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Abstract We show how to construct a canonical choice of stochastic area for paths of
reversible Markov processes satisfying a weak Hölder condition, and hence demonstrate
that the sample paths of such processes are rough paths in the sense of Lyons. We further
prove that certain polygonal approximations to these paths and their areas converge in p-
variation norm. As a corollary of this result and standard properties of rough paths, we
are able to provide a significant generalization of the classical result of Wong-Zakai on
the approximation of solutions to stochastic differential equations. Our results allow us to
construct solutions to differential equations driven by reversible Markov processes of finite
p-variation with p < 4.

1. Introduction

1.1. Overview

Differential equations of the form

dyt = f (yt) dxt (1)

arise in many areas of mathematics. Cartan development [13], the path ordered
exponential, the stochastic differential equations of Itô [12], control theory and
even the standard linear filter of engineering provide examples of this formalism.
These are all dynamical systems subject to an exogenous control. As the control
is not necessarily smooth, it is important to give meaning to (1) for “rough paths”.
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Classical analysis gives (1) meaning if x has bounded variation. Itô calculus gives
it meaning if x is a typical Brownian path in Rd and, more generally, for almost
all semi-martingale paths. In this paper we use the theory of rough paths [17] and
a generalization of a theorem of Lévy to give meaning to the equation for a much
wider class of Markov processes with values in Rd .

Suppose xt is a smooth path in a vector space V and f is a linear map from this
vector space to the Lipschitz vector fields on some state space M. Observe that dxt

dt
is an element of V , and if v ∈ V , then f(.)v is a vector field, f(y)v is a tangent
vector at y and (1) can be interpreted as the differential equation

dyt

dt
= f (yt)

dxt

dt
. (2)

If we reparameterise time for the path x, then this produces a solution y that is
simply a reparameterisation of the original solution. This shows immediately that
in some sense, the parameter t and its differential “dt” are irrelevant. In addition
it demonstrates how it is unnatural to expect that the path xt should always be
(piecewise) differentiable and that therefore one should be able to interpret (1) for
more general paths.

The first serious extension of (1) to a class of non-differentiable paths x came
in 1942-44 when Itô published [10], [11], papers that were to have a profound long
term impact. He observed, using an integral constructed via an L2 isometry, that
(1) could be given meaning for almost every (multi-dimensional) Brownian path.
That is, if W is Wiener measure on the continuous functions, then he constructed
a map I f : C[0, 1] → C[0, 1] so that for W-almost every path x the identity (1)
holds. He used his result to construct new stochastic processes, and in so doing
immediately demonstrated existence of solutions to wide classes of elliptic and
parabolic partial differential equations. For over 50 years, his work, and the work
of others in this area have profoundly affected engineering and more recently the
world of finance.

Brownian paths are nowhere differentiable and it has been difficult to build
a bridge between the classical interpretation of (2) and the meaning given to (1)
by Itô. The first step is to build a slightly different “Stratonovich” integral and dif-
ferential equation. Any reasonably smooth Itô differential equation can be recast
as a Stratonovich equation and vice versa. The Stratonovich differential equation,
like its smooth counterpart is invariant under changes in co-ordinates. The second
important bridge between the Itô-Stratonovich stochastic differential equations and
classical differential equations came in work of Wong and Zakai [23], [24]. They
considered the one dimensional version of a stochastic differential equation of the
form (1) and proved that if x(n) is a sequence of bounded variation paths converging
uniformly to a Brownian path, x, then the solutions to the corresponding differ-
ential equations converge to the Stratonovich solution to the original stochastic
differential equation. This work has been extended by Clark [4], for the more diffi-
cult multi-dimensional Brownian case, by Stroock and Varadhan [22], in a support
theorem for SDE’s and, much later, Chap. 6 of Ikeda and Watanabe [9] focused on
the same issues, but in greater depth.
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Despite this important bridge with classical systems there is still a significant
limitation in the interpretation of (1) provided by Itô. The function I f , introduced
above is only defined up to null sets of paths. It does not give an analytic interpre-
tation of (1) for any given path x. Moreover, these methods only apply to a class
of stochastic processes known as semi-martingales.

One significant attempt to provide a pathwise definition of (1) for a class of
paths rich enough to encompass the SDEs of Itô can be found in [17]. In the first
instance one considers the map I f as a function defined on the space S(V ) of
paths of bounded variation in a Banach space V . Then [17] introduces a class of
metrics on S (V ) of p-variation type (a precise definition is in Sect. 2) and proves
that I f is a uniformly continuous function on bounded sets in this metric. This
approach allows x to be any “rough path” in the completion of S (V ). We denote
this completion by �g,p (V ).1

Classical work of Lévy explains how one can regard almost every Brownian
path as an element of �g,p

(
R

d
)

for p > 2, and so gives a pathwise interpretation
for stochastic differential equations driven by Brownian motion and more generally
by semi-martingales. In this paper we prove that a much wider class of diffusion
processes in Rd can be regarded as having sample paths in�g,p(R

d); in particular
we have a good interpretation of (1) for these processes. This approach provides
an extension of the Wong-Zakai theorem as we prove that solutions to (1) can be
viewed as the limit of a Cauchy sequence of polygonal approximations. The result
is striking because processes such as diffusions with paths on connected fractal sub-
sets of Rd are included and these are rather far from the semi-martingale paradigm
considered by Itô. Our conclusions cannot (to our knowledge) be recovered using
the usual Itô calculus methods.

Lévy also observed the convergence of the sequence obtained by taking the
integral

∫
ω ◦ dx(n) of the area form ω = xidx j − x j dxi against the piecewise

linear dyadic approximations x(n) to a Brownian path x. The resulting limit is
known as the Lévy area process and can be regarded as a solution to a differential
equation of the form (1). In fact it is the antisymmetric 2 tensor component of
the differential equation describing the noncommutative exponential function (4).
Our main technical achievement is a generalisation of this result. We produce
a Lévy area and show that it has finite p-variation for a class of reversible Markov
processes satisfying a certain uniform Hölder condition.

1.2. Outline

The structure of the paper is as follows. Firstly we give an introduction to the theory
of rough paths to provide the algebraic and analytic framework for our results. Then
we show how to carry through the following program for constructing a canonical
version of the Lévy area and higher order iterated integrals for a class of paths in
R

d that are rougher than Brownian motion.

1. We begin by proving the existence of a canonical area between two fixed times
for paths of a reversible Markov process with suitable α-variation, where the

1 The notation �p (V ) is reserved for a larger space.
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process is started from its stationary measure. Without loss of generality, the
interval can be taken to be

[
0, 2−n

]
. Our approach will be to take the dyadic

polygonal approximations to the path of our process over this fixed time interval,
compute the area for these approximations and then show the existence of the
limit. This argument is essentially probabilistic, and exploits the reversible
structure of the process and our assumptions about its sample path properties.
At the same time as we construct this area we estimate its moments. A crucial
part of our argument is the forward-backward martingale argument of Lyons
and Zheng [20].

2. The next stage is to construct the area process. In other words we need to define
the area simultaneously for all pairs of times s < t ∈ [0, 1] and estimate the
p-variation of the resulting two time parameter process. This is an essentially
deterministic argument, and can be deduced from arguments that follow from
Lemma 3 of Sect. 2 of [19]. The area and its p-variation are deterministically
controlled by areas and increments defined over dyadic intervals alone. These
form a countable collection and, with the moment conditions, give control over
the whole path segment.

3. The previous steps show that (at least when p < 3) the Markov process, when
enhanced by this new stochastic area process, is a rough path in the sense of [17].
It can be approximated by smooth paths in such a way that the paths and areas
converge in the appropriate p-variation sense. However, to prove the Wong-
Zakai theorem in the desired form we will need to prove that the polygonal
approximations we used to construct the area over the fixed interval do actually
converge in the p-variation sense along the whole interval. This follows quite
easily from the work in [19] but is not stated there. The Wong-Zakai theorem
can be deduced from this result using the main theorem in [17].

4. For 3 ≤ p < 4 the construction of the area, and the estimates on its variation
still hold true, however, as they stand they are not sufficient to construct a rough
path, or deduce the analogue of the Wong-Zakai theorem. As the roughness of
the path increases, we require an increasing but finite number of higher order
iterated integrals in order to solve differential equations of the form (1). For
3 ≤ p < 4 one requires a second “area like” integral to converge2 as well. In
Sect. 5 we will show that for p < 4 the same Hölder condition that we used
previously, implies the existence of the required third order iterated integral.
The proof of the analogue of the Wong-Zakai theorem then follows in the same
way as before.

Finally we show that the conditions for existence of area hold for Dirichlet pro-
cesses, that is diffusions associated with uniformly elliptic operators in divergence
form; diffusion processes on nested fractals [16] and on Sierpinski carpets [1], [2].
We will also give an example of a non-reversible diffusion on the Sierpinski gasket
for which the canonical choice of area does not exist. Finally we conclude with
some open problems.

2 For 2 ≤ p < 3 it is automatic from the theory of rough paths that the third order iterated
integral will converge if the path and area converge.
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We will sometimes need arbitrary constants in the paper and use the convention
that ci are constants that change though they remain fixed within a proof. For fixed
constants appearing in Section n we will write cn.i

2. Rough paths

2.1. The algebra of iterated integrals

The solution of differential equations driven by rough paths requires the construc-
tion of iterated integrals of the driving noise. The first iterated integral is just the
increment of the path. Our aim is to construct the higher order iterated integrals
of a path and before we do this it will be helpful to set up some notation. Iterated
integrals have a strong algebraic content and it will be important to understand this
a little.

Let S be the space of finite piecewise smooth path segments {x(u)| u ∈
[0, t], x(0) = 0} in our vector space V , where we associate any path segment{

x′ (u) | u ∈ [s, t] , x′ (s) = a
}

with
{

x′ (u + s) − a | u ∈ [0, t − s]
}
.

There is a natural associative multiplication on S given by concatenation. Let
x, y ∈ S be paths defined on [0, t], [0, s], respectively; then

x ∗ y = z,
z(u) = x(u), u ∈ [0, t] ,
z(u) = x(t)+ y(u − t), u ∈ [t, t + s] ,

defines a path in S defined on the interval [0, t + s]. We now show that there exists
a natural projection of S into the free nilpotent group of step ν, a projection that
respects the multiplication ∗.

Let T (ν) denote the truncated tensor algebra given by

T (ν) = R⊕ V ⊕ V⊗2 ⊕ V⊗3 . . .⊕ V⊗ν,

with multiplication given by⊗with the convention that products producing tensors
of degree greater than ν are zero. T (ν) is an associative algebra. We give it a Lie
bracket in the canonical way by defining [x, y] = x ⊗ y− y ⊗ x. This algebra
is clearly nilpotent of degree ν (nested brackets of degree greater than ν always
produce zero). The sub-Lie algebraA(ν) generated by V is of particular importance.
It is a graded space

A(ν) := V ⊕ [V, V ]⊕ [V, [V, V ]] . . .⊕
ν times︷ ︸︸ ︷

[V, [V, . . . [V, V ]]],

where for example [V, [V, V ]] is the linear space spanned by all Lie brackets of
triples from V . Because we are in the truncated tensor algebra the exponential
series always converges, and it makes sense to consider G(ν) = expA(ν). Recall
that for a,b ∈ T (ν)

eaeb = em[a,b],
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where m[a,b] is the usual Campbell-Baker-Hausdorff formula:

m [a,b] = a+ b+1

2
[a,b]+ 1

12
[a, [a,b]] + 1

12
[b, [b, a]] + . . .

From this it is clear that eae−a = 1 and that G(ν) is closed under tensor multiplica-
tion and hence a group. It is the free ν-step nilpotent group over V , A(ν) is its Lie
algebra and T (ν) is the enveloping algebra. Moreover, there is an inverse map. Let
x = 1 + y ∈ G(ν), where y has 0 for a constant term. Define log x = log [1+ y]
via the series

log [1+ y] = y− y2

2
+ y3

3
− y4

4
. . .

which is a finite series. Thus this series converges for any x ∈ G(ν) whose scalar
component is one. The function log is then inverse to exp when restricted to G(ν).
From this we see that the correspondence between elements of G(ν) and A(ν) is
one to one and that we may regard them as two different co-ordinate charts for the
group. In the one chart multiplication is given by tensor multiplication, in the other
by the Campbell-Baker-Hausdorff formula.

The connection between the groups we defined above and the space of paths S
comes via the iterated integrals. There is a natural map of S into G(ν). Let x ∈ S
and define

xr
0t =

∫
. . .

∫
0≤u1≤...≤ur≤t

dxu1 . . . dxur ,

where of course xr
0t ∈ V⊗r . We may take the xr

0t, r ≤ ν together as a sequence to
construct our map,

φ (x) = x(ν)0t :=
(

1, x1
0t, x2

0t, . . . , xν0t

)
.

Obviously φ(x) ∈ T (ν); in fact it takes its values in G(ν) and the map φ is a homo-
morphism in the sense that

φ (x)⊗ φ (y) = φ(x ∗ y).

Both of these facts can easily be proved using the two elementary but key identities
which together explain the significance of the iterated integrals

x(ν)0t = x(ν)0u ⊗ x(ν)ut , (3)

and the non-commutative exponential characterization:

dx(ν)0t = x(ν)0t ⊗ dxt, (4)

x(ν)00 = (1, 0, 0, . . . , 0) .

In analogy with the argument above, it is obvious from (3) that the range of φ
is closed under multiplication, and from (4) that the image of a path run backwards
is the inverse of the image of the path run forwards.
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2.2. The Lévy area

Initially we define the area for a path x ∈ S.

Definition 2.1. The 2-parameter process Ast = (Ai j
st )i j ∈ V⊗2 given by the anti-

symmetric part of the second iterated integral,

Ai j
st (x) =

1

2

∫ ∫
s<u1<u2<t

dxi
u1

dx j
u2 − dx j

u1dxi
u2
, s, t ∈ [0, L]

will be called the canonical area process associated to the piecewise smooth path x.

Fix a pair of co-ordinates i, j and so project the path into R2, then the closed
directed planar curve defined by

(
xi

u, x j
u
)
, u ∈ [s, t] and the projection of the chord−→

xt xs encloses an area Ai j
st (x), providing orientation and multiplicity are taken into

account. Note that A(x) is dependent on the trajectory of the path x and not on the
speed of passage, so that if τ(t) is a continuous time change

Ast(x ◦ τ) = Aτ(s)τ(t)(x).

It also depends on the inner product on the underlying space - but only in a simple
fashion.

If the path x is nowhere differentiable, perhaps generated by a stochastic pro-
cess, then, if the piecewise polygonal approximations to the path along the dyadic
partition converge, it will be called the Lévy area. The dyadic partitions are not
crucial to this result and any other geometrically increasing sequence of partitions
that is deterministic and has intervals of equal length would produce the same
analysis. We anticipate that the resulting area does not depend upon the particular
partition but do not have a proof of this.

We can now interpret the ideas on rough paths in relation to this Lévy area.
We have seen that there is a map from S into G(ν) for any ν. If we are to solve
differential equations driven by the paths of a stochastic process it is clear from (4)
that one must be able to construct the iterated integrals x(ν)0,t associated to the path.

The map into G(1) simply takes x to the increment x0t = xt − x0 =
∫

0≤u≤t dxu

and is clearly defined for all paths (and is obviously a homomorphism between
concatenation of paths and addition in V ). The map into G(2) is more easily seen
when we change variables to Lie co-ordinates

x(2)0t = exp

[∫
0≤u≤t

dxu + 1

2

∫ ∫
0≤u1≤u2≤t

[
dxu1, dxu2

]]

= exp [x0t + A0t] ,

where A0t = 1
2

∫ ∫
0≤u1≤u2≤t

[
dxu1, dxu2

]
is the area determined by the path. If our

path is Brownian motion, this will be the Lévy area of the path.
Thus constructing the Lévy area is equivalent to constructing, for every sub-

segment of the path of our stochastic process, a lift into the group G(2) and solving
the exponential differential equation at least in step 2. In addition, if we can establish
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analytic conditions on these incremental lifts we will, by results in [17], ensure the
existence of canonical choices of lift to all G(ν) where ν > 2 providing p < 3.

The analytic conditions are expressed in terms of p-variation and we discuss
here the p-variation norm for a rough path. Suppose {xt, t ∈ [0, T ]} is a piecewise
smooth path in a Banach space V . It is said to have finite p-variation if

ω(s, t) = sup
D∈D

∑
D

|xui+1 − xui |p <∞, [s, t] ⊂ [0, T ],

where D denotes the set of all partitions of [s, t] and if D ∈ D, then D = {s ≤
· · · < ui < ui+1 < · · · ≤ t} is a dissection of the time interval [s, t]. We can
define p-variation for a multiplicative functional (rough path) Xst = (Xst, Ast) in
Lie coordinates (we write Xst = Xt − Xs for the path increment).

Definition 2.2. The p-variation distance between (Xst, Ast), (X̃st, Ãst) is given by
ωXX̃(s, t), where we define

ωXX̃(s, t) = sup
D∈D

∑
D

(|Xu j−1u j − X̃u j−1u j |p + |Au j−1u j − Ãu j−1u j |p/2).

As the area is the antisymmetric part of the second iterated integral, controlling
ωX0 using area is equivalent to controlling it using the second iterated integral X2.
We can extend our definition of p-variation to multiplicative functionals in G(ν),
up to any degree ν, as

ω′
X,X̃
(s, t) = sup

D∈D

∑
D

ν∑
m=1

∣∣Xm
u j−1u j

− X̃m
u j−1u j

∣∣p/m .
We can also write our definition of p-variation distance in Lie coordinates and state
the following fact relating the p-variation in ordinary and Lie coordinates. If we
define, for X, X̃ ∈ G(ν) with constant term 1,

ωXX̃(s, t) = sup
D∈D

∑
D

ν∑
m=1

∣∣(log Xu j−1u j )
m − (log X̃u j−1u j )

m
∣∣p/m,

then there is a constant c2.1 such that

c−1
2.1ωXX̃(s, t) ≤ ω′

XX̃
(s, t) ≤ c2.1ωXX̃(s, t).

We say that X has finite p-variation if ω(s, t) = ωX0(s, t) or ω′(s, t) is finite.
Once we have these ideas we can formulate a key result of [17], contained in

Theorem 2.2.1.

Theorem 2.3 (Exponential extension). Let x(ν)0t be a continuous two time function
satisfying the algebraic condition (3) and the analytic condition that it has finite
p-variation for all p > ν. Then, for any N, there is a unique extension of x(ν)0t to

x(N)0t satisfying the algebraic and analytic conditions with the same p. Moreover
the map is continuous.
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Indeed it can be shown that the extension map is uniformly continuous on
bounded sets. In particular if we can show that the iterated integrals for our poly-
gonal path approximations are Cauchy in this p-variation metric, the result provides
a construction of all iterated integrals of our stochastic path.

Finally we can give a meaning to the solution of the stochastic differential
equation (1). Let X be a path which has finite p-variation for all p > ν. If there
is a sequence of piecewise smooth approximations xn , to the path X, which are
Cauchy in the p-variation metric involving the first [ν] iterated integrals of X, and
the vector fields are Lipschitz of smoothness γ > ν, then the sequence of solutions
yn to (1) is also Cauchy in the p-variation metric for the same p > ν and hence we
can define the Stratonovich solution Y to the stochastic differential equation.

3. Existence of area

In this section and for the rest of the paper, we will assume that we have a continuous
path generated by a reversible Markov process and that it lies in V = Rd . We note
that this path may be a function of the underlying Markov process. Now fix a time
interval and consider a sequence of polygonal approximations to the path. Our aim
is to show that the sequence of areas associated to these polygonal approximations
converge.

Now consider a general continuous path {xu; u ∈ [0, T ]}. Let tn
i = i2−nT ,

then tn = {tn
i : 0 ≤ i ≤ 2n} is the n-th dyadic partition of the interval [0, T ]. Let

xn
i = xtn

i
be the path sampled at these dyadic times. We may extend the path xn

. to
a piecewise linear path by interpolation:

xn
u2−nT = (i + 1− u)xn

i + (u − i)xn
i+1, i < u < i + 1, 0 ≤ i < 2n.

The paths xn+1 and xn agree at the times in the partition tn . As one goes from xn

to xn+1 one can associate with each linear segment of xn , two edges from xn+1

making an oriented triangle, and by considering all the intervals in tn we obtain
a sequence of 2n oriented triangles (see Fig. 1). If x is Markov and we define the
filtration generated by the n-th approximation,

Fn = σ
(
xtn

i
: i ≤ 2n),

then we note that the triangles are independent random variables given Fn .
Now fix attention on the path {xt; t ∈ [0, T ]} and let An = A0T (xn) be

the area generated by the n-th successive approximation to the path. We study the
convergence of An . Now A0 = 0, and An =∑n

j=1 A j−A j−1 where An+1−An =∑2n−1
i=0 Atn

i tn
i+1
(xn+1) is the sum of the areas in the 2n triangles mentioned above

and illustrated in the schematic picture shown as Fig. 1.
Our aim is to show that the limit of

Ak+1 =
k∑

n=1

2n−1∑
i=0

Atn
i tn

i+1
(xn+1), (5)

as k →∞, exists.
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n

x

x

n+1

Fig. 1. The increase in area due to the addition of the next dyadic approximation to the path

A naive approach to the construction of the area would be to compute the
area of each triangle and then add them all together. This would fail if the path
were Brownian - in the sense that the sum is not absolutely convergent. However,
it is obvious from reflection symmetry that in the Brownian case the elements

Atn
i tn

i+1
(xn+1) satisfy E

(
Atn

i tn
i+1
(xn+1)|Fn

)
= 0 and thus An is an Fn martingale.

Convergence of the area then follows easily as the bracket process is seen to
converge very rapidly indeed. It seems essential to the argument that one uses
some cancelation, and we observe in this paper that, in the case where x is Markov,
reversibility seems to be the key.

Assumption 3.1. Assume the path x is generated by a continuous reversible
Markov process {Xt; t ∈ (0, T ]}, started from a finite stationary measure µ
which we take to have mass one3, on a probability space (�,G,P).

We now make the assumption that the β moments of the increments of the
process are controlled.

Assumption 3.2. There exist constants α < 4 and c3.1(β) such that for all β ≥ 1,

sup
x

Ex|X0 − Xt |β ≤ c3.1(β)t
β/α, ∀0 < t ≤ 1.

We denote by Ex the expectation of the process started from a point x and hence
this assumption is a uniform Hölder condition on the paths. We will see that this

3 As the problems we are interested in are of a local nature, we assume this measure is
finite. Lebesgue measure, and Brownian motion in Rd could be made to fit our hypotheses
by quotienting onto a torus etc.



Stochastic area 247

implies that our path has finite p-variation for all p > α. These two assumptions
will be assumed until Sect. 6, where we will show that they hold for a variety of
examples. Our main theorem in this section is the following.

Theorem 3.3. For a reversible Markov process X = {Xt; t ∈ [0, T ]}, satisfying
Assumptions 3.1, 3.2, the area A0T (X) up to time T exists (in the sense of (5)) and
there are constants c3.2(β) such that for all β ≥ 1,

E Aβ0T (X) ≤ c3.2(β)T
2β/α.

We prove this result through several preliminary lemmas. Consider the follow-
ing filtrations

Gt = σ(Xu; 0 ≤ u ≤ t), G̃t = σ(Xu; T − t ≤ u ≤ T ), (6)

determined by the path run forward in time and the path run backward in time
respectively.

Firstly, in the spirit of [20], we show that there is a forward-backward martingale
decomposition for functions of reversible Markov processes. Let π(x, y) denote
a path from x to y.

Lemma 3.4. Let ψ : C(R : V ) → R be a measurable function satisfying
ψ(π(x, y)) = −ψ(π(y, x)), for all paths π(x, y) ∈ C(R : V ) and x, y ∈ V.
For a reversible Markov process X = {Xt; t ∈ [0, T ]}, satisfying Assumption 3.1,
and Ex(|ψ(π(Xs, Xt))||Gs), Ex(|ψ(π(Xs, Xt))||G̃T−t) < ∞ for all s, t ∈ [0, T ],
we have a forward-backward martingale decomposition,

2n−1∑
i=0

ψ(π(Xtn
i
, Xtn

i+1
)) = 1

2
Mn

2n + 1

2
M̃n

0 − E(ψ(π(Xtn
2n , Xtn

2n−1
))|G̃0)

+ E(ψ(π(Xtn
0
, Xtn

1
))|G0) (7)

where the martingales are given by

Mn
k =

k−1∑
i=0

(
ψ(π(Xtn

i
, Xtn

i+1
))− E(ψ(π(Xtn

i
, Xtn

i+1
))|Gtn

i
)
)
,

and

M̃n
k = −

2n∑
i=k+1

(
ψ(π(Xtn

i
, Xtn

i−1
))− E(ψ(π(Xtn

i
, Xtn

i−1
))|G̃T−tn

i
)
)
.

Proof. By the definition of the functionψ, we have that for any path X, and any n,

2n−1∑
i=0

ψ(π(Xtn
i
, Xtn

i+1
)) = −

2n−1∑
i=0

ψ(π(Xtn
i+1
, Xtn

i
))

= 1

2

2n−1∑
i=0

ψ(π(Xtn
i
, Xtn

i+1
))− 1

2

2n−1∑
i=0

ψ(π(Xtn
i+1
, Xtn

i
)).

(8)
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The process is started from its stationary measure and hence the path {Xt; t ∈
[0, T ]}, observed going forwards or backwards from a particular point Xtn

i
, satisfies

E(ψ(π(Xtn
i
, Xtn

i+1
))|Gtn

i
) = E(ψ(π(Xtn

i
, Xtn

i−1
))|G̃T−tn

i
), 1 ≤ i ≤ 2n − 1.

By (8), using the usual Doob-Meyer decomposition for the forward and the back-
ward processes, we obtain the forward and backward martingales Mn , M̃n . We
include the final two terms in (7) to cater for the discrepancies at the beginning and
end of the path. ��

The existence of area will be established by showing the existence of the limit
in (5). As the area formed by a curve depends on orientation, we see that the area
generated by the path traversed backwards is just the negative of the area generated
by the path traversed forwards. Thus, if we define

ψ(π(Xtn
i
, Xtn

i+1
)) = Atn

i tn
i+1
(xn+1),

then we can write

Ak+1 =
k∑

n=1

2n−1∑
i=0

Atn
i tn

i+1
(xn+1),

and apply the lemma.
Now we make the simple geometric observation that the area of a triangle,

Atn
i tn

i+1
(xn+1) is bounded above by the product of the lengths of the vectors which

define it,

∣∣Atn
i tn

i+1
(xn+1)

∣∣ ≤ 1

2

∣∣xn
i − xn+1

2i+1

∣∣ ∣∣xn+1
2i+1 − xn

i+1

∣∣. (9)

Lemma 3.5. Under Assumptions 3.1, 3.2, we have

E
(∣∣Atn

i tn
i+1
(xn+1)

∣∣ ∣∣Gtn
i

) ≤ 1

2
c3.1(2)T 2/α2−2n/α. (10)

Proof. By (9), we can bound the random variable |Atn
i tn

i+1
(xn+1)| by the product

of the lengths of the increments of the path xn+1.

E
(∣∣Atn

i tn
i+1
(xn+1)

∣∣ ∣∣Gtn
i

) ≤ 1

2
E
(∣∣xn

i − xn+1
2i+1

∣∣∣∣xn
i − xn

i+1

∣∣ ∣∣Gtn
i

)
.

Now apply Cauchy-Schwarz and our hypothesis on the increments,

E
(∣∣Atn

i tn
i+1
(xn+1)

∣∣ ∣∣Gtn
i

) ≤ 1

2

(
E
(∣∣xn

i − xn+1
2i+1

∣∣2 ∣∣Gtn
i

)
E
(∣∣xn

i − xn
i+1

∣∣2 ∣∣Gtn
i

))1/2
.

≤ 1

2
c3.1(2)

(
(T2−(n+1))2/α(T2−n)2/α

)1/2
≤ 1

2
c3.1(2)T 2/α2−2n/α, (11)

as desired. ��
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Proof of Theorem. In order to prove that, in (5), the limit Am exists as m → ∞
we will show that it has finite mean. For this we need to control the brackets of the
martingales in the forward-backward martingale decomposition (7). The bracket
processes are given by

[Mn ]k =
k−1∑
i=0

(
Atn

i tn
i+1
(xn+1)− E

(
Atn

i tn
i+1
(xn+1)

∣∣Gtn
i

))2
,

and

[M̃n]k =
2n∑

i=k+1

(
Atn

i tn
i−1
(xn+1)− E

(
Atn

i tn
i−1
(xn+1)

∣∣G̃T−tn
i

))2
.

Using the fact that

∣∣xn
i − xn+1

2i+1

∣∣2∣∣xn+1
2i+1 − xn

i+1

∣∣2 ≤ 1

2

(∣∣xn
i − xn+1

2i+1

∣∣4 + ∣∣xn+1
2i+1 − xn

i+1

∣∣4),
Lemma 3.5 and (9), we have pathwise control on the bracket of the forward
martingale, as

[Mn]2n ≤ 2
2n−1∑
i=0

∣∣Atn
i tn

i+1
(xn+1)

∣∣2 + 2
2n−1∑
i=0

E
(∣∣Atn

i tn
i+1
(xn+1)

∣∣ ∣∣Gtn
i

)2

≤ 1

4

2n+1−1∑
i=0

∣∣xn+1
i − xn+1

i+1

∣∣4 + c1T 4/α2n2−4n/α. (12)

Taking expectations we have

E[Mn]2n ≤ 1

4

2n+1−1∑
i=0

E
∣∣xn+1

i − xn+1
i+1

∣∣4 + c1T 4/α2n(1−4/α)

≤ c2T 4/α2n(1−4/α).

We now need to show that we can add up each estimate for the area and keep
control on the whole sum,

A =
∑

n

(
1

2
Mn

2n + 1

2
M̃n

2n + E
(
Atn

2n tn
2n−1

(xn+1)
∣∣G̃0
)− E

(
Atn

0 tn
1
(xn+1)

∣∣G0
))
.

(13)

We do this by establishing that the moments of each of the four sums is finite. The
Lβ(�,P) norm of the area is estimated by

‖A‖β ≤
∑

n

∥∥Mn
2n

∥∥
β
+
∑

n

∥∥M̃n
2n

∥∥
β
+

∑
n

∥∥E
(
Atn

2n tn
2n−1

(xn+1)
∣∣G̃0
)∥∥
β
+
∑

n

∥∥E
(
Atn

0 tn
1
(xn+1)

∣∣G0
)∥∥
β
. (14)
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For the forward martingale we use Burkholder’s inequality and (12) to show,
provided β ≥ 2,

E
(
Mn

2n

)β ≤ c3 E
([Mn]β/22n

)

≤ c4 E


2n+1−1∑

i=0

∣∣xn+1
i − xn+1

i+1

∣∣4 + c1T 4/α2n2−4n/α



β/2

≤ c5 E


2n+1−1∑

i=0

∣∣xn+1
i − xn+1

i+1

∣∣4


β/2

+ c6T 2β/α2n(1−4/α)β/2

≤ c52(n+1)(β/2−1)
2n+1−1∑

i=0

E
∣∣xn+1

i − xn+1
i+1

∣∣2β + c6T 2β/α2n(1−4/α)β/2

≤ c7T 2β/α2n(1−4/α)β/2.

Then, for α < 4, we have

∑
n

∥∥Mn
2n

∥∥
β
≤ c7

∑
n

T 2/α2n(1−4/α)/2 = c8T 2/α.

This is finite and decays exponentially quickly giving the almost sure existence as
well.

The same approach shows that the backward martingale part is also well be-
haved. We can also control the correction terms using the estimate obtained in (10).
For the first backward term

∑
n

∥∥E
(∣∣Atn

2n tn
2n−1

(xn+1)
∣∣ ∣∣G̃0

)∥∥
β
≤
∑

n

1

2
c3.1(2)T 2/α2−2n/α ≤ c9T 2/α,

and similarly for the first forward term.
Thus we have that all the sums are convergent and we have the almost sure

existence of A0T . Replacing the terms in (14) to see that ‖A‖β ≤ c10T 2/α, and
using monotonicity of the norm, gives the required moment estimate. ��

Recall that An
0T is the area of the piecewise polygonal path xn . From the above

results we can easily deduce a moment estimate on the rate of convergence of these
approximating sums.

Corollary 3.6. There exists a constant c3.3(β) such that for all β ≥ 1,

E
∣∣A0T − An

0T

∣∣β ≤ c3.3(β)T
2β/α2nβ(1−4/α)/2.
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4. Area between an arbitrary pair of times and finite p-variation

We have proved the existence of an area random variable for a fixed pair of times.
We now wish to establish the existence and continuity of a two parameter 2-tensor
valued process Ast , which we will call the area process for a path of our underlying
continuous process {Xt : t ∈ [0, T ]}. In order to be able to establish convergence
results we will establish that Xst = (Xst, Ast) has finite p-variation for suitable p.
We will follow the same approach as that used in [8], Sect. 4, but remark that, in
common with [19], there is less work to be done as we have the area between any
pair of dyadic times.

Our aim is to construct the area process and control its p-variation using dyadic
intervals. First we fix an interval [s, t] and define inductively, a series of disjoint
dyadic intervals as follows. Let n0 be the first integer such that there exists a k ∈ Z
such that [

k2−n0, (k + 1) 2−n0
] ⊂ [s, t],

and define I0 =
[
k2−n0, (k + 1) 2−n0

]
. For n > 0 define In to be the unique dyadic

interval of length 2−(n0+n) to the right of ∪i<n Ii , if it is contained in [s, t], and the
singleton [

sup∪i<n Ii , sup∪i<n Ii
]
,

if it is not. Define In for n < 0 in a similar way to be the intervals on the left.
We use this dyadic division to define the rough path for any pair of times s, t.

As the path is an element in G(ν) we can write

X[s,t] = lim
n→∞XI−n ⊗ XI−n+1 ⊗ . . .⊗ XI0 ⊗ . . .⊗ XIn−1 ⊗ XIn . (15)

Clearly the series is eventually constant if s and t are dyadic, and so by the multi-
plicative property of X gives a compatible definition for those times. We will state
our results in some generality and for the next result regard X = (1, X1, X2, . . . )

as an element of the full tensor algebra. Now observe that for n > 0,

XI−n ⊗XI−n+1 ⊗ . . .⊗XI0 ⊗ . . .⊗ XIn−1 ⊗ XIn

=

1,

n∑
i=−n

X Ii ,
∑

−n≤i< j≤n

X Ii ⊗ X I j +
n∑

i=−n

X2
Ii
, . . . ,

m∑
k=1

∑
(r1 ,...,rk )∑k

1 r j=m

∑
−n≤i1<···<ik≤n

Xr1
Ii1
⊗ · · · ⊗ Xrk

Iik
, . . .


 . (16)

We will write

η(X; r, p) =
∑

n

nγ
2n−1∑
i=0

∣∣Xr
tn
i tn

i+1

∣∣p/r ,
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where γ > p − 1, as this will be useful for the dyadic control on the p-variation
of the r-th component of X. We will abuse this notation slightly and write, for the
area (the antisymmetric part of X2),

η(A; 2, p) =
∑

n

nγ
2n−1∑
i=0

|Atn
i tn

i+1
|p/2.

Lemma 4.1. There exists a universal constant c4.1, depending on p, such that for
a γ > p− 1,

ω′
XX̃
(0, 1) ≤

c4.1

ν∑
m=1

m∑
k=1

∑
(r1 ,...,rk )∑k

1 r j=m

k∑
l=1

η(X − X̃; rl, p)rl/m
k∏

j=1
j �=l

(
η(X; r j , p)+ η(X̃; r j , p)

)r j/m
.

Proof. For the case of ω(0, 1) with ν = 2, this is equation (2) of [19]. We extend
this result to ω′

XX̃
(0, 1) for any finite ν. In order to deal with higher order terms we

will make use of the non-commutative identity

n⊗
i=1

ai −
n⊗

i=1

bi =
n∑

j=1

j−1⊗
i=1

ai(a j − b j)

n⊗
i= j+1

bi, (17)

for any sequences {ai}, {bi}, where we define
⊗0

i=1 ai = 1. Consider our dyadic
partition of the interval [s, t] given by {Ii}∞i=−∞. In order to control the p-variation
over this interval, we compare the m-th order term in the two multiplicative func-
tionals using (16),

Xm
st − X̃m

st = lim
n→∞

m∑
k=1

∑
(r1 ,...,rk )∑k

1 r j=m

∑
−n≤i1<···<ik≤n

Xr1
Ii1
⊗ · · · ⊗ Xrk

Iik

−




m∑
k=1

∑
(r1 ,...,rk )∑k

1 r j=m

∑
−n≤i1<···<ik≤n

X̃r1
Ii1
⊗ · · · ⊗ X̃rk

Iik


 . (18)

Now apply (17) to the terms in (18),∑
−∞<i1<···<ik<∞

(
Xr1

Ii1
⊗ · · · ⊗ Xrk

Iik
− X̃r1

Ii1
⊗ · · · ⊗ X̃rk

Iik

)

=
∑

−∞<i<∞

k∑
j=1

∑
−∞<i1<...i j−1<i j+1<···<ik<∞

j−1∏
l=1

Xrl
Iil

(
X

r j
Ii
− X̃

r j
Ii

) k∏
l= j+1

X̃rl
Iil

≤
∑

−∞<i<∞

k∑
l=1

∣∣Xrl
Ii
− X̃rl

Ii

∣∣ k∏
j=1
j �=l

∑
−∞<i<∞

(∣∣Xr j
Ii

∣∣+ ∣∣X̃r j
Ii

∣∣).
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Hölder’s inequality can be applied to give the existence of a constant c1(r, p, γ)
such that, if γ > p− 1, then

(

∞∑
i=−∞

|Xr
Ii
|)p ≤ c1(r, p, γ)

∞∑
i=−∞

(|i| + 1)γ |Xr
Ii
|p.

Using this twice we have

∣∣Xm
st − X̃m

st

∣∣p/m ≤
m∑

k=1

∑
(r1 ,...,rk )∑k

1 r j=m

c2(m, p, γ)
k∑

l=1




∞∑
i=−∞

(|i| + 1)γ
∣∣Xrl

Ii
− X̃rl

Ii

∣∣p/m

k∏
j=1
j �=l

∞∑
i=−∞

(|i| + 1)γ
(∣∣Xr j

Ii

∣∣p/m + ∣∣X̃r j
Ii

∣∣p/m)

 .

Thus the variation over any interval can be expressed in terms of the variation over
dyadics.

Consider an arbitrary partition. Firstly we use Hölder’s inequality for the prod-
uct of k terms and then sum over all disjoint dyadic intervals to estimate the
p-variation,

sup
0<u1<...<ur<1

∑
D

∣∣∣Xm
uh uh+1

− X̃m
uh uh+1

∣∣∣p/m

≤ sup
0<u1<...<ur<1

∑
D

m∑
k=1

∑
(r1 ,...,rk )∑k

1 r j=m

c2

k∑
l=1




∞∑
i=−∞

(|i| + 1)γ
∣∣∣Xrl

Ii (uh ,uh+1)
− X̃

rl
Ii (uh ,uh+1)

∣∣∣p/m

k∏
j=1
j �=l

∞∑
i=−∞

(|i| + 1)γ
(∣∣∣Xr j

Ii (ul ,ul+1)

∣∣∣p/m +
∣∣∣X̃r j

Ii (uh ,uh+1)

∣∣∣p/m
)

≤ sup
D

m∑
k=1

∑
(r1 ,...,rk )∑k

1 r j=m

c2




∑
D


 k∑

l=1

∞∑
i=−∞

(|i| + 1)γ
∣∣∣Xrl

Ii (uh ,uh+1)
− X̃

rl
Ii (uh ,uh+1)

∣∣∣p/m



m/rl



rl/m

k∏
j=1
j �=l


∑
D


 ∞∑

i=−∞
(|i| + 1)γ

(∣∣∣Xr j
Ii (uh ,uh+1)

∣∣∣p/m +
∣∣∣X̃r j

Ii (uh ,uh+1)

∣∣∣p/m
)

m/r j



r j /m



≤
m∑

k=1

∑
(r1 ,...,rk )∑k

1 r j=m

c3


 k∑

l=1

∞∑
n=1

nγ
2n−1−1∑

h=0

∣∣∣Xrl
tnh tnh+1

− X̃
rl
tnh tnh+1

∣∣∣p/rl




rl/m

k∏
j=1
j �=l


 ∞∑

n=1

nγ
2n−1−1∑

h=0

∣∣∣Xr j
tnh tnh+1

∣∣∣p/r j +
∣∣∣X̃r j

tnh tnh+1

∣∣∣p/r j




r j /m

.

By the definition of η we have the desired result. ��
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Corollary 4.2. There exists a constant c4.2 such that for all p

ω(0, 1) ≤ c4.2

ν∑
m=1

η(X;m, p). (19)

Proof. Rewriting Lemma 4.1 with X̃ = 0, we have

ω(0, 1) ≤ c4.1

ν∑
m=1

m∑
k=1

∑
(r1 ,...,rk )∑k

1 r j=m

k∑
l=1

η(X; rl, p)rl/m
k∏

j=1
j �=l

η(X; r j , p)r j/m .

Now observe that if
∑k

j=1 r j = m, then

η(X; rl, p)rl/m
k∏

j=1
j �=l

η(X; r j , p)r j/m ≤
k∑

j=1

η(X; r j , p),

and apply this to get the result. ��
We now move to Lie coordinates and ν = 2.

Theorem 4.3. The pair (Xt, Ast), of the path and its area process, have finite
p-variation for all p > α, P-a.s.

Proof. From our Assumption 3.2, we have

E|Xtn
i
− Xtn

i+1
|p ≤ c3.1(p)2−n p/α,

and using the moment estimates of Theorem 3.3, we have

E
∣∣∣Atn

i tn
i+1

∣∣∣p/2 ≤ c3.2(p/2)2−n p/α.

Hence, using the Corollary 4.2, we can estimate the expectation of ω(0, T ),

Eω(0, T ) ≤ c1

∞∑
n=1

nγ2n2−n p/α.

The right hand side is easily seen to be finite almost surely, for all p > α.
We have simultaneously proved the existence and finite p-variation of the path

(X, A). It is clear that it satisfies the algebraic relation of a multiplicative functional
since it must do so at every basic time pair and they are dense on the line. We have
completed the proof of the theorem. ��

Let Am
st be the area process associated to the path xm .

Theorem 4.4. The paths xm converge to X in p-variation as m → ∞ for all
p > α, P-a.s.
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Proof. We use Lemma 4.1 with the approximating sequence xm ,

ωXxm (0, 1) ≤ c4.1

(
η(A − Am; 2, p)+ η(X − xm; 1, p)1/2(η(X; 1, p)

+η(xm; 1, p))1/2 + η(X − xm; 1, p)
)
.

We consider the terms separately and, noting that xm
tn
i
= Xtn

i
for n ≤ m and also

Am
tn
i tn

i−1
= 0 for n ≥ m, we have

η(A − Am; 2, p) ≤
m−1∑
n=1

nγ
2n−1∑
i=0

∣∣∣Atn
i tn

i+1
− Am

tn
i tn

i+1

∣∣∣p/2 + ∞∑
n=m

nγ
2n−1∑
i=0

∣∣∣Atn
i tn

i+1

∣∣∣p/2

η(X − xm; 1, p) ≤
∞∑

n=m

nγ
2n−1∑
i=0

∣∣∣Xtn
i tn

i+1
− xm

tn
i tn

i+1

∣∣∣p

≤ 2p−1
∞∑

n=m

nγ
2n−1∑
i=0

∣∣∣Xtn
i tn

i+1

∣∣∣p + 2p−1
∞∑

n=m

nγ 2n−m
2m−1∑
i=0

∣∣∣2m−n xm
tm
i tm

i+1

∣∣∣p

≤ 2p−1
∞∑

n=m

nγ
2n−1∑
i=0

∣∣∣Xtn
i tn

i+1

∣∣∣p + c1mγ
2m−1∑
i=0

∣∣∣xm
tm
i tm

i+1

∣∣∣p

= c2

∞∑
n=m

nγ
2n−1∑
i=0

2p−1
∣∣∣Xtn

i tn
i+1

∣∣∣p .
(20)

We can take expectations and use Cauchy-Schwarz to control the cross term,

E
(
η(X − X̃; 1, p)

(
η(X; 1, p)+ η(X̃; 1, p)

))1/2
≤ (Eη(X − X̃; 1, p)E

(
η(X; 1, p)+ η(X̃; 1, p)

))1/2
.

Using this, our moment assumptions and Corollary 3.6,

EωXxm(0, 1) ≤ c4.1


m−1∑

n=1

nγ
2n−1∑
i=0

E

∣∣∣∣Atni tni+1
− Am

tni tni+1

∣∣∣∣
p/2



+ c4.1


 ∞∑

n=m
nγ

2n−1∑
i=0

E
∣∣∣Atni tni+1

∣∣∣p/2

+ c4.1

∞∑
n=m

nγ
2n−1∑
i=0

2p−1 E
∣∣∣Xtni tni+1

∣∣∣p

+ c4.1


 ∞∑

n=m
nγ

2n−1∑
i=0

2p−1 E
∣∣∣Xtni tni+1

∣∣∣p



1/2

(Eη(X; 1, p)+ Eη(xm; 1, p))1/2

≤ c3

m−1∑
n=1

nγ
2n−1∑
i=0

2−n p/α2(m−n)(1−4/α)p/4 + c4

∞∑
n=m

nγ
2n−1∑
i=0

2−n p/α

+ c5

∞∑
n=m

nγ
2n−1∑
i=0

2p−12−n p/α

+ c6


 ∞∑

n=m
nγ

2n−1∑
i=0

2p−12−n p/α




1/2

(Eη(X; 1, p)+ Eη(xm; 1, p))1/2.
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Observing that Eη(xm; 1, p) ≤ Eη(X; 1, p) ≤∑n nγ2n(1−p/α) = c7, we have

EωXxm(0, 1) ≤ c8mγ+12m(1−p/α) + c9m(γ+1)/22m(1−p/α)/2,

where the constants depend upon p, α and require α < p ≤ 4. If α < 4 < p we
have the estimate

EωXxm(0, 1) ≤ c10mγ+12m p(1−4/α)/4 + c11m(γ+1)/22m(1−p/α)/2.

Thus we have exponential control on the moments and a routine Borel-Cantelli
argument shows that, in the case where p ≤ 4,

lim sup
n→∞

ωXxn(0, 1)

n(3+γ)/2(log n)1+ε2(1−p/α)n/2
= 0.

There is a similar result for the case when p > 4. Thus we have established the
convergence in p-variation for all p > α. ��

Finally we can state a version of the Wong-Zakai theorem for our reversible
Markov processes.

Corollary 4.5. Let X be a rough path satisfying Assumptions 3.1, 3.2 with α < 3
and let xm denote the sequence of dyadic piecewise linear approximations to X. If
f is a Lip(γ ) vector field with γ > α and ym is the sequence of paths defined by
solving

dym = f(ym)dxm, ym
0 = a,

then the sequence (xm, ym) (of paths and their iterated integrals) converges in
p-variation to the pair of rough paths (X,Y ) for every p > α.

5. Higher order iterated integrals

Consider now the case where the sample paths of our process have a Hölder
continuity of order at most 1/3. In order to use the results of [17] to solve differential
equations along the sample paths of these Markov processes it is sufficient to find
a canonical construction, valid for every path, for a third iterated integral satisfying
the appropriate algebraic and analytic properties.

We will discuss two natural approaches to this problem. The most direct method
is to exploit the existence of the area process we have already constructed. The
argument is analytically robust and would work for other choices of the area in
addition to the canonical one we have introduced.We will prove that the solutions to
the differential equations obtained by taking helical approximations on our dyadic
partitions, chosen so that the curves over the time intervals

[
k2−n, (k + 1) 2−n

]
have the same increment and area as the restriction of the underlying stochastic
path to the same interval, converge. Then we will consider the case where we
construct the third order term just using the polygonal paths, without knowledge
of the exact area process as constructed in the previous section.
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In order to give the extension of the Wong-Zakai theorem to the third order case
we need convergence of the approximations. We will be able to show that if we take
either approach and compute the third iterated integrals of these approximations,
then these will converge in the p-variation sense required for continuity of the
solutions to the differential equations.

5.1. Constructing the third order term, approach one

Our first approach is quite close to the original argument of [17] used in proving
Theorem 2.3. The key point is that we do not try to show that the polygonal
approximations converge with their iterated integrals of degree up to three. Rather
we use the existence of the Lévy area and the reversibility to construct the third
iterated integral directly.

In order to compute the third order iterated integral we follow the same approach
as for the area; decompose the time interval at dyadic times and consider a limit of
products in T (3), the enveloping algebra. For a dissection D we use our knowledge
of the path and its area to define

xD,(3)
0t = exu0u1+Au0u1 exu1u2+Au1u2 . . . exur−1ur+Aur−1 ur , (21)

where we take the obvious inclusion (not Lie!) ofA(2) ⊂ A(3) to place the product
in T (3). Recall that we used the notation tn for the dyadic partition. Our aim will be
to show that for these tn , the products xtn,(3)

0t converge. This is quite obvious at the
level of one and two tensor components for, by the algebraic condition (3) satisfied
by x(2)0t , these components of xD,(3)

0t do not depend on D. All the action, and our
interest is in the level three component. As a result, if we have two partitions D, D′,
then xD,(3)

0t − xD′,(3)
0t = log xD,(3)

0t − log xD′,(3)
0t and indeed lies in the centre of the

algebra. This means we can look at terms coming from individual sections of the
path and “add them up”. We also remark that as we are considering products of
elements in G(3) it is obvious that the limit if it exists will also be in G(3).

Define Bm
0t to be the third order component of log xtm,(3)

0t . First we consider this
set of times to be fixed and construct the third order term as a sum in the same way
as the area (5),

Bm =
m−1∑
n=0

2n−1∑
i=0

Btn
i tn

i+1

(
xn+1

i,i+1, Atn
i tn

i+1

)
. (22)

From the Campbell-Baker-Hausdorff formula and (21), the term Btn
i tn

i+1
(xn+1

i,i+1,

Atn
i tn

i+1
) is given by

Btn
i tn

i+1

(
xn+1

i,i+1, Atn
i tn

i+1

) = 1

2
[x̃1, Ã2] + 1

2
[x̃2, Ã1] + 1

12
[x̃1, [x̃1, x̃2]]

+ 1

12
[x̃2, [x̃2, x̃1]], (23)

where x̃1 = xn
i − xn+1

2i+1, x̃2 = xn+1
2i+1 − xn

i+1, Ã1 = Atn
i tn+1

2i+1
and Ã2 = Atn+1

2i+1tn
i+1

.
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Note that all terms are third order and we can bound them above by

|Btn
i tn

i+1
| ≤ 1

2

∣∣xn
i − xn+1

2i+1

∣∣| Ã2| + 1

2
| Ã1|

∣∣xn+1
2i+1 − xn

i+1

∣∣
+ 1

12

∣∣xn
i − xn+1

2i+1

∣∣2∣∣xn+1
2i+1 − xn

i+1

∣∣+ 1

12

∣∣xn
i − xn+1

2i+1

∣∣∣∣xn+1
2i+1 − xn

i+1

∣∣2.
(24)

Theorem 5.1. For a reversible Markov process X = {Xt; t ∈ [0, T ]}, satisfying
Assumptions 3.1, 3.2, the third order iterated integral B0T (X, A), up to time T ,
defined by the limit in (22) exists and there are constants c5.1(β) such that for all
β ≥ 1,

E
∣∣Bβ0T (X, A)

∣∣ ≤ c5.1(β)T
3β/α.

Proof. In order to demonstrate the existence of the third order iterated inte-
gral for a fixed pair of times we follow the same reasoning as for the area and
show that the limit of Bm as m → ∞ has finite mean. Let ψ(π(Xtn

i
, Xtn

i+1
)) =

Btn
i tn

i+1
(xn+1

i,i+1, Atn
i tn

i+1
(xn+1)). By the definition of Btn

i tn
i+1

in (23) we see that it
changes sign as the path is reversed. This, combined with the reversibility of
the path, allows us to apply Lemma 3.4 to get the forward-backward martingale
decomposition

2n−1∑
i=0

Btn
i tn

i+1

(
xn+1

i,i+1, Atn
i tn

i+1

) = 1

2
Mn

2n + 1

2
M̃n

0 − E
(
Btn

2n−1tn
2n
|G̃0
)+ E(Btn

1 tn
0
|G0),

(25)

where the forward martingale is defined to be

Mn
k =

k∑
i=0

(
Btn

i tn
i+1
− E(Btn

i tn
i+1
|Gtn

i
)
)
, (26)

and the backward martingale is defined similarly, where the filtrations are those
given in (6). We can then establish

E
(∣∣Btn

i tn
i+1

(
xn+1

tn
i tn

i+1
, Atn

i tn
i+1

)∣∣ ∣∣Gtn
i

) ≤ c1T 3/α2−3n/α, (27)

following the proof of Lemma 3.5, using (24), Cauchy-Schwarz, the moment
assumption on the increments and the moment estimate for the area process.

The next step is to estimate the brackets of the martingales and this is done in
the same way as in the derivation of (12). We get pathwise control on the first term
in (26) and use (27) to estimate the second. Taking expectations gives

E([Mn]2n ) ≤ c2T 6/α2n(1−6/α).

Thus we can control the forward and backward martingales provided α > 6. Now
we can let m →∞ in (22) and see that the mean of the sum for the third order term
will converge, to establish the existence, provided α < 6. The moment estimate
will follow in exactly the same way. ��
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In Sect. 3 we showed that, with probability one, the dyadic polygonal approx-
imation to our path, when enhanced with its natural area process as in Defin-
ition 2.1, converges in p-variation. In analogy with our definition of canonical area
for a piecewise smooth path we can define an n-th order canonical iterated integral
for a piecewise smooth path. It is natural to ask if there is a similar theorem here.
In other words we would like to identify a sequence of piecewise smooth paths xm ,
with the same increment and area over the intervals [tn

i , tn
i+1], as our path (X, A)

constructed above, which converges in p-variation to (X, A, B).
The first point is to identify a sensible replacement for linear interpolation as

straight line segments have no area. The appropriate quantity is a helix, �t , defined
by

�t =




cos a1t sin a1t 0 0 0 0
− sin a1t cos a1t 0 0 0 0

0 0
. . .

. . . 0 0

0 0
. . .

. . . 0 0
0 0 0 0 cos adt sin adt
0 0 0 0 − sin adt cos adt







r1
0
...
...

rd

0



,

if the dimension is even, or by

�t =




cos a1t sin a1t 0 0 0 0 0
− sin a1t cos a1t 0 0 0 0 0

0 0
. . .

. . . 0 0 0

0 0
. . .

. . . 0 0 0
0 0 0 0 cos adt sin adt 0
0 0 0 0 − sin adt cos adt 0
0 0 0 0 0 0 a0t







r1
0
...
...

rd

0
1



,

if the dimension is odd. In general, any curve is a helix if it can be isometrically
embedded as a segment of �t for suitable choices of ai, ri . The ai are the angular
velocities and the ri are the radii associated with the helix.

It is an elementary piece of linear algebra that a helix with given increment and
area always exists, indeed there are infinitely many but at most d have minimal
length and generically the one of minimal length is unique. We will use these
helical segments to interpolate and produce a piecewise smooth path with given
increment and area over the intervals [tn

i , tn
i+1].

In order to prove that the approximating paths converge to the limit path in
p-variation we need to control the p-variation of rough paths up to the third order
term. For the third order case the p-variation of our path X in Lie coordinates is

ω(s, t) = sup
D

∑
i

(
|xuiui+1 |p + |Auiui+1 |p/2 + |Buiui+1 |p/3

)
.
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From Corollary 4.2, we can control it using the values at the dyadics of the iterated
integrals up to order 3,

ω′(s, t) ≤ c5.2

3∑
i=1

η(X; i, p) (28)

By taking expectations in (28), substituting our moment estimates and applying
Borel-Cantelli, we have the following.

Lemma 5.2. For a reversible Markov process X = {Xt; t ∈ [0, T ]}, satisfying
Assumptions 3.1, 3.2, the path X = (1, X, X2, X3) has finite p-variation, for all
p > α, P-a.s.

We can also establish the convergence of the polygonal approximations with
their areas.

Lemma 5.3. For a reversible Markov process X = {Xt; t ∈ [0, T ]}, satisfying
Assumptions 3.1, 3.2, the polygonal path xm = (1, xm, (xm)2, (xm)3), taken with
the correct area, converges in p-variation to the path X = (1, X, X2, X3) for all
p > α, P-a.s.

Proof. We begin by considering the third order version of Lemma 4.1,

ωXxm(0, 1)

≤ c4.1

3∑
i=1

i∑
k=1

∑
(r1 ,...,rk )∑k

1 r j=i

k∑
l=1

η(X − xm; rl, p)rl/i
k∏

j=1
j �=l

(
η(X; r j , p)+ η(xm; r j , p)

)r j/i .

Now writing out the control on the third term and using the fact that

η(xm; r, p) ≤ η(X; r, p),

we have

ωXxm(0, 1) ≤ c4.1

(
η(X − xm; 1, p)+ 2(2η(X; 1, p)η(X − xm; 1, p))1/2

+ η(X − xm; 2, p)+ 3η(X − xm; 1, p)1/3(2η(X; 1, p))2/3

+ 2η(X − xm; 1, p)1/3(2η(X; 2, p))2/3

+ 2η(X − xm; 2, p)2/3(2η(X; 1, p))1/3 + η(X − xm; 3, p)
)

(29)

From the relationship between the two coordinate charts for the group we can
write

η(X; 3, p) ≤ c1 (η(X; 1, p)+ η(A; 2, p)+ η(B; 3, p)) .
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If we combine this with (29), take expectations and apply Hölders inequality we
have

EωXxm(0, 1) ≤ c2
(
Eη(X − xm; 1, p)+ Eη(A − Am; 2, p)+ Eη(B − Bm; 3, p)

)
+ c3(E(η(X; 1, p))E(η(X − xm; 1, p)))1/2 + c4

(
(E(η(X; 1, p)))2/3

+(E(η(A; 2, p)))2/3
)
(E(η(X − xm; 1, p)))1/3 +

+ c5(E(η(X; 1, p)))1/3
(
E(η(A − Am; 2, p))+ E(η(X − xm; 1, p))

)2/3
(30)

Using the fact that there are constants such that Eη(X; 1, p) ≤ c6 and Eη(X; 2, p)
≤ c7, we see that it is enough to show the convergence of the terms η(X −
xm; 1, p), η(A − Am; 2, p) and η(B − Bm; 3, p). Firstly, observe that as the path
and its dyadic approximation are equal at the dyadic time points, we can write

Eη(X − xm; 1, p) =
∞∑

n=m

nγ
2n−1∑
i=0

E
∣∣∣Xtn

i tn
i+1
− xm

tn
i tn

i+1

∣∣∣p

≤
∞∑

n=m

nγ
2n−1∑
i=0

2p−1 E
∣∣∣Xtn

i tn
i+1

∣∣∣p+ ∞∑
n=m

nγ
2n−1∑
i=0

2p−1 E
∣∣∣Xm

tn
i tn

i+1

∣∣∣p ,
and similarly

Eη(A − Am; 2, p) =
∞∑

n=m

nγ
2n−1∑
i=0

E
∣∣∣Atn

i tn
i+1
− Am

tn
i tn

i+1

∣∣∣p/2

≤
∞∑

n=m

nγ
2n−1∑
i=0

2p−1E
∣∣∣Atn

i tn
i+1

∣∣∣p/2+ ∞∑
n=m

nγ
2n−1∑
i=0

2p−1 E
∣∣∣Am

tn
i tn

i+1

∣∣∣p/2 .
The third order term is different as we have to take account of the initial terms

Eη(B − Bm; 3, p) =
m−1∑
n=1

nγ
2n−1∑
i=0

E
∣∣∣Btn

i tn
i+1
− Bm

tn
i tn

i+1

∣∣∣p/3

+
∞∑

n=m

nγ
2n−1∑
i=0

E
∣∣∣Btn

i ,t
n
i+1
− Bm

tn
i tn

i+1

∣∣∣p/3

≤
m−1∑
n=1

nγ
2n−1∑
i=0

E
∣∣∣Btn

i tn
i+1
− Bm

tn
i tn

i+1

∣∣∣p/3

+
∞∑

n=m

nγ 2p−1
2n−1∑
i=0

E
∣∣∣Btn

i tn
i+1

∣∣∣p/3

+
∞∑

n=m

nγ 2p−1
2n−1∑
i=0

E
∣∣∣Bm

tn
i tn

i+1

∣∣∣p/3 .
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The terms involving Am, Xm can be controlled using the relationship between the
length of the increment and the area of a helix. Firstly for the increment we use an
isoperimetric inequality, that |Xm

tn
i tn

i+1
| ≤ c8|Am

tm
i tm

i+1
|1/2,

∞∑
n=m

nγ
2n−1∑
i=0

∣∣∣Xm
tn
i tn

i+1

∣∣∣p ≤ ∞∑
n=m

nγ
2m−1∑
i=0

2n−m
(

2m−nc8
∣∣Am

tm
i tm

i+1

∣∣1/2)p

≤ c9mγ+1
2m−1∑
i=0

∣∣Am
tm
i tm

i+1

∣∣p/2.
Similarly we have

∞∑
n=m

nγ
2n−1∑
i=0

∣∣Am
tn
i tn

i+1

∣∣p/2 ≤ c10mγ+1
2m−1∑
i=0

∣∣Am
tm
i tm

i+1

∣∣p/2.
Thus we see that, by our moment assumptions

Eη(X − xm; 1, p) ≤ c11mγ+12m E
∣∣Am

tm
i tm

i+1

∣∣p/2 = c12mγ+12m(1−p/α),

and similarly Eη(A − Am; 2, p) ≤ c13mγ+12m(1−p/α).
The third order term can be controlled using

∣∣Bm
Ii

∣∣ ≤ ∣∣Xm
Ii

∣∣∣∣Am
Ii

∣∣+ 1

6

∣∣Xm
Ii

∣∣3 ≤ c14
∣∣Am

Ii

∣∣3/2 + c15
∣∣Xm

Ii

∣∣3.
We observe that there is a rate of convergence result for the third order term

arising from the proof of Theorem 5.1

E
∣∣B0T − Bm

0T

∣∣β ≤ c16T 3β/α2mβ(1−6/α)/2.

Now, using the above estimates and the rate of convergence result in (30), we get

EωXxm(0, 1) ≤ c16

m−1∑
n=1

nγ
2n−1∑
i=0

2−n p/α2(m−n)(1−6/α)p/6 + c17

∞∑
n=m

nγ
2n−1∑
i=0

2−n p/α

+ c18m2(γ+1)/322m(1−p/α)/3 + c19m(γ+1)/22m(1−p/α)/2

+ c20m(γ+1)/32m(1−p/α)/3

= c21

(
mγ+12m(1−p/α) +m(γ+1)/32m(1−p/α)/3

)
,

where the constant depends upon p, α and T and requiresα < p ≤ 6. If α < 6 < p
we have the estimate

EωXxm(0, 1) ≤ c22

(
mγ+12m p(1−6/α)/6 + m(γ+1)/32m(1−p/α)/3

)
.

Thus we have convergence in p-variation norm. ��
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5.2. Constructing the third order term, approach two

Thus far we have constructed the third order term, given that we already have the
Lévy area process itself. In this section we will consider the question of constructing
the third order term given that we only have the polygonal approximations to the
path. In this situation we will not be able to add up the separate pieces, there will
be a contribution to the third order iterated integral from pieces of the path outside
the particular increment. However, we will see that this new piece will still undergo
a change of sign as the path is reversed and hence we will be able to apply the
forward-backward martingale decomposition to prove the existence of this part of
the third iterated integral. As the techniques used here are essentially the same as
in the previous section we will omit detailed proofs.

We consider building our polygonal approximations to the path by considering
a particular dyadic interval [tn

i , tn
i+1] in the interval [0, T ]. We determine the effect

on the rough path at level 3 of the polygonal approximation over this interval by
comparing the second and third order terms for the path in that interval with the
full path in T (3),

log(e
x0tni

+A0tni
+B0tni e

xtni tni+1
+Atni tni+1

+Btni tni+1 e
xtni+1T+Ati+1 T+Btni+1T

)

= log(e
x0tni

+A0tni
+B0tni e

xtni tni+1 e
xtni+1T+Ati+1 T+Btni+1T

)+ Atn
i tn

i+1+(Btn
i tn

i+1
+ [x0tn

i
, Atn

i tn
i+1
] + [Atn

i tn
i+1
, xtn

i+1T ]).
Thus the second order term required is the area, which we saw how to compute
in the previous sections. The third order term is composed of two parts. There is
our third order term Btn

i tn
i+1

, defined on the increment, and a new third order term,
generated by terms outside of the increment, given by

B̂tn
i tn

i+1
= [x0tn

i
, Atn

i tn
i+1
] + [Atn

i tn
i+1
, xtn

i+1T ]
= [x0tn

i
− xtn

i+1T , Atn
i tn

i+1
]

= [xn
i + xn

i+1, Atn
i tn

i+1
] − [xn

0 + xn
T , Atn

i tn
i+1
].

In approach one we have seen how to construct the third order term Btn
i tn

i+1
.

Observing that the area of a line segment is 0 we have, from (23), that for purely
polygonal paths,

Btn
i tn

i+1
(xn+1) = 1

12
([x1, [x1, x2]] + [x2, [x2, x1]]) ,

where x1 = xn+1
tn
i tn+1

2i+1
, x2 = xn+1

tn+1
2i+1tn

i+1
.

We now need to ensure that the other component of the third order term,
constructed from pieces of path outside the increment, is also well behaved. The
piece we need is B̂0T (X) which we obtain as the limit as m →∞ of

B̂m =
m∑

n=1

2n−1∑
i=0

B̂tn
i tn

i+1
(xn+1),
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where

B̂tn
i tn

i+1
(xn+1) = [xn

i + xn
i+1, Atn

i tn
i+1
(xn+1)

]− [x0 + xT , Atn
i tn

i+1
(xn+1)

]
.

If we run the path backward, then both increment and area are reversed in
sign and hence the term B̂tn

i tn
i+1
(xn+1) = −B̂tn

i tn
i+1
(xn+1). Thus this function of

the path segment satisfies the conditions needed to apply our forward-backward
martingale decomposition, Lemma 3.4. From the definition of the new piece of the
third iterated integral we have that there exists a constant c5.3 such that

∣∣B̂tn
i ti+1 (x

n+1)
∣∣ ≤ c5.3

∣∣x0 + xT − xn
i − xn

i+1

∣∣∣∣xn
i − xn+1

2i+1

∣∣∣∣xn+1
2i+1 − xn

i+1

∣∣.
We can control both the global and local parts of this expression with our assumption
on the Hölder continuity and hence we can construct a canonical choice of third
order iterated integral from the polygonal approximations to the path.

Theorem 5.4. For a reversible Markov process X = {Xt; t ∈ [0, T ]}, satisfying
Assumptions 3.1, 3.2, the third order iterated integral, constructed purely from the
polygonal path approximations, B0T (X)+ B̂0T (X), up to time T , exists and there
are constants c5.4(β) such that for all β ≥ 1,

E(B0T (X)+ B̂0T (X))
β ≤ c5.4(β)T

3β/α.

Using the same approach as above we can combine the above results to establish
our final result.

Theorem 5.5. The path X has finite p-variation, for all p > α, P -a.s. and the
polygonal path xm = (1, xm, (xm)2, (xm)3) converges in p-variation to the path
X = (1, X, X2, X3), for all p > α, P-a.s.

Note that the rate of convergence in the two approaches differs. As can be seen
from the calculations, for the second approach we have for α < p ≤ 4,

EωXxm(0, 1)

≤ c5.4

(
mγ+12m p(1−4/α)/4 +m2(γ+1)/322m(1−p/α)/3 + m(γ+1)/32m(1−p/α)/3

)
.

6. Examples and open problems

We illustrate our results by considering some examples. When we can construct
the stochastic area process, or, if necessary, the third order iterated integral process,
we can make sense of differential equations driven by the path of our reversible
Markov process. This allows us to solve differential equations driven by processes
which are not necessarily semi-martingales. In particular we can consider paths
which arise from divergence form operators or diffusion processes on such fractals
as the Sierpinski carpet.
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1. Elliptic operators
We assume that the diffusion is generated by a second order elliptic operator in
divergence form. Let U ⊂ Rd be open, and take a symmetric matrix ai j which is
positive definite and has ai j , (∂/∂xi)ai j ∈ L2

loc(U, dx) for 1 ≤ i, j ≤ d (where we
interpret the derivative in the sense of Schwarz distributions). Define the operator
L on L2(U, dx) by

Lu =
d∑

i, j=1

∂

∂xi

(
ai j

∂

∂x j

)
u.

There is a Dirichlet form (E,D(E)) on L2(U, dx), defined by E(u, v) = (−Lu, v)
for u, v ∈ D(E), whereD is formed by closing C∞

0 (U) on L2(U, dx). The Dirichlet
form is local and regular and by the theory of Dirichlet forms, there is an associated
continuous Hunt process X = {Xt; t ≥ 0} on U . There is also a continuous heat
kernel which enables us to define the Hunt process started from every point. This
process is reversible and Markov and hence we can apply our results if there is
a uniform Hölder condition on the paths. By standard results, such as Aronson’s
heat kernel bounds, we have that there exist constants c6.1(k), such that

sup
x∈U

Ex|Xt − X0|k ≤ c6.1(k)t
k/2, 0 < t < 1,

and hence there is an area process associated with the path.

2. Brownian motion on nested fractals
The first fractal to have a Brownian motion defined was the Sierpinski gasket.
The construction of the process was facilitated by the finite ramification of the
fractal, that any connected subset of the fractal can be disconnected from the rest
of the fractal by the removal of only a finite number of points. Nested fractals were
proposed in [16] in order to define a class of fractals with the property of finite
ramification, symmetry and exact self-similarity. Lindstrøm was able to prove the
existence of a Brownian motion on these sets. They are defined as fixed points of
a family of similitudes. For α > 1, an α-similitude is a map ψ : Rd → R

d such
that

ψ(x) = α−1U(x)+ x0, (31)

where U is a unitary, linear map and x0 ∈ Rd . Let � = {ψ1, . . . , ψm} be a finite
family of α -similitudes. For B ⊂ Rd , define�(B) = ∪m

i=1ψi(B), and let�n(B) =
� ◦ · · · ◦ �(B). The map �, on the set of compact subsets of Rd , has a unique
non-void fixed point F, which is a self-similar set satisfying F = �(F).

Let F′ be the set of fixed points of the mappingsψi , 1 ≤ i ≤ m. A point x ∈ F′
is called an essential fixed point if there exist i, j ∈ {1, . . . ,m}, i �= j and y ∈ F′
such that ψi(x) = ψ j (y). We write F0 for the set of essential fixed points. Now
define

ψi1,...,in (B) = ψi1 ◦ · · · ◦ ψin (B), B ⊂ Rd .
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We will call the set ψi1,...,in (F0) an n-cell. The lattice of fixed points Fn is defined
by Fn = �n(F0), and the set F can be recovered from the essential fixed points by
setting F = cl(∪∞n=0 Fn).

We can now define a nested fractal as follows.

Definition 6.1. The set F is a nested fractal if {ψ1, . . . , ψm } satisfy:
(A1) (Connectivity) For any 1-cells C and C′, there is a sequence {Ci : i =
0, . . . , n} of 1-cells such that C0 = C,Cn = C′ and Ci−1 ∩Ci �= ∅, i = 1, . . . , n.
(A2) (Symmetry) If x, y ∈ F0 then reflection in the hyperplane Hxy = {z : |z−x| =
|z − y|} maps Fn to itself.
(A3) (Nesting) If {i1, . . . , in}, { j1, . . . , jn} are distinct sequences then

ψi1,...,in (F)
⋂
ψ j1,..., jn(F) = ψi1,...,in (F0)

⋂
ψ j1,..., jn (F0).

(A4) (Open set condition) There is a non-empty, bounded, open set V such that the
ψi(V ) are disjoint and ∪m

i=1ψi(V ) ⊂ V.

The existence of a continuous strong Markov process, X = {Xt; t ≥ 0},
reversible with respect to the Hausdorff measure on the fractal, was proved via
Brouwer’s fixed point theorem in [16]. Recently the uniqueness of this process has
been demonstrated in [21]. The transition density estimates for these fractals were
established in [14].

From [14] Theorem 6.1, there exist constants c6.2(k), dw such that

Ex|Xt − x|k ≤ c6.2(k)t
k/dw, 0 < t < 1. (32)

The exponent for the Hölder continuity is given by dw, an exponent called the
walk dimension for the fractal satisfying dw > 2. Hence we can construct the area
process for diffusion processes on nested fractals for which dw < 4 and, in the
case where 3 ≤ dw < 4, we can construct the third order iterated integral and thus
give a meaning to differential equations driven by these processes provided that
dw < 4. It is also straightforward to extend this to affine nested fractals as defined
in [7].

Note that these results cover those obtained in [8] for the Sierpinski gasket. If we
consider the d-dimensional Sierpinski gasket, formed from d + 1, d-dimensional
tetrahedra, then the walk dimension can be computed and is given by dw =
log (d + 3)/ log 2. Thus for 2 ≤ d < 5 we have 2 < dw < 3, and we can construct
the area and solve differential equations. If 5 ≤ d < 13 we have 3 ≤ dw < 4 and
we need to construct the third order iterated integral. In the case where d ≥ 13 our
technique does not allow us to construct a canonical choice of area.

3. Sierpinski carpets
We consider a further class of fractals which do not have the property of finite
ramification. These are Sierpinski carpets as considered in [1], [2], [3]. We take
the unit cube F0 in dimension d > 1 and take a suitable family of similitudes
ψ = {ψi; 1 ≤ i ≤ N}. We define the map � = ∪N

i=1ψi . Let Fn = �n(F0) denote
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the n− th approximation to the Sierpinski carpet, then the carpet E, the fixed point
of the set of similitudes, is given by E = ∩Fn = �(E).

We call E a generalized Sierpinski carpet if it satisfies the following.

Definition 6.2. (A1) (Symmetry) F1 is preserved by all the isometries of the unit
cube F0.
(A2) (Connectedness) E is connected and contains a path connecting the hyper-
planes {x1 = 0} and {x1 = 1}.
(A3) (Non-diagonality) Let B be a cube in F0 with length 2/l and with vertices on
l−1
Z. Then if Int(F1 ∩ B) is non-empty, it is connected.

The recent results of [3] show how to construct a Brownian motion on the
generalized Sierpinski carpet in any dimension. Estimates on the heat kernel for
the resulting process are also obtained which give the uniform Hölder condition in
terms of a walk dimension, dw. This is the same bound as in (32), however there
is no explicit expression for the walk dimension. As in the case of nested fractals
it is possible for the carpet to have walk dimension satisfying 3 ≤ dw < 4, where
we need to consider the third iterated integral. It is also possible to have dw ≥ 4,
in which case we do not know how to make a canonical choice of area. Thus
we can solve Stratonovich stochastic differential equations driven by the paths of
diffusions on generalized Sierpinski carpets with dw < 4.

4. Non-existence of the canonical area
We conclude with an example which demonstrates that it may not be possible
to find a canonical choice of area for diffusions with a Hölder condition, if they
are not reversible. For this we consider a class of non-reversible processes on
the Sierpinski gasket, called p-stream diffusions, constructed by Kumagai [15].
The diffusion process is constructed as a limit of random walks, where the walks
have a preferred direction of rotation around the Sierpinski gasket. Consider the
random walk on the lattice approximation to the Sierpinski gasket and allow it to
make transitions in a clockwise direction with probability p2 on the outer edge
and p(1 − p) toward the centre. In the anticlockwise direction we allow it to
move to the centre with probability p(1− p) otherwise (1− p)2. The time scaling
factor required to rescale the random walks can be calculated and is given by
τp = 2(1+ p(1− p))/(1− 2p(1− p)). It is known that the resulting diffusion is
not symmetric for p �= 1/2 and has paths with dw = log τp/ log 2 variation. Note
that for p = 1/2 we obtain the usual Brownian motion on the Sierpinski gasket,
for p = (1+ 1/

√
5)/2, we have τp = 4 and dw = 2 and for p = 1 we have τp = 2

and, if we start from the origin, the process is uniform clockwise motion around
the outer triangle.

A description of the length of a path which crosses the unit triangle can be
provided by a multitype branching process. As in [8], the growth rate of the area
can be calculated as the new levels of random walk path are added. A careful
analysis of this process shows that our canonical area does not exist for the p-
stream diffusion in the case where the walk dimension dw ≥ 2. For the case
where dw < 2 we can construct the area from the path itself in a deterministic
way.



268 R.F. Bass et al.

6.1. Open problems and further remarks

1. In order to prove existence of the Lévy area we require that the path has
uniform p-variation with p < 4. Is p = 4 a fundamental block - or is there
still a canonical “Levy Area” and rough path above the spatial path, perhaps
constructed via some averaging procedure.

2. Finally, in this paper we show the existence of the Lévy area for almost every
path when we start the reversible Markov process with the stationary measure
making it reversible. We have been unable to improve the result to the case
of the process started at a single point. This difficulty is analogous to the
problem of extending the forward-backward martingale decomposition. These
were overcome in [18] for the martingale decomposition.

3. The initial success in understanding (1) for rough paths was that of Itô in the
case where x was a Brownian motion. Brownian motion can be viewed as
a Markov process, and we have shown here that (1) can be given meaning for
a wide class of Markov processes. Brownian motion can also be viewed as
a vector valued Gaussian process. Do other vector valued Gaussian processes
also possess an area and higher order iterated integrals?
Since the completion of this paper [5,6] have extended this approach to con-
struct Levy area for Gaussian processes with suitable control on their correla-
tion. In the case of fractional Brownian motion, if the Hurst index is at least
1/2, it easily fits the theory of rough paths, because it is either Brownian motion
(H = 1/2) or has sample paths of finite p variation less than 2. If the Hurst
index H < 1

2 , then [5] shows that a canonical area can be constructed for
1
4 < H ≤ 1

2 .
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