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Abstract. We study doubly-periodic instantons, i.e. instantons on the product of
a 1-dimensional complex torus T with a complex line C, with quadratic curvature decay.
We determine the asymptotic behaviour of these instantons, constructing new asymptotic
invariants. We show that the underlying holomorphic bundle extends to T×P1. The converse
statement is also true, namely a holomorphic bundle on T × P1 which is flat on the torus at
infinity, and satisfies a stability condition, comes from a doubly-periodic instanton. Finally,
we study the hyperkähler geometry of the moduli space of doubly-periodic instantons, and
prove that the Nahm transform previously defined by the second author is a hyperkähler
isometry with the moduli space of certain meromorphic Higgs bundles on the dual torus.

Contents

I Connections with quadratic curvature decay . . . . . . . . . . . . . . . . . . . . 340
1 Limit flat connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
2 The linear problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
3 Existence of a Coulomb gauge . . . . . . . . . . . . . . . . . . . . . . . . 349

II Instantons, holomorphic bundles, and the moduli space . . . . . . . . . . . . . . 352
4 Asymptotic behaviour: proof of theorem 0.1 . . . . . . . . . . . . . . . . . 352
5 Holomorphic extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
6 Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

III Nahm transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
7 Asymptotic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
8 The hyperkähler property . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Introduction and statement of the results

The aim of this paper is to understand the analytical properties of certain finite
energy solutions of the Yang-Mills anti-self-dual equations over T × C. These
so-called extensible doubly-periodic instantons have been studied by the second
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author in [12–14], where they were shown to be equivalent to certain singular
solutions of Hitchin’s equations over an elliptic curve via a construction known as
the Nahm transform. The present paper grew from questions raised in the works
mentioned above.

More precisely, consider an SU2 bundle E → T×C. The instanton connections
A considered in [12,13] satisfied the following hypothesis:

1. quadratic curvature decay: |FA| = O(r−2)with respect to the Euclidean metric
on T × C;

2. extensibility: there is a holomorphic rank two vector bundle E → T × P1

with trivial determinant such that E|T×(P1\{∞}) � (E, ∂A), where ∂A is the
holomorphic structure on E induced by A;

where w is a coordinate in the complex line, and by the notation O(|w|γ ) we mean
the set of functions on C such that: lim|w|→∞ | f(w)|/|w|γ <∞.

One of the goals of this paper is to prove that the technical hypothesis of
extensibility is actually a consequence of the anti-self-duality equation, and more
generally to understand completely the behaviour at infinity of all instantons with
quadratic curvature decay.

Recently, physicists have also been increasingly interested in doubly-periodic
instantons. They were studied by Kapustin & Sethi in the context of certain string
theories [11]. In a different direction, González-Arroyo & Montero among others
have been studying various periodic instantons in the context of Quantum Field
Theory in the lattice (see in particular [9]). Finally, an attempt to construct explicit
analytic solutions has been made by Ford, Pawlowski, Tok and Wipf in [6].

Model solutions. Special solutions of the anti-self-duality equations may be ob-
tained by restricting to torus invariant connections. Such instantons come from
solutions (B, ψ) of Hitchin’s equations on C{

FB + [ψ,ψ∗] = 0
∂Bψ = 0

in the following way. Recall that B is a SU2-connection onC, andψ is a (1,0)-form
with values in sl2. Let ψ = 1

2 (ψ0 + iψ1)dw, and consider the connection (where
x and y are coordinates on T ):

A0 = B + ψ0dx + ψ1dy

which is a torus invariant instanton. Assuming that |FA0 | = O(r−2), the asymptotic
behaviour of solutions (B, ψ) is given by one of the following models:

B = d ψ =
(
λ 0
0 −λ

)
dw (1)

B = d +
(
α 0
0 −α

)
idθ ψ =

(
µ 0
0 −µ

)
dw

w
(2)

B = d +
( −1 0

0 1

)
idθ

ln r2 ψ =
(

0 1
0 0

)
dw

w ln r2 (3)
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where λ,µ ∈ C and − 1
2 ≤ α < 1

2 . The solutions of examples (1) & (2) can be
superimposed, and such superpositions are called the semisimple solutions. On the
other hand, solutions of example (3) cannot be superimposed with the others; these
are called the nilpotent solutions, and can only exist when λ = µ = α = 0. The
torus invariant instanton is then given by, in the semisimple case:

A0 = d + i

(
a0 0
0 −a0

)
with

a0 = λ1dx + λ2dy + (µ1 cos θ − µ2 sin θ)
dx

r
+ (µ1 sin θ + µ2 cos θ)

dy

r
+ αdθ;

while in the nilpotent case, we have:

A0 = d + i

( −1 0
0 1

)
dθ

ln r2 +
1

r ln r2

(
0 e−iθ (dx − idy)

−eiθ (dx + idy) 0

)
and note that the curvature is O(r−2| ln r2|−2).

Remark that the connection A0 has a flat limit over the torus at infinity,

d + i

(
λ1dx + λ2dy 0

0 −λ1dx − λ2dy

)
,

and one can prove that such flat limit for a connection A exists as soon as |FA| =
O(r−1−ε); the flat limit underlies a holomorphic vector bundle Lξ0 ⊕ L−ξ0 , where
the elements of the dual torus ±ξ0 ∈ T̂ are called the asymptotic states of the
connection.

We show that the three standard examples above completely describe the be-
haviour at infinity of doubly-periodic instantons with quadratic curvature decay:

Theorem 0.1. Let A be a doubly-periodic instanton with curvature O(r−2). Then
there is a gauge near infinity such that

A = A0 + a,

where A0 is one of the previous models, and, for some δ > 0, in the semisimple
case:

|a| = O

(
1

r1+δ

)
, |∇A0 a| = O

(
1

r2+δ

)
;

in the nilpotent case:

|a| = O

(
1

r(ln r)1+δ

)
, |∇A0 a| = O

(
1

r2(ln r)2+δ

)
.
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In the case where the limit at infinity of A is non trivial, one can prove the theo-
rem under the weaker assumption that the curvature is O(r−1−ε); this condition is
very close to the finite energy condition, and it is natural to suppose that the theo-
rem actually describes the behaviour of all finite energy instantons. The instantons
we will use (for example, those coming from the inverse Nahm transform) have
quadratic curvature decay, so that this hypothesis is sufficient for our applications.

The theorem, to be proved in Sect. 4, provides a complete characterization of
the instanton parameters which are invariant under L2 deformations. The parameter
λ is equivalent to the asymptotic states ±ξ0. The two remaining parameters are
new: α is called the limiting holonomy of the instanton A, while µ is called the
residue. The motivation for the latter nomenclature will be made clear latter on.
Notice that, in contrast with the instanton number (see below) and the asymptotic
states, the limiting holonomy and the residues are defined only for anti-self-dual
connections.

Instantons and holomorphic bundles. We are now ready to state our second main
result, which in particular solves the extensibility problem. Recall [13] that the
instanton number k of the doubly-periodic instanton A is defined by the formula:

k = 1

8π2

∫
T×C

|FA|2

as usual.

Theorem 0.2. There is a 1-1 correspondence between the following objects:

• SU2-doubly-periodic instanton connections with quadratic curvature decay
and fixed asymptotic parameters (k,±ξ0, α);

• α-stable, rank two holomorphic vector bundles E → T × P1 with trivial
determinant such that c2(E) = k and E|T×{∞} = Lξ0 ⊕ L−ξ0 .

The stability condition of the statement is a variant of the stability condition
for parabolic bundles; the degree is calculated with respect to a non ample class
(the fundamental class of the torus). The precise definition will be given in Sect. 5,
where this result is proved.

In a broader context, theorem 0.2 can be seen as the analog of Donaldson’s
correspondence between instantons on R4 and framed holomorphic bundles over
P

2 [7,5]. In this last case, no stability condition is needed in order to produce
an instanton, while in the case of a compact surface, stability (with respect to an
ample class) is necessary. Thus, in some sense, our stability criterion goes midway
between these two situations.

Moduli space. We then pass to the analytical construction of the moduli space of
doubly-periodic instantons. We prove:

Theorem 0.3. The moduli space of doubly-periodic instantons with fixed instanton
number k and asymptotic parameters (±ξ0, α,µ) is a smooth hyperkähler manifold
of real dimension 8k − 4.
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Of course, this theorem is interesting only if the moduli space is not empty. For-
tunately, as mentioned in [12], existence of doubly-periodic instantons for generic
values of the parameters (k,±ξ0, α,µ) is guaranteed via the Nahm transform (see
below) of meromorphic Higgs bundles over T̂ , whose existence follows from Simp-
son [22] among others; theorem 0.1 puts these instantons in our moduli spaces.
Another equivalent, probably more direct, way for guaranteeing existence is of
course theorem 0.2. See also Sect. 5 for some cases where the moduli space is
empty, and Sect. 6 for a description of the k = 1 moduli space.

Nahm transform. Finally we revisit the Nahm transform of doubly-periodic in-
stantons defined in [13] with two main objectives in mind. Before explaining what
these objectives are, let us say a few words about the Nahm transform.

Here we restrict to the semisimple case, since Nahm transform was defined
only in this case. Recall from [13] (see also part III) the Nahm Transform is a
1-1 correspondence between irreducible, doubly-periodic instantons and certain
meromorphic Higgs pairs (V,�) with harmonic metric over the dual torus T̂ . The
rank of V is given by the instanton number, and its degree is −2. The Higgs field
� has simple poles at the two points corresponding to the asymptotic states ±ξ0.
Moreover, � has semisimple residues of rank one if ξ0 �= −ξ0, and rank two
otherwise. We denote by Res�(±ξ0) the residue of the Higgs field at the singular
point ±ξ0.

Thus, it is natural to ask how are the new asymptotic parameters defined by
theorem 0.1 interpreted in terms of the Nahm transformed Higgs pair. This question
in answered in Sect. 7. As expected from the general principle Nahm transform
is a non-linear Fourier transform, the asymptotic behaviour is converted into
singularity behaviour. Before stating the result, let us fix some notations: at the
puncture±ξ0 we have a decomposition

V = B ⊕ R

where B = ker(Res�) and R is the 1-dimensional eigenspace of Res�; the
eigenspaces of � enable to extend this decomposition near the puncture as a local
holomorphic splitting of V .

Theorem 0.4. Let A be a doubly-periodic instanton with limiting holonomy α and
residue µ; let (V,�) be its Nahm transformed Higgs pair.

Then the unique nonzero eigenvalue of Res±ξ0� is given by±µ. Moreover, the
harmonic metric on V remains bounded on B, but behaves like |ξ ± ξ0|1±α on R.

Note that the sum of the degree of V , that is−2, and of the weights 1±α, equals 0,
as must be for a solution of Hitchin’s selfduality equations (see also remark 7.5 for
more informations on the induced stable parabolic Higgs bundle).

The monodromy of the connection B near the punctures is semisimple, with
only one nontrivial eigenvalue exp(∓2πiα) on R (or two if ξ0 = −ξ0).

It is well known that the moduli space of Higgs pairs on a Riemann surface is
hyperkähler [10]; for the moduli space of Higgs pairs with fixed singularities at the
punctures, this follows from [3]. The second goal can now be summarized in our
last result:
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Theorem 0.5. The Nahm transform of doubly-periodic instantons is a hyperkähler
isometry.

Note that similar results have been proved for the other well-known examples of
Nahm transform: the ADHM construction, see [17]; the duality between monopoles
and solutions of Nahm equations, see [18]; and the Fourier-Mukai transform of
instantons over 4-tori, see [4]. Indeed, it is reasonable to expect that such result
holds for any Nahm transform.

Outline. The paper is divided in three parts. The first part is technical: we study
the asymptotic behaviour of connections on E with quadratic curvature decay, but
which are not necessarily anti-self-dual; the technical goal is the construction of
a partial Coulomb gauge (theorem 0.6). In the second part, we obtain theorems
0.1, 0.2 and 0.3. Finally, the third part deals with the Nahm transform aspects of
the paper.

I. Connections with quadratic curvature decay

In this part, we study the behaviour at infinity of (not necessarily anti-self-dual)
connections with quadratic curvature decay on a SU2-bundle E on T × R2. Such
connections will have a limit flat connection � on the torus at infinity T∞, which
decomposes E|T∞ as a sum of two flat line bundles Lξ0 ⊕ L−ξ0 ; when L2

ξ0
= 0, we

can reduce to the case where Lξ0 = 0 by globally tensoring E with Lξ0 ; therefore
we will always suppose that

either L2
ξ0
�= 0, or Lξ0 = 0. (4)

Over any torus T , we consider the orthogonal decomposition of the space of
L2-sections of E:

L2(T, End(E)) = (ker∇�)⊕ (ker∇�)
⊥, (5)

and we decompose accordingly any section u of End(E) as

u = u� + u⊥. (6)

If we write explicitly � = d + γ , with

γ =
(
λ1 0
0 −λ1

)
idx +

(
λ2 0
0 −λ2

)
idy, (7)

then, in view of (4), ker∇� is described as the T -invariant sections of ker γ ; if γ is
nontrivial, these are reduced to T -invariant diagonal matrices.

The technical goal of this part is a partial Coulomb gauge on the a⊥ part of
a connection A = �+a with curvature O(r−2). More precisely, let VR ⊂ C denote
the complement of a disc of radius R centered at the origin.
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Theorem 0.6. Given a constant η > 0, there exists R sufficiently large such that
if A is a doubly-periodic connection satisfying supr≥R

(
r2|FA|

) ≤ η, then there is
a gauge g on T × VR such that g(A) = �+ a� + a⊥, with:

(i) d∗�+a�a⊥ = 0;
(ii) ∂r�a⊥(r = R) = 0;

(iii) ‖r2 F�+a�‖C0 + ‖r2−εa⊥‖C0 ≤ C · ‖r2 FA‖C0 .

Note that gauge transformations g ∈ ker∇� preserve the Coulomb gauge
constructed in this theorem. This kind of partial gauge fixing reminds of Råde’s
fibered Hodge gauge [20].

Remark 0.7. Actually, if � is nontrivial, the proof gives a Coulomb gauge under
a weaker bound on the curvature, namely |F| = O(r−(1+ε)); this condition is very
close to the finite energy condition, since r−δ is in L2 when δ > 1.

1. Limit flat connection

Our first task is to establish the existence of a flat limit connection � for every
connection A with quadratic curvature decay:

Proposition 1.1. Suppose that the connection A on T × R2 satisfies

|FA| ≤ c1

r2
.

Then A has a flat limit � on T at infinity, and there exists a sequence of connections
A j , such that

1. |FA j | ≤ c2/r2 ;
2. A j is gauge equivalent to A on {r ≤ j} ;
3. A j = � on {r ≥ 2 j}.

Remark 1.2. This proposition remains true if the curvature is O(r−(1+ε)).

Proof. We begin by proving the existence of the flat limit �. Take a radial gauge

A = d + aθdθ + axdx + aydy

for A; from the bound on the curvature, we deduce

|∂rax| + |∂ray| = O(r−2), |∂raθ | = O(r−1); (8)

from this we deduce that ax and ay have limits a∞x (θ, x, y) and a∞y (θ, x, y) when
r goes to infinity; moreover, the bound on the curvature implies that for each θ ,
the connection d + a∞x (θ)dx + a∞y (θ)dy is flat on T . It remains to see that it is
independent of θ: for this we pick a base point in T = S1 × S1 and prove that
the monodromies along the two circles remain conjugate when θ varies; this is
a consequence of the bound on the curvature and the following lemma (see for
example [1, lemma 1]):
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Lemma 1.3. Suppose we have a connection A on [0, 1] × S1, and m(t) is the
monodromy of A along the circle {t} × S1; note h(t) the parallel transport from
the point (0, 0) to the point (t, 0); then∣∣∂t

(
h(t)−1m(t)h(t)

)∣∣ ≤ ∫
{t}×S1

|FA|.

Therefore we have constructed a flat limit � on T for the connection A. Now
pass to the approximation statement.

Claim. On {r} × S1 × T , there exists a gauge so that A = �+ a, |a| ≤ c/r.

This statement (a C0 gauge only), can be proven by elementary means and is left
to the reader. Now, we extend radially this gauge on { j}×S1×T to [ j, 2 j]×S1×T ,
and the bounds (8) imply that A = � + a with still |a| ≤ c/r on [ j, 2 j]; then we
choose a cutoff function χ = χ(r) so that

χ(r ≤ j) = 1, χ(r ≥ 2 j) = 0, |∂rχ| ≤ 2/ j,

and define a connection A j by

r ≤ j, A j = A,

r ≥ j, A j = �+ χa;
on r ≥ j , the curvature of A j is

FA j = χFA + dχ ∧ a + (χ2 − χ)a ∧ a

and this remains bounded by c/r2 on [ j, 2 j], which means that |FA j | is uniformly
bounded by c/r2.  !
Remark 1.4. Actually, it is not difficult to go a bit further and to prove that there
is a global gauge in which A = � + a and |a| = O(ln r/r); this gives a result
used without proof in [13]. Of course, the result will also be a consequence of
theorem 0.6.

In the case of a torus invariant connection, we need a stronger statement.

Proposition 1.5. Under the hypotheses of proposition 1.1, if A = d + a with
a = a� (in particular A is torus invariant), then there is a gauge such that

A = �+ a + b,

where d + a is a connection on R2 and b = bxdx + bydy a 1-form along T ,
satisfying

|b| ≤ c3

r
, |∇�+ab| ≤ c2

r2 ,

and

a = i

(
α(r) 0

0 −α(r)
)

dθ + a′

with
|∂rα| + |a′| ≤ c3/r, sup

j
j2−2/p‖∇a′‖L p( j≤r≤2 j) ≤ c3.
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The meaning is that we want a gauge with not only a C0 bound, but also a C1

bound; actually this is not possible (because elliptic regularity does not hold in Ck

spaces) and this explains why we use L p derivatives instead. So the proposition
must be considered as a regularization of the connection. The standard way to
obtain this is to use Hodge gauges in order for the curvature to become an elliptic
equation: locally Uhlenbeck’s theorem provides the required statement, but the
gluing is not easy, especially on a non simply connected manifold. We present here
a proof based on the following lemma, which is a consequence of the Hodge gauge
constructed in [1, theorem 1]:

Lemma 1.6. Any connection A on [0, 1] × S1, with ‖FA‖L p sufficiently small, is
gauge equivalent to a connection d + iαdθ + a with ‖a‖L1,p ≤ c‖FA‖L p , where
α is a diagonal matrix, with coefficients in [0, 1[, such that exp(−2πiα) is the
monodromy of A along the circle {0} × S1.  !
Proof of proposition 1.5. If A is torus invariant, then a torus invariant gauge trans-
formation g acts on b only by gbg−1, and the bounds on the curvature immediately
imply the required bounds on b. Therefore, we are reduced to look at a connection
d + a on R2.

Now note that the region r ≥ 1 is conformally equivalent to the half-cylinder
R+× S1 (with coordinate t = ln r); in the rest of the proof we will use only the flat
metric on the cylinder. The bound on the curvature becomes |FA| ≤ c2; eventually
pulling back A using the transformation t → λt with λ sufficiently small, we may
suppose that c2 is very small. This means that we are now able to use lemma 1.6,
for some p very big, to produce on each [ j − 1, j + 1] × S1 a gauge g j so that

g j(A) = d + iα jdθ + a j , ‖a j‖L p + ‖(∇ + iα jdθ)a j‖L p ≤ cc2.

We perform recursively diagonal gauge transformations with coefficients of type
exp(ikθ) (k integer) so that we have

|α j+1 − α j | < c2;
this is possible because of lemma 1.3, and the operation does not affect the bound
on a j (but we have only |α j | ≤ c2 j). We want to glue together these local gauges:
the transition h j = g j+1 · g−1

j satisfies

dh j + [iα jdθ, h j ] = h j · a j − ((α j+1 − α j )idθ + a j+1) · h j;
the RHS is controled by cc2, and this implies that h j is very close to some h̃ j(θ)

in the kernel of d + iα jdθ; replacing g j+1 by h̃ j · g j+1, we now may suppose that
the transition g j+1 · g−1

j is close to the identity (in L2,p norm), and a standard
argument now enables us to glue together all these gauges: for a similar argument,
see [1, pages 447–8]. If we choose diagonal matrices α(t) so that

α( j) = α j , |∂tα| ≤ 2c2,

we finally get a gauge d + iα(t)dθ + a′, with

‖a′‖L p([ j−1, j+1]) + ‖(∇ + iα(t)dθ)a′‖L p([ j−1, j+1]) ≤ cc2.
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Sobolev embedding implies that ‖a′‖C0 is controled as well; translating back these
bounds in the metric of R2, we get the proposition.  !
Remark 1.7. The proof of proposition 1.5 becomes certainly easier if A is abelian
(which is the case if the limit � is regular), since in this case, it is easy to produce
a global Hodge gauge.

Remark 1.8. In general, we are unable to prove proposition 1.5 if the curvature is
only O(r−(1+ε)): this is because, in order to get a controled gauge on R+ × S1, we
need the curvature to be bounded; if � is nontrivial, the problem becomes abelian,
and then it is easy to construct a global Hodge gauge on R+ × S1, from which the
proposition follows easily (and one gets a bound in O(r−ε) on a).

2. The linear problem

In this section we study the linear analysis on the (ker∇�)⊥ part for the Laplacian
operator d∗�d� acting on 0-forms and the deformation operator d+� + d∗� acting on
1-forms, with fixed boundary conditions.

For this analysis, we will use the Sobolev spaces L p,k of functions with k
derivatives in L p; the weighted Sobolev spaces L p,k

δ of functions f such that
(1 + r2)δ/2 f ∈ L p,k.

The basis of the analysis is the following simple lemma, which is an immediate
consequence of the decomposition (5).

Lemma 2.1. There is a constant c, depending on p, such that on each torus T, for
any section u of End(E), we have:∫

T
|∇�u⊥|p ≥ c

∫
T
|u⊥|p. (9)

Analysis on 0-forms

Lemma 2.2. The Neumann problem on sections of End(E)⊥ on r ≥ R,{
��u = v

∂ru(r = R) = 0
(10)

is an isomorphism L2,2
δ → L2

δ .

Proof. The solution u of the Neumann problem is obtained by minimizing the
functional ∫

1

2
|∇�u|2 − 〈u, v〉

in the space L1,2; the minimization is possible because of the estimate (9); local
elliptic regularity gives that the L1,2-solution actually lives in L2,2, and this gives
the statement when there is no weight.
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In the case we have a weight δ, the following estimate holds:∫
〈��u, u〉r2δ =

∫
|∇�u|2r2δ + 2

δ

r
〈∇∂r u, u〉r2δ

≥
∫ (

1 − δ

r

)
|∇�u|2r2δ − δ

r
|u|2r2δ

and using (9) we get, if R is large enough,

‖��u‖L2
δ
‖u‖L2

δ
≥

∫
〈��u, u〉r2δ

≥ C‖u‖2
L2
δ

and therefore
C‖u‖L2

δ
≤ ‖��u‖L2

δ

which proves that the isomorphism persists between weighted L2-spaces, at least
if R is large enough.

This would be enough for our applications, but one can prove easily that the
statement remains true for any R: because�� is an isomorphism for R big enough,
it remains a Fredholm operator for any R (just glue the inverse near infinity with
a parametrix on the compact part); the index is locally constant and therefore does
not depend on the weight δ; this means that it is equal to the L2-index, that is 0;
now, because the L2-kernel is zero, the L2

δ -kernel is zero if δ > 0; for general δ,
the kernel is the L2

δ -kernel, while the cokernel is the L2−δ-kernel: as at least one of
them is trivial and the index is 0, both are trivial.  !

We now want to deduce the same result in L p spaces. We need an estimate
on the solution of problem (10) when v is L p. After a conformal change in the
Euclidean metric gE , we can pass to the cusp metric (r = et):

gC = dt2 + dθ2 + e2t(dx2 + dy2) = 1

r2 gE .

The operator �� now has singular coefficients, but is basically of the type studied
in [3], where Hölder and L p estimates are deduced from the L2-estimates. Here,
the same techniques lead to the desired result:

Lemma 2.3. The Neumann problem (10) for 0-forms on r ≥ R is an isomorphism
L2,p
δ → L p

δ for all weights δ.

Proof. For the convenience of the reader, we give here a sketch of proof for the
statement, inspired from [3, Sect. 6], but written with respect to the Euclidean
metric. The proof below works for p > 2 (the case we will use), but the statement
remains true for general p.

The first step is to give an elliptic estimate

‖u‖
L2,p
δ [r,2r] ≤ c

(‖��u‖L p
δ ([ 1

2 r,3r]) + ‖u‖L2
δ−1+2/p([ 1

2 r,3r])
)
. (11)
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The weight

δ2 = δ− 1 + 2/p (12)

chosen for the L2 space corresponds to functions with the same order of decreasing
in r−δ−2/p as in the weighted L p space, but actually the proof below will give more.
In order to prove this, we remark that, if λ1 and λ2 are the real numbers defined by
(7), and

�i =
(
λi 0
0 −λi

)
,

then one has (Ad(g) denoting the conjugation by g)

∇� = Ad(e−i(�1 x+�2 y)) ◦ ∇ ◦ Ad(ei(�1x+�2 y))

so that if we consider x and y as coordinates onR2, the equation��u = v becomes
equivalent to

�u′ = Ad(ei(�1x+�2 y))v, u′ = Ad(ei(�1x+�2 y))u.

In the domain [1, 2] × S1 × [−1, 1]2 ⊂ R2 × R2, we have an elliptic estimate

‖u′‖L2,p ≤ c
(‖u′‖L2 + ‖�u′‖L p

)
which implies on the homothetic domain [R, 2R] × S1 × [−R, R]2 ⊂ R2 × R2

R2−4/p
∥∥∇2u′

∥∥
L p ≤ c

(
R−2‖u′‖L2 + R2−4/p‖�u′‖L p

)
and therefore on [R, 2R] × S1 × T

R2−2/p
∥∥∇2

�u
∥∥

L p ≤ c
(
R−1‖u‖L2 + R2−2/p‖��u‖L p

)
which we can rewrite, still on [R, 2R] × S1 × T ,∥∥∇2

�u
∥∥

L p
δ
≤ c

(‖u‖L2
δ−3+2/p

+ ‖��u‖L p
δ

)
now the estimate (9) implies ∥∥∇k

�u
∥∥

L p ≥ c‖u‖L p;
this, with local elliptic regularity, gives the estimate (11).

The second step now consists in going from the L2-estimates with weights to
the L p-estimate. Basically, one can do the following: let P be the inverse obtained
by the L2-resolution; decompose

v =
∑

vi (13)

where vi has support in exp(i/2) < r < exp(3i); by the L2-resolution for the
weight δ2 defined by (12), one has

‖Pvi‖L2
δ2
≤ c‖vi‖L2

δ2
≤ c‖vi‖L p

δ
;
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on the other hand, we decompose similarly ui = Pvi as

ui =
∑

j

ui j ,

and we note that the L2 resolution gives the estimate

‖ui j‖L2
δ2
≤ ce−ε j‖ui j‖L2

δ2+ε

≤ ce−ε j‖vi‖L2
δ2+ε

≤ ce−ε( j−i)‖vi‖L2
δ2
;

if we choose ε to be ±ε according to the sign of j − i, we get the estimate

‖ui j‖L2
δ2
≤ ce−ε|i− j|‖vi‖L2

δ2

≤ ce−ε|i− j|‖vi‖L p
δ

now, note κi j = 1 if |i − j| ≤ 1 and 0 otherwise; using (11), we deduce

‖ui j‖L p
δ
≤ c

(
κi j‖vi‖L p

δ
+ e−ε|i− j|‖vi‖L2

δ2

)
≤ ce−ε|i− j|‖vi‖L p

δ

from which we deduce immediately

‖u‖L p
δ
≤ c‖v‖L p

δ
,

which proves, with the help of local elliptic regularity, that the operator is an
isomorphism L2,p

δ → L p
δ .  !

Remark 2.4. Actually, the proof gives a bit more, namely the norm of the inverse
operator is bounded by a constant which is independent of R (R big enough); this
is because we have explicit constants for the L2 inverse, and the constants in the
above proof do not depend on R.

Remark 2.5. The same proof works in Hölder spaces, and gives an isomorphism
between Hölder weighted spaces. In Ck spaces, we have no more elliptic regularity;
nevertheless, if v is in C0

δ , one can still deduce from the above proof the estimate

‖rδ−εu‖C0 ≤ c‖rδv‖C0; (14)

this estimate is not a consequence of the L p estimate, because the Sobolev embed-
ding (which can be proven like the elliptic estimate (11) by a homothety argument),

‖u‖C0
δ
≤ c

(‖u‖L p
δ−2/p

+ ‖∇u‖L p
δ+1−2/p

)
, (15)

implies L1,p
δ+1−2/p ↪→ C0

δ , so that there is a loss of weight, since L1,p
δ+1−2/p cor-

responds to functions O(r−δ−1) when C0
δ corresponds to functions O(r−δ). Note

also that in the case where v lies in the component where γ acts non trivially, the
maximum principle provides directly the estimate (14) without the ε.
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Analysis on 1-forms

In the next few lemmas, we assume that a is a 1-form with values in End(E) such
that ∂r�a = 0 on r = R. Again we suppose that a is reduced to its component a⊥.
All Sobolev norms are taken over the set T × VR = {r ≥ R}.
Lemma 2.6. One has the identity

∥∥d∗�a
∥∥2

L2 +
∥∥d�a

∥∥2
L2 =

∥∥∇�a
∥∥2

L2 −
∫

r=R

∣∣∣∣1

r

∂

∂θ
�a

∣∣∣∣2 dxdydθ (16)

with respect to the Euclidean metric.

Proof. The equality follows from the Weitzenböck formula in the Euclidean metric:

d∗�d� + d�d∗� = ∇∗
�∇�.

Just integrate by parts and check the boundary terms.  !
Lemma 2.7. For any real function f and any R > 0, one has:

f(R)2 ≤ 2

R

∫ R+1

R
(|∂r f |2 + | f |2)rdr. (17)

The proof is left to the reader.

Lemma 2.8. If R is sufficiently large, then for some constant c:

‖d∗�a‖L p
δ
+ ‖d�a‖L p

δ
≥ c‖∇�a‖L p

δ

‖d∗�a‖C0
δ
+ ‖d�a‖C0

δ
≥ c‖a‖C0

δ−ε

with respect to the Euclidean metric.

Remark 2.9. Remind that on the component a = a⊥ we look at, ∇�a controls a
by (9).

Proof. From lemma 2.7 and lemma 2.1, we have:∫
r=R

|a|2dxdy ≤ 2

R

∫
[R,R+1]

(|∇∂r a|2 + |a|2)rdrdxdy

≤ C1

R

∫
[R,R+1]

|∇�a|2dxdyrdr

for some constant C1; in particular∫
r=R

∣∣∣∣1

r

∂

∂θ
�a

∣∣∣∣2

dxdydθ ≤ C1

R

∫
[R,R+1]

|∇�a|2dxdyrdrdθ

and we deduce from lemma 2.6, for R big enough,
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∥∥d∗�a
∥∥2

L2 +
∥∥d�a

∥∥2
L2 ≥ 1

2

∥∥∇�a
∥∥2

L2

which proves the L2-estimate of the lemma.
The L2-estimate with weights is proven in the same way. In the integration

by parts, new terms appear because of the weight r2δ. However, as in the proof
of lemma 2.2, these terms have all a coefficient O(r−1) and therefore are a small
perturbation if R is large enough (note that we can take the same R if the weight
remains bounded).

Finally, one may deduce the L p and C0 estimates from the L2 estimates as in
lemma 2.3 and remark 2.5, since the operator d∗� + d� has injective symbol, and
the boundary condition ∂r�a = 0 is an elliptic boundary condition. The proof is
a slightly more complicated, because one has to compose the decomposition (13)
with a L2-projection on the image of the operator.  !
Lemma 2.10. The operator 2d∗�d+� + d�d∗� on 1-forms lying in �1 ⊗ End(E)⊥,
with Dirichlet condition on r = R, is an isomorphism in weighted Sobolev or
Hölder spaces for all weights δ.

Proof. Again the Weitzenböck formula

2d∗�d+� + d�d∗� = ∇∗
�∇�

gives the L2-estimate (for forms vanishing on the boundary)((
2d∗�d+� + d�d∗�

)
u, u

)
L2 =

∥∥∇�u
∥∥2

L2

≥ c‖u‖2
L2

from which the L2-statement (without weight) follows immediately. One can then
deduce weighted statements as in the proofs of lemmas 2.2 and 2.3.  !

3. Existence of a Coulomb gauge

After the technical work of the previous section, we are finally in a position to
establish theorem 0.6, the key analytical result of this paper. The first step is the
nonlinear version of the Hölder estimate in lemma 2.8; the exponent p is fixed,
near infinity.

Lemma 3.1. Given η1 sufficiently small, if a connection A = � + a� + a⊥ on
r ≥ R satisfies:

1. d∗�+a�
a⊥ = 0 ,

2. ∂r�a(r = R) = 0 ,
3. ‖rεa‖C0 ≤ η1 ,

then:∥∥r2 F�+a�

∥∥
C0 +

∥∥r2−εa⊥
∥∥

C0 + ‖(∇� + a�)a⊥‖L p
2−2/p−ε

≤ c‖r2 FA‖C0 . (18)
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Proof. First, note that:

FA = F�+a� + d�+a�a⊥ + 1

2
[a⊥, a⊥]. (19)

Therefore, using the decomposition in (5), we have:(
FA

)
�
= F�+a� +

1

2

([a⊥, a⊥]
)
�
, (20)(

FA
)
⊥ = d�+a�a⊥ + 1

2

([a⊥, a⊥]
)
⊥, (21)

from which the estimates below follow:∥∥r2(FA
)
�

∥∥
C0 ≥

∥∥r2 F�+a�

∥∥
C0 −

∥∥ra⊥
∥∥2

C0, (22)∥∥r2(FA
)
⊥
∥∥

C0 ≥
∥∥r2d�a⊥

∥∥
C0 −

∥∥r2[a�, a⊥]
∥∥

C0 −
∥∥ra⊥

∥∥2
C0 . (23)

Using C0
2 ⊂ L p

2−2/p−ε and the estimate in lemma 2.8, we get:

∥∥r2 FA
∥∥

C0 ≥ c

(∥∥r2 F�+a�

∥∥
C0 +

∥∥r2−εa⊥
∥∥

C0 +
∥∥(∇� + a�)a⊥

∥∥
L p

2−2/p−ε

)
−c′

(∥∥ra⊥
∥∥2

C0 +
∥∥r2[a�, a⊥]

∥∥
C0

)
;

from the third hypothesis, we have∥∥ra⊥
∥∥2

C0 +
∥∥r2[a�, a⊥]

∥∥
C0 ≤ η1

∥∥r2−εa⊥
∥∥

C0;
if η1 is small enough, these two inequalities give the required estimate.  !
Lemma 3.2. Given η, there exists R such that if A is a connection over T × VR
such that A − � is compactly supported and |FA| ≤ η · r−2, then there is a gauge
g such that g(A) = ∇� + a� + a⊥, with:

(i) d∗�+a�a⊥ = 0,

(ii) ∂r�a(r = R) = 0,

(iii)
∥∥r2 F�+a�

∥∥
C0 +

∥∥r2−εa⊥
∥∥

C0 +
∥∥(∇� + a�)a⊥

∥∥
L p

2−2/p−ε
≤ c

∥∥r2 FA
∥∥

C0 .

Proof. We now have all the necessary ingredients for a proof by continuity. Con-
sider the homothety φt(r) = etr and the connections At = φ∗t A. We have A0 = A
and, for t big enough, say t ≥ T , At = d� because of the assumption on compact
support. Moreover, it is clear from the form of the metric that

|FAt | =
∣∣φ∗t FA

∣∣ ≤ φ∗t |FA| ≤ ce−2t

r2

so that the whole path of connections (At) satisfies the hypothesis of the lemma.
Moreover, after gauge transformation, we can also assume that At = � + at with
∂r�at(r = R) = 0 for all t.
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We prove that the subset S ⊆ [0, T ] containing all the values of t for which
the theorem holds for At is both closed and open. Since S is nonempty (it contains
t = T ), S must be the whole interval and the result holds for t = 0.

The closedness is trivial, since the estimate on the connection provides all the
needed bounds.

For openness, first remark that proposition 1.5 provides a gauge in which∥∥r2 Fd�+a�

∥∥
C0 ≥ c

∥∥∥ r

ln r
a�

∥∥∥
C0

≥ c
R1−ε

ln R

∥∥rεa�
∥∥

C0;
on the other hand, from (iii),∥∥r2 FA

∥∥
C0 ≥ c

∥∥r2−εa⊥
∥∥

C0

≥ cR2−2ε
∥∥rεa⊥

∥∥
C0;

we deduce ∥∥rεa
∥∥

C0 ≤ c−1 R−(1−2ε)η;
taking R big enough, we deduce that (iii) implies∥∥rεa

∥∥
C0 <

1

2
η1 (24)

where η1 comes from lemma 3.1. Of course, if (24) is true, then it remains true
for any nearby a; this means that if we have a solution of (i), (ii) and (iii), then
a nearby solution of (i) and (ii) again satisfies (24), so satisfies the hypothesis of
lemma 3.1; applying this lemma, we deduce that the solution will also satisfy (iii).
Therefore, the problem of openness for solutions of (i), (ii) and (iii) is reduced to
solving problem (i)–(ii) near a solution.

Fix some t and suppose that gt(At) = �+ b with �+ b satisfying (i), (ii) and
(iii). If we have a connection �+ b +� with ∂r��(r = R) = 0, we want to find
a gauge g such that: {

g(�+ b +�) = �+ c� + c⊥
d∗�+c�

c⊥ = 0.

Looking at solutions of the form g = eu⊥ , the equation to be solved is:

L(u⊥,�) = d∗�+c�

(
eu(�+ c� + c⊥)e−u − d�+c�(e

u) · e−u) = 0;
we would like to solve this equation with u⊥ in C2, but Ck spaces are not suitable for
elliptic analysis; instead, we use weighted L p spaces with p very big; since we have
the freedom to apply a �-invariant gauge transformation, using proposition 1.5, we
can choose a gauge in which the derivatives of b� are also controled, and therefore
the operator L is well defined; its linearization along the first variable is given by
the operator:

u → d∗�d�u + perturbation;
if R is big enough, the perturbation is sufficiently small and we get an isomorphism
by lemma 2.2.

This completes the proof.  !
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Completing the proof of theorem 0.6. Our final task is to remove from lemma 3.2
the assumption that A − � is compactly supported.

Using proposition 1.1, we approximate the connection A by a sequence Ai such
that �− Ai is compactly supported, and ‖r2 FAi‖C0 remains bounded.

We can apply lemma 3.2 to each connection Ai , thus obtaining a gauge gi such
that gi(Ai) = d�+ ai , and ai satisfies (i)–(iii) of lemma 3.2. Using proposition 1.5
for the (ai)� part, the (ai) converge (weakly) to a limit a still satisfying (i)–(iii),
such that d� + a is gauge equivalent to A.  !

II. Instantons, holomorphic bundles, and the moduli space

So far, A has simply been a connection on E → T × C with quadratic curvature
decay. From now on, we shall assume that A is also an instanton.

4. Asymptotic behaviour: proof of theorem 0.1

Let us now assume that A is a doubly-periodic instanton connection. Using theo-
rem 0.6, if R is big enough, we can put it in a Coulomb gauge on r ≥ R, so that
A = �+ a� + a⊥, with a� and a⊥ satisfying the Coulomb gauge equation,

d∗�+a�a⊥ = 0,

and the anti-self-duality equation,

d+� a + 1

2
[a, a]+ = 0.

These can be rewritten as follows:

d∗�a⊥ = −a∗�a⊥ (25)

d+� a⊥ = −[a�, a⊥]+ − 1

2
[a⊥, a⊥]+⊥ (26)

d+a� + 1

2
[a�, a�]+ = −[a⊥, a⊥]+� (27)

Now let χ = χ(r) be a smooth cut-off function supported on T × VR; we have,
using equations (26) and (27):(

d+� + d∗�
)
(χa⊥) = χ(a� ) a⊥ + a⊥ ) a⊥)+ dχ ) a⊥ (28)

where ) denotes some bilinear operations.
From theorem 0.6 and proposition 1.5, we already know that |a⊥| = O(r−2+ε)

and that we can choose a gauge such that |a�| = O(ln r/r). We now apply
lemma 2.10 to the equation (28): a priori the lemma applies to the Laplacian
(d+� )∗d+� + d�d∗� but the estimates also imply estimates for the first order elliptic
operator d+� + d∗� (alternatively one may take one derivative of equation (28) and
use the bounds on the derivatives of a⊥ and a�); the RHS of equation (28) is



Asymptotic behaviour and the moduli space of doubly-periodic instantons 353

O(r−3+ε), therefore |a⊥| = O(r−3+ε2), where ε2 > ε; by the same argument, we
have that |a⊥| = O(r−4+ε3), etc. Therefore, |a⊥| = O(r−δ) for any δ > 0.

Now come back to equation (25): it now means that d+a� satisfies the instanton
equation up to a term which goes very quickly to 0 at infinity; as a� is translation
invariant, this means, by dimensional reduction, that d+a� is a solution of Hitchin’s
equations for Higgs bundles onR2 near infinity, up to a term decaying quicker than
any O(r−δ). The behaviour of the solutions of Hitchin’s equations near a singularity
has been studied by Simpson [22], Biquard [3]. The arguments in these papers are
not affected by a very quickly decaying perturbation. Moreover, the bounds in
proposition 1.5 implies that the Higgs field is O(1/r) at infinity, so that the Higgs
bundle is “tame” in Simpson’s terminology. Finally, we deduce from these articles
that d + a� is close to one of the examples described in the introduction, in the
sense of theorem 0.1.  !

5. Holomorphic extension

The theorem 0.1 proves that any instanton A with quadratic curvature decay can
be put in a gauge near infinity so that

A = A0 + a,

where A0 is one of the model torus invariant instantons induced by model Higgs
bundles, and a is a small perturbation.

Local aspects

Let us now restrict to the semisimple case. Therefore, we have

A0 = d + i

(
a0 0
0 −a0

)
with

a0 = λ1dx + λ2dy + (µ1 cos θ − µ2 sin θ)
dx

r
+ (µ1 sin θ + µ2 cos θ)

dy

r
+ αdθ;

observe that the (0,1)-part of this form is

a0,1
0 = λdz + µ

dz

w
− α

2

dw

w
, λ = λ1 + iλ2

2
, µ = µ1 + iµ2

2
,

so there is a singularity in the direction of transverse disks to the torus at infinity.
We first reduce to a normal form on transverse disks.

Lemma 5.1. Near the torus at infinity, there exists a continuous complex gauge
transformation g, such that

1. g|T∞ = 1 ;
2. |∇A0 gg−1| = O(r−(1+δ)) (and g⊥ is O(r−δ) for any δ);
3. g(∂A) = ∂A0 + bdz, with b = O(r−(1+δ)).
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Proof. We give a concise proof, since this is parallel to [3, Sect. 9]. Remark that

∂α = ∂ − α

2

dw

w
= r−α ◦ ∂ ◦ rα; (29)

now the problem to be solved is

∂A0

∂w
g − ga = 0,

that is, using g = 1 + u,(
∂

∂w
− 1

2

(
α 0
0 −α

))
u − ua = −a;

this is a ∂-problem on small disks near infinity; for the model problem (29) the
Cauchy formula gives us an explicit solution; in general, with the small perturba-
tion a, the solution is produced by a fixed point theorem, and we even have an
estimate

sup rδ|u| ≤ c sup r1+δ|a|;
one can then deduce the regularity statement on u.  !

Note b jk the coefficients of the matrix b above. Let (e1, e2) be the orthonormal
basis for the trivialisation of the bundle near infinity. From the lemma and equation
(29), we deduce that the sections

(σ1 = r−αg(e1), σ2 = rαg(e2)) (30)

are holomorphic on transverse disks, and, moreover, in the basis (σ1, σ2), we now
have

∂A = ∂ +
(
λ 0
0 −λ

)
dz +

(
µ 0
0 −µ

)
dz

w
+

(
b11 r2αb12

r−2αb21 b22

)
dz, (31)

with all coefficients of the last matrix holomorphic in w. From this, we see imme-
diately that in the basis (σ1, σ2), the operator (31) defines a holomorphic extension
E over T × P1.

Since
|σ1| ∼ r−α, |σ2| ∼ rα,

we see that, from an intrinsic point of view, if α < 1/2, the local holomorphic
sections of E are characterized as the local holomorphic sections σ outside T∞
satisfying the growth condition

|σ | = O(rα). (32)

When 0 < α < 1/2, this global extension has a subbundle F over the torus
at infinity, given by the values of the local holomorphic sections σ satisfying the
growth condition

|σ | = O(r−α). (33)
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Therefore, the growth of the holomorphicsections at infinity determine a “parabolic
structure”

E ⊃ F ⊃ 0,

with weights−α < α (the sign is changed because the local coordinate near infinity
is w−1).

Actually one can say more: over T∞, the ∂-operator (31) is

∂ +
(
λ 0
0 −λ

)
dz,

which means that

E|T∞ = Lξ0 ⊕ L−ξ0 .

Of course, if α is nontrivial, thenF = Lξ0 is canonically determined by the growth
condition (33).

Actually, the decomposition Lξ0 ⊕ L−ξ0 can almost always be made canonical:
this is clear if ξ0 �= 0, and in this case, since the off-diagonal components of the
connection decay quicker than any O(r−δ), we deduce from equation (31) that,
still in the basis (σ1, σ2),

∂A = ∂ +
(
λ 0
0 −λ

)
dz +

(
µ 0
0 −µ

)
dz

w
+ O(r−2); (34)

this gives the asymptotic behaviour of E|Tw when w goes to infinity.
Moreover, when ξ0 = 0, we still get something from (31): since the coefficients

are holomorphic in w, we note b′12 the coefficient of r2αb12 on w−1 (in the case
α = 0, we simply have b′12 = 0), so

∂A = ∂ +
(
µ b′12
0 −µ

)
dz

w
+ O(r−2); (35)

if µ �= 0, the matrix appearing above can always been diagonalized with eigen-
values ±µ, which means that up to changing σ2 by some multiple of σ1, we are
reduced to (34) so that a supplementary subspace of F is still well defined (and
when α = 0, the decompositionC⊕C still makes sense, as the eigenspaces of this
matrix).

Note also that, as a consequence of (30), since g is continuous, the unitary
extension (given by the basis (e1, e2) of the Coulomb gauge) and the holomorphic
extension are topologically isomorphic.

Therefore, we have proven the following proposition.

Proposition 5.2. In the semisimple case, for α < 1/2, if A is a doubly-periodic in-
stanton connection satisfying |FA| = O(r−2), then A0,1 has a unique holomorphic
extension E over T × P1, whose holomorphic sections satisfy the growth condition
(32). Moreover, one has c2(E) = k and a decomposition (if λ or µ is nonzero)
E|T∞ = Lξ0 ⊕ L−ξ0 .  !
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Remark 5.3. Note that when α = 1/2, we cannot get a Sl2-extension this way:
indeed we could equally well choose the sections (wσ1, σ2/w), giving a different
extension. One way to construct a canonical extension is to use (32) withα= −1/2,
which furnishes a Gl2-extension where all nonzero sections have norm O(r−1/2).
Also, a Sl2-extension can be constructed if ξ0 �= −ξ0, by deciding that sections
with nonzero values in L±ξ0 have norm like r∓1/2.

In the sequel we will ignore this case, but all the statements can be easily
adapted to it.

Remark 5.4. In the nilpotent case (then λ, µ, and α are trivial), the result is the
same, but (as in the case of Higgs bundles) the growth of the holomorphic sections
at infinity is now logarithmic:

|σ | = O
(
(ln r)

1
2
)
, (36)

and there is a line subbundle F defined by the growth condition

|σ | = O
(
(ln r)−

1
2
)
. (37)

The subbundleF has no canonical supplementary subspace. The tools in [3, Sect. 9]
handle this situation as well.

Also observe that the ∂-operator for the model instanton (3) is (in an orthonor-
mal basis (e1, e2))

∂ +
(

1 0
0 −1

)
dw

2w ln r2 +
1

r ln r2

(
0 e−iθdz
0 0

)
which gives, in the basis (e1/(ln r2)

1
2 , e2(ln r2)

1
2 ),

∂ +
(

0 dz
w

0 0

)
;

in particular, E|Tw is the nontrivial extension of C by C; it is easy to see that this
remains true for instantons, asymptotic to this nilpotent model.

Non-existence results

The proposition 5.2 gives obstructions for the existence of instantons. Here are
some examples.

Lemma 5.5. There are no instantons with ξ0 = −ξ0 and k = 1.

Proof. For a contradiction, let A be an instanton with ξ0 = −ξ0 and k = 1, 2, and
consider the extended holomorphic bundle E given by theorem 0.2. The restriction
of E to the elliptic fibres Tp must be semistable for all p ∈ P1 (see [14]). Moreover,
E|Tp cannot be generically the nontrivial extension of C by itself, since this would
give a non-constant map from P1 to C (which parametrises the extensions of C by
itself).
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Therefore, as shown in [13,14], index theory tells us that for each ξ ∈ T̂ :

!w∈P1 h0(Tw, E ⊗ Lξ |Tw
) = k. (38)

But if E|T∞ = Lξ0 ⊕ Lξ0 , then h0
(
T∞, E ⊗ Lξ0 |T∞

) = 2, thus contradicting the
assumption that k = 1.  !
Lemma 5.6. There are no instantons with ξ0 �= −ξ0 and µ = 0.

Proof. The lemma is a consequence of the Nahm transform of doubly-periodic
instantons defined in [13], more exactly of its holomorphic aspects; we anticipate
a bit here, but see the introduction to Part III for a summary of the construction.

Again for a contradiction, let A be an instanton with µ = 0 and asymptotic
state ±ξ0 not of order two. The corresponding Nahm transformed Higgs field �

has simple poles at ±ξ0; its residues have rank one. However, as we shall see
in the proof of theorem 0.4, the non-zero eigenvalues of the residues of � are
exactly ±µ, and more generally, the eigenvalues of � at ξ ∈ T̂ are the w such that
H0(Tw, E ⊗ Lξ ) �= 0; hence, the vanishing of µ implies that the eigenvalues of �
remain bounded when ξ goes to ξ0.

Now if ξ0 �= ξ0 then E remains isomorphic to some Lξ⊕L−ξ on each torus near
infinity. It is then clear (again, see the proof of theorem 0.4) that the eigenvalues of
� must go to infinity and we get a contradiction.  !

Global aspects, stability

More subtle obstructions come from stability properties. We investigate this for
the extension E of an instanton A with quadratic curvature decay. Notice that by
theorem 0.1, in the semisimple case, the curvature is only O(r−2), but

|ι{·}×CFA| + |ιT×{·}FA| = O
(
r−(2+ε)

); (39)

in the nilpotent case, we have

|FA| = O
(
r−2(ln r)−2); (40)

the point here is that these two controlling factors are in L1, whence FA itself is
not L1: this will enable us to define a degree.

The degree of a saturated subsheaf L of E with respect to the Euclidean Kähler
form ω is [21, lemma 3.2]

2π deg L = i
∫

tr(πFA) ∧ ω−
∫
|∂π|2 (41)

where π is orthogonal projection on L; from (39) and (40), this can be −∞ or
a real number; in the last case, ∂π is in L2: this condition must be analyzed more
precisely.

Again, we now restrict to the semisimple case (see remark 5.10 for the nilpotent
case), so that E|T∞ = Lξ0 ⊕ L−ξ0 , with weights −α and α, and behaviour (34). In
this case, we have near infinity

E|Tw = Lξ(w) ⊕ L−ξ(w). (42)
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Lemma 5.7. Suppose α �= 0, then the degree of a subsheaf L of E is finite if and
only if

1. L|T∞ is flat; in particular, if Lξ0 �= L−ξ0 , this means that L ⊂ L±ξ0 ;
2. if L|T∞ ⊂ F = Lξ0 , then L|Tw ⊂ Lξ(w) up to first order near infinity.

Now suppose α = 0, then the degree of a subsheaf L of E is finite if and only if
L|Tw ⊂ L±ξ(w) up to first order near infinity.

Remark 5.8. The first order condition can be seen as a reminiscence of the approx-
imating Higgs bundle at infinity; indeed the Higgs field has eigenspaces L±ξ(w)
and for Higgs bundle stability, one looks only at subsheaves stable under the action
of the Higgs field.

Proof. We analyze the situation locally near infinity; in the decomposition (42),
the metric is approximately (

r−2α 0
0 r2α

)
,

and we will simplify the problem by using this metric to make the calculations (the
correction term can be easily bounded); at a point on T∞ where L is a subbundle,
we suppose for example that L is not contained in L−ξ0 ; choose a local flat section
σ for Lξ0 , and note σ t the dual flat section of L−ξ0 ; extend σ near T∞, keeping it
parallel on Tw (this is possible with our approximation for the metric); locally, L is
generated by s = σ + fσ t , where f is holomorphic, and an orthogonal section is
given by t = r2ασ − f σ tr−2α, and

∂T t = −(∂T f )σ tr−2α,

from which we deduce

π(∂T t) = − ∂T f

r−2α + | f |2r2α s,

and finally, since our choice of t satisfies |s| = |t|, and f is holomorphic,

|∂Tπ| = |dT f |
r−2α + | f |2r2α ;

in order for ∂Tπ to be in L2, it is necessary that dT f = 0 on T∞, and therefore L
is constant.

Now restrict to the case of nontrivial decomposition Lξ0⊕L−ξ0 (the other cases
are similar); therefore we may suppose that f = 0 on T∞; if the first order term of
dT f does not vanish, then

|∂Tπ| ∼ r−1+2α

this still is not in L2 if α ≥ 0 (but it is in L2 if α < 0, which corresponds to the
case L|T∞ ⊂ L−ξ0 ); this means that we need dT f to vanish up to first order.

Concerning ∂Cπ, it is easy to verify that the L2-condition is always satisfied.
 !
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Recall that

FL = πFAπ + ∂π ∧ ∂π. (43)

When the degree is finite, that is when ∂π is L2, the restriction of ω to C does not
contribute: indeed, dw ∧ dw = ∂∂|w|2, and this leads to∫

r≤R
FL ∧ dw ∧ dw =

∫
r=R

wdw ∧ FL

but using (39) and (43), we see that this goes to zero as R goes to infinity. Then we
can rewrite the degree (denoting ∂C the ∂ operator in the C direction)

2π deg L = i
∫

πFA ∧ ωT −
∫
|∂Cπ|2, (44)

and this in turn is easily interpreted [2, (4.1)] as a “parabolic degree”:

deg L =
{

c1(L)[t] + α〈[ωT ], [t]〉 if LT∞ ⊂ L−ξ0 ,

c1(L)[t] − α〈[ωT ], [t]〉 if LT∞ ⊂ Lξ0,
(45)

where [t] is the fundamental class of T and ωT the given Kähler form on T ; of
course this is not a degree in the usual sense on T ×P1, since we use the non ample
class [t].

Define α-stability of E as the fact that any subsheaf satisfying the condition of
lemma 5.7 has negative degree (we shall forget the α when there is no ambiguity);
standard arguments give us

Proposition 5.9. If A is an instanton with quadratic curvature decay, then the
holomorphic extension E is α-stable.  !
Remark 5.10. In the nilpotent case, the proposition remains true; here α = 0, and,
following the proof of lemma 5.7, the degree is finite for all subsheaves with flat
restriction to T∞.

Remark 5.11. It is important to note that the stability condition just defined is
not an empty one. Indeed, α-unstable bundles E → T × P1 can be obtained as
extensions in the following way:

0 → p∗1 Lξ0 ⊗ p∗2OP1(b)→ E → p∗1 L−ξ0 ⊗ p∗2OP1(−b)⊗ Ik → 0

where b > 0 and Ik is the ideal sheaf of k > 0 points in T ×P1, and we assume that
none of these points are in T∞. Every sheaf E so obtained is locally-free, since the
sheaf on the LHS is locally-free and the one on the RHS is torsion-free. Clearly,
E has trivial determinant, instanton number k and asymptotic states ±ξ0.

To finish the proof of theorem 0.2, it remains to prove the following proposition.

Proposition 5.12. Every α-stable, holomorphic S$2-bundle E over T × P1 re-
stricting to Lξ0 ⊕ L−ξ0 on T∞ can be obtained as the holomorphic extension of an
instanton on T ×C with asymptotic states ±ξ0, and whose monodromy around the
torus at infinity has eigenvalues exp(±2πiα).
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Proof. We will give only the idea to prove the proposition, but we will not give the
proof, because it essentially follows well known arguments.

The idea consists in constructing a Hermitian-Einstein metric on E|T×C (so that
the Chern connection is anti-self-dual); for this, one has first to build a metric h0 on
E which gives asymptotically at infinity an instanton: this is possible because α and
the behaviour of E near infinity (see (34)) give all the parameters at infinity of the
instanton; then one wants to deform h0 to a solution h of the Hermitian-Einstein
equation, mutually bounded with h0; Simpson’s method by exhaustion [21] cannot
be used, because T ×C has infinite volume; fortunately, the method in [3] of direct
minimization of Donaldson’s functional in suitable functional spaces can handle
this kind of situation, provided that some precise analysis at infinity is developed;
this is precisely done in the next section for the study of the moduli space.  !
Remark 5.13. There is probably another possible proof, which requires some deli-
cate algebraic geometry that we will not discuss here: it consists in reducing to
the above mentioned theorem of Simpson throw the Nahm transform of instan-
tons. Recall that our instantons are in correspondence with Higgs bundles with
singularities on the dual torus T̂ , with a harmonic metric. Actually, the correspon-
dence has a purely holomorphic interpretation, and this is an occurrence of the
so-called Fourier-Mukai transform. It is known [8] that the Fourier-Mukai trans-
form on abelian surfaces preserves stability in the case c1 = 0, so one may hope
to prove a similar statement in our case (we also have c1 = 0, since we consider
S$2-bundles); if this is true, an α-stable bundle on T ×P1 will transform into a sta-
ble parabolic Higgs bundle on T̂ ; then one can apply Simpson’s theorem [22] to
construct a harmonic metric, whose inverse Nahm transform provides an instanton
with quadratic curvature decay, and by theorem 0.1 this instanton has exactly the
desired behaviour at infinity.

6. Moduli spaces

We now proceed to the differential geometric construction of the moduli space.
The L2 metric will then provide a hyperkähler structure on it.

We will restrict to the semisimple case; this choice simplifies the construction,
because theorem 0.1 says that it is enough to look at functional spaces with weights
which are powers of r; the analysis in the nilpotent case is possible, as in [3], but
requires functional spaces with logarithmic weights.

Recall the model connection on the bundle E, trivialized near infinity:

A0 = d + i

(
λ1 0
0 −λ1

)
dx + i

(
λ2 0
0 −λ2

)
dy

+ i

(
µ1 cos θ − µ2 sin θ 0

0 −µ1 cos θ + µ2 sin θ

)
dx

r

+ i

(
µ1 sin θ + µ2 cos θ 0

0 −µ1 sin θ − µ2 cos θ

)
dy

r
+

+ i

(
α 0
0 −α

)
dθ.
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Note that in order to get L2 deformations, we cannot move the parameters λ, µ
and α; in view of theorem 0.1, it is natural to consider connections A0 + a, such
that

|a| = O(r−(1+δ)), |∇A0 a| = O(r−(2+δ));
actually, this C1 space is not good for analysis, and we have the choice to substitute
either a Hölder space C1,η or a Sobolev space L1,p; we make the last choice, for p
big enough, and this leads to the technical definitions

�1
δ =

{
a ∈ �1(su(E)), a ∈ L p

1−2/p+δ,∇A0 a ∈ L p
2−2/p+δ

}
A = A0 +�1

δ

G = {
g ∈ SU(E),∇A0 gg−1 ∈ �1

δ

}
F = {

F ∈ �2+(su(E)), F ∈ L p
2−2/p+δ

}
.

The Lie algebra of G is

T1G =
{
u ∈ su(E),∇A0 u ∈ �1

δ

}
.

Note that for a ∈ �1
δ , lemma 2.1 implies that actually a⊥ ∈ L p

2−2/p+δ, so that
this Sobolev space is the same as the one considered is part I. Also, the Sobolev
embedding (15) implies�1

δ ⊂ C0
δ , and an important property is that the embedding

�1
δ ⊂ C0

δ′ is compact if δ′ < δ; gauge transformations g ∈ G can be continuously
extended over T∞, so that

g|T∞ =
(

u 0
0 u−1

)
,

where u ∈ S1 is fixed. Also, G acts smoothly on A and the curvature is a smooth
map fromA to F .

Remark that there is no reducible connection in A, since a reduction would
decompose the bundle E as L ⊕ L−1, with L topologically trivial on the torus at
infinity; but then we would get c2(E) = 0.

Now we need the following proposition; the proof is given at the end of the
section.

Proposition 6.1. For k > 0 and A ∈ A, we have:

1. the Laplacian �A : T1G → L p
2−2/p+δ is an isomorphism; therefore there is

a slice at A to the action of G onA, given by {A + a, d∗Aa = 0};
2. if A is an instanton, then the map d+A ⊕ d∗A : �1

δ → L p
2−2/p+δ is Fredholm

surjective; the kernel coincide with the L2-kernel.

Note that in the first statement of the proposition, it was crucial to allow gauge
transformations to take non trivial values on T∞, otherwise one cannot obtain the
slice d∗Aa = 0.
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Define the moduli spaceM as the space of instantons A ∈ Amodulo the gauge
group G. As is well-known, F+

A is a hyperkähler moment map for the action of G
on A with respect to the three complex structures on T × C:

I1(z1, z2, w1, w2) = (−z2, z1,−w2, w1)

I2(z1, z2, w1, w2) = (−w1, w2, z1,−z2) (46)

I3(z1, z2, w1, w2) = (−w2,−w1, z2, z1)

where z = z1 + iz2 and w = w1 + iw2. With the help of the previous proposition,
standard theory now gives us:

Proposition 6.2. The moduli space M is a smooth hyperkähler manifold; the
tangent space at [A] is isomorphic to the L2-kernel of d+A⊕d∗A acting on�1(su(E)).
It has dimension 8k − 4.

Proof of proposition 6.1. First, we have to understand the behaviour of the Lapla-
cian �A acting on sections of End(E). We want to prove that it is Fredholm.
This property is not changed by a perturbation in �1

δ (this adds to �A a compact
operator), and we can therefore restrict to the case when A = A0 on r ≥ R. On
this domain r ≥ R, the Laplacian preserves the decomposition u� ⊕ u⊥.

The case of u⊥ is easier: since we have seen that ‖∇2
A0

u‖L p
2−2/p+δ

controls

‖u‖L p
2−2/p+δ

, it follows that A0 − �, which is O(r−1), is small if R is big enough;

therefore lemma 2.3 proves that ∇A is an isomorphism on r ≥ R for the Neumann
boundary condition (the same is true for Dirichlet boundary condition).

The case of u� is more complicated, but can be reduced to standard theory:
recall that u� is torus invariant, so that the operator now reduces to an operator
on R2; the action of �� on off-diagonal coefficients (which exist only when � is
trivial) is by

1

r2

(− (r∂r)
2 + (

∂2
θ ± 2iα

)2 + |µ|2),
and the action on diagonal coefficients is the standard Laplacian on R2 (that we
obtain by making α = µ = 0 in the previous formula); now r2�A becomes the
translation invariant Laplacian

−∂2
t −

(
∂2
θ ± 2iα

)2 + |µ|2

on the conformal cylinderR+ × S1, so that standard theory [16] now applies: such
operator (say, with Dirichlet boundary condition on r = R) is Fredholm for all
weights, except a discrete set of critical weights δ (they are characterized by the
existence at infinity of solutions of type exp(−δt)tk); moreover, as the operator
is self-adjoint, its index is 0 at the weight 0 if it is noncritical, or −1 for small
positive weights if 0 is critical; in our situation, u ∈ T1G corresponds to the decay
u ∈ L p

δ−2/p, and this becomes exactly the weight δ on the cylinder; there are two
cases: if α or µ is non zero (off-diagonal coefficients), then the weight 0 is not
critical, and the operator remains Fredholm for nearby δ, with index 0: actually is
is an isomorphism, because it easy to verify that is has no kernel; if α and µ are
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zero, then the Laplacian has index −1 for small weights δ > 0, so that it becomes
an isomorphism if we add the possibility to consider solutions u of �u = v with u
having some nonzero limit at infinity (and this is exactly our definition of G). All
these results can also be checked by direct calculation, after decomposing u into
Fourier series along each circle.

Finally, we deduce from these considerations that the Laplacian �A0 is an
isomorphism T1G → L p

2−2/p+δ for the Dirichlet boundary conditions on r ≥ R,
and gluing this isomorphism with a parametrix on the compact part, it follows that
�A is Fredholm on T × R2.

In order to calculate the index, if � is nontrivial, we have seen that the index is
not changed if we modify A so that A = � near infinity; the index of a self-adjoint
operator on a compact manifold is zero; by an excision principle, this has the
consequence that the index comes only from the contribution at infinity; therefore,
it is equal to the index of the operator �� acting on the trivial bundle su(C2); now
this operator is completely explicit: on the u⊥ component, it is an isomorphism, and
on the u� component (that is, diagonal, torus invariant, matrices), it is simply the
standard Laplacian in R2, and its index between the spaces that we have defined
is again 0, with 1-dimensional kernel and cokernel equal to constant diagonal
matrices.

If � is trivial, we cannot reduce to the operator of flat space, but we can reduce
to �A′0 , with A′0 the diagonal connection

A′0 = χ(r)A0 + (1 − χ(r))d, (47)

where χ(r) is a cutoff function which equals 1 for r > R and 0 for r < R−1; then,
as above, it is not difficult to prove that �′

A0
is an isomorphism on non-diagonal

components (and the operator on the diagonal components is the same as above).
Finally, the operator �A has no kernel in T1G, since an element in the kernel

would decompose A, which is impossible. This finishes the proof of the first part
of the proposition.

If A ∈ A is an instanton, observe that the operator d+A d∗A acting on self-dual
2-forms, by the Weitzenböck formula, equals the Laplacian∇∗

A∇A; this means that
the above results remain true for d+A d∗A, and we deduce that the operator

d+A ⊕ d∗A : �1
δ −→ L p

2−2/p+δ

is surjective; its kernel equals the kernel of the Laplacian 2(d+A )∗d+A +dA d∗A; again
one can prove (in particular using lemma 2.10) that this operator is Fredholm (for
the weight δ); remark that the L2 condition corresponds to a critical weight (on
diagonal components, where the operator is asymptotically the standard Laplacian
of R2), when �1

δ corresponds to a slightly greater weight; nevertheless, it remains
true that the L2-kernel equals the kernel for slightly greater weights (the possible
new solutions in the kernel at the critical weight are never L2).  !
Proof of proposition 6.2. It remains only to calculate the dimension, which, by
proposition 6.1, is the index of the operator d+A ⊕ d∗A. If the limit flat connection �
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is non trivial, this is simple to calculate by comparison to the same operator for �:
actually, by the excision principle,

ind
(
d+A ⊕ d∗A

) = ind
(
d+� ⊕ d∗�

)+ 8k;

now for the flat connection �, the operator d+� ⊕ d∗� has no kernel (by the Weitzen-
böck formula), but its cokernel equals the cokernel of the operator d∗�d� + d+� d∗�
acting on �0(su(E)) ⊕ �2+(su(E)) = R4 ⊗ su(E); we have seen above that the
cokernel of this operator on su(E) is the L2-orthogonal of constant, diagonal
matrices. This proves the formula for the index.

If � is trivial, the same result holds, but one must compare with the operator
d+A′0 ⊕ d∗A′0 defined in (47).  !

Fibration structure. It was shown in [14] that the moduli space of rank two
holomorphic vector bundles over T × P1 with trivial determinant and instanton
number k contains an open setM∗

k (corresponding to the so-called regular bundles)
which has the structure of a fibration:

T · · ·M∗
k → !k.

The fibres are complex tori of complex dimension 2k − 1, and the base can be
interpreted as the set of rational mapsP1 → P

1 of degree k, so that dim!k = 2k+1.
Fixing the splitting of E at T∞, i.e. fixing the asymptotic state of the corres-

ponding instanton connection A, amounts to fixing the value of these rational maps
at ∞ ∈ P1. Moreover, as we will see in the next section, fixing the residue of A
amounts to fixing the first derivative at ∞ ∈ P1.

Therefore, according to theorem 0.2, we conclude thatM(k,±ξ0,µ), the moduli
space of SU2 doubly-periodic instantons with fixed instanton number k, asymptotic
states ±ξ0 and residue µ with the complex structure induced from the complex
structure I1 on T × R2, is a fibration over !(k,±ξ0,µ), the space of rational maps
f : P1 → P

1 with fixed f(w = ∞) and f ′(w = ∞), with fibres given complex
tori of dimension 2k − 1.

Moreover, it is possible to show that the such fibres are lagrangian with respect to
complex symplectic structure onM(k,±ξ0,µ) induced from the complex symplectic
structureωI2 + I1ωI3 on T ×C (see [15] for the proof of a similar result for elliptic
K3 and abelian surfaces).

An example: k = 1. We shall now give an explicit model for the moduli space of
doubly-periodic instantons with k = 1; clearly, we also assume that ξ0 �= −ξ0 and
µ �= 0.

Our approach is based on the observations made above, that is, we shall study
the set of rational maps f : P1 → P

1 of degree 1; in a neighbourhood of ∞ ∈ P1,
such maps can be written as follows:

f(w) = w+ b

cw+ d
, where w = 0 corresponds to ∞ ∈ P1.
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As we discussed above, we must still fix f(0) and f ′(0). This means that b/d and
(d − cb)/d2 �= 0 are fixed. Thus, !(1,±ξ0,µ) = C, so thatM(k,±ξ0,µ) is an elliptic
fibration over C.

Actually, one can say more: there is an action of T × C on the moduli space
(by translations), so the moduli space is exactly T × C, and the metric is flat.

III. Nahm transform

We now shift our attention to the Nahm transform of doubly-periodic instanton
connections [13]. Note that this transform was defined in [13] only for instantons
such that the restriction of the underlying holomorphic bundle to a generic torus is
Lξ ⊕ L−ξ (this is what we called the semisimple case). In this part, we shall restrict
to this case.

Throughout this part, we assume familiarity with [13], but let us quickly recall
how Nahm transform is defined. Given an instanton A on a SU2-bundle E on T×R2,
one may twist A by a flat connection on T ; these twists Aξ are parameterized by
ξ ∈ T̂ . Now there is a coupled Dirac operator

DAξ : �(S+ ⊗ E) −→ �(S− ⊗ E)

and one can show that the bundle of L2-cokernels of DAξ is a rank k vector bundle

V over T̂ \ {±ξ0}; there is a natural connection B on V obtained by projection,
and one can define an endomorphism� of V by taking an element β ∈ ker D∗

Aξ
to

the projection of wβ on this kernel; the pair (B,�) satisfies Hitchin’s equations on
T̂ \ {±ξ0}.

From the holomorphic point of view, the picture is very clear: the spinor
bundle S is identified �0,∗, so that the L2-kernel of D∗

Aξ
is exactly the L2-kernel

of ∂Aξ ⊕ ∂
∗
Aξ

on �0,1 ⊗ E. It can be proven that this L2-kernel coincides with

H1(T × P1, E ⊗ Lξ ), where E is the holomorphic extension of A on T × P1; this
provides a holomorphic extension of V on the whole T̂ ; this extension has degree
−2, as can be checked by Riemann-Roch theorem for families. Moreover, there is
a natural interpretation for the Higgs field: one has the identification

Vξ = H1(T × P1, E ⊗ Lξ

) = ⊕
w∈C

H0(Tw, E ⊗ Lξ ) (48)

where of course there is only a finite number of points w ∈ C (actually k, counted
with multiplicity) such that H0(Tw, E ⊗ Lξ ) �= 0. Now the Higgs field � is
multiplication by w on H0(Tw, E ⊗ Lξ ). From this description, one can see that
the Higgs field has a simple pole at ±ξ0 with semisimple residue, and the residue
has only one nonzero eigenvalue if ξ0 �= −ξ0, two otherwise.

We first study how the new asymptotic parameters of doubly-periodic instantons
introduced in Part II behave under Nahm Transform. This will prepare the way for
the proof of theorem 0.5, our last result.
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7. Asymptotic parameters

Following the general philosophy that the Nahm Transform is a sort of nonlinear
Fourier Transform, it is reasonable to expect the asymptotic behaviour of the
instanton to be translated into further singularity data for the Higgs field.

Recall that E|T∞ = Lξ0 ⊕ L−ξ0 . From (48) we deduce a holomorphic splitting
of V on a small neighbourhood of ±ξ0:

Vξ = Bξ ⊕ Rξ (49)

where Bξ corresponds to the points in C that remain bounded as ξ → ξ0 and Rξ

corresponds to the points that go off to infinity. Clearly, Bξ approaches the kernel
of Res±ξ0� as ξ → ξ0, while Rξ approaches the eigenspace of the nontrivial
eigenvalues of the residue. This is the decomposition used in theorem 0.4, which
we will now prove.

We first prove the statement concerning the residues. The argument to establish
the statement concerning the limiting holonomy is much more technical, and will
involve a series of lemmas.

Residues. Let ρ = r−1 and let w′ = w−1 = ρe−iθ be a coordinate near ∞ ∈ P1.
Clearly, the holomorphic structure on the restriction E|Tw′ is given by the (0, 1)-part
of the A|Tw′ . Rewriting equation (34) in terms of w′, we obtain:

∂A|Tw′ = ∂ +
(
λ 0
0 −λ

)
dz +

(
µ 0
0 −µ

)
w′dz + O(ρ2)

so that:
d

dw′
(
∂A|Tw′

)∣∣∣∣
w′=0

=
(
µ 0
0 −µ

)
.

In other words, the residue µ can be regarded as the infinitesimal variation of the
holomorphic bundle E|Tw at w = ∞.

Since for every w′ sufficiently close to ∞ ∈ P1 we can assume that
E|Tw′ = Lξ(w′) ⊕ L−ξ(w′), the above expression implies that:

d

dw′ ξ(w
′)
∣∣∣∣
w′=0

= µ.

The eigenvalue of� going to infinity is w(ξ) = 1/w′(ξ) by (48); the first statement
of theorem 0.4 follows.  !

Limiting holonomy. Let us now look at the coupled Dirac Laplacian �Aξ acting
on sections of S+ ⊗ E; since A is an instanton, we have that D∗

Aξ
DAξ = ∇∗

Aξ
∇Aξ ,

i. e. the Dirac Laplacian coincides with the trace Laplacian. This Laplacian is
invertible in L2 for ξ �= ±ξ0 (see [13]; this is also a consequence of the lemmas
below), and we note its inverse by G Aξ . Such inverse is useful to produce harmonic
representative of elements of H1(T ×P1, E ⊗ Lξ ). Indeed, if we have a compactly
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supported (0,1)-formβ with values in E such that ∂Aξ β = 0, then the L2-harmonic
representative of the class [β] is given by

β − ∂Aξ G Aξ ∂
∗
Aξ
β.

We now want to understand the inverse G Aξ when ξ approaches the asymptotic
states±ξ0. For simplicity, assume that ξ0 = 0 in the next three lemmas; the general
case can be obtained by substituting ξ − ξ0 for ξ in the expressions below.

We know from theorem 0.1, where λ = ξ:

Aξ = (A0)ξ + a with |a| = O(r−1−ε)

and

(A0)ξ = d + i

(
α 0
0 −α

)
dθ + i

(
λ1dx + λ2dy 0

0 −λ1dx − λ2dy

)
+

i

r

(
µ1dx + µ2dy 0

0 −µ1dx − µ2dy

)
.

We assume also that either µ1 or µ2 is nonzero; however, the proofs below will
also work if µ1 = µ2 = 0, but α �= 0.

Lemma 7.1. Let σ is a section of E → T ×C; if λ is sufficiently small and |w| is
large enough, then: ∫

Tw
|∇(A0)ξ σ |2 ≥

∣∣∣λ+ µ

w

∣∣∣2
∫

Tw
|σ |2.

Proof. Consider the Fourier expansion σ = !σnmei(nx+my). Then on the torus Tw,
we have:∫

Tw
|∇σ |2 =

∫
Tw

∣∣∣∣(∂x + iλ1 + i
µ1

|w|
)
σ

∣∣∣∣2

+
∣∣∣∣(∂y + iλ2 + i

µ2

|w|
)
σ

∣∣∣∣2

=
∑∣∣∣∣n + im + λ+ µ

|w|
∣∣∣∣2

|σnm |2.

However, under the hypothesis above,∣∣∣∣n + im + λ+ µ

|w|
∣∣∣∣ ≥ ∣∣∣λ+ µ

w

∣∣∣
for all n,m, which proves the lemma.  !
Lemma 7.2. Let σ is a section of E → T × C; if λ is sufficiently small and R is
large enough, then: ∫

r≥R
|∇(A0)ξ σ |2 ≥ c|µ|2

∫
r≥R

|σ |2
r2 . (50)
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Proof. First remark that if∣∣∣∣λwµ
∣∣∣∣ ≥ 2 or

∣∣∣∣λwµ
∣∣∣∣ ≤ 1

2
, (51)

then we get ∣∣∣λ+ µ

w

∣∣∣ = |µ|
|w|

∣∣∣∣1 + λw

µ

∣∣∣∣ ≥ 1

2

|µ|
|w| ;

using the previous lemma, we deduce that the wanted estimate holds over any torus
Tw such that |w| = r satisfies (51), that is, the estimate of the lemma holds if we
restrict outside the region

1

2

|µ|
|λ| ≤ r ≤ 2

|µ|
|λ| .

Actually, we claim that if the estimate of the lemma is satisfied outside this region,
then it must be satisfied everywhere. Indeed, one has the inequality for any function
f : R2 → R, and a constant c independent of ρ,∫

ρ≤r≤2ρ

f 2

r2 ≤ c ·
(∫

2ρ≤r≤4ρ

f 2

r2 +
∫
ρ≤r≤4ρ

|∂r f |2
)

(52)

and the lemma follows by applying (52) to f = |σ | and ρ = |λ/µ|. The proof of
(52) is left to the reader.  !

Note that an estimate similar to (50) remains valid if µ = 0, but α �= 0. In fact,
the proof is even simpler, since one has the estimate:∫

r=R
|∇(A0)ξ σ |2 ≥

|α|2
r2

∫
r≥R

|σ |2

from which one immediately obtains:∫
r≥R

|∇(A0)ξ σ |2 ≥ |α|2
∫

r≥R

|σ |2
r2 . (53)

Lemma 7.3. The solution of the Poisson equation �Aξ u = v satisfies:

‖r−1u‖L2 + ‖∇Aξ u‖L2 ≤ c‖rv‖L2

and |ξ|2‖u‖L2 + |ξ| · ‖∇Aξ u‖L2 ≤ c‖rv‖L2 .

Proof. First, note that:∫
|∇Aξ σ |2 ≥ c

(
|ξ|2

∫
|σ |2 +

∫ |σ |2
r2

)
. (54)

Near infinity, this a consequence of lemma 7.2 and of the fact that A = A0 +
O(r−1−ε). Globally, the estimate follows from the Poincaré-type inequality:∫

r≤R
|σ |2 ≤ c

(∫
r≤R

|∇σ |2 +
∫

R/2≤r≤R
|σ |2

)
.
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To prove the lemma itself, we have that:

‖∇Aξ u‖2
L2 =

∫
〈�Aξ u, u〉 =

∫
〈v, u〉 ≤

≤ ‖rv‖L2‖r−1u‖L2 ≤ c‖rv‖L2‖∇Aξ u‖L2

by (54). Thus, we conclude that ‖∇Aξ u‖L2 ≤ c‖rv‖L2 , and again by (54) we have
‖r−1u‖L2 ≤ c‖rv‖L2 . The second estimate is obtained in a similar way.  !

Proof of theorem 0.4. Let us first analyze the behaviour of the harmonic metric
on the local sub-bundle B ↪→ V with fibers given by Bξ . Let β be a section of B.
Then, for each ξ �= ξ0, we know from (48) that β(ξ) can be represented as a section
of �0,1 E ⊗ Lξ supported on r ≤ R for some R sufficiently large. Furthermore, its
harmonic representative in H1(T ×C, E⊗ Lξ ) is given by β(ξ)−∂Aξ G Aξ ∂

∗
Aξ
β(ξ).

By lemma 7.3, we have:∥∥∂Aξ G Aξ ∂
∗
Aξ
β(ξ)

∥∥
L2 ≤ c

∥∥r∂
∗
Aβ(ξ)

∥∥
L2 ≤ cR

∥∥∂∗Aβ(ξ)∥∥L2

which remains bounded even as ξ → ξ0. This means that the limit

β(ξ0) = lim
ξ→ξ0

β(ξ)

has a square-integrable harmonic representative, so that the harmonic metric re-
stricted to the sub-bundle B extends across ±ξ0.

Now let R ↪→ V be a local sub-bundle with fibers given by Rξ ; remind that near
infinity, we have E|Tw = Lξ(w)⊕ L−ξ(w); take a section β(ξ) of Rξ coming by (48)
from sections of E|Tw(ξ) ⊗ Lξ converging to a section of E|T∞ ⊗ Lξ0 = L2ξ0 ⊕ C.
Here we have to be more specific: say that a section σ ∈ H0(Tw(ξ), E ⊗ Lξ )

corresponds to the class in H1(T × P1, E ⊗ Lξ ) represented by the (0,1)-current

σ(z)δw(ξ)(w)dw, (55)

where δw(ξ) is the Dirac function at the point w(ξ). From this description, we see
that, for each ξ �= ξ0, the representative β(ξ) can be chosen with compact support
near r = |w(ξ)|, and bounded in L1,2. Now lemma 7.3 gives, as above,∥∥∂Aξ G Aξ ∂

∗
Aξ
β(ξ)

∥∥
L2 ≤ c

∥∥r∂
∗
Aβ(ξ)

∥∥
L2 ≤ c

|ξ − ξ0|
∥∥∂∗Aβ(ξ)∥∥L2 .

This means that the norm of the harmonic representative of β(ξ) is bounded by
|ξ − ξ0|−1.

This result must be interpreted, since (55) actually does not extend to w = ∞,
so that our [β(ξ)] is not a section of R which extends over the puncture ξ0. There
are two changes to make; first, note that a (0,1)-form smooth on P1 near infinity is
dw/w2, so we see that we must consider β(ξ)/w(ξ)2 instead of β(ξ). The second
change to be made is that we want β(ξ) holomorphic in ξ . This involves a constraint
on the choice of σ : from the growth of the holomorphic sections of E at infinity
studied in Sect. 5, it follows that |σ | ∼ |w(ξ)|α, and we can finally conclude that
the norm of a holomorphic section of R is bounded by |ξ − ξ0|1−α.
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From these results, it follows that the harmonic metric of the Higgs bundle V
extends on B, and is bounded by |ξ ± ξ0|1±α on R. This gives a bound 1 ± α for
the weights of the parabolic structure of V . However, the “parabolic degree” of the
bundle must be zero, and V has degree −2, so that the weights must be exactly
equal to 1 ± α.  !

Reformulating the Nahm transform theorem. Together with [12,13], theorem 0.4
allows us to state a complete version of the Nahm transform theorem, including
the new asymptotic parameters defined in Part II:

Theorem 7.4. The Nahm transform is a correspondence between the following
objects:

• SU(2) doubly-periodic instantons with instanton number k > 0 and asymptotic
parameters (±ξ0, α,µ);

• rank k logarithmic Higgs bundles with harmonic metric over T̂ with singularity
behaviour as described in theorem 0.4.

Remark 7.5. At the algebraic level, the behaviour of the harmonic metric in theo-
rem 0.4 means, by Simpson’s correspondence [22], that the holomorphic bundle
(V,�) is a stable parabolic Higgs bundle on T̂ ; here there is a slight problem
because all the weights should belong to an interval of length 1, so we need to be
more precise.

Remind the decomposition (49) of the bundle V near ±ξ0, and define a modi-
fication W of V near the ±ξ0 by

W = B ⊕ R ⊗O(±ξ0),

and W is isomorphic to V outside the punctures; the degree of W is now zero, and
the harmonic metric behaves like |ξ ± ξ0|±α on R(±ξ0). This means that W has
a parabolic structure at±ξ0, with weights (0,±α) at±ξ0 and±α of multiplicity 1,
and the existence of the harmonic metric is now equivalent to the parabolic stability
of W .

8. The hyperkähler property

Our final task is to prove that the Nahm transform of doubly-periodic instantons
define a hyperkähler isometry betweenM, the moduli space of doubly-periodic
instanton constructed in Sect. 6, and M̂, the moduli space of meromorphic Higgs
pairs satisfying the conditions of theorem 7.4. To do that, we shall follow the
following strategy. First, we compute the derivative of the map:

N : M −→ M̂
A -→ (B,�)

defined by the Nahm transform, verifying that it is indeed well-defined. We then
show that D[A]N preserves the three complex structures in each space. The last
step is to show that D[A]N preserve the metrics in each space.
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Computing the derivative. Recall the definition of the tangent space T[A]M at
the gauge equivalence class of an instanton A can be characterized as follows:

T[A]M =
{

a ∈ L2(�1
su(E)) s.t.

(i) d∗Aa = 0

(ii) d+A a = 0

}
(56)

The 1-form a is regarded as a infinitesimal variation of the instanton connection A,
inducing a 1-parameter family of connections At = A+ta, which are anti-self-dual
up to first order.

Now let {'(ξ) j}kj=1 be an orthonormal base for coupled adjoint Dirac oper-
ator kerD∗

Aξ
. In order to compute the derivative D[A]N, we must understand the

infinitesimal change on harmonic spinors induced by the infinitesimal change on
the instanton. We are looking for negative spinors ϕ(ξ) j such that the 1-parameter
family 't(ξ)

j = '(ξ) j + t · ϕ(ξ) j satisfies D∗
(Aξ )t

't(ξ)
j = 0 up to first order. In

other words,

d

dt
D∗
(Aξ )t

't(ξ)
j
∣∣∣∣
t=0

= D∗
Aξ
ϕ(ξ) j + a •'(ξ) j = 0

where • means Clifford multiplication. Therefore, the infinitesimal variations on
harmonic spinors are given by:

ϕ(ξ) j = −DAξ G Aξ (a •'(ξ) j). (57)

Recall from [13] that the Nahm transformed Higgs pair is defined as follows:

B(ξ)i j = 〈'(ξ)i , d̂'(ξ) j〉 and �(ξ)i j = 〈'(ξ)i , w'(ξ) j 〉dξ (58)

where d̂ means differentiation with respect to ξ , the coordinate on the dual torus T̂ ,
and the inner products are taken in L2(E ⊗ S−). Thus, the infinitesimal change in
the Nahm transformed Higgs pair (B,�) is given by:

b(ξ)i j = d

dt

〈
't(ξ)

j , d̂'t(ξ)
j 〉∣∣∣∣

t=0
=

= 〈
G Aξ'(ξ)

i ,� • a •'(ξ) j 〉− 〈
� • a •'(ξ)i,G Aξ '(ξ)

j 〉 (59)

and

φ(ξ)i j = d

dt

〈
't(ξ)

j , w't(ξ)
j 〉∣∣∣∣

t=0
=

= 〈
G Aξ'(ξ)

i, dw • a •'(ξ) j 〉dξ (60)

where� = i
(
dξ1dz1+dξ2dz2

)
is the curvature of the Poincaré bundle over T × T̂ .
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The tangent space T[(B,�)]M̂ at the gauge equivalence class of a Higgs pair
(B,�), can described as follows (see for instance [10]):

T[(B,�)]M̂ =
 b ∈ L2(�1u(V ))

φ ∈ L2(�1,0gl(V ))
s.t.

(i) dBb + [�,φ∗] + [φ,�∗] = 0
(ii) ∂Bφ + [b0,1,�] = 0
(iii) d∗Bb + Re[�∗, φ] = 0.


(61)

Again, (b, φ) define a 1-parameter family of pairs (Bt = B + tb,�t = � + tφ)
which satisfy Hitchin’s equations up to first order.

Therefore, it is clear from (59) and (60) that the pair (b, φ) satisfies the linearized
Hitchin’s equations ((i) and (ii) in (61)).

We must only verify that (b, φ) are transversal to infinitesimal changes in (B,�)
arising from infinitesimal gauge transformations, i.e. must check equation (iii) in
(61). To do that, denote by B̃ and b̃ the (R2)∗-invariant 1-forms on T̂ × (R2)∗
obtained from (B,�) and (b, φ), respectively. Clearly, B̃ is anti-self-dual and

d∗Bb + Re[�∗, φ] = 0 ⇔ d∗
B̃

b̃ = 0

The following result completes our first step towards the proof of theorem 0.5

Lemma 8.1. If d∗Aa = 0, then d∗
B̃

b̃ = 0.

Proof. See proposition 3.1 in [4].

Remark 8.2. Using the ideas above, one can easily compute the derivative of the
inverse Nahm transform, thus showing that N : M → M̂ is a diffeomorphism.
From Nakajima [19], we know that the diffeomorphism type of the moduli of
Higgs bundles does not depend on the choice of the singularity data (residues
and parabolic structure). Therefore, we conclude the diffeomorphism type of the
moduli space of doubly-periodic instantons does not depend neither on the limiting
holonomy α nor on the residue µ. It would be interesting to determine whether the
diffeomorphism type ofM depends on the asymptotic states ±ξ0 (or equivalently,
whether the diffeomorphism type moduli of Higgs bundles depend on the position
of the singularities).

Commuting with the complex structures. Consider coordinates (ξ1, ξ2, ω1, ω2)

on (R4)∗, which are dual to (z1, z2, w1, w2). Each of the complex structures (46)
in R4 naturally induces a similar complex structures Î j on (R4)∗. Thus, we have
maps:

�1
R

4 I j→ �1
R

4 and �1(R4)∗
Î j→ �1(R4)∗.

The complex structures on M̂ can be then defined as follows. As above, let
b̃�1(R4)∗ be the (Z2 ×R2)∗-invariant 1-form obtained from (b, φ). Then Î j (b̃) is
also a (Z2 × R2)∗-invariant 1-form on (R4)∗, which can then be interpreted as an
element of (61). It is easy to see that these coincide with the complex structures
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originally defined by Hitchin in [10]. Therefore, we have to show that the following
diagram:

�1
R

4 ⊗ su2
//

D[A]N

��

I j

�1(R4)∗ ⊗ uk

��

Î j

�1
R

4 ⊗ su2
//

D[A]N
�1(R4)∗ ⊗ uk

(62)

commutes. The horizontal maps are defined as follows:

D[A]N(a) = b̃ = 〈
G Aξ'(ξ)

i , �̃ • a •'(ξ) j 〉− 〈
�̃ • a •'(ξ)i,G Aξ '(ξ)

j 〉 (63)

with �̃ = i
(
dξ1dz1 + dξ2dz2 + dω1dw1 + dω2dw2

)
.

Each I j induces an isomorphism l j : R4 → C
2 satisfying the following

commutative diagram:

�1
R

4 ⊗ su2
//

l j

��

I j

�(1,0)
C

2 ⊗ slk

��

·i

�1
R

4 ⊗ su2
//

l j
�(1,0)

C
2 ⊗ slk

(64)

where the map on the left hand side is multiplication by i = √−1. Of course,
a similar diagram holds for l̂ j : (R4)∗ → (C2)∗.

The key point is to note that each map:

D[A]NC = l̂ j ◦ D[A]N ◦ l−1
j : �(1,0)

C
2 → �(1,0)(C2)∗

D[A]NC(α) =
〈
G Aξ '(ξ)

i, �̃C • α •'(ξ) j 〉− 〈
�̃C • α •'(ξ)i,G Aξ '(ξ)

j 〉
is C-linear, where �̃C = l̂ j × l j (�̃). Therefore, we conclude:

Î j (D[A]N(a)) = l̂ j
−1 ◦ (·i) ◦ l̂ j ◦ D[A]N(a) = D[A]N ◦ l−1

j ◦ (·i) ◦ l j(a) =
= D[A]N(I j (a))

as desired.

The Nahm transform is an isometry. Again, this fact is actually a property of the
underlying 4-dimensional transform. The calculations of Braam and van Baal [4]
are quite precise and also apply to the present situation.

Recall that the metric on the instanton moduli space is given by the L2 norm
of the tangent vectors, that is:

g(a1, a2) =
∫

T×C
Tr(a1 ∧ ∗a2)

while the metric on the Higgs moduli space is given by

ĝ
(
(b1, φ1), (b2, φ2)

) = ∫
T̂

Tr
(
b∗1b2 + φ1φ

∗
2

)
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or, equivalently, in terms of the 4-dimensional 1-forms b̃1 and b̃2:

ĝ(b̃1, b̃2) =
∫ ∗

R2
Tr(b̃1 ∧ ∗b̃2)

where integration is now done only with respect to the two coordinates on (R4)∗
on which b̃1 and b̃1 depend.

Let (b, φ) = D[A]N(a); it is enough to show that:

ĝ
(
D[A]N(a), (b, φ)

) = g
(
a, D[A]N−1(b, φ)

)
This can be done exactly as proposition 3.2 of [4].

Alternatively, we can reduce the isometry property to a purely algebraic state-
ment as follows.

Fix the complex structure I1 on T 2 × R2. The instanton moduli space M
is then identified with the moduli space of α-stable holomorphic vector bundles
E → T ×P1 as a Kähler manifold. Moreover, its tangent space becomes identified
with H1(T ×P1,EndE). One can define a complex symplectic structure onM via
the bilinear pairing:

H1(T × P1,EndE)× H1(T × P1,EndE)
ω→ H2(T × P1,EndE) = C.

On the other hand, the moduli space of Higgs pairs M̂ becomes identified, as
a Kähler manifold, with the moduli space of stable parabolic Higgs bundles. The
tangent is then given by the hypercohomology H1 of the following complex of
sheaves:

ParEnd(V)
[·,φ]→ �1 ⊗ ParEnd(V)

where ParEnd(V) is the sheaf of parabolic endomorphism of the holomorphic
Higgs bundle V , see [3] for a detailed explanation. A complex symplectic structure
on M̂ can be defined via the bilinear pairing

H
1 × H1 ω̂→ H

2 = C.

In order to show that the Nahm transform is an isometry, it is enough to prove
that the holomorphic version of the Nahm transform (see [14]) preserves the bilinear
pairings above. This is an algebraic statement, which one can hope to prove using
spectral sequences. Indeed, as we mentioned before, the holomorphic version of the
Nahm transform of doubly-periodic instantons is an example of a Fourier-Mukai
transform, which usually preserves this type of pairings.
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