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Abstract. Two dynamical deformation theories are presented – one for surface homeo-
morphisms, called pruning, and another for graph endomorphisms, called kneading – both
giving conditions under which all of the dynamics in an open set can be destroyed, while
leaving the dynamics unchanged elsewhere. The theories are related to each other and to
Thurston’s classification of surface homeomorphisms up to isotopy.

1. Introduction

In this paper, new techniques for studying the dynamics of families of surface
homeomorphisms are introduced. Two dynamical deformation theories are pre-
sented: pruning theory, applicable to surface homeomorphisms, which is moti-
vated by the work of Cvitanović, Gunaratne, and Procaccia [8]; and kneading
theory, applicable to graph endomorphisms, which is a generalization of some of
the topological aspects of Milnor and Thurston’s work on endomorphisms of the
interval [17]. Both theories give conditions under which all of the dynamics in an
open set can be destroyed, while leaving the dynamics unchanged elsewhere. The
two theories are related to each other and to Thurston’s classification theorem for
isotopy classes of surface homeomorphisms [21].

One of the main underlying ideas used here was introduced by Williams [22]: by
collapsing segments of stable manifolds of a surface homeomorphism one obtains
a graph endomorphism; the surface homeomorphism can be recovered by taking
the inverse limit. Many researchers have found this interplay between 1- and 2-
dimensional systems fruitful. The emphasis here lies on using the correspondence
to obtain results about the dynamics of families of surface homeomorphisms.

The paper introduces a 2-dimensional version of Milnor and Thurston’s knead-
ing theory for endomorphisms of the interval [17], and a generalization of the same
theory for graph endomorphisms. These are then used to shed new light on the
Bestvina-Handel algorithmic proof [5] of Thurston’s classification theorem [21].
The approach adopted clarifies the mechanisms involved in their algorithm and
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improves some of its aspects. Like its 1-dimensional counterpart, pruning theory
enables one to give symbolic descriptions of the dynamics of all of the maps in
a family – the pruning family – in terms of a fixed underlying subshift of finite
type.

The techniques presented here – specifically, the explicit relationship between
1- and 2-dimensional dynamics – have given rise to a conjecture giving a com-
plete picture of how Boyland’s forcing relation [6] organizes the periodic orbits
of Smale’s horseshoe. Under this conjecture, the set of pseudo-Anosov horseshoe
braid types is partitioned into totally ordered subsets which organize the mechan-
ism of horseshoe creation. A forthcoming paper will provide a statement of the
conjecture together with proofs of some special cases.

The original motivation for this work came from the Pruning Front Conjecture
of Cvitanović, Gunaratne, and Procaccia [8], which states that the dynamics of any
map in the Hénon family can be viewed as what remains from the dynamics of
Smale’s horseshoe after some orbits (namely those that fall into the pruning front)
are destroyed. More will be said about the Pruning Front Conjecture after a more
detailed description of the constructions and results contained in this paper.

Pruning theory makes precise, and more general, a concept which was described
intuitively in [8] in the particular case of Smale’s horseshoe map [19]. The initial
surface homeomorphism F : S → S is taken to be one whose dynamics is well
understood, in the sense that all of the non-trivial dynamics is contained in an
F-invariant thick graphG, which has the property that F : G→ G induces a graph
endomorphism f : G → G. The horseshoe is a very simple thick graph map
(whose induced graph endomorphism is a unimodal map of the interval), and is
a good example to keep in mind when studying the more general theory. In Sect. 2,
conditions are given under which all of the dynamics in a topological disk D, called
a pruning disk, can be destroyed by an isotopy supported in D (and an arbitrarily
small region in S\G). The first main goal of the paper is described by the following
statement about thick graph maps F with positive topological entropy, which is
contained in Theorem 2.3 and the definition preceding Example 2.

The Pruning Family. An uncountable family P(F) of homeomorphisms of S is
constructed. The dynamics of maps in P(F) can be understood as the dynamics
of F less that which is pruned away from a sequence of pruning disks.

Section 3 introduces generalized kneading theory. Its main purpose is to make
it possible to understand pruning of a thick graph homeomorphism F : S → S on
the level of the induced graph endomorphism f : G → G. (Other authors have
made use of the relationship between the dynamics of 1- and 2-dimensional sys-
tems in an analogous way, notably Williams [22], Thurston [21], Barge-Martin [3],
Bestvina-Handel [5], and Franks-Misiurewicz [10].) When F : S → S is the horse-
shoe, the simplest possible prunings project to kneadings of unimodal maps of the
type studied by Milnor and Thurston [17]. The term kneading was chosen because
this theory generalizes the topological aspects of the Milnor-Thurston theory of
endomorphisms of the interval to other 1-dimensional spaces (although the original
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motivation of the action of kneading dough is no longer applicable). The combi-
natorial and analytic aspects of their theory, however, are not developed here: in
particular, symbolic sequences play only a minor role in this paper. Baillif [2] and
Alves and Sousa Ramos [1] have, independently and using different techniques,
developed the notion of kneading determinant in this more general context, and
have proved an analogue of the Milnor-Thurston formula relating the kneading
determinant and the ζ-function for tree endomorphisms.

More precisely, given a graph endomorphism f : G → G, conditions are given
on open subsets K of G, called kneading sets, for which it is possible to modify
both G and f to obtain a graph endomorphism fK : GK → GK whose dynamics
can be understood as being the dynamics of the original endomorphism f less the
dynamics which is contained in K . If F : G → G projects to f : G → G, then
each pruning of F induces a corresponding kneading of f . The converse is not
true in general, since thick graphs have more structure than graphs (for example,
the cyclic order of edges around a vertex). Generalized kneading theory may have
some independent interest in the study of graph endomorphisms: the approach
taken in this paper, however, is to place additional conditions on kneading sets
which ensure that they do indeed lift to pruning disks. The practical problem of
finding pruning disks for a thick graph map can then be approached by finding
suitable kneading sets for the corresponding graph endomorphism. In summary,
the second main goal of this paper is described by the following statement about
graph endomorphisms f with positive topological entropy:

The Kneading Family. An uncountable family K( f ) of endomorphisms of one-
dimensional spaces can be constructed. The dynamics of maps in K( f ) can be
understood as the dynamics of f less that which is pulled away from a sequence of
kneading sets.

The pruning family and the kneading family are related by the following state-
ment, which expresses the interplay between the 1- and 2-dimensional systems.

Both Families. If f : G → G is induced by a thick graph map F : G → G,
the kneading family K( f ) and the pruning family P( f ) are in one-to-one cor-
respondence (subject to obvious compatibility conditions between the 1- and 2-
dimensional structures): collapsing segments of stable sets takes P( f ) to K( f )
and the inverse limit takes K( f ) back to P( f ).

In the body of the paper these two statements are not presented as theorems:
there are some technical problems in doing so which would lead too far afield.
Since, as was mentioned before, the emphasis here is on drawing conclusions
about 2-dimensional dynamics from the interplay between the two families, these
technicalities are best avoided. This is discussed further in Sect. 3. The main
results of the paper which express the relationship between the two families are
Theorems 3.11 and 3.12.

The following is another precise statement relating the pruning family with
1-dimensional dynamics. It follows easily from the constructions described in the
paper, as explained in the remark following Example 1.
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The Pruning Family is Big. The pruning family of Smale’s horseshoe map F
contains a subfamily whose dynamics mimics that of a full1 family of unimodal
maps of the interval. In particular, P(F) contains uncountably many distinct
dynamical systems.

In Sects. 4 and 5, the Bestvina-Handel algorithm for finding train tracks of
surface homeomorphisms [5] is rewritten in the language of pruning theory. Other
train track algorithms have been presented by Franks and Misiurewicz [10] and by
Los [16]. There are certain advantages, both practical and theoretical, in recasting
the Bestvina-Handel algorithm in terms of pruning. On the practical side, pruning is
a more general operation than folding, which is the principal move of the Bestvina-
Handel algorithm, and long sequences of foldings can often be replaced by a single
pruning, with corresponding efficiency benefits. An example is given in Sect. 4.3
in which several foldings (8 in one computer implementation [12]) can be replaced
with a single pruning. On the theoretical side, pruning makes it possible to carry
out the algorithm in such a way that new dynamics is never created at any stage:
this makes it possible to follow dynamics through an isotopy from the starting
map to a Thurston representative of its isotopy class. This is achieved by replacing
Bestvina and Handel’s operation of performing a valence two isotopy (which,
although it never increases topological entropy, may create new dynamics while
destroying other dynamics) with a new operation, described in terms of pruning,
called cleaning a valence two vertex. Cleaning is, in general, a more complicated
procedure than performing a valence two isotopy, and if the algorithm is being
applied simply to calculate a train track then it is more sensible to use valence two
isotopies. However, the fact that the algorithm can be carried out using no non-
trivial isotopies other than prunings has the following important corollary, which
is the third main result in the paper (see Theorem 4.3):

Pruning and Thurston Classification. For any pseudo-Anosov map isotopic to F
relative to some finite F-invariant set, there is a map in the pruning family P(F)
with the same (non-trivial) dynamics.

The maps in the pruning family usually have many wandering domains: in the
case of a pseudo-Anosov isotopy class, collapsing these domains to points defines
a semi-conjugacy to the appropriate pseudo-Anosov map. In fact, the maps in the
pruning family have invariant laminations rather than invariant foliations.

Together with the results above, this provides evidence that P(F) may indeed
contain enough topological models to be considered a full family of surface homeo-
morphisms. On the one hand, it contains analogues of full families of 1-dimensional
endomorphisms of the interval. On the other hand, P(F) contains representatives
of all of the Thurston maps that is possible for it to contain.

A treatment of pruning in a much more general context, where it is not assumed
that F is a thick graph map, is given in [7]. The more restricted approach here,
besides being more accessible, permits, as a consequence of the underlying one-

1 A family of unimodal maps is said to be full if it presents all possible kneading invariants.
The famous example is the quadratic family fµ(x) = µx(1− x), for 0 < µ ≤ 4.
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dimensional structure, a much more precise understanding of the space P(F), and
a more direct approach to the Bestvina-Handel algorithm.

As has already been mentioned, an important motivation for this work was the
Pruning Front Conjecture (PFC) of Cvitanović, Gunaratne, and Procaccia [8]. It
attempts to relate the dynamics of maps in the Hénon family of diffeomorphisms
of the plane,

Ha,b(x, y) = (a− by − x2, x),

to the family P(F), where F is Smale’s horseshoe: it states that for every pair
(a, b) with 0 < b < 1, the Hénon map Ha,b is semi-conjugate to some element
of P(F). Thus every Hénon map can be viewed, up to semi-conjugacy, as a full
horseshoe from which the dynamics in a given region (the pruning front) has been
destroyed. A proof of this conjecture would provide a full understanding, on the
topological level, of the dynamics of maps in the Hénon family. In [8], PFC is also
stated for the Lozi family

La,b(x, y) = (a − by − |x|, x).

Using methods different from the ones presented here, Ishii [15] has proved
PFC for the Lozi family.

The Hénon family reduces to the standard quadratic family x 
→ a− x2 when
b = 0. A number of authors have explored the relationship between these two
families, stressing similarities (notably in the work of Benedicks and Carleson [4]),
differences (Holmes and Whitley [13], Holmes and Williams [14]), or both (van
Strien [20], Hall [11]). In the pruning family, however, each map has a natural
underlying one-dimensional structure: it can be collapsed to a tree (or dendrite)
endomorphism in a way which preserves the topological dynamics of the original
map: indeed, the 2-dimensional map can be recovered simply by taking the inverse
limit of the 1-dimensional map. Thus the Pruning Front Conjecture, if true, provides
a link between Hénon maps and 1-dimensional dynamics for any value of the
parameters with b ∈ (0, 1).

A number of the definitions and constructions in this paper, while intuitively
straightforward, involve a distracting amount of technical detail in order to deal
with all of the different cases which may arise. The reader is encouraged to refer
to the examples and figures whenever necessary for clarification.

2. Pruning theory

2.1. Preliminary definitions

Pruning theory describes a way in which the dynamics of surface homeomorphisms
can be destroyed in a controlled manner by isotopies relative to a given compact
invariant set. This section contains a brief summary of some standard definitions
which will be used in the remainder of the paper.

Let X be a topological space, and f : X → X a continuous map. Dynamical
systems theory is concerned with asymptotic properties of the family { f n} of
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iterates of f , where f n denotes the n-fold composition f ◦ · · · ◦ f of f with
itself. If f is a homeomorphism, then n can be either positive or negative (with
f −n = ( f −1)n).

Non-trivial dynamics requires some form of recurrence. In this paper, points of
X will be considered to be dynamically non-trivial if they are non-wandering.

Definitions. A connected open subset U of X is a wandering domain if f n(U)∩U
= ∅ for all n > 0. The non-wandering set	( f ) of f is the set of all points x which
are not contained in any wandering domain.

	( f ) is a closed subset of X with f(	( f )) ⊆ 	( f ). If f is a homeomorphism
then f(	( f )) = 	( f ) = 	( f −1). A period n (or just periodic) point x of f is
a fixed point of f n which is not fixed by f k for 1 ≤ k < n: clearly all periodic
points are in 	( f ).

Now suppose that f : X → X is a homeomorphism. Then f is said to be
supported on a subset U of X if f is the identity on X\U . A second homeomorphism
g : X → X is isotopic to f if there is a continuous map F : X × [0, 1] → X such
that each map ft : X → X defined by x 
→ F(x, t) is a homeomorphism, with
f0 = f and f1 = g. The isotopy is said to be supported on a subset U of X if the
homeomorphisms ft are all equal on X \ U , and is said to be relative to U if it is
supported on X \U .

2.2. Thick graph maps

Following the approach of [5,10], the majority of the surface homeomorphisms
in this paper will be assumed to be of a particular type, called thick graph maps.
This means that all of their interesting dynamics is contained in a subsurface called
a thick graph: intuitively, as the name suggests, this is a graph in which each point
has been thickened up, either to a disk or an arc according as the point is a vertex
or a regular point of the graph. The homeomorphisms are assumed to act on the
thick graph in such a way that they induce endomorphisms of the underlying graph.
The justification for taking this approach is that every surface homeomorphism is
isotopic to a thick graph map.

Definitions. A thick graph is a triple (S,G, A), where S is a closed orientable
surface endowed with a fixed metric compatible with its topology, G is a compact
subsurface of S (with boundary) which is partitioned into compact decomposition
elements, and A is a compact subset of G, such that

a) Each decomposition element of G is either a leaf homeomorphic to [0, 1], or
a junction homeomorphic to D2.

b) The boundary in G of each junction is a finite number of disjoint arcs: if there
are k such arcs, then the disk is called a k-junction.

c) The set
⋃

k �=2{k-junctions} is finite.
d) Each decomposition element which is not in the accumulation of a sequence of

distinct 2-junctions is contained in a chart as depicted in Fig. 1.
e) Each component of S \ G is an open disk.
f) A ∩ ∂J = ∅ for each junction J.
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If (S,G, A) is a thick graph, let∼ be the equivalence relation onG given by x ∼ y
if and only if x and y lie in the same decomposition element. Then G = G/∼ is
a graph, whose vertices (which may have valence 2) correspond to the junctions
of G: the canonical projection will be denoted p : G → G. The vertex set of G
will be denoted V , and the union of the junctions of G will be denoted V: thus
V = p−1(V ). The components of G \ V are called strips: each strip is therefore
homeomorphic to (0, 1)× [0, 1].

1-junction 2-junction 3-junction

leaves

Fig. 1. Charts in a thick graph

Remarks.

a) A should be thought of as a set of punctures of S: all homeomorphisms con-
sidered will restrict to homeomorphisms of A, and the isotopies constructed
later will be relative to this set. It is assumed for the sake of simplicity that S
is a closed surface, but there is no difficulty in extending the theory to surfaces
with boundary: in this case, each boundary component should be treated like
a point of A. When A is empty or is not explicitly relevant (as is often the case
in Sects. 2 and 3) it will usually be suppressed, and the thick graph referred to
as (S,G).

b) There are two cyclic orders on the set of strips incident to a given junction J ,
given by the order in which they are encountered as one moves around ∂S J in
a chosen direction (strictly, these orders are on the set of initial segments of
strips at the junction, since a strip may begin and end at the same junction).
A subset U of the strips at J is said to be connected in the cyclic order at J if
the strips of U are consecutive in one (and hence both) of these orders. A set of
edges incident to a vertex v of G is said to be connected in the cyclic order at
v if the corresponding set of strips is connected in the cyclic order at p−1(v).

c) Where there is no potential ambiguity, and where it is convenient to do so,
G itself will be referred to as a thick graph.

d) In order to capture all the complexity of families of maps like the Hénon family
it is necessary to allow a thick graph to have infinitely many strips (i.e., the
graph G to have infinitely many edges). Otherwise, the discussion would be
restricted to maps with Markov partitions. As far as this paper is concerned,
we only need to consider the case where there are infinitely many 2-junctions:
a discussion of the situation in which this becomes necessary can be found in
Sect. 5. On a first reading, it is probably helpful to concentrate on the case in
which G has finitely many junctions.
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If (S,G, A) is a thick graph and F : (S,G, A) → (S,G, A) is a homeo-
morphism (i.e. a homeomorphism S → S with F(G) ⊆ G and F(A) ⊆ A) under
which the image of each decomposition element of G is contained in a decompos-
ition element, then F|G induces a unique graph endomorphism f : G → G such
that p ◦ F|G = f ◦ p.

Definitions. A thick graph map of (S,G, A) is an orientation-preserving homeo-
morphism F : (S,G, A)→ (S,G, A) such that:

a) F(G) ⊂ IntG.
b) If γ is a decomposition element ofG, then F(γ) is contained in a decomposition

element, and diam(Fn(γ)) → 0 as n → ∞. If γ is a junction, then F(γ) is
disjoint from the boundary of the junction which contains it.

c) The induced graph endomorphism f : G → G is piecewise monotone (that
is, there is a finite subset L of V such that f −1(x) ∩ U is connected for each
x ∈ G and each component U of G \ L); and is strictly monotone away from
the preimages of vertices (that is, every x ∈ G \ f −1(V ) has a neighbourhood
on which f restricts to an embedding).

d) F(A) = A (i.e. F|A : A → A is a homeomorphism).
e) For each component U of S \G there is some (least) integer nU > 0 such that

FnU (U) ∩ U �= ∅. Moreover, U contains a period nU point pU of F, which
is a source whose immediate basin contains U: that is, F−knU (x) → pU as
k →∞ for all x ∈ U.

A homeomorphism F : (S,G, A) → (S,G, A) which satisfies conditions a) to d)
is called a pre-thick graph map of (S,G, A).

Remarks.

a) The dynamics of a thick graph map in S\G is easily understood and uninterest-
ing. In the case of finitely many junctions, the dynamics inG can be understood
by standard Markov partition techniques.

b) The reason for defining pre-thick graph maps is that condition e) is lost at
intermediate stages of some constructions. The full thick graph map structure
is always recovered at the end.

c) If F : (S,G, A) → (S,G, A) is a thick graph map, then so are all of its
forward iterates Fn (n ≥ 1), and the graph endomorphism induced by Fn is
f n : G → G.

In Sects. 2.3 and 2.4, a method for isotoping away the dynamics of a thick graph map
in a controlled manner is described. The isotopies which are used to accomplish
this are called prunings: all of the dynamics in the interior of a given closed
disk (and hence in the F-orbit of the interior) is destroyed by an isotopy which
is supported in the union of the disk and an arbitrarily small region which lies
outside of G. It is also necessary to perform some ‘adjusting’ operations, which
have no effect on the dynamics of F. There are two types of adjusting operations,
namely thickening a decomposition element and splitting a junction, which are
described below. Thickening involves small isotopies of F (and, in the case where
the decomposition element being thickened is a junction, does not actually change
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the decomposition element), while splitting modifies G and its decomposition
elements but leaves F unchanged.

Definition. Let F : (S,G, A)→ (S,G, A) be a pre-thick graph map, and let γ be
a decomposition element of G. The following procedure is called thickening γ :

If γ is a junction, then postcompose F with a homeomorphism h supported in
a small neighbourhood N in G of ∂Gγ with N ∩ A = ∅, which satisfies h(∂Gγ) ⊂
Int (γ), and which maps each decomposition element into a decomposition element.

If γ is a leaf then let γ0 = γ , and for i ≥ 1 let γi be the decomposition element
which contains Fi(γ). If γI is a junction for some (least) I ≥ 1, then thicken each of
the leaves γ0, . . . , γI−1 into 2-junctions (in such a way that any points of A, which
before lay in some γi , now lie in the interiors of the corresponding junctions), and
extend F over each junction so that F(γi) ⊂ Int S(γi+1).

If no γI is a junction and there are only finitely many distinct leaves γi , then let
I be least such that there is some (least) J > 0 with γI = γI+J . Thicken up each of
the leaves γ0, . . . , γI+J−1 into 2-junctions, and extend F as in the previous case.

If the γi are all distinct leaves, then thicken up each of them with decreasing
thicknesses tending to zero (that is, if the 2-junctions are regarded as rectangles,
then the sides of the rectangles which lie on ∂G are chosen to be shorter and
shorter with lengths whose sum converges), in such a way that F can be extended
with F(γi) ⊂ Int S(γi+1) for each i. Notice that in this case Int (γ0) becomes
a wandering domain. (This is analogous to the construction of a Denjoy circle
homeomorphism.)

In each of the cases where γ is a leaf, complete the process by postcomposing
with a homeomorphism h as in the case where γ is a junction.

Thickening a decomposition element is a dynamically trivial operation which
does not create or destroy any dynamics. For convenience of notation, a pre-thick
graph map which is obtained from F : (S,G, A)→ (S,G, A) by thickening a finite
number of decomposition elements will usually also be denoted F : (S,G, A) →
(S,G, A). Observe that it is isotopic to the original pre-thick graph map relative
to A.

There are two ways of splitting a junction J of G. In each case, it is assumed
that J is an isolated n-junction of G, and that no strip of G has image contained
entirely in J . Let � be the union of J and the strips which are adjacent to it.

Type a) splitting: Suppose that the oriented strips emanating from J can be par-
titioned into two non-empty sets, U1 = {s1, . . . , sk} and U2 = {sk+1, . . . , sn},
each connected in the cyclic order at J , with the property that each component of
F(G) ∩� is contained either in J ∪⋃

U1 or in J ∪⋃
U2 (note that it is possible

for some si to be the same strip as s j ( j �= i) with the opposite orientation). Let
G
′ be the thick graph obtained by choosing two disjoint arcs α1 and α2 in J with

endpoints in ∂G which separate the two types of components of F(G)∩�, and ex-
cising the subset of J between α1 and α2. ThenG′ inherits the obvious thick graph
structure from G (in which there are now two junctions J1 and J2 corresponding
to J), and F : (S,G′, A) → (S,G′, A) is a pre-thick graph map (Fig. 2). Notice
that A ⊆ F(G) (since F(A) = A), and hence is disjoint from the excised subset.



296 André de Carvalho, Toby Hall

s

s s

s

1

1

2

2

4

3

α

α

Split

Fig. 2. Type a) splitting

Type b) splitting: Let s be one of the oriented strips emanating from J whose
other end is adjacent to a junction K (possibly equal to J), and suppose that
the other strips emanating from J can be partitioned into two non-empty sets
U1 = {s1, . . . , sk} and U2 = {sk+1, . . . , sn−1}, each connected in the cyclic order
of strips around J , with the property that each component of F(G)∩� is contained
either in J ∪ s ∪⋃

U1 or in J ∪ s ∪⋃
U2. Let α1 and α2 be disjoint arcs in J ∪ s̄,

each having one endpoint in K and one in J ∩ ∂G, which separate the two types
of components of F(G) ∩ �. Let G′ be obtained by excising the subset of J ∪ s
between α1 and α2. Then G′ inherits the obvious thick graph structure from G
(in which J has been split into two junctions J1 and J2, and the number of strips
adjacent to K has increased by one if K �= J), and F : (S,G′, A)→ (S,G′, A) is
a pre-thick graph map (Fig. 3). Notice that A ⊆ F(G) is disjoint from the excised
subset.

Split

J

K

s

α
α

1

2

Fig. 3. Type b) splitting

2.3. 1-Pruning disks

Definitions. Let F : (S,G, A)→ (S,G, A) be a pre-thick graph map. A 1-pruning
disk for F is a closed topological disk D ⊂ S, whose boundary is the union of two
arcs C and E which intersect only at their endpoints, satisfying:
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a) F(D) ⊂ IntG,
b) E ⊂ ∂G.
c) D and G are on the same side of E: that is, there is a neighbourhood N of E

in S such that D ∩ N ⊆ G.
d) F(C) is contained in a single decomposition element, denoted γD.
e) A ∩ Int (D) = ∅.

A 1-pruning disk D is non-trivial if D ∩ 	(F) �= ∅ and F(D) intersects more
than one decomposition element of G (and hence intersects uncountably many
decomposition elements). The arcs C and E will be referred to as the C-side and
E-side of D. When D is a 1-pruning disk, the symbols C and E will always be
taken to denote its C-side and E-side.

If D is a 1-pruning disk for F, then a D-arc is an arc α in F−1(G) which has
the same endpoints as E and which is disjoint from G away from its endpoints.
An enlargement of D is a closed disk � whose boundary is the union of C and
a D-arc.

Lemma 2.1. A 1-pruning disk D for F : (S,G, A) → (S,G, A) contains all of
the decomposition elements of G which it intersects, with the possible exception of
those whose image is contained in γD if γD is a junction.

Proof. Since the decomposition elements are connected, and since E ⊆ ∂G, any
decomposition element γ which intersects D but is not contained in D must
intersect C. Since F(C) ⊆ γD, it follows that F(γ)∩γD �= ∅, and hence F(γ) ⊆ γD.
If γD is not a junction, then the local strict monotonicity of f : G → G implies
that γ ⊆ C. ��

Given a 1-pruning disk D, it is possible to modify F by a preisotopy which
only changes the dynamics in

⋃∞
n=−∞ Fn(Int (D)), in such a way as to make every

point of Int (D) wandering, with the possible exception of a single periodic point.

Lemma 2.2. Let F : (S,G, A) → (S,G, A) be a pre-thick graph map, D be a
1-pruning disk for F, and� be an enlargement of D. Then there exists a pre-thick
graph map FD : (S,G, A) → (S,G, A), which is obtained from F by thickening
the decomposition element γD followed by an isotopy supported in �, such that
	(FD) ∩ D is either empty or is a single periodic point.

Proof. First thicken γD: this ensures that F(C) ⊆ Int (γD). Let M : S → S be
a homeomorphism supported in� (and hence isotopic to the identity relative to A)
with the property that M(D) is contained in a small enough neighbourhood of
C that F(M(D)) ⊆ γD, and let FD = F ◦ M. Since F has only been modified
on decomposition elements which intersect Int (D), and Lemma 2.1 guarantees
that all such decomposition elements are mapped into γD by FD, it follows that
FD : (S,G, A)→ (S,G, A) is still a pre-thick graph map, provided that the diam-
eter of Fn

D(γD) tends to zero as n →∞. This may not be the case a priori if some
image Fk

D(γD) is contained in D: however, it can be ensured by taking the initial
thickening of γD to involve postcomposition by a homeomorphism h with h(γD)

sufficiently small.
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Either Fn
D(γD) ⊆ γD for some n, in which case γD contains a periodic point

of FD whose orbit attracts every point of D; or Fn
D(γD) is disjoint from γD for all

n > 0, in which case every point of D is wandering under FD. ��
Definition. FD is said to have been obtained from F by pruning D away.

Remarks.

a) FD is isotopic to F relative to A.
b) D is still a pruning disk for FD, but it is trivial since FD(D) is contained in the

decomposition element γD.
c) If F is a thick graph map, rather than a pre-thick graph map, then so is FD.

Example 1. One of the simplest interesting examples of a thick graph map is
Smale’s horseshoe diffeomorphism [19]. Good detailed treatments of the horseshoe
can be found in many texts on dynamical systems (e.g. [9,18]). In this example
S = S2 = R2∪{∞} andG consists of a single strip Q = (0, 1)×[0, 1], foliated by
leaves {x} × [0, 1], together with two 1-junctions J0 and J1, which are semicircles
of diameter 1 centred on (0, 1/2) and (1, 1/2) respectively. The action of F|G is
to stretch Q uniformly in the horizontal direction by a factor λ (which must be
greater than 2), to contract Q uniformly in the vertical direction by a factor 1/λ, to
bend the deformed Q into the shape of a horseshoe, and to map it into G as shown
in Fig. 4, in such a way that not only is each decomposition element mapped into
a decomposition element, but also the foliation of Q by horizontal lines (0, 1)×{y}
is preserved. Finally, the two 1-junctions J0 and J1 are contracted uniformly by
a factor 1/λ. Outside ofG, F has a fixed point at∞with F−n(x)→∞ as n →∞
for all x ∈ S2 \ G.

Fig. 4. A 1-pruning disk in the horseshoe

The non-wandering set 	(F) of F is the union of ∞, a fixed point in J0, and
a Cantor set

� = {x ∈ Q : Fn(x) ∈ Q for all n ∈ Z}.
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The dynamics of F on � can be understood symbolically: let p : Q → (0, 1) be
projection onto the first coordinate, and define a map h : �→ � = {0, 1}Z by

h(x)i =
{

0 if p(Fi(x)) < 1/2
1 if p(Fi(x)) > 1/2.

Then h is a homeomorphism, and conjugates the action of F on� to that of the shift
map σ : �→ �, defined by σ(s)i = si+1: that is, F|� = h−1 ◦ σ ◦ h. Thus every
point x of � has a code h(x) ∈ �: it is often convenient to refer to x by its code,
without explicitly invoking the homeomorphism h. In particular, periodic points
of F correspond one-to-one with periodic codes of the same period. When writing
elements s ∈ �, it is common to juxtapose a point between s−1 and s0 to indicate
the origin of the sequence, and to use an overbar to denote infinite repetition of
a given word either at the beginning or the end of s. When s is periodic, and hence
can be written in the form w for some word w, then the origin of the sequence is
taken to be at the first letter of w, i.e. w = . . . www ·www . . . .

The horizontal and vertical ordering of points of� can be determined using the
unimodal order  on �+ = {0, 1}N, which is defined as follows: if s = s0s1 . . .

and t = t0t1 . . . are distinct elements of �+, and k ∈ N is least such that sk �= tk,
then s ≺ t if and only if

∑k
i=0 si is even. If s, t ∈ �+, then s  t if and only if either

s = t or s ≺ t. Now if (x1, y1), (x2, y2) ∈ � with h(x1, y1) = . . . s−2s−1 · s0s1 . . .

and h(x2, y2) = . . . t−2t−1 · t0t1 . . . , then

x1 < x2 ⇐⇒ s0s1s2 . . . ≺ t0t1t2 . . . and

y1 < y2 ⇐⇒ s−1s−2 . . . ≺ t−1t−2 . . . .

In particular, leaves which contain elements of� can be specified by an element
of �+: the leaf whose horizontal coordinate is given by s ∈ �+ will be written �s.

Let �101, �011, and �110 be the leaves containing the three points 101, 011, and
110, which constitute a period 3 orbit of F, and consider the disk D whose E
side is an arc along the lower boundary of Q joining �0101 to �110, and whose C
side is contained in F−1(�101) (see Fig. 4). This is clearly a 1-pruning disk for
F : (S2,G)→ (S2,G), with F(C) ⊆ γD = �101. The first step in pruning D away
is to thicken γD, as shown in Fig. 5, in order to make room for the pruning isotopy.
Since F3(γD) ⊆ γD, this requires thickening each of the leaves �101, �011, and �110
into 2-junctions: these 2-junctions will be denoted γ101, γ011, and γ110 respectively.
Let α be a D-arc yielding an enlargement� of D, and modify F by a preisotopy
supported in � to the pruned map FD which satisfies FD(D) ⊆ γD, as shown in
Fig. 6 (recall that γD = γ101). Observe that	(FD)∩D consists of a single period 3
point.

On the symbolic level, the dynamics of FD is described by the subshift of
σ : �→ � in which all semi-infinite words w $ 101 are excluded.

Remark. A similar pruning could be carried out up to any leaf in the horseshoe. By
the standard theory of unimodal maps (compare with Example 4 below), it follows
that homeomorphisms with uncountably many distinct topological entropies can
be obtained from the horseshoe by 1-prunings.
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D

α
α

F(D)

F(  )γ

γ

γ

110

011 101

Fig. 5. Thickening γD

D

F  (D)D Dγ

Fig. 6. The pruned homeomorphism FD

2.4. n-Pruning disks

Pruning away a 1-pruning disk is quite a simple operation: a more interesting
situation occurs when D is a 1-pruning disk for an iterate Fn of F. Under an
additional assumption, the pruning condition, it will be shown that the thick graph
G can be modified so as to turn such a disk D into a 1-pruning disk for Fn−1. By
repeating this process n − 1 times, D becomes a 1-pruning disk for F, which can
then be pruned away.

Definitions. Let F : (S,G, A)→ (S,G, A) be a pre-thick graph map, and suppose
that D is a 1-pruning disk for Fn where n > 1. Then D is said to be an n-pruning
disk for F if the pruning condition is satisfied: that Fk(D) does not intersect E
away from its endpoints for 1 ≤ k < n. An n-pruning disk for F is non-trivial if it
is a non-trivial 1-pruning disk for Fn.

From now on, all pruning disks will be assumed non-trivial unless otherwise
stated. The main theorem of this section is the following:
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Theorem 2.3. Let F : (S,G, A) → (S,G, A) be a thick graph map, D be an
n-pruning disk for F, and � be an enlargement of D. Then there exists a thick
graph (S,GD, A) and a thick graph map FD : (S,GD, A) → (S,GD, A), which
is obtained from F by thickening a finite number of decomposition elements,
performing an isotopy supported in �, and carrying out some type a) splittings,
such that 	(FD) ∩ D is either empty or is a single periodic point.

Proof. Let γD be the decomposition element of G which contains Fn(C). The
construction starts by thickening γD (so in particular it is a junction).

Since Fn(D) is contained in the interior of G, it can be decomposed into dis-
joint arcs and disks which are the components of the intersections of decomposition
elements of G with Fn(D). This decomposition of Fn(D) can then be pulled back
to a decomposition of Fn−1(D). Let G1 = G ∪ Fn−1(D), and define a decom-
position of G1 by amalgamating the decompositions of G and Fn−1(D): that is,
the decomposition element containing a point p of G1 is the smallest union of
decomposition elements ofG and Fn−1(D)which contains p and all of the decom-
position elements (of either surface) which it intersects. Because γD is a junction,
the decomposition element containing Fn−1(C) is a disk, and hence this decom-
position gives (S,G1, A) the structure of a thick graph (see Fig. 10 for an example).
Moreover, decomposition elements are mapped into decomposition elements by
construction, and so F : (S,G1, A) → (S,G1, A) is a pre-thick graph map (the
circumstances in which F : (S,G1, A)→ (S,G1, A)may not be a thick graph map
are discussed below). Finally, thicken the junction which contains Fn−1(C).

The purpose of this construction is that D is now an (n − 1)-pruning disk for
F : (S,G1, A)→ (S,G1, A). To see this, observe that:

a) Fn−1(D) doesn’t intersect E away from its endpoints by the pruning condition,
so E ⊆ ∂G1.

b) Fn−1(D) ⊆ Int (G1), since Fn−1(E) ⊆ Int (G), and the final step of the
construction was to thicken the junction which contains Fn−1(C).

c) Fn−1(C) is contained in this single junction.
d) The pruning condition holds since D is unchanged and F has only been modi-

fied by thickenings.

Let F : (S,Gn−1, A)→ (S,Gn−1, A) be the pre-thick graph map obtained by
repeating the above procedure n − 1 times. Then D is a 1-pruning disk for F,
which has been obtained from the original thick graph map by thickening a finite
number of decomposition elements. Let FD : (S,Gn−1, A)→ (S,Gn−1, A) be the
pre-thick graph map obtained by pruning D away.

FD will not be a thick graph map if some iterates Fk(D) (1 ≤ k < n)
of D intersect G in a disconnected set (notice that this implies that D must
also intersect G in a disconnected set). In this case the above construction al-
ters the topology of G, creating additional components of S \ G. However, it
is possible to split the thick graph Gn−1 to obtain a thick graph GD with the
same topology as G, so that FD : (S,GD, A) → (S,GD, A) is a thick graph
map. Figure 7 illustrates this process in a simple example, where D is a 2-
pruning disk which intersects G in two components. It is assumed that these
two components are mapped by F into strips s and t. Following the arrows
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around Fig. 7, the first diagram shows D intersecting two strips of G, and the
second shows the image F(D), intersecting s and t, and the images of the two
strips which D intersects: it is assumed that the image of some other strip also
passes through t but is disjoint from F(D). The induced decomposition of F(D)
is also marked on this diagram: the back-hatched regions and the dotted lines
indicate how this decomposition will be amalgamated with that of G. The re-
sult of this amalgamation is shown in the third diagram: two new junctions
have been created, J (which contains F(C)), and J1, which is connected to J
by a strip u which is foliated by the leaves of F(D) amalgamated with those
of t. The strips s and t are each divided by J into two new strips: the new
strips which come from s are denoted s1 and s2, and those from t are denoted
t1 and t2.

Fig. 7. Splitting to restore a thick graph map
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Let � = J ∪ s1 ∪ s2 ∪ t1 ∪ t2 ∪ u. It is clear that all of the components of
F(G) ∩ s correspond to components of F(G1) ∩ (� ∪ J1) which are disjoint from
t1 ∪ t2; and similarly, the components of F(G) ∩ t correspond to components of
F(G1) ∩ (� ∪ J1) which are disjoint from s1 ∪ s2. After pruning D away (which
only affects the preimage of F(D)), the components of F(G) ∩ s correspond to
components of FD(G1) ∩� which are contained in s1 ∪ s2 ∪ J , while the compo-
nents of F(G) ∩ t correspond to components of FD(G1) ∩ � which are contained
in t1∪ t2∪u ∪ J (see the fourth diagram of Fig. 7). Thus J can be split as shown in
the fifth diagram. For an n-pruning, this procedure must be carried out successively
for F(D), F2(D), . . . , Fn−1(D).

The topology of the resulting thick graphGD is the same as that ofG, and con-
dition e) in the definition of a thick graph map can be achieved by composing with
an isotopy supported in S \G to ensure that each complementary component of G
is a subset of the immediate basin of the single periodic point which it contains.

��
Definition. It is said that FD : (S,GD, A)→ (S,GD, A) has been obtained from
F : (S,G, A)→ (S,G, A) by pruning D away.

Remark. In the example of Fig. 7, s and t are strips (containing no junctions).
After pruning and splitting, three junctions were created: the 1-junction J1, the
3-junction J3, and the 2-junction J2. Since s was a strip, the 2-junction J2 between
s1 and s2 cannot carry any backtracking or contain the image of a junction. Thus
it can be decomposed into leaves, as shown in the sixth diagram of Fig. 7, joining
the two strips s1 and s2 back into a single strip s.

It is easy to see that this is true in general: if Fk(D) intersectsG in j components,
and J is the junction which arises from thickening Fk(C), then, after pruning D
away, J splits into j junctions. If one of these junctions corresponds to a strip inG,
then it is a 2-junction which can be decomposed into leaves, restoring the original
strip of G. The significance of this observation will become apparent in Sect. 4.3:
the important point to be noticed is that no new 2-junctions are created.

The family of all prunings of a thick graph map is now defined. By the remark at
the end of the previous subsection, it typically contains uncountably many distinct
dynamical systems (see also Sect. 3). It will be shown later (Sect. 4) that it also
contains the family of Thurston maps in the isotopy class of F relative to finite F-
invariant sets. The dynamics of each map in the family can be seen as the dynamics
of F less that which has been pruned away.

Definition. Let F : (S,G, A)→ (S,G, A) be a thick graph map. Define the prun-
ing family P(F) of F to be the set of all homeomorphisms which can be obtained
from F by a finite sequence, or as the limit of an infinite sequence, of prunings,
cleanings2, and thickenings.

2 A cleaning consists of a possibly infinite convergent sequence of prunings. A description
is given in Sect. 5.
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Example 2. Let F : (S2,G) → (S2,G) be the horseshoe map. G and its image
under F2 are shown in Fig. 8, together with a 2-pruning disk D and its images
under F and F2. The marked point which lies on C, F(C), and F2(C) is the fixed
point 1. It is clear that D is a 1-pruning disk for F2 and, since F(D) only intersects E
at an endpoint, the pruning condition is satisfied and hence D is a 2-pruning disk
for F.

F  (D)

F(D) D

2

Fig. 8. A 2-pruning disk in the horseshoe

The first step in pruning D away is to thicken the leaf γD = �1, to pull
back the decomposition of F2(D) to F(D) (Fig. 9), and then to amalgamate the
decompositions of G and F(D) to yield a new thick graph G1 (Fig. 10). The
dotted lines in Fig. 9 denote the boundary of the 2-junction which is obtained
by thickening �1. The disk D is a 1-pruning disk for F : (S2,G1) → (S2,G1),
which can be pruned away to give the pruned map FD : (S2,GD)→ (S2,GD) (see
Fig. 11, in which G1 has been drawn in a different configuration).

On the symbolic level, the dynamics of FD is described by the subshift of finite
type of σ : �→ � in which the words 1010 and 1110 are prohibited (it can easily
be seen that the points x ∈ � whose orbits intersect Int (D) are precisely those for
which h(x) contains one of these words).

F(D)

F  (D)2

Fig. 9. The induced decomposition of F(D)

The fact that Fn(D) ⊆ IntGmakes it possible to define decompositions on the
disks Fk(D) for 0 ≤ k ≤ n: these decompositions will be important in Sect. 3.
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Fig. 10. Amalgamating G and F(D)

Prune awayD

J
J

J

F(J  ) F(J  )

F(J  )
0

1

0

2

1

2

D

F(D)

Fig. 11. Pruning D away

Definition. Let D be an n-pruning disk for F : (S,G, A) → (S,G, A). The in-
duced decomposition on Fn(D) is defined by taking as decomposition elements the
connected components of the intersections of decomposition elements of G with
Fn(D). The induced decomposition on Fk(D) for 0 ≤ k < n is defined by pulling
back the induced decomposition of Fn(D) using Fn−k.

Lemma 2.4. Suppose that D is an n-pruning disk for F : (S,G, A)→ (S,G, A).
Then for each k with 0 ≤ k < n, D contains all of the decomposition elements
of Fk(D) which it intersects, with the possible exception of those whose image
under Fn is contained in γD, if γD is a junction.

Proof. Suppose conversely that γ is a decomposition element of Fk(D) which
intersects D but is not contained in D. Since γ is connected, and by the pruning
condition doesn’t intersect E away from its endpoints, it follows that γ intersects C,
and hence Fn(γ) intersects γD. Now Fn−k(γ) is contained in a single decomposition
element ofG, and hence Fn(γ) is contained in γD. If γD is not a junction, then this
is prohibited by the local strict monotonicity of f : G → G. ��

In fact, it is possible to remove the exception clause of this lemma without
significant loss of generality, by restricting the n-pruning disk D.

Definition. An n-pruning disk for F : (S,G, A)→ (S,G, A) is said to be trimmed
if Fn(C) is a connected component of Fn(D) ∩ γD.
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In particular, D is always trimmed if γD is a leaf. If γD is a junction, then it
is possible to replace D with a finite union of trimmed n-pruning disks Di such
that the dynamics of FD is the same as that of the homeomorphism FD1,... ,Dk

obtained by pruning each of the trimmed disks Di in turn. To do this, let � be the
component of Fn(D)∩γD which contains Fn(C), and let Di be the components of
F−n(Fn(D) \�). Then each Di is clearly a trimmed n-pruning disk (with C-side
a component of (Fn(D) \�) \ (Fn(D) \ �)), and 	(F) ∩ (D \⋃

Di) is either
empty, or consists of a single periodic point whose orbit attracts γD. In either case,
the non-wandering sets of FD and FD1,... ,Dk are equal.

If D is a trimmed n-pruning disk, then Lemma 2.4 can be replaced by

Lemma 2.5. Suppose that D is a trimmed n-pruning disk for F : (S,G, A) →
(S,G, A). Then for each k with 0 ≤ k < n, D contains all of the decomposition
elements of Fk(D) which it intersects. Moreover, each such decomposition element
is contained either in the interior or in the boundary of D.

The proof follows that of Lemma 2.4.

3. Kneading sets

In this section a deformation theory for graph endomorphisms, called kneading the-
ory, is developed: it generalizes the topological aspects of Milnor and Thurston’s
kneading theory for endomorphisms of the interval. The theory is presented in
such a way as to draw out the parallels with pruning theory: although it applies
to arbitrary piecewise monotone graph endomorphisms, the emphasis is on graph
endomorphisms which are induced by thick graph maps. The main results are Theo-
rem 3.11, which describes how n-pruning disks descend to n-kneading sets, and
conversely how n-kneading sets which are compatible with the two-dimensional
structure can be lifted to n-pruning disks; and Theorem 3.12, which states that
pruning away an n-pruning disk is equivalent to pulling away the corresponding
n-kneading set.

3.1. 1-Kneading sets

The results in this subsection are quite simple: its main purpose is to establish
notation and introduce some important definitions.

Let G be a (compact) graph, perhaps having infinitely many vertices of va-
lence 2, and f : G → G be a piecewise monotone graph endomorphism.

Definitions. A 1-kneading set K for f is an open subset K of G with finitely many
components such that f |K factors through a tree, with all the points of ∂K factoring
through the same point of the tree: that is, there exist a tree T , piecewise monotone
maps ψ : K � T and ϕ : T → G, and a point t ∈ T, such that f |K = ϕ ◦ ψ and
ψ(∂K ) = {t}. (The double-headed arrow in ψ : K � T means that ψ is onto).
A 1-kneading set K for f is non-trivial if f(K ) contains more than one point of
	( f ).
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Whenever K is a 1-kneading set, the symbols T , ψ, ϕ, and t will be interpreted
according to this definition.

Example 3. Figure 12 shows examples of some simple 1-kneading sets which
illustrate various aspects of the definition. In a), a disconnected 1-kneading set
K = a ∪ b ∪ c ∪ d is shown on the left. Its image under f is shown to the right:
the dotted lines represent the subset of G which contains the image, and the image
arcs have been ‘spread out’ for clarity. The tree T is an interval, and the maps
ψ : K � T and ϕ : T → G (which in this case is an embedding) are shown.

The definition of 1-kneading sets is contrived so that they can be made trivial
by a homotopy of f supported in the kneading set. In this example it is clear that
such a homotopy can be performed by dragging the image of K across the depicted
edge of G adjacent to f(p). The components K1 = a ∪ b ∪ c and K2 = d of K
are also 1-kneading sets, which can be made trivial independently by appropriate
homotopies. However, if f : G → G is induced by a thick graph map, and the way
in which f(K ) has been spread out corresponds to the ordering of the corresponding
image strips, then the dynamics in K1 cannot be destroyed by an isotopy of the
thick graph map without affecting the dynamics in K2: this is because K1 is not
innermost (see later definition).

Example b) illustrates that ϕ need not be an embedding. Four points x, y, z,
and w in K are marked, with the property that f(x) = f(y) = f(z) = f(w), while
ψ(x) = ψ(w) �= ψ(y) = ψ(z).

Example c) is one in which the tree T cannot be chosen to be an interval.

If K is a 1-kneading set for f : G → G then a new graph endomorphism
fK : GK → GK can be constructed by defining GK to be G with new valence two
vertices at all points of the orbit of ϕ(t) which are not already vertices, and

fK (x) =
{

f(x) if x �∈ K
ϕ(t) if x ∈ K .

For notational convenience, GK will be written simply as G.

Definition. fK is said to be obtained from f by pulling K away.

Example 4. Consider the graph endomorphism f : G → G induced by the horse-
shoe map described in Example 1: G is an interval [0, 1] (with valence 1 vertices
at 0 and 1), and the graph endomorphism f : G → G is depicted in Fig. 13. The
non-wandering set 	( f ) of f is the union of the fixed point 0 and a Cantor set

� = {x ∈ G : f n(x) ∈ (0, 1) for all n ∈ N},
which is the projection of the corresponding Cantor set in the horseshoe. As in that
case, the dynamics of f |� can be understood symbolically: define h : �→ �+ by

h(x)i =
{

0 if f i(x) < 1/2
1 if f i(x) > 1/2.

Then h is a homeomorphism,which conjugates f |� to the shift map σ : �+ → �+:
that is, f |� = h−1 ◦σ ◦h. The usual order of points of� as a subset of the interval
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Fig. 12. Examples of 1-kneading sets

is reflected by the unimodal order on �+: if x, y ∈ � then x < y if and only if
h(x) ≺ h(y).

Let K = (0101, 110), T = [101, 1] ⊆ G, t = 101, ψ = f |K : K � T ,
and ϕ : T → G be the inclusion. Then f |K = ϕ ◦ ψ and ψ(∂K ) = {t}, so K is
a 1-kneading set for f . Pulling K away yields a graph endomorphism fK : G → G
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0 11
2

Fig. 13. The graph endomorphism induced by the horseshoe

1 1

101 101

101

Pull awayK

K K

K

Kf K( )

f f

f K( )

0 0

0 0

0101 0101110 110

101

1 1

1 1

Fig. 14. The graph endomorphism obtained by pulling K away

with fK (x) = 101 for all x ∈ K (see Fig. 14). Notice that, by the definition of
pulling K away, the three points 011, 110, and 101 are now valence 2 vertices of G.

Comparing this example with Example 1, observe that K = Int (p(D∩G)), and
that fK : G → G is the graph endomorphism induced by FD : (S2,G)→ (S2,G).
The aim of the following definitions and results is to show that a 1-pruning disk
always projects to a 1-kneading set in this way, and to give conditions on 1-kneading
sets which imply that they lift to 1-pruning disks.

Definition. Let G be a graph, and v be a valence one vertex of G. A thick graph
above G truncated at v is a thick graph (S,G, A) with projection p : G → G in
which the 1-junction p−1(v) is replaced by an arc. This arc is considered to be
a leaf in the thick graph decomposition.

It will be shown in Theorem 3.1 below that for any trimmed 1-pruning disk D,
the projection Int (p(D ∩ G)) is a 1-kneading set for the induced graph endomor-
phism. The converse is not generally true: an additional compatibility condition
between the 1- and 2-dimensional structures is required. This is the motivation for
the following definition:

Definition. Let F : (S,G) → (S,G) be a thick graph map with induced graph
endomorphism f : G → G. A 1-kneading set K for f is F-compatible if it is the
projection of a 1-pruning disk D for F, i.e. if K = Int (p(D ∩G)).
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The aims of the following discussion and results are: a), to show that (trimmed)
1-pruning disks and F-compatible 1-kneading sets are in one-to-one correspon-
dence; and b), to derive a sufficient condition for a 1-kneading set to be F-compatible
which can easily be checked: this means that, in applications, pruning disks can
readily be found by searching for kneading sets which satisfy this condition. The
essential compatibility requirement is that the kneading set must correspond to
an ‘innermost’ pruning disk. Specifically, suppose that a pruning disk D is such
that D ∩ G has more than one component. Then any union of the corresponding
components of the kneading set K = Int (p(D ∩ G)) may also be a kneading set,
but the only such unions which can be projections of pruning disks are those which
correspond to collections of innermost components of F(D ∩ G) (see Fig. 16 for
an explanatory example).

Suppose, then, that F : (S,G) → (S,G) is a thick graph map, and that D is
a trimmed 1-pruning disk for F. Then F(D) ⊆ G, and hence there is an induced
decomposition on F(D), where the decomposition elements are connected com-
ponents of the intersections of decomposition elements of G with F(D). Since
F(D) is a disk, this decomposition gives it the structure of a thick tree T, which
is truncated at the decomposition element F(C) ⊆ γD. Moreover, F|D can be fac-
tored as F|D = � ◦�, where� = F|D : D → T and� : T→ G is inclusion. By
construction,� and� are thick graph maps (i.e. they send decomposition elements
into decomposition elements), and F(D ∩G) = �(T) ∩ F(G).

Notice that the induced decompositions on D, F(D), . . . , Fn−1(D) described
in Sect. 2 (obtained by pulling back the decomposition of Fn(D)) can be defined
equivalently by pushing forward a decomposition of D which is obtained by
identifying it with T using �.

Given this structure, it is easy to see that D projects to a 1-kneading set for
the induced graph endomorphism f : G → G: the converse is immediate from the
definition.

Theorem 3.1. Let F : (S,G) → (S,G) be a pre-thick graph map with induced
graph endomorphism f : G → G.

a) Let D be a trimmed 1-pruning disk for F. Then K = Int (p(D ∩ G)) is an
F-compatible 1-kneading set for f , and the graph endomorphism induced by
FD : (S,G)→ (S,G) is fK : G → G.

b) Let K be an F-compatible 1-kneading set for f . Then there exists a 1-pruning
disk D for F such that K = Int (p(D ∩G)).

Proof. Part a): Using the construction before the statement of the theorem, let T
be the tree obtained by collapsing decomposition elements of T, and let π : T→ T
be the canonical projection. Define ψ = π ◦ � ◦ (p|D∩G)−1 : K → T , which is
well-defined since if x, y ∈ D ∩ G with p(x) = p(y), then they lie in the same
decomposition element of G, and hence �(x) = F(x) and �(y) = F(y) lie in
the same component of the intersection of the image decomposition element with
F(D). Similarly,ϕ = p◦�◦π−1 is well defined, since if x, y ∈ Twithπ(x) = π(y),
then �(x) = x and �(y) = y lie in the same decomposition element of T, and
hence of G. Now f |K = ϕ ◦ ψ, and ψ(∂K ) = π(�(C ∩ G)) = π(γD ∩ �(C))
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is a point t. Thus K is a 1-kneading set for f : G → G: that it is F-compatible
follows immediately from the definition, since K = Int (p(D ∩G)).

Finally, observe that FD is equal to F on G \ D, and FD(D) ⊆ γD. Thus it
induces a graph endomorphism G → G which is equal to f on G \ K , and which
maps all points of K to p(γD) = ϕ(t). This graph endomorphism is exactly fK .
Part b): is just a restatement of the definition of F-compatibility. ��

Notice that the definitions have been set up precisely so that

D ∩G �−−−−→ T
�−−−−→ G

p
� π

� p
�

K
ψ−−−−→ T

ϕ−−−−→ G

(1)

commutes.
The final result in this section gives an easily verifiable condition for

a 1-kneading set K to be F-compatible. As stated earlier, the issue is that the
image of a 1-pruning disk must be ‘innermost’ in F(G), but no corresponding
notion exists for abstract graph endomorphisms.

Suppose, then, that K is a 1-kneading set for f : G → G, the graph endo-
morphism induced by F : (S,G)→ (S,G). Then p−1(K ) is a union of subdisks of
G, each of which has boundary composed of arcs of ∂G, and the same number of
arcs contained in decomposition elements ofG (if any such decomposition element
is a junction, then the corresponding arc is contained in the boundary of the junction
in G). Each of the arcs contained in a decomposition element has image contained
in the decomposition element γ = p−1(ϕ(t)). Let B ⊆ γ be the union of these
images.

Definition. K is said to be innermost if

a) there is an arc α in γ such that F(G) ∩ α = B.
b) there is a neighbourhood N of ∂K in K such that f(N) is (the image of) an arc

with endpoint ϕ(t).

(Condition b) just says that the images of all of the ‘ends’ of K leave ϕ(t) in
the same direction).

Lemma 3.2. An innermost 1-kneading set K is F-compatible.

Proof. Let α be an arc as in the definition of innermost, and choose a subarc if
necessary so that the boundary of α is contained in B, and hence in F(∂G). By
condition b), there is an arc β in F(∂G) with the same endpoints as α, such that
the disk � bounded by α and β contains F(p−1(K )) (namely, the arc obtained by
following F(∂G) from one endpoint of α to the other, in the direction given by
the images of the ‘ends’ of K ). By condition a), and the fact that β is contained
in F(∂G), it follows that � ∩ F(G) = F(p−1(K )), and hence D = F−1(�) is
a 1-pruning disk for F with p(Int (D ∩G)) = K . ��
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3.2. n-Kneading sets

As with 1-pruning, the process of pulling away a 1-kneading set for f is straightfor-
ward, and a more interesting situation arises when K is a 1-kneading set for some
iterate f n of f . In this section it is shown that, provided K satisfies an additional
condition (the kneading condition), it is possible to carry out some identifications
on G to yield a new graph endomorphism f1 : G1 → G1, such that the subset
of G1 corresponding to K is a 1-kneading set for f n−1

1 , which also satisfies the
kneading condition. Repeating the process n − 1 times thus yields a 1-kneading
set which can be pulled away. The main point of this construction, as expressed by
Theorems 3.11 and 3.12, is that this iterative process corresponds exactly to that
by which an n-pruning disk is pruned away.

Suppose that K is a 1-kneading set for f n : G → G. For each k ∈ {0, . . . , n−1},
define an equivalence relation∼k on G by x ∼k y if and only if x = y or there exist
z, w ∈ K with f k(z) = x, f k(w) = y, andψ(z) = ψ(w) (recall from Example 3b)
that ψ(z) = ψ(w) is a stronger condition than f n(z) = f n(w)). Notice that if
x �= y and x ∼k y then x, y ∈ f k(K).

Lemma 3.3. If x ∼k y then f n−k(x) = f n−k(y).

Proof. If z, w ∈ K with ψ(z) = ψ(w), then f n(z) = f n(w), since f n |K = ϕ ◦ψ.
The result follows immediately from the definition. ��
Lemma 3.4. For each k ∈ {0, . . . , n − 1}, each equivalence class of ∼k has only
finitely many components.

Proof. Every non-trivial equivalence class of ∼0 is a set of the form ψ−1(x) for
some x ∈ T , and hence has only finitely many components since ψ is piecewise
monotone. The equivalence classes of ∼k are the images of those of ∼0 under f k.

��
Definitions. A 1-kneading set K for f n is said to be an n-kneading set for f if
the kneading condition is satisfied: that if x ∈ K and x ∼k y, then y ∈ K and
x ∼0 y. If f : G → G is induced by a thick graph map F : (S,G, A)→ (S,G, A),
then an n-kneading set for f is said to be F-compatible if it is an Fn-compatible
1-kneading set for f n (i.e., it is p(Int (D∩G)) for some 1-pruning disk D for Fn),
and non-trivial if it is a non-trivial 1-kneading set for f n.

From now on, all n-kneading sets will be assumed to be non-trivial unless
otherwise stated. Notice that when checking whether or not the kneading condition
is satisfied, it can clearly be assumed that x, y ∈ f k(K) and x �= y.

By Lemma 3.3, if x ∼n−1 y, then f(x) = f(y) (it is important to note that the
converse is not generally true, sinceϕ need not be an embedding).Thus it is possible
to take the quotient of f : G → G by ∼n−1 yielding a graph endomorphism
f1 : G1 → G1. Write q : G → G1 for the canonical projection, and K1 = q(K ).

The following simple lemma is the essential consequence of the kneading
condition:

Lemma 3.5. K = q−1(K1).
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Proof. Suppose that there exists y ∈ G \ K with q(y) ∈ K1. Pick x ∈ K with
q(x) = q(y). Then x and y lie in the same ∼n−1-equivalence class: that is, x ∈ K
and x ∼n−1 y. It follows from the kneading condition that y ∈ K , which is
a contradiction. ��

The aim of the following results is to show that K1 is an (n − 1)-kneading set
for f1 : G1 → G1.

Lemma 3.6. f1 : G1 → G1 is a piecewise monotone graph endomorphism, and
K1 is an open subset of G1.

Proof. That G1 is a graph and f1 is piecewise monotone follows from Lemma 3.4,
while the openness of K1 in G1 is immediate from Lemma 3.5 (and the definition
of the quotient topology). ��

Now define ψ1 = ψ ◦ q|−1
K
: K1 → T . To check that ψ1 is well defined, it is

necessary to show that if x, y ∈ K with q(x) = q(y), then ψ(x) = ψ(y). If either
x or y is in K , then it follows by the kneading condition that both lie in K and that
x ∼0 y: i.e. ψ(x) = ψ(y). If both lie in ∂K , then ψ(x) = ψ(y) = t.

Lemma 3.7. ψ1 : K1 → T is onto and piecewise monotone, and ψ1(∂K1) = {t}.
Proof. Surjectivity follows from that of ψ, and ψ1 is piecewise monotone by
Lemma 3.4 and the piecewise monotonicity ofψ. Since K=q−1(K1) (Lemma 3.5),
it follows that ∂K1 = q(∂K ), and hence ψ1(∂K1) = ψ(∂K ) = {t}. ��

Next define ϕ1 = q ◦ f n−1 ◦ ψ−1 : T → G1. To check that ϕ1 is well
defined, it is necessary to show that if x, y ∈ K with ψ(x) = ψ(y), then
q( f n−1(x)) = q( f n−1(y)). However ψ(x) = ψ(y) means exactly that x ∼0 y,
and hence f n−1(x) ∼n−1 f n−1(y): that is, q( f n−1(x)) = q( f n−1(y)) as required.

Lemma 3.8. ϕ1 : T → G1 is piecewise monotone, and ϕ1 ◦ ψ1 = f n−1
1 |K1

.

Proof. Piecewise monotonicity follows by Lemma 3.4 and the piecewise mono-
tonicity of ψ and f . If x ∈ K1, then ϕ1 ◦ψ1(x) = q ◦ f n−1 ◦ψ−1 ◦ψ ◦ q−1(x) =
(q ◦ f ◦ q−1)n−1(x) = f n−1

1 (x). ��
Theorem 3.9. K1 is an (n − 1)-kneading set for f1 : G1 → G1, with factor maps
ψ1 and ϕ1.

Proof. It follows from Lemmas 3.6, 3.7, and 3.8 that K1 is a 1-kneading set for
f n−1
1 : thus it only remains to verify the kneading condition: that if x1 ∈ K1 and

if x1 ∼k y1 for some k ∈ {0, . . . , n − 2}, then y1 ∈ K1 and ψ1(x1) = ψ1(y1)

(in this proof, elements of G1 are denoted with a subscript 1, while elements of G
have no subscript: the equivalence relations ∼k pertain either to f : G → G or to
f1 : G1 → G1, depending on which graph the elements which are being compared
belong to).

Suppose then that x1 ∈ K1 and x1 ∼k y1. Thus there exist z1, w1 ∈ K1 with
f k
1 (z1) = x1, f k

1 (w1) = y1, and ψ1(z1) = ψ1(w1). Pick z, w ∈ K with q(z) = z1
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and q(w) = w1. Since ψ1 = ψ ◦ q−1, it follows from Lemma 3.5 that z ∼0 w,
and hence f k(z) ∼k f k(w). Moreover, q( f k(z)) = f k

1 (q(z)) = f k
1 (z1) = x1, and

similarly q( f k(w)) = y1.
Now f k(z) ∈ K by Lemma 3.5, and so f k(w) ∈ K and f k(z) ∼0 f k(w)

by the kneading property for the original n-kneading set for f : G → G. Hence
y1 = q( f k(w)) ∈ K1, and ψ1(y1) = ψ( f k(w)) = ψ( f k(z)) = ψ1(x1), so
x1 ∼0 y1 as required. ��
Definition. Suppose that K is an n-kneading set for f : G → G. Let fK : GK →
GK be the piecewise monotone graph endomorphism obtained by applying the
above process n − 1 times, and then pulling away the resulting 1-kneading set. It
is said that fK has been obtained from f by pulling K away.

Example 5. This example of a 2-kneading mirrors the 2-pruning described in
Example 2. Let f : G → G be the graph endomorphism induced by the horseshoe,
as described in Example 4, and let K = (1, 101) ⊆ G. Let T = [1, 1] ⊆ G and
t = 1 ∈ T . Let ψ = f 2|K : K � T , and ϕ : T → G be inclusion. Then f 2|K =
ϕ ◦ ψ, and ψ(∂K ) = {t}, so K is a 1-kneading set for f 2. Since f(K ) = [01, 1]
is disjoint from K , the kneading condition is satisfied trivially, and hence K is a
2-kneading set for f .

The graph endomorphism f1 : G1 → G1 (shown in Fig. 15) is obtained by
identifying each pair of points x, y ∈ f(K ) with x ∼1 y. Since ψ = f 2, this is
equivalent to f(x) = f(y): in general, of course, this need not be the case. Notice
that K1 is a 1-kneading set for f1. Pulling K away yields the graph endomorphism
fK : GK → GK , also depicted in Fig. 15.
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Fig. 15. Pulling away a 2-kneading set

Comparing with Example 2, observe that K = Int (p(D ∩ G)), and that
fK : GK → GK isthegraphendomorphisminducedby FD : (S2,GD)→ (S2,GD).
The aim of the following discussion and results is to show that there is a one-to-one
correspondence between (trimmed) n-pruning disks and F-compatible n-kneading
sets, and that pruning an n-pruning disk is equivalent to pulling away the corres-
ponding n-kneading set.
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Suppose, then, that D is a trimmed 1-pruning disk for Fn . Recall that Fn(D)
can be given the structure of a thick tree T, and that Fn |D factors as Fn |D = �◦�,
where � : D → T and � : T → G are thick graph maps. Define an equivalence
relation ≈0 on the decomposition elements of G by ξ ≈0 η if and only if either
ξ = η, or both ξ and η intersect D and �(ξ) and �(η) are contained in the same
decomposition element of T. Then define equivalence relations ≈k on the set of
decomposition elements of G for 0 < k < n by ξ ≈k η if and only if there exist
decomposition elements ζ , ω with ζ ≈0 ω and Fk(ζ) ⊆ ξ , Fk(ω) ⊆ η. It is an
immediate consequence of the commutativity of (1) that each ≈k corresponds to
the equivalence relation∼k defined by the 1-kneading set K = Int (p(D ∩G)) for
f n : that is, x ∼k y if and only if p−1(x) ≈k p−1(y).

Theorem 3.10. Let F : (S,G)→ (S,G) be a pre-thick graph map, and f : G → G
be the induced graph endomorphism. Let D be a trimmed 1-pruning disk for Fn,
and K = Int (p(D ∩ G)) the corresponding 1-kneading set for f n. Then D is an
n-pruning disk for F if and only if K is an n-kneading set for f .

Proof. It is necessary to show that D satisfies the pruning condition if and only if
K satisfies the kneading condition.

Suppose first that the pruning condition holds: i.e., Fk(D) does not intersect E
away from its endpoints for 0 < k < n. Let x �= y and k < n be such that x ∼k y
and x ∈ K . It is necessary to show that y ∈ K and x ∼0 y.

Let ξ = p−1(x) and η = p−1(y). Then ξ ⊆ G∩(D\C), and ξ and η are distinct
decomposition elements with ξ ≈k η: that is, there are (distinct) decomposition
elements ζ and ω such that ζ ≈0 ω and Fk(ζ) ⊆ ξ , Fk(ω) ⊆ η. Now ζ ≈0 ω

means exactly that ζ and ω are decomposition elements of G which intersect D,
and �(ζ), �(ω) are contained in the same decomposition element of T. It follows
that there is a decomposition element γ of Fk(D) which contains both Fk(ζ) and
Fk(ω), and hence intersects both ξ and η. Since ξ ⊆ G ∩ (D \ C), it follows from
Lemma 2.5 that γ ⊆ Int (D), and hence y = p(η) ∈ K . Moreover, ξ and η are
contained in the same decomposition element of D, so that ξ ≈0 η. It follows that
p(ξ) ∼0 p(η), i.e. x ∼0 y as required.

For the converse, suppose that the kneading condition holds. If the pruning
condition is violated, then there is some k with 0 < k < n and a leaf γ in the
induced decomposition of Fk(D)which intersects E away from its endpoints: let α
be such a point of intersection. Since both endpoints of γ lie on Fk(E) ⊆ Int (G), it
follows that γ intersects ∂G in at least one other point: choose such an intersection
β so that the subarc ξ of γ between α and β only intersects G at its endpoints.
Let x = p(α) ∈ K and y = p(β). Since p−1(x) and p−1(y) are contained in the
same decomposition element of Fk(D), it follows that p−1(x) ≈k p−1(y), and
hence that x ∼k y. By the kneading condition, y ∈ K and x ∼0 y. Thus β ∈ E
and p−1(x) ≈0 p−1(y), so α and β lie in the same element η of the induced
decomposition of D. Therefore Fn(ξ ∪ η) is contained in a single decomposition
element of G, which must be a junction since ξ ∪ η is homotopically non-trivial. It
follows that η is a junction, whose intersection with E contains both α and β.
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Since D is non-trivial, it must contain leaves: this implies that Fk(E) is entirely
contained in a junction contained in E, which is again impossible given the non-
triviality of D. ��

The following two theorems, which are the main results of this section,
now follow easily from Theorems 3.1 and 3.10. For Theorem 3.11, recall that
F : (S,G1) → (S,G1) is the pre-thick graph map obtained by amalgamating G
with Fn−1(D), and f1 : G1 → G1 is the graph endomorphism obtained on factor-
ing f : G → G by∼n−1.

Theorem 3.11. Let F : (S,G) → (S,G) be a pre-thick graph map with induced
graph endomorphism f : G → G.

a) Let D be a trimmed n-pruning disk for F. Then K = Int (p(D ∩ G)) is an
F-compatible n-kneading set for f , and the graph endomorphism induced by
F : (S,G1) → (S,G1) is f1 : G1 → G1 (see the remark above regarding
notation).

b) Let K be an F-compatible n-kneading set for f . Then there exists a 1-pruning
disk D for F such that K = Int (p(D ∩G)).

Proof. The only part of the statement which is not an immediate consequence of
Theorems 3.1 and 3.10 is that the graph endomorphism induced by F : (S,G1)→
(S,G1) is f1 : G1 → G1. This follows directly from the observation that two
decomposition elements ξ and η of G are identified under amalgamation with
Fn−1(D) if and only if ξ ≈n−1 η. ��

For the final result, recall that FD : (S,Gn−1) → (S,Gn−1) is the pre-thick
graph map obtained by amalgamating Fn−1(D), . . . , F(D) with G and pruning
away the resulting 1-pruning disk D; GD is obtained from Gn−1 by splitting in
order to restore the structure of the complementary components.

Theorem 3.12. Let F : (S,G)→(S,G) be a thick graph map, f : G→G be the in-
duced graph endomorphism, Dbe an n-pruning disk for F, and K= Int (p(D ∩G))
be the corresponding n-kneading set for f . Then the graph endomorphism induced
by FD : (S,Gn−1)→ (S,Gn−1) is fK : GK → GK .

Proof. Immediate from Theorems 3.1 and 3.11. ��
If it is necessary to split Gn−1 to obtain GD, then the homotopy types of GK

and G are correspondingly different, but GK can be split at a number of its vertices
(corresponding to the splittings of Gn−1) in order to restore the homotopy type
of G.

Remark. At this point it would be natural to define the kneading family K( f ). In
order that it correspond to the pruning family P( f ) defined in Sect. 2 using Theo-
rem 3.11 above, however, it would be necessary to make precise the convergence of
a sequence of kneadings, and hence of the sequence of spaces on which the maps
are defined. Since a formal definition of K( f ) is not required in what follows, it is
unnecessary to consider the technical difficulties which this involves.
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4. Pruning up to an invariant set

4.1. Basic definitions

Definitions. Let F : (S,G, A)→ (S,G, A)be a thick graph map inducing f : G →
G. Then F is said to be Markov if

a) G has only finitely many vertices, and
b) f : G → G is onto, and does not collapse any edges to points.

Let F : (S,G, A)→ (S,G, A) be a Markov thick graph map, and write E(G)=
{e1, . . . , er} for the set of edges of the corresponding graph G, each endowed
with a fixed orientation. The set of oriented edges of G is defined to be OE(G) =
{e1, . . . , er , ē1, . . . , ēr }, where ēi denotes the edge ei with the opposite orientation.
By convention, general elements of E(G) will be denoted with lower case letters,
and those of OE(G) with upper case letters.

For each vertex v of G, define Lk(v) ⊂ OE(G) to be the set of oriented
edges whose initial vertex is v. Since f does not collapse any edges and is strictly
monotone away from the preimages of vertices, there is for each n > 0 a well-
defined derivative map D f n : OE(G) → OE(G) which maps each E ∈ Lk(v)
to the element of Lk( f(v)) which is the first oriented edge traversed by the image
f n(E) (see [5]).

If x ∈ G is not a vertex (so x lies in the interior of some edge e), then write
Lk(x) = {0, 1}. If f n(x) is a vertex v for some n > 0, then define D f n : Lk(x)→
Lk(v) by setting D f n(0) to be the first edge traversed by the nth iterate of the
segment of e which starts at x, and D f n(1) to be the first edge traversed by the nth
iterate of the segment of ē which starts at x.

A point x ∈ G is said to be n-preturning (to the vertex v) if f n(x) = v, and
D f n is constant on Lk(x). It is said to be n-turning (to v) if in addition

a) f k(x) is not (n − k)-preturning for 1 ≤ k < n, and
b) x is not k-preturning to v for 1 ≤ k < n.

Notice that this does not preclude the possibility that x is k-turning to some other
vertex for some k < n. If x is n-turning to v and D f n(Lk(x)) = {E}, then it is also
said that x is n-turning to (v, E).

Lemma 4.1. If x is n-turning, then f(x) is a vertex.

Proof. If x is itself a vertex, then there is nothing to prove. If both x and f(x) were
not vertices, then it would follow from the strict monotonicity of f away from the
preimages of vertices that f(x) would be (n− 1)-preturning, contradicting the fact
that x is n-turning. ��

4.2. Finding pruning disks

Suppose that F : (S,G, A)→ (S,G, A) is a Markov thick graph map, with induced
graph endomorphism f : G → G. The following definition is illustrated by Fig. 16.
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Definition. Suppose that x is n-turning to (v, L). If J = p−1(x) is a junction, let
E1, . . . , Er be the elements of Lk(x) in their correct cyclic order (i.e. each pair
{Ei, Ei+1} and {Er, E1} is connected in the cyclic order at x), and let s1, . . . , sr be
the corresponding (oriented) strips in G. Now F(J ) ⊆ p−1(v), and the images of
the initial segments of the strips si leave p−1(v) along the strip p−1(L). Amongst
these initial segments there are two, connected in the cyclic order, whose images are
outermost in p−1(L): suppose without loss of generality that these are s1 and sr .
For each y ∈ L, define �(·, y) to be the disk bounded by the smallest segment of
p−1(y) which disconnects both of these images of initial segments, together with
the arc of Fn(∂G ∩ (s1 ∪ sr ∪ J )) which has the same endpoints and is contained
in p−1(v) ∪ p−1(L). Let D(·, y) = F−n(�(·, y)), a disk with boundary the union
of the arcs E(·, y) ⊆ ∂G and C(·, y) with Fn(C(·, y)) ⊆ p−1(y). (The reason for
the · will become apparent shortly.)

If p−1(x) is not a junction, then�(·, y) and D(·, y) can be defined analogously,
replacing the strips s1, . . . , sr with the two oriented strip segments emanating from
the leaf p−1(x).
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Fig. 16. Opening out a pruning disk

Lemma 4.2. Suppose that x is n-turning to (v, L) and A∩ p−1(v) = ∅. If y ∈ L is
sufficiently close to v (following the orientation of L), then D(·, y) is an n-pruning
disk.

Proof. It is clear from the construction that D(·, y) is a 1-pruning disk for Fn

provided y is close enough to v that �(·, y) is disjoint from A. Thus it is only
necessary to show that D(·, y) satisfies the pruning condition for y sufficiently close
to v: that is, that Fk(D(·, y)) does not intersect E(·, y) away from its endpoints
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for 1 ≤ k < n. Equivalently (replacing k with n − k), it is necessary to show that
Fk(E(·, y)\{endpoints})∩�(·, y) = ∅ for 1 ≤ k < n and y sufficiently close to v.

By continuity, it is enough to show that Fk(E) ∩� = ∅ for 1 ≤ k < n, where
� is the limiting disk �(·, v) ⊆ p−1(v), and E = E(·, v).

Suppose, then, that Fk(E)∩� �= ∅ for some k. Write K = p−1(v), C = C(·, v),
e = Fn(E), and c = Fn(C) (so ∂� = c ∪ e). Notice first that Fk(E) ⊆ ∂Fk(G),
and Fn(∂G) ⊆ Int (Fk(G)), so Fk(E)∩e = ∅. Second, Fk(E) cannot be contained
in �, since � ⊆ K and hence Fn−k(�) is contained in the interior of a junction,
but Fn(E) intersects ∂K . Third, the endpoints of Fk(E) are disjoint from K ,
since otherwise the endpoints of e = Fn(E) would lie in the interior of a junction.
Finally, L is not contained in p(Fk(E)), since Fn(E) ⊆ K and F does not collapse
any edges to points. Thus Fk(E) is contained in the disk K ∪ p−1(L), intersects�,
has endpoints disjoint from K , and p is injective on each component of Fk(E)\�:
so Fk(E) \� consists of exactly two components, each of which is contained in
p−1(L).

It follows that D f k(E1) = D f k(Er) = L, and that D f n−k(L) = L. Since F is
orientation-preserving, this means that the relative positions of the initial segments
of Fk(s1) and Fk(sr) in p−1(L) are the same as those of Fn(s1) and Fn(sr); and
this, again using the fact that F is orientation-preserving, implies that D f k(si) = L
for all i. Hence x is k-preturning to v, which is a contradiction. ��
Definition. An n-turning point x to (v, L) is said to be a prunable n-turning point
if D(·, y) is an n-pruning disk for all y ∈ L sufficiently close to v.

Remark. If A ∩ p−1(v) = ∅, then Lemma 4.2 says that any n-turning point to v is
prunable.

Suppose that the conditions of Lemma 4.2 are satisfied, so there exists a pruning
disk D(·, y) = F−n(�(·, y)). It is clear that �(·, y) is a disk for all y ∈ L, and
hence that there is a well-defined disk �(·, u1), where u1 is the terminal vertex
of L. Whether or not it is possible to extend the disk beyond u1 depends on the
behaviour of the segments of Fn(∂G) which arise from the Fn-image of E(·, y). If
both of them leave p−1(u1) through the same strip, which is distinct from p−1(L),
or if both leave through p−1(L) on the same side of �(·, u1), then it is said that
�(·, u1) can be extended through u1 (Fig. 17). Otherwise (Fig. 18)�(·, u1) cannot
be extended through u1.

If �(·, u1) can be extended through u1, and the segments of Fn(∂G) leave
p−1(u1) along an oriented strip p−1(L1), then again,�(·, u1) can be extended all
the way along p−1(L1) to the junction p−1(u2) at the other end of the strip. Write
�(·, u1) = �(L, u1), and denote by�(L, y) the disk obtained by extending to the
leaf p−1(y) for each y ∈ L1.

Continuing in this way, there is some sequence u1, . . . , un−1 of vertices through
which � can be extended, followed by a vertex un through which it cannot be
extended: and a corresponding sequence L, L1, L2, . . . , Ln−1 of oriented edges
corresponding to the strips along which� is extended. Let αk denote the edge-path
L L1 L2 · · · Lk−1. The disk obtained by extending through u1, u2, . . . , uk to the
leaf p−1(y) in p−1(Lk) is denoted �(αk, y), and its preimage F−n(�(αk, y)) by
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Fig. 17. Extending � through a junction
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Fig. 18. � cannot be extended

D(αk, y). The arc of ∂D(αk, y)which lies on ∂G is denoted E(αk, y), while the arc
in F−n(p−1(y)) is denoted C(αk, y).

In the above discussion, the only question is whether or not the disk �(αk, y)
can be extended, not whether the disk D(αk, y) remains a pruning disk. There are
three reasons why it may become impossible to extend D(αk, y) further while it
remains an n-pruning disk:

a) That the pruning condition would be violated if D(αk, y)were extended further.
If this is the case then F j (C(αk, y)) intersects C(αk, y) for some j < n.

b) That the interior of the pruning disk would intersect A if D(αk, y)were extended
further. If this is the case then A ∩ C(αk, y) �= ∅.

c) That k = n and y = un : that is, that�(αn, un) cannot be extended as a disk.

Since these are all closed conditions, it follows from Lemma 4.2 that there is
a unique maximal n-pruning disk D(αk, y). This pruning disk is denoted D(n)(x).

4.3. The Bestvina-Handel algorithm

Algorithms for computing train tracks for surface homeomorphisms have been
given by Bestvina-Handel [5], Franks-Misiurewicz [10], and Los [16]. In this
section it is explained how the Bestvina-Handel algorithm can be recast in such
a way that the only isotopies which it involves are prunings and thickenings: in
particular, this means that no new dynamics can be created at any point during the
algorithm. The essential observation is that pruning is a more general operation



Pruning theory and Thurston’s classification of surface homeomorphisms 321

than folding (the driving operation of Bestvina-Handel) – every folding can be
interpreted as a pruning, but not vice-versa: in particular, it often requires several
foldings to destroy the dynamics which can be removed with a single pruning.

Rather than give a formal description of the algorithm, (thereby duplicating the
work of Bestvina and Handel), a list is given below of the operations involved in
the Bestvina-Handel algorithm, and how they should be reinterpreted in terms of
pruning. Before this, however, an example is given. It is hoped that the algorithm
(repeatedly finding and pruning non-trivial pruning disks) will be clear before the
details of the translation are given.

Example 6. This is an example in which a single 4-pruning (and two trivial
1-prunings) produce a pseudo-Anosov map: applying the Bestvina-Handel algo-
rithm to the same example requires many more moves (eight successive foldings
and tightenings in one computer implementation [12]).

Consider the horseshoe map F : (S2,G, A) → (S2,G, A), where A is the
period 8 orbit with code 10011010. The Thurston representative of the isotopy
class of F relative to A will be computed. The initial thick graph map, the invariant
set A, and the induced graph endomorphism f : G → G are shown in Fig. 19. The
points of A are labelled 1 to 8.

10011010

D

D

0

1

1

0

F D( )

F D( )

f(1)

f(8) f(7) f(6) f(5)

f(2) f(3) f(4)

Fig. 19. A period 8 orbit in the horseshoe, and two 1-pruning disks

The first, and essentially trivial, step, is to prune away the 1-pruning disks D0
and D1 depicted in Fig. 19. On the level of the graph endomorphism, this corres-
ponds, in the language of Bestvina-Handel, to tightening the graph endomorphism
with respect to A. The result of these prunings can be seen in Fig. 20.
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Fig. 20. The thick graph and graph maps after the 1-prunings

The remainder of the algorithm will be demonstrated first by using kneading
theory on the graph endomorphism: this is the way that one would carry out the
algorithm in practice. At the end, pictures will be given of the relevant pruning
disks and their images in S2.

In the graph endomorphism f : G → G of Fig. 20, there is a unique prunable
turning point, namely p which is 4-turning to the vertex 8. The algorithm proceeds
by finding the largest connected 4-kneading set containing p which is disjoint
from A: this corresponds to the maximal 4-pruning disk D(4)(p) described in
Sect. 4.2. Observe that there is a period 3 point α in e1, with the property that
β = f(α) ∈ e3 and γ = f(β) ∈ e7. The periodic point α lies to the right of p in e1.

Let K be the connected 1-kneading set for f 4 which contains p and has α as its
right endpoint. This interval, together with its first 4 iterates, is shown in Fig. 21.

Because G is a tree and K is connected, the kneading condition is satisfied
if and only if f k(K) ∩ K = ∅ for 1 ≤ j ≤ 3, which is clearly the case (notice
that K is as large as it could be while satisfying the kneading conditions, since if
α ∈ K then f 3(K ) ∩ K �= ∅). Thus K is a 4-kneading set. Drawing f 4(G) taking
into account the thick graph structure is a tedious exercise which shows that K is
an innermost 4-kneading set, and hence is F-compatible by Lemma 3.2. Hence,
by Theorem 3.11, there is a 4-pruning disk D for F : (S2,G, A) → (S2,G, A)
with p(Int (D ∩G)) = K : and by Theorem 3.12, pruning away D is equivalent to
pulling away K .

The first step in pulling away K is to identify points which lie in the same ∼3
equivalence class: in this case, as in Example 5, these are exactly points of f 3(K)
which have the same image under f . The identifications are illustrated in Fig. 22,
in which lines have been drawn joining pairs of points which have the same image.
This yields a new graph endomorphism f1 : G1 → G1, where G1 = G/∼3, with
a 3-kneading set K1 = K/∼3. For the sake of notational clarity, subscripts will be
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Fig. 21. A maximal 4-kneading set and its iterates

dropped after this and every stage of the procedure. This new graph endomorphism
is depicted in Fig. 23, together with the identifications arising from ∼2. Carrying
out this second identification gives the graph endomorphism of Fig. 24, for which
K is a 2-kneading set: the identifications arising from∼1 are shown on this figure.

1 2α' α βp 3 4 5 6 7 8γ

K

f(8) f(7) f(6) f(5)

f(4)

f(3)f(2)f(p)f(1) f( )α' f( )α

Fig. 22. Identifications under ∼3
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Fig. 23. Identifications under ∼2
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Carrying out the final identifications yields the graph endomorphism of Fig. 25:
observe that K is now a 1-kneading set, which can be pulled away as in the figure.
The resulting graph endomorphism f : G → G is now efficient in the terminology
of Bestvina and Handel: that is, there are no prunable turning points. An invariant
train track for the isotopy class can now be calculated as described in [5]: it, and
its image, are shown in Fig. 26.
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Fig. 24. Identifications under ∼1
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Fig. 25. Pulling away the resulting 1-kneading set
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Fig. 26. An invariant train track

The remaining figure in this example illustrates the pruning which corresponds
to this kneading. In order to simplify the diagram, the gaps in the invariant Cantor
set � have been collapsed (another way of viewing this is that the initial thick
graph map F : G→ G has been chosen in such a way that F(S) very nearly fills S,
and the two 1-junctions J1 and J2 are so narrow as to be indiscernible). Figure 27
shows the 4-pruning disk D, together with its images F(D), F2(D), F3(D), and
F4(D), which project to K and its images (compare with Fig. 21). The period 8
orbit A is shown with small squares, and the period 3 orbit whose points lie in
p−1(α), p−1(β), and p−1(γ) with larger circles.

Notice that F4(C) is contained in a single decomposition element. The thick
graph map obtained by pruning away D has trivial dynamics in

⋃∞
i=−∞ Fi(D),

and is equal to the horseshoe elsewhere. The induced graph endomorphism is
the efficient graph endomorphism which was obtained by pulling away K . The
pseudo-Anosov map in the isotopy class of F relative to A can be obtained by
collapsing the closures of the wandering domains of FD to points. Symbolic dy-
namics, as a subshift of the full 2-shift, can be introduced as in Examples 1
and 2: note that this is different from introducing symbolic dynamics using the
train track, where 10 symbols are required. This makes it possible to compare
this pseudo-Anosov representative with other maps in the pruning family of the
horseshoe.

Example 7. The same algorithm can be carried out for other invariant sets A
in the horseshoe. Figure 28 shows a 2-pruning disk D for the horseshoe map
F : (S2,G, A)→ (S2,G, A), where A consists of the homoclinic orbit 010110 and
the fixed point 0, together with the images F(D) and F2(D). Once this 2-pruning
has been carried out, there are no more non-trivial pruning disks. In fact, this is
precisely the 2-pruning disk of Example 2. The remainder of this section deals only
with pruning up to finite invariant sets.

Remark. For the sake of simplicity and brevity, all of the examples in this paper
have been of homeomorphisms of S2. However, the theory applies equally to
orientable surfaces of any genus.
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Fig. 27. The 4-pruning disk and its images

Fig. 28. Pruning up to a homoclinic orbit

The remainder of this section describes the steps which are needed to convert
the Bestvina-Handel algorithm to a pruning algorithm in the general case. It is
assumed that S is a closed orientable surface, that B ⊆ S is a finite non-empty set of
punctures, and thatα is an isotopy class of orientation-preserving homeomorphisms
of S relative to B (the extension to the case where S is unpunctured is described
in Sect. 5 of [5]). As in [5], it is possible to find a thick graph (S,G, B), whose
induced graph G can also be considered as a subset of S, and an initial thick graph
map F : (S,G, B)→ (S,G, B) which is in the isotopy class α.

a) There are two ways to deal with the puncture set B. In the first, described in
detail in [5], choose one of the orbits of B under α, and designate a peripheral
subgraph P of G which consists of a circle surrounding each of the punctures
which does not belong to the chosen orbit: the remainder of G is chosen
so that each component of S \ G contains exactly one puncture (which is
the unique periodic point in that component). The initial thick graph map
F(S,G)→ (S,G) is chosen so that f : G → G restricts to a homeomorphism
of P, and this condition is required to be maintained throughout the algorithm.
The second approach is again to choose one of the orbits of B, and to let A be
the set of punctures not in this orbit. Choose (S,G, A) so that each component
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of S \G contains exactly one point of B \ A, and such that the points of A are
contained in distinct decomposition elements ofG. The initial thick graph map
is then taken to be F : (S,G, A)→ (S,G, A).
The advantage of the second approach is that two of the more complicated
operations of the Bestvina-Handel algorithm, namely absorbing into P and
making irreducible, can be avoided: these operations ensure that the entries of
the transition matrix of f : G → G which are decreased by folding correspond
to main edges (i.e. those edges e such that f n(e) is not contained in P for
any n). The disadvantage is that it is necessary to keep track, throughout the
algorithm, of how the points of A lie relative to the image F(G).
It is also possible to adopt a combination of these approaches, surrounding
some punctures with peripheral loops and choosing others to constitute the
invariant set A. Here it is assumed that the second approach has been adopted,
since the first is discussed in [5].

b) The Bestvina-Handel operation pulling tight can be accomplished by 1-prunings.
c) The Bestvina-Handel operation collapsing an invariant forest disjoint from P is

interpreted as follows: if f : G → G has an invariant forest, each component T
of which contains at most one point of A, then collapse this invariant forest.
In terms of the thick graph map, redeclare the decomposition elements of G so
that each set p−1(T ) is a single junction: thicken these junctions if necessary
to ensure that diam(Fn(J ))→ 0 as n →∞ for each junction J .

d) Suppose that F : (S,G, A)→ (S,G, A) is tight, and that there are no invariant
forests whose components contain no more than one point of A. If the transition
matrix for f : G → G is reducible, then there exists a corresponding reduction
of the isotopy class α.

e) It is possible to replace the Bestvina-Handel operation performing a valence 2
isotopy with a new operation called cleaning a valence 2 vertex, which can
be implemented by a (perhaps infinite) sequence of prunings. This has the
advantage that it enables the whole algorithm to be carried out with prunings
and thickenings, and in particular in such a way that dynamics is monotonically
destroyed. It also avoids the need to calculate eigenvalues and eigenvectors
of transition matrices. Cleaning is, however, a complicated procedure: it is
described in Sect. 5. In practice, if the aim is to calculate a train track, it is more
straightforward to perform valence 2 isotopies.

f) The Bestvina-Handel operation folding to decrease λ should be replaced by
finding (as described in Sect. 4.2) and pruning a non-trivial pruning disk.

Rewriting the Bestvina-Handel algorithm in this way makes it clear that all
Thurston representatives can be obtained by pruning. More precisely

Theorem 4.3. Let F : (S,G) → (S,G) be a thick graph map. Then the pruning
family P(F) of F contains maps semi-conjugate to the Thurston representatives
of each isotopy class of F relative to a finite F-invariant set.

The semi-conjugacy mentioned in the statement of the theorem above consists
in collapsing the wandering domains of the pruned map. This is quite a mild
operation – in particular, the fibres of the semi-conjugacy carry no entropy. Maps
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inP(F) have invariant laminations instead of foliations as is the case with pseudo-
Anosov maps.

5. Cleaning a valence two vertex

The main modification necessary to the algorithms of Bestvina-Handel and Franks-
Misiurewicz, if they are to be carried out entirely in the language of pruning,
arises from the need to avoid performing valence two isotopies (dragging, in the
terminology of Franks-Misiurewicz). It is necessary to avoid the proliferation of
valence two vertices in order that the number of edges in the underlying graph
remains bounded: this ensures that the set of possible spectral radii of transition
matrices is discrete, and hence that if the spectral radius continually decreases the
algorithm is guaranteed to terminate.

Valence two isotopies, while they remove valence two vertices and never in-
crease the spectral radius, may create dynamics (periodic orbits for example) which
did not exist before. This is incompatible with pruning, in which dynamics is only
ever destroyed. Thus an alternative to performing valence two isotopies, called
cleaning a valence two vertex, is presented here. The technicalities involved in
giving a formal description of this operation, and in showing that it terminates, are
very intricate and degenerate into a plethora of cases: they are also quite tedious,
and do not introduce any new techniques which make the effort worthwhile.

In practice, however, it is relatively easy to clean valence two vertices: an
informal description of the operation follows. Moreover, the use of pruning rather
than folding in the way described by Bestvina-Handel (which requires frequent
subdivision of edges and subsequent erasure of the resulting valence two vertices)
makes valence two vertices much rarer. It is also worth noting that cleaning does
not require the calculation of eigenvalues and eigenvectors of transition matrices,
in which respect it can be easier to carry out by hand than a valence two isotopy.

Suppose, then, that a valence two vertex v (corresponding to a 2-junction J
inG) is created during the course of the algorithm. If there are no turning points to v,
then it is possible to split the junctions corresponding to all vertices of valence other
than two in its backward orbit (this requires type b) splittings). This ensures that
all vertices which eventually map to v have valence two. Since there are no turning
points to v, there are no turning points to any of the vertices which eventually map
to it: thus all of these vertices can be erased (and the corresponding 2-junctions
decomposed into leaves).

If there are turning points to v, then the aim is to prune them away and proceed
as above. There can only be finitely many turning points to v so v can be erased
after finitely many prunings, decreasing the total number of valence two vertices,
provided that no new turning points to v, or valence two vertices which are not
preimages of v, are created during pruning.

It is always possible to carry out the prunings without introducing new turning
points or valence two vertices, with the exception of one important case: a pro-
totypical example of this case will now be described. It is possible to have much
more complicated situations (for example, with vertices of valence greater than
three), but they are treated in exactly the same way.
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Suppose, then, that under some iterate of f : G → G the situation depicted
in Fig. 29 arises. Here, and in subsequent figures, the upper part shows segments
of G, and the lower part the images of these segments under the endomorphism in
question.

v v
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b

c

f(a)
f(b)

f(c)f(v )1

1

f(p)

d

p

Fig. 29. Prototypical situation leading to an infinite sequence of prunings

The point p ∈ d is 2-turning to v: assume that K is a 2-kneading set about p
which is as large as this situation allows: namely K is an open interval with
f 2(K ) = a. Pulling K away yields the graph endomorphism shown in Fig. 30.
Thus in attempting to pull away the 2-turning point p to v, this same point has
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1
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Fig. 30. The result of kneading the graph endomorphism of Fig. 29

become a 3-turning point to v. This leads to an infinite sequence of kneadings
(with a corresponding infinite sequence of prunings), which at each step turns an
n-turning point to v into an (n + 1)-turning point to v.

Notice that, by the Markov assumption, f(b) strictly contains b and f(c) strictly
contains c. It follows that f has fixed points in b and c: let q1 ∈ b and q2 ∈ c be
those which are closest to v1. The sequence of kneadings converges to give a graph
endomorphism in which q1 and q2 are identified to the same point q. The limiting
graph endomorphism is shown in Fig. 31.

In the limit, v has an infinite backward orbit consisting of valence two vertices,
but there is no longer any turning point to v. This orbit of valence two vertices can
therefore be erased to obtain the graph endomorphism shown in Fig. 32.
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Fig. 32. The graph endomorphism after erasing the orbit of valence two vertices

Notice in particular that D f : Lk(q)→ Lk(q) is the identity map. This is the
main mechanism whereby fixed prong singularities of pseudo-Anosov maps are
created.

There is also another, more complicated, situation which might lead to an
infinite sequence of prunings. Here again, the resulting sequence of graph endo-
morphisms converges to one in which it is possible to erase all of the infinitely
many valence two vertices which are created. However, by contrast with the pre-
vious case, this situation is inessential in that the infinite sequence can be avoided
altogether by a clever choice of pruning disk. In the particular example described
below (which again, could be made much more complicated but shows the only
essential point of the process) it is shown that, instead of choosing a 2-pruning disk
to be as ‘long’ as possible, it is more sensible to choose a 3-pruning disk which
must be ‘shorter’, but is, however, ‘thicker’. (The interpretation of these terms will
become clear from the example).

Suppose then that f : G → G is a graph endomorphism (perhaps an iterate
of another graph endomorphism) with the behaviour indicated in Fig. 33. In this
figure, p is 2-turning to (v1, e1), and q is 3-turning to (v1, e1). Suppose that it is
decided to prune a maximal 2-pruning disk about p (or to pull away a maximal
interval about p). Then q becomes a valence three vertex, since a maximal kneading
set K about p satisfies f 2(K ) = e1, with the left-hand endpoint of K , as shown
in Fig. 33, mapping to q (under a single iterate). Thus pulling K away yields the
endomorphism shown in Fig. 34. Here e is the new edge caused by the identification
of the segment of e4 between q and v3 with a segment of e5, as dictated by the
equivalence relation ∼1 on f(K ).
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Fig. 33. A situation leading to an inessential infinite sequence of prunings
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Fig. 34. The result of kneading a maximal 2-kneading set

Now both p and q are no longer turning to (v1, e1). However, a new point
q1 ∈ e1 has been created which is 4-turning to (v1, e1): this leads to an infinite
sequence of prunings. There is a way to avoid this, however, by pulling both p
and q away at the same time, instead of starting with p, which made it impossible
to pull away q afterwards. The following argument establishes that there exists
a 3-kneading set which contains q and all preimages of p.

Notice that there is a period 2 orbit, one of whose two points x1, x2 lie in e1
and e4 respectively, x2 lying between q and v3. Let K ′ ⊆ e4 be the symmetric
interval about q with right hand endpoint x2 (Fig. 35). It is not hard to see that K ′
is a 3-kneading set for f . By Theorem 3.11, there exists a 3-pruning disk which
projects to a kneading set containing K ′. After pruning it away (Fig. 36) there are
no longer any turning points to (v1, e1).
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2 3

Fig. 35. A better choice of kneading set

The common feature in the two examples described in this section is that pulling
away an n-turning point to (v, e) creates a new (n + 1)-turning point to (v, e). It
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Fig. 36. No remaining turning points to v

has been explained that both situations give rise to infinite sequences of prunings:
however, these sequences converge, and in the second example can in fact be dealt
with by a finite sequence of prunings.
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