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Abstract Given a controlled stochastic process, the reachability set is the collection of
all initial data from which the state process can be driven into a target set at a specified
time. Differential properties of these sets are studied by the dynamic programming principle
which is proved by the Jankov-von Neumann measurable selection theorem. This principle
implies that the reachability sets satisfy a geometric partial differential equation, which is
the analogue of the Hamilton-Jacobi-Bellman equation for this problem. By appropriately
choosing the controlled process, this connection provides a stochastic representation for
mean curvature type geometric flows. Another application is the super-replication problem
in financial mathematics. Several applications in this direction are also discussed.

1. Introduction

The stochastic target problem is a non-classical optimal stochastic control problem
in which the controller tries to steer a controlled stochastic process Zν

t,z into a given
target G ⊂ IRn at time T , by appropriately choosing a control process ν. The object
of interest is the collection of all initial data, Zν

t,z(t) = z, from which the controller
can achieve her goal:

V(t) := {z ∈ IRn : Zν
t,z(T ) ∈ G for some admissible ν

}
.

We call V(t) the reachability set. As in classical optimal control, if the state process
is Markov, then the reachability sets satisfy a dynamic programming principle
which states that for any stopping time θ ∈ [t, T ],

V(t) = {z ∈ IRn : Zν
t,z(θ) ∈ V(θ) for some admissible ν

}
.(1.1)

After properly defining the problem in a general abstract setup, we prove this
identity in Theorem 3.1 under natural assumptions on the state process and the ad-
missible controls. The main technical tools of this proof are a measurable selection
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Theorem of Jankov-von Neumann and the techniques developed in Bertsekas and
Shreve [6].

In Sect. 4, we use (1.1) to derive a partial differential equation when the state
process is a diffusion process

dZν
t,z(s) = µ

(
s, Zν

t,z(s), ν(s)
)

ds + σ
(
s, Zν

t,z(s), ν(s)
)

dW(s)

where W is a n-dimensional Brownian motion, and the control ν is a progressively
measurable process valued in a compact subset U of some Euclidean space. In this
general setup, the reachability set is neither a graph nor an epigraph. Therefore the
evolution of the reachability sets can only be described by the geometric quantities
of its boundary. We use the machinery developed in [4,8,13,25] to derive and study
the corresponding dynamic programming equation

sup
{ −Lνu(t, z) : ν ∈ N (t, z, Du(t, z))

} = 0 (t, z) ∈ (0, T )× IRn,(1.2)

where for ν ∈ U ,

Lνu(t, z) := ut(t, z)+ µ(t, z, ν)∗∇u(t, z)+ 1

2
trace

(
σσ∗(t, z, ν)D2u(t, z)

)
,

and for p ∈ IRn , and (t, z) ∈ S = [0, T ] × IRn

N (t, z, p) := { ν ∈ U : σ∗(t, z, ν) p = 0
}
.

Since we wish to hit a deterministic target G with probability one, the diffusion
process has to degenerate along certain directions and the kernel N captures this
fact.

The main result of Sect. 4 is Theorem 4.1 which states that the characteristic
function of the complement of the reachability set is a viscosity solution of a non-
linear parabolic partial differential equation. Note that although the characteristic
function is discontinuous, it solves a second order partial differential equation. This
is common in the weak-viscosity theory for geometric flows; [4,8,13,25].

This connection between the stochastic target problems and the geometric flows
also provides a stochastic representation for the mean curvature flow, which was
unexpected to the authors. The mean curvature flow is a geometric initial value
problem for a family of sets {	(t)}t≥0. Given the initial set 	(0), the problem is to
construct 	(t) in such a way that the normal velocity of 	(t) at any point is equal
to its mean curvature at that point. A brief discussion of this flow is given in Sect. 5
and we also refer to [4,8,13,25] and the references therein for more information.
In the case of the (codimension one) mean curvature flow the connection is this:
Let the controlled process be

dZν
t,z(s) = [In − ν(s)ν∗(s)

]
dW(s) ,

where In is the n × n identity matrix, and the control ν is any adapted unit
vector. This choice provides a stochastic representation for the mean curvature
flow problem, as a target reachability problem in the reverse time. More precisely,
the characteristic function of the reachability set of this stochastic target problem is
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a weak-viscosity solution of the mean curvature flow. To the best of our knowledge,
this is the first representation formula of this type. Note that it is analogous to the
connection between forward-backward stochastic differential equations and the
semilinear partial differential equations [23,22].

In general, the dynamic programming equation (1.2) corresponds to a general
nonlinear geometric flow. Indeed formally (1.2) implies that the boundary of V(t)
satisfies the following equation:

V = sup{ −µ(t, z, ν) · �n − 1

2
trace

(
σσ∗(t, z, ν) D�n) : ν ∈ N (t, z, �n) },(1.3)

where V is the normal velocity of the reachability set at z ∈ ∂V(t), and �n is outward
unit vector at z ∈ ∂V(t). A brief discussion of the geometric flows, the definition
of V in terms of the distance function is given in Sect. 5.

The stochastic target problem was originally motivated by applications in fi-
nancial mathematics. The reachability set is closely related to the super-replication
problem which has been extensively studied in the last decade; we refer the reader
to Karatzas and Shreve [18] and the references therein. In this financial pricing
problem, one is interested in finding the minimal initial capital which allows to
hedge some given contingent claim by means of an admissible portfolio strategy.
Here, the control is the portfolio, the controlled stochastic process is the spot stock
prices and the value of our portfolio, and the target is the set of all stock prices
and portfolio values such that the portfolio value dominates a nonlinear function
of stock prices given by the contingent claim.

Initialy, convex duality is used to analyze the super-replication problem. In
general, when this approach is avaliable, the dual problem turns out to be a stan-
dard stochastic control problem (see e.g. Fleming and Soner [15]) which can be
solved via the classical Hamilton-Jacobi-Bellman equations, see Cvitanić, Pham
and Touzi [11]. Then the dual formulation admits a classical dynamic program-
ming principle which is equivalent to the above one. Of course this derivation of
the dynamic programming principle requires the convex duality result.

However, to this date, there is no general convex duality approach which
applies to the general problem. In particular, there are several examples in financial
mathematics which have not yet been solved by convex duality. Two such examples
are the large investor framework (Cvitanić and Ma [10]), and the problem of hedging
under Gamma constraints (Soner and Touzi [26]).

In this paper, we propose to study the target problem directly by the above
dynamic programming principle 3.1. This alternative approach provides a way of
deriving the Hamilton-Jacobi-Bellman equation directly and it has already been
successfully applied in [26], [27] and [30].

In Sect. 6, we discuss super-replication problems with a Gamma constraint,
transaction costs, and general portfolio constraints. In all of these examples, the
reachability set is an epigraph of a function which is equal to the minimal super-
replication price, and (1.1) yields a Hamilton-Jacobi-Bellman equation for the
minimal super-replication price.

The paper is organized as follows. Section 2 describes the general stochastic
target problem. Dynamic programming principle is proved in Sect. 3. The corres-
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ponding dynamic programming equation (1.2) is stated in Sect. 4. We defer the
rigorous proof of the connection between the target problem and this equation to
Sect. 8. In that section, we prove that the characteristic function of the complement
of the reachability set is a viscosity solution of (1.2). In the remaining sections we
discuss the applications. In Sect. 5, after a brief introduction to mean curvature
flow, we obtain a stochastic representation for the mean curvature flow in any
codimension. In Sect. 6, we discuss several applications in financial mathematics.
An extension of the target reachability problem to the stochastic viability problem
(Aubin et al. [2,3]) is given in Sect. 7.

Sections on financial mathematics, Sect. 6 and Sect. 7, and the section on mean
curvature flow, Sect. 5 are independent of each other.

2. Abstract problem

In this section, we formulate the stochastic target problem. We start with a brief
summary of the notation that will be used throughout the paper.

2.1. Notation

Let (�,F, P) be a complete probability space, T > 0 a finite time horizon, and
IF = {F(t), 0 ≤ t ≤ T } a filtration satisfying the usual assumptions. T is the set
of all stopping times in [0, T ].

For θ ∈ T , L p
n (θ) is the set of all p integrable, IRn-valued random variables

which are measurable with respect to F(θ). For θ = T , we simply denote L p
n :=

L p
n (T ). We also introduce the set S of all pairs (θ, ξ) ∈ T ×L2

n such that ξ ∈ L2
n(θ).

By analogy, we introduce the set S = [0, T ] × IRn which can be viewed as the
subset of deterministic elements of S.

Let IH0
n be the set of all càd-làg processes X : [0, T ]×� −→ IRn progressively

measurable with respect to the filtration IF, and IH p
n the subset of IH0

n whose

elements satisfy E[∫ T
0 |Xt |pdt] < ∞.

For a topological space A, BA is the set of all Borel subsets of A.
M∗ is the transpose of the matrix M.

2.2. Admissible controls

The control set U is a Borel subset of an Euclidean space and U is the set of all
progressively measurable processes ν : [0, T ] ×� −→ U .

Given ν1 and ν2 in U and a stopping time θ ∈ T , we define the θ-concatenation
of (ν1, ν2) by:

ν1
θ⊕ ν2 := ν1 1[[0,θ) + ν2 1[[θ,T ]].

Finally the set of admissible controls is any Borel subset A of U which satisfies
the following two conditions.
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A1. Stability under concatenation:

ν1
θ⊕ ν2 ∈ A for all ν1, ν2 ∈ A and θ ∈ T ,

This condition is crucial for dynamic programming. It essentially states that
the set of admissible controls has an additive structure.

The second assumption is a technical condition and in many instances it fol-
lows from the topological structure we impose on A. In particular, the following
assumption holds if the set A is a separable, metric space; see Lemma 2.1 below.

A2. Stability under measurable selection:

We assume that for any θ ∈ T and any measurable map

φ : (�,F(θ)) −→ (A,BA),

there exists ν ∈ A such that

φ = ν on [[θ, T ]] ×� , Leb × P almost everywhere.

The issue here is this. Given φ as above we may define a control process ν by:

ν(t, ω) := (φ(ω))(t, ω)1{t≥θ}(ω)+ ν̄(t, ω)1{t<θ}(ω),(2.1)

for some ν̄ ∈ A. Assumption A2 is then needed in order to show that ν is progres-
sively measurable.

A sufficient condition for A2 is the separability ofA:

Lemma 2.1. Suppose thatA is a separable metric space. Then, A2 holds.

Proof. We first prove that the result holds for simple functions, then we deduce the
result by density.

1. First suppose that φ is a simple function, i.e.,

φ =
∞∑

k=1

νk 1Bk,

for some νk ∈ A and pairwise disjoint sets Bk ∈ Fθ whose union is the whole
set �. Let ν be as in (2.1). For any t ∈ [0, T ] and a Borel set A ∈ BU , we need to
show that the set

O := { (s, ω) ∈ [0, t] ×� | ν(s, ω) ∈ A }
is Leb[0,t] ⊗Ft−measurable for all t ≥ 0. Indeed, O = O∗ ∪ (∪k Ok) where

O∗ := { s < θ} ∩ {ν̄(s, ω) ∈ A },
and, with B̄k := [0, t] × Bk,

Ok := {s ≥ θ} ∩ B̄k ∩ {νk(s, ω) ∈ A} .
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Since ν̄ is progressively measurable, O∗ is Leb[0,t] ⊗ Ft−measurable. Also for
each k, Bk ∈ Fθ and the definition of the σ-algebra Fθ , {θ ≤ t} ∩ B̄k is Leb[0,t] ⊗
Ft−measurable. Hence O is Leb[0,t] ⊗ Ft−measurable.

2. SinceA is separable, there exist a sequence of maps φn : � → A which are
simple functions as in Step 1, and limn φn = φ everywhere. Let νn be as in (2.1)
with φn . Then, by Step 1, νn is IF−progressively measurable and morevoever νn
converges to ν everywhere. Hence ν is IF−progressively measurable as well. ��

2.3. State process

The controlled state process is a mapping from S ×A into a subset Z of IH0
n :

(θ, ξ, ν) ∈ S ×A �−→ Zν
θ,ξ ∈ Z ⊂ IH0

n .

We shall denote

ZT := {Zν
θ,ξ(T ) : (θ, ξ, ν) ∈ S ×A} ⊂ L0

n .

The state process is assumed to satisfy the following conditions.

Z1. Initial data: Zν
θ,ξ = 0 on [[0, θ) and Zν

θ,ξ (θ) = ξ .

Z2. Consistency with deterministic initial data: for all (t, z) ∈ S,

Zν
θ,ξ = Zν

t,z on the event {(θ, ξ) = (t, z)}.

The controlled process Zν is defined up to null sets, as an equivalence class in IH2
n .

Since the event {(θ, ξ) = (t, z)} may have zero measure, the above statement needs
clarification. Precisely, by Z2 we mean that

E
[

f
(
Zν
θ,ξ(s)

)|(θ, ξ) = (t, z)
] = E

[
f
(
Zν

t,z(s)
)]

for any bounded Borel function f and s ≥ t.

Z3. Pathwise uniqueness: for all τ ∈ T with θ ≤ τ a.s., we have

Zν
θ,ξ = Zν

τ,ζ on [[τ, T ]] where ζ := Zν
θ,ξ(τ).

Z4. Causality: if two admissible controls ν1, ν2 are equal between two stopping
times τ ≥ θ in T , ( i.e., ν1 = ν2 on [[θ, τ]]) then,

Zν1
θ,ξ = Zν2

θ,ξ on [[θ, τ]] .
Z5. Measurability: the map

(t, z, ν) ∈ S ×A �−→ Zν
t,z(T ) ∈ ZT

is Borel measurable.
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2.4. The stochastic control problem

The target set G is a Borel subset of IRn . Given an initial data (t, z) ∈ S, let

G(t, z) := {
ν ∈ A : Zν

t,z(T ) ∈ G a.s.
}

be the set of admissible controls which can drive the state process Z into the target
G at the terminal time T . Observe that G(t, z) may be empty, and the reachability
set is the collection of all points at which it is nonempty:

V(t) := {
z ∈ IRn : G(t, z) �= ∅} .

2.5. Typical state and control processes

In all of our applications, the state process Zν
t,z is a jump-diffusion process; see

Sect. 6.1 below. Such a process is driven by a Brownian motion W and random
measures {v j}J

j=1. In these applications, we take the filtration F to be the P
completion of the smallest σ algebra generated by the Brownian motion and the
random measures.

Also a typical choice for the set of admissible controlsA is a closed subset of
adapted processes in L p((0, T ) × �; Lebesque ⊗ P) with some p ∈ [1,∞) and
the product σ-algebra of B[0,T ] × F . In view of Lemma 2.1, we would like A to
be separable.

Indeed, since the set of progressively measurable processes is a closed subset
of L p((0, T ) × �), the separability of A follows from the separability of L p.
According to classical results on separability (see for instance, Doob [12], page
92), any L p space is separable if the underlying σ-algebra is countably generated
upto null sets. Therefore, this choice ofA is separable, provided thatF is countably
generated. We claim that this is always the case. Indeed, as it is discussed in
Sect. 6.1, random measures v j are determined by the jump times {T j

n }n=1,... and
random variables {Y j

n }n=1,.... So thatF is the P completion ofF0 = FW∨FT ∨FY ,
where FW is generated by the Brownian motion W , and FT , FY are generated by
the sequence of random variables {T j

n }, {Y j
n }, respectively. Since the Brownian paths

are continuousFW is countably generated (see for instance [24] Example 4.2.1 in
Sect. 1). Therefore,F0 is countably generated and by construction,F is countably
generated upto null sets.

Hence, with the above choices, A is separable, and Assumption A2 follows
from Lemma 2.1.

3. Dynamic programming

We first start by a measurable selection result which is the key step in the proof of
dynamic programming principle. Set

D := {(t, z) ∈ S : z ∈ V(t)} = {(t, z) ∈ S : G(t, z) �= ∅} .
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Lemma 3.1. For any probability measure µ on S, there exists a Borel measurable
function φµ : (D,BD) −→ (A,BA) such that:

φµ(t, z) ∈ G(t, z) for µ−a.e. (t, z) ∈ D .

Proof. By assumption, S andA are Borel spaces. Set

B := {(t, z, ν) ∈ S ×A : ν ∈ G(t, z)} .
1. We claim that B is a Borel subset of S × A. Indeed, in view of Z5, the

map (t, z, ν) ∈ S × A �−→ Zν
t,z(T ) ∈ ZT is Borel measurable. Therefore,

for any bounded continuous function f , the map � f : (t, z, ν) ∈ S × A �−→
E
[

f
(
Zν

t,z(T )
)] ∈ IR is Borel.

If G is a closed subset of IRn , then there exists a sequence of continuous
functions f n such that f n(x) −→ 1G(x) for all x ∈ IRn , f n = 1 on G, and
0 < f n ≤ 1 outside G. Then, the map �1G is Borel as limit of the Borel maps
� f n .

Now, if G is open, then �1G = 1 −�1Gc and therefore�1G is Borel by step 1.
Clearly, this property extends to a countable union ∪n Gn of open or closed disjoint
subsets of IRn since 1∪nGn = ∑

n 1Gn . Hence, the map �1G is Borel measurable
for any Borel subset G of IRn .

Since B = {(t, z, ν) ∈ S ×A : �1G (t, z, ν) ≤ 0}, B is a Borel set.
2. Since any Borel set is also analytic (see [6] Proposition 7.36), B is an

analytic subset of S ×A. We may now apply the Jankov-von Neumann Theorem
(see Bertsekas and Shreve [6] Proposition 7.49), to deduce the existence of an
analytically measurable function φ : D −→ A such that Gr(φ) ⊂ B, i.e. φ(t, z) is
an admissible control in G(t, z) for all (t, z) ∈ D.

3. In this step, we will construct a Borel measurable map φµ which is equal
to φ, µ almost everywhere.

Let P(S) be the set of all probability measures on S, and forµ ∈ P(S), letBS(µ)

the completion of the Borel σ-algebra BS under µ. Then US := ∩µ∈P(S)BS(µ)

is called the universal σ-algebra. In view of Corollary 7.42.1 in Bertsekas and
Shreve [6], every analytic subset of S is universally measurable. In particular, any
analytic map φ is universally measurable. Since US ⊂ BS(µ) for any µ ∈ P(S),
it follows that φ is BS(µ)-measurable. Then, the definition of BS(µ) implies that
there exists a Borel measurable map φµ which is equal to φ for µ almost every
(t, z) ∈ S. ��

We are now in a position to prove the dynamic programming principle.

Theorem 3.1. Let (t, z) ∈ S, and θ ≥ t be a stopping time in T . Then,

V(t) = {z ∈ IRn : Zν
t,z(θ) ∈ V(θ) a.s. for some ν ∈ A} .(3.1)

Proof. Set W(t) := {z ∈ IRn : Zν
t,z(θ) ∈ V(θ) a.s. for some ν ∈ A}.

1. We first prove that V(t) ⊂ W(t). Let z be an arbitrary element of V(t). Then,
there exists ν ∈ A such that Zν

t,z(T ) ∈ G a.s.. The pathwise uniqueness property
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Z3 yields

Zν
t,z(T ) = Zν

θ,Zν
t,z(θ)

(T ) ∈ G a.s..

Let µ = µθ,t,z be the pull-back of P under the map (θ, Zν
t,z(θ)), as such µ

is a Lebesgue measure on [0, T ] × IRn . We need to show that for µ-a.e. (t′, z′),
z′ ∈ V(t′).

By Z2, for every (t′, z′),

P
(

Zν
t ′,z′(T ) ∈ G

)
= P

(
Zν
θ,Zν

t,z(θ)
(T ) ∈ G

∣∣ (θ, Zν
t,z(θ)

) = (t′, z′)
)
.

Hence∫
P
(

Zν
t ′,z′(T ) ∈ G

)
dµ = E

(
P
(

Zν
θ,Zν

t,z(θ)
(T ) ∈ G

∣∣(θ, Zν
t,z(θ)

) = (t′, z′)
))

= P
(

Zν
θ,Zν

t,z(θ)
(T ) ∈ G

)
= P

(
Zν

t,z(T ) ∈ G
) = 1.

Hence for µ-a.e. (t′, z′), P
(

Zν
t ′,z′(T ) ∈ G

)
= 1, and z′ ∈ V(t′). Therefore,

Zν
t,z(θ) ∈ V(θ) a.s..

2. In this step, we prove the opposite inclusion W(t) ⊂ V(t). Let (t, z) ∈ W(t).
Then,

Zν
t,z(θ) ∈ V(θ) a.s. for some ν ∈ A.(3.2)

Let µ be the probability measure on S induced by
(
θ, Zν

t,z(θ)
)
, and let φµ be the

Borel measurable map constructed in Lemma 3.1. In view of (3.2),
(
θ, Zν

t,z(θ)
)

∈ D a.s.. Then by Lemma 3.1 and A2, there exists ν1 ∈ A such that for µ-almost
every (t′, z′),

Zν1
t ′,z′(T ) = Z

φµ(t ′,z′)
t ′,z′ (T ) ∈ G on the event set

{(
θ, Zν

t,z(θ)
) = (t′, z′)

}
.(3.3)

Set ν̂ := ν
θ⊕ ν1. According to the stability by concatenation property A1, ν̂ is an

admissible control in A. We now compute that

Z ν̂
t,z(T ) = Z ν̂

θ,Z ν̂
t,z(θ)

(T ) by Z3

= Z ν̂
θ,Zν

t,z(θ)
(T ) by Z4 since ν̂ = ν on [[t, θ]]

= Zν1
θ,Zν

t,z(θ)
(T ) by Z4 since ν̂ = ν1 on [[θ, T ]]

∈ G by (3.3).

Hence ν̂ ∈ G(t, z) and z ∈ V(t). ��
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4. Dynamic programming equation

In this section we state the corresponding dynamic programming equation when
the state process is a diffusion.

In our earlier work, [26] [27], the dynamic programming property is used to
study two problems in finance. In those two examples, the reachability set V(t) is
the epigraph of the value functions. In [26] and [27] this structure and the dynamic
programming principle (3.1) is then used to derive a nonlinear partial differential
equation for these functions.

In the general setup outlined in this paper, the reachability set V(t) may not be
an epigraph. Still, the dynamic programming principle (3.1) can be used to derive
an equation for the boundary of the reachability set. Necessarily, this equation is
a geometric flow equation as defined in Barles, Soner and Souganidis [4]. This
connection between the stochastic target problems and the geometric flows is fur-
ther discussed in our forthcoming papers [29] and [28]. In particular, in [29], we
provide a stochastic representation formula for the weak solutions of the mean cur-
vature flow as defined in Chen, Giga, Goto [8], Evans, Spruck [13] and Ambrosio,
Soner [1]. To our knowledge, this is the first representation formula of this type.
A brief discussion of this formula is given in the next section.

In this section, we simply state this “geometric dynamic programming equa-
tion” which is the analogue of the Bellman equation of a standard optimal control
problem. We then discuss the properties of this equation and later in Sect. 8 we es-
tablish the connection between the target problem and this equation by proving that
the complement of the characteristic function of the reachability set is a viscosity
solution.

We assume that the state process Zν
t,z is a diffusion process solving

dZν
t,z(s) = µ

(
s, Zν

t,z(s), ν(s)
)

ds + σ
(
s, Zν

t,z(s), ν(s)
)

dW(s),

where W is a n-dimensional Brownian motion. We assume that µ and σ are both
bounded and satisfy the usual Lipschitz conditions, and that the control set U is
compact. The Dynkin operator associated with the controlled diffusion Zν will be
denoted by:

Lνu(t, z) := ut(t, z)+ µ(t, z, ν)∗ Du(t, z)+ 1

2
trace

(
σσ∗(t, z, ν)D2u(t, z)

)
.

Further, for p ∈ IRn , and (t, z) ∈ S = [0, T ] × IRn let,

N (t, z, p) := { ν ∈ U : σ∗(t, z, ν) p = 0
}
.

Note that N (t, z, 0) = U for any (t, z). In the rest of this section, we shall assume
that the following standing assumption

N (t, z, p) �= ∅ for all (t, z, p) ∈ [0, T )× IRn × IRn

holds.
The dynamic programming equation for this diffusion target problem is

−ut(t, z)+ F(t, z, Du(t, z), D2u(t, z)) = 0 ,(4.1)
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where, for p ∈ IRn , p �= 0, (t, z) ∈ S and a symmetric matrix A,

F(t, z, p, A) := sup
{
−µ(t, z, ν)∗ p − 1

2
trace

(
σσ∗(t, z, ν)A

) : ν ∈ N (t, z, p)

}
,

(4.2)

so that −ut(t, z) + F(t, z, Du(t, z), D2u(t, z, )) = sup{−Lν(t, z) : ν ∈ N (t, z,
Du(t, z))}.

The connection between the diffusion target problem and the above nonlinear
equation is this. Let u(t, z) be the characteristic function of the complement of the
reachability set V(t),

u(t, z) := 1 − 1V(t)(z) :=
{

0 for z ∈ V(t)
1 for z �∈ V(t).

We are ready to state the main theorem which establishes a connection between
the stochastic target and the equation (4.1). This requires the following technical
condition on the set valued functionN (t, z, p):

Assumption 4.1. (Continuity of N (t, z, p)) For any (t0, z0, p0) ∈ S × IRn and
ν0 ∈ N (t0, z0, p0), there exists a map ν̂ : S × IRn −→ U satisfying ,

ν̂(t0, z0, p0) = ν0,

ν̂(t, z, p) ∈ N (t, z, p) for all (t, z, p) ∈ S × IRn,

ν̂ is locally Lipschitz on { (t, z, p) : p �= 0 }.

Theorem 4.1. Assume that U is compact and N (t, z, p) satisfies the continuity
Assumption 4.1. Further assume that F is locally Lipschitz on { p �= 0 }. Then, u is
a discontinuous viscosity solution of (4.1).

We defer the proof of this theorem to Sect. 8. We refer to Chen, Giga and Goto
(1991) for the discussion of the uniqueness issue related to the above non-linear
PDE.

Recall that u is a discontinuous viscosity supersolution (resp. subsolution)
of (4.1), if the lower semicontinuous envelope u∗ (resp. the upper semicontinuous
envelope u∗) of u is a viscosity supersolution (resp. subsolution) of the equation
−(u∗)t + F∗(t, z, Du∗, D2u∗) ≥ 0 (resp. −(u∗)t + F∗(t, z, Du∗, D2u∗) ≤ 0).

As discussed in the introduction, this equation is the level set equation for the
geometric equation (1.3). Thus the above problem implies that the reachability set
satisfies the geometric equation. This property is discussed in detail in Sect. 5.
In particular we will show that when the resulting geometric flow has a smooth
solution then it is equal to V(t).

Note that although u is discontinuous, it solves a second order partial differential
equation. In this connection, the definition ofN (t, z, p) plays a crucial role which
implies that the equation (4.1) is degenerate along the Du direction. This essentially
means that the dynamic programming equation (4.1) is a geometric equation only
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for the boundary of V(t); see Barles, Soner, Souganidis [4]. Indeed, the nonlinearity
F has the following two important properties

F(t, z, c1 p, c1 A + c2 pp∗) = c1 F(t, z, p, A) ∀ c1 > 0 , c2 ∈ IR,(4.3)

F(t, z, p, A + B) ≤ F(t, z, p, A), ∀ B ≥ 0.(4.4)

The second property means that (4.1) is elliptic, while the first implies that it is
geometric. Note that the geometric property implies that (4.1) is degenerate along
the gradient direction which is the normal direction to the level sets of u.

In some examples, the reachability set V(t) may be lower dimensional. In that
case, u∗ ≡ 1 and therefore u is automatically a viscosity subsolution of (4.1).
Interestingly, still the supersolution property of u contains enough information;
see [1] Sect. 3.

We conclude this section by the following remark, which illustrates the typical
use of Assumption 4.1, and provides a lower bound for V(t).

Remark 4.1. (i) Fix (t, z), a small constant δ > 0 and ν̂ be as in Assumption 4.1.
Construct processes ν and Zν

z so that for all s ∈ [t, T ],
ν(s) = ν̂

(
s, Zν

z (s), Zν
z (s)− z

)
, whenever |Zν

z (s)− z| ≥ δ.

Set y(s) := Zν
z (s)− z and apply Itô’s rule to |y(s)|2,

d|y(s)|2 = [2y(s)∗µ(· · · )+ trace(σσ∗(· · · ))]ds + 2y(s)∗σ(· · · )dW(s),

where (· · · ) = (s, y(s), ν(s)). Since ν(s) ∈ N (s, Zν
z (s), y(s)

)
whenever |y(s)| ≥ δ,

the stochastic term in the above equation is equal to zero. Hence, when |y(s)| ≥ δ,

d|y(s)|2 ≤ C(|y(s)| + 1)ds,

for some constant C, depending on the bounds on µ and σ . This proves that:

|y(s)|2 ≤ δ2 + C
∫ s

t
(1 + |y(r)|)1|y(r)|≥δdr

≤ δ2 + C(s − t) + C

δ

∫ s

t
|y(r)2|dr .

We now use Gronwall’s Lemma to see that

|y(s)|2 ≤ h(δ) := Cδ(1 + δ)+ (δ+ δ2)eCδ for (s − t) ≤ δ2 .(4.5)

Since δ is arbitrary, this proves that, with a convenient choice of the control ν, the
distance between Zν

z (s) and z can be controlled in small time.

(ii) Now suppose that the target G has non-empty interior. Then from the latter
observation, for small δ > 0, let Gδ be a subset of G, with non-empty interior, and
satisfying dist(∂Gδ, ∂G) > h(δ). Then, clearly Gδ is a lower bound for V(T − δ2)

in the sense that Gδ ⊂ V(T − δ2). ��
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5. Application to mean curvature flow

An important example of a parabolic geometric flow is the mean curvature flow. In
this section, we will show that our results provide a stochastic representation for the
solutions of this flow. There is a large literature on mean curvature flow. We refer
to [19], [20], and [21] for the analysis of smooth solutions and their properties,
and we refer to [8], [13] and [1] and the references therein for the weak-viscosity
solutions of geometric flows. Further study of this connection is given in [28].

Smooth mean curvature flow is a family of smooth manifolds {	(t)}t≥0 indexed
by the time variable t. At any point x ∈ 	(t), the normal velocity V = V(t, x) at
that point is equal to a constant times the mean curvature H = H(t, x) of the
smooth set 	(t), i.e.,

V = c∗H,(5.1)

for some positive constant c∗. We may view this flow as a geometric initial value
problem: given 	(0) find the time evolution 	(t) so that (5.1) holds everywhere.

In this paper, we only consider the case when these manifolds are subsets of
an Euclidean space IRn . In this case, we may define all the relevant geometric
quantities, such as V and H, in terms of the distance function. Since the constant
c∗ can be changed by appropriately scaling time, we will take c∗ = (n − k), where
k is codimension of the sets 	(t).

Let us start with the case when	(t) is a smooth hypersurface enclosing an open
set O(t) so that the signed distance function:

ρ(t, x) :=
{

distance(x, 	(t)), if x ∈ O(t),
−distance(x, 	(t)), if x �∈ O(t)

is smooth in some tubular neighborhood {(t, x) : |ρ(t, x)| ≤ ε}. Then, at x ∈ 	(t),
the normal velocity and the mean curvature are given by

V(t, x) = ρt(t, x), H(t, x) = 1

n − 1
�ρ(t, x).

Since c∗ = (n−1), the signed distance function of a mean curvature flow {	(t)}t≥0
satisfies

ρt(t, x) = �ρ(t, x), ∀ x ∈ 	(t).(5.2)

Note that x ∈ 	(t), if and only if ρ(t, x) = 0. Hence the signed distance function
ρ satisfies the heat equation only on its zero level set. Away from its zero set, it
does not satisfy the heat equation, however, it satisfies certain inequalities which
are useful in the study of mean curvature flow. Indeed it is shown in [25] that

[ ρt −�ρ ] ρ ≥ 0.

Since ρ is not smooth everywhere, the above inequality has to be interpreted in the
viscosity sense.
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Example 5.1. As a simple example consider the evolution of a sphere 	(0) =
∂BR0 := { x ∈ IRn | |x| = R0 }. Since the mean curvature flow is invariant under
rotation, we guess the solution	(t) to be a sphere as well, i.e., 	(t) = ∂BR(t). Then,
the normal velocity and the mean curvature of 	(t) are easy to calculate,

V = d

dt
R(t), H = − 1

R(t)
.

Then, the equation (5.1) implies that

d

dt
R(t) = − (n − 1)

R(t)
⇒ R(t) =

√
R(0)2 − 2(n − 1)t .

Note that 	(t) becomes empty for all t >
√

R(0)2/2(n − 1). ��
When	(t) has codimension higher than one, we can not define a signed distance

function and the distance function is not smooth on 	(t). However, the square
distance function

η(t, x) := 1

2
(distance(x, 	(t)))2

is as smooth as 	(t) in a tubular neigborhood of 	(t). Let �V(t, x), �H(t, x) be,
respectively, the normal velocity vector and the mean curvature vector. Then,
�V = V �n, and �H = H �n, for some unit normal vector �n; see [1] for the definition
of �H . Then, following a suggestion of DeGiorgi it is shown that (see [1])

�V(t, x) = Dηt(t, x), �H(t, x) = D�η(t, x).

Therefore, if {	(t)}t≥0 is a mean curvature, then

Dηt(t, x) = D�η(t, x), on {(t, x) : η(t, x) = 0} .(5.3)

Planar mean curvature flow is also known as the curve shortening equation.
In a series of papers, it is shown that solutions of the curve shortening equation
remain smooth and shrink to a point in finite time [19–21]. However, in higher
dimensions mean curvature flow do create singularities even if it starts smoothly.
For that reason several weak-viscosity solutions have been introduced [8,13,25].
They have shown that the following partial differential equation can be used to
characterize the viscosity solutions of the (codimension one) mean curvature flow.

−ut + F1(D
2u, Du) = 0 ,(5.4)

where for p ∈ IRn , p �= 0, and a symmetric matrix A,

F1(A, p) := − trace
[

A�p ] , �p := In − (pp∗)/|p|2 .
Later a similar differential equation is obtained for higher codimension flows [1].
For flows with codimension k, the equation is

−ut + Fk(D
2u, Du) = 0,(5.5)
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with

Fk(A, p) := −
n−k∑
i=1

λ
p
i (A) ,

where λp
1 (A) ≤ λ

p
2 (A) ≤ . . . ≤ λ

p
n−1(A) are the eigenvalues of �p A�p corres-

ponding to eigenvectors which are orthogonal to p.
In the next two subsections we will obtain a stochastic representation of the

Euclidean mean curvature flow. Although general codimension case can be handled
directly, for the ease of presentation we will treat the codimension one case first
and then describe the general codimension.

5.1. Codimension one mean curvature flow

Since for the mean curvature flow it is appropriate to assign an initial set, we reverse
time and consider the following state dynamics

dZν
z (s) = √

2 (In − ν(s)ν∗(s))dW(s), s > 0,

with initial data Zν
z (0) = z. Control processes take values in U = Sn−1 = { z ∈

IRn : |z| = 1 } and In is the n × n identity matrix.
With the notation of the previous section, N (t, z, p) = { p/|p|,−p/|p| } for

any p �= 0 and therefore the continuity Assumption 4.1 is satisfied. Then the
dynamic programming equation (4.1) (after changing the direction of time) takes
the form

ut = − sup{−�u + D2uν · ν | ν ∈ N (t, z, Du) }
= �u − D2u(t, z)Du(t, z) · Du(t, z)

|Du(t, z)|2 .

This is exactly the level set equation of the (codimension one) mean curvature flow.
Note that the above equation is not defined when Du(t, z) = 0. This problem is
addressed in detail in the papers on weak-viscosity solutions of the mean curvature
flow. See also Sect. 8.

Given a target G, let

G(t, z) := {ν ∈ A : Zν
z (t) ∈ G a.s.

}
,

and

V(t) := { z ∈ IRn | G(t, z) �= ∅ }.
Then, the results of the previous section imply that

Theorem 5.1. V(t) is a viscosity solution of the mean curvature flow as defined
in [4], i.e., the characteristic function of the complement of V(t) is a discontinuous
viscosity solution of (5.4).
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Example 5.2. We consider the evolution of spheres discussed in Example 5.1.
Then, it follows from Remark 4.1 that V(t) is nonempty for all t sufficiently close
to T . Indeed, we may obtain from (4.5) an explicit lower bound for V(t) in terms
of C and R(T ).

Example 5.3. Again, in the context of Example 5.1, we now construct an optimal
control process. Indeed in that example G = ∂BR0 . Suppose that z ∈ V(T ). Then,
there exists an adapted process ν(·) ∈ Sn−1, such that the corresponding state
process Zν

z satisfies, Zν
z (T ) ∈ G, or equivalently, |Zν

z (T )| = R0. We apply Itô’s
rule to |Zν

z (t)|2,

(R0)
2 = ∣∣Zν

z (T )
∣∣2 = |z|2 + 2(n − 1)T + 2

√
2
∫ T

0

(
Zν

z (t)
)∗
(In − ν(t)ν∗(t))dW(t) .

Since the above identity holds almost surely, we conclude that the stochastic integral
has to be equal to zero. Hence

ν(t) = ± Zν
z (t)∣∣Zν
z (t)
∣∣ ,

and |z| = R(T ) := (R(0))2 − 2(n − 1)T . Therefore, V(T ) ⊂ ∂BR(T ). Also
starting from any point z ∈ ∂BR(T ) if we use the feedback control ν as above,
then the above calculation implies that the corresponding state process Zν

z satisfies
|Zν

z (T )| = R(0). Hence, V(T ) = ∂BR(T ). ��
In this example, we have shown the equivalence between the stochastic tar-

get problem and the mean curvature flow by explicitely constructing the control
process. Such a construction is also possible when the mean curvature flow has
a smooth solution. In this case the control process is constructed by using the
gradient of the distance function; [28].

5.2. Codimension k mean curvature flow

A slight change of the above problem gives the codimension k mean curvature
flow. For an integer k < n consider the state process

dZν
z (s) = √

2


In −

k∑
j=1

ν j(s)ν
∗
j (s)


 dW(s),

where the control set is defined by:

U = { ν = (ν1, . . . , νk) ∈ (Sn−1)k : ν∗
i ν j = 0 for all 1 ≤ i �= j ≤ k

}
.

The control set U can be seen as the Grassmanian manifold of n − k dimensional
unoriented planes. Indeed, for ν ∈ U , let �ν be the projection matrix onto a plane
orthogonal to ν, i.e.

�ν := In −
k∑

i=1

νiν
∗
i .



Dynamic programming for stochastic target problems and geometric flows 217

For p �= 0,
N (t, z, p) = N (p) = { ν ∈ U | �ν p = 0 }.

Therefore, (4.1) is satisfied and the dynamic programming equation is

ut(t, z)+ F(D2(t, z), Du(t, z)) = 0,

where
F(A, p) = sup

ν∈N (p)

{−trace
[
A�ν

] }
.

We claim that the nonlinear function F is equal to Fk defined in (5.5). Thus an
analogue of Theorem 5.1 holds for codimension k mean curvature flow.

Proposition 5.1. For all p ∈ IRn, p �= 0, and n × n symmetric matrix A,

F(A, p) = Fk(A, p) = −
n−k∑
j=1

λ
p
j (A).

Proof. For an n × n symmetric matrix M, let λ1(M) ≤ . . . ≤ λn(M) be the
ordered eigenvalues of M. Also, for ν = (ν1, . . . , νk) ∈ U , λν1(M) ≤ . . . ≤
λνn−k(M) denote the ordered eigenvalues of�νM�ν corresponding to eigenvectors
orthogonal to ν1, . . . , νk.

Since A�ν = A�ν�ν , �ν is symmetric, and since all ν j is an eigenvector of
�νA�ν with zero eigenvalue,

trace
[
A�ν

] = trace
[
�νA�ν

] =
n∑

j=1

λ j (�
νA�ν) =

n−k∑
j=1

λνj (A).

We now claim that for ν ∈ N (p), λνi (A) ≥ λ
p
i (A) for every i = 1, . . . , n − k.

Indeed, λνi admits a representation

λνi (A) = sup
η∈Ki

inf{ �νA�νx · x | |x| = 1, �νx = x, �ηx = x },

where K1 = ∅, and for i > 1, Ki is set of all (i − 1) mutually orthogonal, unit
vectors η = {η1, . . . , ηi−1}.

For ν ∈ N (p), and x satisfying �νx = x,

�νA�νx = �p A�px = A x .

Hence

λνi (A) = sup
η∈Ki

inf{ �νA�νx · x | |x| = 1, �νx = x, �ηx = x }
= sup

η∈Ki

inf{ �p A�px · x | |x| = 1, �νx = x, �ηx = x }
≥ sup

η∈Ki

inf{ �p A�px · x | |x| = 1, �px = x, �ηx = x }

= λ
p
i (A).
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Conversely, let ei be an eigenvector corresponding to the eigenvalue λp
i , i.e.,

ei · p = 0, and �p A�pei = λ
p
i (A)ei .

Set F := {e1, . . . , en−k}⊥. By definition, p ∈ F. Let ν̂ = (ν̂1, . . . , ν̂k) be an
orthonormal basis of F. Then, ν̂ ∈ N (p), and

�ν̂A�ν̂ei = �p A�pei = λ
p
i (A)ei .

Hence

F(A, p) ≥ −trace
[

A�ν̂
]

= −
n−k∑
j=1

λν̂j (A) ≥ −
n−k∑
j=1

λ
p
j (A)

= Fk(A, p). ��

6. Application to financial mathematics

In this section, we discuss three examples from financial mathematics. In all these
examples, the dynamic programming principle is used to characterize the reach-
ability set by a Hamilton-Jacobi-Bellman equation. As in Theorem 4.1, this equa-
tion holds in the viscosity sense.

6.1. Stochastic target problem in a jump-diffusion model

Let W = (W1, . . . ,W I ) be an I-dimensional Brownian motion on the probability
space (�,F, P), and v j(dt, dz) j=1,... ,J be integer valued random measures de-
fined on the same probability space. We assume that these random measures are
constructed by the marked point process (N j , {Y j

n , n ∈ IN}), i.e. {N j (t)t ≥ 0} is
a counting process corresponding to the exponential random times {T j

n , n ∈ IN},
and {Y j (n), n ∈ IN} is a sequence of random variables with values in the mark
space E, a Borel subset of IR+. Then, v j is given by

v j ([0, t] × B) =
∑
n≥1

1{T j
n ≤t}1B

(
Y j

n
)

for all t ∈ [0, T ] and B ∈ BE .

As discussed in Sect. 2.5, we assume that F is the P completion of the σ

algebra generated by the Brownian motion and the random measures. We also let
IF = {F(t), 0 ≤ t ≤ T } be the P-completed filtration generated by the random
measures v j(dt, dz) and the Brownian motion W .

The random measure v(dt, dz) = (v1, . . . , vJ ) is assumed to have a predictable
intensity kernel mt(dz) with

E

[
sup

0≤t≤T

∫
E

mt(dz)

]
< ∞ .(6.1)
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In particular, this means that there is a finite number of jumps during any finite
time interval. By definition of the intensity kernel mt(dz), the compensated jump
process:

ṽ(dt, dz) = v(dt, dz)− mt(dz)dt

is such that {ṽ([0, t] × B), 0 ≤ t ≤ T } is a (P, IF) martingale for all B ∈ BE .
The control set A is the collection of all L2((0, T ) × �) adapted processes

valued in some closed subset U of IRd . Observe that Property A1 is trivially
satisfied. Also, in view of Sect. 2.5, the control set A is a separable metric space,
and therefore Property A2 holds by Lemma 2.1.

Given an initial data (t, z) ∈ S = [0, T ] × IRn , and a control ν ∈ A, the
controlled process Zν

t,z is the unique solution of

dZν
t,z(t) = µ

(
t, Zν

t,z(t), ν(t)
)

dt + σ
(
t, Zν

t,z(t), ν(t)
)

dW(t)

+
∫

E
γ
(
t, Zν

t,z(t), ν(t), e
)
v(dt, de),

and the condition Zν
t,z(t) = z. We set Zν

t,s(r) = 0 for r < t. It is well known that
the above stochastic differential equation has a unique strong solution under some
conditions on the coefficients µ, σ and γ .

The target set in this example is given by

G := Epi(g) = {
z = (x, y) ∈ IRn−1 × IR : y ≥ g(x)

}
for some measurable function g : IRn−1 −→ IR. Then, the stochastic target problem
is

V(t) := {
z ∈ IRn : Zν

t,z(T ) ∈ G for some ν ∈ U} .
A straightforward application of Theorem 3.1 yields the following.

Proposition 6.1. Let µ(t, z, u), σ(t, z, u) and γ(t, z, u, e) be continuous functions,
globally Lipschitz in (z, u) ∈ IRn × U uniformly in (t, e) ∈ [0, T ] × E. Then,
V satisfies the dynamic programming principle of Theorem 3.1.

Proof. First, observe that the above conditions on the coefficients ensure the exis-
tence of a unique strong solution Zν

θ,ξ of the stochastic differential equation (6.2)

for any given initial condition ξ ∈ L2
n(θ) and θ ∈ T ; see for instance [16]. Proper-

ties Z1, Z2, Z3 and Z4 are clearly satisfied by the solution Zν
θ,ξ . Also Properties

A1 and A2 of the control set hold.
We continue with a proof of Property Z5. From classical estimates we know

that for each ν ∈ A, the map (t, z) ∈ S �−→ Zν
t,z(T ) ∈ L2

n is continuous (see for
instance [16].) So it remains to prove that for fixed initial data (t, z) ∈ S, the map
ν ∈ U �−→ Zν

t,z(T ) ∈ L2
n is continuous uniformly in (t, z).

In the rest of this proof, for the ease of notation we suppress the dependence of
the coefficients on the t variable.
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For ν1, ν2 ∈ A, we directly estimate that

∣∣Zν1
t,z − Zν2

t,z

∣∣ ≤ ∫ T

t

∣∣µ (Zν1
t,z(r), ν1(r)

)− µ
(
Zν2

t,z(r), ν2(r)
)∣∣ dr

+
∣∣∣∣
∫ T

t

(
σ
(
Zν1

t,z(r), ν1(r)
)− σ

(
Zν2

t,z(r), ν2(r)
))

dW(r)

∣∣∣∣
+
∣∣∣∣
∫ T

t

∫
E

(
γ
(
Zν1

t,z(r), ν1(r), e
)− γ

(
Zν2

t,z(r), ν2(r), e
))
v(dr, de)

∣∣∣∣ .
The global Lipschitz property of the coefficients in (z, u) uniformly in (t, e) together
with (6.1), implies that

E
∣∣Zν1

t,z(T )− Zν2
t,z(T )

∣∣2 ≤
C
∫ T

t
E
∣∣µ (Zν1

t,z(r), ν1(r)
)− µ

(
Zν2

t,z(r), ν2(r)
)∣∣2 dr

+C
∫ T

t
E
∣∣σ (Zν1

t,z(r), ν1(r)
)− σ

(
Zν2

t,z(r), ν2(r)
)∣∣2 dr

+C
∫ T

t
E
∫

E

∣∣γ (Zν1
t,z(r), ν1(r), e

)− γ
(
Zν2

t,z(r), ν2(r), e
)∣∣mr(de)dr

≤ C

(
‖ν1 − ν2‖2

IH2
n

+
∫ T

t
E
∣∣Zν1

t,z(r)− Zν2
t,z(r)

∣∣2 dr

)
,

where C is a generic constant whose value may vary. By Gronwall’s inequality,

E
∣∣Zν1

t,z(T )− Zν2
t,z(T )

∣∣2 ≤ CeC(T−t)‖ν1 − ν2‖2
IH2

n
,

proving that the map ν ∈ U �−→ Zν
t,z(T ) ∈ L2

n is Lipschitz uniformly in (t, z) ∈ S.
��

Next, let us split the process Zν
t,z into two parts Zν

t,z = (
Xν

t,z,Yν
t,z

)
, where

Yν
t,z is the last component of Zν

t,z valued in IR. Suppose further that the process
Xν

t,z = Xν
t,x is independent of the initial data y. Then, by a comparison theorem for

SDE’s, the random variable Yν
t,z is increasing in y. Consequently, the reachability

set V(t) is essentially the epigraph of the following value function,

v(t, x) := inf {y ∈ IR : (x, y) ∈ V(t)}
= inf

{
y ∈ IR : Zν

t,x,y(T ) ∈ Epi(g) for some ν ∈ A
}
.

The above stochastic target problem was studied by Soner and Touzi [27] in
the diffusion case, and extended to this context by Bouchard [5].

This problem is closely related to the theory of forward-backward stochastic
differential equations and it is motivated by applications from finance; see e.g.
Karatzas and Shreve [18] and Cvitanić and Ma [10]. Previously, convex duality
was used to reduce it to a standard stochastic control problem; see Föllmer and
Kramkov [14] for the general semimartingale case, and the references therein. Once
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the reduction is proved, then the Hamilton-Jacobi-Bellman equation associated to
the problem is derived by means of a classical dynamic programming on the dual
problem; see Broadie, Cvitanić and Soner [7] and Cvitanić, Pham and Touzi [11].
Corollary 6.1 below allows to derive the HJB equation directly from the initial
problem, and therefore avoids the passage by duality.

In [27], the following dynamic programming principle has been introduced
(with only a partial proof), and used successfully in order to obtain a characteriza-
tion of the value function v by means of the associated Hamilton-Jacobi-Bellman
equation in the viscosity sense.

Corollary 6.1. Let the conditions of Proposition 6.1 hold. Suppose further that the
process Xν

t,x,y = Xν
t,x is independent of y. Then, for all stopping time θ ≥ t in T ,

v(t, x) = inf
{

y ∈ IR : Zν
t,x,y(θ) ∈ Epi (v(θ, ·)) for some ν ∈ A}.

Proof. Let w(t, x) denote the right-hand side of the above dynamic programming
equation. Clearly, the process Yν

t,x,y is strictly increasing in the initial condition y
since Xν

t,x,y = Xν
t,x is independent of y. Then, for all y > w(t, x) and ε > 0, we

have Zν
t,x,y+ε(θ) ∈ V(θ). From Proposition 6.1, this proves that (x, y + ε) ∈ V(t),

and therefore y +ε ≥ v(t, x). Since y > w(t, x) and ε > 0 are arbitrary, this proves
that w(t, x) ≥ v(t, x) .

Conversely, for all y > v(t, x), Zν
t,x,y(T ) = Zν

θ,Zν
t,x,y(θ)

(T ) ∈ G for some ν ∈ A
and therefore Yν

t,x,y(T ) ≥ v
(
θ, Xν

t,x,y(θ)
)

. Hence y ≥ w(t, x) and the required

inequality follows by letting y converge to v(t, x). ��
Remark 6.1. In [27], the value function v was shown to be a (discontinuous) super-
solution (resp. subsolution) of the associated Hamilton-Jacobi-Bellman equation
by means of DP1 (resp. DP2), where:

DP1 Let (t, x, y) ∈ S, and ν ∈ A be such that Zν
t,x,y(T ) ∈ Epi(g). Then Zν

t,x,y(θ) ∈
Epi(v(θ, ·)) for all stopping time θ ∈ T .

DP2 For (t, x) ∈ [0, T )× IRn−1, set y∗ := v(t, x). Then, for all η > 0, ν ∈ A, and

stopping time θ ∈ T , we have P
[

Zν
t,x,y∗−η(θ) ∈ Epi (v(θ, ·))

]
< 1.

Clearly, DP1 and DP2 follow easily from the dynamic programming principle
stated in Corollary 6.1.

We conclude the discussion of this example by relating the value function of
the stochastic target problem v(t, x) to

ṽθ,ξ := ess inf
{
ζ ∈ L2(θ) : Zν

θ,ξ,ζ (T ) ∈ Epi(g) for some ν ∈ A
}
,

for a stopping time θ ∈ T and ξ ∈ L2(θ). By the definition of the essential infimum,
we obviously have v(θ(ω), ξ(ω)) ≤ ṽθ,ξ (ω) for a.e. ω ∈ �. The measurable
selection argument of Lemma 3.1 allows us to prove that equality holds.

Proposition 6.2. Let θ ∈ T and ξ ∈ L2(θ) be such that ṽθ,ξ ∈ L2(θ). Assume
further that v is bounded from below. Then,

v(θ, ξ) = ṽθ,ξ P − a.s.
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Proof. We only need to prove that v(θ, ξ) ≥ ṽθ,ξ for all θ ∈ T and ξ ∈ L2
n−1(θ).

Fix θ ∈ T . Consider the function f mapping L2
n−1(θ)× (L2

1(θ)× U) into L2
1(θ),

f(ξ, ζ, ν) = ζ for all (ξ, ζ, ν) ∈ L2
n−1(θ)×

(
L2

1(θ)× U
)
.

Set Dξ := {
(ζ, ν) ∈ L2

1(θ) × U : Zν
θ,ξ,ζ (T ) ∈ G

}
. Notice that Dξ �= ∅ since

ṽθ,ξ ∈ L2(θ). Then,

v(θ, ξ) = inf
(ζ,ν)∈Dξ

f(ξ, ζ, ν).

Fix ε > 0. Since v(θ, ξ) is bounded from below, it follows from Bertsekas and
Shreve [6], Proposition 7.50, that there exists an analytically measurable function
ϕ : L2(θ) × (L2(θ) ×A) −→ L2(θ) such that (ξ, ϕ(ξ)) ∈ L2(θ) × (L2(θ)× A),
and

ζ := f (ξ, ϕ(ξ)) ≤ v(θ, ξ)+ ε.

Using the notion of universal σ-algebra as in the proof of Lemma 3.1, we see that,
for all probability measure µ on IRn−1, there exists a Borel measurable function
ζµ such that ζ = ζµP-a.s.

For a positive integer n, set ζn := ζµ + n−1. In view of the definition of the
value function v, (ξ, ζn) ∈ V(θ). Using the same measurable selection argument as
in the proof of Theorem 3.1, we construct an admissible control νn ∈ A such that
Zνn
θ,ξ,ζn

(T ) ∈ Epi(g). Then, by the definition of ṽ, ζn ≥ ṽθ,ξ . We now complete the
proof by sending n to infinity and ε to zero. ��

6.2. Super-replication under Gamma constraints

Let W = {W(t), 0 ≤ t ≤ T } be a Brownian motion on IR. The controls are taken
from the set U defined as the collection of adapted processes ν = (α, γ) in IH2

2 .
Given such a control, the state process Z = (S, X,Y ) is defined by the initial data
Zν

t,s,x,y(t) = (St,s, Xν
t,s,x,y,Yν

t,y)(t) = (s, x, y) and:

dSt,s(r) = St,s(r)σ(t, St,s(r))dW(r)

dXν
t,s,x,y(r) = Yν

t,y(r)dSt,s(r)(6.2)

dYν
t,y(r) = α(r)dr + γ(r)dW(r).

For two constants −∞ ≤ 	 ≤ 	 ≤ +∞, the control set is

A := {ν = (α, γ) ∈ U : 	 ≤ γ(t) ≤ 	
}
.

In this example, the target is given by

G := {z = (s, x, y) ∈ IR3 × IR : x ≥ g(s)
}

for some measurable function g : IR −→ IR, and the target reachability problem
is defined by:

V(t) := {z ∈ IR3 : Zν
t,z(T ) ∈ G for some ν ∈ A}.
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In financial mathematics, this control problem arises in the following optimal
investment problem in a financial market consisting of one risky asset and a non-
risky asset with price process normalized to unity. S is the price process of a risky
asset. The process Y describes the number of shares of risky assets held by an
investor at each time t. The process X represents the value of the investor’s portfolio
under the self-financing condition. In the above model, the unbounded variation
part of the portfolio process is constrained in the interval [	,	]. This problem has
been first raised by Broadie, Cvitanić and Soner [7], and studied by Soner and
Touzi [26] in the case 	 = −∞. The case 	 > −∞ is an open problem.

Proceeding as in Proposition 6.1, we obtain the following corollary of Theo-
rem 3.1.

Proposition 6.3. Let the function sσ(t, s) be continuous and globally Lipschitz in
s ∈ [0,∞) uniformly in t ∈ [0, T ]. Then V satisfies the dynamic programming
principle of Theorem 3.1.

Next, as in the previous example, we can reduce the problem to a scalar function,

v(t, s, y) := inf {x ∈ IR : (s, x, y) ∈ V(t)}
= inf

{
x ∈ IR : Xν

t,s,x,y(T ) ≥ g(St,s(T )) for some ν ∈ A}.
We then have the following consequence of Proposition 6.3. The proof is omitted
since it follows from the same argument as in the proof of Corollary 6.1.

Corollary 6.2. Let the conditions of Proposition 6.3 hold. Then, for any stopping
time θ ≥ t in T , we have:

v(t, s, y) = inf
{
x ∈ IR : Zν

t,s,x,y(θ) ∈ Epi (v(θ, ·)) }
= inf

{
x ∈ IR : Xν

t,s,x,y(θ) ≥ v
(
θ, St,s(θ),Yt,y(θ)

)}
.

However, the control problem v(t, s, y) is not the relevant problem in practice,
since the number of shares y held at the time origin t is an additional control for the
investor. The problem of super-replication under Gamma constraint, as introduced
in [26], is defined by:

u(t, s) := inf
y∈IR

v(t, s, y).

Unfortunately, the dynamic programming equation does not translate to the value
function u. However, suppose that the drift term α(t)dt is extended to dA(t) where
A is a (new) control in the class of bounded variation processes. Then, clearly, the
value function v(t, s, y) does not depend on y, since the process Y can jump at time
zero by the action of the bounded variation process A, and u(t, s) = v(t, s, y) for
all y ∈ IR. Under this “relaxation” the value function u(t, s) satisfies the dynamic
programming equation of Corollary 6.2.
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6.3. Super-replication under transaction costs

The financial market consists of one bank account, with constant price process S0,

normalized to unity, and d risky assets S = (S1, . . . , Sd ) defined by the dynamics:

St,s(t) = s and dSt,s(t) = diag[St,s(t)]
(
b(t, St,s(t))dt + σ(t, St,s(t))dW(t)

)
.

(6.3)

Here W is an d-dimensional Brownian motion defined on the filtered probability
space (�,F, IF, P), and b, σ are coefficients, with the appropriate size, satisfying
the usual global Lipschitz condition.

Proportional transaction costs in this financial market are described by the
matrix λ = (λi j , 0 ≤ i, j ≤ d) with non-negative entries. This means that
transfers from asset i to asset j are subject to proportional transaction costs λi j for
all i, j = 0, . . . , d.

The Control set. A trading strategy is an d +1-matrix valued process L, with initial
value L(0−) = 0, such that Li j is IF−adapted, right-continuous, and nondecreas-
ing for all i, j = 0, . . . , d. Here, Li j describes the cumulative amount of funds
transferred from asset i to asset j . We shall denote by U = A the collection of all
such trading strategies satisfying

‖L‖2 :=
d∑

i, j=0

E
[(

Li j (T )
)2]

< ∞.(6.4)

Controlled process. Given a trading strategy L and a vector x ∈ IRd+1 of initial

holdings, the portfolio holdings X L
t,s,x = (X L

t,s,x
i
, i = 0, . . . , d) are defined by the

dynamics:

X L
t,s,x(0−) = x

dX L
t,s,x(t)

i = X L
t,s,x(t)

i dSi
t,s(t)

Si
t,s(t)

+
d∑

j=0

[
dL ji(t)− (1 + λi j )dLi j (t)

]
,(6.5)

for all i = 0, . . . , d. Hence, the state process in this example is Z L
t,s,x = (St,s, X L

t,s,x)

defined by (6.3)–(6.5).

Hedging problem. The solvency region K is given by

K :=

x ∈ IRd+1 : ∃ ai j ≥ 0, xi +

d∑
j=0

(a ji − (1 + λi j )ai j ) ≥ 0; i = 0, . . . , d


 ,

i.e. the collection of portfolio holdings whose liquidation value, through some
convienient transfers, is nonnegative. The set K is a closed convex cone containing
the origin. It then induces a partial ordering - defined by x - 0 iff x ∈ K .
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Given some measurable function g : IRd −→ IRd+1, the target is defined by

G := Epi-(g) = {z = (s, x) ∈ IRd × IRd+1 : x − g(s) - 0}.
The target reachability problem is defined by:

V(t) := {
z ∈ IRd × IRd+1 : Z L

t,z(T ) ∈ G for some L ∈ A}.
An immediate corollary of Theorem 3.1 is the following dynamic programming

principle.

Proposition 6.4. Let the coefficients of the model (6.3)–(6.5) be Lipschitz in (s, x)
uniformly in t. Then, for all stopping time θ ≥ t in T ,

V(t) = {z ∈ IRd × IRd+1 : Z L
t,z(θ) ∈ V(θ) for some L ∈ A}.

Proof. As in the proof of Proposition 6.1, we only need to prove that the map
L ∈ A �−→ Z L

t,z(T ) ∈ L2
2d+1 is Lipschitz-continuous. We integrate the state

equation to obtain

X L
t,s,x(r)

i = xi +
∫ r

t
X L

t,s,x(ρ)
i dSi

t,s(ρ)

Si
t,s(ρ)

+
d∑

j=0

[
(L ji(r)− L ji(t))+ (1 + λi j )(Li j (r)− Li j (t))

]
.

For any two control processes L1, L2, set

Y(r) := X L1
t,s,x(r)

i − X L2
t,s,x(r)

i
,

so that

‖Y(r)‖2
L2

d+1
≤ C

[∫ r

t
‖Y(ρ)‖2

L2
d+1

dρ + ‖L1 − L2‖2
]
,

where C is an appropriate constant, and ‖L1 − L2‖ := E[Var(L1 − L2)
2], where

Var(L1 − L2) is the variation of the BV process L1 − L2. Now the continuity
follows from Grownwall’s inequality. ��

Finally, we interpret the dynamic programming principle in terms of the hedging
set defined by Kabanov [17],

v(t, s) := {x ∈ IRd+1 : (s, x) ∈ V(t)
}
.

The following result is an immediate consequence of Proposition 6.4.

Corollary 6.3. Let the conditions of Proposition 6.4 hold. Then, for all stopping
time θ ≥ t in T ,

v(t, s) = {
x ∈ IRd+1 : X L

t,s,x(θ) ∈ v
(
θ, St,s(θ)

)
for some L ∈ A}.
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Proof. Denote byw(t, x) the right-hand side set of the above dynamic programming
equation. Let x be in v(t, s). By definition, this means that (s, x) ∈ V(t). From
Proposition 6.4, there exists some L ∈ A such that Z L

t,s,x(θ) ∈ V(θ), i.e. X L
t,s,x(θ) ∈

v
(
θ, St,s(θ)

)
. Hence x ∈ w(t, x).

Conversely, if x ∈ w(t, s), then Z L
t,s,x(θ) ∈ V(θ) for some L ∈ A, and therefore

(s, x) ∈ V(t) by Proposition 6.4. Hence x ∈ v(t, s). ��

7. Extension to stochastic viability

The target reachability problem discussed previously can be viewed as a stochastic
control problem with constrained state process at the terminal time. Our dynamic
programming principle can be stated in a slightly more general framework where
the state process is constrained at any time t ∈ [0, T ].

Let the state process Zν
θ,ξ be as defined in Sects. 2.2 and 2.3. In Sect. 2.4, we

introduced a target G for the terminal value of the state process. Instead, we define
here a tube {Gt, 0 ≤ t ≤ T } where Gt is a Borel subset of IRd for all t ∈ [0, T ].

Following Aubin et al. [2,3], we shall say that the process Z is viable if
Z(t) ∈ Gt for all t ∈ [0, T ]. This leads naturally to defining the viability set:

V̄ (t) := {
z ∈ IRn : Zν

t,z is viable for some ν ∈ A} .
This problem has been studied extensively in the deterministic framework, and we
refer to Aubin et al. [2,3] for a discussion of the diffusion case.

The following dynamic programming principle follows from the same argu-
ments as in Sect. 3. Therefore, we only provide a formal statement for it.

Theorem 7.1. Let (t, z) ∈ S, and θ ≥ t be a stopping time in T . Then,

V̄ (t) = {z ∈ IRn : Zν
t,z(. ∧ θ) ∈ G.∧θ and Zν

t,z(θ) ∈ V(θ) for some ν ∈ A} .
We only need the measurability of each Gt and the measurability of the tube

{(t, z) : z ∈ Gt} in the product topology.
In the financial application, this extension is necessary in order to deal with the

problem of super-replication of American contingent claims.

8. Viscosity property

In this section, we prove Theorem 4.1. We shall first prove that u is a discontinuous
supersolution of (4.1) by a similar method to the one developed in our earlier
paper [27]. The proof of the subsolution property requires more attention than
in [27] because of the singularity ofN (t, z, p) at p = 0.

Here we only study a certain type of weak solution, distance solutions, as
developed by the first author [25], [4]. Other types of weak solutions easily follow
from this result and they will be studied in [29].

As in Sect. 4 and Sect. 5, we assume that Zν
t,z is a diffusion. We first start by some

easy consequences of the main technical condition reported in Assumption 4.1.
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Remark 8.1. Let F be as in (4.2). In Theorem 4.1 we assume that it is locally
Lipschitz on { (t, z, p) : p �= 0 }. This continuity assumption is closely related to
the behavior of N , and indeed it would follow from a slightly stronger version of
Assumption 4.1.

As in the previous sections, let u be the characteristic function of the reachability
set V(t), and let u∗ be the lower-semicontinuous envelope and, respectively, u∗ be
the upper-semicontinuous envelope of u

u∗(t, x) := lim inf
(t ′,x′)→(t,x)

u(t′, x′) and u∗(t, x) := lim sup
(t ′,x′)→(t,x)

u(t′, x′).

According to the definition, u is a viscosity solution if and only if u∗ is a vis-
cosity supersolution and u∗ is a viscosity subsolution of (4.1). We refer to [9]
and [15] for the definition of viscosity solutions. In this definition we use the lower
and upper semicontinuous envelope of the nonlinearity F defined in (4.2). In view
of our assumptions, F∗ = F∗ = F whenever the gradient variable is nonzero.
Moreover, sinceN (t, z, 0) = U , F∗ = F everywhere.

8.1. Proof of the supersolution property of u∗

According to the definition, we need to prove that the lower semicontinuous enve-
lope u∗ of u is a viscosity supersolution of (4.1). So suppose that there are a point
(t0, z0) ∈ S and a smooth function ϕ satisfying

0 = (u∗ − ϕ)(t0, z0) = min
S
(u∗ − ϕ) .

We need to show that

−ϕt(t0, z0)+ F∗(t0, z0, Dϕ(t0, z0), D2ϕ(t0, z0)) ≥ 0.

Since F∗ = F and U is compact, this is equivalent to show that

−Lν0 ϕ(t0, z0) ≥ 0 for some ν0 ∈ N (t0, z0, Dϕ(t0, z0)).(8.1)

1. Suppose that u(t, z) is equal to a constant in a (space-time) neighborhood of
(t0, z0). Then,

ϕt(t0, z0) = Dϕ(t0, z0) = 0, D2ϕ(t0, z0) ≥ 0,

and (8.1) follows for any ν0.
2. In view of the previous step, we may assume that u∗(t0, z0) = 0. Then,

there exists a sequence (tn, zn)n≥1 converging to (t0, z0) such that u(tn, zn) =
u∗(tn, zn) = 0. Hence, zn ∈ V(tn). For any stopping time θn > tn , by the dynamic
programming principle, there is an admissible control νn ∈ A such that

Zνn
tn,zn

(θn) ∈ V(θn), i.e. u(θn, Zνn
tn,zn

(θn)) = 0.

Further, since u ≥ u∗ ≥ ϕ,

0 = u
(
θn, Zνn

tn,zn
(θn)

) ≥ ϕ
(
θn, Zνn

tn,zn
(θn)

)
P − a.s..
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Set βn = −ϕ(tn, zn) so that by Itô’s lemma,

0 ≤ βn −
∫ θn

tn
Lνn(s)ϕ

(
s, Zνn

tn,zn
(s)
)

ds

−
∫ θn

tn

[
σ∗ (s, Zνn

tn,zn
(s), νn(s)

)
Dϕ
(
s, Zνn

tn,zn
(s)
)]∗

dW(s).(8.2)

3. For a large constant C, set

θn := inf
{
s > tn : ∣∣Zνn

tn,zn
(s)
∣∣ ≥ C

}
.

Since µ and σ are bounded and (tn, zn) −→ (t0, z0), by an application of the
Borel-Cantelli Lemma

lim inf
n→∞ t ∧ θn > t0 P − a.s. for all t > t0 .(8.3)

We shall report the proof of this claim in the last step of this proof. For ξ ∈ IR,
we introduce the probability measure Pξ

n equivalent to P defined by the density
process:

Mξ
n (t) := E

(
ξ

∫ t∧θn

tn
(σ∗ Dϕ)

(
s, Zνn

tn,zn
(s), νn(s)

)∗
dW(s)

)
; t ≥ tn,

where E(·) is the Doléans-Dade exponential operator. Observe that the process Mξ
n

is a martingale, by the definition of θn . We shall denote by Eξ
n the expectation oper-

ator under Pξ
n . By Girsanov Theorem, the process W(·)− ∫ ·

tn
ξ(σDϕ)

(
s, Zνn

tn,zn
(s),

νn(s)
)
ds is a Brownian motion under Pξ

n .

We take the expected value under Pξ
n in (8.2). The result is

0 ≤ βn − Eξ
n

[∫ t∧θn

tn

(
Lνn(s)ϕ

(
s, Zνn

tn,zn
(s)
))

ds

]

− ξ Eξ
n

[∫ t∧θn

tn

∣∣σ∗ (s, Zνn
tn,zn

(s), νn(s)
)

Dϕ
(
s, Zνn

tn,zn
(s)
)∣∣2 ds

]
,

for all t > tn . Then, we take the limit as n tends to infinity. Since βn converges to
zero, the result is the following inclusion. (We refer to [27], Step 2 of Sect. 4.1, for
the technical details.)

lim inf
h↓0

−1

h

∫ tn+h

tn

[
Lνn(s)ϕ (t0, z0)− ξ

∣∣σ∗ (t0, z0, νn(s)) Dϕ (t0, z0)
∣∣2] ds ≥ 0.

Set

V(t0, z0) :=
{
−Lνϕ(t0, z0)− ξ

∣∣σ∗(t0, z0, ν)Dϕ(t0, z0)
∣∣2 : ν ∈ U

}
,

so that for any h > 0,

−1

h

∫ tn+h

tn

[
Lνn(s)ϕ (t0, z0)− ξ

∣∣σ∗ (t0, z0, νn(s)) Dϕ (t0, z0)
∣∣2] ds ∈ c̄oV(t0, z0),
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where c̄oV(t0, z0) is the closed, convex hull of the set V(t0, z0). Therefore, it
follows that:

0 ≤ sup
φ∈coV

φ = sup
φ∈V

φ = sup
ν∈U

{
−Lνϕ(t0, z0)− ξ

∣∣σ∗(t0, z0, ν)Dϕ(t0, z0)
∣∣2}(8.4)

for all ξ ∈ IR.

4. For a large positive integer n, set ξ = −n. Since U is compact, the supremum
in (8.4) is attained at some ν̂n ∈ U and

−n
∣∣σ∗(t0, z0, ν̂n)Dϕ(t0, z0)

∣∣2 − Lν̂nϕ(t0, z0) ≥ 0.

By passing to a subsequence, we may assume that there exists ν0 ∈ U such that
ν̂n → ν0. Now let n to infinity in the last inequality to conclude that

−Lν0ϕ(t0, z0) ≥ 0

and that σ∗(t0, z0, ν0)Dϕ(t0, z0) = 0. This proves that

ν0 ∈ N (t0, z0, Dϕ(t0, z0))

and therefore (8.1) holds.

5. We now turn to a rigorous proof of (8.3), as requested by an anonymous
referee. From the dynamics of the controlled process Zνn

tn,zn
and the boundedness

of µ, we have

|Zνn
tn,zn

(t ∧ θn)− zn| ≤ |µ|∞(θn − tn)+
∣∣∣∣
∫ θn

tn
σ(. . . )dW(t)

∣∣∣∣ .
Now suppose that lim infn→∞ t∧θn = t0, for some t > t0. Then lim infn→∞ θn = t0
and limk→∞ θnk = t0 for some subsequence (nk) depending on ω. By taking the
limit along (nk) in the above inequality and using the fact that t > t0, (tn, zn) −→
(t0, z0), |σ |∞ < ∞, we see that

Z
νnk
tnk ,znk

(θnk ) −→ z0 a.s. .

This provides the required contradiction since |Zνnk
tnk ,znk

(θnk )| = C > |z0| for
large k.

8.2. Proof of the subsolution property of u∗

Suppose that there are a point (t0, z0) ∈ S and a smooth test function ϕ satisfying

0 = (u∗ − ϕ)(t0, z0) = max
t≥t0,z∈IRn

(u∗ − ϕ)(t, z) .(8.5)



230 H. Mete Soner, Nizar Touzi

We may assume that the above maximum is strict and that the Hessian D2ϕ has
full rank. We need to prove that

−ϕt(t0, z0)+ F∗(t0, z0, Dϕ(t0, z0), D2ϕ(t0, z0)) ≤ 0 .(8.6)

Recall that, F∗(t, z, p, A) = F(t, z, p, A)when p �= 0, so that the above inequality
reduces to

sup{ −Lνϕ(t0, z0) : ν ∈ N (t0, z0, Dϕ(t0, z0)) } ≤ 0 when Dϕ(t0, z0) �= 0.(8.7)

We consider three cases separately.

Case 1. If u∗(t0, z0) = 0, then

ϕ(t0, z0) = 0, Dϕ(t0, z0) = 0, D2ϕ(t0, z0) ≥ 0,

and (8.7) follows.

Case 2. Suppose that u∗(t0, z0) = 1 and Dϕ(t0, z0) �= 0. Working towards a con-
tradiction, let us assume that (8.7) does not hold. Then,

−Lν0ϕ(t0, z0) > 0 for some ν0 ∈ N (t0, z0, Dϕ(t0, z0)).

1. Since Dϕ(t0, z0) �= 0 and (t0, z0) is a strict maximum, for every sufficiently
small δ > 0, there exists β = β(δ) > 0 so that on

O = Oδ := Bδ(z0)× [t0, t0 + δ]
Dϕ �= 0, Lν̂(t,z,Dϕ(t,z))ϕ(t, z) ≤ 0, and

u∗(t, z)− ϕ(t, z) ≤ −β(8.8)

on the parabolic boundary ∂pO of O:

∂pO := ∂Bδ(z0)× [t0, t0 + δ] ∪ Bδ(z0)× {t0 + δ}.
Here ν̂(t, z, Dϕ(t, z)) is as defined in Assumption 4.1. When there is no confusion
we will simply write ν̂ for ν̂(t, z, Dϕ(t, z)).

2. Let (tn, zn)n≥1 be a sequence in S such that

(tn, zn) −→ (t0, z0) and u(tn, zn) −→ u∗(t0, z0) = 1.(8.9)

Since ϕ(tn, zn) −→ ϕ(t0, z0) = u∗(t0, z0) = 1, we may assume that:

|1 − ϕ(tn, zn)| < β for all n ≥ 1.(8.10)

Now, consider the feedback control ν̃(t, z):= ν̂(t, z, Dϕ(t, z)). Since Dϕ(t0, z0) �=0
on O, and since ν̂ is locally Lipschitz whenever the p-variable is nonzero, ν̃ is
locally Lipschitz and there is a solution Zn of

dZn(s) = µ(s, Zn(s), ν̃(s, Zn(s))) ds + σ(s, Zn(s), ν̃(s, Zn(s))) dW(s)(8.11)
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with initial data Zn(tn) = zn , for small (s − tn). For ease of notation, we write
νn(s) := ν̃(s, Zn(s)). Set

θn := inf{ s ≥ tn : (s, Zn(s)) �∈ O }.
Then, θn is a stopping time, and almost surely tn < θn ≤ t0 + δ by definition ofO.
Moreover by the continuity of Zn , (θn, Zn(θn)) ∈ ∂pO. Therefore, by (8.8),

u (θn, Zn(θn)) ≤ ϕ (θn, Zn(θn))− β .

3. We apply the Itô’s rule to ϕ and use the previous step. The result is

u(θn, Zn(θn)) ≤ ϕ(θn, Zn(θn))− β

= ϕ(tn, zn)− β +
∫ θn

tn
Lνn(s)ϕ(s, Zn(s))ds

+
∫ θn

tn

[
σ∗(s, Zn(s), νn(s))Dϕ(s, Zn(s))

]∗
dW(s).

By the definitions of νn and θn , σ∗(s, Zn(s), νn(s))Dϕ(s, Zn(s)) = 0, and
Lνn(s)ϕ(s, Zn(s)) ≤ 0 for s ∈ [tn, θn]. In view of (8.10), this shows that {0, 1} 0
u(θn, Zn(θn)) < 1. Therefore

u(θn, Zn(θn)) = 0 P − a.s. for all n ≥ 1.(8.12)

4. The dynamic programming principle of Theorem 3.1 and (8.12) imply that
the initial point Zn(tn) = zn belongs to V(tn), i.e. u(tn, zn) = 0. Since this is true
for all n ≥ 1, this is in contradiction with (8.9).

Case 3. The only remaining case is u∗(t0, z0) = 1 and Dϕ(t0, z0) = 0. Set

A := D2ϕ(t0, z0),

and suppose to the contrary that the subsolution property does not hold:

−ϕt(t0, z0)+ F∗(t0, z0, 0, A) > 0,(8.13)

and let us work towards a contradiction. By the definition of F∗ and the continuity
Assumption 4.1 onN , there exists a map

ν̂ : [0, T ] × IRn × IRn −→ U

so that, by (8.13),

−ϕt(t, z)− µ(t, z, ν̂(t, z, p))∗ p − 1

2
trace

[
σσ∗(t, z, ν̂(t, z, p))A

]
> 0

in a neighborhood of (t0, z0, 0).
Note that the coefficients of the SDE (8.11) are not locally Lipschitz, we can

not define the process Zn as in the second case. Hence the arguments of the second
case do not apply here.
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For the convenience of the reader, we briefly describe the main idea of this step.
We argue by contradiction and we prove that the Hessian matrix A = D2ϕ(t0, z0)

has a negative eigenvalue, whenever the subsolution property does not hold at
(t0, z0). This is done in Step 5 below. This property is exploited in Step 6 to define
a convenient perturbation ϕε of the test function ϕ so that Dϕε �= 0 at the local
maxima of (u∗ − ϕε). Once this is achieved, we use the results proved in Case 2
together with a simple limit argument to conclude.

5. In this step, we prove that (8.13) implies that the Hessian matrix A has
a negative eigenvalue. Suppose to the contrary that all eigenvalues of the symmetric
matrix A are nonnegative, i.e. there are orthonormal unit vectors ei ∈ IRd such
that:

Aei = λi ei for some λi ≥ 0 , i = 1, . . . , d.

Observe that, in view of (8.13)

−ϕt(t0, z0) > 0.(8.14)

Choose mi > λi , i = 1, . . . , d, and set

�(z) :=
∑

i

mi [(z0 − z)∗ei]2, B̄�
δ := { z ∈ IRd : �(z) ≤ δ }, B�

δ := int
(
B�
δ

)
.

Then there are constants 0 < b < −ϕt(t0, z0), c0 > 0, and δ > 0, such that on
(t0, t0 + δ] × B̄�

δ

ϕ(t, z) ≤ ϕ̃(t, z) := 1 − b (t − t0)+�(z) ,(8.15)

c0 ≤ b − µ(t, z, ν̂)∗ D�(z)− 1

2
trace

[
σσ∗(t, z, ν̂) D2�(z)

]
,(8.16)

where ν̂ = ν̂(t, z, D�(z)).
For future use, we note that since mi > 0, � generates a norm on IRd , and is

therefore equivalent to the Euclidean norm.
Next, fix an arbitrary point (t̃, z̃) in (t0, t0+δ)× B�

δ close to (t0, z0), and choose
0 < ε << δ so that

�(z̃) ≥ 4ε.(8.17)

Our ultimate goal for the rest of this step is to prove that

u(t̃, z̃) = 0 .(8.18)

Since (t̃, z̃) and ε > 0 are arbitrary, this and Remark 4.1 imply that u(t0, z0) = 0.
But this contradicts with the hypothesis of this case: u∗(t0, z0) = 1.

Let ν̃ be a smooth function satisfying

ν̃(t, z) = ν̂(t, z, D�(z)), on Q := [t0, t0 + δ] × (B̄�
δ \ B�

ε

)
,
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and let Z̃ := Z ν̃
t̃,z̃

be the solution of the state equation with initial data Z̃(t̃) = z̃,
and feedback control ν̃. Set

θ := inf
{
t > t̃ : (t, Z̃(t)) �∈ ∂p Q

}
,

where

∂p Q := ({t0 + δ} × [B̄�
δ \ B�

ε

]) ∪ ([t0, t0 + δ] × ∂
[
B̄�
δ \ B�

ε

])
.

For later use, observe that the definition of the feedback control ν̃ together with
(8.16) imply that:

Lν̃ ϕ̃(t, Z̃(t)) ≤ c0 < 0 and
(
σ(·, ·, ν̃)∗Dϕ̃

)
(t, Z̃(t)) = 0 on (t, θ]] .

(8.19)

Also, on the stochastic interval (t, θ]]
d�(Z̃(t)) = Lν̃(t)�(Z̃(t))dt,

and moreover

Lν̃(t)�(Z̃(t)) = µ(t, Z̃(t), ν̃(t))∗D�(Z̃(t))

+ 1

2
trace

[
σσ∗(t, Z̃(t), ν̃(t))D2�(Z̃(t))

]
≥ µ(t, Z̃(t), ν̃(t))∗D�(Z̃(t))

≥ −2C
√
�(Z̃(t))

for some constant C > 0, where we used the fact that µ is bounded, together
with the equivalence between the norm induced by � and the Euclidean norm.
By (8.17), √

�(Z̃(t)) ≥ 2
√
ε− C(t − t̃) for t ∈ [t̃, θ]].(8.20)

We now have all the ingredients in order to obtain a contradiction. We consider
two cases:

Subcase 1. Suppose that Z̃(θ) �∈ ∂B�
ε . Since the maximum in (8.5) is strict, there

is a constant β > 0 such that for (t̃, z̃) sufficiently close to (t0, z0),

(u∗ − ϕ)(θ, Z̃(θ)) ≤ −β.
Then by (8.15), Itô’s Lemma and (8.19),

u∗(θ, Z̃(θ)) ≤ −β + ϕ(θ, Z̃(θ))

≤ −β + ϕ̃(θ, Z̃(θ))

= −β + ϕ̃(t̃, z̃)+
∫ θ

t̃
Lν̃(t)ϕ̃(t, Z̃(t)dt

≤ −β + ϕ̃(t̃, z̃).
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Since (t̃, z̃) is sufficiently close to (t0, z0), ϕ(t0, z0) = u∗(t0, z0) = 1, and u∗ is
valued in {0, 1}, the last inequality proves that u∗(θ, Z̃(θ)) = 0. We now proceed
as in Step 4: by the dynamic programming principle, z̃ ∈ V(t̃), i.e. u(t̃, z̃) = 0 as
required in (8.18).

Subcase 2. Suppose that Z̃(θ) ∈ ∂B�
ε . By the definition of the test function ϕ

and (8.15),

u∗(θ, Z̃(θ)) ≤ ϕ(θ, Z̃(θ)) ≤ ϕ̃(θ, Z̃(θ))

= 1 − b(θ − t̃)+�(Z̃(θ))

= 1 − b(θ − t̃)+ ε.

In view of (8.20)

√
ε =

√
�(Z̃(θ)) ≥ 2

√
ε− C(θ − t̃).

Hence

−(θ − t̃) ≤ −
√
ε

C
.

Since b > 0,

u∗(θ, Z̃(θ)) ≤ 1 + ε− b

C

√
ε.

For a sufficiently small ε > 0, this implies that u∗(θ, Z̃(θ)) = 0 since u∗ is valued in
{0, 1}. Once again we proceed as in Step 4: by the dynamic programming principle,
z̃ ∈ V(t̃), i.e. u(t̃, z̃) = 0 as required in (8.18).

Hence we proved that the Hessian A = D2φ(t0, z0) has at least one negative
eigenvalue.

6. Let −λ be a strictly negative eigenvalue of the Hessian matrix A =
D2ϕ(t0, z0), and let ê be an associated eigenvector:

Aê = − λê, λ > 0.

We may chose ê so that

α := Dϕt(t0, z0)
∗ê ≥ 0.(8.21)

As in Step 1, for every sufficiently small δ > 0, there exists β(δ) > 0 so that on
O = Oδ (8.8) holds.

We are now in a position to define the convenient perturbation ϕε of the test
function ϕ so that the arguments of the second case apply to ϕε. For ε > 0, set

ϕε(t, z) := ϕ(t, z)+ εê∗(z − z0).

Then there is ε(δ) > 0 so that (8.8) still holds for all ε ≤ ε(δ). Hence, the difference
u∗ − ϕε attains an local maximum in O, say at (tε, zε) ∈ O:

(u∗ − ϕ)(tε, zε) = max
O

(u∗ − ϕ).(8.22)

It is clear that, as ε tends to zero, the sequence (tε, zε)ε converges to (t0, z0).
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We shall prove in the next step that

Dϕε(tε, zε) �= 0 for sufficiently small ε > 0.(8.23)

Then we may use the result proved in the second case to conclude that

−(ϕε)t(tε, zε)+ F(tε, zε, Dϕε(tε, zε), D2ϕε(tε, zε)) ≤ 0.

We then obtain (8.6) by sending ε to zero.

7. It remains to prove (8.23). Suppose that Dϕε(tεk , zεk ) = 0 for some sequence
(εk)k converging to zero, and let us work towards a contradiction. Since A =
D2ϕ(t0, z0) has full rank, for a given tε ≥ t0 the equation

Dϕε(tε, zε) = 0 ⇐⇒ Dϕ(tε, zε) = −εê

has a smooth solution zε which is also smooth in ε. We differentiate the above
equation with respect to ε and then evaluate it at ε = 0. The result is[

dzε
dε

]
ε=0

= A−1
(
−ê − Dϕt(t0, z0)

[
dtε
dε

]
ε=0

)
.

Note that tε ≥ t0 for every ε > 0 by definition of O, and therefore
[

dtε
dε

]
ε=0

≥ 0.

Since A−1ê = −λ−1ê, it follows that

ê∗
[

dzε
dε

]
ε=0

= ê∗ A−1
[
−ê − Dϕt(t0, z0)

[
dtε
dε

]
ε=0

]

= 1

λ

[
|ê|2 + α

[
dtε
dε

]
ε=0

]
> 0.

Therefore for sufficiently small ε > 0, we have ê∗(zε − z0) > 0, and

(u∗ − ϕε)(tε, zε) = (u∗ − ϕ)(tε, zε)− εê∗(zε − z0)

≤ (u∗ − ϕ)(t0, z0)− εê∗(zε − z0)

= (u∗ − ϕε)(t0, z0)− εê∗(zε − z0)

< (u∗ − ϕε)(t0, z0),

which is in contradiction with (8.22). ��
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