 − √
3L Dm̄ and L Dm̄ > 4/3. Therefore χ2

m̄ ≥
Dm̄

(
1 − 2

√
3L

)
. Hence, on �̄, (7.3) and (7.7) yield

ε−2[crit(m) − crit(m̄)] ≥ Dm̄

(
1 − 2

√
3L

)
−
(

1 + 2
√

L
)2

D − KDm̄

> (1 − η)Dm̄ − 3ηDm̄ − (1 − 4η)Dm̄ = 0,

for all m such that Dm < D. This immediately implies that, if m̂ is well-defined,
Dm̂ cannot be smaller than D on �̄ and therefore,

P0[Dm̂ ≥ D] ≥ P0[�̄] ≥ 1 − δ. (7.9)

Moreover, on the same set �̄, χm ≥ √
Dm − 4 − √

2L (Dm + D) if m is such that
Dm ≥ D. Setting D′

m = Dm̄ ∨ Dm ,we derive, since L ≤ η/48 and 2ηD′
m ≥ D >

128, that

χm ≥√
2ηD′

m − 4 −√
3L D′

m >(5/4)
√
ηD′

m − (1/4)
√
ηD′

m =√
ηD′

m ≥√
ηDm̄ .
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Hence, on �̄, Dm̂ ≥ D and χm ≥ √
ηDm̄ for all m such that Dm ≥ D. Therefore

χm̂ ≥ √
ηDm̄ . Finally,

E0

[
‖s̃‖2

]
= ε2

E0

[
χ2

m̂

]
≥ ε2ηDm̄P0

[
χm̂ ≥ √

ηDm̄

]
≥ ε2ηDm̄P0[�̄],

which, together with (7.7) and (7.9) concludes the proof. ��
Remark. It may look strange to use concentration inequalities like (7.4) and (7.5)
to derive an inequality like (7.6) in a situation where E0 [χm] can be computed
exactly and is known to be

√
2#[(Dm + 1)/2][#(Dm/2)]−1. Nevertheless, it is not

clear at all that one can derive (7.6) from this exact value by a three lines proof as
we did above. This is actually a good illustration of the power and usefulness of
concentration inequalities.

In order to illustrate the meaning of this proposition, let us assume that we are given
some orthonormal basis {ϕ j} j≥1 of H and that Sm is the linear span of ϕ1, . . . , ϕm

for m ∈ N. Assume that s = 0 and pen(m) = Kε2m with K < 1. IfM = N, then
Proposition 8 applies with Dm̄ arbitrarily large and letting Dm̄ go to infinity and δ to
zero, we conclude that infm∈M crit(m) = −∞ a.s. If we setM = {0, 1, . . . , N},
then m̂ is defined but, setting Dm̄ = N, we see that E0

[ ‖s̃‖2 ] is of the order of Nε2

when N is large. In order to avoid this phenomenon, we have to restrict drastically
our family of models to small enough values of m, say m ≤ n. But then functions
of the form λϕn+1 cannot be estimated with a risk smaller than λ2, which may be
arbitrarily large. If, on the contrary, we chooseM = N and pen(m) = Kmε2 with
K = 2, for instance, as in Mallows’ Cp, it follows from Theorem 2 that

Es

[
‖s̃ − s‖2

]
≤ C(m + 1)ε2 for all s ∈ Sm, whatever m.

This means that choosing a penalty of the form pen(m) = Kε2m with K < 1 is
definitely not advisable.

7.2. A large number of models

The preceding result corresponds to a situation where the number of models having
the same dimension D is moderate in which case we can choose the weights Lm

in Theorem 2 all equal to an arbitrary small positive constant. This means that the
influence of the weights on the penalty is limited in the sense that they only play
the role of a correction to the main term Kε2 Dm . This remains true for the variable
weights strategy, when Lm = cD−1/2

m . The situation becomes quite different when
the number of models having the same dimension D grows much faster with D.
More precisely, if we turn back to the case of complete variable selection as
described at the beginning of Sect. 5 and assume that Lm = L for all m ∈M, then
Theorem 2 applies when L = log N and pen(m) = Kε2|m| (1 + √

2 log N
)2 with

K > 1. In such a situation, Lm tends to infinity with N and directly determines
the order of magnitude of the penalty. The penalized projection estimator is then
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the threshold estimator s̃T with T = ε
√

K
(
1 + √

2 log N
)

as defined by (5.8). If
s = 0, we derive from Proposition 2 that

E0

[
‖s̃T ‖2

]
≥ ε2 N exp

[
−K

(
1/

√
2 +√

log N
)2
]

= ε2 exp
[
(1 − K ) log N − K

(√
2 log N + 1/2

)]
.

If K < 1, this grows like ε2 times a power of N when N goes to infinity, as
compared to the risk bound C(K )ε2 log N which holds when K > 1. Clearly the
choice K < 1 should be avoided. In particular penalization procedures based on
Mallows’ Cp, which are of the form pen(m) = 2ε2Dm are definitely not suitable
for complete variable selection involving a large number of variables, although it
is a rather common practice to use them in this situation, as more or less suggested
for instance by Draper and Smith (1981, p. 299).

8. Appendix

8.1. From function spaces to sequence spaces, a reminder

Our purpose here is to briefly recall, following more or less Donoho and Johnstone
(1998), why it is natural to search for adaptive procedures over various types of
lp-bodies and particularily Besov bodies.

We recall that, given three positive numbers p, q ∈ (0,+∞] andα > 1/p−1/2
one defines the Besov semi-norm |t|Bα

q (L p) of any function t ∈ L2([0, 1]) by

|t|Bα
q (L p) =





 ∞∑

j=0

[
2 jαωr(t, 2− j , [0, 1])p

]q




1/q

when q < +∞,

sup
j≥0

2 jαωr (t, 2− j , [0, 1])p when q = +∞,

(8.1)

where ωr(t, x, [0, 1])p denotes the modulus of smoothness of t, as defined by
DeVore and Lorentz (1993, p. 44) and r = 0α1 + 1. Since ωr (t, 2− j , [0, 1])p ≥
ωr(t, 2− j , [0, 1])2 when p > 2, then

{
t | |t|Bα

q (L p) ≤ R
} ⊂ {

t | |t|Bα
q (L2) ≤ R

}
for p ≥ 2. Keeping in mind that we are interested in adaptation and therefore
comparing the risk of our estimators to the minimax risk over such Besov balls, we
can restrict our study to the case p ≤ 2. Indeed, our nonasymptotic computations
can only be done up to constants and it is known that the influence of p on the
minimax risk is limited to those constants. It is therefore natural to ignore the
smaller balls corresponding to p > 2.

Modulo the choice of a convenient wavelet basis, the Besov balls
{
t | |t|Bα

q (L p)

≤ R
}

are contained in subsets of l2(
) that have some nice geometrical properties.
Given a pair (father and mother) of compactly supported orthonormal wavelets
(ψ̄, ψ), any t ∈ L2([0, 1]) can be written on [0, 1] as

t =
∑

k∈
(−1)

αkψ̄k +
∞∑
j=0

∑
k∈
( j)

β j,kψ j,k, (8.2)
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with

|
(−1)| = M′ < +∞ and 2 j ≤ |
( j)| ≤ M2 j for all j ≥ 0. (8.3)

For a suitable choice of the wavelet basis and provided that the integer r satisfies
1 ≤ r ≤ r̄ with r̄ depending on the basis,

2 j(1/2−1/p)


 ∑

k∈
( j)

|β j,k|p




1/p

≤ Cωr(t, 2− j , [0, 1])p, (8.4)

for all j ≥ 0, p ≥ 1, with a constant C > 0 depending only on the basis. See
Cohen, Daubechies and Vial (1993) and Theorem 2 of Donoho and Johnstone
(1998). This result remains true if one replaces the wavelet basis by a piecewise
polynomial basis generating dyadic piecewise polynomial expansions as shown in
Birgé and Massart (2000, Sect. 4.1.1). With some suitable restrictions on ωr , this
inequality still holds for 0 < p < 1 and C depending on p (see DeVore et al.
1993 or Birgé and Massart, 2000). In particular, if we fix p ∈ [1, 2], q ∈ (0,+∞],
α > 1/p − 1/2 and R′ > 0 and consider those ts satisfying |t|Bα

q (L p) ≤ R′, one
derives from (8.4) that the coefficients β j,k of t in the expansion (8.2) satisfy

∞∑
j=0


(R′C)−12 j(α+1/2−1/p)


 ∑

k∈
( j)

|β j,k|p




1/p



q

≤ 1 when q < +∞, (8.5)

sup
j≥0

(R′C)−12 j(α+1/2−1/p)


 ∑

k∈
( j)

|β j,k|p




1/p

≤ 1 when q = +∞, (8.6)

and one can show that such inequalities still hold for p < 1 (with C depending
on p). Clearly, if (8.5) is satisfied for some q, it is also satisfied for all q′ > q. The
choice q = +∞ dominates all other choices but does not allow us to deal with the
limiting case α = 1/p − 1/2 (when p < 2) since, with such a choice of α, (8.6)
does not warrant that the coefficients β j,k belong to l2(
). It is therefore necessary,
in this case, to restrict to q = p. For this reason, only two values of q are of interest
for us: q = p and q = +∞, results for other values deriving from the results
concerning those two ones. For the sake of simplicity, we shall actually focus on
the case q = p, only minor modifications being needed to extend the results, when
α > 1/p − 1/2, to the case q = +∞.

If q = p ≤ 2, (8.5) becomes

∞∑
j=0

[
2 j p(1/2−1/p)[ω(2− j )

]−p ∑
k∈
( j)

|β j,k|p
]

≤ 1, (8.7)

with ω(x) = Rxα and R = R′C. Apart from the fact that it corresponds to some
smoothness of order α in the usual sense, there is no special reason to restrict to
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functions ω of this particular form. If for instance,

∞∑
j=0

[
ωr(t, 2− j , [0, 1])p

ω(2− j )

]p

≤ C−1

for some nonnegative continuous function ω such that x1/2−1/pω(x) is bounded on
[0, 1], it follows from (8.4) that (8.7) still holds and the set of βs satisfying (8.7)
is a subset of l2(
). If the function x �→ x1/2−1/pω(x) is nondecreasing and tends
to zero when x → 0, this set is an ellipsoid for p = 2. These considerations were
the main motivation for our Definition 10 of extended Besov bodies, the particular
case r = 0 of classical Besov bodies (compare with Donoho and Johnstone, 1998,
Sect. 2) being suitable for analyzing sets of functions of the form

{
t | |t|Bα

p(L p)

≤ R
}
. Indeed if we consider some well-chosen orthonormal wavelet basis {ψ̄k | k ∈


(−1)}∪(∪ j∈N{ψ j,k | k ∈ 
( j)}) in L2([0, 1]) with sets 
( j) satisfying (8.3), one
can order it according to lexical order as {ϕλ}λ∈
 and this correspondence gives
k ∈ 
(−1) ←→ λ with 1 ≤ λ ≤ M′ and

if j ≥ 0, k ∈ 
( j), ( j, k) ←→ λ with M′ + 2 j ≤ λ ≤ M′ + M(2 j+1 − 1). (8.8)

Assuming that (8.4) holds andα+1/2−1/p > 0, we derive that
{
t | |t|Bα

p(L p) ≤ R
}

is included in the set of t’s with coefficients satisfying

C−p
∞∑
j=0


2 j p(α+1/2−1/p)R−p

∑
k∈
( j)

|β j,k|p




=
∞∑
j=0

∑
k∈
( j)

∣∣∣∣ β j,k

2− j(α+1/2−1/p)RC

∣∣∣∣p

≤ 1,

and it follows from (8.8) that
{
t | |t|Bα

p(L p) ≤ R
} ⊂ B(M′, α, p, R′, 0) with R′ =

RC(2M)α+1/2−1/p.

8.2. Proof of Theorem 5

As often for minimax lower bounds, the proof relies on an application of some
version of Fano’s Lemma. We shall use here the following one which is proved in
Birgé (2001).

Proposition 9. Let (S, d) be a metric space, and {Ps}s∈S a set of probability
distributions indexed by S. Let C be a finite subset of S with |C| ≥ 6, such that
for all pairs s �= s′ ∈ C, d(s, s′) ≥ η > 0. Assume, moreover, that there exists an
element s0 ∈ C such that

K(Ps, Ps0) =
∫

log

(
dPs

dPs0

)
dPs ≤ H < log(|C|) for all s ∈ C.
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Then, for any estimator s̃ with values in S and any nondecreasing function �,

sup
s∈C
Es

[
�(d(s̃, s))

] ≥ �
(η

2

)[
1 −

(
2

3
∨ H

log |C|
)]

.

The preceding proposition involves Kullback-Leibler information numbers be-
tween the underlying probability distributions and, in order to use it, we have to
compute the mutual Kullback-Leibler information numbers between the possible
distributions of the process Y .

Lemma 3. Let Ps be the distribution of the process t �→ 〈s, t〉 + εZ(t) where Z is
a linear isonormal process indexed by some subspace S of a Hilbert spaceH. Given
two elements s and s′ in H, the Kullback-Leibler information number K(Ps, Ps′)
satisfies

K(Ps, Ps′) =
∫

log
(

dPs

dPs′
(y)

)
dPs(y) = ‖s − s′‖2

2ε2 . (8.9)

Sketch of proof. If E is the linear space spanned by s and s′ and u ∈ E, we denote by
Qu the Gaussian distribution on E with mean u and covariance operator ε2 I . Since
the restrictions of Z to E and E⊥ respectively are independent, the distribution,
under Ps , of the likelihood ratio dPs/dPs′ is the same as the distribution, in E, of
the likelihood ratio dQs/dQs′ under Qs . The conclusion follows straightforwardly.

��
In order to apply Fano’s Lemma, we have to exhibit a suitable subset C of SD.
To get the non-trivial logarithmic factor log(N/D) in the lower bound, we need to
build a large enough set C, the existence of which will derive from the following
corollary of Lemma 9 of Birgé and Massart (1998).

Lemma 4. Let N and n be two positive integers such that N ≥ 6n. Given a finite
set 
 with cardinality N andM the set of all subsets of cardinality 2n of 
 we
consider the distance δ onM defined by

δ(m,m′) = 1

2

∫
|1lm(λ) − 1lm′(λ)| dµ(λ) = 2n − |m ∩ m′|,

where µ denotes the counting measure on 
. Then there exists a subset C ofM
such that δ(m,m′) ≥ n + 1 for all m �= m′ ∈ C and

log(|C|) > n[log(N/n) − log 16 + 1]. (8.10)

Proof. It follows from Lemma 9 in Birgé and Massart (1998) with M = N, C = 2n
and q = n that there exists a subset C ofM such that δ(m,m′) > n (and therefore
δ(m,m′) ≥ n + 1 since δ is integer valued) for all m,m′ ∈ C with m �= m′ and

|C| ≥ N − 4n

N − 3n

(N
2n

)
(2n

n

)(N−2n
n

) = N − 4n

N − 3n

N!(n!)3(N − 3n)!
[(2n)!(N − 2n)!]2 .

A direct computation shows that (8.10) holds when n = 1. Let us now as-
sume that n ≥ 2. Recalling from Stirling’s formula (Feller, 1968, p. 54) that
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j! = j je− j√2π jψ( j) with (12 j + 1)−1 < log[ψ( j)] < (12 j)−1, which implies
that ψ is decreasing, we derive that |C| ≥ √

F0 F1 F2 with

F0 = 2π
Nn3(N − 3n)

(2n)2(N − 2n)2

[
N − 4n

N − 3n

]2

= πn

2

(N/n)(N/n − 4)2

(N/n − 2)2(N/n − 3)
,

F1 = N N n3n[N − 3n]N−3n

(2n)4n(N − 2n)2(N−2n)
= 2−4n N N [N − 3n]N−3n

nn(N − 2n)2(N−2n)
,

and

F2 = ψ(N)ψ3(n)ψ[N − 3n]
ψ2(2n)ψ2(N − 2n)

>
ψ(n)

ψ(N − 2n)

ψ2(n)

ψ2(2n)

ψ(N − 3n)

ψ(N − 2n)
.

We first observe that F0 is an increasing function of N/n for N/n ≥ 4, and therefore
F0 ≥ 1 since N ≥ 6n. Then it follows from the monotonicity of ψ that F2 > 1.
Setting x = n/N, we finally get

log(|C|) > log F1 = n
[
− log 16 + log(N/n) + x−1G(x)

]
,

where G(x) = (1 − 3x) log(1 − 3x)− 2(1 − 2x) log(1 − 2x). From the expansion
(1− x) log(1− x) = −x +∑

i≥2[i(i −1)]−1xi we derive that G(x) > x and (8.10)
follows. ��
Let us now prove Theorem 5, distinguishing between three cases.

Case 1. N < 650D
If N = D, B(D, D, b) is a D-dimensional cube with edges of length bε and it
follows from Donoho et al. (1990) that

RM(B(D, D, b), ε) ≥ 4D

5

b2ε4

b2ε2 + ε2 ≥ 2Dε2

5

(
b2 ∧ 1

)
.

Now observe that B(D, D, b) can be considered as a subset of B(N, D, b), hence

RM(B(N, D, b), ε) ≥ RM(B(D, D, b), ε) ≥ 2Dε2

5

(
b2 ∧ 1

)
. (8.11)

Case 2. D = 1 and N ≥ 650
Set a = [

b ∧ √
2(log N)/3

]
and, for any λ ∈ 
, define sλ = aεϕλ ∈ B(N, 1, b).

Then if λ �= λ′ ∈ 
,

‖sλ − sλ′ ‖2 = 2a2ε2 and K(Psλ , Psλ′ ) = a2

by (8.9). Since N ≥ 6, we can apply Proposition 9 to the set {sλ}λ∈
 ⊂ B(N, 1, b)
and derive that, whatever the estimator s̃,

sup
λ∈


Esλ

[
‖s̃ − sλ‖2

]
≥
(

a2ε2

2

)[
1 −

(
2

3
∨ a2

log N

)]
≥ a2ε2

6
,

from which we conclude that

RM(B(N, D, b), ε) ≥ ε2

6

[
b2 ∧ 2

3
log N

]
= Dε2

6

[
b2 ∧ 2

3
log

(
N

D

)]
. (8.12)
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Case 3. D ≥ 2 and N ≥ 650D
Let n be the positive integer defined by D ≥ 2n ≥ D − 1 and set

c = log(N/D) − log 8 + 1 and a =
[
b ∧ √

c/3
]
.

It follows from Lemma 4 that we can find a subset C ofM2n such that

log(C) > nc and 2n ≥ δ(m,m′) ≥ n + 1 for all m �= m′ ∈ C. (8.13)

For any m ∈ C, define s(m) = aε
∑

λ∈m ϕλ ∈ B(N, 2n, b). Then

‖s(m) − s(m′)‖2 = 2a2ε2δ(m,m′) for all m,m′ ∈ C,
and by (8.9) and (8.13),

K(Ps(m), Ps(m′)) ≤ 2na2 and ‖s(m) − s(m′)‖2 ≥ 2(n + 1)a2ε2.

Applying Proposition 9 to the set {s(m)}m∈C ⊂ B(N, 2n, b) we derive that, what-
ever the estimator s̃,

sup
m∈C
Es(m)

[‖s̃ − s(m)‖2]≥(
(n + 1)a2ε2

2

)[
1 −

(
2

3
∨ 2na2

log |C|
)]

≥ (n + 1)a2ε2

6
.

Since log(N/D) ≥ log(650) > 6(log 8 − 1), c > (5/6) log(N/D) and

RM(B(N, 2n, b), ε) ≥ (n + 1)ε2

6

[
b2 ∧ c

3

]
>

Dε2

12

[
b2 ∧ 5

18
log

(
N

D

)]
.

Since B(N, 2n, b) ⊂ B(N, D, b), we can conclude that RM(B(N, 2n, b), ε) ≤
RM(B(N, D, b), ε) and therefore

RM(B(N, D, b), ε) >
Dε2

12

[
b2 ∧ 5

18
log

(
N

D

)]
.

Putting this together with (8.11) and (8.12) gives the result. ��
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