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Abstract. We consider the classical three-dimensional motion in a potential which is the
sum of n attracting or repelling Coulombic potentials. Assuming a non-collinear configu-
ration of the n centres, we find a universal behaviour for all energies E above a positive
threshold. Whereas for n = 1 there are no bounded orbits, and for n = 2 there is just one
closed orbit, for n ≥ 3 the bounded orbits form a Cantor set. We analyze the symbolic
dynamics and estimate Hausdorff dimension and topological entropy of this hyperbolic
set. Then we set up scattering theory, including symbolic dynamics of the scattering or-
bits and differential cross section estimates. The theory includes the n–centre problem of
celestial mechanics, and prepares for a geometric understanding of a class of restricted
n-body problems. To allow for applications in semiclassical molecular scattering, we in-
clude an additional smooth (electronic) potential which is arbitrary except its Coulombic
decay at infinity. Up to a (optimal) relative error of order 1/E, all estimates are independent
of that potential but only depend on the relative positions and strengths of the centres.
Finally we show that different, non-universal, phenomena occur for collinear configura-
tions.
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1. Introduction

The n-body problem of celestial mechanics is the problem of solving the Hamilton
equation for the Hamiltonian function

H : T∗M → R , H(�p1, . . . , �pn, �q1, . . . , �qn) :=
n∑

i=1

�p 2
i

2mi
+ v

∑
i 	=k

Zi Zk

|�qi − �qk|

on the phase space T∗M over the configuration space

M := {
(�q1, . . . , �qn) ∈ (R3)n | �qi 	= �qk for i 	= k

}
.

In celestial mechanics v = −1 and the Zi coincide with the positive masses mi > 0
(in units where the gravitational constant equals one). However in an electrostatical
context v = +1, the Zi are interpreted as charges and may be positive or negative.

Whereas the one-body problem corresponds to free motion and the two-body
problem was solved by Newton, the n ≥ 3-body problem is analytically non-
integrable.

If one of n+ 1 bodies is much faster than the others then one may approximate
its motion by considering the n–centre problem. There the Hamiltonian function
Ĥ : T∗M̂ → R on the phase space T∗M̂ over the configuration space

M̂ := R3 \ {�s1, . . . , �sn
}

of that body is given by

Ĥ(�p, �q) := 1
2 �p 2 + V(�q) with V(�q) := −

n∑
l=1

Zl

|�q − �sl| . (1.1)

The 2–body problem thus reduces after separation of the centre of mass motion to
the 1–centre problem, that is the Kepler problem.

Moreover, the 2–centre problem is integrable and has been solved by Jacobi
(see Appendix B). This solution is particularly relevant for calculating the motion
of artificial satellites, since the gravitational field of the earth can be approximated
by the one of two centres (analytically continued, since the earth is oblate and not
prolate). This has been used by Vinti in [Vi]. See [GKM] for an application.

However, like the n–body problem, the n–centre problem for n ≥ 3 is analyti-
cally non-integrable, see Bolotin [Bo].

The analogy between the Coulombic and the gravitational interaction is not
perfect, since in electrostatics one has repulsive as well as attractive forces. This
allows us to approximate molecules by static configurations of nuclei surrounded
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by an electronic cloud of opposite charge. Thus the electronic potential V of the
molecule has the form

V(�q) =
n∑

l=1

−Zl

|�q − �sl | + W(�q), (1.2)

�sl ∈ R3 being the position, and −Zl 	= 0 the charge of the lth nucleus, multiplied
by the test charge. The smooth electronic potential W : R3 → R may partially
shield the nucleonic charge. We model this by assuming the existence of a net
asymptotic charge Z∞ ∈ R with

V(�q) = −Z∞
|�q| +O(|�q|−1−ε) (�q →∞). (1.3)

Thus we consider the generalized n–centre problem (1.1) with these Coulombic
potentials V .

The understanding of the motion in an n–centre potential, n ≥ 3, is very limited
if one considers negative energies E. There one expects a complicated mixture of
ergodic components and motion on KAM tori.

However, by combining known techniques of celestial mechanics, we show in
this article that the high energy motion allows for a more or less complete qualitative
and even quantitative description.

Up to an error of relative order 1/E, the quantitative aspects treated here do
not depend on the precise form of the smooth potential W but only on the charges
Zl and positions �sl of the nuclei.

The qualitative structures do not even depend on these data but only on the
number n of nuclei. Thus the case n = 1 of an atom resembles the Rutherford case,
whereas the n = 2–atomic molecule is similar to the two–centre problem solved
by Jacobi. Here we are mainly interested in the case n ≥ 3 where the dynamics is
no longer analytically integrable.

One motivation for this work is to establish the basis for a geometric under-
standing of certain restricted (n+1)–body problems of celestial mechanics, where
one is interested in the motion of a fast test body in the force field of n bodies,
whose motion is assumed to be known.

Such an analysis should be based on perturbation theory for the n–centre
problem. In a joint work [DK] with T. Dierkes, we intend to show that indeed
the (2–dim.) n–centre problem is structurally stable in the following sense. For
a sufficiently small local perturbation there exists a homeomorphism conjugating
the two phase portraits and leaving the asymptotic initial and final directions of
the scattering orbits invariant. This homeomorphism is unique up to changes in the
flow direction.

Survey of results. We now describe the techniques and results of this paper.

The class of potentials V under consideration is introduced, together with
other basic definitions, in Sect. 2. An important consequence of the fall-off of V
is the existence of an interaction zone IZ , a ball in configuration space which
contains the points �sl and which, once left, cannot be reentered by an orbit, see
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(2.17). In Definition 2.4 we formulate the standing assumption that the centres are
non-collinear, i.e. no three centres are on a line.

If V contains a negative singularity (Zl > 0 for some l), then the Hamiltonian
flow generated by (1.1) is incomplete. In the Kepler problem it is well-known that
the only sensible way to continue a collision orbit is to reflect it at the singularity in
configuration space, for this is the limit behaviour for the Keplerian conic sections
in the limit of vanishing angular momentum.

But for our purposes we need to control smoothness and energy dependence of
the resulting flow, for potentials of the form (1.2). Due to the singularity at �sl the
usual comparison techniques for o.d.e. are not effective for proving such a result
directly.

Instead, near �sl we apply in Sect. 3 the so-called Kustaanheimo-Stiefel trans-
formation. The Hopf map

C2 → R3, z �→
( 〈z, σ1z〉
〈z, σ2z〉
〈z, σ3z〉

)

with the Pauli matrices σl , extends the Hopf fibration S3 → S2. A cognate map
of the phase spaces (cotangent bundles) is known [KS,StS] as the Kustaanheimo-
Stiefel (KS) transformation. It relates the positive energy Keplerian dynamics with
the one of a particle in an inverted harmonic potential.

The KS transformation was used in celestial mechanics (see, e.g. Aarseth and
Mikkola [AaMi] and articles by Aarseth and by Heggie cited therein), applied to
spectral problems of Schrödinger operators (see, e.g. [HKSW]), and shown in [GK]
to regularize the semiclassical dynamics.

The perturbation estimates of Sect. 4 work in the covering phase space of the
KS transformation.

Although the leading contribution to V near �sl is the Kepler potential

− Zl

|�q − �sl| , (1.4)

the following argument indicates that we cannot simply approximate a collision
orbit of (1.1) by the Kepler hyperbola for the potential (1.4) which has the same
initial conditions (�p0, �q0).

The effective scattering region of (1.4) is a ball of radiusO(1/E) around �sl , see
Lemma 9.1. On the other hand, the time the particle needs to reach the singularity
at �sl from its initial position �q0 is of order 1/

√
E.

Due to the (bounded) difference

∇
[

V(�q)− −Zl

|�q − �sl|
]

of forces exerted on the two particles, within this time the distance between the
true orbit and the Kepler orbit can grow to something of the order 1/E. So by the
above the Kepler orbit starting at (�p0, �q0)may miss the effective scattering region.

But this means that shortly after collision the distance between the two trajec-
tories does not necessarily decrease as E ↗∞.
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So instead we effectively show that for every orbit with initial condition (�p0, �q0)

there is a Kepler orbit, whose initial condition differs only byO(1/E) (in a natural
metric) from (�p0, �q0), and which remains in a O(1/E)–neighbourhood through
the whole collision process. In Proposition 4.1 the corresponding statements about
perturbations of the inverted harmonic oscillator are formulated. More precisely,
it is shown that these perturbed solutions are C1-near to the ones of the harmonic
oscillator.

Moreover the true scattering process is approximated by Kepler scattering in
the C1 sense, so that we may use the Kepler solutions if we want to linearize the
true flow (see Proposition 8.6).

Whereas the KS transformation is particularly suited to understand the topo-
logical and geometrical structures, its disadvantages consist in its local nature,
the introduction of a higher dimensional phase space and the reparameterization
of time. The first problem, the locality near one singularity, should not be insur-
mountable. In fact Helffer and Siedentop found in [HS] a generalization of the
KS transformation to two centres.

Time reparameterization, however, is unwanted since we are not only interested
in the orbits but also in quantities like the time delay of scattering orbits. Thus we
describe in Sect. 5 another regularization method. In Theorem 5.1 we show that
the incomplete Hamiltonian system(

T∗M̂, ω0, Ĥ
)

may be uniquely extended to a smooth complete Hamiltonian system

(P, ω, H )

whose phase space P ⊃ T∗M̂ is a smooth six-dimensional manifold,ω is a smooth
symplectic two-form on P restricting to the canonical symplectic two-form ω0 =∑3

i=1 dqi ∧ dpi on T∗M̂, and H : P → R is a smooth Hamiltonian function with
H�T∗ M̂ = Ĥ .

In fact we linearize the flow near each negative singularity and then add a copy
of R × S2 to T∗M̂. Here R parametrizes the energy and S2 the incoming (and
outgoing) direction of the collision orbit.

Thus we may henceforth work with the complete smooth flow

� : R× P → P (t ∈ R)
generated by H .

By Theorem 5.1 we may think of the Coulomb singularity as an artefact of the
use of the inappropriate phase space coordinates (�p, �q) which, however, leads to
a non-trivial topology of P.

In Sect. 6 we introduce the Møller transformation by comparing the flow�t on
P with the flow�t∞ : P∞ → P∞ generated by the Kepler Hamiltonian function

Ĥ∞(�p, �q) := 1
2 �p 2 − Z∞

|�q|
on its phase space P∞, with Z∞ ∈ R defined by (1.3).
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The Møller transformations are then given by

�± := lim
t→±∞�

−t ◦ Id ◦�t∞,

where Id canonically identifies the two phase spaces outside a region near the
singularities.

The �± are continuous and, under mild conditions on V near infinity, smooth
canonical transformations, see Theorem 6.3 and 6.5. So the flow is asymptotically
complete, see Corollary 6.4.

However, we are not primarily interested in these typical properties, but in the
specific traits of the multi-scattering dynamics.

It is a general fact that to a large extend the unbounded motion, i.e., scattering
is determined by the bounded orbits of positive energy. We denote by bE the set of
such bound states of energy E.

To control these orbits, we combine the above perturbative results for the single
scattering process with an analysis of the motion inside the interaction zone IZ ,
but away from the singularities (Sect. 7). This turns out to be a C1-perturbation of
relative order O(1/E) of the free motion. Using this result and the one of Sect. 8,
we may approximate the true dynamics by a combination of free and of Keplerian
motion.

In Sect. 8 the perturbative results of Sect. 4 for the flow in KS space are used
to obtain Proposition 8.6 which says that the single scattering process is C1-near
to pure Kepler scattering, up to a relative errorO(1/E).

Now in Sect. 9 it is shown that if a trajectory is not strongly reflected in
uniformly bounded time by the singularities, it soon leaves the interaction zone
(Proposition 9.2).

The bound states are then analyzed in Sect. 10 by a Poincaré section technique.
We erect Poincaré surfaces which, in their projections to configuration space, sit
between pairs of singularities and then define in (10.4) a Poincaré map PE .

In Proposition 11.2 of Sect. 11 we estimate the linearization of PE , which,
up to a relative error O(1/E), only depends on the scattering angle at �sl and the
charge Zl.

This allows us to establish in Sect. 12, Theorem 12.8 a symbolic dynamics
for bE , E > Eth. The bounded orbits are described by their sequence of near-
collisions, (which is well defined, since we assumed the configuration of centres
to be non-collinear).

Thus for n = 1 there are no bounded orbits, for n = 2 the set bE consists of
one closed orbit, which is closed. For the case n ≥ 3 of primary interest, bE is
locally homeomorphic to the product of a Cantor set and an interval.

All bounded orbits are hyperbolic. bE has measure zero w.r.t. Liouville measure
on the energy shell. The Morse index of a periodic trajectory equals its number of
near-collisions.

In Sect. 13 the fractal dimension of this set bE of bounded orbits is estimated.
More precisely, we consider its Hausdorff dimension dimH and its upper box
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counting dimension dimB, since it is known that most other definitions lead to
numerical values between these two.

Theorem 13.5 says that for energies E above the threshold Eth and n ≥ 3
centres

1+ 2d(E) · (1−O((E ln E)−1)
) ≤ dimH(bE ) ≤

≤ dimB(bE ) ≤ 1+ 2d(E) · (1+O((E ln E)−1)
)
,

with the solution d(E) of a finite matrix eigenvalue problem (13.10). In particular
they meet the rough estimate

dimH(bE ) = 1+ 2 ln(n − 1)

ln(E)
+O((ln E)−2) = dimB(bE )

In Sect. 14 the topological entropy of the flow �t
E of energy E is estimated.

Topological entropy is a quantity which, roughly speaking, measures the infor-
mation loss per time unit about the state of the system. Here for positive energy E
the energy shellE is non-compact, so that we use Bowen’s definition of entropy.
Proposition 14.3 states that

htop
(
�1

E

) = htop
(
�1

E�bE

)
,

i.e. that the source of information loss is the intricate structure of the set bE of
bounded orbits, whereas the scattering orbits only have a sub-exponential depen-
dence on initial conditions.

So the estimates in the proof of Theorem 14.4 can be based on symbolic
dynamics. It states that for E large htop(�

1
E) = 0 for n = 1 or 2 centres, whereas

for n ≥ 3

htop
(
�1

E

) = h∞top ·
√

2E ·
(

1+ ln(E)

E
Chtop +O(1/E)

)
.

Here the constants h∞top and Chtop are determined by solving a finite matrix eigen-
value problem.

Whereas the factor
√

2E is of kinematical nature, in the simplest case of an
equilateral triangle (n = 3) resp. tetrahedron (n = 4) of side length d the constant
h∞top equals ln(n − 1)/d.

This divergence of topological entropy is not in contradiction with integrability
(in the sense of independent C∞ integrals of motion) of the hamiltonian dynamics
above the energy threshold (compare with Bolsinov and Taimanov [BT]).

Section 15 is devoted to the classification of the scattering orbits. After exclud-
ing asymptotic directions in cones of apertureO(1/

√
E) around the axes through

two nuclei, and near the forward direction, one obtains such a universal classifica-
tion. Theorem 15.3 states that the orbits of given energy and asymptotic directions
are enumerated by the succession of the nuclei they visit. In particular they form
a Cantor set if n ≥ 3.
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The differential cross section dσ
dθ̂+ (E, θ̂

−, θ̂+) of the scattering process is ana-
lyzed in Sect. 16. Roughly speaking, this experimentally accessible quantity is the
‘probability’ that a particle of energy E and initial direction θ̂− has final direc-
tion θ̂+. For general potential scattering in Rd one cannot even expect the cross
section measure on Sd−1 \ θ̂− (defined in Definition 16.2) to be absolutely contin-
uous w.r.t. Haar measure, see [Kn3]. Here, however, this is the case for energies
E > Eth, and dσ

dθ̂+ (E, θ̂
−, θ̂+) is defined as the Radon-Nikodym derivative.

Moreover (after excluding cones of E–independent aperture) by Theorem 16.4
it differs from the well-known Rutherford cross section in Rd

(
dσ

dθ̂+
(E, θ̂−, θ̂+)

)
Ru
=
(

Z

4E sin2
( 1

2�θ
)
)d−1

of the single Coulomb potential with charge Z =
√∑n

l=1 Z2
l only by

dσ

dθ̂+
(E, θ̂−, θ̂+) =

(
dσ

dθ̂+
(E, θ̂−, θ̂+)

)
Ru
· (1+O(1/E)).

So for these asymptotic data the intricate structure of the scattering orbits is not
showing up in the cross section. In fact, Theorem 16.4 also states that the differential
cross section is approximated by the Rutherford cross section outside the (much
smaller) cones of apertureO(1/

√
E), though with less accuracy.

In the final Sect. 17 we show by counterexamples that many results of the paper
do not generalize if we drop the assumption of non-collinearity.

The first Appendix is devoted to a comparison between the two-dim. case treated
in [KK] and the three-dim. situation of the present paper. Basically, the analysis of
[KK] is the one of geodesic motion on smooth many-handled surfaces of negative
curvature, whereas here we apply perturbation techniques around infinite energy.

In the second Appendix we describe the (known) solution of the purely Coulom-
bic two-centre problem, and its bifurcation diagramme.

Notation. Transposed vectors are used according to typographical, not mathemat-
ical needs.

2. Basic definitions

We consider the time evolution generated by a Hamiltonian function

Ĥ(�p, �q) := 1
2 �p 2 + V(�q) (2.1)

with n Coulombic singularities of the potential V situated at the points

�s1, . . . , �sn ∈ R3
�q (�si 	= �sk for i 	= k).

To control the asymptotic behaviour, we assume that V decomposes into the sum
of a purely Coulombic potential and a short range potential. By this we mean the
following:
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Definition 2.1. A smooth, real-valued function V on the configuration space

M̂ := R3
�q \ {�s1, . . . , �sn} (2.2)

is called Coulombic if

1. There exist Zl 	= 0, l ∈ {1, . . . , n}, such that

V(�q) =
n∑

l=1

−Zl

|�q − �sl| + W(�q) (�q ∈ M̂) (2.3)

with W : R3
�q → R smooth. Zl is called the charge of the lth nucleus, and we

set

Zmax := max{|Z1|, . . . , |Zn |}.

2. The potential vanishes at infinity, i.e.

lim
|�q|→∞

V(�q) = 0, (2.4)

and there exist Z∞ ∈ R, called the asymptotic charge, ε ∈ (0, 1] and

Rmin > 2 max(|�s1|, . . . , |�sn |)

such that for some C1 > 0∣∣∣∣∇V(�q)− Z∞
�q
|�q|3

∣∣∣∣ < C1 · Rmin

|�q|2+ε (|�q| ≥ Rmin) (2.5)

and

|∇V(�q1)−∇V(�q2)| < C1
|�q1 − �q2|

min(|�q1| , |�q2|)2+ε (|�q1| , |�q2| ≥ Rmin). (2.6)

Example 2.2. For the class of purely Coulombic potentials

V(�q) :=
n∑

l=1

−Zl

|�q − �sl| , (2.7)

the asymptotic charge Z∞ = ∑n
l=1 Zl . Here V meets (2.5) and (2.6) with ε = 1

(and C1 = 17
2 nZmax).

The question of dynamics in a Coulombic potential is called the n–centre problem
of classical mechanics.
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Remarks 2.3. 1) For Zl > 0 and W = 0 this corresponds to the idealization
of a celestial body in the force field of n other bodies of masses Zl with fixed
positions �sl .

But our definition also covers the physical situation of (classical) scattering
by the potential of partially ionized, neutral (Z∞ = 0) or negatively charged
quantum molecules. There Z∞ does not coincide with

∑n
l=1 Zl . Again, one ex-

pects potentials with ε = 1, due to exponential decay of the quantum mechanical
eigenfunctions of the bound electrons, which in turn leads to an electronic charge
distribution which decays exponentially (see Agmon [Ag]).

2) Note that V(�q) and the asymptotic potential−Z∞/ |�q| appear symmetrically in
(2.5), and that (2.4) and (2.6) are met by the asymptotic potential (the last one even
with ε = 1). We choose C1 large enough so that with the given constant ε (2.5) is
met by both potentials. This will be used in Sect. 6 for simplifying the existence
proof of the Møller transformations.

3) By a suitable translation of the origin, one could for n ≥ 2 assume that Rmin is,
say, twice the maximal distance between the centres (but this assumption will not
be used).

For n ≥ 2 we set

dmin := min
k 	=l

dk,l and dmax := max
k 	=l

dk,l with dk,l := |�sk − �sl| . (2.8)

In the case of a single atom (n = 1) we fix dmin by setting dmin := 2Rmin, say.
A threshold of the energy is

Vmax := sup
({

V(�q) | �q ∈ M̂,∇V(�q) = �0} ∪ {0}). (2.9)

One has 0 ≤ Vmax <∞, and in many cases Vmax = 0.
We will generally assume that there are no more than two nuclei on one line:

Definition 2.4. The configurations of singularities in

NC := {
(�s1, . . . , �sn) ∈

(
R3
�q
)n | ∀i 	= j 	= k 	= i : (�si − �s j )× (�s j − �sk) 	= �0}

are called non–collinear (NC) configurations.

In three dimensions this is a weaker assumption than that the nuclei are in general
position, since the latter also means that there are no more than three nuclei in one
plane.

The space NC of configurations is a smooth connected manifold.
Most statements in this article are shown for values of H above some threshold

energy Eth. For given W (in particular for the purely Coulombic case W = 0)
and charges Zl this is a function Eth : NC → R of the positions (�s1, . . . , �sn) of
singularities. Eth diverges near the set (R3

�q)
n \NC of partly collinear configurations.

This is not an artefact of our methods of proof. Instead, we will see in Sect. 17 that
several assertions proved in previous sections become wrong if one drops the NC
condition.
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One parameter measuring the degree of non–collinearity of a configuration of
n ≥ 3 nuclei is the minimal angle

αmin : NC → (0, π/3] αmin := min
i 	= j 	=k 	=i

α(i, j, k), (2.10)

where for i 	= j 	= k

α(i, j, k) ∈ [0, π), cos(α(i, j, k)) := 〈
ŝ j,i, ŝ j,k〉, (2.11)

with the directions

ŝi, j := �s j − �si

|�s j − �si | ,

is the angle between �si and �sk , seen from �s j . For n = 2 we set αmin := π/3.

The Hamilton equations

�̇p = −∇V(�q) , �̇q = �p
lead to solutions t �→ (�p(t), �q(t)) ≡ �t(x0) of the initial value problem with initial
values x0 = (�p0, �q0) which exist uniquely up to eventual collisions with the �sl . In
Sect. 5 we extend�t uniquely to a smooth complete flow.

The virial identity

d

dt
〈�q(t), �p(t)〉 = 2(E − V(�q(t)))− 〈�q(t),∇V(�q(t))〉 (2.12)

holds true for any trajectory t �→ (�p(t), �q(t)) with energy E := H(x0) (whenever
�q(t) 	= �sl). Let us choose a function Rvir : (0,∞) → R of the energy, called the
virial radius, with

max
(
|V(�q)|, |Z∞||�q|

)
<

E

2
and | 〈�q,∇V(�q)〉 | < E/2 (|�q| ≥ Rvir(E)).

(2.13)

As a consequence of part 2 of Definition 2.1 of Coulombic potentials, such a func-
tion exists. Without loss of generality (w.l.o.g.) we assume Rvir to be continuous,
nonincreasing and constant for energies E > Eth above some threshold. Property
(2.13) already implies that Rvir(E) > 2Z∞/E. Technically we choose Rvir with

Rvir(E) ≥ max(2Rmin,C2/E) with C2 := 31(1+ 1/ε)R1−ε
min C1 (2.14)

Then by (2.12) and (2.13)

d

dt
〈�q(t), �p(t)〉 > E

2
> 0 if |�q(t)| ≥ Rvir(E). (2.15)

We conclude that a configuration space trajectory t �→ �q(t) of energy E leaving the
ball of radius Rvir(E) cannot reenter this ball in the future but must go to spatial
infinity:
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Namely assume w.l.o.g. that 〈�q(0), �p(0)〉 ≥ 0. By (2.15)

d2

dt2 �q 2(t) = 2
d

dt
〈�q(t), �p(t)〉 > E (t ≥ 0)

so that

�q 2(t) ≥ �q 2
0 + 1

2 Et2 (t ≥ 0). (2.16)

We shall mainly deal with energies E > Eth so that we may consider the E-inde-
pendent interaction zone

IZ := {�q ∈ R3
�q | |�q| ≤ Rvir(Eth)

}
. (2.17)

Sometimes we will use outside IZ the shorthand

Vsr := V − V∞ with V∞(�q) := − Z∞
|�q| (2.18)

In addition to the condition (2.5) on ∇Vsr this potential is of short range in the
sense Vsr(�q) = O(|�q|−1−ε), too, as follows from (2.4) and (2.5).

Due to collisions with the nuclei situated at �sl , the flow on the phase space T∗M̂
of the particle is incomplete. There are several ways to regularize the collision orbits
which are all essentially equivalent. In Sect. 3 we now introduce the Kustaanheimo-
Stiefel (KS) regularization method, and use it in Sect. 4 for comparison estimates
which control the deviation from the Keplerian motion near a singularity. Later, in
Sect. 5, the flow is then regularized without a time change.

3. The Kustaanheimo–Stiefel transformation

In [KS] Kustaanheimo and Stiefel related the Kepler motion in three spatial di-
mensions to the motion of a resonant harmonic oscillator in four dimensions, thus
linearizing the dynamics, see the book [StS] by Stiefel and Scheifele.

Although the authors had used spinor theory in order to derive their results,
the emphasis of their article was more on the application to perturbation theory
then on the geometry of the problem. In [Ku] Kummer presented this aspect of the
KS-transformation and related it to the approach [Mo] by Moser.

Our presentation will be based on the quaternion algebra over R

H :=
{(

z1 −z2
z̄2 z̄1

)∣∣∣∣ z1, z2 ∈ C
}
∼= R4

with matrix multiplication (see, e.g., [KR]). We use the basis

(1l, I1, I2, I3) :=
((

1 0
0 1

)
,
(

0 i
i 0

)
,
(

0 1−1 0

)
,
(

i 0
0 −i

))
= (1l, iσ1, iσ2, iσ3)

of H, the σl being the Pauli matrices. The direct sum decomposition

H = R · 1l⊕ ImH
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with

ImH := {Z ∈ H | Z2 = λ · 1l with λ ≤ 0}
= SpanR(I1, I2, I3)

into real and imaginary space is orthogonal w.r.t. the inner product

H×H→ R , 〈X,Y〉 := 1
2 tr(XY∗),

X �→ X∗ := X̄t being the conjugation. The norm |X| := 〈X, X〉 1
2 is multiplicative:

|XY | = |X| |Y | (X,Y ∈ H).
The vector product× : ImH× ImH→ ImH is given by

X × Y := 1
2 (XY − YX),

and we have

XY = −〈X,Y〉 1l+ X × Y (X,Y ∈ ImH).

We consider the Hopf map

π0 : H→ ImH, π0(Z) := Z∗ I3 Z = i

(
z1 z̄1 − z2 z̄2 −2z̄1z2
−2z1z̄2 z2 z̄2 − z1z̄1

)
(3.1)

which is a surjection R4 → R3 whose preimages are the orbits of the isometric
group action

α0 : S1 → Aut(H), α0(ϕ)(Z) := exp(I3ϕ)Z.

This action is free on Ĥ := H \ {0}. We have the canonical symplectic one-forms

θ := 1
2 tr(P∗dQ) = (( p̄1dq1 + p̄2dq2) ((P, Q) ∈ T∗H)

and

θ := 1
2 tr(P∗dQ) ((P, Q) ∈ T∗ImH)

on the cotangent bundles, and denote by θ̂ := θ�T∗Ĥ, resp. θ̂ := θ�T∗ImĤ their
restrictions.

The restricted Hopf map π̂0 := π0�Ĥ is then related to the KS–transformation

π̂ : T∗Ĥ→ T∗ImĤ

π̂(P, Q) =
( −1

4|Q|2
(
Q∗ I3 P + P∗ I3 Q

)
, Q∗ I3 Q

)
(3.2)

of the cotangent bundles.
We consider the quadric surface

S := I−1(0) ⊂ T∗H
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for the bilinear form

I : T∗H→ R, I(P, Q) := 1
2 tr(Q∗ I3 P) = *(q1 p̄1 + q2 p̄2)

and its restriction Ŝ := S ∩ T∗Ĥ. Then

θ̂�Ŝ = π̂∗θ̂�Ŝ, (3.3)

since on Ŝ

Q∗ I3 P = P∗ I3 Q ∈ ImH. (3.4)

I, θ and π̂ are all invariant w.r.t. the group action

α : S1 → Aut(T∗H), α(ϕ)(P, Q) := (exp(I3ϕ)P, exp(I3ϕ)Q), (3.5)

and I is a Hamiltonian function generating that time–ϕ–flow.

Lemma 3.1. Restricted to the quadric surface Ŝ ⊂ T∗H, the lift of a Hamiltonian
function Ĥ(�p, �q) = 1

2 |�p|2 − Z/|�q| + W(�q) equals

Ĥ ◦ π̂(P, Q) = |Q|−2
(

1
8 |P|2 − Z

)
+ W(Q∗ I3 Q) ((P, Q) ∈ Ŝ). (3.6)

For the angular momentum �L(�p, �q) = �q × �p
�L ◦ π̂(P, Q) = 1

4 (Q
∗P − P∗Q) ((P, Q) ∈ Ŝ), (3.7)

whereas the Runge-Lenz vector �F(�p, �q) = �p× �L − Z �q
|�q| transforms into

�F ◦ π̂(P, Q) = − 1
8 P∗ I3 P + (Ĥ ◦ π̂(P, Q) − W(Q∗ I3 Q)) · Q∗ I3 Q

((P, Q) ∈ Ŝ). (3.8)

Proof. (see also [Ku]).
By (3.4) the restricted KS–transformation π�Ŝ maps |Q|2 = |Q∗ I3 Q| onto |q| and
|2Q|−2 · |P|2 = |(2|Q|2)−1 Q∗ I3 P|2 onto |p|2, implying (3.6).

Since q, p ∈ ImH,

�L = q × p = 1
2 (qp− pq).

The KS-transformation π̂ gives, using (3.4)

�L ◦ π̂(P, Q) = (Q∗ I3 P + P∗ I3 Q)Q∗ I3 Q − Q∗ I3 Q(Q∗ I3 P + P∗ I3 Q)

8|Q|2
= P∗ I3 QQ∗ I3 Q − Q∗ I3 QQ∗ I3 P

4|Q|2 = 1

4
(Q∗P − P∗Q),

This shows (3.7). To prove (3.8), we use the identity

p× (q × p) = 1
2 (pqp− qpp) = 1

2 (pqp+ q|p|2) (p, q ∈ ImH)
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which implies that

�F(�p, �q) = 1
2 pqp+ q · (H(p, q)− W(q)).

The term pqp lifts to

(2|Q|2)−2(P∗ I3 Q)(Q∗ I3 Q)(Q∗ I3 P) = − 1
4 P∗ I3 P,

finishing the proof. ,-

4. Application of the KS–transformation

In a configuration space ball

Bl(r) :=
{�q ∈ R3

�q | |�q − �sl | ≤ r
}

of radius r := cq <
1
2 dmin around �q = �sl we want to regularize the motion

generated by the restricted Hamiltonian function

Ĥ(�p, �q) = 1
2 |�p|2 −

Zl

|�q − �sl | + Wl(�q),
(
(�p, �q) ∈ T∗(Bl(cq) \ {�0})

)
,

Wl(�q) :=
∑
i 	=l

−Zi

|�q − �si | + W(�q) (4.1)

being a smooth function on Bl(cq) ⊂ R3 ∼= ImH. The radius cq ∈ (0, 1
2 dmin) is

chosen so that

|Wl(�q)| ≤ 1

2

|Zl|
|�q − �sl| (l = 1, . . . , n , |�q − �sl| ≤ cq). (4.2)

For simplicity of notation we assume �sl = �0. For regular values E of the energy Ĥ
the orbits on Ĥ−1(E) coincide with the ones of the zero surface of the Hamiltonian
function

|q| · (Ĥ(p, q)− E), (4.3)

since they are already determined by the form of the submanifold Ĥ−1(E).
By (3.6) the lift of (4.3) with the KS-transformation equals

HE(P, Q) := 1
8 〈P, P〉 + 〈Q, Q〉 (−E + Wl(Q

∗ I3 Q))− Zl. (4.4)

The orbits of its Hamiltonian vector field on Ŝ ∩ (HE )
−1(0) project to the ones

of Ĥ on Ĥ−1(E), since the symplectic one-form θ̂ on the phase space region
T∗(Bl(cq) \ {�0}) lifts according to (3.3).

For Wl ≡ 0 the Hamiltonian function HE is the one of a four-dimensional
harmonic oscillator (with negative potential for E > 0). In the general case the
additional potential Q �→ Wl(Q∗ I3 Q) will be a small perturbation if E is large,
at least for |Q| ≤ √

cq .
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From now on we assume initial conditions to lie in S ⊂ T∗H.
Instead of considering the Hamilton equations{

d
ds P = 2EQ + 2R(Q)
d
ds Q = 1

4 P

of (4.4) with perturbation

R(Q) := −QWl(Q
∗ I3 Q)− 1

2 |Q|2∇Wl(Q
∗ I3 Q), (4.5)

we want the parameter E to appear only in the perturbative term. Thus we set

X :=
(

P̃
Q

)
with P̃ := P/

√
8E

and use the time variable τ := √
E/2 · s. Then

d

dτ
X =

(
0 1l
1l 0

)
X + R̃(X)/E , X(0) = X0 ≡

(
P̃0
Q0

)
(4.6)

with R̃(X) :=
(

R(Q)
0

)
.

The initial conditions X0 :=
(

P0/
√

8E
Q0

)
meet the energy constraint

|P̃0|2 − |Q0|2(1− Wl(Q
∗
0 I3 Q0)/E) = Zl

E
. (4.7)

So with

cQ := √
cq

and

E(P̃, Q) := Zl − |Q|2Wl(Q∗ I3 Q)

|P̃|2 − |Q|2 (4.8)

the region

Dl :=
{
(P̃, Q) ∈ R4 × R4

∣∣∣ |Q| ≤ cQ, E(P̃, Q) > Eth

}
of phase space points meeting (4.7) for some E > Eth is bounded.

It is natural to compare the solution X(τ) of (4.6) with the solution

Y(τ) =
(

cosh(τ)1l sinh(τ)1l
sinh(τ)1l cosh(τ)1l

)
X0 (4.9)

of the linear initial value problem

d

dτ
Y =

(
0 1l
1l 0

)
Y , Y(0) = X0. (4.10)
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We denote this linear flow (corresponding to Wl ≡ 0), restricted to the invariant
phase space domain

D̆L,l :=
{
(P̃, Q) ∈ R4 × R4

∣∣∣ |P̃| 	= |Q| , EL(P̃, Q) > 1
2 Eth

}
with

EL(P̃, Q) := Zl/(|P̃|2 − |Q|2) (4.11)

by

�L,l : R× D̆L,l → D̆L,l, (4.12)

and set

DL,l :=
{
(P̃, Q) ∈ D̆L,l | |Q| ≤ cQ

}
.

Our condition (4.2) on the radius cq implies that

DL,l ⊃ Dl.

Let

T±l : Dl → R ∪ {±∞}, T±l (X0) := ± inf{t > 0 | |Q(±t, X0)| ≥ cQ}.
be the exit times fromDl ,

�l : Ul → Dl, Ul :=
{
(t, X0) ∈ R×Dl | t ∈ [

T−l (X0),T+l (X0)
]}

the maximally extended KS flow onDl , and

�l
± : Dl → ∂Dl , X �→ �l

(
T±l (X), X

)
the map to the exit points.

Basically we are interested in the Poincaré map

�l : ∂Dl → ∂Dl, X ≡ (P̃, Q) �→



�l
+(X),

〈
P̃, Q

〉
≤ 0

�l
−(X),

〈
P̃, Q

〉
> 0

(4.13)

that permutes incoming and outgoing data, but up to now we do not even know
whether this is defined everywhere.

Therefore we compare with the linear flow (4.12) and thus introduce in analogy
its exit times T±L,l : DL,l → R. They are finite and smooth, and we set �±

L,l(X) :=
�L,l(T±L,l(X), X).

The analog

�L,l : ∂DL,l → ∂DL,l, X ≡ (P̃, Q) �→



�+
L,l(X),

〈
P̃, Q

〉
≤ 0

�−
L,l(X),

〈
P̃, Q

〉
> 0

(4.14)
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of (4.13) for the linear flow is a involutive diffeomorphism:

�L,l

(
P̃
Q

)
= 1√

1− u2

(
P̃ − uQ
Q − u P̃

)
with u :=

2
〈
P̃, Q

〉
|P̃|2 + |Q|2 , (4.15)

since |u| < 1 onDL,l .
Ideally, one would like to prove that (4.13) is approximated by the map (4.14)

so that the C1-norm of �l ◦ (�L,l)
−1− Id is of orderO(1/E ). This would be true if

the trajectories of �l , resp. �L,l would spend a uniformly bounded time insideDl ,
resp. DL,l . But this is not the case, and in order to keep the error terms small we
will compare the two flows for initial conditions on the pericentric hypersurface

Hl :=
{
(P̃, Q) ∈ Dl | 〈P̃, Q〉 = 0

} ⊂HL,l :=
{
(P̃, Q) ∈ D̆L,l | 〈P̃, Q〉 = 0

}
.

Note that by transversality of the linear flow to that hypersurface the pericentric time

T0
L,l : D̆L,l → R with �0

L,l(X) := �L,l
(
T0

L,l(X), X
) ∈HL,l (4.16)

is uniquely defined and smooth.

Proposition 4.1. For Eth large there is a unique pericentric time T0
l :Dl → Rwith

�0
l (X) := �l

(
T0

l (X), X
) ∈Hl, (X ∈ Dl ).

The functions T−l ≤ T0
l ≤ T+l :Dl → R are smooth, and∣∣T±l (X0)− T±L,l(X0)

∣∣ = O(1/E(X0)) (X0 ∈Hl). (4.17)

The exit times T±L,l of the linear flow are estimated by

exp
(
±2T±L,l(X0)

)
= 4cq

|Zl|e(X0)
E(X0)+O

(
E0(X0)

)
(X0 ∈Hl ), (4.18)

e(X0) :=
√

1+ 2E| �L(X0)|2
Z2

l
being the eccentricity of the corresponding Kepler

hyperbola. The diffeomorphism

�l : ∂Dl → ∂DL,l, X ≡ (P̃, Q) �→



�−
L,l ◦�0

l (X),
〈
P̃, Q

〉
≤ 0

�+
L,l ◦�0

l (X),
〈
P̃, Q

〉
> 0

onto its image which conjugates the maps (�l = (�l)
−1 ◦ �L,l ◦�l) is C0-near

to the identity in the sense that

|�l(X)− X| = O(1/E(X)), (X ∈ ∂Dl ), (4.19)

and the solution �L,l of the linear problem is C1-near to �l in the sense

|�l(X)−�L,l ◦�l(X)| = O(1/E(X)) (4.20)∥∥D�l(X)− D�L,l ◦�l(X)
∥∥ = O(1/e(X)). (4.21)
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Remarks 4.2. 1) The energy-independent estimate (4.21) may seem to be poor but
is in fact optimal in its energy dependence since, relative to the optimal estimates

‖D�l(X)‖ = O(E(X)/e(X)) = ‖D�L,l(X)‖, (4.22)

it is of order O(1/E) (The r.h.s. of (4.22) is obtained by inserting the time
bound (4.18) into the linearization of (4.9)).

2) For pericentric initial data X0 ∈ Hl the total time spent inside the ball equals
T+L,l(X0)− T−L,l(X0) ≡ ±2T±L,l(X0). Estimate (4.18) for that time is presented in
a form needed to evaluate the term D�L,l ◦�l(X) in (4.21).

In polar coordinates (r, ϕ) the Kepler hyperbola has the parametric form
(see e.g. [Th], Chapter 4.2)

r(ϕ) = �L2

|Z|e cos(ϕ − ϕ0)+ Z
.

The denominator has the zeros ϕ±, and �ϕ := ϕ+ − ϕ− is the angle under which
the hyperbola is seen from the origin. Thus

cos
(1

2�ϕ
) = − sign(Z)

e
,

so that�ϕ ∈ (π, 2π] for Z > 0 and �ϕ ∈ [0, π) for Z < 0.
On the other hand, the total change in direction �ψ of the velocity vector

equals

�ψ = sign(Z) · (�ϕ− π) = 2 arcsin(1/e(X0)) ∈ (0, π].
Thus (4.18) can be rewritten as

exp
(
±2T±L,l(X0)

)
= 4cq sin

(1
2�ψ

)
|Zl| E(X0)+O

(
E0(X0)

)
(X0 ∈Hl).

(4.23)

This equation will be useful for the study of orbit instability, since exp (t) equals
the expansion of the unstable manifold of (4.9) after time t.

Proof. We set (P̃(t), Q(t)) := �l(t, X0) for X0 = (P̃0, Q0) ∈ Dl . For Eth large
the squared distance t �→ |Q(t)|2 is a strictly convex function of time, since

1

2

d2

dt2 |Q(t)|2 =
d

dt

〈
P̃(t), Q(t)

〉
(4.24)

= |P̃(t)|2 + |Q(t)|2 − 〈R(Q(t)), Q(t)〉 /E(X0)

≥ |P̃(t)|2 + |Q(t)|2 · (1− L1cq/E(X0))

≥ 1
2

(|P̃(t)|2 + |Q(t)|2) > 0

with Lipschitz constant
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L1 := sup

{ |R(Q1)− R(Q2)|
|Q1 − Q2|

∣∣∣∣ |Q1|, |Q2| ≤ cQ, Q1 	= Q2

}
, (4.25)

(one notes from inspection of (4.5) that R(0) = 0).
We can bound (4.24) more precisely from below by using the inequality

|X|2 ≡ |P̃|2 + |Q|2 ≥ 1
2

∣∣|P̃|2 − |Q|2(1− Wl(Q
∗ I3 Q)/E(X))

∣∣ = |Zl|
2E(X)

(4.26)

which follows from (4.7) and is valid for Eth > max�q∈Bl(cq) |Wl(�q)|.
Thus T±l and T0

l are uniquely defined finite functions. By transversality ofHl

w.r.t. the flow the pericentric time T0
l is smooth. The hypersurface ∂Dl is transversal

to the flow, too, except at ∂Dl ∩Hl . Thus it is only there that we have to control
smoothness of the exit times T±l .

The maps

Dl → R×Hl, X �→ (
T0

l (X),�
0
l (X)

)
and

R×Hl → R4 × R4, (t, X) �→ �L,l(−t, X)

are diffeomorphisms onto their images, since DL,l does not contain the (single)
stationary point 0 of the linear flow �L,l. Hence the composition

ρl : Dl → D̆L,l, ρl(X) := �L,l
(− T0

l (X),�
0
l (X)

)
(4.27)

of these diffeos is a diffeomorphism onto its image.
Thus in order to compare the flows �l and �L,l , it suffices to compare the

trajectories

X(t) := (P̃(t), Q(t)) := �l(t, X0) and Y(t) := (P̃L(t), QL(t)) := �L,l(t, X0)

for pericentric initial conditions X0 = (P̃0, Q0) ∈Hl .
We partitionHl into the regionsHl

< := {(P̃, Q) ∈Hl | |Q| ≤ 1
2 cQ} and

Hl
> := {

(P̃, Q) ∈Hl | 1
2 cQ ≤ |Q| ≤ cQ

}
.

The flow throughHl
< is uniformly transversal to ∂DL,l, whereas the exit times

are uniformly bounded onHl
>.

1) OnHl
> the second equation in (4.24) together with (4.7) yields for

g1(t) := |Q(t)|2 1

2

d2

dt2 g1(t)− 2g1(t) = h1(t)/E(X0) (4.28)

with

h1(t) := Zl − 〈R(Q(t)), Q(t)〉)− |Q(t)|2Wl(Q
∗(t)I3 Q(t))

(|t| ≤ T+l (X0)
)
,
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g1(0) = |Q0|2 and g′1(0) = 0 so that

g1(t) = |Q0|2 +
∫ t

0

∫ s

0
(4g1(u)+ 2h1(u)/E(X0))du ds.

As C3 := sup|Q|≤cQ
|Zl − 〈R(Q), Q〉) − |Q|2Wl(Q∗ I3 Q)| < ∞, for Eth large

and times t between 0 and T±l (X0) the integrand is bounded below by 3|Q0|2 and
above by 5c2

Q so that

3
2 |Q0|2t2 ≤ g1(t) ≤ 5

2 c2
Qt2.

As g1(T±l (X0)) = c2
Q ,

1

2

√
1− |Q0|2/c2

Q ≤ ±T±l (X0) ≤ 2
√

1− |Q0|2/c2
Q

(
X0 ≡ (P̃0, Q0) ∈Hl

>
)
,

(4.29)

and the same estimate holds for T±L,l. Est. (4.29) implies in particular the uniform

bound |T±l |, |T±L,l| ≤ 2 onHl
>.

The difference between these times is much smaller:∣∣T±l (X0)− T±L,l(X0)
∣∣ = O (√

1− |Q0|2/c2
Q/E(X0)

)
(X0 ∈Hl

>). (4.30)

Namely setting g2(t) := |Q(t)|2 − |QL(t)|2, so that g2(0) = g′2(0) = 0 and, by
(4.28),

1

2

d2

dt2 g2(t)− 2g2(t) = h2(t)

E(X0)
with h2(t) := h1(t)− Zl,

we get

g2(t) =
∫ t

0

∫ s

0
(4g2(u)+ 2h2(u)/E(X0))du ds

or

|g2(t)| ≤ C4

E(X0)
sinh2(t)

for C4 := C3 + Zmax.
As c2

Q = |QL(T±L,l(X0))|2 = sinh2(T±L,l(X0))|Q0|2 and

g2
(
T±l (X0)

) = c2
Q −

∣∣QL
(
T±l (X0)

)∣∣2 = c2
Q − sinh2 (T±l (X0)

)|Q0|2,

sinh
(
T±l (X0)

) ·
√

1− C4

|Q0|2E(X0)
≤ sinh

(
T±L,l(X0)

)

≤ sinh
(
T±l (X0)

) ·
√

1+ C4

|Q0|2E(X0)
.

In view of (4.29) this gives (4.30).



22 Andreas Knauf

In turn (4.30) implies∣∣�L,l
(
T±L,l(X0), X0

)−�L,l
(
T±l (X0), X0

)∣∣ +∥∥∥D�L,l
(
T±L,l(X0), X0

)− D�L,l
(
T±l (X0), X0

)∥∥∥
= O

(√
1− |Q0|2/c2

Q/E(X0)
)
. (4.31)

A comparison between the initial value problems (4.6) and (4.10) using a Gron-
wall estimate on the uniformly bounded time interval |t| ≤ 2 yields

∣∣�t
l (X0)−�t

L,l(X0)
∣∣+ ∥∥D�t

l(X0)− D�t
L,l(X0)

∥∥ ≤ C|t|
E(X0)

(4.32)(
X0 ∈Hl

>, t ∈ [
T−l (X0),T+l (X0)

])
.

Setting t := T±l (X0) in (4.32), the triangle inequality and (4.31) leads to

∣∣�l
±(X0)−�±

L,l(X0)
∣∣+ ∥∥∥D�l

±(X0)− D�±
L,l(X0)

∥∥∥ ≡∣∣�l
(
T±l (X0), X0

)−�L,l
(
T±L,l(X0), X0

)∣∣ +∥∥∥D�l
(
T±l (X0), X0

)− D�L,l
(
T±L,l(X0), X0

)∥∥∥ = O (√
1− |Q0|2/c2

Q/E
)
.

This does not only prove the estimate (4.19) on �l
+(Hl

>) ∪ � l
−(Hl

>) ⊂ ∂Dl ,
but also shows that � is continuously differentiable at the submanifold

Hl ∩ ∂Dl = �l
+(Hl

>) ∩�l
−(Hl

>)

of phase space points where the flows �l and �L,l are tangential to ∂Dl (for X in
this set �(X) = X and D�(X) = 1l).

2) • OnHl
< we begin with a rough estimate. For time

τ ≡ τ(X0) := ln
(
3cQ/|X0|

)
(4.33)

|QL(±τ)| = | cosh(τ)Q0 + sinh(τ)P̃0| =
√

sinh2(τ)|P̃0|2 + cosh2(τ)|Q0|2

≥
√

1
2 |X0|2 · (cosh(2τ)− 1) ≥

√
1
2 |X0|2 ·

(1
2 exp(2τ)− 1

)
=

√
9
4 cq − 1

2 |X0|2 ≥
√

7

2
cQ (4.34)

since by (4.7)

|X0|2 = 2|Q0|2 + (|P̃0|2 − |Q0|2) ≤ 1

2
cq + Zl − |Q0|2Wl(Q∗

0 I3 Q0)

E
≤ cq.

Therefore any trajectory of the linear flow �L,l with these initial conditions leaves
the regionDl before time τ (and enters it after time −τ).
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• We now do perturbation theory around these linear solutions, setting

Z(t) := X(t)− Y(t).

Z(t) meets the integral equation

Z(t) =
∫ t

0

((
0 1l
1l 0

)
Z(s)+ E−1 R̃(X(s))

)
ds

with E := E(X0). Gronwall’s inequality says that

f(t) ≤ A exp
(∫ t

0
g(s)ds

)
(4.35)

if f(t) ≤ A+ ∫ t
0 g(s) f(s)ds. Applied to f(t) := |Z(t)|, we get for 0 ≤ t ≤ T+l (X0)

f(t) ≤
∫ t

0

(
f(s) + E−1|R̃(X(s))− R̃(Y(s))+ R̃(Y(s))|)ds (4.36)

≤ E−1
∫ t

0
|R̃(Y(s))|ds +

∫ t

0

(
1+ L1

E

)
f(s)ds

≤ E−1L1

∫ t

0
|QL(s)|ds +

∫ t

0

(
1+ L1

E

)
f(s)ds

with the Lipschitz constant L1 from (4.25). But∫ t

0
|QL(s)|ds =

∫ t

0
| sinh(s)P̃0 + cosh(s)Q0|ds

≤ |X0|
∫ t

0
esds ≤ |X0|et .

Thus the constants in (4.35) can be chosen as

A ≡ A(X0, t) := L1|X0|e|t|
E(X0)

, g ≡ g(X0) := 1+ L1/E(X0),

and we obtain for |t| ≤ τ(X0) with X(t) ∈ Dl

|Z(t)| ≡ f(t) ≤ L1|X0|e|t| exp((1+ L1/E) · τ(X0))

E

= |X0|e|t| ·O(E−
1
2 ) = 3cQ ·O(E− 1

2 ) (4.37)

for Eth large since by (4.33) and (4.26)

τ(X0) = ln
(
3cQ/|X0|

) ≤ ln
(

3
√

2cQ
√

E/|Zl|
)
= ln(cE

1
2 ).

In particular we conclude from (4.34) that

0 ≤ ±T±l (X0) ≤ τ(X0),
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since otherwise by (4.37)

|Q(±τ)| ≥ |QL(±τ)| − |Z(±τ)| ≥
√

7

2
cQ − 3cQ ·O

(
E−

1
2
)
> cQ .

We use (4.37) as an input for a refined estimate which will imply |Z(t)| =
O(1/E). To that end we note that by (4.37)

|Q(t)| ≤ |QL(t)| + |Z(t)| ≤ e|t||X0| + |Z(t)| ≤ 2e|t||X0| (|t| ≤ τ(X0)).

We write

Z(t) = E−1
∫ t

0
exp

((
0 1l
1l 0

)
(t − s)

)
R̃(X(s)) ds. (4.38)

W.l.o.g. we may assume that Wl(�sl ) = 0, since otherwise we may shift the energy
E by that constant, producing an error term of relative orderO(1/E). Then instead
of the Lipschitz estimate (4.25) for R we use

R(Q) ≤ L2|Q|2 (|Q| ≤ cQ).

Inserting this into (4.38) we get for 0 ≤ t ≤ τ(X0), using (4.33),

|Z(t)| ≤ 4L2

E

∫ t

0
exp(t − s)e2s|X0|2 ds ≤ 12L2cQ

E
(et − 1)|X0| ≤ 24L2

E
|QL(t)|,

since

|QL(t)| =
√

sinh2(t)|P̃0|2 + cosh2(t)|Q0|2 ≥ sinh(t)|X0|.
A similar estimate holds for 0 ≥ t ≥ −τ(X0).

But |Q(t)| ≥ |QL(t)| − |Z(t)|, so that

|Z(t)| ≤
(

E

24L2
− 1

)−1

|Q(t)|,

showing that the diffeomorphism ρl of (4.27) onto its image is C0–near to the
identity in the sense

|ρl(X)− X|
|Q| = O(1/E(X)) (X = (P̃, Q) ∈ Dl ). (4.39)

If we assume X ∈ ∂Dl so that |Q| = cQ , then (4.39) shows that

|QL | − cQ = O(1/E(X)) for (P̃L , QL ) := ρl(X). (4.40)

Since X = �l
±(X0) with X0 ∈ Hl

<, and ∂DL,l is uniformly transversal to the
flow �L,l throughHl

< we obtain from (4.40)∣∣T±l (X0)− T±L,l(X0)
∣∣ = O(1/E(X0)) (X0 ∈Hl

<). (4.41)

In turn, this and (4.39) imply (4.19).
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• We also get (4.17) from the time estimates (4.30) and (4.41) in the two regions.
• Estimate (4.18) for the exit time of the linear flow is derived as follows. By (4.11)

the ‘linear’ energy parameter equals

EL(X0) = Zl

|P̃0|2 − |Q0|2
.

The (lifted) angular momentum (see (3.7) of the pericentric initial data X0 =
(P̃0, Q0) equals

| �L(X0)| =
1
4

∣∣Q∗
0 P0 − P∗0 Q0

∣∣ = 1
2

∣∣Im(
Q∗

0 P0
)∣∣ = 1

2 |P0| |Q0| =
√

2EL(X0)|P̃0| |Q0|,
since 〈P0, Q0〉 = 0, see (3.7). Thus

|Zl| · e(X0)

EL(X0)
=
√
(Zl/EL(X0))2 + 4|P̃0|2|Q0|2 = |P̃0|2 + |Q0|2.

On the other hand the exit times T+L,l(X0) and T−L,l(X0) = −T+L,l(X0) are implicitly
given by the equation ∣∣∣QL

(
T+L,l(X0), X0

)∣∣∣ = cQ

with QL(t, X0) = sinh(t)P̃0 + cosh(t)Q0, whence

exp
(
2T+L,l(X0)

) = 4c2
Q

|P̃0|2 + |Q0|2
+O(E0

L(X0)
)

= 4cqEL(X0)

|Zl| e(X0)
+O(E0

L(X0)
)
.

This proves (4.18).

• The C0-estimate (4.20) follows immediately from (4.19).
• In order to obtain the C1-estimate (4.21), one considers

DZ(t) := D�t
l(X)− D�t

L,l(�(X))
(
X0 ∈ �l

±(Hl
<)
)
.

DZ(t) solves the integral equation

DZ(t) =
∫ t

0

((
0 1l
1l 0

)
DZ(s)+ E−1 DR̃(X(s))DX(s)

)
ds.

W.l.o.g. we may again assume that Wl(�sl) = 0, since otherwise we may shift the
energy E by that constant, producing an error term of relative orderO(1/E). Then
by inspection of (4.5) one notes that the matrix DR̃((P̃, Q)) = 0 at Q = 0. We
may thus estimate

‖DR̃((P̃, Q))‖ ≤ L3|Q| ((P̃, Q) ∈ Dl), (4.42)

where L3 > 0 is the Lipschitz constant of DR for |Q| ≤ cQ .
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From (4.42) we obtain (4.21) by a Gronwall estimate similar to (4.37), which
we apply to

DZ(t) =
∫ t

0

[((
0 1l
1l 0

)
+ E−1 DR̃(X(s))

)
DZ(s)+ E−1 DR̃(X(s))DY(s)

]
ds,

with t ≤ T+l (X0), f(t) := ‖DZ(t)‖,

g(s) := 1+ L3cQ/E ≥ ∥∥ ( 0 1l
1l 0

)+ E−1 DR̃(X(s))
∥∥

and

A := 4cqL3√|Zl|
√

E/e ≥ E−1

∥∥∥∥∥
∫ T+l (X0)

0
DR̃(X(s))DY(s)ds

∥∥∥∥∥ .
To obtain the last estimate, the time bounds (4.17) and (4.18) are inserted. Thus for
t ≤ T+l (X0)

f(t) ≤ A exp

(∫ t

0
g(s)ds

)
= O

(
E−

1
2 e(X0)

− 1
2

)
·O

(
E

1
2 e(X0)

− 1
2

)
.

,-

5. Regularization by phase space extension

In Sect. 4 the motion in configuration space R3
�q near a singularity at �sl was regular-

ized using the KS transform. This will enable us in Sect. 8 to compare that motion
with the motion in the Kepler potential �q �→ −Zl/|�q − �sl |.

However, we would like to apply these local estimates to a complete Hamilto-
nian flow on a phase space which arises by a completion of T∗M̂. Therefore in the
case of attracting singularities (Zl > 0) we now employ a different regularization.

To preserve continuity of the motion with respect to the initial conditions,
a particle colliding with a nucleus at �sl ∈ R3

�q must be reflected backwards. Then we
parametrize the state of the colliding particle by its energy and by its incoming
(or outgoing) direction. That is, we complete phase space by adjoining manifolds
R× S2, one for each attracting singularity.

Note that for all energies E the energy surfaces Ĥ−1(E) could be completed
topologically using only the Kustaanheimo-Stiefel construction (by taking the
quotient of the quadric surface I−1(0) w.r.t. the circle action α defined in (3.5)).
This, however would lead to a time change which is unwanted here.

Theorem 5.1. There exists a unique smooth extension (P, ω, H )of the Hamiltonian
system (T∗M̂, ω̂, Ĥ), where the phase space P is a smooth six-dimensional mani-
fold with

P := T∗M̂ ∪
⋃

1≤l≤n
Zl>0

(
R× S2)
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as a set, ω is a smooth symplectic two-form on P with

ω�T∗ M̂ = ω̂ :=
3∑

i=1

dqi ∧ dpi,

and H : P → R is a smooth Hamiltonian function with H�T∗ M̂ = Ĥ.
The smooth Hamiltonian flow

� : R× P → P (5.1)

generated by H is complete (and we often write �t(x) instead of �(t, x)).
For all energies E > Vmax (defined in (2.9)) the energy shell

E := {x ∈ P | H(x) = E} (5.2)

is a smooth, five-dimensional manifold.

Proof. It is clear that the particle cannot escape to spatial infinity in finite time.
If Zl < 0 there is no need here to regularize, since then by (4.2) the minimal
distance is bounded by |�q −�sl| ≥ |Zl|/(2E) if E > 0 resp. |�q −�sl | ≥ cq if E ≤ 0.

For the remaining case of an attracting singularity (Zl > 0) we linearize the
motion near collision by using as phase space coordinates the angular momentum
components, the direction of the Runge-Lenz vector �Fl , energy and the time passed
since the pericentre of the orbit. The first five of these six functions are constant
on the Kepler orbit. Then we add the collision manifold of phase space points with
time and angular momentum both equal to zero. This manifold is then parametrized
by energy and by �Fl/| �Fl| and is thus diffeomorphic to R× S2.

In [KK] the case of d = 2 dimensions is treated, the calculations being more
detailed than here. Comparing with the Delaunay coordinates (see, e.g., [AM],
Chapter 9.3), instead of the semi-major axis we use energy, and instead of the
mean anomaly (which is only defined for negative energies) we use time.

If the potential V is not centrally symmetric around �sl , then at collision some
of the former constants of motion cease to be smooth functions of time. To remedy
this is we redefine them by using their value at the pericentre of the orbit.

1) More specifically, we introduce adapted coordinates to regularize the flow in the
phase space neighbourhood Ûε

l , 0 < ε ≤ cq , of the lth nucleus, with

Ûε
l :=

{
(�p, �q) ∈ T∗M̂

∣∣∣∣|�q − �sl| < ε, |�p|2 > 3

2

Zl

|�q − �sl|
}
. (5.3)

On Ûε
l , the Hamiltonian function has the form Ĥ(�p, �q) = Ĥl(�p, �q)+ Wl(�q) with

Ĥl(�p, �q) := 1

2
�p 2 − Zl

|�q − �sl| (5.4)

and the smooth additional potential Wl on Bl(cq),

Wl(�q) =
∑
i 	=l

−Zi

|�q − �si | + W(�q).
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One basic estimate on Ûε
l , valid for ε small, is

d

dt
((�q − �sl ) · �p) ≥ 1

2

Zl

|�q − �sl| − (�q − �sl ) · ∇Wl(�q) > 0. (5.5)

Every collision orbit with �sl enters Ûε
l , as

|�p|2 − 3

2

Zl

|�q − �sl | =
1
2

Zl

|�q − �sl| + 2(E − Wl(�q))→∞

as �q approaches �sl .

2) We first treat the Keplerian case Wl ≡ 0. The angular momentum L̂l : Ûε
l → R3

relative to the position of the lth nucleus equals

L̂l(�p, �q) := (�q − �sl)× �p. (5.6)

Let T̂l : Ûε
l → R be the time elapsed since the closest encounter of the Kepler

solution with the nucleus. By (5.5) there is only one such pericentre of the orbit,
with distance rmin. T̂l is given by

T̂l(�p, �q) :=
∫ |�q−�sl |

rmin(�p,�q)
r dr√

2r2 Ĥl(�p, �q)+ 2Zlr − L̂2
l (�p, �q)

· sign((�q − �sl) · �p)

(5.7)

with

rmin(�p, �q) :=



−Zl+
√

Z2
l +2Ĥl(�p,�q)L̂2

l (�p,�q)
2Ĥl(�p,�q) , Ĥl 	= 0

L̂2
l (�p, �q)/2Zl , Ĥl = 0

. (5.8)

T̂l is a smooth function, which can be seen by explicit evaluation of the integrals:∫
r√

2r2 E + 2Zr − L2
dr = (5.9)

r√
2E

√
1+ Z

rE
− L2

2r2 E
− Z

(2E)3/2
ln
(

Er + 1

2
Z +

√
E
(
r2 E + Zr − 1

2 L2
))

for E > 0 and Z > 0 (see Thirring [Th], for more information).
The Runge-Lenz vector �Fl : Ûε

l → R3 relative to the lth centre is given by

�Fl(�p, �q) := �p× L̂l(�p, �q)− Zl
�q − �sl

|�q − �sl| . (5.10)

On its domain Ûε
l of definition �Fl is non-zero: | �Fl|2 = 2|L̂l|2 Ĥl + Z2

l > Z2
l /4.

Thus we may define the pericentral direction F̂l : Ûε
l → S2 by F̂l := �Fl/| �Fl|.

The angular momentum vector L̂l is perpendicular to that direction: L̂l · F̂l = 0.
The map

Ŷ : Ûε
l → T∗(R× S2) \ 0̄, (�p, �q) �→ (T̂l, L̂l; Ĥl, F̂l)



The n-centre problem of celestial mechanics for large energies 29

is a diffeomorphism onto its image, (0̄ denoting the zero section of the cotangent
bundle T∗(R× S2)).

3) The Poisson brackets between the above variables are given by

{T̂l, Ĥl} = 1 , {L̂l, Ĥl} = �0 , {F̂l, Ĥl} = �0 , {F̂l, T̂l} = �0 and {L̂l, T̂l} = �0,
so that in particular the angular momentum and the pericentral direction are con-
stants of the Kepler flow. The components of angular momentum and the asymptotic
direction have the Poisson brackets

{(F̂l)i , (F̂l) j } = 0, {(L̂l)i , (L̂l) j} = εi jk(L̂l)k, {(L̂l)i, (F̂l) j} = εi jk(F̂l)k,

using the Poisson brackets {( �Fl)i, ( �Fl) j} = −2Ĥlεi jk( �Fl)k.

4) Because of the above Poisson brackets with Ĥl , by introducing the above
coordinates, we obtain a chart in Ûε

l which explicitly linearizes the (incomplete)
Kepler flow.

The motion is then regularized in the following way. One defines a completion
of Ûε

l by setting Uε
l := Ûε

l ∪
(
R× S2

)
as a set, and one introduces a topology on

Uε
l by extending the map Ŷ = (T̂l, L̂l; Ĥl, F̂l) to

Y := (Tl,Ll; Hl,Fl) : Uε
l → T∗(R× S2)

by mapping (h, f) ∈ R× S2 onto the point (0, 0; h, f) of the zero section. By that
procedure we obtain the topological manifold P and, by taking limits, we extend
the Hamiltonian Ĥ to a continuous function H : P → R. The topology of P is
thus determined by the purely Coulombic local Hamiltonians Ĥl , and, by taking
limits for the collision orbits, we are able to extend the flow generated by Ĥ to
a complete continuous flow �t on P.

Moreover, the calculation of all the Poisson brackets shows that we may con-

tinuously extend the symplectic form
(∑3

i=1 dqi ∧ dpi

)
�Ûεl to Uε

l and obtain

a nondegenerate two-form, which is smooth in the new coordinates.

5) To generalize the construction to the case of the flow generated by H which is
of the local form Hl + Wl , we define similar canonical coordinates in Uε

l which
linearize the H-flow�t .

By (5.5) for ε > 0 small enough, the orbits are transversal to the hypersur-
face Ŝεl . We extend that hypersurface to the topological submanifold

Sεl := Ŝεl ∪
(
R× S2) ⊂ Uε

l . (5.11)

If Wl ≡ 0, we define the differential structure near the lth collision manifold
R× S2 by pull-back with Y . In general we define a map

Ỹ := (T̃l, L̃l; H̃l, F̃l) : Uε
l → T∗(R× S2)

by letting H̃l := H�Uεl be the energy and

T̃l(�
t(x)) := t

(
x ∈ Sεl

)
(5.12)
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the time passed since the passage of the pericentre. Note that (5.12) defines T̃l
everywhere on Uε

l , since every orbit in Uε
l passes Sεl exactly once.

L̃l(�
t(x)) := Ll(x) and F̃l(�

t(x)) := Fl(x)
(
x ∈ Sεl

)
are then the angular momentum and the asymptotic direction at the pericentre x of
the orbit.

Clearly, by fiat, H̃l, L̃l and F̃l are constant on one orbit �t(�p, �q), whereas
T̃l(�

t(�p, �q)) is an affine function of time t. Therefore we have linearized the full
motion. We must show that the functions (T̃l, L̃l; H̃l, F̃l), restricted to Ûε

l , are
indeed smooth coordinates. But this follows from the smoothness of the lifted
functions in Lemma 3.1, smoothness of time change, and smoothness of the KS
flow (4.6) (which of course exists for all energies E ∈ R).

Since Ỹ ≡ (T̃l, L̃l; H̃l, F̃l) defines a homeomorphism of Uε
l onto its image, we

use it to define a differential structure on the whole of Uε
l and thus on P.

Smoothness of the energy shells E for E > Vmax follows by noticing that
these E are regular values of H : P → R. ,-

6. Møller transformations

Next we define the Møller and scattering transformations which compare the
asymptotics of the motion with a ‘free motion’. We base ourselves on the articles
[Hu] of Hunziker and [Sim] of Simon. The recent monograph [DG] by Dereziński
and Gérard treats these questions in the context of classical and quantum mechanical
n-body scattering.

Due to the long–range character of the Coulomb interaction we cannot in
general use the flow generated by the Hamiltonian function �p 2/2 as ‘free motion’.
Instead, we compare with the Kepler motion generated by

Ĥ∞(�p, �q) := 1

2
�p 2 + V∞(�q) with V∞(�q) = − Z∞

|�q| . (6.1)

Thus we consider the smooth complete flow

�t∞ : P∞ → P∞ (6.2)

generated by (6.1).

• If Z∞ = 0, �t∞ is the free flow on the phase space P∞ := T∗R3.
• If Z∞ > 0, we regularize T∗(R3 \ {0}) in the way described in Theorem 5.1 to

obtain P∞.
• If Z∞ < 0, then�t∞ is already complete on P∞ := T∗(R3\{0}), since particles

of finite energy cannot meet the origin at �q = �0.

Thus we are to compare motions �t and �t∞ on the different phase spaces P
and P∞. We cannot just identify P with P∞ by neglecting the measure zero sets
projecting to the singularities, since later on we will be interested in certain sets of
measure zero like the bound states (moreover, these bound states will turn out to
be crucial in our analysis of scattering, too).
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We overcome the above difficulty by observing that it suffices to identify P∞
with P in a neighbourhood of spatial infinity. More precisely, let

P∞,+ := {x ∈ P∞ | H∞(x) > 0} (6.3)

be the set of phase space points with positive ‘free’ energy. Then the orbit�t∞(x)
starting at x ∈ P∞,+ goes to spatial infinity for large positive and negative times.
The ball {�q ∈ R3

�q | |�q| ≤ Rmin} contains all singularities of V and the singularity at
the origin of the Kepler Hamiltonian H∞. Therefore, we can canonically identify
points (�p, �q) ∈ P∞ with points (�p, �q) ∈ P if |�q| > Rmin, and we denote this
identification by Id. Thus the Møller transformations

�± := lim
t→±∞�

−t ◦ Id ◦�t∞ (6.4)

are formally maps �± : P∞,+ → P. They exist as pointwise limits, see Theo-
rem 6.3 below.

First some standard definitions (see [Hu]):

Definition 6.1.

b± := {x ∈ P | �q (±R+, x) is bounded } , b±E := b± ∩E

b := b+ ∩ b− (the bound states) , bE := b ∩E

s± := {x ∈ P | x 	∈ b± and H(x) > 0} , s±E := s± ∩E

s := s+ ∩ s− (the scattering states) , sE := s ∩E .

We shall show that s± = �±(P∞,+) so that the term ‘scattering states’ is really
justified.

Remarks 6.2. 1) By continuity of �t , b± can be represented as the union b± =
∪∞k=1b±,k of compact sets b±,k. Hence b± and s± are measurable w.r.t. Liouville
measure

λ := 1

3!ω∧ ω ∧ ω
on the symplectic manifold (P, ω).
2) The sets b± and s± are also �t-invariant.

For all E > 0 the sets b±E are closed, and bE is compact, being a subset of
the compact region in E projecting to the ball {�q ∈ R3 | |�q| ≤ Rvir(E)} in
configuration space.

Theorem 6.3. The limits

�± = lim
t→±∞�

−t ◦ Id ◦�t∞

exist pointwisely on P∞,+ ⊂ P∞ and thus define the Møller transformations
�± : P∞,+ → s±. These are measure-preserving homeomorphisms and intertwine
�t and�t∞:

�± ◦�t∞ = �t ◦�±.
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The asymptotic limits �p± : s± → R3 and �L± : s± → R3 of the momentum and
the angular momentum �L(�p, �q) := �q × �p

�p±(x0) := lim
t→±∞ �p ◦�t(x0) and �L±(x0) := lim

t→±∞
�L ◦�t(x0) (6.5)

are continuous functions. If (�p0, �q0) ≡ x0 with q0 := |�q0| > Rvir(E) and
±〈�q0, �p0〉 ≥ 0, then

�p±(x0) = �p0 +O
(
1/(q0

√
E)
)

, �L±(x0) = �L(x0)+O
(
1/
(
qε0
√

E
))
, (6.6)

and for ( �P0, �Q0) := �±(�p0, �q0) and E > Eth

�P0 = �p0 +O
(
1/
(
q1+ε

0

√
E
))

, �Q0 = �q0 +O
(
1/
(
qε0 E

))
. (6.7)

If ε = 1 in Definition 2.1 of Coulombic potentials, then for all energies E > 0

∣∣ �P0 − �p0
∣∣ ≤

√
E Rmin

q0

C2

Eq0
,

∣∣ �Q0 − �q0
∣∣ ≤ Rmin

C2

Eq0

(remark that by Definition (2.14) of C2 one always has C2
Eq0

≤ 1).

Proof. First we show (6.5). Since the system is reversible, we consider only the
case t →+∞. For initial conditions x0 ∈ s+E there exists a time t0 with

|�q(t0)| ≥ Rvir(E) and 〈�q(t0), �p(t0)〉 ≥ 0

for (�p(t), �q(t)) := �t(x0), since otherwise |�q(t)| would be uniformly bounded as
t →∞.

W.l.o.g. we assume t0 = 0. Then by (2.16)

�q 2(t) ≥ �q 2
0 + 1

2 Et2 (t ≥ 0).

Thus by (2.5)∣∣∣∣ d

dt
�p(t)

∣∣∣∣ = |∇V(�q(t))| ≤ |Z∞| + C1 R1−ε
min

q2
0 + 1

2 Et2
(t ≥ 0),

the limit �p+(x0) = limt→∞ �p(t) exists, and for this choice of x0

�p+(x0)− �p0 = O(1/(q0
√

E)).

Being a locally uniform limit of the continuous functions x0 �→ �p(t, x0), �p+
is continuous. Next we show that the asymptotic limit �L+(x0) of the angular
momentum exists. For t ≥ 0 we can estimate∣∣∣∣ d

dt
�L(�p(t), �q(t))

∣∣∣∣ = |∇V(�q(t))× �q(t)|

=
∣∣∣∣
(
∇V(�q(t))− Z∞

�q(t)
|�q(t)|3

)
× �q(t)

∣∣∣∣
≤ C1 Rmin |�q(t)|−1−ε ≤ C1 Rmin

(
q2

0 + 1
2 Et2)− 1

2 (1+ε)
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using (2.5) and (2.16), which shows the existence of the limit �L+(x0), and (6.6).
Continuity of �L+ follows as above.

We now seek a Kepler hyperbola ( �P(t), �Q(t)) := �t∞(X0) which is positive
asymptotic to (�p(t), �q(t)) and write

�r(t) := �q(t)− �Q(t).
Then �r is a solution of the differential equation

�̈r(t) = Z∞
�q(t)− �r(t)
|�q(t)− �r(t)|3 −∇V(�q(t)) with lim

t→∞�r(t) = �0. (6.8)

Setting for E > 0

CE :=
{�r ∈ C

([0,∞),R3)∣∣ ‖�r‖ := sup
t≥0

|�r(t)| < min(Rmin,C2/E)
}

(6.9)

(with C2 = 31(1+ 1/ε)R1−ε
min C1 from (2.14)), by (2.16) and (2.14)

(F�r)(t) :=
∫ ∞

t
ds

∫ ∞

s
dτ

(
Z∞

�q(τ)− �r(τ)
|�q(τ)− �r(τ)|3 − ∇V(�q(τ))

)
(6.10)

is well-defined for �r ∈ CE , noting that by (2.14)

|�q(τ)− �r(τ)| ≥ Rmin.

We estimate |(F�r)(t)| as follows. The integrand of (6.10) is bounded by∣∣∣∣Z∞ �q(τ)− �r(τ)
|�q(τ)− �r(τ)|3 −∇V(�q(τ))

∣∣∣∣
≤
∣∣∣∣∇V(�q(τ))− Z∞

�q(τ)
|�q(τ)|3

∣∣∣∣+
∣∣∣∣Z∞ �q(τ)− �r(τ)

|�q(τ)− �r(τ)|3 − Z∞
�q(τ)
|�q(τ)|3

∣∣∣∣
≤ C1 Rmin

|�q(τ)|2+ε +
C1 Rmin

min(|�q(τ)| , |�q(τ)− �r(τ)|)2+ε ≤
9C1 Rmin

|�q(τ)|2+ε
by the decay assumptions (2.5) and (2.6) (which are valid for the asymptotic
potential, too, see Remark 2.3.2), and Definition (6.9). For the last inequality we
used |�r(τ)| ≤ 1

2 |�q(τ)|, following from (2.14).
Estimating |�q(τ)| with (2.16) gives∣∣∣∣

∫ ∞

s
dτ

(
Z∞

�q(τ)− �r(τ)
|�q(τ)− �r(τ)|3 −∇V(�q(τ))

)∣∣∣∣ (6.11)

≤ 9C1 Rmin

∫ ∞

s

(�q 2
0 + 1

2 Eτ2)− 1
2 (2+ε)dτ

≤ 9(2+√2)C1 Rmin√
E

max
(√

Es, q0
)−1−ε

.

Hence a second integration yields

‖F �r‖ ≤ 9(2+√2)C1 Rmin
1+ 1/ε

Eqε0
≤ C2 Rεmin

Eqε0
, (6.12)
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and thus for ε = 1 or E > C2/Rmin or |�q0| ≥ Rvir(E) large F maps CE into itself.
Similarly, for �ri ∈ CE

‖F �r1 − F �r2‖
≤ C1

∫ ∞

0
ds

∫ ∞

s
dτ

|�r1(τ)− �r2(τ)|
min(|�q(τ)− �r1(τ)| , |�q(τ)− �r2(τ)|)2+ε

≤ 8C1‖�r1 − �r2‖
∫ ∞

0
ds

∫ ∞

s
dτ |�q(τ)|−2−ε

≤ 8(2+√2)C1
1+ 1/ε

Eqε0
‖�r1 − �r2‖ ≤ 8

9

C2 Rε−1
min

Eqε0
‖�r1 − �r2‖. (6.13)

By (2.14) for ε = 1 or E > C2/Rmin or |�q0| ≥ Rvir(E) large the r.h.s. of (6.13) is
bounded above by 8

9‖�r1 − �r2‖, so that the map F : CE → CE is a contraction, and
thus has a unique fixed point �r ∈ CE . The first estimate in (6.7) follows from (6.11)
and the second from (6.12).

After having shown unique existence of (�±)−1 : s± → P∞,+, we show
unique existence of the Møller transforms by the same method of integral equations,
interchanging the roles of the two potentials. This is indeed possible with the same
constants (see Remark 2.3.2).

The proof of the remaining statements is the same as in [Sim]. ,-
By energy conservation and (2.4) the modulus asymptotic momenta �p±(x) equals√

2H(x), which is non-zero by Definition 6.1 of s±. So the asymptotic directions

p̂± : s± → S2 , p̂±(x) := �p±(x)√
2H(x)

(6.14)

are well-defined.

Corollary 6.4. 1. s± = �±(P∞,+), that is, every positive energy orbit which is
unbounded in positive (negative) time is positively (negatively) asymptotic to
a Kepler hyperbola.

2. The motion �t generated by the Hamiltonian function H : P → R is asymp-
totically complete, that is, up to a subset of Liouville measure zero the phase
space consists of bound states and scattering states:

λ(P \ (b ∪ s)) = 0.

Similarly for the Liouville measure λE on the energy shell E

λE(E \ (bE ∪ sE )) = 0 (E > 0).

3. The scattering transformation

S := �+∗ ◦�− : D → P∞ (6.15)

with domain D := �−∗ (s) ⊂ P∞,+ and range �+∗ (s) is continuous and
�t∞-invariant, i.e.

S ◦�t∞ = �t∞ ◦ S.
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Proof.
1. The equality of s± with �±(P∞,+) is a consequence of Theorem 6.3, since
�±∗ = (�±)−1 is defined on s±.

2. This is a consequence the fact that�t(b+,k) ⊂ b+,k for t ≥ 0 butλ(�t(b+,k)) =
λ(b+,k), since �t is canonical (see [Hu]).

3. Follows from Theorem 6.3. ,-

Theorem 6.5. Let V be a Coulombic potential whose partial derivatives decay at
infinity according to

∂βq

(
V(�q)+ Z∞

|�q|
)
�q→∞= O

(
|�q|−|β|−1−ε) (

β ∈ N3
0

)
(6.16)

for some 0 < ε ≤ 1. Then the Møller transformations �± : P∞,+ → s± are C∞
diffeomorphisms and canonical transformations.

If (�p0, �q0) ≡ x0 with q0 := |�q0| ≥ Rvir(E) and ±〈�q0, �p0〉 ≥ 0, then for
multi-indices α, β ∈ N3

0 combined in γ := (α, β), ∂γx0 := ∂αp0
∂
β
q0

∂
γ
x0(�p±(x0)− �p0) = O

(
q−|β|−1

0 E−
1
2 (|α|+1)

)
, (6.17)

∂
γ
x0

(�L±(x0)− �L(x0)
) = O(

q−|β|−ε0 E−
1
2 (|α|+1)

)

)
, (6.18)

and for ( �P0, �Q0) := �±(�p0, �q0) and E > Eth

∂
γ
x0(
�P0 − �p0) = O

(
q−|β|−1−ε

0 E−
1
2 (|α|+1)

)
,

∂
γ
x0(
�Q0 − �q0) = O

(
q−|β|−ε0 E−|α|/2−1

)
.

(6.19)

Remarks 6.6. 1) The above decay condition (6.16) is met by purely Coulombic
potentials (2.7) with ε = 1.

2) It is more natural to rescale the momentum by setting �v := �p/√2E (and going to
the rescaled angular momentum �L/√2E). In terms of these variables all estimates
in Theorem 6.5 show an energy dependence of the orderO(1/E).

Proof. Note that all estimates of the theorem for γ = 0 coincide with the ones of
Theorem 6.3.

1) We estimate the derivatives of

�q(t, x0) = �q0 + t �p0 −
∫ t

0

∫ s

0
∇V(�q(τ, x0))dτ ds.
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We have for g := |γ | ≥ 1

∂
γ
x0�q(t, x0) = ∂γx0(�q0 + t �p0)−

∫ t

0

∫ s

0
∇∂γx0 V(�q(τ, x0))dτ ds

= ∂γx0(�q0 + t �p0)−
g∑

N=1

∑
γ(1)+...+γ(N )=γ

|γ (i)|>0

∫ t

0

∫ s

0
DN∇V(�q(τ, x0))

×
(
∂
γ (1)

x0 �q(τ, x0), . . . , ∂
γ (N )

x0 �q(τ, x0)
)

dτ ds (6.20)

or

(1l+Q)(∂γx0 �q
)
(t) = ∂γx0(�q0 + t �p0)−

g∑
N=2

∑
γ(1)+...+γ(N )=γ

|γ (i)|>0

∫ t

0

∫ s

0
DN∇V(�q(τ, x0))

(
∂
γ (1)

x0 �q(τ, x0), . . . , ∂
γ (N )

x0 �q(τ, x0)
)

dτ ds (6.21)

with the linear operatorQ ≡ Qx0 given by

Q( �w)(t) :=
∫ t

0

∫ s

0
D∇V(�q(τ, x0)) �w(τ)dτ ds (t ≥ 0). (6.22)

We note that on the r.h.s. of (6.21) only partial derivatives or order |γ (i)| < g appear,
so that we can perform an induction in g, if we are able to invert the operator 1l+Q.

We assume �w ∈ Ĉ with

Ĉ :=
{
�w ∈ C

([0,∞),R3)∣∣∣ ‖�w‖λ := sup
t≥0

| �w(t)| /〈t〉λ <∞
}

(6.23)

for

〈t〉λ :=
√

1+ (λt)2

(note that Ĉ is independent of the choice of λ > 0).
Q maps Ĉ into itself, and we want to prove that for all positive energies the

operator norm ofQ is strictly smaller than one.
If we assume

q0 ≥ Rvir(E) and 〈�q0, �p0〉 ≥ 0, (6.24)

then estimate (2.16) holds:

|�q(t)| ≥ q0 · 〈t〉λ for all t ≥ 0, with λ := √
E/2/q0. (6.25)

(6.16) implies that

∂βq V(�q) = O(|�q|−|β|−1). (6.26)
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So we find cN > 0 such that

‖DN∇V(�q(τ))‖ ≤ cN (q0〈τ〉λ)−N−2 (N ∈ N). (6.27)

For estimating the norm ofQ, we may restrict ourselves to �w ∈ Ĉ with

‖�w‖λ = 1. (6.28)

Inserting (6.27) and (6.28) into (6.22), we get

|Q( �w)(t)| ≤ c1q−3
0

∫ t

0

∫ s

0
〈τ〉−2

λ dτ ds ≤ c1√
E/2q2

0

∫ t

0

∫ ∞

0
(1+ u2)−1du ds

= c1π√
2Eq2

0

t ≤ c1π

Eq0
〈t〉λ.

Assuming (6.24), a suitable choice of the E-dependence of Rvir consistent with
assumption (2.14) then gives

‖Qx0‖λ ≤ 1
2 and ‖Qx0‖λ = O(1/(q0 H(x0))) (6.29)

for the operator norm ‖Qx0‖λ ofQ w.r.t. the norm ‖ · ‖λ in (6.23).
We return to (6.21) and estimate its r.h.s. Using (6.25) and (6.27), we get∣∣∣∣
∫ t

0

∫ s

0
DN∇V(�q(τ, x0))

(
∂
γ (1)

x0 �q(τ, x0), . . . , ∂
γ (N )

x0 �q(τ, x0)
)

dτ ds

∣∣∣∣ (6.30)

≤ cN q−N−2
0

∫ t

0

∫ s

0
〈τ〉−2

λ dτ ds ·
N∏

i=1

∥∥∂γ (i)x0 �q(·, x0)
∥∥
λ
≤ const. 〈t〉λq−|β|0 E−

1
2 |α|−1,

assuming

∥∥∂γ ′x0 �q(·, x0)
∥∥
λ
= O

(
q
−|β′|+δ|γ ′ |,1
0 E−

1
2 |α′|−1+δ|γ ′ |,1

)
for 0 < |γ ′| < g.

(6.31)

Inserting (6.29) into (6.21), we see that (6.31) holds for the start of the induction,
i.e. |γ ′| = 1. Also, (6.30) is consistent with (6.31), so that (6.31) holds for all
multi-indices γ ′ ∈ N6

0.

2) Now similar to (6.21), the derivatives of the momentum meet the recursion

∂
γ
x0(�p(t, x0)− �p0) = (6.32)

−
g∑

N=1

∑
γ(1)+...+γ(N )=γ

|γ (i)|>0

∫ t

0
DN∇V(�q(τ, x0))

(
∂
γ (1)

x0 �q(τ, x0), . . . , ∂
γ (N )

x0 �q(τ, x0)
)

dτ.

We insert (6.27) and (6.31) into (6.32) and performing the time t →∞ limit. Then
by Lebesgue’s Dominated Convergence Theorem ∂

γ
x0 �p+(x0) exists, and estimate

(6.17) is valid. ∂γx0 �p+ As a locally uniform limit of continuous functions, ∂γx0 �p+ is
continuous.
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3) Similar to the proof of (6.3) we use the ansatz

∂
γ
x0

(�L(x(t, x0))− �L(x0)
) = ∫ t

0
∂
γ
x0

d

dτ
�L(x(τ, x0))dτ

=
∫ t

0
∂
γ
x0

(∇Vsr(�q(τ, x0))× �q(τ, x0)
)
dτ

=
g∑

N=1

∑
γ(1)+...+γ(N )=γ

|γ (i)|>0

∫ t

0
DN(∇Vsr(�q(τ, x0))× �q(τ, x0)

)

(
∂
γ (1)

x0 �q(τ, x0), . . . , ∂
γ (N )

x0 �q(τ, x0)
)

dτ,

in order to estimate the smoothness of the difference between the actual and the
asymptotic angular momentum.

Note that the short range potential Vsr = V −V∞ appears in assumption (6.16).
Thus for all t ≥ 0 the above expression is bounded above by

cN q−|β|−1−ε
0 E−

1
2 |α|

∫ ∞

0
〈τ〉−1−ε

λ dτ ≤ const. q−|β|−ε0 E−(|α|+1)/2.

So by dominated convergence ∂γx0
�L+(x0) exists, and is estimated by (6.18).

4) As in Theorem 6.3 we now consider the Kepler hyperbola

( �P(t; x0), �Q(t; x0)
) = �t∞(X0) , X0 ≡ ( �P0, �Q0) = �+(x0)

which is positive asymptotic to �t(x0) = (�p(t, x0), �q(t, x0)) and write

�r(t) ≡ �r(t; x0) := �q(t, x0)− �Q(t; x0).

Then �r is the solution of the integral equation (6.10). Thus formally

∂
γ
x0�r(t) =

∫ ∞

t

∫ ∞

s
∂
γ
x0∇

(
V∞( �Q(τ; x0))− V(�q(τ, x0))

)
dτ ds

= Iγ1 (t; x0)+ Iγ2 (t; x0) (6.33)

with the integrals

Iγ1 (t; x0) := −
∫ ∞

t

∫ ∞

s
∂
γ
x0∇Vsr(�q(τ, x0)) dτ ds

and

Iγ2 (t; x0) :=
∫ ∞

t

∫ ∞

s
∂
γ
x0∇

(
V∞( �Q(τ; x0))− V∞(�q(τ, x0))

)
dτ ds.
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We estimate the first integral in a similar fashion as the r.h.s. of (6.20), but use
the stronger estimate (6.16) for Vsr instead of (6.26) for V . We thus obtain (with
g = |γ |)

∣∣Iγ1 (t; x0)
∣∣ ≤ g∑

N=1

∑
γ(1)+...+γ(N )=γ

|γ (i)|>0∫ ∞

t

∫ ∞

s

∣∣∣DN∇Vsr(�q(τ, x0))
(
∂
γ (1)

x0 �q(τ, x0), . . . , ∂
γ (N )

x0 �q(τ, x0)
)∣∣∣ dτ ds

≤ const. q−N−2−ε
0

∫ ∞

t

∫ ∞

s
〈τ〉−2−ε

λ dτ ds ·
N∏

i=1

∥∥∂γ (i)x0 �q(·, x0)
∥∥
λ

≤ const. q−|β|−ε0 E−
1
2 |α|−1.

Unlike Iγ1 , Iγ2 depends on �r. So we split it into

Iγ2 = P(∂γx0�r
)+ Iγ3 + Iγ4

with the linear operator

P( �w)(t) := −
∫ ∞

t

∫ ∞

s
D∇V∞( �Q(τ; x0)) �w(τ)dτ ds (t ≥ 0)

Iγ3 :=
g∑

N=1

∑
γ(1)+...+γ(N )=γ

|γ (i)|>0

∫ ∞

t

∫ ∞

s
DN∇

[
V∞( �Q(τ; x0))− V∞(�q(τ, x0))

]

×
(
∂
γ (1)

x0 �q(τ, x0), . . . , ∂
γ (N )

x0 �q(τ, x0)
)

dτ ds

and

Iγ4 :=
g∑

N=2

∑
γ(1)+...+γ(N )=γ

|γ (i)|>0∫ ∞

t

∫ ∞

s

[
DN∇V∞( �Q(τ; x0))

(
∂
γ (1)

x0
�Q(τ; x0), . . . , ∂

γ (N )

x0
�Q(τ; x0)

)
−DN∇V∞( �Q(τ; x0))

(
∂
γ (1)

x0 �q(τ, x0), . . . , ∂
γ (N )

x0 �q(τ, x0)
)]

dτ ds.

On the space of bounded �w, P ≡ Px0 is bounded, since for supt | �w(t)| = 1

|P( �w)(t)| ≤ |Z∞|q−3
0

∫ ∞

0

∫ ∞

s
〈τ〉−3

λ dτ ds

= 2|Z∞|
q0 E

∫ ∞

0

(
1− u√

1+ u2

)
du = 2|Z∞|

q0 E
.
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Assuming (6.24), a suitable choice of the E-dependence of Rvir consistent with
assumption (2.14) thus gives

‖Px0‖ ≤ 1
2 and ‖Px0‖ = O(1/(q0 H(x0))),

so that we can invert 1l− P for all energies E > 0.

Iγ3 and Iγ4 only contain derivatives ∂γ
′

x0�r(τ; x0) with |γ ′| < g.
Majorizing V∞( �Q)− V∞(�q) by 2|DV∞(�q)�r|, the terms in Iγ3 are estimated by

const. q−N−3
0

∫ ∞

0

∫ ∞

s
〈τ〉−3

λ |�r(τ; x0)|dτ ds
N∏

i=1

∥∥∂γ (i)x0 �q(·, x0)
∥∥
λ
=

O
(

q−|β|−1
0 E−

1
2 |α|−1

)
,

since |�r(t, x0)| < Rmin (see (6.9)), and using (6.31).
Finally, inserting �Q = �q − �r into the first N–linear form of Iγ4 and expanding,

we see that each term contains at least one factor of the form ∂γ
(i)

x0 �r(·, x0). So

Iγ4 = O
(

q−|β|−1
0 E−

1
2 |α|−1

)
,

too.
Together with the above estimates for Iγ1 and Iγ3 this finally shows that

∂
γ
x0�r(τ; x0) = (1l− P)−1(Iγ1 + Iγ3 + Iγ4

) = O(q−|β|−ε0 E−
1
2 |α|−1),

which is equivalent to the second assertion in (6.19). By a parametrized version
of the Banach Fixed Point Theorem (see, e.g. [DG], Proposition A.2.2), x0 �→
∂
γ
x0�r(·; x0) is continuous.

The first assertion in (6.19) follows similarly, since

∂
γ
x0(
�P0 − �p0) = −

∫ ∞

t
∂
γ
x0∇

(
V∞( �Q(τ; x0))− V(�q(τ, x0))

)
dτ.

,-

7. The flow between near–collisions

We remind the reader of the relation (2.13) for the virial radius Rvir(E). We assume
that Eth > Vmax so that we may assume Rvir(E) ≡ Rvir for all E > Eth.

By the virial identity (2.12) a trajectory of energy E leaving the interaction
zone IZ = {�q ∈ R3

�q | |�q| ≤ Rvir(Eth)} cannot reenter it.
We show first that a particle cannot stay inside the interaction zone for a long

time without having close encounters with the nuclei. Then we will control long
trajectories within IZ by Poincaré section techniques.

To quantify this, let

IZ(r) := IZ \
n⋃

l=1

int(Bl(r)),
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Bl(r) = {�q ∈ R3
�q | |�q − �sl| ≤ r} being the ball of radius r around the lth nucleus.

Instead of considering the restriction �t�E
of the flow generated by H , it is

technically convenient to consider the flow �t
E generated by

Ĥ E(�v, �x) := 1

2
|�v|2 + V(�x)

2E
on (Ĥ E )

−1(1
2

)
.

We then have for (�p(t), �q(t)) ≡ �t(�p0, �q0) and (�v(s), �x(s)) ≡ �s
E(�v0, �x0)with

(�v0, �x0) := (�p0/
√

2E, �q0)

(�p(t), �q(t)) = (√
2E�v(√2Et), �x(√2Et)

)
. (7.1)

In the lemma below we use the standard Euclidean metric on R3
�v × R3

�x .

Lemma 7.1. For E > Eth the rescaled flow�t
E in IZ(cq) is C1–near to the linear

flow generated by the Hamiltonian function Ĥ∞ ≡ 1
2 |�v|2 in the sense that

sup
s∈[0,T ]

(∣∣�s
E(�v0, �x0)− (�v0, �x0 + s�v0)

∣∣+ ∥∥D�s
E(�v0, �x0)−

(
1l 0
s1l 1l

)∥∥)
= O(1/E)

(7.2)

if

x([0, T ]) ⊂ IZ(cq) (7.3)

Moreover, condition (7.3) is never satisfied if T ≥ 3Rvir.

Proof. We assume that T ≤ 3Rvir, prove estimate (7.2) and then the necessity of
that assumption. The constants

L0 := sup
�q∈IZ(cq)

|V(�q)| , L1 := sup
�q∈IZ(cq)

|∇V(�q)|

and

L2 := sup
�q∈IZ(cq)

|D2V(�q)|

are finite, since IZ(cq) is compact. We bound the differences

Z1(s) := (�v(s)− �v0, �x(s)− (�x0 + s�v0))

and

Z2(s) := D�s
E(�v0, �x0)−

(
1l 0
s1l 1l

)
in (7.2) using their integral equations

�x(s)− (�x0 + s�v0) = −(2E)−1
∫ s

0

∫ u

0
∇V(�x(τ)) dτ du
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and

Z2(s) = −(2E)−1
∫ s

0

(
0 D2V(�x(τ))
0 0

)
dτ

and thus obtain

sup
s∈[0,T ]

|Z1(s)| ≤ L1
T + T 2/2

2E
, sup

s∈[0,T ]
|Z2(s)| ≤ L2

T

2E
.

This is indeed of orderO(1/E).
Moreover, for E > Eth ≥ max(4L0, L1 Rvir) we have

|�v0| =
√

1− V(�x0)/E ≥
√

3

2

and |�x(s)− (�x0 + s�v0)| ≤ Rvir/4 for s ≤ T ≤ 3Rvir so that for T := 3Rvir

|�x(T )− �x0| ≥ |�v0|T − Rvir/4 ≥
(

3
√

3

2
− 1

4

)
Rvir > 2Rvir.

Thus for T = 3Rvir we obtain a contradiction with our assumption (7.3), since the
diameter of IZ equals 2Rvir so that �x0 and �x(T ) cannot be both ∈ IZ . ,-

8. The single scattering process

We now consider motion inside the ball Bl(cq) near the lth singularity, using the
KS estimates of Proposition 4.1. For initial conditions in the phase space region

Dl := π(Dl) = {x ∈ P | |�q(x)− �sl | ≤ cq, H(x) > Eth}
over the ball the exit times

T±l : Dl → R , T±l (x0) := ± inf{t ≥ 0 | |�q(±t, x0)− �sl | = cq}
are well-defined and smooth. We compare them with the exit times T±L,l for the
purely Keplerian motion in Bl(cq) generated by (5.4), and set

�±l : Dl → ∂Dl, x �→ �
(
T±l (x), x

)
and �±L,l(x) := �L(T

±
L,l(x), x).

Similar to (4.16) we define the pericentric hypersurface

Hl := π(Hl ) (8.1)

= {
x ∈ Dl | �q(x) = �sl or 〈�p(x), �q(x)− �sl〉 = 0

}
on which the pericentric time T 0

l : Dl → R vanishes. If Zl > 0 we smoothly
extend T 0

l by demanding that

�0
l (x) := �

(
T 0

l (x), x
) ∈ Hl, (x ∈ Dl ).
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In analogy to (4.13) we introduce the diffeomorphism

�l : ∂Dl → ∂Dl, x ≡ (�p, �q) �→
{
�+l (x) , 〈�p, �q − �sl〉 ≤ 0
�−l (x) , 〈�p, �q − �sl〉 > 0

(8.2)

that permutes incoming and outgoing data and its analog�L,l for the Kepler flow.
We first consider the Kepler flow (with potential �q �→ −Zl/|�q − �sl|) with

incoming, resp. outgoing coordinates(�p−
�q−

)
∈ ∂Dl ∩E and

(�p+
�q+

)
:= �L,l

(�p−
�q−

)
.

It is more convenient to work with the coordinates

�v± := �p±√
2E

and �w± := �q± − �sl

cq
. (8.3)

Lemma 8.1. The Kepler transformation �L,l is given by
 �v+(�v−, �w−) = (1−u2(1+β))�v−−uβ �w−

1−u2

�w+(�v−, �w−) = 2u(1−u2(1+β/2))�v−+(1−u2(1+β)) �w−
1−u2 ,

(8.4)

where

β := Zl

cq E
and u ≡ u(�v−, �w−) := −

〈�v−, �w−〉
1+ 1

2β
= −u(�v+, �w+). (8.5)

Proof. For simplicity of notation we assume �sl = �0. Since the KS transform-
ation (3.2) transforms the scalar product in the formula (4.15)

u =
2
〈
P̃, Q

〉
|P̃|2 + |Q|2

into 〈
P̃, Q

〉
= tr(PQ∗)

4
√

2E
= − tr(pq∗)

2
√

2E
= −〈�p, �q〉√

2E
,

|P̃|2 = cq |�v−|2 = cq(1+ β) and |Q|2 = cq , we see that the definition (8.5) of u is
consistent with the definition in (4.15).

Eqs. (8.4) are obtained by inserting (4.15) into the KS formula (3.2) for
(�p+, �q+), noticing that

−P̃∗ I3 P̃ = pqp

2E
= |�p|2�q − 2 〈�p, �q〉 �p

2E

follows from the three-term-identity

YXY = 2
〈
X∗,Y

〉
Y − 〈Y,Y〉 X∗ (X,Y ∈ H)

of quaternions, applied to �p, �q ∈ ImH. ,-
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As we assumed that the NC-condition holds (no three singularities on a line),
bounded orbits must be scattered by an angle �(�v+, �v−) ≤ ϑ which must be at
least of the order of αmin > 0 (see (2.10)). This can only happen if the mismatch
between the initial velocity �v− and position �w− is only of the order O(1/E). We
first show this for Kepler scattering:

Lemma 8.2. For all energies E > Eth ≥ 4Zmax/cq, angles θ ∈ [π · Eth/E, π],
and initial conditions (�p−, �q−) ∈ ∂Dl ∩E and u ≥ 0 with∣∣∣∣ �v−|�v−| + �w−

∣∣∣∣ ≥ π · Eth

θ · E
, (8.6)

Kepler scattering is in the forward direction, namely the total scattering angle is
bounded by �(�v+, �v−) ≤ θ .

Proof. Since the parameter u ≥ 0 from (8.5) equals

u(�v−, �w−) = −
〈�v−/|�v−|, �w−〉√1+ β

1+ 1
2β

≤ −
〈 �v−
|�v−| , �w

−
〉

so that

1− u2 = (1+ u)(1− u) ≥ 1− u ≥ 1

2

∣∣∣∣ �v−|�v−| + �w−
∣∣∣∣
2

, (8.7)

we get from formula (8.4) for �v+ that

|�v+ − �v−| = u|β|
1− u2

|u�v− + �w−|

≤ u|β|
1− u2

(∣∣∣∣ �v−|�v−| + �w−
∣∣∣∣+ |�v−| ((1− u)+ ∣∣1− 1/|�v−|∣∣)) ,

with β from (8.5).
For E > Eth we have |β| < |Zl|/(cq Eth) ≤ 1

4 , so that |�v−| = √
1+ β ∈ [ 1

2 , 2].
Thus inserting the last two estimates of (8.7) and (8.6) gives

|�v+ − �v−| ≤ 2|β|
(
θ · E

π · Eth
+ 1+

∣∣1− 1/|�v−|∣∣
1− u2

)

= 2|Zl|
cq


 θ

π · Eth
+ E−1 + E−1

∣∣∣1− 1√
1+β

∣∣∣
1− u2




≤ 2|Zl|
cq

(
θ

π · Eth
+ θ

π · Eth
+ 2|Zl|

cq

θ2

π2 · Eth
2

)

≤ θ

2π
+ θ

2π
+ θ2

(2π)2
≤ 5

4π
θ

This proves the assertion, since

�(�v+, �v−) ≤ π

2

|�v+ − �v−|
|�v−| ≤ 5

8
(1+ β)−1/2θ ≤ θ.

,-
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Later on we will study the linearization of the flow �t , using Poincaré section
techniques. Therefore we now calculate the linearization of the Kepler transform-
ation (8.4), for tangent vectors (δ�p−, δ�q−) in the four-dimensional subspace

T(�p−,�q−)(∂Dl ∩E ),

that is, for variations (δ�v−, δ �w−) of (8.3) meeting〈�v−, δ�v−〉 = 0 ,
〈�w−, δ �w−〉 = 0. (8.8)

Lemma 8.3. The linearization of the Kepler Transformation (8.4) is given by

δ�v+ = (1− u2)[((1− u2)− u2β)δ�v− − uβδ �w−] − β[2u�v− + (1+ u2) �w−]du

(1− u2)2

and

δ �w+ = (2u(1− u2)− u3β)δ�v− + ((1− u2)− u2β)δ �w−

1− u2

+
[
(2(1− u2)2 + βu2(u2 − 3))�v− − 2uβ �w−] du

(1− u2)2

with

du := −
〈�w−, δ�v−〉+ 〈�v−, δ �w−〉

1+ 1
2β

.

Proof. By differentiation of (8.4). ,-
As the next lemma shows, there are two regimes of Kepler scattering:

• hard scattering: If the scattering angle is larger than c1/
√

E, then linearized
scattering is basically a reflection combined with scaling. In particular, for an
energy-independent scattering angle the Liapunov exponent is of the approxi-
mate size E.

• soft scattering: If, however, the scattering angle �ψ is smaller than c2/
√

E,
then linearized scattering is a perturbation of free motion.

Lemma 8.4. 1) For c1 > 0 and 0 ≤ δ ≤ 1
2 we consider initial conditions

(�p−, �q−) ∈ ∂Dl ∩E leading to a scattering angle�ψ := �(�v+, �v−) > c1 E−δ.
Then the linearized Kepler Transformation of Lemma 8.3 is estimated by(

δ�v+
δ �w+

)
= 4cq sin2

( 1
2�ψ

)
−Zl

E ·
(

R R
R R

)(
δ�v−
δ �w−

)
+
∣∣∣∣
(
δ�v−
δ �w−

)∣∣∣∣ ·O(E0) (8.9)

where R ≡ R�v+−�v− ∈ O(3,R) is the reflection by the plane perpendicular to the
vector �v+ − �v−.

2) If instead�ψ < c2 E−δ with 1
2 ≤ δ ≤ 1, then

δ�v+ = δ�v−+ O
(
c2

2 E1−2δ) · (|δ�v−| + |δ �w−|),
δ �w+ = 2uδ�v− + δ �w− + 2�v−du+ O(c2

2 E1−2δ) · (|δ�v−| + |δ �w−|). (8.10)
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Remark 8.5. For δ 	= 1
2 the constants c1, c2 become irrelevant (for a threshold

energy Eth ≥ 1).
Observe that the leading term in (8.9) scales like c2

1 E1−2δ 6 1, whereas the
error term of (8.10) scales like c2

2 E1−2δ 7 1.

Proof. 1) First we prove the identity

1− u2 = e2

(2/β + 1)2
(8.11)

with the eccentricity

e =
√

1+ 2E| �Ll|2/Z2
l = 1/ sin

(1
2�ψ

)
(8.12)

of the Kepler hyperbola. By reinserting the (�p, �q)–coordinates with the help of (8.3),

def. (8.5) of u acquires the form u = −2 〈�p−,�q−〉√
2Ecq(2+β) (assuming without loss of

generality that �sl = �0). We now insert the relationship

〈�p−, �q−〉2 = |�p−|2 |�q−|2 − �L2
l = 2(E + Zl/cq)c

2
q − �L2

l

into the expression for 1− u2 to deduce (8.11).
If �ψ > cE−δ,

1− u2 = O(c2 E2(δ−1)) (8.13)

so that

δ�v+ = −2β(�v− + �w−)du

(1− u2)2
− β(δ�v

− + δ �w−)
1− u2

+O(E0) · (|δ�v−| + |δ �w−|)
(8.14)

and

δ �w+ = −2β(�v− + �w−)du

(1− u2)2
− β(δ�v

− + δ �w−)
1− u2 +O(E0) · (|δ�v−| + |δ �w−|).

(8.15)

Using (8.8) we get

du = −
〈 �w− + �v−, δ�v− + δ �w−〉

1+ 1
2β

.

The vectors �w− and �v− in the last formula are nearly anti-parallel. From the

expression (8.4) for �v+ and (8.13) we see that �v+ = �v− − β(�v−+�w−)
1−u2 +O(1/E) or

�v− + �w− = (1− u2)

( �v− − �v+
β

+O(1)
)
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so that

δ�v+ = 2(�v− − �v+ +O(1/E))
〈�v− − �v+ +O(1/E), δ�v− + δ �w−〉
β(1+ β/2)

−β(δ�v
− + δ �w−)
1− u2 +O(E0) · (|δ�v−| + |δ �w−|)

= 2(�v− − �v+) 〈�v− − �v+, δ�v− + δ �w−〉
β

− β(δ�v
− + δ �w−)
1− u2

+O(E0) · (|δ�v−| + |δ �w−|)
Extracting the square of the norm

|�v− − �v+| =
∣∣∣∣ �v−|�v−| − �v+

|�v+|
∣∣∣∣+O(1/E)

= √
2(1− cos(�ψ))+O(1/E) = 2 sin

(1
2�ψ

)+O(1/E),

we obtain the first estimate in (8.9), since by (8.11) and (8.12)

β

1− u2 =
4

βe2 +O(E0) = 4 sin2
( 1

2�ψ
)

β
+O(E0),

and the reflection equals

R�v+−�v− = 1l− 2

∣∣�v− − �v+〉 〈�v− − �v+∣∣
|�v− − �v+|2 .

Estimate (8.9) for δ �w+ follows since the r.h.s. of (8.15) and (8.14) have the
same form.

2) We write

δ�v+ = δ�v− + R1 + R2 , δ �w+ = 2uδ�v− + δ �w− + 2�v−du + R1 + R3

with rest terms

R1 := − β

1− u2

[
δ�v− + δ �w− + 2

(�v− + �w−)du

1− u2

]
,

R2 := β
[
δ�v− + δ �w−

1+ u
+ �v−du

(1+ u)2
+ (�v

− + �w−)du

1− u2

]

and

R3 := β
[

1+ u + u2

1+ u
δ�v− − δ �w− + �v−du + �w−du

(1+ u)2
− (�v

− + �w−)du

1− u2

]

Now we assume that�ψ < c2 E−δ with 1
2 ≤ δ ≤ 1.

So by the first part of the proof R1 = O(c2
2 E1−2δ) · (|δ�v−| + |δ �w−|). By

the same reasoning the (identical, up to sign) last term in R2 and R3 is of order
O(1/E) · (|δ�v−| + |δ �w−|). The other terms in R2 and R3 are of the same order,
since they contain the multiplier β. ,-
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We now use the results of Sect. 4 to compare the true motion with the Kepler
motion of the last lemmata.

Proposition 8.6. For pericentric initial conditions x0 ∈ Hl with energy E :=
H(x0) > Eth

T±l (x0) = T±L,l(x0)+O(E−3/2), (8.16)

and for (�p±, �q±) := �±l (x0) and (�p±L , �q±L ) := �±L,l(x0)(
�p±/√2E, �q±

)
=
(
�p±L /

√
2E, �q±L

)
+O(1/E). (8.17)

For |�q0 − �sl| = O(1/E)

T±L,l(x0) = ±
(

cq√
2E

− Zl

(2E)3/2
ln(Ecq/|Zl|)

)
+O(E−3/2). (8.18)

For arbitrary x0 ∈ Hl the r.h.s. of (8.18) is an upper bound for |T±l (x0)|. The
diffeomorphism

 l : ∂Dl → ∂DL,l, x ≡ (�p, �q) �→
{
�−L,l ◦�0

l (x) , 〈�p, �q〉 ≤ 0

�+L,l ◦�0
l (x) , 〈�p, �q〉 > 0

onto its image which conjugates the maps (�l = ( l)
−1 ◦�L,l ◦ l ) is C0-near to

the identity in the sense that in the Euclidean norm for the (�v, �w)-coordinates (8.3)

| l(x)− x| = O(1/H(x)), (x ∈ ∂Dl ), (8.19)

and the solution �L,l of the linear problem is C1-near to �l in the sense

|�l(x)−�L,l ◦ l(x)| = O(H−1(x)) (8.20)∥∥D�l(x)− D�L,l ◦ l(x)
∥∥ = O(H0(x)). (8.21)

Remark 8.7. In particular the exit times (8.18) are independent of x0, up to
O(E−3/2), if |�q0 − �sl | = O(1/E).

Proof. Estimate (8.17) follows directly from (4.19).
Estimate (4.39) says that for KS initial conditions X0 with π(X0) = x0 the

relative error

|�L,l(s, X0)−�l(s, X0)|
|Q(s, X0)| = O(E−1).

This translates into the estimates

|�q(t, x0)− �qL(t, x0)|
|�q(t, x0)| = O(E−1) (8.22)
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and

|�p(t, x0)− �pL(t, x0)|
|�p(t, x0)| = O(E−1) (t 	= 0). (8.23)

We know that inside Dl each trajectory t �→ �t(x0) passes the hypersurface Hl
only at x0, so that we can parametrize the curves (0, T+l (x0)] 8 t �→ �t(x0) ≡
(�p(t), �q(t)) by their radius r(t) := |�q(t)− �sl| (similarly for negative times).

The explicit formula for the exit time

T+l (x0) = 1√
2

∫ cq

|�q0|

(
E + Zl

r
− L̂2

l (�p(r), �q(r))
2r2 + Wl(�q(r))

)− 1
2

dr

(with the smooth potential Wl defined in (4.1), and relative angular momentum L̂l

in (5.6)) is obtained by integrating the inverse of the radial velocity 〈�p, �q〉 /|�q|.
Similarly

T+L,l(x0) = 1√
2

∫ cq

|�q0|

(
E + Zl

r
− L2

l (x0)

2r2

)− 1
2

dr.

inserting (8.22) and (8.23) then shows the assertion (8.16).
(8.18) follows by evaluating the explicit formula (5.9) for the exit time of the

Kepler flow: As Er2
min + Zlrmin − 1

2 L2
l = 0, the square root terms in (5.9) vanish

for the minimal radius. Further, by our assumption on �q0 we have rmin ≤ C|Zl|/E
for some C > 0, so that

L2
l ≤ |�q − �sl|2 �p 2 = 2|�q − �sl|(E|�q − �sl| + Zl) ≤ 2Z2

l C(1+ C)

E
= O(1/E).

Est. (8.19) follows from (4.19) and similarly (8.20), (8.21) follow from (4.20)
and (4.21), since on ∂DL,l the KS transformation from coordinates (P̃, Q) to the
(�v, �w)-coordinates (8.3) takes the simple form( �v

�w
)
=

(
Q∗ I3 P̃
Q∗ I3 Q

)/
cq.

,-

9. Long paths within the interaction zone

Strong changes of directions only occur if the pericentric distance of the orbit from
a nucleus is of orderO(1/E).

To quantify this, we set for 0 < θ ≤ π

Hl(θ) :=
{

x ∈ Hl

∣∣∣∣ |�q(x)− �sl| < |Zl|
H(x) · sin(θ/4)

}
(9.1)

(with the pericentric hypersurfaceHl defined in (8.1)).
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Lemma 9.1. For C5 > 0 large the following statements are true. Consider peri-
centric initial conditions x0 ∈ Hl of energy E := H(x0) > Eth and θ ∈ [C5/E, π].
• If x0 	∈ Hl(θ), then the directions p̂± := p̂(�±l (x0)) of the orbit through x0

at the moment of entering, resp. exit from the ball Bl(cq) differ at most by the
angle

�ψ = � ( p̂−, p̂+
)
< θ. (9.2)

• Conversely, if x0 ∈ Hl(θ), then

�ψ ≥ θ/4, (9.3)

and positions and momenta are nearly anti-parallel before scattering and
parallel after scattering:

�
(�q(�±l (x0)

)− �sl,± p̂±
) = O((θE)−1). (9.4)

Proof. Because of estimate (8.20) of Proposition 8.6 we need only choose C5 large
and then show the following statements for the Kepler flow (which correspond
to (9.2), (9.3) resp. (9.4)):

�ψL := �
(

p̂−L , p̂+L
) ≤ 1

2θ, (9.5)

sin
( 1

2�ψL
) ≥ 1.05 · sin(θ/8) (9.6)

and

�
(�q±L − �sl,± p̂±L

) = O((θE)−1). (9.7)

with p̂±L := p̂(�±L,l(x0)) and �q±L := �q(�±L,l(x0)).
• We use the explicit formulae of Lemma 8.1 to compute

cos(�ψL) =
〈�v−, �v+〉
|�v−| |�v+| =

〈�v−, �v+〉
1+ β = 1− 1

2

u2β2

(1− u2)(1+ β)
= 1− 1

2

u2(2+ β)2
e2(1+ β) ,

using the substitution (8.11). Now the eccentricity e of the Kepler hyperbola equals

e = |1+ 2Ermin/Zl|, (9.8)

as one sees by comparing the definition (5.8) of the pericentric distance rmin with
(8.12) (formula (5.8) is also valid if Zl < 0; then the energy is always positive).
Thus

sin
(1

2�ψL
) = √

1
2 (1− cos(�ψL)) = u

(
1+ 1

2β
)

√
1+ β

1

|2Ermin/Zl + 1|
≤ |2Ermin/Zl + 1|−1 ≤ sin

( 1
4θ
)

2+ sin
( 1

4θ
)
sign(Zl)

≤ sin
(1

4θ
)
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since u(1 + 1
2β)/

√
1+ β equals the cosine of the angle between �v+ and �w+ and

is thus smaller than one, see (8.5). Then (9.5) follows, since the sine function is
monotone increasing on [0, π/2].
• By (8.12) and (9.8)

sin
(1

2�ψL
) = 1/e = |1+ 2Ermin/Zl|−1 ≥ sin(θ/4)

|1+ sign(Zl) sin(θ/4)|
≥ sin(θ/4)

1+ 1/
√

2
≥ sin(π/4)

2 sin(π/8)

2 sin(θ/8)

1+ 1/
√

2

showing (9.6).
• With (8.5), (8.11) and (9.8)

sin
(
�
(�q(�±l (x0)

)− �sl,± p̂±
)) = sin

(
�
( �w±,±�v±)) =

√√√√1−
〈 �w±,±�v±〉2〈�w±, �w±〉

=
√

1− u2

(
1+ 1

2β
)2

1+ β =
√
|1− u2| +O(1/E)

= e

|2/β + 1| +O(1/E) =
∣∣∣∣1+ 2Ermin/Zl

2/β + 1

∣∣∣∣+O(1/E)

=
∣∣∣∣2rmin/Zl + 1/E

2cq/Zl + 1/E

∣∣∣∣+O(1/E) = rmin

cq
+O(1/E) = O(1/(θE)),

showing estimate (9.7). ,-

Long trajectories in the interaction zone IZ must have close encounters with
singularities of distance O(1/E). To show this, we now assume that the radius cq
of the balls Bk(cq) is so small that there is no straight line meeting more than two
balls. To be concrete, we assume

cq ≤ 1
4 sin(αmin) · dmin. (9.9)

Proposition 9.2. For Eth large we consider a trajectory segment

[0, T ] 8 t �→ �t(x0) ≡ (�p(t), �q(t)) ∈ D (9.10)

with

D := {x ∈ P | H(x) > Eth, �q(x) ∈ IZ},

which does not intersect any pericentric hypersurfaceHl(αmin/2), (l = 1, . . . , n).
Then, in configuration space, it does not reenter a ball Bk(cq) after leaving it, and
it does not intersect three or more such balls.

Furthermore, the length of the time interval is bounded by T < 13Rvir/
√

2E.
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Proof. • There is no subsegment [t1, t2] 8 t �→ �q(t) of the trajectory, lying in
IZ(cq), which leaves and then reenters a given ball Bk(cq). Namely we may
otherwise assume

�q([t1, t2]) ⊂ IZ(cq) , |�q(t1)− �sk| = |�q(t2)− �sk| = cq and t2 > t1.

Then there would be a time t0 ∈ (t1, t2) with maximal distance |�q(t0) − �sk| ≥ cq

from �sk:

d

dt
|�q(t0)− �sk|2 = 0 and

d2

dt2 |�q(t0)− �sk|2 ≤ 0. (9.11)

But

1

2

d2

dt2 |�q(t0)− �sk|2 = |�p(t0)|2 − 〈∇V(�q(t0)), �q(t0)− �sk〉
≥ 2(E − L0)− sup

�q∈IZ(cq)

〈∇V(�q), �q − �sk〉 ≥ 2(E − L0 − L1 Rvir)

with L0 = sup�q∈IZ(cq)
|V(�q)| and L1 = sup�q∈IZ(cq)

|∇V(�q)|, so that (9.11) does
not hold for E large.

• We now prove that there is no orbit segment (9.10) whose configuration space
projection intersects three balls Bk0(cq), Bk1(cq) and Bk2(cq) in succession. By
going to a subsegment, we otherwise assume outgoing initial data

�q(0) ∈ ∂Bk0(cq) ,
〈�p(0), �q(0)− �sk0

〉 ≥ 0,

ingoing final data

�q(T ) ∈ ∂Bk2(cq) ,
〈�p(T ), �q(T )− �sk2

〉 ≤ 0,

and intermediate times

0 < t− ≤ t+ < T with �q(t±) ∈ ∂Bk1(cq) and ± 〈�p(t±), �q(t±)− �sk1

〉 ≥ 0.

By the first part of the proof we know that k0 	= k1 	= k2. Then the angle γ
between the direction ŝk0,k1 of the axis through the centres and p̂(t−) is bounded by

γ < 1
2αmin. (9.12)

Namely all straight lines intersecting Bk0(cq) and Bk1(cq) have a direction whose
angle γ ′ with ŝk0,k1 is bounded by

sin(γ ′) ≤ cq
1
2 dmin

≤ 1
2 sin(αmin) < sin

(1
2αmin

)
,

using (9.9), so that (9.12) follows for Eth large from Lemma 7.1.
We now consider the unit vector û = λ0ŝk0,k1 + λ2ŝk2,k1 , λi ≥ 0, which is

perpendicular to �sk0,k2 .
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Then by (9.12) the angle between p̂(t−) and û is bounded above by

�( p̂(t−), û) ≤ �(ŝk0,k1 , û)+ γ = π − 1
2π − α(k1, k0, k2)+ γ

≤ 1
2π − αmin + γ < 1

2 (π − αmin) (9.13)

(with cos(α(i, j, k)) = 〈
ŝ j,i, ŝ j,k

〉
).

On the other hand for some time t ∈ [t+, T ] we have

〈
p̂(t), û

〉 ≤ 〈 �q(T )− �q(t+)
|�q(T )− �q(t+)| , û

〉
< 0, (9.14)

because otherwise there is no trajectory between �q(t+) and �q(T ).
But by Lemma 7.1 in the interval t ∈ [t+, T ] the change of direction

�( p̂(t+), p̂(t)) = O(1/E),

so that with (9.13) and (9.14) we must have a large scattering angle

�
(

p̂(t−), p̂(t+)
) ≥ 1

2αmin. (9.15)

within Bk1(cq).
Our assumption that the orbit segment (9.10) does not intersect the pericentric

hypersurface Hk1(αmin/2) (see (9.1) implies by Lemma 9.1 that the deflection
angle is bounded above by

�
(

p̂(t−), p̂(t+)
)
< 1

2αmin

contradicting (9.15).
Thus a trajectory segment can be represented as the union of at most two

segments inside balls Bki (cq) and three segments in IZ(cq).

• By (8.16) and (8.18) for large Eth the time interval spent by the trajectory inside
the ball Bki (cq) has length T+ki

− T−ki
≤ 4cq√

2E
< 2Rvir√

2E
. By Lemma 7.1 with (7.1) the

time interval of the segments in IZ(cq) are of lengths ≤ 3Rvir/
√

2E. So the total
time T is bounded above by

T < 2
2Rvir√

2E
+ 3

3Rvir√
2E

= 13
Rvir√

2E
.

,-
We now control the paths between successive close encounters with the cen-

tres �sk. For radii cq > 0 meeting (9.9) the balls Bk(cq), k ∈ {1, . . . , n} around the
centres �sk do not intersect.

By the NC condition 2.4 the distance dist(�si , Ak,l), i 	= k, l between the centre
and the axis

Ak,l := {t�sl + (1− t)�sk | t ∈ [0, 1]}, (k 	= l)

connecting �sk and �sl is bounded below by sin(αmin) · dmin.
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Thus the configuration space cylinders (see Fig. 1)

Zk,l
M := {�q ∈ R3

�q | dist(�q, Ak,l) ≤ cy, |�q − �sk| ≥ cq ≤ |�q − �sl|
}

have empty intersection with non-adjacent balls (Zk,l
M ∩ Bi(cq) = ∅ for i 	= k, l)

if cy ≤ cq .

• The cylinders themselves are not mutually disjoint;
in particular Z l,k

M = Zk,l
M .

• However, under the NC condition

Zk1,l1
M ∩ Zk2,l2

M = ∅
if the axes Ak1,l1 	= Ak2,l2 are parallel.

• For the choice

cy := 1
2 sin(αmin/2)cq

of the radius we have in addition

Zk,l1
M ∩Zk,l2

M = ∅ (l1 	= l2).

• Finally there is a minimal nonzero angle between nonparallel axes. More pre-
cisely, for this choice of cy a cylinder Zk1,l1

M can only intersect a different

({k1, l1} 	= {k2, l2}) cylinder Zk2,l2
M if the angle arccos

(∣∣ 〈ŝk1,l1 , ŝk2,l2
〉 ∣∣) be-

tween their axes is larger than αmin. The proof of this fact is a nice exercise in
conic sections.

Thus for

cp := 1
2 min

(1
2αmin, cy/dmax

)
and E > Eth the phase space regions

Zk,l :=
{

x ≡ (�p, �q) ∈ D
∣∣∣ �q ∈ Zk,l

M ,

∣∣∣�p/√2H(x)− ŝk,l
∣∣∣ ≤ cp

}
(withD = {x ∈ P | H(x) > Eth, �q(x) ∈ IZ}) do not intersect (Zk1,l1 ∩Zk2,l2 = ∅
for (k1, l1) 	= (k2, l2)).

For k 	= l we erect Poincaré hypersurfacesHk,l near the midpoint

�mk,l := 1
2 (�sk + �sl ) ∈ Ak,l

by setting for e0 > 0

Hk,l
M (E) :=

{
�q ∈ R3

�q |
〈�q − �mk,l, ŝk,l 〉 = 0, |�q − �mk,l | < 1

8 cp · dk,le0/E
}
,

so thatHk,l
M (E) ⊂ Zk,l

M for Eth large and E > Eth, and

Hk,l
E :=

{
(�p, �q) ∈ E

∣∣∣ �q ∈ Hk,l
M (E), .〈

�p, ŝk,l
〉
> 0,

∣∣∣∣ �p√
2E

× ŝk,l
∣∣∣∣ < 1

2 cpe0/E

}
, (9.16)



The n-centre problem of celestial mechanics for large energies 55

Fig. 1. Configuration space projections Hk,l
M of Poincaré sections

so thatHk,l
E ⊂ Zk,l , too; see Fig. 1. TheHk,l

E are four-dimensional submanifolds
without boundary of E . Sometimes we work with their closures

H
k,l
E , (9.17)

which are diffeomorphic to products of two closed disks (and as such formally
speaking no manifolds).

High energy orbits between near-collisions are nearly straight and thus move
near some axis:

Lemma 9.3. Let Eth and the constant e0 > 0 in (9.16) be large and consider for
E > Eth trajectory segments of the form

[−T, T ] 8 t �→ x(t) ≡ (�p(t), �q(t)) := �t(x0)

with initial values x0 ∈ E , starting and ending in the pericentric hypersur-
faces (9.1):

x(±T ) ∈ Hk±(αmin/2)

but not intersecting a pericentric hypersurfaces in between:

x((−T, T )) ∩Hl(αmin/2) = ∅ (l = 1, . . . , n). (9.18)

Then the trajectory segment is contained in the phase space region

x([−T, T ]) ⊂ Zk−,k+ ∪Dk− ∪Dk+ , (9.19)

and there is a unique t0 ∈ (−T, T ) with

�t0(x0) ∈ Hk−,k+
E . (9.20)

Conversely for k+ 	= k− the exit time

T k−,k+,±
E : Hk−,k+

E → R± , T k−,k+,±
E (x0) := ± inf

{
t ≥ 0 | �±t(x0) ∈ ∂Zk−,k+}
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from Zk−,k+ is of order

T k−,k+,±
E = ±

1
2 dk−,k+ − cq√

2E
+O(E−3/2), (9.21)

and the exit points (�p±, �q±) := �(T k−,k+,±
E (x0), x0) are estimated by

(�p±/√2E, �q±) = (
ŝk−,k+ , �n k∓,k±)+O(1/E), (9.22)

with the intersection point �n k,l := �sl + cqŝl,k between the axis Ak,l and the sphere
∂Bl(cq), see Fig. 1.

Proof. By straight line geometry and Lemma 7.1 trajectories t �→ �q(t, x0) with
x0 ∈ Hk−,k+

E intersect ∂Zk−,k+
M near �n k∓,k± , and

�p±/√2E − ŝk−,k+ = (�p±/√2E − �p0)+ (�p0 − ŝk−,k+) = O(1/E),

again using Lemma 7.1 and the definition (9.16) of Hk−,k+
E . This shows (9.22).

Since | �mk−,k+ − �n k∓,k± | = 1
2 dk−,k+ − cq , (9.21) follows from Lemma 7.1.

Concerning the first statement of the lemma, we know from (9.4) of Lemma 9.1
that for t± := T±k∓(x(∓T ))

(�p±, �q±) := � (
t∓, x(±T )

) ∈ (�q�E
)−1(∂Bk±(cq))

have the property

�q± − �sk± = ± cq√
2E

�p± +O(1/E). (9.23)

Furthermore, by the assumption (9.18) and the first statement of Proposition 9.2
the trajectory lies in IZ(cq) during the time interval [−T + t+, T − t−]. Thus (7.2)
and (7.1) imply that

�p+√
2E

= �p−√
2E

+O(1/E) (9.24)

and

�q+ − �q−
|�q+ − �q−| =

�p−√
2E

+O(1/E). (9.25)

Using (9.23), (9.25) and then (9.24),

�sk+ − �sk− ≡ (�sk+ − �q+)+ (q− − �sk− )+ (�q+ − �q−)
= cq√

2E
(�p+ + �p−)+ |�q+ − �q−|√

2E
�p− +O(1/E)

= 2cq + |�q+ − �q−|√
2E

�p± +O(1/E)

so that ∣∣�p±/√2E − ŝk− ,k+ ∣∣ = O(1/E).

A second application of (9.25) shows that the second term in (9.22), too isO(1/E).
By Lemma 7.1 we obtain (9.19) and (9.20). ,-
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10. The Poincaré map

For E > Eth consider the Poincaré surfaces

HE :=
n⋃

k,l=1
k 	=l

Hk,l
E , H±E := HE ∪ ∂D±E (10.1)

withHk,l
E defined in (9.16) and

DE := D ∩E , ∂D±E := {(�p, �q) ∈ ∂DE | ± 〈�p, �q〉 ≥ 0} . (10.2)

Then the return time to the Poincaré surfaceH+E
TE : DE → [0,∞) ∪ {∞},

is defined by TE(x) := 0 for x ∈ ∂D+E and

TE(x) := inf
{
t > 0

∣∣�t
E(x) ∈ H+E

}
,

(
x ∈ DE \ ∂D+E

)
. (10.3)

Lemma 10.1. For E > Eth the Poincaré return time TE is finite and

TE = O(1/
√

E).

Proof. Let x0 ∈ DE \ ∂D+E . By Proposition 9.2 for a time t1 ∈ [0, 13Rvir/
√

2E]
the point x1 := �t1(x0)

• either exits DE , that is x1 ∈ ∂D+E• or meets a pericentric surface near the kth nucleus: x1 ∈ Hk(αmin/2).

In the first case we are done. In the second case we iterate the above argument and
find t2 ∈ [t1, t1 + 13Rvir/

√
2E] for which the point x2 := �t2(x0) either exits DE

(x2 ∈ ∂D+E ) or meets a pericentric surface near the l 	= kth nucleus:

x2 ∈ Hl(αmin/2).

In the relevant second case we know from (9.20) of Lemma 9.3 that

x3 := �t3(x0) ∈ Hk,l
E

for some t3 ∈ (t1, t2). ,-
We shall analyze the Poincaré map

PE : H−E → H+E , PE(x) := �(TE(x), x). (10.4)

When we work with the closures

HE :=
n⋃

k,l=1
k 	=l

H
k,l
E , H

±
E := HE ∪ ∂D±E

(see (9.17)), we write T E , PE etc.
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Lemma 10.2. PE is a bijection, and its restriction toH−E \P−1
E (∂H+E ) is smooth.

Proof. PE is one-to-one: If PE(x1) = PE(x2) and TE(x1) ≤ TE(x2), then x1 =
�t2−t1(x2) and

• either x1 ∈ ∂D−E . Then x2 = x1 since by the virial inequality

�t(H−E ) ∩ ∂D−E = ∅ for t > 0,

• or x1 ∈ HE . Then by definition of TE using the infimum, x2 = x1, too.

PE is onto: Time reversal

TR : P → P, (�p, �q) ∈ T∗M̂ �→ (−�p, �q), x ∈ P \ T∗M̂ �→ x (10.5)

is a smooth anti-symplectic transformation, with

TR ◦�t ◦ TR = �−t (t ∈ R)
and

TR
(
H±E

) = H∓E .
Thus

P−1
E (x) = TR ◦ PE ◦ TR(x).

Smoothness of PE�U for U := H−E \ P−1
E (∂H+E ) follows from transversality of

the codimension one ∂–manifold U ⊂ E to the flow�t�E
, since PE�U maps to

inner points ofH+E . ,-

Symbolic dynamics

In order to use symbolic dynamics, we introduce symbol sequences

k = (ki)i∈I ∈ S I

over the alphabet

S := {1, . . . , n},
where

I ≡ Ir
l := {i ∈ Z | l ≤ i ≤ r} (10.6)

for l, r ∈ Z ∪ {±∞} is a (finite, half-infinite or bi-infinite) interval.
k is called admissible if ki 	= ki+1 for all {i, i + 1} ⊂ I .
For E > Eth and (k0, k1) admissible we set

VE(k0, k1) := WE(k0, k1) := Hk0,k1
E , (10.7)
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and for (k−m, . . . , k0) admissible

WE(k−m, . . . , k0) := WE(k−1, k0) ∩ PE(WE(k−m, . . . , k−1)), (10.8)

resp. for (k0, . . . , km) admissible

VE(k0, . . . , km) := VE(k0, k1) ∩ P−1
E (VE(k1, . . . , km)), (10.9)

m ≥ 2. Then by Lemma 10.2 the iterated maps

PE(k0, . . . , km) : VE(k0, . . . , km)→ WE(k0, . . . , km)

PE(k0, . . . , km) := Pm−1
E �VE(k0,... ,km )

are diffeomorphisms (we will show in Proposition 11.5 that the sets VE(k) are
non-empty). Again, W E(k) and V E(k) denote the closures of these sets.

We decompose the Poincaré map PE(k−1, k0, k1) in the form

PE(k−1, k0, k1)(x) = P−E (k−1, k0) ◦ P ′E(k−1, k0, k1) ◦ P+E (k0, k1)(x) (10.10)

≡ P−E ◦ P ′E ◦ P+E (x) (x ∈ VE(k−1, k0, k1))

with the diffeomorphisms

P−E : VE(k−1, k0)→ V ′
E(k−1, k0) := P−E (VE(k−1, k0)) ⊂ ∂Zk−1,k0

x �→ �
(

T k−1,k0,+
E (x), x

)
,

(
P+E

)−1 : WE(k0, k1)→ W ′
E(k0, k1) :=

(
P+E

)−1
(WE(k0, k1)) ⊂ ∂Zk0,k1

x �→ �
(

T k0,k1,−
E (x), x

)
,

and

P ′E : V ′
E(k−1, k0, k1)→ W ′

E(k−1, k0, k1) , x �→ �+l (x)

with �+l defined in (8.2)) for

V ′
E(k−1, k0, k1) := P−E (VE(k−1, k0, k1)) ⊂ V ′

E(k−1, k0),

W ′
E(k−1, k0, k1) :=

(
P+E

)−1
(WE(k−1, k0, k1)) ⊂ W ′

E(k0, k1).

P±E are considered as perturbations of Poincaré maps for the free flow, whereas
Proposition 4.1 allows us to view P ′E as a perturbation of Poincaré maps for the
Kepler flow.
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Adapted coordinates

We now define adapted coordinates in the Poincaré sectionsHE . This will simplify
to introduce invariant cone fields later on.

We complement the unit vectors

ŝ± ≡ ŝ±(k−1, k0, k1) with ŝ± := ŝk±1,k0

pointing towards �sk0 by a unit vector

t̂± ≡ t̂±(k−1, k0, k1) with t̂+ = t̂− perpendicular to span(ŝ−, ŝ+) (10.11)

(by the NC condition 2.4 the span is one-dimensional iff k1 = k−1), and set

û± ≡ û±(k−1, k0, k1) := ŝ± × t̂±. (10.12)

Then t̂± and û±, considered as elements of T�qR3
�q for �q ∈ Hk±1,k0

M , form an or-

thonormal basis of T�qH
k±1,k0
M . We introduce adapted coordinates on VE(k−1, k0)

and WE(k0, k1) by mapping

VE(k−1, k0)→ R2 × R2 , (�p, �q) �→ (�y −, �z −),
WE(k0, k1)→ R2 × R2 , (�p, �q) �→ (�y +, �z +),

with

�y ± :=
(〈�p, t̂±〉〈�p, û±〉

)/√
2E , �z ± :=

(〈�q − �mk±1,k0 , t̂±
〉〈�q − �mk±1,k0 , û±
〉)/ l± (10.13)

and l± := | �mk0,±1 − �sk0 | = 1
2 dk±1,k0 .

Remark 10.3. The coordinates (�y−, �z −) on VE(k−1, k0) depend through the vector
t̂− ≡ t̂−(k−1, k0, k1) on the symbol k1. However, the coordinate systems for the
symbols kI

1 and kII
1 are related by(�y −,I

�z −,I
)
=
(

O �y −,II

O �z −,II

)
,

where O ∈ SO(2,R) is the rotation in the plane spanned by t̂−,I and û−,I which
maps t̂−,I onto t̂−,II (and correspondingly û−,I onto û−,II ).

Similarly we introduce coordinates in

V ′
E(k−1, k0)→ R2 × R2, (�p, �q) �→ (�y ′−, �z ′−)

W ′
E(k0, k1)→ R2 × R2, (�p, �q) �→ (�y ′+, �z ′+)

with

�y ′± :=
(〈�p, t̂±〉〈�p, û±〉

)/√
2E , �z ′± :=

(〈�q − �nk±1,k0 , t̂±
〉〈�q − �nk±1,k0 , û±
〉)/ l′±, (10.14)

l′− := |�nk−1,k0 − �sk−1 | = dk−1,k0 − cq and l′+ := |�nk1,k0 − �sk0 | = cq.

The next lemma shows that arbitrary pairs �z −, �z + of points in the configuration
space projections of the Poincaré surfaces are connected by a trajectory.
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Lemma 10.4. Choose a large enough constant e0 in Definition (9.16) of the
Poincaré surfaces. Then for Eth ≡ Eth(e0) large, all E > Eth and

�z ± ∈ Hk±1,k0
M (E)

there exists a x− ∈ VE(k−1, k0, k1) of the form

x− = (�y −, �z −) with x+ := PE(x
−) = (�y +, �z +).

Proof. By (9.16) in the (�y−, �z −)–coordinates VE(k−1, k0) = Hk−1,k0
E is of the form

VE(k−1, k0) = By × Bz (10.15)

with the two-disks By in momentum space and Bz in configuration space

By :=
{�y ∈ R2 | |�y | < 1

2 cpe0/E
} ⊃ Bz :=

{�z ∈ R2 | |�z | < 1
4 cpe0/E

}
.

(10.16)

We thus consider initial conditions of the form

x− = (�y −, �z −) ∈ By × {�z −} ⊂ VE(k−1, k0)

and their images

x′− = (�y ′−, �z ′−) := P−E (x−) ∈ V ′
E(k−1, k0).

The idea of the proof is that, as By has twice the size of Bz , the family of trajectories
with initial conditions in By × {�z −} has an opening angle O(1/E) that is large
enough to hit a full O(1/E)–neighbourhood of ck0 . Then by near collision, the
opening angle is nearly amplified to 2π, if e0 is chosen large enough.

The threshold energy Eth depends on the constant e0. However, by Lemma 7.1
and a compactness argument one sees that the error termO(1/E) in the C1-estimates∣∣∣∣

(�y ′−
�z ′−

)
−
(

1l 0(
1− l−

l′−
)
1l l−

l′− 1l

)(�y −
�z −

)∣∣∣∣ ≤ C/E (10.17)

∣∣∣∣
(�y +
�z +

)
−
(

1l 0(
1− l′+

l+
)
1l l′+

l+ 1l

)(�y ′+
�z ′+

)∣∣∣∣ ≤ C/E (10.18)

and an identical estimate for the linearizations∣∣∣∣
(
δ�y ′−
δ�z ′−

)
−
(

1l 0(
1− l−

l′−
)
1l l−

l′− 1l

)(
δ�y −
δ�z −

)∣∣∣∣ ≤ C

E
·
∣∣∣∣
(
δ�y −
δ�z −

)∣∣∣∣ (10.19)

∣∣∣∣
(
δ�y +
δ�z +

)
−
(

1l 0(
1− l′+

l+
)
1l l′+

l+ 1l

)(
δ�y ′+
δ�z ′+

)∣∣∣∣ ≤ C

E
·
∣∣∣∣
(
δ�y ′+
δ�z ′+

)∣∣∣∣ (10.20)

of these maps do not depend on e0, that is, C > 0 may be chosen fixed and then e0
chosen arbitrarily large.
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The relations

�p = √
2E± ·

(
∓ŝ± + y±1 t̂± + y±2 û± +O(E−2)

)
�q = �m± + l±

(
z±1 t̂± + z±2 û±

)
with E± := E − V( �m±) show that the angular momentum relative to the k0-st
nucleus before and after scattering equals

�Lk0 ≡ (�q −�sk0)× �p = ±√2E±l± ·
((

y±1 + z±1
)
û± − (

y±2 + z±2
)
t̂± +O(E−2)

)
.

Thus | �Lk0 | = O(e0/
√

E), and

| �Lk0 | ≥ 1
4 l±cpe0/

√
E for (�y −, �z −) with �y − ∈ ∂By.

Estimate (10.17) shows that similar statements hold true for �Lk0 ◦ P−E .
Finally (changing to (�p, �q)–coordinates for a moment) by Proposition 8.6 we

know that the image

x′+ ≡ (�p ′+, �q ′+) := ψ+l (x′−) ∈ W ′
E(k−1, k0, k1)

of x′− ∈ V ′
E(k−1, k0, k1) is near to the image

x′+L ≡ (�p′+L , �q′+L ) := ψ+L,l(x′−L ) ∈ W ′
E(k−1, k0, k1)

of a point x′−L =  (x′−) in a O(1/E)–neighbourhood of x′− in the sense that∣∣�p ′+ − �p′+L
∣∣/√2E + ∣∣�q ′+ − �q′+L

∣∣ = O(1/E). (10.21)

For the Kepler exit map ψ+L,l the formula

e ≡ e
(
x′−L

) = √
1+ 2E �L2/Z2

for the eccentricity of the Kepler hyperbola parametrized by

r(ϕ) = �L2

Z(1+ e cos(ϕ))

shows that the maximal total scattering angle 2 arccos(1/e) ∈ [0, π) can be in-
creased to π − ε (uniformly in E) by increasing e0, so that the diffeomorphism

By × {�z −} 8 x− �→ �q′+L
(
 ◦ P−E (x−)

) ∈ ∂Bk0(cq)

onto its image covers the sphere ∂Bk0(cq) around �sk0 except an ε–neighbourhood
of the forward direction �sk0 + cq · ŝ− ∈ ∂Bk0(cq).

The same holds true for the diffeomorphism

By × {�z −} 8 x− �→ �q′+(P−E (x−)) ∈ ∂Bk0(cq)

onto its image. So by the NC condition 2.4 an ε–neighbourhood U ⊂ ∂Bk0(cq) of
the point �n k1,k0 = �sk0 − cqŝ+ is contained in that image for e0 large. By Definition
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(10.14) of the �z ′+–coordinates this corresponds to a ε–neighbourhood of �z ′+ = 0.
Estimate (9.22) then implies that on this neighbourhood

�y ′+(P ′E ◦ P−E (x−)) = �z ′+(P ′E ◦ P−E (x−))+O(1/E) (x− ∈ By × {�z −}).
Thus we conclude from (10.18) that the intersection

PE(By × {�z −}) ≡ P+E ◦ P ′E ◦ P−E (By × {�z −}) ∩ By × {�z +} ⊂ W(k0, k1)

(10.22)

is non-empty. ,-
Remark 10.5. In fact the point x− ∈ VE(k−1, k0, k1) is unique, as will follow from
Proposition 11.2 below.

Lemma 10.6. For all admissible (k−1, k0, k1) ∈ S3 the Poincaré return time
equals

TE�VE (k−1,k0,k1)
= dk−1,k0 + dk0,k1

2
√

2E
− Zk0

(2E)3/2
ln

(
E

dk−1,k0 + dk0,k1

2|Zk0 |
)
+O(E−3/2).

Proof. TE(x) = T k−1,k0,+
E (x)+ (T+k0

(y)− T−k0
(y))− T k0,k1,−

E (PE(x))

with y := ψ0
k0
◦�(T k−1,k0,+(x), x). The estimate thus follows from (9.21), (8.16)

and (8.18). ,-

11. Existence of an invariant cone field

Definition 11.1. A cone at x ∈ HE is the image of the standard cone

{(�u, �v) ∈ R2 × R2 | |�u| ≥ |�v|}
w.r.t. an invertible linear map

R2 × R2 → TxHE .

A cone field C in U ⊂ HE associates to every x ∈ U a cone C(x) at x.
C is called invariant if for every x ∈ U with PE(x) ∈ U

TxPE(C(x)) ⊂ C(PE(x)),

and strictly invariant if

TxPE(C(x)) ⊂ Int(C(PE(x))) ∪ {0}.
Alternatively one may think of cones as subsets of RP3.

In the next proposition we use the Poincaré section coordinates (�y ±, �z ±)
defined in (10.13).
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Proposition 11.2. For C > 0 large and E > Eth the cone field C in

U :=
⋃

(k−1 ,k0 ,k1)∈S3

admissible

VE(k−1, k0, k1)

C(x) :=
{
(δ�y , δ�z ) ∈ T(�y ,�z )VE(k−1, k0, k1) | |δ�y − δ�z | ≤ C

E
|δ�y + δ�z |

}
(11.1)

for x ≡ (�y , �z ) ∈ U, is strictly PE–invariant, and the linearized Poincaré map
equals

TxPE = f(k−1, k0, k1)E ·
(

1l 1l
1l 1l

)
+O(E0) (x ∈ VE(k−1, k0, k1)), (11.2)

with

f(k−1, k0, k1) := 2dk−1,k0 cos2
(1

2α(k−1, k0, k1)
)

−Zk0

. (11.3)

Remarks 11.3. 1) The linearized Poincaré map (11.2) is invertible, although the
matrix

(
1l 1l
1l 1l

)
is not.

2) Although the coordinates (�y+, �z +) on WE(k−1, k0, k1) ⊂ Hk0,k1
E do not coincide

on their common domain WE(k−1, k0, k1) ∩ VE(k0, k1, k2) with the coordinates
(�y −, �z −) on VE(k0, k1, k2) ⊂ Hk0,k1

E , they are related by(�y +
�z +

)
=
(

O �y −
O �z −

)
,

where O ∈ O(2,R) is the reflection in the plane perpendicular to ŝk0,k1 , trans-
forming the unit vector t̂+(k−1, k0, k1) into t̂−(k0, k1, k2) and the unit vector
û+(k−1, k0, k1) into û−(k0, k1, k2), see Definition (10.11) and (10.12). Thus the
above cone field C is invariant under that transformation.

Proof. By (10.19)(
δ�y ′−
δ�z ′−

)
:= (Tx−P

−
E )

(
δ�y −
δ�z −

)
(11.4)

=
(

1l 0(
1− l−

l′−
)
1l l−

l′− 1l

)(
δ�y −
δ�z −

)
+
∣∣∣∣
(
δ�y −
δ�z −

)∣∣∣∣ ·O(1/E).

From (8.3) and (10.14) we deduce the transformation formulae(〈
δ�v−, t̂−〉〈
δ�v−, û−〉

)
= δ�y ′− and

(〈
δ �w−, t̂−

〉〈
δ �w−, û−

〉) = (l′−/cq)δ�z ′− (11.5)

from the (δ�y ′−, δ�z ′−)–coordinates to the (δ�v−, δ �w−)–coordinates.
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After near-collision we have(〈
δ�v+, t̂+〉〈
δ�v+, û+〉

)
= δ�y ′+ and

(〈
δ �w+, t̂+

〉〈
δ �w+, û+

〉) = δ�z ′+. (11.6)

The reflection Rŝ−−ŝ+ by the plane perpendicular to the vector ŝ− − ŝ+ transforms
the unit vectors as follows:

ŝ+ = −Rŝ+−ŝ−(ŝ
−) , t̂+ = +Rŝ+−ŝ−(t̂

−) and û+ = +Rŝ+−ŝ−(û
−).

Moreover, up to an error termO(1/E), we may substitute Rŝ+−ŝ− for the reflection
R�v+−�v− in (8.9), since by estimate (9.22) the differences |�v± − ŝ±| = O(1/E)
(and since |ŝ+ − ŝ−| > 0). In particular

�ψ = π − α(k−1, k0, k1)+O(1/E). (11.7)

Thus putting together (11.4), (11.5), (8.9), (8.21), (11.6) and (11.7), we obtain(
δ�y ′+
δ�z ′+

)
= 4cq sin2

( 1
2�ψ

)
E

−Zk0

·
(

1l 1l
1l 1l

)(
1l 0
0 (l′−/cq)1l

)(
1l 0(

1− l−
l′−
)
1l l−

l′− 1l

)(
δ�y −
δ�z −

)

+
∣∣∣∣
(
δ�y −
δ�z −

)∣∣∣∣ ·O(E0)

= 4l− cos2
( 1

2α(k−1, k0, k1)
)
E

−Zk0

(
1l 1l
1l 1l

)(
δ�y −
δ�z −

)
(11.8)

+
∣∣∣∣
(
δ�y −
δ�z −

)∣∣∣∣ ·O(E0),

as cq + l′− − l− = l−. Inserting (11.8) in (10.20) yields(
δ�y +
δ�z +

)
=

(
1l 0(

1− cq

l+
)
1l cq

l+ 1l

)(�y ′+
�z ′+

)
+
∣∣∣∣
(
δ�y ′+
δ�z ′+

)∣∣∣∣ ·O(1/E)

= f(k−1, k0, k1)E

(
1l 1l
1l 1l

)(
δ�y −
δ�z −

)
+
∣∣∣∣
(
δ�y −
δ�z −

)∣∣∣∣ ·O(E0),

as l− = 1
2 dk−1,k0 , proving (11.2).

Strict invariance of the cone field C then follows from (11.2). ,-
We now describe the domains VE(k) and images WE(k) of the iterated Poincaré
map with more precision. So let

VE(k)(�z ) := VE(k) ∩
(
By × {�z }) (�z ∈ Bz) (11.9)

and similarly

WE(k)(�z ) := WE(k) ∩
(
By × {�z }

)
(�z ∈ Bz)
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consist of the points with the same configuration space coordinate �z . We also
consider them as subsets of By, forgetting the fixed coordinate �z . It turns out that
they are diffeomorphic to two-dimensional disks. We call

diamy(VE(k)) := sup
�z ∈Bz

diam(VE(k)(�z )),

resp.

diamy(WE(k)) := sup
�z ∈Bz

diam(WE(k)(�z ))

the y–diameter of VE(k), resp. WE(k) (which is measured with the Euclidean
metric in the �y coordinates).

Corollary 11.4. For all �z − ∈ Bz the map

VE(k−1, k0, k1)(�z −) 8 �y − �→ �z +(�y −, �z −) ∈ Bz (11.10)

is a diffeomorphism. Thus the domain can be represented as

VE(k−1, k0, k1)(�z −) = {�y −(�z −, �z +) | �z + ∈ Bz},
with

D1�y −(�z −, �z +) = −1l+O(E−1), (11.11)

D2�y −(�z −, �z +) = 1l

f(k−1, k0, k1)E
+O(E−2), (11.12)

and

�y −(�z −, �z +) = −�z − +O(E−1), (11.13)

the error terms being independent of the parameter e0 in (9.16).
In particular the y–diameter of VE(k−1, k0, k1) is of orderO(e0/E2).

Proof. From formula (11.2) for the derivative of the Poincaré map we see (ob-
serving that f(k−1, k0, k1) 	= 0) that (11.10) is a local diffeomorphism, and in fact
a diffeomorphism onto its image.

Thus by the definitions (10.9) and (10.8) of domain and image (11.10) is
a diffeo. Estimates (11.11) and (11.12) follow by inverting (11.2). Defs. (9.16),
(10.7) and (10.13) show that the y–diameter of WE(k0, k1) is of order O(e0/E).
Thus (11.12) implies that the y–diameter of VE(k−1, k0, k1) is smaller by one order.

By definition (9.16), the domainHk,l
E has sizeO(e0/E), so that directly we get

only �y −(�z −, �z +) = −�z − + O(e0/E) instead of (11.13). However, we then see
from (11.11) that we may enlarge the size parameter e0 without enlarging the error,
and thus prove (11.11). ,-
Proposition 11.5. There exist C6 > 1 and δE > 0, such that for all E > Eth,

m ≥ 1, k ∈ Xm
0 and (�y +k , �z +k ) := PE(k)(�y −, �z −) ⊂ Hkm−1,km

E the following holds
true:
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1. For VE(k)(�z −) defined in (11.9) the maps

VE(k)(�z −) 8 �y − �→ �z +k (�y −, �z −) ∈ Bz (�z − ∈ Bz) (11.14)

are diffeomorphisms.
2.

D1�y −k (�z −, �z +) = −1l+O(E−1) (�z ± ∈ Bz) (11.15)

uniformly in m.
3. For all �z + ∈ Bz the vector field on Bz given by �z − �→ �y −k (�z −, �z +) points

inside the boundary:

�y −k (�z −, �z +) · �z − < 0 (�z − ∈ ∂Bz). (11.16)

4. VE(k)(�z −) contains a disk of radius

C−1
6 E−1

m−1∏
i=1

(| f(ki−1, ki, ki+1)| · (E + δE))−1 , (11.17)

and is contained in a disk of radius

C6 E−1
m−1∏
i=1

(| f(ki−1, ki, ki+1)| · (E − δE))−1 . (11.18)

5. For k, l ∈ Xm+1
0 with ki = li for i = 0, . . . ,m but km+1 	= lm+1

dist
(
VE(k)), VE(l))

) ≥ C−1
6 E−1

m−1∏
i=1

(| f(ki−1, ki, ki+1)| · (E + δE))−1 .

(11.19)

Remark 11.6. Using time reversal, one obtains similar estimates for WE(k).

Proof.
• m = 1:

Then VE(k0, k1) = By × Bz by (10.15), and the radius of these two disks is
proportional tp 1/E, see def. (10.16). So

VE(k0, k1)(�z ) = VE(k0, k1) ∩
(
By × {�z }

) = By × {�z },
showing (11.17) and (11.18).
If k = (k0, k1, k2) and l = (k0, k1, l2) with l2 	= k2, then VE(k) and VE(l) are
both contained in the Poincaré section VE(k0, k1) = Hk0,k1

E , but are mapped to
different sections in the next iteration. These have a distance from each other
that is bounded below by an energy-independent constant. On the other hand
by (8.9), scattering by the nucleus k1 only leads to an expansion of order E,
which conversely implies

dist (VE(k0, k1, k2), VE(k0, k1, l2)) ≥ C−1
6 E−1.
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• m �→ m + 1:
By def. (10.9) of VE(k)

VE(k0, . . . , km)(�z ) =
(
By × {�z }

) ∩ P−1
E (VE(k1, . . . , km)).

Thus the induction step for (11.17) and (11.18) is provided by

D2�y (�z , �z +) = 1l

f(k0, k1, k2)E
+O(E−2) (�z ∈ Bz),

i.e. formula (11.12).
The additional control of the �z -dependence of the sets VE(k) needed for the
distance estimate (11.19) is guaranteed by the coupling (11.13) between the �y -
and the �z -coordinate.

• One application of the linearized Poincaré map (11.2) maps the cone field with
cones {

(δ�y , δ�z ) ∈ T(�y ,�z )VE(k−1, k0, k1) | δ�y · δ�z ≥ 0
}

into the invariant cone field (11.1). In particular this applies to vectors of the
form (δ�z , 0).
The image of the invariant cone field C under time reversal (using TR defined
in (10.5)) meets the equation

|δ�y + δ�z | ≤ C

E
|δ�y − δ�z |.

This then implies the uniform estimate (11.15).
• By (11.13)

diamy(VE(k0, k1, k2)(�0) = O(1/E) independent of e0.

Thus �y −(0, �z +) = O(1/E) independent of e0, too. So the estimate (11.15) of
the first partial derivative gives.

�y −k (�z −, �z +) = �y −k (�0, �z +)+
∫ 1

0
D1�y −k (t�z −, �z +) dt = −�z − +O(1/E).

Now the modulus of �z + ∈ ∂Bz equals 1
4 cpe0/E (see def. (10.16)), or

�y −k (�z −, �z +) · �z = 1
4 cpe0

(− 1
4 cpe0 +O(1)

)
/E2 (�z − ∈ ∂Bz).

Enlarging the parameter e0 if necessary gives (11.16).
• To prove the iteration step for the first statement, we first show that that

map (11.14) is onto:

For all �z , �z − ∈ Bz there exists an �y − with �z +k (�y −, �z −) = �z . (11.20)

Namely for �z + ∈ Bz , kI := (k0, k1, k2) and kII := (k1, . . . , km) we consider
the vector field

�F : Bz → R2 , �F(�z ) := �y −
kII (�z , �z +)− �y +

kI (�z −, �z ).
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If �F has a zero, there exists an initial point (�y −, �z −) ∈ VE(k)(�z −) meet-
ing (11.20). However, the vector field �z �→ �y −

kII (�z , �z +) points inside the
boundary of Bz , whereas by time reversal

�y +
kI (�z −, �z ) · �z > 0 (�z ∈ ∂Bz).

Thus �F points inwards, too, so that the degree of the vector field �F on the
disk is non-zero, which in turn implies that �F(�z ) = �0 for some �z (see, e.g.,
Hirsch [Hi], Chapter 5).
Inspection of the derivative (11.2) of the Poincaré map shows that �y − �→
�z +k (�y −, �z −) is injective, smooth and smoothly invertible. ,-

Lemma 11.7. For E > Eth, l < 0 < r and k = (kl, . . . , kr) admissible

diam(WE(kl, . . . , k1) ∩ VE(k0, . . . , kr)) ≤
4
(
diamy(WE(kl, . . . , k1))+ diamy(VE(k0, . . . , kr))

)
.

Proof. Set l := (kl, . . . , k1) and m := (k0, . . . , kr). Let AI ≡ (�y I , �z I ) and
AII ≡ (�y II , �z II ) be two points in WE(l) ∩ VE(m) and

�z I,+ := �z +m(AI ) ∈ Bz , �z II,− := �z −l (AII )

the �z –components of PE(m)(AI ) resp. PE(l)−1(AII ). The disks

DI := {
x ∈ VE(m) ∩ WE(l) | �z +m(x) = �z I,+}

and

DII := {
x ∈ VE(m) ∩ WE(l) | �z −l (x) = �z II,−}

intersect in a (unique) point AIII ≡ (�y III , �z III ) ofHk0,k1
E .

As ‖AII − AI‖ ≤ ‖AII − AIII ‖ + ‖AIII − AI‖, the lemma follows from
the estimates

diam(DI ) ≤ 4diamy(WE(l)) and diam(DII ) ≤ 4diamy(VE(m)),

and by time reversal symmetry (10.5) it suffices to prove the first one.
DI is mapped diffeomorphically onto WE(l)(�z I ) by

x �→ (�y ′, �z I ) with the unique �y ′ ∈ By meeting �z −l (�y ′, �z I ) = �z −l (x)

(uniqueness of �y ′ follows from Proposition 11.5.1). By the estimate (11.2) on the
linearized Poincaré map this map increases distances by a factor less than 2. ,-
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12. Symbolic dynamics

In this section we analyze the set

bE = b ∩E

of bounded�t–orbits of energy E.
To that aim we equip the alphabet S = {1, . . . , n} with the discrete topology,

and for an interval (see (10.6)) I ≡ Ir
l ⊂ Z the space S I with the product topology.

Finally, we introduce the topological subspace

Xr
l := {k ∈ S I | k admissible} (12.1)

of admissible sequences (that is, ki+1 	= ki), and use the abbreviations

X := X∞−∞ , X+ := X∞
0 and X− := X1−∞.

The space X of bi-infinite admissible sequences is empty for n = 1, consists of
two points for n = 2, and is a Cantor set for n ≥ 3. From now on we assume n ≥ 2.

The shift

σ : X → X , σ(k)i := ki+1 (i ∈ Z)
is a homeomorphism on X. It is well-known that the topology on X is generated
by the metric

d(k, l) :=
∑
i∈Z

2−|i| · (1− δki ,li ), (k, l ∈ X). (12.2)

For an admissible sequence k+ = (k0, k1, . . . ) ∈ X+ we define

VE(k
+) :=

⋂
m∈N

VE(k0, . . . , km) ⊂ VE(k0, k1). (12.3)

Similarly, for an admissible sequence k− = (. . . , k0, k1) ∈ X− we define

WE(k
−) :=

⋂
m∈N

WE(k−m, . . . , k1) ⊂ WE(k0, k1). (12.4)

Lemma 12.1. For E > Eth and k ∈ X+ the sets VE(k+) and WE(k−) are the
graphs of functions

vE(k
+) : Bz → By resp. wE(k

−) : Bz → By

meeting the Lipschitz estimates∣∣vE(k
+)(�z 1)− vE(k

+)(�z 2)− (�z 2 − �z 1)
∣∣ ≤ C

|�z 1 − �z 2|
E

(�z 1, �z 2 ∈ Bz)

(12.5)

resp.∣∣wE(k
−)(�z 1)− wE(k

−)(�z 2)− (�z 1 − �z 2)
∣∣ ≤ C

|�z 1 − �z 2|
E

(�z 1, �z 2 ∈ Bz)

for some C ≡ C(Eth).
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Proof. The sets in (12.3) are nested: VE(k0, . . . , km2) ⊂ VE(k0, . . . , km1) for
m2 ≥ m1. By estimate (11.18), the y-diameter of these sets goes to zero as
m →∞.

We set l := (k0, . . . , km). For �z + ∈ ∂Bz , the �z -dependence of the curves
{(�y −l (�z , �z +), �z ) | �z ∈ Bz} in the boundary of VE(l) is controlled by the m–uniform

estimate (11.15), showing (12.5). Finally, the statements concerning WE(k−) fol-
low by time reversal (10.5), since

WE(k
−) = TR(VE(k1, k0, k−1, . . . )). ,-

Let

!+E :=
⋃

k+∈X+
VE(k

+) , !−E :=
⋃

k−∈X−
WE(k

−) (12.6)

and

!E := !+E ∩!−E .
By restriction, we associate to k ∈ X half-infinite admissible sequences

k±∈ X±. Then we define a map FE : X → !E by

FE(k) := VE(k
+) ∩ WE(k

−) (k ∈ X). (12.7)

Note that in view of Proposition 11.5 the disks VE(k+) and WE(k−) in Hk0,k1
E

intersect. The Lipschitz estimates of Lemma 12.1 imply that their intersection
consists of precisely one point, which we identify with an element of !E .

On X we introduced in (12.2) the metric d.
On the Poincaré surfacesHE =⋃

k 	=l H
k,l
E we use the metric

dist : HE ×HE → R

dist(x, x′) :=
{√

(�y − �y ′)2 + (�z − �z ′)2 , x, x′ ∈ Hk,l
E

1 , otherwise

based on the (�y , �z )–coordinates (10.13) of x and x′ (Remark 10.3 showing that
dist is well-defined).

Lemma 12.2. There exist α > 0 such that for E > Eth,FE is an (α · ln E)–Hölder
continuous homeomorphism, that is,

dist(FE(k),FE(l)) ≤ C(E) · dα ln E(k, l), (k, l ∈ X), (12.8)

for some function C > 0 of the energy, conjugating the shift with the restricted
Poincaré map P!E := PE�!E

:

FE ◦ σ = P!E ◦ FE . (12.9)
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Proof. Since C may depend on E, we can assume without loss of generality that
the central blocks of k and l coincide, i.e. (k−1, k0, k1) = (l−1, l0, l1). Let Ir

l ⊂ Z
be the maximal interval containing 0 on which k and l coincide. Then by Lemma
11.7 and (11.18)

dist(FE(k),FE(l))

≤ diam(WE(kl, . . . , k1) ∩ VE(k0, . . . , kr))

≤ 4
(
diamy

(
WE(kl, . . . , k1)

)+ diamy
(
VE(k0, . . . , kr)

))
≤ 8

C

E

[( 1
2 fmin E

)−|l| + ( 1
2 fmin E

)1−r
]
≤ 4 f 2

minC
( 1

2 fmin E
)−min(1−l,r+1)

= 4 f 2
minC · 2

−
(

min(1−l,r+1) ln( fminE/2)
ln 2

)
≤ 4 f 2

minC · dα ln E(k, l)

with fmin := mini 	= j 	=k | f(i, j, k)|, setting α slightly smaller than 1/ ln(2). ,-
For n ≥ 2 we denote TE ◦ FE : X → R+, with the return time TE defined
in (10.3) by TE , too. Being defined by composition of a smooth map with a Hölder
continuous map, TE is Hölder.

The continuous flow on bE is modelled as follows.

Definition 12.3. Given a roof function r ∈ C0(X,R+), we set

Xr := X× R/ ∼

where ∼ is the equivalence relation defined by

(k, t + r(k)) ∼ (σ(k), t) ((k, t) ∈ X× R).

Then the r–suspension flow is given by

σ t
r : XE → XE , [(k, s)] �→ [(k, s + t)] (t ∈ R). (12.10)

In the interesting case r = TE we abbreviate XE := XTE and σ t
E := σ t

TE
.

Definition 12.4. The set CT of collision times of a trajectory c : I → P is given by

CT (c) := {t ∈ I | �q ◦ c(t) ∈ {�s1, . . . , �sn}} .

The Morse index of a hyperbolic T -periodic trajectory c : [0, T )→ P is given by

Index(c) :=
∑

t∈[0,T )\CT (c)
dim

(
Eu(c(t)) ∩ Vertc(t)

)+ |CT (c)|,
where Es/u(c(t)) ⊂ Tc(t)P denotes the weak (un)stable subspace at c(t) and the
vertical subspace Vertx ⊂ Tx P at x ∈ T∗M̂ ⊂ P is the one annihilated by the
linearized configuration space projection Tx�q.
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Remarks 12.5. 1) The weak (un)stable subspaces Es/u(c(t)) are the direct sums of
the (2-dim.) strong (un)stable subspaces and the neutrally stable flow direction (see
[KH]). Similar to Vertc(t), they are thus 3-dim. Lagrangian subspaces of Tc(t)P.

2) Actually Index(c) is always finite. We already know from our study of the (near)-
collision process that CT (c) does not have accumulation points. On the other hand,
the set of times t where the (un)stable subspace Es/u(c(t)) turns vertical is finite,
too, since the kinetic energy term 1

2 �p 2 in the Hamiltonian function is a positive
quadratic form, see Duistermaat [Du].

3) The additional term |CT (c)| in the definition of the Morse index is chosen in the
only way that makes that definition invariant under small perturbations of the flow.

For 0 < θ ≤ π we introduced in (9.1) the pericentric hypersurfaces

Hl(θ) =
{

x ∈ Hl

∣∣∣∣ |�q(x)− �sl| < |Zl|
H(x) · sin(θ/4)

}
(l = 1, . . . , n)

(with Hl defined in (8.1)) near the lth nucleus. So the angle parameter θ fixes the
precise meaning of the term ‘near-collision’.

Definition 12.6. The setNCTθ (c) of θ-near-collision times of a trajectory c : I→ P
is given by

NCTθ (c) :=
{
t ∈ I | c(t) ∈ ∪n

n=1Hl(θ)
}
.

We say that the trajectory c θ–visits the nuclei k ∈ Xr
l in succession ifNCTθ(c) 	= ∅,

r = |NCTθ(c) ∩ [0,∞)| , l = 1− |NCTθ(c) ∩ (−∞, 0)|
and

c(ti) ∈ Hki (θ)
(
i ∈ Ir

l

)
for the enumeration NCTθ(c) = {ti | i ∈ Ir

l , ti < ti+1, t0 < 0 ≤ t1} of near-
collision times.

Remarks 12.7. 1) k is really well-defined, since the hypersurfacesHl(θ) ⊂ Hl do
not intersect, and since the flow�t is transversal toHl so thatNCTθ (c) is discrete.

2) As long as we analyze bounded motion, the natural angle will be θ = αmin, so
in that case we do not write it explicitly.

Lateron, in the analysis of the scattering process, θ will be a parameter, since
scattering with small angles shows non-universal features.

Theorem 12.8. 1. For an NC configuration and E > Eth the map

FT
E : XE → bE, [(k, s)] �→ �s(FE(k))

is a Hölder continuous homeomorphism conjugating the suspension flow with
the flow on the set bE of energy E bound states:

�t ◦FT
E = FT

E ◦ σ t
E (t ∈ R).

Thus for
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• n = 1 there are no bounded orbits,
• n = 2 that set consists of one closed orbit: bE ∼= S1

• n ≥ 3 bE is locally homeomorphic to the product of a Cantor set and an
interval.

2. All bounded orbits are hyperbolic.
3. bE has measure zero w.r.t. Liouville measure λE on E.
4. If a T-periodic trajectory c : [0, T )→ E visits the nuclei (k1, . . . , km) ∈ Xm

1
in succession, then its Morse index equals Index(c) = m.

Proof. 1) By the virial identity (2.12) all trajectories that leave the interaction zone
IZ go to spatial infinity and thus do not belong to bE . Hence

bE ⊂ DE with DE ⊂ E defined in (10.2).

Lemma 10.1 tells us that for bE the Poincaré return time TE is uniformly bounded
by O(1/

√
E), so that a fortiori

�(TE(x), x) ∈ HE (x ∈ bE ).

Thus

bE = �(R,!E ),

showing that FT
E : XE → bE is a bijection. Using Lemma 12.2, we see that FT

E
is a Hölder continuous homeomorphism, since the flow��E on the energy shell
can locally be straightened out (see, e.g., [AM], Theorem 2.1.9), and since the
Poincaré sectionHE is transversal to the flow.

Now for n = 1 the space X of admissible sequences is empty, and for n = 2

X = {(. . . 12121 . . . ), (. . . 21212 . . . )} so that XE ∼= S1.

Finally, for n ≥ 3 the sequence space X is a Cantor set (a non-void compact totally
disconnected set without isolated points, see, e.g. Katok and Hasselblatt [KH], A 1.)

2) The existence of the strictly invariant cone field C (defined in (11.1)) on !E
implies the hyperbolicity of the flow. The expanding (as well as the contracting)
subspace of TxE , x ∈ !E , is two-dimensional, since it equals⋂

m∈N
DPm

E C
(
P−m

E (x)
)
.

3) The property of bE ⊂ E to have measure zero is defined without reference
to a measure (since in every local chart of the smooth manifold E the image
of Liouville measure !E is continuous w.r.t. Lebesgue measure, see Hirsch [Hi],
Chapt. 3.1). In fact, applying the Straightening Out Theorem ([AM], Theorem
2.1.9) it suffices to show that!E has measure zero. This follows for E > Eth from
estimate (12.8).

4) Setting k0 := km , we denote by si the intersection times with the Poincaré
surfaces, that is, c(si) ∈ Hki−1 ,ki

E (i = 1, . . . ,m).
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We assume w.l.o.g. that the T–periodic trajectory c : [0, T )→ E begins and
ends in the Poincaré surface Hk0,k1

E , so that we have si < ti < si+1 and s1 = 0.
Additionally we set sm+1 := T . Then we prove that Index(c) = m by showing that∑
t∈[si,si+1)\CT (c)

dim
(
Eu(c(t)) ∩ Vertc(t)

)+|CT (c)∩[si, si+1)| = 1 (i = 1, . . . ,m),

which means that every near-collision adds one to the Morse index. This claim is
equivalent to

∑
t∈[si,si+1)\{ti}

dim
(
Eu(c(t)) ∩ Vertc(t)

) = {
0 , �q(ti) = �ski

1 , otherwise
(i = 1, . . . ,m),

(12.11)

where we used the coordinates c(t) ≡ (�p(t), �q(t)).
First we treat the case Zki < 0 of a repelling Coulomb singularity. There we

know that the trajectory does not touch the singularity (�q(ti) 	= �ski ).
The simplest case is the one where along a neighbourhood of �q([si , si+1]) the

potential V coincides with the Keplerian potential −Zl/|�q − �ski |, and the angular
momentum L̂ki = (�q(t) − �ski ) × �p(t) of the trajectory relative to the nucleus
vanishes.

Then �p(ti) = �0, which gives a contribution of one in (12.11), since there the
flow direction, given by the Hamiltonian vector field

X H(c(ti)) = (−∇V(�q(ti)), �p(ti)) ∈ Vertc(ti),

is vertical.
However in that case there are no further contributions to the index. This may be

seen as follows. The intersection of the (three-dimensional) weak unstable subspace
at c(si) with the tangent space to the local Poincaré section Hki ,ki+1

E is a two-dim.
subspace which lies inside the local cone field C(c(si)) defined in (11.1). Thus we
have δ�q · δ�p ≥ 0 for a variation vector

(δ�p, δ�q) ∈ Eu(c(si)) ∩ Tc(si)H
ki ,ki+1
E ⊂ Tc(si)P, (12.12)

and this property is preserved by the forward flow, since

d

dt
(δ�q(t) · δ�p(t)) = −δ�q(t) · D2V(�q(t))δ�q(t)+ δ�p(t) · δ�p(t) ≥ 0.

For general repelling potentials and general trajectories c (12.11) equals one, too,
by a continuity argument based on estimate (11.2).

Now we treat the case Zki > 0, again starting with a Keplerian potential
−Zl/|�q −�ski |. and vanishing angular momentum L̂ki . Here �q(ti) = �ski , so that we
have to show that Eu(c(t)) does not turn vertical for t ∈ [si, si+1)\{ti}. However, the
configuration space trajectories �q([si, ti ]) and �q([ti, si+1]) are straight lines, and the
infinitesimal two-parameter family of diverging Kepler hyperbolae corresponding
to initial conditions (12.12) do not have a conjugate point. A more formal way of
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seeing this is to use the Jacobi metric gE(�q) = (1 − V(�q)/E)g(�q) discussed in
(A.1) of the Appendix. Then the energy E solution curves correspond to geodesics
c in that metric, and the linearization of the flow �t corresponds to the Jacobi
equation

∇2 �Y(t)+ Rċ(t) �Y(t) = �0,
see, e.g., [Kl]. For a variational vector field �Y orthonormal to the geodesic velocity
vector ċ(t) the self-adjoint curvature operator Rċ(t) has an �Y–expectation value
equal to the sectional curvature of the plane spanned by these two vectors ([Kl],
Proposition 1.11.3). The sectional curvature of gE has been calculated in (A.2) of
the Appendix.

For the geodesic under consideration the relevant plane contains the direction
�q − �ski of the singularity and is thus seen to be negative definite (setting q3 = 0
in (A.2)).

However, negative sectional curvature, together with initial conditions (12.12),
lead to absence of conjugate points. This proves (12.11) for the collision orbit.

In the case of non-vanishing angular momentum L̂ki . the sectional curvature
(A.2)) is still negative in the plane perpendicular to L̂ki . However, near the sin-
gularity (A.2)) becomes positive for plane containing the vector L̂ki , leading to
a conjugate point. So (12.11) holds for that case, too.

Like in the case Zki < 0, a continuity argument based on estimate (11.2) shows
assertion 4. for general potentials V and large E. ,-

13. Fractal dimension

In this section we estimate the fractional dimension of the set bE of energy E
bound states, for E large. This quantity, being of interest in its own right, governs
the measure of those scattering orbits which have a large time delay.

Dimensions: definitions and elementary properties

Besides the well-known dimension dimH introduced by Hausdorff and Besicovitch,
there exist several other definitions of the fractional dimension. Of those we will
only consider upper box-counting dimension dimB, since most dimensions take
values between dimH and dimB, see Falconer [Fa].

Definition 13.1. Let (X, d) be a separable metric space and U ⊂ X, U 	= ∅. The
diameter diam(U) of U is given by

diam(U) := sup{d(x, y) | x, y ∈ U} and diam(∅) := 0.

For E ⊂ X, s ≥ 0 and δ > 0 let

Hs
δ(E) := inf

{ ∞∑
i=1

(diam(Ui))
s | E ⊂ ∪i∈NUi, diam(Ui) ≤ δ

}
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(setting 00 := 1 except for the case diam(∅)0 := 0). The Hausdorff s-dimensional
outer measure of E,Hs(E), is then defined by

Hs(E) := sup
δ>0
Hs
δ(E) = lim

δ↘0
Hs
δ(E). (13.1)

The Hausdorff dimension of E is given by

dimH(E) := sup{s ∈ R | Hs(E) = ∞} = sup{s ∈ R | Hs(E) > 0}. (13.2)

The important property of Hs is that it defines a measure on, say, the Borel sets.
Therefore, Hausdorff dimension is not only monotone, that is

E1 ⊂ E2 ⇒ dimH(E1) ≤ dimH(E2), (13.3)

but also countably stable:

dimH(∪i∈NEi) = sup
i∈N

dimH(Ei). (13.4)

Definition 13.2. Let (X, d) be a manifold X with metric d and E ⊂ X be a non-
empty bounded subset. The (upper) box-counting dimension (or Minkowski di-
mension) dimB(E) is given by

dimB(E) := lim sup
ε↘0

ln(Nε(E))

− ln(ε)
,

where Nε(E) is the minimal number of balls of radius ε needed to cover E.

dimB is monotone (see (13.3)), and

dimB(E1 ∪ E2) = max(dimB(E1), dimB(E2)), (13.5)

but it is not countably stable, since dimB is invariant under closure. Furthermore,
for all (bounded) E,

dimH(E) ≤ dimB(E). (13.6)

Example 13.3. The triadic Cantor set E ⊂ R has

dimH(E) = dimB(E) = ln 2

ln 3
= 0.6309 · · · .

On the other hand, the set Q ⊂ R of rational numbers has dimensions

dimH(Q) = 0 , dimB(Q ∩ [0, 1]) = 1.
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We have

dimH( f(E)) ≤ dimH(E) and dimB( f(E)) ≤ dimB(E) (13.7)

if the map f is Lipschitz. In general both dimensions are not additive w.r.t. cartesian
products, but the inequalities

dimH(E1)+ dimH(E2) ≤ dimH(E1 × E2) ≤ dimH(E1)+ dimB(E2) (13.8)

and

dimB(E1 × E2) ≤ dimB(E1)+ dimB(E2) (13.9)

hold true, see Mattila [Ma] and Tricot [Tr].

Lower estimate for the Hausdorff dimension

By (13.6) we need a lower estimate for the Hausdorff dimension and an upper
estimate for the box counting dimension.

Whereas any choice of coverings by ε-balls leads to an upper estimate for
dimB, a lower estimate for dimH is provided by the mass distribution principle:

Proposition (see [Fa]). Let µ be a probability measure on (X, d) and µ(E) > 0.
Suppose that for some s ≥ 0, C > 0 and δ > 0

µ(U) ≤ C · diam(U)s (diam(U) ≤ δ),
Then dimH(E) ≥ s.

Proof. If E ⊂ ∪i∈NUi , then

µ(E) ≤ µ(∪i∈NUi) ≤
∞∑

i=1

µ(Ui) ≤ C
∞∑

i=1

diam(Ui)
s

so that 0 < µ(E) ≤ CHs
δ(E). Then the statement follows from the second expres-

sion for dimH in (13.2). ,-

Thermodynamic formalism for dimension estimates

We base ourselves on the size estimate Proposition 11.5 for VE(k) in terms of the
finite geometric data encoded in f (see (11.3)).

Hence we consider the parameter-dependent (n(n − 1) × n(n − 1))–matrix
M(s) with double-indices in {(i, j) ∈ S × S | i 	= j} and entries

M(s)i, j;k,l :=
{ | f(i, k, l)|−s , i 	= j, k 	= l and j = k

0 , otherwise
.
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For s ∈ R this is a matrix with non-negative entries, and for n ≥ 3 centres all
entries of (M(s))m are strictly positive iff m ≥ 3. Thus by the Perron-Frobenius
(PF) Theorem M(s) has a unique eigenvalue λmax(s) of largest modulus, which
is positive and of multiplicity one, and the corresponding eigenvector v(s) can be
chosen to have strictly positive entries.

In the case n = 2 the two eigenvalues of M(s) are given by ±λmax(s) =
±| f(1, 2, 1)|−s.

Lemma 13.4. For all E > Eth there is a unique solution d(E) := s of the equation

λmax(s) = Es, (13.10)

and d(E) = 0 for n = 2, whereas for n ≥ 3

d(E) = ln(n − 1)

ln(E)
·
(

1+O
(

1

ln(E)

))
. (13.11)

Finally

d′(E) = − ln(n − 1)

E(ln(E))2

(
1+O

(
1

ln(E)

))
. (13.12)

Proof. We conjugate M(s)/Es with the (n(n−1)×n(n−1))–matrix D(s) given by

D(s)i, j;k,l :=
{
(di, j )s/2 , i = k 	= j = l

0 , otherwise
.

Then M̃(s, E) := D(s)M(s)D(s)−1/Es has the non-negative entries

M̃(s, E)i, j;k,l =
{
( f̃ (i, k, l)E)−s , i 	= j, k 	= l and j = k

0 , otherwise
(13.13)

with

f̃ (i, k, l) :=
√

dk,l/di,k| f(i, k, l)| > 0 (i 	= k 	= l).

The right Perron-Frobenius eigenvector of M̃(s, E) equals

ṽ(s) := D(s)v(s) with eigenvalue λ̃max(s, E) := λmax(s)/Es,

and (13.10) corresponds to the implicit equation

λ̃max(d(E), E) = 1. (13.14)

Although f̃ (l, k, i) = f̃ (i, k, l) by def. (11.3) of f , for n > 2 the matrix M̃(s, E)
is non-symmetric and even non-normal, leading to slightly more complicated
estimates.
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We denote the left PF eigenvector by w̃(s), again assuming positivity of its
entries. Then for E large λ̃max(s, E) is strictly decreasing in s, since

D1λ̃max(s, E) =
〈
w̃(s), D1 M̃(s, E) ṽ(s)

〉
〈w̃(s), ṽ(s)〉 < 0, (13.15)

Di denoting the derivative w.r.t. the ith argument.
Inequality (13.15) follows from the fact that all components of ṽ(s) and w̃(s)

are positive, and for E large all entries of D1 M̃(s, E) are non-positive, and some
are negative. So the l.h.s. of the equation λ̃max(s, E) = 1 is strictly decreasing in s.
Furthermore,

λ̃max(0, E) = n − 1 ≥ 1 and lim
s→∞ λ̃max(s, E) = 0.

This implies that (13.10) has a unique solution d(E) = 0 for n = 2 and d(E) > 0
for n ≥ 3.

More precisely we observe that the n − 1 non-vanishing entries in each row
(i, j) of M̃(s, E) are of the form ( f̃ E)−s . Setting

f̃ min := min
i 	=k 	=l

f̃ (i, k, l) and f̃ max := max
i 	=k 	=l

f̃ (i, k, l),

we note that by a consideration of the largest and the smallest components of the
eigenvalue equation λ̃max(s, E)ṽ(s) = M̃(s, E)ṽ(s)

ln(n − 1)

ln( f̃ max E)
≤ d(E) ≤ ln(n − 1)

ln( f̃ min E)
. (13.16)

This shows the estimate (13.11). The implicit equation (13.14) for d(E) shows that

d′(E) = −D2λ̃max(d(E), E)

D1λ̃max(d(E), E)
= d(E)

E · D1λ̃max(d(E), E)
. (13.17)

So we have to estimate

D1λ̃max(d(E), E) =
〈
w̃(s), D1 M̃(s, E) ṽ(s)

〉
〈w̃(s), ṽ(s)〉

∣∣∣∣∣∣
s=d(E)

(13.18)

more precisely in order to show (13.12). The matrix

M := lim
E→∞ M̃(d(E), E)

has the form

Mi, j;k,l =
{

1/(n − 1) , i 	= j, k 	= l and j = k
0 , otherwise

,

since by (13.16) the quotients

M̃(d(E), E)i,k;k,l/M̃(d(E), E)i′,k′;k′,l′ =
(

f̃ (i ′, k′, l′)/ f̃ (i, k, l)
)d(E)

= 1+O(1/ ln(E)) (13.19)
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of the non-zero coefficients converge to one, and since the PF eigenvalue of
M̃(d(E), E) equals one. We now use the algebraic relation

((n − 1)M)2 + (n − 1)M = F with Fi, j;k,l := 1 (i 	= j, k 	= l),

which is approximately met for finite energies in the sense that by (13.19)

R(E) := (
(n − 1)M̃(d(E), E)

)2 + (n − 1)M̃(d(E), E)

= F +O(1/ ln(E)). (13.20)

By (13.14) the PF eigenvectors fulfil the equations

R(E)ṽ(d(E)) = n(n − 1)ṽ(d(E)) , R(E)tw̃(d(E)) = n(n − 1)w̃(d(E))

so that in view of estimate (13.20) its components are nearly equal:

ṽ(d(E))i, j =
∑

k 	=l ṽ(d(E))k,l

n(n − 1)
· (1+O(1/ ln(E))) (i 	= j) (13.21)

and similarly for w̃.
Finally, for i 	= j, k 	= l and j = k

D1 M̃(d(E), E)i, j;k,l = − ln(| f̃ (i, k, l)E|)/(n − 1) · (1+O(1/ ln(E))).

Inserting that estimate and (13.21) into (13.18) we obtain

D1λ̃max(d(E), E) = − ln(E)+O(1).
Putting that estimate and (13.16) into (13.17) gives (13.12). ,-

Dimensions of the set bE of bound states

We now estimate dimB(bE ) and dimH(bE ) by the solution d(E) of the matrix
eigenvalue problem (13.10).

Theorem 13.5. For E > Eth and n ≥ 3 the Hausdorff dimension dimH and the
upper box-counting dimension dimB of the energy E bound states bE meet the
estimates

1+ 2d(E) · (1−O((E ln E)−1)
) ≤ dimH(bE ) ≤

≤ dimB(bE ) ≤ 1+ 2d(E) · (1+O((E ln E)−1)
)

(13.22)

with the solution d(E) of (13.10). In particular they meet the rough estimate

dimH(bE ) = 1+ 2 ln(n − 1)

ln(E)
+O((ln E)−2) = dimB(bE ) (13.23)

For n = 2 centres dimH(bE ) = dimB(bE ) = 1.
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Proof. The second inequality in (13.22) is the abstract inequality (13.6). Esti-
mate (13.23) follows from (13.22) by inserting (13.11).

So it remains to prove the lower bound for dimH and then the upper bound for
dimB. For n = 2 centres bE consists of one closed orbit, whose dimensions equal
one. So we assume from now on n ≥ 3.

1) Using the constant δE from Proposition 11.5 and setting EL := E + δE for
E > Eth, estimate (13.12) shows that

d(E) = dL · (1−O(1/(E ln E))) for dL := d(EL),

so that the first inequality in (13.22) follows from an estimate

dimH(bE ) ≥ 1+ 2dL (E > Eth). (13.24)

We show that this follows from

dimH(!E ) ≥ 2dL (E > Eth). (13.25)

First we find ε > 0 such that the flow� : R× P → P, restricted to (−ε, ε)×HE ,
is a diffeomorphism onto its image. Thus

Uε := �((−ε, ε)×!E ) ⊂ bE .

satisfies

dimH(Uε) = dimH((−ε, ε)×!E )

≤ dimH((−ε, ε))+ dimH(!E ) = 1+ dimH(!E ) (13.26)

using (13.7) and (13.8). By finiteness of the Poincaré return time TE (Lemma 10.1),
bE can be covered by finitely many time translates

bE =
jmax⋃
j=0

�(ε j,Uε) with jmax :=
[
ε−1 sup

x
TE(x)

]
(13.27)

so that

dimH(bE ) = max
j

dimH(�(ε j,Uε)) = dimH(Uε)

follows from stability of dimH and (13.7). So we are reduced to show (13.25), by
employing the mass distribution principle. This will be based on a P!E –invariant
probability measure µE on !E , which is the image

µE := FE µX,E

w.r.t. (12.7) of a measure µX,E on X. µX,E is defined through its values

µX,E(Z(k)) := w̃(dL)kl ,kl+1 ·
r−1∏

i=l+1

(
f̃ (ki−1, ki, ki+1)EL

)−dL
(
k ∈ Xr

l

)
(13.28)
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on the cylinder sets

Z(k) := {
k′ ∈ X | k′i = ki ∀i ∈ {l, . . . , r}} (

l < r ∈ Z, k ∈ Xr
l

)
,

with the left Perron-Frobenius eigenvector w̃(dL) of M̃(dL, EL).
Using the l1–normalization ∑

i 	=k

w̃(s)i,k = 1 (13.29)

of w̃(s) and the relations (13.13) and (13.14) we see that the definitions (13.28)
are compatible and define a σ–invariant Borel probability measure µX,E . By the
conjugacy (12.9) between the shift σ and the restricted Poincaré map the image
measure µE is then indeed P!E –invariant.

We now claim that the mass distribution principle applies. Namely we have for
some C ≡ C(E) > 0 and δ ≡ δ(E) > 0

µE(U) ≤ C · diam(U)2dL (13.30)

for all measurable U ⊂ !E of small diameter diam(U) < δ. Instead of general
such U we first consider balls B(δ′) ⊂ HE of small radius δ′ > 0, which are
centered at a point x ∈ !E . The symbol sequence k := F−1

E (x) ∈ X of this point
projects to the half-infinite sequences k± ∈ X± (see (12.7)). There are unique
integers l < 0 < r with

C−1
6 E−1

L

0∏
i=l+1

( f̃ (ki−1, ki, ki+1)EL)
−1 > δ′ (13.31)

but C−1
6 E−1

L

0∏
i=l

( f̃ (ki−1, ki, ki+1)EL)
−1 ≤ δ′. (13.32)

respectively

C−1
6 E−1

L

r−1∏
i=1

( f̃ (ki−1, ki , ki+1)EL)
−1 > δ′ (13.33)

but C−1
6 E−1

L

r∏
i=1

( f̃ (ki−1, ki , ki+1)EL)
−1 ≤ δ′, (13.34)

By the lower estimates (13.31) and (13.33) and (11.19) of Proposition 11.5

VE(k
′
0, . . . , k

′
r) ∩ B(δ′) 	= ∅ only if (k′0, . . . , k′r) = (k0, . . . , kr).

and similarly for WE(k′l, . . . , k′1). However, this implies that

B(δ′) ∩!E ⊂ FE(Z(kl, . . . , kr)).
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Thus by def. (13.28) of µX,E and the upper estimates (13.32) and (13.34)

µE(B(δ
′)) ≤ µX,E(Z(kl, . . . , kr))

= w̃(dL)kl ,kl+1 ·
r−1∏

i=l+1

(
f̃ (ki−1, ki, ki+1)EL

)−dL

≤ cα · (2δ′)2dL = cα · diam(B(δ′))2dL ,

the constant

cα :=
(

max
a 	=b

w̃(dL)a,b

)
· (C6 E2

L f̃ max
)2dL

being independent of δ′ and k (remembering that f̃ max = maxi 	=k 	=l f̃ (i, k, l)). That
is, the balls B(δ′) satisfy the mass distribution estimate (13.30).

General sets U ⊂ HE of diameter 1
2δ
′ and U ∩ !E 	= ∅ are subsets of such

balls of radius δ′ centered at a point in U ∩!E . This proves the mass distribution
principle (13.30) in general.

We see from (13.30) that for any cover!E ⊂ ∪iUi with diam(Ui) < δ,

1 ≤ µE(!E ) ≤
∑

i

µE(Ui) ≤ C
∑

i

diam(Ui)
2dL

which impliesH2dL (!E ) ≥ 1/C and thus dimH(!E ) ≥ 2dL .

2) Similar to the first case, to obtain the upper bound in (13.22) for dimB(bE ), it
suffices to show that for δE > 0 from Proposition 11.5

dimB(bE ) ≤ 1+ 2dU (13.35)

with

dU := d(E − 2δE) and EU := E − δE. (13.36)

Also (13.35) follows from the estimate

dimB(!E ) ≤ 2dU, (13.37)

for then dimB(Uε) ≤ 1+2dU (for the set Uε = �((−ε, ε)×!E)) is a consequence
of (13.7) and (13.9). Relation (13.5) may then be used to determine the box
dimension of the covering (13.27).

We now claim that for ε > 0 small we can cover!E in the form

!E ⊂
⋃
k∈Iε

FE(Z(k)) (13.38)
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with index set

Iε :=
{

k ∈
−∞⋃

l=−1

∞⋃
r=1

Xr
l

∣∣∣∣∣
ε

16
≥ C6 E−1

0∏
i=l+1

(| f(ki−1, ki, ki+1)| · EU )
−1 ≥ ε

16 fmax EU
,

ε

16
≥ C6 E−1

r−1∏
i=1

(| f(ki−1, ki , ki+1)| · EU )
−1 ≥ ε

16 fmax EU

}
.

• To prove (13.38), we choose an arbitrary bi-infinite sequence l ∈ X, and show
that there is a k ∈ Iε with l ∈ Z(k).
Since we have chosen a small ε, the right inequalities in the definition of Iε are
met for l = −1 and r = 1. We find k by setting ki := li and choosing r such
that the right inequality would be violated for r + 1. Then the left inequality
holds. Similarly we choose the minimal possible l < 0.

• Next we claim that for k ∈ Iε the subset FE(Z(k)) of the Poincaré section is
contained in a ball of radius ε. This holds true since

FE(Z(k)) = WE(kl, . . . , k1) ∩ VE(k0, . . . , kr),

see (12.7), so that using Lemma 11.7 and (11.18)

diam(FE(Z(k)))

≤ 4
(
diamy(WE(kl, . . . , k1))+ diamy(VE(k0, . . . , kr))

)
≤ 8

(
C6 E−1

0∏
i=l+1

(| f(ki−1, ki, ki+1)| · EU )
−1

+C6 E−1
r−1∏
i=1

(| f(ki−1, ki , ki+1)| · EU )
−1

)
≤ ε.

• Finally, denoting by b := 1/(16 fmax EU ) the constant appearing in the defin-
ition of Iε, the number Nε(!E ) of ε-balls needed to cover!E is bounded by

Nε(!E ) ≤ |Iε|

≤
∣∣∣∣
{

k ∈
−∞⋃

l=−1

∞⋃
r=1

Xr
l

∣∣∣∣ C6 E−1
0∏

i=l+1

(| f(ki−1, ki, ki+1)| · EU )
−1 ≥ bε,

C6 E−1
r−1∏
i=1

(| f(ki−1, ki, ki+1)| · EU )
−1 ≥ bε

}∣∣∣∣
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≤
∣∣∣∣∣
{

k ∈
−∞⋃

l=−1

∞⋃
r=1

Xr
l

∣∣∣∣∣ C2
6 E−2

r−1∏
i=l+1

(| f(ki−1, ki, ki+1)| · EU )
−1 ≥ (bε)2

}∣∣∣∣∣
≤ (εbE/C6)

−2dU

−∞∑
l=−1

∞∑
r=1

∑
k∈Xr

l

r−1∏
i=l+1

(
f̃ (ki−1, ki, ki+1)EU

)−dU

= (εbE/C6)
−2dU

∞∑
m=1

m ·
〈�1l, M̃(dU , EU )

m �1l
〉
,

with the matrix M̃(s, E) from (13.13), and �1l ∈ Rn(n−1) denoting the vec-
tor whose components equal 1. Now for the arguments (13.36) the Perron-
Frobenius eigenvalue λ̃max(s, E) of M̃(s, E) is smaller than one:

λ̃max(dU, EU ) = λmax(dU )

EdU
U

= λmax(d(E − 2δE))

EdU
U

<
λmax(d(E − 2δE))

(E − 2δE)dU
= 1. (13.39)

In view of the near-constancy (13.21) of the left PF eigenvector ṽ ≡ ṽ(d(EU ))

of M̃ ≡ M̃(dU, EU ) we use the inequality

〈�1l, M̃m �1l
〉
≤ 2n(n − 1)

〈
ṽ, M̃m ṽ

〉
〈ṽ, ṽ〉 (m ∈ N),

to exchange the vector �1l by ṽ:

Nε(!E ) ≤ (εbE/C6)
−2dU 2n(n − 1)

∞∑
m=1

m ·
〈
ṽ, M̃(dU , EU )

m ṽ
〉

〈ṽ, ṽ〉

= (εbE/C6)
−2dU 2n(n − 1)

∞∑
m=1

m · λ̃max(dU , EU )
m

≤ C′ε−2dU

with finite C′, using (13.39). Inserting this into the Definition 13.2 of the
box-counting dimension shows (13.37). ,-

14. Topological entropy

We shall now determine the topological entropy of the flow �t
E = �t�E

on the
energy shell E .

The estimate of htop(�
1
E) is based on Proposition 14.3, stating that the topo-

logical entropy of the flow is determined by its restriction to the set bE of bound
states. It is then relatively easy to compute that topological entropy using symbolic
dynamics.
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First we formally introduce the notion of topological entropy of T : X → X,
following the definition of Bowen. That definition is in a way more general than
others in allowing for non-compact metric spaces (X, d) (see Walters [Wa]).

Definition 14.1. Let (X, d) be a metric space and T : X → X a uniformly
continuous map. Then for m ∈ N, ε > 0, a subset F ⊂ X is said to (m, ε)-span
a compact K ⊂ X if

∀x ∈ K ∃y ∈ F : dm(x, y) ≤ ε,
with the metric dm(x, y) := max0≤i≤m−1 d(T i x, T i y).

Let rm(ε, T, K ) be the smallest cardinality of an (m, ε)-spanning set F of K ,

hr(ε, T, K ) := lim sup
m→∞

1

m
ln(rm(ε, T, K )),

and htop(T, K ) := limε→0 hr (ε, T, K ).
Then the topological entropy of T is

htop(T ) := sup
{
htop(T, K ) | K ⊂ X compact

}
.

Note that hr(ε, T, K ) is monotonically increasing in ε, so that its limit htop(T, K )
exists (it can be ∞).

If d′ is a second metric on X uniformly equivalent to d, that is, if the maps

Id : (X, d)→ (X, d′) and Id : (X, d′)→ (X, d)

are both uniformly continuous, then the topological entropies htop(T, d) and
htop(T, d′) coincide, see [Wa]. Therefore, for compact metrisable spaces X the
topological entropy only depends on the topology generated by the metric.

We are to estimate the topological entropy for the time-one flow T := �1
E on

the energy shell X := E , and for any metric on �E uniformly equivalent outside
the compact region projecting to the interaction zone to the metric induced by the
Euclidean metric of T∗(R3 − IZ). T is uniformly continuous since the motion is
asymptotically free.

In our case we have

htop
(
�−1

E

) = htop
(
�+1

E

)
,

although in general htop(�
−1
E , K ) 	= htop(�

+1
E , K ), since we have a symmetry

w.r.t. time reversal.
Proposition 14.3 below will show the importance of the set bE of energy E

bound states.

Definition 14.2. The non-wandering set �(�) of a continuous flow�t : X → X
is given by

�(�) :=

x ∈ X

∣∣∣∣∣∣ ∀ neighb. U 8 x,∀T> 0 : U ∩

⋃

t≥T

�t(U)


 	= ∅


 .
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For non-compact spaces X the topological entropy is in general larger than the
topological entropy of the restriction to the non-wandering set. Nevertheless, in
our case we have

Proposition 14.3. For E > Eth, the non-wandering set equals

�(�E ) = bE,

and the topological entropy of the flow on the energy shell is determined by the
bound states, that is, htop(�

1
E) = 0 for n = 1 centre and

htop
(
�1

E

) = htop
(
�1

E�bE

)
(14.1)

for n ≥ 2.

Proof. The proof parallels the one of Lemma 7.4 of [KK]. In particular htop(�
1
E)=0

for n = 1, since then by Theorem 12.8 bE = ∅. ,-
Theorem 14.4. 1) For E > Eth and n = 1 or n = 2 centres the topological
entropy equals htop(�

1
E) = 0.

2) For n ≥ 3 centres

htop
(
�1

E

) = h∞top ·
√

2E ·
(

1+ ln(E)

E
Chtop +O(1/E)

)
. (14.2)

Here h∞top is the unique solution (with eigenvector �v) of the largest eigenvalue
problem λ(s) = 1 for the one parameter family of n × n Perron-Frobenius matri-
cesM(s),

M(s)i, j :=
{

exp(−sdi, j ) i 	= j
0 i = j

, (14.3)

Chtop :=
〈
�v, �Z

〉 〈�1l, �v〉
2 〈�v, D�v〉 with �Z := (Z1, . . . , Zn) , �1l := (1, . . . , 1)

and the matrix D of distances di, j .
3) Let NE(T ) be the number of closed �t

E–orbits of period smaller than T .
Then there exists a (E-independent) constant C > 1 so that for T large

C−1 exp(htopT )

htopT
≤ NE(T ) ≤ C

exp(htopT )

htopT
, (E > Eth) (14.4)

with htop ≡ htop(�
1
E).

Remark 14.5. For configurations which form an equilateral triangle or a tetra-
hedron, the trivial estimate

h∞top ∈
[

ln(n − 1)

dmax
,

ln(n − 1)

dmin

]

for the PF eigenvalue problem of the matricesM(s) is sharp.
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Proof. 1) For n = 1, by Proposition 14.3 the topological entropy is zero for E
large. By Proposition 14.3, for n ≥ 2 we need only estimate htop(�

1
E�bE

).
For n = 2, we know from Theorem 12.8 that bE consists of only one closed

orbit. Therefore, by Theorem 7.14 of [Wa], the topological entropy htop(�
1
E) =

htop(�
1
E�bE

) = 0, too.

2) The interesting case left is n ≥ 3. Since htop is a conjugacy invariant (Theo-
rem 7.2 of [Wa]), we have by Theorem 12.8

htop
(
�1

E�bE

) = htop
(
σ1

E

)
(14.5)

for the time-one TE–suspension flow σ1
E on XE (see (12.10)).

Generally, given a roof function r : X → R+ (see Definition 12.3), any σ-
invariant probability measure µ on X induces a probability measure µr on Xr
which is invariant under the r-suspension flow σ t

r , namely the one obtained by
normalization of the measure µ × dx on X × R, restricted to the fundamental
domain {(k, t) | 0 ≤ t < r(k)} ∼= Xr . Conversely, any σ t

r -invariant probability
measure can be obtained in that way.

Furthermore, the topological entropy is the supremum of the KS-entropies over
all ergodic measures, and the same is generally true for the topological pressure

P(T, f ) := sup
{

hµ(T )+
∫

X
f dµ

∣∣∣∣ µ T − invariant prob. measure
}

= sup

{
hµ(T )+

∫
X

f dµ

∣∣∣∣ µ ergodic w.r.t. T

}

of a continuous map T : X → X of a compact metrisable space X and f ∈ C(X,R),
see Corollary 9.10.1 of [Wa].

Finally, any σ t
r -ergodic measure µr on Xr comes from a σ-ergodic measure

µ on X.
So we can apply Abramov’s formula

hµr

(
σ1

r

) = (∫
X

r dµ

)−1

hµ(σ), (14.6)

(which is valid for any ergodic measure µ on X, see Theorem 2.1 of Chap. 3 in
Sinai [Sin]), to obtain the formula

htop
(
σ1

r

) = sup
{

hµ(σ)

/∫
X

r dµ

∣∣∣∣ µ ergodic
}
. (14.7)

Eq. (14.7) implies the scaling behaviour

htop
(
σ1
λr

) = λ−1htop
(
σ1

r

)
(λ ∈ R+) (14.8)

and the inequality

htop(σ
1
r1
) ≥ htop(σ

1
r2
) (r1 ≤ r2). (14.9)
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Using Lemma 10.6 for estimating the Poincaré return time TE , we obtain for
C large

(1− C/E) · r(E) ≤ √
2E · TE ≤ (1+ C/E) · r(E) (E > Eth),

with

r(E) ∈ C(X,R+) , r(E)(k) := 1

2

(
dk−1,k0 + dk0,k1 − Zk0

ln E

E

)
(k ∈ X).

So by applying (14.8) and (14.9), we get

htop
(
σ1

E

) = htop
(
σ1

r(E)

) · √2E · (1+O (1/E)) . (14.10)

The claim (14.2) follows from (14.10) and (14.5), if we can prove

htop
(
σ1

r(E)

) = h∞top ·
(

1+ ln(E)

E
Chtop +O(1/E)

)
. (14.11)

This is done by reformulating it as a question about the topological pressure
P(σ,−s · r(E)) for the shift σ . We know that for s = 0

P(σ, 0) = htop(σ) = ln(n − 1) > 0,

since ln(n − 1) is the largest eigenvalue of the transition matrix of the shift, and
since n ≥ 3. On the other hand, for E ≥ Eth the values r(E)(k) are larger than
dmin/2, so that the roof function r ≡ r(E) ∈ C(X,R+) has mean

∫
X r dµ ≥ dmin/2

w.r.t. to any probability measureµ. Thus P(σ,−s ·r) ≤ 0 for s ≥ 2 ln(n−1)/dmin,
and there exists an s > 0 with

P(σ,−s · r) = 0. (14.12)

By convexity of the map f �→ P(σ, f ) (Theorem 9.7(v) of [Wa]) this s is unique.
Moreover the roof function r is locally constant, so that there exists a unique

equilibrium state µ for (14.12) (see [Ru]), i.e.

hµ(σ) = s
∫

X
r dµ and hν(σ) < s

∫
X

r dν for ν 	= µ.

Thus htop(σ
1
r ) = s, using (14.7) (and ergodicity of µ, which follows from unique-

ness, see Theorem 9.13 of [Wa]). Since σ : X → X is an expansive homeomor-
phism, by Theorem 9.6 of [Wa] we can use the formula

P(σ, f ) = lim
m→∞

1

m
ln(pm(σ, f, α)),

with the generating partition

α = {A1, . . . , An} with atoms Al := {k ∈ X | k0 = l}
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and

pm(σ, f, α) := inf



∑
B∈β

sup
k∈B

exp(Sm f(k))

∣∣∣∣∣∣ β finite subcover of
m−1∨
i=0

σ−iα


 .

Here Sm f :=∑m−1
i=0 f ◦ σ i . Now for δ := ln(E)/E

exp(−s · Smr(E)(k)) =

exp
(
− s

2

(
dk−1,k0 − dkm−1,km + (Zkm − Zk0)

1
2δ
))
·

m−1∏
i=0

M(s, δ)ki ,ki+1 , (14.13)

with the n × n–matrixM(s, δ) given by

M(s, δ)i, j :=
{

exp
(−s

(
di, j − δ

4 (Zi + Z j)
))
, i 	= j

0 , i = j

So the function is constant on the atoms of the partition β := ∨m
i=−1 T−iα.

The first factor in (14.13) is bounded from below and from above, uniformly in m.
The PF property of the symmetric matrixM(s) then implies that P(σ,−s · r(E))
is equal to the logarithm of the largest eigenvalue λ(s, δ) ofM(s, δ).

We now do perturbation theory aroundM(s, 0) =M(s), withM(s) defined
in (14.3), and obtain from the condition λ(s(δ), δ) = 1

s′(δ) = −D2λ(s(δ), δ)

D1λ(s(δ), δ)
.

Since the PF eigenvalue is isolated, the derivatives exist, and since M(s, δ) is
symmetric, they equal at δ = 0

D1λ(s(0), 0) = 〈�v, D1M(s(0), 0) �v〉 = − 〈�v, D�v〉
and

D2λ(s(0), 0) = 〈�v, D2M(s(0), 0) �v〉 = 1
2 h∞top

〈
�v, �Z

〉 〈�1l, �v〉 .
So

s(δ) = s(0)+ s′(0)δ+O(δ2) = h∞top ·
(
1+ Chtopδ+O(δ2)

)
,

proving (14.11).

3) Finally, for fixed energy E > Eth the estimate (14.4) for the number of periodic
orbits follows from Theorem 2 of the article [PP] by Parry and Pollicott (or alter-
natively by arguments based on the Renewal Theorem): If the Axiom A flow σ t

E is
topologically weak-mixing, then

NE(T ) ∼ exp(htopT )

htopT
.
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Otherwise all periods are known to be integral multiples of some T0 >, and
the formula

NE (T ) ∼ htopT0

1− exp(−htopT0)

exp
(
htop

[ T
T0

]
T0
)

htopT
(14.14)

follows directly from Theorem 2 of [PP]. Here T0 is the largest positive eigenperiod,
which is bounded by

T0 ≤ inf
k∈X

TE(k) = O(1/
√

E).

As we just proved that htop = O(√E), htop · T0 has an E-independent upper
bound, and we may thus use an E-independent C > 1 in (14.4) to bound the r.h.s.
of (14.14) from above and from below. ,-
Remarks 14.6. 1) Observe that, up to a small error term, htop(�

1
E) is independent

of the charges Zl of the centres. Effectively an attracting potential speeds up the
particle a bit, which then leads to the �Z–dependent correction term in (14.2).

2) It is natural to ask whether one may improve (14.4) to show

NE(T ) ∼ exp(htopT )

htopT
. (14.15)

However, the return time estimate of Lemma 10.6 for TE(x) is, up to the relative
orderO(1/E), independent of the point x ∈ VE(k−1, k0, k1).

So we cannot exclude by that estimate that all return times are equal to a constant
TR for a symmetric configuration (e.g., for an equilateral triangle or tetrahedron
with equal charges Zl). But by formula (14.14) in that case NE (T ) is not asymptotic
to any smooth function, so that (14.15) does not hold. In this sense our statement
is optimal, given the, already quite precise, return time estimate.

Any eventual improvement of Lemma 10.6 must be dependent of the additional
smooth component W of the potential V , and thus be complicated.

Although the iterated Poincaré map is certainly mixing for the measure of
maximal entropy, by the above argument we cannot decide whether or not the flow
is mixing.

15. Characterization of the scattering orbits

Up to now we were mainly concerned with the bound states bE ⊂ E . However,
the topological entropy analyzed in the last section is an example for a quantity
which, though a priori depending on the dynamics on the whole energy shell E ,
is determined by that subset of Liouville measure zero.

When we now consider the scattering states sE ⊂ E , again their description
will be based on symbolic dynamics of the bound states.

Our concrete question will be to enumerate the scattering orbits with given
energy E > 0 and asymptotic directions θ̂± ∈ S2, that is, the subset

(H, p̂−, p̂+)−1(E, θ̂−, θ̂+)
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of phase space (noticing that the asymptotic p̂± defined in (6.14) are constant
on orbits).

Before we come to the case of several centres, we first consider the simple

Example 15.1. Keplerian motion. Without loss of generality V(�q) = − Z
|�q| . There

are no undeflected orbits, i.e. only asymptotic directions

(θ̂−, θ̂+) ∈ (S2 × S2) \�, with diagonal � := {(θ̂, θ̂) | θ̂ ∈ S2}
occur. The pericentric time T is a smooth function on the positive energy part

P+ := {x ∈ P | H(x) > 0}
of phase space, see (5.7) and the definition of the manifold P. In fact in that case
the map

(H, p̂−, p̂+, T )�P+ : P+ → R+ × (
(S2 × S2) \�)× R

is a diffeomorphism. In particular for E > 0 and asymptotic directions θ̂− 	= θ̂+
there is exactly one Kepler hyperbola.

If we allow for an additional smooth potential W , we need to exclude a whole
neighbourhood of the diagonal� ⊂ S2× S2, since even for large energies forward
scattering may be dominated by W and not by the Coulomb potential.

Already in the case of bounded orbits we introduced the NC condition of
Definition 2.4 which excluded collinear configurations of nuclei. Similarly we
need to exclude certain asymptotic directions if we want to obtain statements
which are independent of the precise form of the potential V .

Thus for ϑ ∈ (0, π] and

$min : S2 → [0, π] $min(θ̂) := min
1≤i 	=k≤n

�(θ̂, ŝi,k)

(letting$min(θ̂) := π for n = 1 nucleus) we restrict our interest to the asymptotic
directions in

AD(ϑ) := {
(θ̂−, θ̂+) ∈ S2 × S2

∣∣ min
(
�(θ̂−, θ̂+),$min(θ̂

−),$min(θ̂
+)
)
> ϑ

}
,

and the (�t-invariant) subset

sE(ϑ) :=
{
x ∈ sE

∣∣ ( p̂−(x), p̂+(x)) ∈ AD(ϑ)}
of scattering states, thus excluding near-forward scattering and scattering from or
to any direction near an axis through two nuclei.

For n ≥ 2 centres we have bound states which influence the scattering trajecto-
ries in their vicinity. As the high energy bound states can be described by symbolic
dynamics, we introduce the set

W :=
⋃
k∈N

Xk
1

of (non-empty) admissible words to enumerate the scattering states, see (12.1).
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Every orbit within sE(ϑ) will be uniquely characterized by its asymptotic
directions and by the sequence of its near-collisions with the nuclei (θ–visits in
the sense of Definition 12.6). Conversely every admissible word will be shown to
occur for some orbit.

Namely we set the angle parameter controlling the asymptotic directions AD
equal to

ϑ ≡ ϑ(E) := min(C7/
√

E, αmin/2), (15.1)

with C7 to be fixed in Theorem 15.3.
Similarly, the angle parameter controlling the near-collisions is fixed by

θ ≡ θ(E) := min(C9/
√

E, αmin/2) with C9 := 4c1. (15.2)

In Lemma 8.4 the parameter c1 controlled what the regime of hard scattering. It
will be fixed in Theorem 15.3, too.

For x ∈ sE let w(x) := ∅ ifNCTθ (x) = ∅. Otherwise the orbit through x enters
the interaction zone, i.e. intersects the hypersurface ∂D−E at a unique point x′, and
we set

w(x) := k(x′) ∈W,
where the trajectory t �→ �t(x′) θ–visits the centres in succession k (we start at x′
instead of x since we want the θ–visits to occur for positive times so that k ∈ Xr

1
for some r).

Lemma 15.2. For C8 > 0 large and E > Eth every orbit in sE(C8/E) intersects
the hypersurfaces ∂D±E exactly once, so that the entrance, resp. exit times T±E on
sE(C8/E) are uniquely defined by�(T±E (x), x) ∈ ∂D±E .

The restrictions of T+E and T−E to sE(C8/E) are smooth functions.

Proof. If a scattering orbit in sE does not meet the interaction zone, then by the
virial estimate (2.15) there is a unique point x ≡ (�p, �q) on this orbit with 〈�p, �q〉 = 0.
By (2.13) the speed is bounded below by |�p| ≥ √

E. Thus the direction p̂ = �p/|�p|
differs from the asymptotic directions p̂±(x) (defined in (6.14)) only by

�( p̂, p̂±(x)) = O(1/E),

using (6.6). Choosing a large enough constant C8, we see that

�( p̂, p̂−(x))+�( p̂, p̂+(x)) < C8/E if E > Eth. (15.3)

Thus the orbits in sE(C8/E) intersect ∂D±E .
For these scattering states we know from (2.15) that there is a unique en-

trance resp. exit time. As long as the orbits intersect the C∞-hypersurfaces ∂D±E
transversally, smoothness of T±E follows from smoothness of the flow�t . But this
transversality can be enforced by further enlarging C8. ,-
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Theorem 15.3. We assume that V satisfies the decay estimates (6.16). Then for
C7 > 0 large in (15.1), and E > Eth the map

DiffE : sE(ϑ(E))→ AD(ϑ(E))×W × R
x �→ (

p̂−(x), p̂+(x),w(x), T−E (x)
)

is a diffeomorphism.

Remarks 15.4. 1) In particular the orbits in sE(ϑ(E)) are uniquely characterized by
their asymptotic directions and the sequence of near-collisions, and any sequence
is realized by an orbit.
2) In this section and Sect. 16 we exclude from our consideration small cones of
apertureO(1/

√
E) around the axes through two nuclei.

This is indeed necessary, since there non-universal phenomena occur. Also,
the orderO(1/

√
E) of aperture is optimal, as we show now by example.

We consider the purely Coulombic two-centre problem (see Appendix B) with

�s1 :=
(

1
0
0

)
, �s2 :=

(−1
0
0

)
, Z1 > 0 and Z2 = −Z1.

We claim that for energy E > Eth there is no orbit colliding with �s1 and
having scattering angles θ(∞)w.r.t. to the negative 1–axis smaller than 1

2

√|Z2|/E,
whereas there are such orbits for θ(∞) > 2

√|Z2|/E.
Such an orbit would lie in a plane containing �s1 and �s2, say the 1 − 2–plane.

By reflection symmetry we need only consider the part of the orbit after collision,
and we denote by τ the time of its last intersection with the q1 ≡ 0–plane. Then

V(�q(τ)) = 0 so that p1(τ) = −
√

2(E − p2
2(τ)). So at time τ the angle of the

particle direction �p(τ) with the negative 1–axis equals

θ(τ) = arcsin(|p2(τ)|/
√

2E).

As we are interested in small scattering angles, we may assume |p1(τ)| > |p2(τ)|.
Moreover

q2(τ) = p2(τ)

−p1(τ)
+O(1/E),

as follows from the estimates of Sect. 9. Thus the angular momentum w.r.t. �s2 equals

| �L2| = |(�q(τ)− �s2)× �p(τ)| = |p2(τ)− q2(τ)p1(τ)| = 2|p2(τ)| +O(1/E).

As the scattering angle�θ in a Coulombic potential of charge Z2 meets the relation

sin�θ

1+ cos�θ
= |Z2|√

2E| �L2|
,

we obtain for 1/
√

E 7 |p2(τ)| 7
√

E the total scattering angle

θ(∞) = θ(τ)+�θ · (1+ o(1)) = (2E)−1/2
[
|p2| + |Z2|

|p2|
]
· (1+ o(1)),

which is minimized by |p2| ≈ √|Z2|, with value

θ(∞) = √
2|Z2|/E · (1+ o(1)).
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Proof of Theorem 15.3. As remarked before Lemma 8.4, there are two regimes for
Coulomb scattering, hard and soft scattering. A large choice of the constant C7 in
Theorem 15.3 separates the two regimes.

1) In order to prove the theorem, we thus first have to fix the constants c1, c2
which appear in Part 1) and 2) of Lemma 8.4, for δ = 1

2 . The lemma describes the
linearization of the Kepler Transformation, but its estimates are also valid for the
motion in the potential V , using estimate (8.20) and (8.21).

We are interested in the effect of that linearized scattering transformation on
cone fields of the form

C(a) := {(
δ�u
δ�v
) | |δ�u − δ�v| ≤ a|δ�u + δ�v|} (a > 0). (15.4)

So we have C(b) ⊂ C(a) for b < a (note for comparison that in (11.1) we used the
cone field with energy-dependent a = C/E).

• ε > 0 is chosen small enough so that the (according to Lemma 7.1 nearly free)
linearized flow within IZ(cq)maps the cone C(1+ 2ε) into C(2), and the cone
C( 1

2 ) into C(1− 2ε).
For such a small ε > 0 we then choose

• c1 > 0 large enough so that the linearized scattering transformation maps the
cone C(2) into C( 1

2 )• c2 > 0 small enough so that the linearized scattering transformation maps the
cone C(1+ ε) into C(1+ 2ε).

All these choices can indeed be made (apply the relevant unperturbed matrices(
R R
R R

)
and

(
1l 0
s1l 1l

)
from (8.9) and (7.2), resp. (8.10) on the vector

(
δ�u
δ�v
)
).

By fixing the constants c1 and c2, we have defined soft and hard scattering.

2) Now all θ–visits in the sense of Definition 12.6 (meaning that the orbit of energy
E locally intersects the Poincaré surfaceHl(θ(E))), are hard scattering events.

Namely, as θ(E) = 4c1/
√

E (see (15.2)), the scattering angle �ψ inside the
ball Bl(cq) is bounded below by

�ψ ≥ θ(E)/4 = c1/
√

E,

using (9.3). It thus meets the criterion of Lemma 8.4 for hard scattering.

3) We show now that, for large enough C7 in (15.1) (i.e. by excluding large cones
of asymptotic directions p̂±(x) around the axes through two centres), DiffE is
well-defined, that is, that every scattering state x ∈ sE(ϑ(E)) θ–visits at least one
nucleus, so thatNCTθ(x) 	= ∅.

In view of Lemma 15.2 the orbit through x ∈ sE(ϑ(E)) meets the interaction
zone. If the directions at the times T±E (x) of entrance resp. exit are denoted by p̂i

resp. p̂o, then like in (15.3), we have the estimate

�( p̂i, p̂−(x))+�( p̂o, p̂+(x)) = O(1/E) (E > Eth).

Since�( p̂−(x), p̂+(x)) > ϑ(E), we conclude that for large enough C7 the change
of direction inside the interaction zone is at least

�( p̂i, p̂o) >
1
2ϑ(E). (15.5)
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Lemma 7.1 then tells us that the trajectory enters at least one ball of (energy-
independent) radius cq around a singularity �sl .

We count the number N of such occurrences. If N ≥ 3, then Proposition 9.2
says that the orbit αmin/2–visits at least one nucleus. Comparing with the defin-
ition (15.2) of θ , this is a θ–visit.

But the same holds for N ≤ 2, since otherwise

• the changes of directions inside the N cq–balls are each smaller than θ
(Lemma 9.1), and

• the N + 1 components of the trajectory inside the interaction zone but out-
side the cq-balls each contribute at most with C/E to the change of direction
(Lemma 7.1).

• Adding these contributions and using the definition (15.1) of θ , we would get

�( p̂i, p̂o) <
3C

E
+ θ(E) = 3C

E
+ C9√

E
<

1

2

C7√
E
= 1

2
ϑ(E) for Eth large,

in contradiction with (15.5) if

C7 ≥ 4C9.

4) We want to avoid intermediate scattering events with angles�� meeting

c2√
E
≤ �� ≤ c1√

E
. (15.6)

This can be done, too, by choosing C7 in (15.1) large enough.
From 3) we know that the orbit θ–visits the centres in some succession

k = (k1, . . . , kr). There can be at most one visit of some ball Bk0(cq) before
and some ball Bkr+1 (cq) after this sequence of near-collisions (Proposition 9.2).

Moreover, for large C7, these visits, if they occur, are soft scattering events in
the sense of Lemma 8.4. We need only prove this for Bk0(cq), as the result for
Bkr+1 (cq) then follows by time reversal.

So we consider the half-orbit�((−∞, t1], x) through x with t1 = minNCT θ (x),
see Definition 12.6. This half-orbit ends in the Poincaré surface near �sk1 , namely
�(t1, x) ∈ Hk1 (θ). More precisely, by def. (8.1) the configuration space distance
is bounded by

|�q(t1, x)− �sk1 | ≤
4Zmax

C9
√

E
.

The half-trajectory �q((−∞, t1], x) consists of three types of segments:

1. The segment outside the interaction zone IZ . Here the total change of direction
is of orderO(1/E) (Theorem 6.3).

2. The (one or two) segments in IZ(cq). Here, too the total change of direction is
of orderO(1/E) (Lemma 7.1).
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3. The segment inside the ball Bk0(cq), perhaps empty. We know that the half-
orbit has no hard collision here, i.e. it missesHk0(θ) (otherwise k would begin
with k0 instead of k1)). Thus the total change of direction inside Bk0(cq) is
bounded by

�ψ < θ = C9√
E
.

Summing these contributions, for Eth large the total change of direction on the
half-orbit is bounded by

�( p̂−(x), �p(t)) < 2C9√
E

(−∞ < t ≤ τ), (15.7)

τ being the time where the half orbit enters the ball Bk1(cq).
On the other hand by our assumption x ∈ sE(ϑ(E))

�
(

p̂−(x), ŝk1,k0
)
>

C7√
E
. (15.8)

(�v−, �w−) = (�p(τ, x)/
√

2E, (�q(τ, x)−�sk1)/cq
)

are the coordinates (8.3) of the end
point�(τ, x) of the half-orbit. By Lemma 8.2

�(�v−,−�w−) < π · Eth
1
4 C9

√
E
,

so that with (15.7) the relative position �w− meets

�( �w−,− p̂−(x)) ≤ �( p̂−(x), �v−)+ �(�v−,−�w−) <
(

2C9 + 4π · Eth

C9

)/√
E.

Together with (15.7) and (15.8) this means that for C7 large the distance of �q(t, x)
from the line L through �sk0 and �sk1 is bounded by

dist(�q(t, x), L) ≥ 1

2

C7√
E
· |�q(t, x)− �sk1 | (−∞ < t ≤ τ).

But then

dist(�q(t, x), �sk0 ) ≥
1

2

C7√
E
· dmin/2 (−∞ < t ≤ τ).

so that there is at most soft scattering inside Bk0(cq), if C7 is large. Thus there are
no intermediate scattering events with angles meeting (15.6).

5) The last remark implies that the symbolic sequence x �→ w(x) is locally constant
on sE(ϑ(E)). So by Lemma 15.2 and Theorem 6.5 the map DiffE is smooth.

6) Our next task is to show that DiffE is onto. It suffices to find for given data

(θ̂−, θ̂+, k) ∈ AD(ϑ)×W (15.9)

an orbit in E with these asymptotic directions and θ–visits.
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We proceed in a way similar to the construction of bounded orbits in Sects. 11
and 12. If the symbol sequence equals k = (k1, . . . , kr), then we erect incoming
resp. outgoing Poincaré surfaces V(θ̂−, k1) resp. W(kr , θ̂

+) with

V(θ̂, l) :=
{

x ≡ (�p, �q) ∈ D
∣∣∣∣|�q − �sl| = cq,

|�q − �qi |
cq

<
C10√
H(x)

,∣∣∣∣ �p√
2H(x)

× θ̂
∣∣∣∣ < 2C10√

H(x)

}
,

W(l, θ̂) :=
{

x ≡ (�p, �q) ∈ D
∣∣∣∣ |�q − �sl| = cq,

|�q − �qi |
cq

<
C10√
H(x)

,∣∣∣∣ �p√
2H(x)

× θ̂
∣∣∣∣ < 2C10√

H(x)

}
,

θ̂ ∈ S2, near �qi := �sl − cq θ̂ resp. near �qo := �sl + cq θ̂ (compare this definition with
the one ofHk,l

E in (9.16)).
For all �q− in the configuration space projection of V(θ̂−, k1) and all �q+ in

the configuration space projection of W(kr , θ̂
+) there exist �p± with (�p−, �q−) ∈

V(θ̂−, k1), (�p+, �q+) ∈ W(kr , θ̂
+) such that the orbit through (�p−, �q−) θ–visits the

centres in succession k and then meets (�p+, �q+). The proof of this assertion uses
the estimates of Sect. 11, slightly modifying Proposition 11.5.

We set C10 := C7/8 and choose a large value of C7. As $min(θ̂
±) > ϑ(E) =

C7/
√

E, by what we have proven in part 4), V(θ̂−, k1) did not θ–visit a nucleus in
the past, and the orbits through W(kr , θ̂

+) will not θ–visit a nucleus in the future.
Instead by Proposition 9.2, they leave the interaction zone in time ∓O(√E).

Using estimate (15.7 with t := τ , we see that for every �q− there is at least
one �p− such that the orbit through (�p−, �q−) ∈ V(θ̂−, k1) has asyptotic direction

lim
t→−∞ p̂(t, (�p−, �q−)) = θ̂−.

By standard arguments this family of orbits contains one θ–visiting the centres in
succession k and then having limit

lim
t→∞ p̂(t, (�p−, �q−)) = θ̂+.

So DiffE is onto.

7) Cone field estimates based on Part 1) now show that DiffE is one to one and
smoothly invertible. Specifically we show that there exist invariant cone fields C(a)
(see (15.4)) along the orbits constructed in Part 6).

The idea is simply that there is at least one hard scattering along the scattering
orbit, making the family of energy E configuration space trajectories with initial
asymptotic direction θ̂− divergent for large positive times.

So for given θ̂− we consider the Lagrange manifold of points x ∈ sE having
asymptotic direction p̂−(x) = θ̂−. We claim that for Eth large the tangent space
of this submanifold at (�p−, �q−) ∈ V(θ̂−, k1) is contained in the (wide) cone C(2).
Namely the half-orbit ending in (�p−, �q−) consist of at most four segments:
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1. The segment outside the interaction zone IZ , controlled by Theorem 6.3. For
large Eth this is in a cone C(1+ ε/2).

2. The segment in IZ(cq) before entering the ball Bk0(cq), controlled by
Lemma 7.1. Here the linearized Lagrange manifold is contained in C(1+ ε).

3. At most one segment in Bk0(cq), controlled by the choice of the soft scattering
constant c2 in Part 1) of this proof. So after this soft collision, we are in
C(1+ 2ε).

4. The segment in IZ(cq) after leaving Bk0(cq) and before entering Bk1(cq). By
Part 1) here the linearized Lagrange manifold is contained in C(2).

Our choice of the hard scattering constant c1 implies that after leaving Bk1(cq) we
are in the narrow cone C( 1

2 ). At least the same is true after leaving Bkr (cq), using
the cone field estimates of Sect. 11. Finally, we consider the positive half orbit
starting at (�p+, �q+) ∈ W(kr , θ̂

+) and get a similar sequence

C
(1

2

)→ C(1− 2ε)→ C(1− ε)→ C(1− 1
2ε
)

of cone fields, using Part 1) again. For large energies this shows uniqueness of the
orbit with data (15.9). ,-

16. The differential cross section

The scattering transformation S defined in (6.15) contains complete information on
the scattering process. As we have seen in the previous sections, it exhibits many
aspects of irregularity if n ≥ 3. Nevertheless, the scattering transformation is not
directly accessible in a (classical) scattering experiment.

Firstly, one typically cannot fix the initial angular momentum of the test particle.
Secondly (unlike in a quantum mechanical setting where interference effects exist)
it is hard to measure time delay.

What is accessible is the differential cross section dσ
dθ̂+ (E, θ̂

−, θ̂+). Informally
speaking, this is the (density of the) number of particles per second scattered in
the final direction θ̂+, assuming a uniform flux of one particle per second and unit
area of incoming particles of energy E and initial direction θ̂−.

One could expect to see some trace of irregularity in the differential cross
section, and in fact for all systems considered up to now numerical calculations
of the cross section indicated the existence of so-called rainbow singularities on
a Cantor set of angles, see [Ec,EJ,Ga,Sm,Te].

For the simplest case of a Kepler potential we obtain the so-called Rutherford
cross section, see (16.6) below. It is remarkable that the differential cross sections
for the cases n = 2 and n ≥ 3 turn out to be very similar to the Rutherford cross
section (see (16.8) for the statement, and Fig. 12.1 of [KK] for a numerical plot
for d = 2 dimensions). So the complicated structure of the time delay and the
scattering orbits is not reflected in the cross section.

The reason for that discrepancy is, roughly speaking, the following. For d = 2
the deflection functions L− �→ θ̂+(E, θ̂−, L−) (depicted in [KK], Figs. 10.2–10.3)
are strictly monotonic w.r.t. the initial angular momentum L−. It is clear from the
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definition of dσ
dθ̂+ that extrema of the deflection function lead to singularities in

the differential cross section. Since there are no extrema (except for the degen-
erate situation L− → ±∞), we have a nonsingular dσ

dθ̂+ (except for the forward
direction).

Before stating our theorems, we shall recall a mathematically correct definition
of cross section. In the physics literature the cross section is sometimes introduced
as a function, whereas it really is a measure. The difference is of some importance
because in general that cross section measure is not absolutely continuous w.r.t.
Haar measure. In our context, we shall show that under certain conditions the cross
section measure is absolutely continuous if one excludes the forward direction and
the directions near ŝk,l , and that the Radon-Nikodym derivative, i.e. the differential
cross section, is smooth.

We denote by

�a : P+ → R3 , (�p, �q) �→ �q − 〈�q, p̂
〉

p̂

the impact parameter. For phase space points x ∈ P+ projecting to a singularity �sl

or with x ≡ (�p, �q) = (�0, �q) the impact parameter is defined by, say �a(x) := �0.
Now on the ±–scattering states s± ⊂ �P+ the asymptotic impact parameters

�a± : s± → R3 , �a± := lim
t→±∞ �a ◦�t

are well-defined continuous functions, since �a(�p, �q) is continuous outside the
interaction zone (that is, for |�q| ≥ Rvir(H(�p, �q))), and there

�a(�p, �q) = �p× �L(�p, �q)
2(H(�p, �q)− V (�p, �q)) . (16.1)

By Theorem 6.3 the r.h.s. of (16.1) has a limit on scattering orbits.
For energy E > 0 we consider the maps

A±E : sE → T∗S2 , x �→ (�a±(x), p̂±(x)
)

from the set of ± scattering states of energy E to their asymptotic data. These can
really be considered as points in the cotangent bundle

N := T∗S2

of the two-sphere, since

• | p̂±(x)| = 1,
• 〈�a±(x), p̂±(x)

〉 = 0, and
• the bilinear map (�p, �q) �→ 〈�p, �q〉 is the natural pairing between vectors and

co-vectors (no Riemannian metric involved).

The cotangent bundle N carries the canonical symplectic two-form ωN and the
volume form λN := 1

2ωN ∧ ωN .
The maps A±E are constant on orbits, and for y ∈ N the preimages (A±E)−1(y)

consist of at most one orbit.
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Proposition 16.1. For energy E > 0 the set A±E (sE ) ⊂ N of asymptotic data of
the scattering states is open, and its complement N \ A±E (sE ) is a compact set of
λN -measure zero.

If V satisfies the decay estimates (6.16), then the map

ME : A−E (sE )→ A+E (sE ) , A−E (x) �→ A+E (x) (x ∈ sE ) (16.2)

from initial to final data for energy E is a smooth canonical transformation.

Proof. For energy E > 0 and radius r > Rvir(E)we consider the smooth Poincaré
surfaces

U±
E,r := {(�p, �q) ∈ E | |�q| = r,±〈�p, �q〉 > 0}.

These four-manifolds are transversal to the flow as {H, �q 2} = 1
2 {�p 2, �q 2} =

−2 〈�p, �q〉 	= 0. According to Lemma 8.2 of McDuff and Salamon [DS], they
are symplectic submanifolds of our phase space P, and the Poincaré section map

U−
E,r ∩ sE → U+

E,r ∩ sE (16.3)

which send x to the unique intersection point of the orbit �(R, x) with U+
E,r is

a symplectomorphism.
We use on U±

E,r the coordinates (�a, p̂), which are maps

κ±E,r : U±
E,r → N.

Indeed they are diffeomorphisms onto their common image

Nr := {(�a′, p̂) ∈ N | |�a′| < r}.
Thus the map (16.3) induces a diffeomorphism

ME,r : Nr ∩ κ−E,r(sE )→ Nr ∩ κ+E,r(sE )

which converges pointwisely to (16.2) as r → ∞, using Theorem 6.3. With
assumption (6.16), smoothness of ME is then implied by Theorem 6.5.

The scattering states s ⊂ P form an open subset (see Thm 2.3.3 of [DG]),
and thus U−

E,r ∩ sE is relatively open, too. All orbits in E which do not meet the
interaction zone IZ(E) are scattering. Thus N \ A±E (sE ) is a compact set. Then
using A±E (s

±
E ) = N and asymptotic completeness Corollary 6.4.2, we see that

λN (N \ A±E (sE )) = 0. ,-
For λS2-almost all θ̂− ∈ S2 the map

ϕ̂E,θ̂− : T∗
θ̂− S2 → S2, ϕ̂E,θ̂−(�a−) := p̂+(E, �a−, θ̂−) (16.4)

is measurable. Here the restriction of the asymptotic direction p̂+ : s+ → S2

(which is constant on orbits) to sE is considered as a map

p̂+(E, ·, ·) : A−E (sE )→ S2,

see Proposition 16.1.
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Definition 16.2. For E > 0 and θ̂− ∈ S2 the cross section measure σ(E, θ̂−) on
S2 is the image measure

σ(E, θ̂−) := ϕ̂E,θ̂−
(
λ
θ̂−
)
, (16.5)

λ
θ̂− being Lebesgue measure on the cotangent plane T∗

θ̂−S2.

Assuming σ(E, θ̂−) on S2 \ {θ̂−} to be absolutely continuous w.r.t. Haar meas-
ure λS2 , the differential cross section dσ

dθ̂+ (E, θ̂
−, θ̂+) is the Radon-Nikodym

derivative of σ(E, θ̂−).

In Definition (16.5) we by using λ
θ̂− we normalize the flux through unit area in

configuration space to equal one.

Example 16.3. By radial symmetry, for the simplest case (6.1) of scattering by
a Kepler potential with Z ≡ Z∞ 	= 0, the (Rutherford) differential cross section
depends only on the angle

�θ := �(θ̂−, θ̂+)
between the initial and final direction. Using formula (8.12) for the eccentricity
e = +1/ sin( 1

2�θ) of the Kepler hyperbola, we see that the modulus a of the
impact parameters �a± equals

a = |Z|
2E

cot
( 1

2�θ
)
,

so that ∣∣∣∣ da

d�θ

∣∣∣∣ = |Z|
4E sin2

(1
2�θ

) .
We may assume that θ̂− = (0, 0, 1) so that the 3-component of �a−= �p−× �L−
vanishes and λ

θ̂− corresponds to integration with the two-form dL−1 ∧ dL−2 . Intro-
ducing polar coordinates (L, ϕ−) in the plane T∗

θ̂−S2, and expressing the volume

element at θ̂+ on S2 in the form

sin(�θ) · dϕ− ∧ d�θ,

we obtain the familiar expression

(
dσ

dθ̂+
(E, θ̂−, θ̂+)

)
Ru
=
∣∣∣∣ L

2E

dL

d�θ

∣∣∣∣ =
(

Z

4E sin2
(1

2�θ
)
)2

(16.6)

for the Rutherford cross section. Note that it depends only on the modulus of the
charge Z .

For (θ̂−, θ̂+) ∈ $−1
min(θ), k ∈W let

�a−k
(
E, θ̂−, θ̂+

) := lim
t→−∞ �a

(
Diff−1

E (t, θ̂
−, θ̂+, k)

)
,

with DiffE defined in Theorem 15.3.
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Theorem 16.4. Let V be a Coulombic potential satisfying the decay estimates
(6.16).

Then for energy E > Eth and ϑ = min(cE−δ, αmin) with 0 ≤ δ ≤ 1
2 , on

$−1
min(ϑ) the differential cross section is smooth, of the form

dσ

dθ̂+
(E, θ̂−, θ̂+) =

∑
k∈W

∣∣∣∣∣det

(
dϕ̂E,θ̂−

d�a
(�a−k (E, θ̂−, θ̂+))

)∣∣∣∣∣
−1

, (16.7)

and differs from the Rutherford cross section (16.6) for charge Z :=
√∑n

l=1 Z2
l

only by

dσ

dθ̂+
(E, θ̂−, θ̂+) =

(
dσ

dθ̂+
(E, θ̂−, θ̂+)

)
Ru
· (1+O(E2δ−1)) (16.8)

uniformly in (θ̂−, θ̂+) ∈ $−1
min(ϑ).

Remarks 16.5. 1) In particular the relative difference w.r.t. Rutherford cross section
is only of orderO(1/E) if one excludes cones of an energy-independentapertureϑ.

2) In 2-dim. and purely Coulombic potentials the differential cross section is even
smooth (up to the forward direction θ̂+ = θ̂−) for all positive energies [KK]. As
shown in [Kn3], this smoothness is rather exceptional.

Also here for n > 1 centres we cannot have smoothness of the differential cross
section (for no V and no E > Eth), if we add to AD(ϑ) the neighbourhood of any
direction ŝi,k . This follows from the observation that (contrary to the 2D attracting
case) in 3 dimensions any hard collision with a nucleus changes the degree. By
a limit argument there must then exist points where the degree is zero. At these
points the differential cross section diverges.

Proof. Theorem 15.3 says that the orbits with data (E, θ̂−, θ̂+) are enumerated
byW . So if the r.h.s. of (16.7) converges, then by the Transformation Theorem for
Lebesgue measure (16.7) follows from the definition of the cross section measure
in (16.5).

Estimates (6.17) and (6.18) of Theorem 6.5 imply that for |�q0| ≥ Rvir(E),
±〈�q0, �p0〉 ≥ 0 and multi-indices γ := (α, β) ∈ N3

0 × N3
0

∂
γ
x0( p̂

±(x0)− p̂0) = O
(
E−1− 1

2 |α|)
and

∂
γ
x0(�a±(x0)− �a(x0)) = O

(
E−1− 1

2 |α|),
the last estimate being obtained with the help of (16.1).

Similar statements are true for orbit segments in IZ(cq).
So up to an error of order O(1/E), all variations of the asymptotic data come

from the single scattering processes within the balls of radius cq around the singu-
larities.

We switch to (�y , �z )-coordinates.
There are two types of such contributions:



The n-centre problem of celestial mechanics for large energies 105

1. The ones coming from the hard collisions (θ–visits in succession k). These lead
to factors of the form (11.2) in the product formula for the linearization:

TxPE = f(k−1, k0, k1)E ·
(

1l 1l
1l 1l

)
+O(E0) (16.9)

with

f(k−1, k0, k1) := 2dk−1,k0 cos2
( 1

2α(k−1, k0, k1)
)

−Zk0

.

As �ψ > cE−δ, the relative error in this estimate is of the orderO(E2δ−1).
2. Visits of cq-balls around some singularities, which are not hard collisions

(θ–visits). By what we have shown, there can be at most two such events, one
before the k–visits, one after.
So these visits meet the hypothesis (8.6) of Lemma 8.2∣∣∣∣ �v−|�v−| + �w−

∣∣∣∣ ≥ cE−δ,

i.e. with angle ϑ = O(E−δ′), where δ′ := 1− δ ∈ [ 1
2 , 1].

So formula (8.10) of Lemma 8.4 says that the relative deviation of the linearized
flow from free motion during these soft collisions is of order O(E1−2δ′) =
O(E2δ−1):

δ�v+ = δ�v−+ O(c2 E1−2δ′) · (|δ�v−| + |δ �w−|),
δ �w+ = 2uδ�v− + δ �w− + 2�v−du+ O(c2 E1−2δ′) · (|δ�v−| + |δ �w−|).

Now we see that the formal sum (16.7) converges:

• There are exactly n · (n − 1)l−1 words k ∈W of length l.
• For word length l + 1 of k ∈W the term∣∣∣∣∣det

(
dϕ̂E,θ̂−

d�a
(�a−k (E, θ̂−, θ̂+))

)∣∣∣∣∣
in (16.7) is only of relative order O(E−(d−1)) = O(1/E2), compared to the
term of the word shortened by one letter, as there is one extra factor E coming
from (16.9). Here d denotes the dimension, so d = 3.

So if E > Eth and the threshold Eth is suitably chosen, this decay outweighs
the exponential proliferation of words with given word length.

The comparison in (16.8) with Rutherford cross section (16.6) for squared
charge Z2 =∑n

l=1 Z2
l follows by adding the contributions in (16.7) of word length

one. In d = 3 dimensions the leading errors of orderO(E2δ−1) come from 1) and
2) above, whereas neglecting the contributions of the longer words is only of order
O(E−2). ,-
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In d dimensions the Rutherford cross section equals

(
dσ

dθ̂+
(E, θ̂−, θ̂+)

)
Ru
=
(

|Z|
4E sin2

(1
2�θ

)
)d−1

. (16.10)

In 12.4 of [KK] we remarked that for d = 2 dimensions, Zl > 0 and θ+ 	= θ−
the differential cross section of the n–centre problem converges to the d = 2
Rutherford cross section as E → ∞. The charge Z in (16.10), however, must be
chosen as Z = ±∑n

i=1 Zi (and not Z∞, as wrongly stated in [KK]). This result
can be sharpened:

Corollary 16.6. The analog of formula (16.8) holds true in d = 2 dimensions if
one sets Z :=∑n

i=1 |Zi |.
Proof. Up to error terms the formulae (11.2) and (8.10) for the linearization of
the flow which we used to derive the result (16.8) in d = 3 are invariant under
rotations. Thus (16.8) is true in d = 2 dimensions, too. ,-

17. The collinear case

In this section we show by counterexample that the non-collinearity conditions
cannot be dropped in Theorem 12.8 and Theorem 15.3.

1) We first consider the set bE of bounded orbits of energy E for attracting
Coulombic potentials V which are rotationally symmetric w.r.t. some axis A ⊂ R3

�q .
Thus in particular the nuclei are situated on that axis:

�s1, . . . , �sn ∈ A. (17.1)

Conversely, that condition ensures that V is rotationally symmetric around A, if it
is a purely Coulombic potential.

By symmetry trajectories with initial conditions tangential to a two-plane
F ⊂ R3

�q containing A stay in F, and we may thus consider the restricted two-
dimensional motion on F.

The axis A is divided by �s1, . . . , �sn into n+ 1 closed intervals meeting only in
their endpoints �sl . These intervals correspond for energies E > Vmax to trajectories
which are reflected by the nuclei. Thus two of these trajectories are unbounded and
n − 1 bounded.

These special trajectories are of course invariant under rotations around A.
However, there cannot be any further energy E trajectories in F having this property.

On the other hand it has been shown in [KK] that for n ≥ 3 nuclei above some
energy Eth there is a Cantor set of bounded trajectories in F. So in particular there
is an uncountable number of trajectories in F which are not moving tangential to
A and thus give rise to one-parameter families of trajectories for the full motion
in M̂.

2) In general there are bounded orbits which do not lie in any plane F containing

the axis A. We observe that by rotational symmetry the component
〈�L, ŝ〉 of
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angular momentum in the direction ŝ of A is preserved. We now indicate that
for certain collinear configurations there exist two-parameter families of bounded
orbits of a given energy, parametrized by that angular momentum component and
its conjugate angle.

For the sake of simplicity we consider a 3-centre potential

V(�q) := −
3∑

l=1

Zl

|�q − �sl|

with s1 := �0, �s2 := d · ŝ, �s3 := −d · ŝ, ŝ := (0, 0, 1) and Z2 = Z3 which,
in addition of being axially symmetric w.r.t. the 3-axis A = R · ŝ, is mirror-
symmetric w.r.t. reflection by the plane F12 := {�q ∈ R3

�q | q3 = 0}. We first
consider periodic trajectories with angular momentum component L3 = 0 in, say,
the plane F ∼= F13 := {�q ∈ R3

�q | q2 = 0} which are invariant under reflection by
the plane F12:

q1(−t) = q1(t) , q2(t) = 0 , q3(−t) = −q3(t) (t ∈ R).
By symbolic dynamics arguments combined with Theorem 6.11 and Remark 11.2.2
of [KK] for all energies E > 0 there exists a countable infinity of these orbits,
all being hyperbolic and having index 0 (as orbits in the two-plane F13. Thus
by invoking an implicit function argument one may show the existence of smooth
family of energy-E bounded orbits starting on the 1-axis near�q(0) and parametrized
by L3. Rotating these orbits around the axis A then yields a two-parameter family
of bounded orbits.

3) For repelling axially symmetric potentials the situation is completely different.
W.l.o.g. we again consider potentials V which are invariant w.r.t rotations around
the axis A = R · ŝ, with ŝ = (0, 0, 1). But now we assume that〈∇V(�q), �q − 〈�q, ŝ〉ŝ〉 < 0

(�q ∈ R3
�q \ A

)
.

This condition is met, e.g., by repelling (Zl < 0) purely Coulombic potentials
meeting (17.1).

Now consider a trajectory starting at (�p(0), �q(0)) with

�q(0)− 〈�q(0), ŝ〉ŝ 	= �0 and
〈∇�p(0), �q(0)− 〈�q(0), ŝ〉ŝ〉 ≥ 0. (17.2)

Then 〈�p(t), �q(t)− 〈�q(t), ŝ〉ŝ〉 > 0 (t > 0)

and is monotonically inreasing in t, since

d

dt

〈�p, �q − 〈�q, ŝ〉ŝ〉 = − 〈∇V(�q), �q − 〈�q, ŝ〉ŝ〉+ 〈�p, �p− 〈�p, ŝ〉ŝ〉 > 0.

But this means that the orbit leaves the interaction zone in finite time and thus is not
bounded. The second of the conditions in (17.2) is not restrictive, since otherwise
we may consider negative times.
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We conclude that the only bounded orbits lie on the axis. Thus for E > Vmax
there are exactly n − 1 bounded orbits, compared to the uncountable infinity of
bounded orbits in the case of NC configurations and n ≥ 3.

4) Finally we consider scattering orbits. Already for n = 2 nuclei and attracting
purely Coulombic potentials we have one-parameter families of orbits of a given
energy E scattering from a direction parallel to the axis A through the positions
�s1, �s2 and to the backward direction. These are obtained by rotating a given solution
around A. There are infinitely many such families, as can be seen from the explicit
Jacobi solution of the two-centre problem, described in Appendix B, or from [KK],
Theorem 12.1.

A. Aspects of geometry and global analysis

This article on the 3-dimensional n–centre problem is based upon analytical per-
turbation estimates. To the contrary the 2-dim. n–centre problem (and similarly,
the 2-dim. periodic potentials of [Kn1,Kn2]) was treated in [KK] using techniques
from Riemannian geometry and global analysis.

In this appendix both approaches are compared.
It is known that the trajectories of energy E > sup�q V(�q) generated by a Hamil-

tonian function H : T∗M → R of the (local) form

H(�p, �q) = 1

2

d∑
k,l=1

gk,l(�q)pk pl + V(�q)

on a d-dimensional Riemannian manifold (M, g) coincide (up to a time repara-
metrization) with the geodesics in the so-called Jacobi metric gE on M, conformally
equivalent to g:

gE(�q) := (1− V(�q)/E)g(�q) (A.1)

(here we assume for simplicity E > 0).
In the simplest case covered by the paper V(�q) = −Z/|�q| with Z > 0, i.e. the

attracting Coulomb potential. There, using a formula from Spivak ([Sp], p. 337),
we obtain the expression

K1,2(�q) = Z

2E

−1+ 3
(

1+ Z
2E|q|

)
q2

3
|�q|2

(|�q| + Z/E)3
(A.2)

for the sectional curvature of the Jacobi metric in the 1-2-tangent plane at �q. We
can learn several things from that formula:

• Setting q3 = 0 and thus considering planar motion,

K1,2(�q) = − Z

2E(|�q| + Z/E)3
< 0
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for positive E, and this expression is bounded below, by

K1,2(�q) ≥ − E2

2Z2
. (A.3)

This fact was used extensively in [Kn1], [Kn2] and [KK] to analyze planar
motion by going to the smooth branched covering surface

M :=
{
(q, Q) ∈ C× C

∣∣∣∣∣Q2 =
n∏

l=1

(q − sl)

}

of the configuration plane, equipped with the lifted Jacobi metric (the branched
covering being given by projection to the first factor q).

• For d = 3 dimensions the sectional curvature (A.2) is neither uniformly
bounded in the �q variable nor definite. In fact, for �q = (0, 0, q3)

K1,2(�q) ∼ 3E

4Z|�q| → +∞ (q → 0). (A.4)

We thus consider here geodesic motion in mixed sectional curvature. Although
the E-dependence of (A.3) is quadratic, whereas (A.4) is only linear in E,
negative curvature does never dominate positive curvature in our estimates.
Namely we have seen in Lemma 9.1 that the minimal distances of the bounded
orbits from the nuclei are of the order 1/E, so that effectively (A.4), too, goes
like E2.
Mixed curvature dynamics is rather intractable in general. However, in the case
considered here the motion near the singularities can be treated as a perturbation
of Keplerian motion, and this allows us to control the motion in the high energy
limit.

Whereas the estimates of this papers are somewhat optimal in the high energy
limit E > Eth, nothing much could be said about the energy region 0 < E ≤ Eth
(the exception being Sect. 6).

To the contrary, for two dimensions many results were shown for all posi-
tive energies, using the negativity of Gaussian curvature and the topology of the
branched covering surface M (whose fundamental group is non-abelian for n ≥ 3).

The branched covering M → C globalizes the so-called Levi-Civita transform
Q �→ Q2 of celestial mechanics. So it is natural to pose the question whether there
exists a similar globalization of the Hopf map

C2 → R3, z �→ 〈z, �σz〉
used in the Kustaanheimo-Stiefel regularization of a 3-dim. Coulomb singular-
ity. As already mentioned, this was done in [HS] for n = 2 centres. However,
a generalization to arbitrary n seems to be unknown.

We expect that the corresponding manifolds, i.e. four-dimensional analogs of
Riemann surfaces, should have interesting topological properties.

One last aspect concerns structural stability. Both in d = 2 and three dimensions
the compact set bE ⊂ E of bounded orbits is hyperbolic and thus structurally
stable.
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Thus if we continuously move the singularities by suitable maps S1 → Rd ,
u �→ �sl(u), we obtain a family of Coulombic potentials Vu and correspondingly
a one-parameter family of bound states bE,u . As the parameter varies cyclically,
we obtain a permutation of the bounded orbits in bE ≡ bE,1.

For d = 2 this action of the braid group on n strands of R2 by permutations is
nontrivial in general (see Remark 6.12 of [KK]).

Although in d = 3 dimensions the manifoldNC of non-collinear configurations
is not simply connected for n ≥ 3, the action of the fundamental group π1(NC) on
bE is trivial.

B. The two-centre problem

Here we shortly discuss the purely Coulombic two-centre problem, i.e.

V(�q) = −Z1

|�q − �s1| +
−Z2

|�q − �s2| .

W.l.o.g. we assume that the two centres are at �s1 :=
(

1
0
0

)
and �s2 :=

(−1
0
0

)
.

As is well-known (see e.g. Thirring [Th]), the problem is analytically integrable,
see [GKM] for an application to satellite motion and [SR] for an application to
semiclassics of the hydrogen molecule.

The motion is integrated using the prolate ellipsoidal coordinates (ξ, η, ϕ) ∈
R+ × [0, π)× [0, 2π) with

�q ≡
( q1

q2
q3

)
=
(

cosh(ξ) cos(η)
sinh(ξ) sin(η) cos(ϕ)
sinh(ξ) sin(η) sin(ϕ)

)
.

As in these coordinates H is independent of ϕ, the conjugate momentum

pϕ = q2 p3 − q3 p2

is a constant of the motion, equal to the first component of angular momentum. We
set l1 := pϕ(x0) for initial conditions x0.

Then by going to extended phase space and using a new time parameter s
defined by

dt

ds
= 2

(
cosh2(ξ)− cos2(η)

)
,

the new Hamiltonian function separates:

H := dt

ds
(H − E) = H1 + H2

with

H1(pξ, ξ) := p2
ξ + V1(ξ) with V1(ξ) := l2

1

sinh2(ξ)
− 2Z+ cosh(ξ)− 2E cosh2(ξ)
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H2(pη, η) := p2
η + V2(η) with V2(η) := l2

1

sin2(η)
+ 2Z− cos(η)+ 2E cos2(η),

where Z± := Z2 ± Z1.
The motion on H−1(0) coincides — up to time parameterization — with the

motion on H−1(E). Setting

K := H1(x0) = −H2(x0),

we have three generally independent constants of the motion H, H1 and l1, whose
values are denoted by E, K and l1, respectively.

The bifurcation set is then given by the set of values for which the mapping
from phase space to the constants of the motion is not locally trivial (see [AM],
Sect. 4.5). The most interesting subset is the one for l1 = 0, i.e. two-dimensional
motion.

By inspection of the extrema of the Vi one sees that for l1 = 0 the image of
(H, H1) is the region in R2 bounded by the curves

K+(E) :=
{

Z2+
2E , 0 > E > −Z+/2
−2(Z+ + E) , E ≤ −Z+/2

and

K−(E) :=
{

Z2−
2E , E > |Z−|/2
2(|Z−| − E) , E ≤ |Z−|/2

.

The bifurcation diagramme (see Fig. 2) is the union of K−, K+, and the lines

E = 0 , K = 0 and K0(E) := −2(Z+ + E)

inside the image of (H, H1).
The line K0 corresponds to the (H, H1)–values of the closed orbit wandering

between the centres �s1 and �s2, i.e. having coordinate ξ = 0.

Fig. 2. Bifurcation diagramme

The following relations are useful for the scattering problem. In the (1-2)–plane,
i.e. for ϕ = 0, we have the polar coordinates q1 = r cosφ, q2 = r sinφ. Then



112 Andreas Knauf

r2 = cosh2(ξ)− sin2(η) and tan(φ) = tanh(ξ) tan(η) so that in the r →∞ limit η
coincides with φ.

In the same limit pη = q1 p2 − q2 p1 − e−ξ (p1 sin η + p2 cos(η)) coincides
with the angular momentum q1 p2 − q2 p1 of the (1-2)–plane.

This suffices to relate the asymptotic data (p±η , η±) := lims→�s±(pη(s), η(s))
with the ones in the original system (the times s+ > s− being defined by
lims→�s± ξ(s) = ∞). The constant K is then given by (p±η )2 + V2(η

±). Equalling
the elliptic integrals

s+ − s− =
∣∣∣∣∣
∫ η+

η−
dη√−K − V2(η)

∣∣∣∣∣
respectively

s+ − s− = 2
∫ ∞

ξmin

dξ√
K − V1(ξ)

with cosh(ξmin) = −Z+
2E

+
√(

Z+
2E

)2

− K

2E

then suffice in principle to calculate analytically the scattering transformation, but
the expressions become rather lengthy.
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Note added in proof. The anonymous referee informed me about the interesting related
article: S.V. Bolotin, P. Negrini: Regularization and topological entropy for the spatial n-
center problem, which meanwhile appeared in Ergodic Theory and Dynamical Systems 21,
383–399 (2001). Concerning the context of the n-centre-problem onR3, the authors succeed
to construct a global regularization of n attracting singularities, based on the local KS
transform. Furthermore, they prove that for n ≥ 3 the topological entropy is strictly positive
for all energies E ≥ 0, whereas the present paper is only dealing with all energies above
a positive threshold energy. Additionally, the authors prove several results for configuration
manifolds different fromR3. I do not believe, however, that these topological methods could
be used to substantially simplify the proofs of the analytic results given in the present paper.


