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Abstract This paper is motivated by the question whether there is a nice structure theory
of finitely generated modules over the Iwasawa algebra, i.e. the completed group algebra,
� of a p-adic analytic group G. For G without any p-torsion element we prove that � is
an Auslander regular ring. This result enables us to give a good definition of the notion of
a pseudo-null �-module. This is classical when G = Zk

p for some integer k ≥ 1, but was
previously unknown in the non-commutative case. Then the category of �-modules up to
pseudo-isomorphisms is studied and we obtain a weak structure theorem for the Zp-torsion
part of a finitely generated �-module. We also prove a local duality theorem and a version
of Auslander-Buchsbaum equality. The arithmetic applications to the Iwasawa theory of
abelian varieties are published elsewhere.

0. Introduction

The increasing interest in the Iwasawa algebra, i.e. the completed group algebra

�(G) = Zp[[G]]
of a compact p-adic analytic group G stems at least from the following two
reasons: Firstly, in a purely algebraic sense �(G) is a prototype of a “regular”
– in general non-commutative – ring. It seems very likely that the category of
finitely generated �(G)-modules, which we denote by �(G)-mod, has a very
rich structure, and our aim is to give some initial evidence in this direction.
Secondly, compact p-adic Lie groups occur naturally in arithmetic geometry as
the Galois groups of certain infinite extensions k∞ of a number field k, for ex-
ample, k∞ could be taken to be the field obtained by adjoining to k the coor-
dinates of all p-power division points on some abelian variety defined over k.
It is then natural to study certain arithmetic objects defined over k∞ (for ex-
ample, the p-Hilbert class field of k∞ or the Pontryagin dual of the Selmer
group of an abelian variety over k∞) as modules over the Iwasawa algebra
�(G) (cf. [16], [10], [9]). Though this last aspect widely motivated our study
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of �(G) the results of this paper are “purely algebraic”. For a detailed discus-
sion of its arithmetic applications we refer the reader to [29] and a forthcoming
paper [35].

Let us assume for simplicity that the p-adic analytic group G is torsion-free
and a pro-p-group. Then, �(G) is a (both left and right) Noetherian ring without
zero-divisors. Furthermore, by results of Brumer it is known that �(G) has finite
projective dimension equal to pd(�(G)) = dim(G)+1,where dim(G) denotes the
dimension of G as p-adic analytic manifold and agrees with its p-cohomological
dimension. Thus in some sense�(G) can be considered as a “regular” ring, and it
is natural to ask if there could exist a structure theory for finitely generated�(G)-
modules, which is parallel to the classical theory (studied in detail in Bourbaki)
when G = Zk

p for some integer k ≥ 1. A first basic step in this direction is to
answer the following question

What is a good definition of pseudo-null resp. pseudo-isomorphism in the
context of �(G)-modules?

We recall that for a commutative Noetherian ring R and a finitely generated R-
module M the definition is the following: The dimension of M is defined to be the
Krull dimension of the support of M in Spec(R) and M is said to be pseudo-null,
if its codimension is greater than 1. M. Harris [16, 1.12] already proposed a vague
definition of pseudo-null using a certain filtration of�(G),which in general differs
from theM-adic one, whereM denotes the maximal ideal of�(G), and cannot be
described easily. Besides some more or less trivial cases it turned out very difficult
to verify whether a module is pseudo-null.

In this article we give an answer to this question using the following strat-
egy. First, we establish a dimension theory for finitely generated �(G)-modules.
Our approach here has been inspired by the work of Björk [4], who showed that
each finitely generated module over an Auslander regular or more generally Aus-
lander Gorenstein ring (for the definitions see 3.3) is intrinsically equipped with
a canonical filtration

T0(M) ⊆ T1(M) ⊆ · · · ⊆ Td−1(M) ⊆ Td(M) = M.

Using this filtration he defines the dimension of a �-module M. It turns out that
for a commutative regular local ring this dimension equals the Krull dimension
and that Ti(M) is just the maximal submodule of M with dimension less or equal
to i.

Thus the following theorem states a fundamental structure property of �(G)
and will be crucial for the applications in Iwasawa theory ([35]). Here and in what
follows we assume that G is a compact p-adic analytic group with no element of
order p (but not necessarily pro-p).

Theorem (Theorem 3.26).�(G) is an Auslander regular ring.

For the purpose of studying the Zp-torsion part of �(G)-module the following
consequence for the completed group algebra Z/pn[[G]] ∼= �/pn with coefficients
in Z/pn becomes very useful.
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Theorem (Theorem 3.30).

(i) Zp/pm[[G]] is an Auslander-Gorenstein ring with injective dimension equal to
cdp(G).

(ii) Fp[[G]] is an Auslander regular ring of dimension cdp(G).

If one is ready to neglect the Zp-torsion part – which can be controlled by the
last theorem and a further result below, anyway – then it might be convenient to
consider also modules over the ring Qp[[G]] := Zp[[G]] ⊗Zp Qp.

Theorem (Theorem 3.29). Qp[[G]] is an Auslander regular ring of dimension
cdp(G).

Using these results, it is quite obvious how to define pseudo-null:

A finitely generated �-module is called pseudo-null if and only if its co-
dimension is greater or equal to 2.

In the case G = Zk
p this is just the usual definition. So we are convinced that our

definition is the right generalization to the non-commutative case.
Once having available the notation of pseudo-null modules it is natural to

ask whether there holds a structure theorem of �(G)-modules up to pseudo-iso-
morphism which is analogous to the well known structure theorem for finitely
generated modules over a commutative regular ring.

The first result in this direction was obtained by the author in his thesis [34], and
determines the�(G)-structure of the Zp-torsion submodule of a finitely generated
�(G)-module in the quotient category of �-mod by the Serre subcategory of
pseudo-null�-modules. We write PN for the full subcategory of�-mod consist-
ing of the pseudo-null modules.

Theorem (Theorem 3.40). Assume that G is a p-adic analytic group without p-
torsion such that both�= �(G) and�/p are integral. Then, for any�-module M,
there exist uniquely (up to order) determined natural numbers n1, . . . , nr such that

torZp M ≡
⊕

1≤i≤r

�/pni mod PN .

Both the hypotheses that�(G) and�(G)/p�(G) have no zero divisors are known
to be true if G is a uniform, pro-p p-adic Lie group with no element of order p ([12]).
Our results have inspired various mathematicians to generalize this result and search
for a full analogue of the structure theory. Firstly, Susan Howson has generalized
it to the submodule of M annihilated by some power of a fixed prime element
in the centre of �(G), obtaining the stronger result that a pseudo-isomorphism
exists in the category �-mod ([20]). Secondly, J. Coates and R. Sujatha ([11])
and P. Schneider [31] have proven that, in the quotient category �-mod/PN ,
every finitely generated torsion �(G)-module is isomorphic to a direct sum of
cyclic �(G)-modules, when G is any extra-powerful pro- p p-adic Lie group
with no element of order p. Schneider has shown that this theorem is in fact
a consequence of a general result of Chamarie [8] on the structure of modules over
non-commutative Krull domains, whereas Coates and Sujatha show that it can also
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be proven using techniques from the algebraic theory of micro-localization. It is
still unknown whether the left cyclic modules which occur can be chosen to be
quotients of �(G) by left principal ideals.

Now we want to state two further main results on the structure of �(G), if
G is a pro-p Poincaré group of finite cohomological dimension and such that
� = �(G) is Noetherian. The first result tells us that�(G) “admits local duality à
la Grothendieck”, i.e. if local cohomology is defined in an natural way (see Sect. 5),
we obtain

Theorem (Theorem 5.6). For any M ε �(G)-mod, there are canonical isomor-
phisms

Ei(M) ∼= Hom�

(
Hd−i
M
(M),Hd

M
(�)

) ∼= Hd−i
M
(M)∨,

where d = cdp(G)+ 1.

The second result generalizes the Auslander-Buchsbaum equality.

Theorem (Theorem 6.2). For any M ε �-mod, it holds

pd�(M)+ depth�(M) = depth�(�).

1. Basic properties of�-modules

1.1. Preliminaries

The aim of this work is to give some complements to the theory of �-modules,
where we denote by � = �(G) the completed group algebra of a profinite group
G over Zp

�(G) = Zp[[G]] = lim←−
U

Zp[G/U].

Here U runs through the open normal subgroups of G. We start by recalling some
well-known facts concerning�, proofs of which can be found in [27, V§2]. By a
(left)�-module M we understand a separated topological module, i.e M is a Haus-
dorff topological Zp-module with a continuous G-action. Since the involution of
� given by passing to the inverses of group elements induces a natural equivalence
between the categories of left and right�-modules, we will often ignore the differ-
ence without further mention. The category C = C(G) of compact�-modules and
the category D = D(G) of discrete�-modules will be of particular interest. Both
are abelian categories, and Pontryagin duality defines a contravariant equivalence
of categories between them. Hence, while C has sufficiently many projectives and
exact inverse limits the dual statement holds for D.

By IG we denote the augmentation ideal of �, i.e. the kernel of the canonical
epimorphism

Zp[[G]]� Zp

and by

MG = M/IG M
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the module of coinvariants of M. Then, the G-homology H•(G,M) of a com-
pact �-module M can be defined as left derived functor of −G or alternatively as
Tor�• (Zp,M), where Tor denotes the left derived functor of the complete tensor
product−⊗̂� − . We obtain a canonical isomorphism Hi(G,M) ∼= Hi(G,M∨)∨,
where H•(G,−) denotes the usual G-cohomology for a discrete �-module con-
sidered as a discrete abelian group and ∨ is the Pontryagin dual.

In order to state the topological Nakayama lemma we define the radical RadG

of � to be the intersection of all open left maximal ideals. It is a closed two-sided
ideal and its powers define a topology on � which is called the R-topology. If a
p-Sylow group Gp is of finite index in G, then this topology coincides with the
canonical one [27, 5.2.16], RadG is an open ideal of� and all (left) maximal ideals
are open. Furthermore, �(G) is a local ring if and only if G is a pro-p-group. In
this case the maximal ideal of � is equal to p�+ IG .

Lemma 1.1 (Topological Nakayama Lemma).

(i) If M ε C and RadG M = M, then M = 0.
(ii) Assume that G is a pro-p-group, i.e. � a local ring with maximal idealM.

Then the following holds:
(a) M is generated by x1, . . . , xr if and only if xi +MM, i = 1, . . . , r,

generate M/MM as Fp-vector space.
(b) Let P ε C be finitely generated. Then P is �-free if and only if P is

�-projective.

Compare [2] for a thorough discussion.
Concerning the projective dimension pd�M, respectively global dimension

pd(�) of �, which are both defined with respect to the category C, there are the
following results due to Brumer [6], where cdp(G) denotes the p-cohomological
dimension of G :

pd�Zp = cdp(G) and pd(�) = cdp(G)+ 1.

If� is Noetherian (e.g. if G is a p-adic Lie group, see below), the forgetful functor
from the category C of compact �-modules to the category �-Mod of abstract
�-modules defines an equivalence between the full subcategory C fg of finitely
generated compact �-modules and the full subcategory �-mod of finitely gener-
ated abstract �-modules. In particular, the different definitions of the projective,
respectively global dimension coincide in this case.

1.2. p-adic Lie groups

In this subsection we recall some facts about (compact) p-adic Lie groups or also
called (compact) p-adic analytic groups, i.e. the group objects in the category of
p-adic analytic manifolds overQp. There is a famous characterization of them due
to Lazard [25] (see also [12] 9.36):

A topological group G is a compact p-adic Lie group if and only if G contains
a normal open uniformly powerful pro-p-subgroup of finite index.
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Let us briefly recall the definitions: A pro-p-group G is called powerful, if [G,G] ⊆
G p for odd p, respectively [G,G] ⊆ G4 for p = 2 holds. A (topologically)
finitely generated powerful pro-p-group G is uniform if the p-power map induces
isomorphisms

Pi(G)/Pi+1(G)
·p→ Pi+1(G)/Pi+2(G), i ≥ 1,

where Pi(G) denotes the lower central p-series given by

P1(G) = G, Pi+1(G) = Pi(G)
p[Pi(G),G], i ≥ 1,

(for finitely generated pro-p-groups). It can be shown that for a uniform group G
the sets G pi := {gpi | g ε G} form subgroups and in fact G pi = Pi+1(G), i ≥ 0.
For example, all the congruence kernels of GLn(Zp), SLn(Zp) or PGLn(Zp) are
uniform pro-p-groups for p �= 2, in particular the lower central p-series of the
first congruence kernel corresponds precisely to the higher congruence kernels. We
should mention also the following basic result (see [12], p. 62):

A pro-p powerful group is uniform if and only if it has no element of order p.

It is a remarkable fact that the analytic structure of a p-adic Lie group is already
determined by its topological group structure. Also, the category of p-adic analytic
groups is stable under the formation of closed subgroups, quotients and group
extensions (See [12], Chap. 10, for these facts). The following cohomological
property is indispensable (for the definition of Poincaré groups see [27]).

A p-adic Lie group of dimension d (as p-adic analytic manifold) without p-torsion
is a Poincaré group at p of dimension d.

With respect to the completed group algebra we know that �(G) is Noetherian
for any compact p-adic Lie group (see [25] V 2.2.4). If, in addition, G is uniform,
then �(G) is an integral domain, i.e. the only zero-divisor in �(G) is 0 ([25]). In
fact the latter property also holds for any p-adic analytic group without elements
of finite order (see [28]). For instance, for p ≥ n + 2, the group Gln(Zp) has no
elements of order p, in particular, GL2(Zp) contains no elements of finite p-power
order if p ≥ 5 (see [18] 4.7) .

In this case (i.e. � is both left and right Noetherian and without zero-divisors)
we can form a skew field Q(G) of fractions of � (see [15]). This allows us to
define the rank of a �-module:

Definition 1.2. The rank rk�M is defined to be the dimension of M ⊗� Q(G) as
a left vector space over Q(G)

rk�M = dimQ(G)(M ⊗� Q(G)).

2. Homotopy theory of modules

In this section we briefly recall some definitions and results from the homotopy
theory of modules in the setting of U. Jannsen [22], who developed further the
homotopy theory which was introduced by Eckmann and Hilton and extended by
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Auslander and Bridger [1]. The proofs can be found in [22, §1] or in [27, V§4].
Though this theory works in much larger generality, we restrict ourselves to the
case where� is a Noetherian (= right and left Noetherian) ring (= associative unital
ring). Furthermore, all�-modules considered are assumed to be finitely generated.

Definition 2.1. A morphism f : M → N of�-modules is homotopic to zero, if it
factors through a projective module P :

f : M → P → N.

Two morphisms f, g are homotopic ( f � g), if f − g is homotopic to zero. Let
[M, N] = Hom�(M, N)/{ f � 0} be the group of homotopy classes of morphisms
from M to N, and let Ho(�) be the category, whose objects are the objects of
�-mod and whose morphism sets are given by HomHo(�)(M, N) = [M, N], i.e.
the category of “�-modules up to homotopy.”

Remark 2.2. The additive homotopy category of modules is not abelian in general.
It can be shown that it forms a closed model category (for suitable definitions
of (co)fibrations and weak equivalences). In general, it cannot be extended to
a triangulated category: If it were a triangulated category in general there would
have to exist for any module M a weak equivalence between M and �M, where
� denotes the loop space functor which will be introduced below. But for a ring�
with finite projective dimension this would imply that all modules in �-mod are
projective.

However, if � is a quasi-Frobenius ring (for the definition and properties
see [36, 4.2]), e.g. the group algebra of a finite group over a field � = k[G], then
its associated homotopy category is triangulated ([14, IV Examples 4–8]).

It turns out that M and N are homotopy equivalent, M � N, i.e isomorphic in
Ho(�), if and only if M ⊕ P ∼= N ⊕ Q with projective �-modules P and Q. In
particular, M � 0 if and only if M is projective.

Definition 2.3. For M ε �-mod we define the higher adjoints of M to be

Ei(M) := Exti�(M,�), i ≥ 0,

which are a priori right�-modules by functoriality and the right�-structure of the
bi-module�. By convention we set Ei(M) = 0 for i < 0. The �-dual E0(M) will
also be denoted by M+. If � = �(G) is a completed group algebra these adjoints
will be considered as left modules via the involution of�.

Remark 2.4. In case � is the completed group algebra of a profinite group G we
call the Ei(M) also Iwasawa adjoints of M as E1(M) is isomorphic (up to the
inversion of the group action) to Iwasawa’s adjoint α(M) for G ∼= Zp.

It can be shown that for i ≥ 1 the functor Ei factors through Ho(�) defining
a functor

Ei : Ho(�)→ mod−�.



278 Otmar Venjakob

Now we will describe the construction of a contravariant duality functor, the
transpose

D : Ho(�)→ Ho(�),

where we denote the homotopy category of right �-modules also by Ho(�). For
every M ε �-mod choose a presentation P1 → P0 → M → 0 of M by projectives
and define the transpose DM by the exactness of the sequence

0 −→ M+ −→ P+0 −→ P+1 −→ DM −→ 0.

Then it can be shown that the functor D is well-defined and one has D2 = Id.
Furthermore, if pd�M ≤ 1 then DM � E1(M).

Sometimes it is also convenient to have the notation of the 1st syzygy or loop
space functor � : �-mod → Ho(�) which is defined as follows (see [22, 1.5]):
Choose a surjection P → M with P projective. Then �M is defined by the exact
sequence

0 // �M // P // M // 0.

The next result will be of particular importance:

Proposition 2.5. For M ε �-mod there is a canonical exact sequence

0 −→ E1DM −→ M
φM−→ M++ −→ E2DM −→ 0,

where φM is the canonical map from M to its bi-dual. In the following we will refer
to the sequence as “the” canonical sequence (of homotopy theory).

A �-module M is called reflexive if φM is an isomorphism from M to its bi-dual
M ∼= M++.

As Auslander and Bridger suggest the module E1DM should be considered
as torsion submodule of M. Indeed, if � is a Noetherian integral domain this
submodule coincides exactly with the set of torsion elements tor�M.

Definition 2.6. A �-module M is called �-torsion module if φM ≡ 0, i.e. if
tor�M := E1DM = M. We say that M is �-torsion-free if E1DM = 0.

Since M++ embeds into a free�-module (just take the dual of an arbitrary surjec-
tion �m � M+) the torsion-free �-modules are exactly the submodules of free
modules. A different characterization of torsion(-free) modules will be given later
using dimension theory, see 3.7.

For � := �(G), where G is a p-adic Lie group, the above definition can be
interpreted as follows: A finitely generated �-module M is a �-torsion module if
and only if M is a �(G′)-torsion module (in the strict sense) for some open pro-p
subgroup G′ ⊆ G such that �(G′) is integral. Indeed, for any open subgroup H
of a p-adic Lie group G there is an isomorphism E1

�(G)D�(G)
∼= E1

�(H )D�(H ) of
�(H )-modules by Proposition 2.7 (ii) (see below) and the analogue statement for
DM.

For a closed subgroup H ⊆ G we denote by IndH
G (M) = M⊗̂�(H )�(G) the

compact induction of a �(H )-module to a �(G)-module.
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Proposition 2.7. Let H be a closed subgroup of G.

(i) For any M ε �(H )-mod and any i we have an isomorphism of�-modules

Ei
�(G)

(
IndH

G M
) ∼= IndH

G Ei
�(H )(M).

(ii) If, in addition, H is an open subgroup, then there is an isomorphism of�(H )-
modules

Ei
�(G)(M)

∼= Ei
�(H )(M).

Proof. The first statement is proved in [29, Lemma 5.5] while the second one can
be found in [22, Lemma 2.3]. ��

3. Auslander regularity

3.1. Filtrations of�-modules

Since the completed group ring� of a p-adic Lie group without p-torsion is (both
left and right) Noetherian and has finite global homological (and therefore finite
injective) dimension we can apply the results of J.-E. Björk [4], which we will
describe in this section.

Let � be a (not necessarily commutative) Noetherian ring with finite injec-
tive dimension d, i.e d is the minimal integer with respect to the property that
E j(M) = 0 for all (left and right) �-modules M and integers j > d. Of course,
this is equivalent to the condition that both the left and the right �-module �
has (bounded) injective dimension d. It can be shown that these left and right
injective dimensions are the same (see [38]). The analogous statement that the left
and the right global homological dimension are the same is a consequence of the
Tor-dimension theorem [36, 4.1.3].

In this section all�-modules are assumed to be finitely generated.

Since projective�-modules are reflexive, we get the equality

M = RHom(RHom(M,�),�)

for left (or right) �-modules M in the derived category of complexes of �-
modules (more generally, this equality holds for all perfect complexes). Calculating
RHom(RHom(M,�),�) by the bidualizing complex, the associated filtrations
give rise to two convergent spectral sequences (see [26] for the convergence), the
first of which degenerates. The second one becomes

E p,q
2 = Ep(E−q(M))⇒ Hp+q(•(M)),

where •(M) is a filtered complex, which is exact in all degrees except zero:
H0(•) = M, i.e. there is a canonical filtration

T0(M) ⊆ T1(M) ⊆ · · · ⊆ Td−1(M) ⊆ Td(M) = M
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on every module M (The natural numbering of this filtration arising from the
double complex is descending but we found it more convenient to reverse it). The
convergence of the spectral sequence implies

E p,q∞ =
{

Td−p(M)/Td−p−1(M) if p+ q = 0,

0 otherwise.

(By convention, Ti(M) = 0 for i < 0).

Definition 3.1. (i) The number δ := min{i | Ti(M) = M} is called the dimen-
sion δ(M) of a �-module M �= {0}. We set δ({0}) = −∞.

(ii) If M is a �-module we say that it has pure δ-dimension if Tδ−1(M) = 0, i.e.
the filtration degenerates to a single term M.

(iii) A �-module M is called pseudo-null, if it is at least of codimension 2, i.e. if
δ(M) ≤ d − 2.

By Grothendieck’s local duality theorem, this definition coincides with the Krull
dimension of supp�(M) if � is a commutative local Noetherian Gorenstein ring,
see [7, Corollary 3.5.11].

First we want to state some basic facts on the δ-dimension. The functoriality
of the spectral sequence implies

Proposition 3.2. (i) If 0 −→ M′ −→ M −→ M′′ −→ 0 is an exact sequence
of�-modules then

Ti(M
′) ⊆ Ti(M) for all i

and δ(M′′) ≤ δ(M).
(ii) Ti(

⊕
k Mk) = ⊕

k Ti(Mk) and δ(
⊕

k Mk) = maxk δ(Mk).

In order to analyze this spectral sequence more closely, the Auslander condition
(for not necessarily commutative rings) is essential:

Definition 3.3. (i) If M �= 0 is a �-module, then

j(M) := min{i | Ei(M) �= 0}
is called the grade of M. By convention, j({0}) = ∞.

(ii) A Noetherian ring � is called Auslander-Gorenstein ring if it has finite in-
jective dimension and the following Auslander condition holds: For any �-
module M, any integer m and any submodule N of Em(M), the grade of N
satisfies j(N) ≥ m.

(iii) A Noetherian ring � is called Auslander regular ring if it has finite global
homological dimension and the Auslander condition holds.

Remark 3.4. Let� be a commutative ring. Then� is Auslander-Gorenstein if and
only if it is Gorenstein (in the usual sense). Similarly,� is Auslander regular if and
only if it is regular (in the usual sense) and of finite Krull dimension. (The impli-
cations concerning the injective, respectively global homological dimensions are
well known, for the Auslander condition see [1, Corollary 4.6, Proposition 4.21]).
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In the next section we will prove that � = �(G) is Auslander regular for any
p-adic Lie group without p-torsion. Generally, for this kind of rings we get the
following properties:

Proposition 3.5. Let � be an Auslander regular ring and M a �-module. Then

(i) (a) For all i, there is an exact sequence of �-modules

0 −→ Ti(M)/Ti−1(M) −→ Ed−iEd−i(M) −→ Qi(M) −→ 0,

where Qi(M) is a subquotient of
⊕

k≥1 Ed−i+k+1Ed−i+k(M).
(b) T0(M) = EdEd(M) and T1(M)/T0(M) = Ed−1Ed−1(M).
(c) Ti(M)/Ti−1(M) = 0 if and only if Ed−iEd−i(M) = 0.

(ii) δ(M)+ j(M) = d for M �= 0.
(iii) (a) j(Ei(M)) ≥ i, i.e. E jEi(M) = 0 for all j < i.

(b) δ(Ei(M)) ≤ d − i.
(c) E j(M)(M) has pure δ-dimension δ(M).

(iv) Ek+ j(M)+1Ek+ j(M)E j(M)(M) = 0 for all k ≥ 1.
(v) (a) For all 0 ≤ i ≤ d, EiEi(M) is either zero or of pure δ-dimension d − i.

(b) M has pure δ-dimension if and only if EiEi(M) = 0 for all i > j(M).
(vi) (a) δ(Ti(M)) ≤ i.

(b) Ti(M) is the maximal submodule of M with δ-dimension less or equal
to i.

(c) The functor Ti is left exact.
(d) Ti(M/Ti(M)) = 0.

(vii) If δ(M) = 0 then M has finite length.

Proof. Except for (i)(a), (i)(b) and (vi), these properties are all proved in [4] or triv-
ial: Proposition 1.21, 1.16, Proposition 1.18, Remark before 1.19, Corollary 1.20,
Corollary 1.22 and 1.27, while (i)(a) is proved in [26, Corollary 4.3].

The assertion (i)(b) is clear, as Ei,−i∞ = Ei,−i
2 because of (iii)(a). So let us prove

(vi): By (iii), (a) is equivalent to j(Ti(M)) ≥ d − i and this is true because of
the Auslander condition using induction (cf. the proof of (iii)). The assertion (b)
follows by Proposition 3.2: If N is a submodule of dimension δ(N) ≤ i, then
N = Ti(N) ⊆ Ti(M).

Noting Proposition 3.2 (i), we only have to show N ∩Ti(M) ⊆ Ti(N) in order
to prove left exactness. Since the first module has dimension δ(N ∩ Ti(M)) ≤ i,
this is a consequence of (b).

By (c) the exact sequence

0 → Ti+1(M)/Ti(M)→ Ti+2(M)/Ti(M)→ Ti+2(M)/Ti+1(M)→ 0

induces the exact sequence

0 → Ti(Ti+1(M)/Ti(M))→ Ti(Ti+2(M)/Ti(M))→ Ti(Ti+2(M)/Ti+1(M)).

The first and third term are zero by (i) and (iii) as above. Hence (d) follows by
induction. ��
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Assuming the Auslander-condition,Proposition 3.2 can be sharpened as follows [5,
Proposition 1.8]:

Proposition 3.6. Let 0 −→ M′ −→ M −→ M′′ −→ 0 be an exact sequence of
�-modules.

(i) If� is Auslander-Gorenstein, then

j(M) = min{ j(M′), j(M′′)}
holds.

(ii) If� is Auslander regular, then

δ(M) = max{δ(M′), δ(M′′)}
holds.

For the second assertion we used Proposition 3.5 (ii).

Remark 3.7. (i) Using the methods of [13], Proposition 6, one can show the exis-
tence of the following exact sequences:

0 → Ei+1D�iTd−i(M)→ Td−i(M)→ EiEi(M)→ Ei+2D�iTd−i(M)→ 0.

Hence, Ti(M) can also be obtained recursively by the formula Td−i−1(M) =
Ei+1D�iTd−i(M) and similarly, we get a description for Qd−i(M) ∼=
Ei+2D�iTd−i(M). The same arguments yield for a �-module M with j(M) ≥ j
the isomorphisms

E j+kE j(M) ∼= E j+k+2D� j(M) for k ≥ 1.

(ii) In particular, Td−1(M) = E1D(M) = tor�M, i.e. the torsion submodule of M
is the maximal submodule of codimension greater or equal than 1. That means that
M is �-torsion if and only if it is at least of codimension 1, and �-torsion-free if
and only if M is of pure dimension d.

The following class of�-modules satisfies some duality relations:

Definition 3.8. A�-module M �= 0 is called Cohen-Macaulay if j(M) = pd�(M)
holds, i.e. if Ei(M) = 0 for all i �= j(M).

Proposition 3.9. Let � be an Auslander regular ring.

(i) Let M be a Cohen-Macaulay module of dimension j. Then

E jE j(M) = M.

(ii) In particular, if δ(M) = 0, then

EdEd(M) = M.

Proof. In both cases the spectral sequence degenerates. ��
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One could hope that any �-module M can be decomposed into Cohen-Macaulay
modules in the following sense: there is an filtration of M such that the ith subquo-
tient is Cohen-Macaulay of dimension i.But it is easy to construct counterexamples
which show that in general such a filtration does not exist. Nevertheless, there is
a different type of filtration: Auslander and Bridger proved the existence of a spher-
ical filtration (up to homotopy, i.e. after adding a projective summand P)

Md ⊆ Md−1 ⊆ · · · ⊆ M1 ⊆ M0 = M ⊕ P,

the subquotients of which form spherical or Eilenberg-MacLane modules of type
Ei(M), i.e. for 1 ≤ i ≤ d

E j(Mi−1/Mi ) ∼=
{

Ei(M) if j = i

0 if j �= i, 0
.

Fossum [13] compared the spherical filtration to the filtration Ti(M) for a com-
mutative Gorenstein ring and proved ([13], Proposition 9) that their “torsion parts”
agree for i < d

Ti(M) ∼= Td−1(Md−i−1)

∼= Ti(Mk) for all k < d − i.

The proof generalizes at once to the non-commutative case.

Proposition 3.10. Let � be an Auslander regular ring. A �-module M with pro-
jective dimension pd�(M) = k has no non-trivial submodule of dimension less or
equal to d − k − 1, i.e. Td−k−1(M) = 0.

Proof. See Proposition 3.5, (i)(b). ��
The next result extends a well known result for commutative regular rings (see for
example [27], Corollary 5.1.3).

Proposition 3.11. Let � be an Auslander regular ring.

(i) For any�-module M, the module E0(M) is reflexive:

E0(M) ∼= E0E0E0(M).

(ii) Assume that d ≥ 2 and δ(M) = d − i. Then

Ei(M) ∼= EiEiEi(M).

Proof. Let N := E0(M) and apply Proposition 3.5 (iv) to conclude that⊕
k≥1 Ek+1Ek(N) = ⊕

k≥1 Ek+1EkE0(M) = 0, i.e. Qd(N) = 0. Since we al-
ready know by (iii)(c) that N is of pure dimension d (if N �= 0), the statement (i)
follows considering (i)(a). The proof of (ii) is analogous. ��
Corollary 3.12. For any i it holds

(i) EiEiEiEi(M) ∼= EiEi(M) and
(ii) EiEiTd−i(M) ∼= EiEi(M).
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Proof. To prove (i) assume first that δ(Ei(M) = d − i. Applying the proposition
to the module Ei(M) gives the result while in the second case, i.e. j(Ei(M) > i,
the module EiEi(M) is zero anyway. Noting that j(Qi(M)) ≥ i + 2, the second
assertion follows at once calculating the long exact Ei-sequence of

0 −→ Td−i−1(M)/Td−i(M) −→ EiEi(M) −→ Qi −→ 0. ��

3.2. Modules up to pseudo-isomorphisms

As in the commutative case we say that a homomorphism ϕ : M → N of
�-modules is a pseudo-isomorphism if its kernel and cokernel are pseudo-null.
A module M is by definition pseudo-isomorphic to a module N, denoted

M ∼ N,

if and only if there exists a pseudo-isomorphism from M to N. In general, ∼
is not symmetric even in the Zp-case (cf. [27, V§3, Example 1]). While in the
commutative case ∼ is symmetric at least for torsion modules (see the first remark
after Proposition 5.17 in [27]), we do not know whether this property still holds in
the general case.

If we want to reverse pseudo-isomorphisms, we have to consider the quotient
category�-mod/PN with respect to subcategoryPN of pseudo-null�-modules,
which is a Serre subcategory, i.e. closed under subobjects, quotients and extensions.
By definition, this quotient category is the localization (PI)−1�-mod of �-mod
with respect to the multiplicative systemPI consisting of all pseudo-isomorphisms
(see [36, Example 10.3.2]). Since �-mod is well-powered, i.e. the family of
submodules of any module M ε �-mod forms a set, these localization exists, is
an abelian category and the universal functor q : �-mod → �-mod/PN is exact
(see [33, p. 44ff]). Furthermore, q(M) = 0 in�-mod/PN if and only if M ε PN .

Note that for any pseudo-isomorphism f : M → N the induced homomorph-
ism E1( f ) is an pseudo-isomorphism(with respect to an analogue subcategory, also
denoted by PN , of mod−�), too. By the universal property of the localization,
we obtain a functor

E1(−) : �-mod/PN → mod−�/PN ,
which is exact if it is restricted to the full subcategory �−mod≥1/PN of
�-mod/PN consisting of all �-modules of codimension greater or equal to 1.
The next result shows that

E1 ◦ E1 ∼= id : �−mod≥1/PN → �−mod≥1/PN

is a natural isomorphism of functors:

Proposition 3.13. Let � be an Auslander regular ring.

(i) Any torsion-free module M embeds into a reflexive module with pseudo-null
cokernel.

(ii) Any torsion module M is pseudo-isomorphic to E1E1(M).
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Proof. Observe that Td−1(M) is the maximal torsion submodule in this case.
Hence, the exact sequence in (i) (a) for i = d respectively i = d − 1 proves both
statements taking under consideration (iii)(b) and Proposition 3.11. ��
Corollary 3.14. A homomorphism f : M → N of�-torsion modules is a pseudo-
isomorphism if and only if the induced homomorphism E1( f ) : E1(N)→ E1(M)
is.

Since� is Noetherian it follows readily that any object in�−mod≥1/PN has
the ascending chain condition (A.C.C.) (see [33, II. Chap. 2]). But using the natural
isomorphism E1 ◦ E1 ∼= id its immediate that also the descending chain condition
(D.C.C.) holds in this category. A consequence of this observation is that any object
in�−mod≥1/PN has finite length. Moreover, the Krull-Schmidt-Theorem holds
(loc. cit. Theorem 2.2):

Proposition 3.15. Let � be an Auslander regular ring. Then any object q(M) ε
�−mod≥1/PN decomposes uniquely (up to isomorphism) into a finite direct sum
of indecomposable objects q(Mi) :

M ≡
⊕

i

Mi mod PN .

Proposition 3.16. Let � be an Auslander regular ring. Then the following holds.

(i) The simple objects of �−mod≥1/PN are cyclic, i.e. of the form q(�/I ) for
some left ideal I of �.

(ii) There is an isomorphism of abelian groups

K0(�−mod≥1/PN ) ∼=
⊕
S ε I

Z[S]

where I denotes the set of isomorphism classes of simple objects of
�−mod≥1/PN .

The class [M] of a 1-codimensional�-module M in K0(�−mod≥1/PN ) should
be thought of as “generalized characteristic ideal.” At least if � is a commutative
regular ring, this class bears the same information as the characteristic ideal which is
associated with M via the structure theory of�-modules up to pseudo-isomorphism
(see [27, 5.1.7, 5.18]).

Proof. Let M be a non-pseudo-null�-module such that q(M) is a simple object.
Then there exists a m ε M such that�m ∼= �/ann�(m) is not pseudo-null, either.
Consequently, 0 �= q(�m) ⊆ q(M) and by the simplicity of q(M) this inclusion
cannot be strict. Taking I = ann�(m), this proves (i) while (ii) is just [33, II
Chap. 1, Theorem 1.7]. ��

Following the structure theory for modules over a commutative regular local
ring (see [27, 5.1.7, 5.18]), it is natural to hope that the following question has an
affirmative answer
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Question 3.17. Let � be an Auslander regular ring and M ε �-mod. Does there
exist an isomorphism in �-mod/PN

M ∼= tor�M ⊕ R mod PN ,

where R ∼= M/tor�M mod PN is a reflexive �-module?

At least for the Iwasawa algebra �(G) of an extra-powerful (for the definition
see the next subsection) and uniform pro-p-group this should follow from the
techniques used by Coates-Sujatha ([11]) to prove the structure theorem for torsion
modules.

Proposition 3.18. Let � be an Auslander regular ring. For any �-module M it
holds:

E1(M) ∼ E1(tor�M).

Proof. From the long exact Ext-sequence we get the exact sequence

E1(M/tor�M) // E1(M) // E1(tor�M) // E2(X/tor�M).

While the module on the right hand side is obviously pseudo-null the first one is
so by the following argument: the long exact Ext-sequence of

0 // M/tor�M // E0E0(M) // E2D(M) // 0

tells us that E1(M/tor�M) fits into the exact sequence

E1E0E0(M) // E1(M/tor�M) // E2E2D(M),

i.e. it suffices to show that E1E0E0(M) is pseudo-null. But E1E1E0E0(M) = 0
by 3.5, (v), (and E0E1E0E0(M) = 0 anyway), i.e. j(E1E0E0(M)) ≥ 2 respectively
δ(E1E0E0(M)) ≤ d − 2. ��

3.3. The graded ring gr(�)

An important method to verify the Auslander condition of a ring � consists of
endowing � with a suitable filtration and studying the associated graded ring
gr(�). By a filtration on a ring � we mean an increasing (!) sequence of additive
subgroups �i−1 ⊆ �i ⊆ �i+1 satisfying

⋃
�i = � and

⋂
�i = 0 and the

inclusions�i�k ⊆ �i+k hold for all pairs of integers i and k. The main example on
a local ring is theM -adic filtration with �−i =Mi for all i ≥ 0 (by convention,
M0 = �). For our aim the closure condition will be crucial:

Definition 3.19. The filtration � satisfies the closure condition if the additive
subgroups�m1 u1+· · ·+�ms us and u1�m1 +· · ·+us�ms are closed with respect
to the topology induced by � for any finite subset u1, . . . , us in� and all integers
m1, . . . ,ms.
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Lemma 3.20. Let G be a p-adic analytic pro-p-group. Then theM-adic filtration
on �(G) satisfies the closure condition.

Proof. Note that the M-adic topology on � coincides with the (m, I )-topology
(cf. [27, (5.2.15)]). SinceM is a two-sided ideal of � the subgroupMi−m1 u1 +
· · ·+Mi−ms us, u1M

i−m1 + · · · + usM
i−ms is a finitely generated left, right ideal,

respectively. Hence, these subgroups are compact as continuous images of the
compact module�n for some n. ��

Put gr(�) = ⊕
�i/�i−1, which is called the associated graded ring of�with

respect to the filtration�.The above lemma admits applying the following theorem
of Björk to certain completed group rings:

Theorem 3.21 (Björk).
(i) Assume that gr(�) is a Auslander regular ring and that� satisfies the closure

condition. Then � is a Auslander regular ring.
(ii) In the situation of (i), the equality j(M) = j(gr(M)) holds. If, in addition,

gr(�) is commutative and of pure dimension d, then also δ(M) = dim(gr(M))
holds, where dim(gr(M)) = dim(suppgr(�)(gr(M))) is the Krull dimension of
gr(M).

Proof. See [4, Theorems 4.1, 4.3] and also [5, Theorem 3.9. and Remark]. For the
last equality note that

dim(gr(M)) = max{dim(gr(M)p | p maximal ideal of gr(�)}
= d −min{ j(gr(M)p) | p maximal ideal of gr(�)}
= d − j(gr(M)

= d − j(M)

= δ(M),

where we used Proposition 3.5, (ii), and the fact that localization commutes with
Ext-groups, if all objects are Noetherian. ��

Our task will be to determine the structure of gr(�(G)). Before stating the
next, result we recall that a pro-p-group G is called extra-powerful, if the relation
[G,G] ⊆ G p2

holds. Furthermore, note that gr(Zp) ∼= Fp[X0] if Zp is endowed
with the m-adic filtration.

Theorem 3.22. Let G be a uniform and extra-powerful pro-p-group of dimension
dim(G) = r. Then there is a gr(Zp)-algebra-isomorphism

gr(�(G)) ∼= Fp[X0, . . . , Xr ].
In particular, gr(�(G)) is a commutative regular Noetherian ring.

A consequence of Lazard’s results is the

Remark 3.23. Any compact p-adic analytic group contains an open characteristic
subgroup, which is an uniform and extrapowerful pro-p-group (cf. [12, Corol-
lary 9.36] and [37, Proposition 8.5.3]).
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For the proof of the theorem we need some more terminology. Let G be an uni-
form pro-p-group with a minimal system of (topological) generators {x1, . . . , xr},
in particular dim(G) = r.Then the lower p-series is given by P1(G) = G, Pi+1(G)
= (Pi(G))p, i ≥ 1. This filtration defines a p-valuationω : G −→ N>0 ∪ {∞} ⊆
R>0 ∪ {∞} of G in the sense of Lazard via ω(g) := sup{i | g ε Pi(G)}, which
induces a filtration on the group algebra Zp[G] of the underlying abstract group
of G, too (cf. [25, Chap. III, 2.3.1.2]).

Lemma 3.24. The filtration on Zp[G], induced by ω, is theMd-adic one, where
Md = m+ Id(G) with the augmentation ideal Id(G) of Zp[G].
Proof. Conferring the proof of Lemma III, (2.3.6) in [25], the induced filtration is
given by the following ideals inZp[G], n ε N : An is generated asZp-module by the
elements pl(g1−1) · · · (gm−1)where l,m ε N, gi ε G and l+ω(g1)+ . . .+ω(gm)

≥ n, whereas theMd-adic filtration is defined by the idealsMn
d , which are gener-

ated (over Zp[G]) by the elements pl(g1 − 1) · · · (gm − 1), where l,m ε N, gi ε G
and l+m = n. Since ω(g) ≥ 1 for all g ε G the idealMn

d is contained in An . The
converse is a consequence of the following

Claim. Let g ε G with ω(g) = t ≥ 1, then g − 1 εMt
d .

Since G is uniform, the map G −→ Pt(G), which assigns gpt−1
to g, is surjective

(cf. [12, Lemma 4.10]), i.e. there exists an element h ε G with g = h pt−1
. Writing

g− 1 = (1+ (h − 1))pt−1 − 1 =
∑
k≥1

(
pt−1

k

)
(h − 1)k,

one verifies that g − 1 εMt
d , because vp(

(
pt−1

k

)
) = t − 1− vp(k) ≥ t − k, i.e.(

pt−1

k

)
(h − 1)k εMt

d . ��

Lemma 3.25. TheMd-adic filtration on Zp[G] induces theM-adic filtration on
Zp[[G]].
Proof. The ideals defining the induced filtration are just the closureMn

d ofMn
d ⊆

Zp[G] ⊆ Zp[[G]] with respect to the M-adic topology on Zp[[G]]. Since they
contain the elements pl(g1 − 1) · · · (gm − 1) with l,m ε N, gi ε {x1, . . . , xr} and
l + m = n, which generateMn as ideal of Zp[[G]], they containMn , too. On the
other handMn is closed and contains all the generators of the Zp[G]-idealMn

d :
pl(g1 − 1) . . . (gm − 1), l,m ε N, gi ε G. This proves the lemma. ��
Now we can prove Theorem 3.22.

Proof. Since gr(G) = ⊕
Pi(G)/Pi+1(G) is a Lie algebra, which is free of rank r

as gr(Zp)-module, we get the following inclusion:

gr(G) ⊆ Ugr(G) ∼= gr(Zp[G])
∼= gr(Zp[[G]]),
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where the first equation holds by [25, Chap. III, 2.3.3] and Ugr(G) is the enveloping
algebra of the Lie algebra gr(G), whereas the second one is a consequence of
Lemma 3.25. According to [37, Theorem 8.7.7], the graded ring gr(Zp[[G]]) is
commutative (G is assumed to be extra-powerful), i.e.

Ugr(G) ∼= gr(Zp)[X1, . . . , Xr ] ∼= Fp[X0, . . . , Xr ]. ��
As an important consequence we obtain the

Theorem 3.26. Let G be a compact p-adic analytic group without p-torsion. Then
the completed group ring �(G) is an Auslander regular ring.

Proof. G posses an open characteristic subgroup N which is an uniform, extra-
powerful pro-p-group. By the theorem of Björk and Theorem 3.22, �(N) is an
Auslander regular ring, because gr(Zp[[N]]) has this property as a regular com-
mutative Noetherian ring (cf. [3, pp. 65–69]). But Ei

�(G)(M)
∼= Ei

�(N)(M) as
�(N)-modules for any �(G)-module M, by which the Auslander condition is
easily verified. ��
If one is not interested in the Zp-torsion submodule of a �-module M it might
be convenient to replace M by its maximal Zp-torsion-free quotient M/torZp M.
This leads to the study of the subcategory�−modfl of �−mod consisting of Zp-
torsionfree or equivalently Zp-flat �-modules. This category is closely related to
the category Qp[[G]]−mod of finitely generated Qp[[G]]-modules where

Qp[[G]] := Zp[[G]] ⊗Zp Qp

by definition. Note that the latter ring is Noetherian whenever Zp[[G]] is. We let
�−modfl

Qp
denote the category with the same objects as �−modfl and such that

Hom�−modfl
Qp
(M, N) := Hom�(M, N) ⊗Z Q

for any two�-modules M, N in�−modfl with the composition of homomorphisms
being the Q-linear extension of the composition in �−modfl. It is clear that the
functor M !→ MQp := M ⊗Zp Qp induces an equivalence of categories

�−modfl
Qp
∼= Qp[[G]]−mod.

Remark 3.27. Schneider and Teitelbaum proved in [32] that, for a compact p-adic
Lie group, these categories are anti-equivalent to the category of certain Banach
space representations of G.

The following proposition, which is standard, allows to calculate Ext-groups in
Qp[[G]]−mod via Ext-groups in �-mod.

Proposition 3.28. For any M, N in �-mod we have canonical isomorphisms

Exti�(M, N) ⊗Zp Qp ∼= ExtiQp[[G]](MQp , NQp) for all i ≥ 0.
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Now, we are able to derive the Auslander regularity ofQp[[G]] from the Auslander
regularity of �(G).

Theorem 3.29. Let G be a compact p-adic analytic group without p-torsion.
Then the group ringQp[[G]] is an Auslander regular ring of (projective) dimension
pdQp[[G]] = cdp(G).

Proof. We set r := cdpG. Let M be any finitely generated Qp[[G]]-module and
choose N ε �−modfl with M ∼= NQp . Since N is Zp-torsionfree, we have

Er+1
� (N) = 0 by Theorem 4.7 (iii), hence pd�N ≤ d using (6.3). By the previous

proposition, Er+1
Qp[[G]](M) vanishes, too, i.e. pdQp[[G]]M ≤ r. On the other hand the

projective dimension of Qp is r, because Er
Qp[[G]](Qp) = Er(Zp) ⊗Zp Qp ∼= Qp

by [22, 2.6]. It follows that pdQp[[G]] = r.
Now we will verify the Auslander condition: Since any Qp[[G]]-submodule of

Ei
Qp[[G]](M) ∼= Ei

�(N) ⊗Zp Qp has the form LQp for some �-submodule L ⊆
Ei
�(N) we see that

E j
Qp[[G]](LQp)

∼= E j
�(L)⊗Zp Qp = 0, j < i,

because � is Auslander regular by Theorem 3.26. ��

3.4. The µ-invariant

For the purpose to study the p-torsion part torZp M of a �-module M we are also
interested in the rings Z/pm[[G]] ∼= �(G)/pm, especially the ring Fp[[G]], and
will consider the change of rings �(G) → �/pm . For a �/pm-module M there
exists a convergent spectral sequence (see [36, Example 5.6.3])

Exti�/pm

(
M,Ext j

�(�/pm,�)
) ⇒ Exti+ j

� (M,�).

We should mention that here Ext j
�(�/pm,�) is a left �- and �/pm-module by

functoriality and the right �-structure of the bi-module �/pm . Using the free
resolution

0 −→ �
pm

−→ � −→ �/pm −→ 0,

it is easy to calculate that

Ext j
�(�/pm,�) ∼=

{
�/pm if j = 1,

0 otherwise.

Hence the spectral sequence degenerates to

Ei
�/pm (M) ∼= Ei+1

� (M)

for any�/pm-module M and any integer i. We obtain the following
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Theorem 3.30. Let G be a compact p-adic analytic group without p-torsion and
m any natural number. Then
(i) Zp/pm[[G]] is an Auslander-Gorenstein ring of injective dimension cdp(G).

(ii) Fp[[G]] is an Auslander regular ring of dimension cdp(G).

Remark 3.31. The same arguments prove that�(G)/( f ) is a Auslander Gorenstein
ring of injective dimension cdp(G) for any element f of the center of �(G) or
even more general for any f ε �(G) such that the left ideal ( f ) := �(G) f is
two-sided.

Proof. From the above formula we derive that�/pm has finite injective dimension
cdp(G). On the other hand it is well known that the projective dimension of
Fp[[G]] is equal to cdp(G) (see [27, V§2, Example 5]). Hence it suffices to verify
the Auslander condition: For a �/pm-module M let N ⊆ Ei

�/pm (M) be a �/pm-

submodule which we will also consider as �-submodule of Ei+1
� (M). Applying

again the above isomorphism, we see that E j
�/Pm (N) ∼= E j+1

� (N) = 0 for any
integer j < i because � fulfills the Auslander condition. ��

A different possibility to prove (ii) of the previous theorem would be to imitate
the proof of Theorem 3.26 using the analogue of Theorem 3.22: if G is a uniform
pro-p-group of dimension d, then there is an isomorphism

gr(Fp[[G]]) ∼= Fp[X1, . . . , Xr ],
where Fp[[G]] is endowed with itsM-adic filtration (see [37, 8.7.10]). In particular,
Fp[[G]] has no zero divisors for uniform G ([37, 8.7.9]).

In order to measure the size of the p-torsion part of a �-module we have (as
usual) the µ-invariant which is defined as follows.

Definition 3.32. Assume that G is a p-adic Lie group without p-torsion such that
Fp[[G]] is integral. For any�(G)-module M we define its µ-invariant µ(M) as

µ(M) = rkFp[[G]]
⊕
i≥0

pi+1 M/pi M,

where p0 M = 0 by convention. Observe that the sum is finite because � is
Noetherian.

Susan Howson has defined the µ-invariant in a similar, equivalent way and she
has independently studied its properties in [19]. In particular, she expresses the
µ-invariant of a �-module M to the Euler characteristic of torZp M.

Note that the µ-invariant only depends on the�- resp. Zp-torsion-submodule:
µ(M) = µ(tor�M) = µ(torZp M) = µ(pm M) for m sufficiently large. With
respect to the vanishing we have the following characterization:

Remark 3.33. Since pi+1 M/pi M � � //pi

p M the following is equivalent

µ(M) = 0 ⇔ µ(p M) = 0

⇔ p M is Fp[[G]]-torsion

⇔ p M is a pseudo-null�-module.

For the latter equivalence we used again the above isomorphism.
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The next proposition shows that the µ-invariant is in fact an invariant “up to
pseudo-isomorphism”, i.e. it factors through the quotient category �-mod/PN .
In particular, our definition of µ generalizes the usual definition via the structure
theory if G is isomorphic to Zr

p for some r.

Proposition 3.34. Let G be a p-adic analytic group without p-torsion such that
both� = �(G) and�/p are integral. Then

M ∼ N implies µ(M) = µ(N).

Proof. The statement will follow if it holds in the two special cases of exact
sequences

(a) 0 // Q // M // N // 0,

(b) 0 // M // N // Q // 0,

where Q is pseudo-null. More generally, we consider a short exact sequence of
�-modules

0 // X // Y // Z // 0.

The snake lemma implies the exactness and commutativity of the following diagram

0 // pn X //
� _

��

pn Y //
� _

��

pn Z //
� _

��

X/pn

��
p

0 // pn+1 X // pn+1Y // pn+1Y // X/pn+1.

Again by the snake lemma we obtain the exact sequences

0 // pn+1 X/pn X // pn+1Y/pn Y // An+1/An // 0,

0 // Kn // An+1/An // pn+1 Z/pn Z // Bn+1/Bn // 0,

where Ai denotes the image of pi Y in pi Z with cokernel Bi, the latter module con-
sidered as submodule of X/pi, and Kn := ker(Bn → Bn+1). In case (b) An+1/An
is a pseudo-null �-module because An+1 ⊆ Z. Hence rkFp[[G]]An+1/An = 0 by
Remark 3.33. In case (a) rkFp[[G]] pn+1 X/pn X = 0 by the same argument. Further-
more, Kn ⊆ X/pn, Bn+1 ⊆ X/pn+1 and finally Bn+1/Bn are pseudo-null, too.

��
By �-mod(p) we shall write the plain subcategory of �-mod consisting of

Zp-torsion modules while by PN (p) “= PN ∩�-mod(p)” we denote the Serre
subcategory of �-mod(p) the objects of which are pseudo-null �-modules. In
other words M belongs to PN (p) if and only if it is a �/pn-module for an
appropriate n such that E0

�/pn (M) = 0. Recall that there is a canonical exact
functor q : �-mod(p)→ �-mod(p)/PN (p). For the description of the p-torsion
part the following result will be crucial.
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Proposition 3.35. Assume that G is a p-adic analytic group without p-torsion
such that both� = �(G) and�/p are integral. Then the following holds:

(i) q(�/p) is simple object in �-mod(p)/PN (p), i.e. does not contain any
proper subobject.

(ii) Every object A in �-mod(p)/PN (p) has a finite composition series

0 = A0 ⊆ A1 ⊆ · · · ⊆ Ai+1 = A

of subobjects A j of A such that A j+1/A j ∼= q(�/p) for every i ≥ j ≥ 0. In
particular, q(�/p) is the unique simple object of�-mod(p)/PN (p).

(iii) Any q(M) in �-mod(p)/PN (p) has finite length equal to µ(M). Thus,
[q(M)] !→ µ(M) induces an isomorphism

K0(�-mod(p)/PN (p)) ∼= Z.
We need the following lemma which can be proved literally as [18, Lemma 2.25]
because Fp[[G]] is both left and right Noetherian ring without zero divisors and
thus it has a skew field of fractions.

Lemma 3.36. With the assumptions of the proposition let M be a torsion-free
�/p-module of rank rk�/p(M) = m. Then there exist free �/p-modules F, F′
such that F ⊆ M, M ⊆ F′ and both M/F and F′/M are�/p-torsion, i.e. pseudo-
null considered as �-module. In particular, for any �/p-module of rank m there
is an isomorphism

q(M) ∼= q(�/p)m .

Proof. Let h : q(M) ↪→ q(�/p) be a monomorphism in the quotient category.
By [33, I 2.9] there exists a diagram

M �/p

M′

``

f

AAAAAAAA

<<

g

zzzzzzzz

in �-mod(p) with f a pseudo-isomorphism in �-mod such that

q(M) //h
q(�/p)

q(M′)

cc

q( f )

GGGGGGGGG

::

q(g)

uuuuuuuuu

commutes. Since h is a monomorphism and q( f ) an isomorphism, ker(g)must be
in PN (p). Since M′/ ker(g) ⊆ �/p, we can consider its �/p-rank which can
be either 1 or 0. In the first case we conclude that g is a pseudo-isomorphism,
i.e. q(g) is an isomorphism, while in the second case M′/ ker(g) and hence M′ is
pseudo-null, thus q(M′) = 0. This proves (i).
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For any M ε �-mod(p), the canonical decomposition

0 ⊆ p M ⊆ p2 M ⊆ · · · ⊆ pm M = M

for some m, induces a decomposition

0 ⊆ q(p M) ⊆ q(p2 M) ⊆ · · · ⊆ q(pm M) = q(M)

with

q(p j+1 M)/q(p j M) ∼= q(p j+1 M/p j M) ∼= q(�/p)d j ,

where d j = rk�/p(p j+1 M/p j M) by the previous lemma. Since this filtration can
be refined easily to a decomposition series of the desired kind, we are done. ��
Corollary 3.37. The invariantµ is additive on short exact sequences of�-torsion
modules.

Proof. Since µ is additive on short exact sequences of p-torsion modules by the
proposition it suffices to reduce the general statement to this case. Let

0 // X // Y // Z // 0

be a short exact sequence of�-torsion modules. Choosing a number n such that the
p-torsion parts of X,Y and Z are annihilated by pn, we obtain an exact sequence

0 // torZp X // torZpY // torZp Z // X/pn //ϕ
Y/pn.

Considering the exact, commutative diagram

0 // torZp X //
� _

��

X/pn //

��

(X/torZp)/pn //

��

0

0 // torZp Y // Y/pn // (Y/torZp)/pn // 0,

we see that ker(ϕ) is pseudo-null by the following lemma, i.e.

0 // torZp X // torZpY // torZp Z // 0

is exact mod PN . ��
Lemma 3.38. Assume that G is a p-adic analytic group without p-torsion such
that both � = �(G) and �/p are integral. Let M be a (not necessarily torsion)
�-module. Then the following holds

µ(M/p) = 0 ⇒ µ(p M) = 0.

Proof. Since (torZp M)/p ⊆ M/p by the snake lemma, it suffices to deal with
the case that M is �-torsion. But then the additivity of the µ-invariant shows
immediately that µ(p M) = µ(M/p). ��
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Lemma 3.39. Assume that G is a p-adic analytic group without p-torsion such
that both � = �(G) and �/p are integral. Let M be a �-torsion module with
torZp M = 0. Then

(i) for any integer n ≥ 1, the module M/pn is pseudo-null.
(ii) torZp E1(M) = 0.

We will denote the annihilator in � of an element m ε M by ann�(m) :=
{λ ε �|λm = 0}.
Proof. Since there is a surjection⊕

�/ann�(mi)� M

for a finite set of generators mi of M, it suffices to prove (i) in the case M := �/I,
where I is a non-zero left ideal of �. As M/pn is �-torsion we are done once we
have shown the vanishing of E1

�(M/pn). But

E1
�(M/pn) ∼= E0

�/pn (M/pn)

∼= Hom�/pn (M,�/pn)

∼= Hom�(�/I,�/pn) = 0.

Indeed, the vanishing of the latter module can be seen as follows: letϕ : �→ �/pn

be a non-trivial homomorphism of �-modules which factors through �/I, i.e.
I ⊆ ann�(x modpn) with x ≡ ϕ(1) modpn.

Claim. ann�(x modpn) ⊆ p�.

Let λ ε ann�(x modpn), i.e. λx = pn y for some y ε � and let no be the maximal
integer with x ε pn0�, i.e. x = pn0 x0 for some x0 ε � \ p� and n0 < n. Since
the multiplication by pn0 is injective we obtain λxo = pn−n0 y ≡ 0 modp. Hence
λ ε p� because �/p is integral. This proves the claim.

The fact that p M = 0, implies I ∩ p� = pI and regarding the claim it holds

I = I ∩ p� = pI = . . . = pm I

for any m ≥ 0. Since pm tends to zero if m goes to infinity the ideal I must be
zero, a contradiction.

The second statement results from the first one regarding the exact sequence

0 = E1(M/p) // E1(M) //p
E1(M). ��

We finish this section with a “structure theorem for the p-torsion part of �-
modules.”

Theorem 3.40. Assume that G is a p-adic analytic group without p-torsion such
that both � = �(G) and �/p are integral. Let M be in �-mod(p). Then there
exist uniquely determined natural numbers n1, . . . , nr and an isomorphism in
�-mod(p)/PN (p)

M ≡
⊕

1≤i≤r

�/pni mod PN (p).
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Proof. Let m be minimal with the property: pm+1 M = M. The theorem is proved
using induction with respect to m. The case m = 0 is just Lemma 3.36, so let m be
arbitrary. Again by Lemma 3.36 we are in the following situation:

(�/p)d
� _

��
ι

0 // pm M // M // M/pm M // 0,

where d is the �/p-rank of M/pm M and the cokernel of ι is pseudo-null. Re-
placing M by the pull-back with ι, we may assume that M/pm M ∼= (�/p)d.
Since (�/pm+1)d is free in the category of�/pm+1-modules, we obtain easily the
following exact and commutative diagram

0 // (�/pm)d //

��
ϕ

(�/pm+1)d //

��
ψ

(�/p)d // 0

0 // pm M //

����

M //pr

����

(�/p)d // 0

N N

where N is by definition the cokernel ofψ respectively ϕ. First we will show thatψ
and hence also ϕ is injective. Since (�/pm+1)d – being of projective�-dimension 1
– does not contain any proper pseudo-null �-submodule, it suffices to prove that
ker(ψ) is pseudo-null. Assuming the contrary, i.e. that µ(ker(ψ)) �= 0, it follows
that µ(pm+1 K/pm K ) < d for the image K of ψ because for an arbitrary p-torsion
�-module N rk�/p(pi+1 N/pi N) ≥ rk�/p(pi+2 N/pi+1 N) holds for any i ≥ 0. But
this contradicts the surjectivity of pr ◦ ψ.

To prove the theorem we only have to show that ϕ has a co-section in
�-mod(p)/PN (p), i.e. that the short exact sequence in the left column splits.
Indeed, then a section N ↪→ pm M would give rise to a section N ↪→ M, i.e.
M ∼= N ⊕ (�/pm+1)d, and by the assumption of the induction N is already of the
desired form. Here and in what follows we are arguing in the quotient category
�-mod(p)/PN (p), though we omit the functor q in the notation of maps and
objects for simplicity.

Again by this assumption, the module pm M is isomorphic to a module of the
form (�/pm)d

′ ⊕⊕
i �/pni , where ni < m. Assume first that d = 1. We claim

that the image of ϕ is mapped surjectively onto one of the factors �/pm under
the correspondent projection. Indeed, it is easy to see that otherwise the image
would be contained in pm−1 M, which contradicts the injectivity of ϕ. Counting
µ-invariants, we see that ϕ followed by the projection onto such a factor gives an
isomorphism and therefore induces the desired co-section. If d > 1 we make the
same procedure iteratively for every factor of (�/pm)d after first splitting up the
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image of the previous factor(s). The theorem follows because the uniqueness can
be deduced easily from the decomposition

0 ⊆ p M ⊆ p2 M ⊆ · · · ⊆ pm M = M

counting�/p-ranks. ��
Remark 3.41. If one replaces p ε �(G) by any element f in the center of �(G)
such that ( f ) := �(G) f is a prime ideal, i.e. such that �(G)/( f ) is integral,
then one gets analogous results concerning the “ f -torsion part” {m ε M| f nm = 0
for some n} of M. In particular, one obtains further invariants µ f for these prime
elements.

4. Spectral sequences for Iwasawa adjoints

In the previous section we have seen that the functors Ei(−) play an essential
role in the dimension theory of �-modules. In this section we will mention some
techniques which sometimes allow to calculate these adjoints in applications when
� is the Iwasawa algebra�(G) of a profinite group G. A part of the results stems
from U. Jannsen ([22]) whom I would like to thank heartily for giving me his
manuscript on a spectral sequence for Iwasawa adjoints ([23]).

We shall write D(G) and C(G) for the categories of discrete and compact �-
modules, respectively, whereas we denote the full subcategories of cofinitely and
finitely generated modules byDcfg(G) and C fg(G), respectively.

Now, let G = H ×� be the product of profinite groups H and �. Assume that
�(G) is Noetherian and that � is separable, i.e. it possesses a countable ordered
system of open normal subgroups �n as a basis of open neighborhoods of 1 ε �.
Let (Dcfg(G))N be the category of inverse systems inDcfg(G) and consider the left
exact functor

T� : Dcfg(G)→ (Dcfg(G))
N,

which sends B to the inverse system {B�n+1
N�n/�n+1−→ B�n }, and

lim←−
n

Hom�(H )(−∨,�(H )) : (Dcfg(G))
N→ �(G)-Mod.

Here the action of � on f ε Hom�(H )(M,�(H )) for M ε C(G) is defined by
(γ f )(m) := f(γ−1m), whereas h ε H acts by the rule (h f )(M) := f(m)h−1 as
usual.

Since the category (Dcfg(G))N has enough injectives, because Dcfg(G) has
([21], Proposition 1.1), we can form the right derived functors

Ri T�(B) =
{
Hi(�n+1, B)

cor−→ Hi(�n, B)
}

and

Ri( lim←−
n

Hom�(H )(B
∨,�(H ))),
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which equals

lim←−
n

RiHom�(H )(B
∨,�(H ))

(cf. [21] Proposition 1.2, 1.3), if we restrict ourselves to elements of the sub-
category (D′)N where D′ is the abelian subcategory of Dcfg(G) consisting of
�(G)-modules, which are cofinitely generated over �(H ). Indeed, in this case,
the modules Hom�(H )(B∨n ,�(H )) are compact, i.e. the inverse limit functor is ex-
act on the corresponding inverse systems. Since RiHom�(H )(−,�(H )) extends the
functors Ei

�(H )(−) naturally from C(H ) to C fg(G), we will write also Ei
�(H )(−)

for the first functor. Note that it is endowed with a natural �-action.

Lemma 4.1. The functor T� sends injectives to lim←−
n

Hom�(H )(−∨,�(H ))-acylics.

Proof. It suffices to prove thatZp[[H]][�/�n] is Hom�(H )(−,�(H ))-acyclic. But,
for any resolution of Zp[[H]][�/�n] by�(G)-projectives

P• → Zp[[H]][�/�n],
the sequence

0 → Hom�(H )(Zp[[H]][�/�n],�(H ))→ Hom�(H )(P
•,�(H ))

is exact, because both, Zp[[H]][�/�n] and the Pi , are projectives in C(H ) (cf. [27]
(5.3.13)). The result follows by taking homology. ��

The Grothendieck spectral sequence for the composition of the above functors
gives

Theorem 4.2. With notation as above, there is a convergent cohomological spec-
tral sequence

lim←−
n

Ei
�(H )

(
H j (�n, B)∨

) ⇒ Ei+ j
�(G)(B

∨)

for any B in Dcfg(G).

Note that all modules that occur in the spectral sequence are compact �(G)-
modules.

Proof. The functor E0
�(G)(−) is the composition of the functors T� and

lim←−
n

Hom�(H )(−∨,�(H )), because by Lemma 4.3 we have isomorphisms of

�(G)-modules

E0
�(G)(B

∨) = Hom�(G)(B
∨,Zp[[H]])[[�]])

= lim←−
n

HomZp[[H]][�/�n]((B∨)�n ,Zp[[H]][�/�n])

= lim←−
n

Hom�(H )((B
�n )∨,�(H )).

Now the result follows by Lemma 4.1. ��
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Recall that there is a canonical�(H )-homomorphism

πn : Zp[[H]][�/�n] → Zp[[H]],
∑

g ε �/�n

ag g�n !→ a1,

and, for any m ≥ n, a canonical�(G)-homomorphism pm,n : Zp[[H]][�/�m] →
Zp[[H]][�/�n] which sums up the coefficients of the same �n-cosets.

Lemma 4.3. The homomorphisms πn and pm,n induce a commutative diagram of
�(G)-modules:

HomZp[[H]][�/�m ](M�m ,Zp[[H]][�/�m]) //(πm)∗
�

��
(pm,n)∗

HomZp[[H]](M�m ,Zp[[H]])

��
N�n/�m

HomZp[[H]][�/�n ](M�n ,Zp[[H]][�/�n]) //(πn)∗
� HomZp[[H]](M�n ,Zp[[H]])

Proof. It is easily checked that the diagram commutes and that the inverse of
(πn)∗ is given by ψ !→ (m !→ ∑

g ε �/�n
ψ(g−1m)g�n). (Note that the �-

invariance of a homomorphismφ(m) = ∑
φ(m)gg�n is equivalent toφ(γ−1m)1 =

φ(m)γ for all γ ε �.) Recalling that γ ε � acts by (γφ)(m) := φ(γ−1m) on
HomZp[[H]][�/�n](M�n ,Zp[[H]][�/�n]), it is also immediate that (πn)∗ is �(G)-
invariant. ��
Corollary 4.4. If� contains an open subgroup of index prime to p and isomorphic
to Zp, then there is a long exact sequence of�(G)-modules

lim←−
n

Ei
�(H )(M�n ) // Ei

�(G)(M) // lim←−
n

Ei−1
�(H )(M

�n ) // lim←−
n

Ei+1
�(H )(M�n ) // Ei+1

�(G)(M).

Now we are going to present further spectral sequences due to U. Jannsen which
were in some sense the models for the first one proved in this section. The next
one describes the Iwasawa adjoints of certain cohomology groups associated with
p-adic representations. So let G be a profinite group and G∞ a closed subgroup,
such that its quotient has a countable basis of neighbourhoods of identity, i.e. there
is a countable family Gn, G∞ ⊆ Gn ⊆ G, with

⋂
n Gn = G∞. Furthermore, let

A = (Qp/Zp)
r for some r ≥ 1 with some continuous action of G. We shall write

Tp A = Hom(Qp/Zp, A) ∼= lim←−
m

pm A

for the Tate module of A. Then there is the following convergent spectral se-
quence ([23]):

Theorem 4.5 (Jannsen).

E p,q
2 = Ep(Hq(G∞, A)∨

) ⇒ lim←−
n

Hp+q(Gn, Tp A)
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Corollary 4.6. Assume cdp(G) ≤ 2. Then the exact sequence of low degrees
degenerates to

0 −→E1(A(k∞)∨) −→ lim←−
n

H1(Gn, Tp A) −→E0(H1(G∞, A)∨
) −→

E2(A(k∞)∨) −→ ker
(

lim←−
n

H2(Gn, Tp A) −→ E0(H2(G∞, A)∨
)) −→

E1(H1(G∞, A)∨
) −→ E3(A(k∞)∨) −→ 0.

The next result, which relates the (compact) �-modules Ei(M) to the discrete
G-modules

Di(M
∨) := lim−→

U⊆oG

Hi(U,M∨)∗ , i ≥ 0,

is derived by some spectral sequences, too, but we only state the associated long,
respectively short, exact sequences:

Theorem 4.7 (Jannsen). Let G be a profinite group such that�(G) is Noetherian.
Then, for any finitely generated�-module M, there are functorial exact sequences

(i)

0 −→ Di(M
∨)⊗Zp Qp/Zp −→ Ei(M)∨ −→ torZp Di−1(M

∨) −→ 0,

for all i, where by definition Di(M∨) = 0 for i < 0.
(ii)

−→ Ei(M)∨ −→ lim−→
m

Di (pm (M∨)) −→ lim−→
m

Di−2(M
∨/pm) −→ Ei−1(M)∨ −→,

and the following isomorphisms

(iii) Ei(M/torZp M)∨ ∼= lim−→
m

Di(pm (M∨)),

(iv) Ei(torZp M)∨ ∼= lim−→
m

Di−1(M∨/pm).

Proof. See [22] 2.1, 2.2 or [27] Theorem 5.4.12. ��
For the duality theorem in the next section the following corollary will be crucial.

Corollary 4.8. Assume that G is a duality group at p of dimension n with dualizing
module D(p)

n = lim−→
m

Dn(Z/pmZ). Then the following holds:

(i) If M is �-module which is free of finite rank as Zp-module, then

Ei(M)∨ ∼=
 lim−→

m

Dn((M/pm)∨) ∼= M ⊗Zp D(p)
n if i = n,

0 otherwise.
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(ii) If N is a finite p-primary�-module, then

Ei(N)∨ ∼=
{

HomZp

(
N∨, D(p)

n
)

if i = n + 1,

0 otherwise.

Proof. See [22] 2.6 or [27] 5.4.14. ��
Proposition 4.9. Let G be a compact p-adic analytic group without p-torsion,
H ⊆ G a closed subgroup and M a finitely generated �(H )-module. If d�(G)
(resp. d�(H )) denotes the (projective or δ-) dimension of�(G) (resp.�(H )), then
the following holds:

(i) j�(G)
(
IndH

G M
) = j�(H )(M),

(ii) δ�(G)
(
IndH

G M
) = δ�(H )(M)+ d�(G) − d�(H ),

(iii) pd�(G)
(
IndH

G M
) = pd�(H )(M).

Proof. This is a consequence of 2.7, 3.5, (ii), and 6.3. ��
Lemma 4.10. Assume that G = H × � is a p-adic Lie group without p-torsion
where � contains an open subgroup of index prime to p which is isomorphic
to Zp. Let M ε C(G) be finitely generated and torsion as �(H )-module. Then M
is a pseudo-null�(G)-module.

Proof. By the Corollary 4.4, there is an exact sequence

0 −→ lim←−
n

E1
�(H )(M�n ) −→ E1

�(G)(M) −→ lim←−
n

E0
�(H )(M

�n ) = 0.

So, if we can show that the left term vanishes, we are done, because then E1E1(M) =
0 = E0E0(M). Consider the commutative exact diagram

M //ωn
M //

��

ωm
ωn

M�n
//

��

ωm
ωn

0

M //ωm
M // M�m

// 0,

where ωn = γ pn − 1 for some generator γ of Zp ⊆ �. Since M is assumed to be
�(H )-torsion, we get the commutative exact diagram

0 // E1
�(H )(M�m )

//

��

ωm
ωn

E1
�(H )(M) //ωm

��

ωm
ωn

E1
�(H )(M)

0 // E1
�(H )(M�n )

// E1
�(H )(M) //ωn E1

�(H )(M).

Passing to the limit, we obtain

lim←−
n

E1
�(H )(M�n ) ⊆ lim←−

n

E1
�(H )(M) = lim←−

n

⋂
m≥n

ωm

ωn
E1
�(H )(M) = 0,

because ωm
ωn

tends to zero. ��
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Remark 4.11. The same arguments show that δG(M) ≤ δH(M) for any finitely
generated�(H )-module M.

Besides the case G = Zd
p these results apply also to the following situation

where G is an open subgroup of Gld(Zp), d is prime to p, such that the determinant
takes values in � := det(G) ⊆ Zp ⊆ Z∗p. at least if . Indeed, we have the following
exact commutative diagram

1 // Sld(Zp) // Gld(Zp) //det
Z∗p // 1

1 // Sld(Zp) ∩ G //
?�

OO

G
?�

OO

// �
?�

OO

// 1,

in which the lower sequence possesses the following splitting

s : � ∼= Zp → G, a !→


a1/d

a1/d

. . .

a1/d


(Note that � ∼= Zp is considered as subgroup of the units and that Zp is uniquely
d-divisible. Furthermore, if the image of this homomorphism is not contained
in G, we just apply the theory to an open subgroup U of G which fulfills this
condition with respect to det(U) and contains H := Sld(Zp) ∩ G. Such U always
exists because Gld(Zp) is p-adic analytic, i.e. the lower p-series forms a basic of
neighborhoods of the neutral element. Hence at least for some m the image of pm�

is contained in G : s(apm
) = s(a)pm

ε Pm(Gld ) ⊆ G.Take U := det−1(pm�)∩G.)
Since the splitting takes values in the center of G, we get a presentation of G as
the direct product G = H × Zp.

5. Local duality

In this and the following section let� = �(G) = Zp[[G]] be the completed group
algebra overZp, where G is a pro-p Poincaré group, such that� is Noetherian,M
the maximal ideal of � and k = �/M ∼= Fp its finite residue class field. It is well
known that the global homological dimension of � is d = cd(G)+ 1. By �-Mod
we denote the category of (abstract) modules over the (abstract) ring � and we
write �-mod for the full subcategory of finitely generated modules. In the sequel
we will use frequently the equivalence of the latter category with the category of
finitely generated compact modules.

Definition 5.1. For a finitely generated�-module M, we define the depth by

depth(M) := min{i | Exti�(k,M) �= 0}.



On the structure theory of the Iwasawa algebra 303

Recall that for a commutative Noetherian ring � the I-depth depthI (M) of
a finitely generated �-module M with respect to an ideal I is the maximal length
of a M-regular sequence in I.For a local ring the depth(M) is depthM(M),while the
grade defined in 3.3 is j(M) = depthann(M)(�), where ann(M) is the annihilator
of M in �.

We consider the additive functor �M(−) : �-Mod → �-Mod defined by
�M(M) := {x ε M |Ml x = 0 for some l} and state some basic properties:

Lemma 5.2. (i) �M(M) = lim−→
l

Hom�(�/M
l,M), in particular, the functor

�M(−) is left exact.
(ii) The restriction of �M to �-mod equals T0, i.e. �M(M) is the maximal finite

submodule of M, if the latter module is finitely generated.

Proof. Since Hom�(�/M
l,M) = {x ε M | Ml x = 0}, the first statement is

obvious. If M is finitely generated, there is some l such thatMlT0(M) = 0, i.e.
T0(M) ⊆ �M(M). On the other hand �/Ml is a finite ring. Therefore �x ⊆
T0(M) holds for any x ε �M(M). ��

Since �-Mod has sufficiently many injectives, we can form the right derived
functors

Hi
M
(−) = Ri�M(−) = lim−→

l

Exti�(�/M
l,M)

(noting the exactness of direct limits in �-Mod). We write

�-ModM, �-modM

for the full subcategory of�-Mod,�-mod respectively, consisting of those modules
M, for which H0

M
(M) = M holds.

D(�-Mod) (resp. C(�-Mod))

means the category of discrete (resp. compact) �-modules, where � is endowed
with its canonical (m, I )-topology.

Lemma 5.3. Hi
M
(−) commutes with direct limits.

Proof. Choose a resolution P• of �/Ml by finitely generated projectives in order
to calculate Exti�(�/M

l,M). Since Hom�(Pj ,−) commutes with direct limits
(as Pj is finitely generated, i.e. any homomorphism φ : Pj → lim−→

i

Mi factors over

some Mi ), Exti�(�/M
l,−) does also and the lemma follows. ��

Proposition 5.4. The forgetful functor defines an equivalence of categories

D(�-Mod) ∼= �-ModM.

Proof. Both categories consists exactly of direct limits of finite modules (cf. [27,
Proposition (5.2.4)] for D(�-Mod)). ��
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Lemma 5.5. (i) Hi
M
(�-Mod) ⊆ �-ModM ∼= D(�-Mod) for all i ≥ 0.

(ii) For any M ε �-mod, it holds depth(M) = min{i | Hi
M
(M) �= 0}.

(iii) depth(�) = d and Hd
M
(�) = �∨.

(iv) Hom�(M,Hd
M
(�)) ∼= M∨ for all M in�-ModM or in�-mod , in particular,

Hd
M
(�) is an injective �-module.

Proof. Since Hi
M
(−) are the derived functors of H0

M
(−), it suffices to prove (i)

for the latter functor. But in this case the statement holds just by definition.
Now we will prove (ii) and set k = min{i | Hi

M
(M) �= 0}. Since

Exti�(�/M
l,M) = 0 for all i < depth(M) (note that �/Ml has a finite com-

position series with subquotients isomorphic to k), it holds depth(M) ≤ k. So we
only have to prove that H j

M
(M) �= 0 for j = depth(M) <∞. But the short exact

sequences

0 −→M/Ml −→ �/Ml −→ k −→ 0

induce the long exact sequences

0 = Ext j−1
� (M/Ml,M) −→ Ext j

�(k,M) −→ Ext j
�(�/M

l,M) −→ · · · ,

i.e. 0 �= Ext j
�(k,M) ⊆ H j

M
(M).

Using 4.8 and denoting the character of the dualizing module byχ,we calculate

Hi
M
(�) = lim−→

l

Ei(�/Ml ) =
 lim−→

l

(�/Ml(χ))∨ = �∨ if i = d

0 otherwise,

whence (iii) follows. In order to prove (iv) first let M be in �-ModM, i.e. M =
lim−→

i

Mi for some finite �-modules Mi . Then, noting that Mi is a �/Ml(i)-module

for some l(i) and using the adjunction of “Hom and ⊗”,

Hom�

(
M,Hd

M
(�)

) = Hom�

(
lim−→

i

Mi , lim−→
l

(�/Ml)∨
)

= lim←−
i

Hom�

(
Mi , lim−→

l

(�/Ml)∨
)

= lim←−
i

Hom�

(
Mi ,HomZp

(
�/Ml(i),Qp/Zp

))
= lim←−

i

HomZp(Mi ,Qp/Zp)

= M∨.
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Now let M be in �-mod . Then, noting that Hom�(M,−) commutes with direct
limits, because M is finitely generated,

Hom�

(
M,Hd

M
(�)

) = Hom�

(
M, lim−→

l

(�/Ml)
∨)

= lim−→
l

Hom�(M, (�/M
l)∨)

= lim−→
l

Hom�

(
M/Ml ,HomZp

(
�/Ml,Qp/Zp

))
= lim−→

l

HomZp

(
M/Ml,Qp/Zp

)
= M∨. ��

After this technical preparations we are able to prove the following

Theorem 5.6. Let G be a pro-p Poincaré group with d := cd(G) + 1 < ∞ and
such that� = �(G) is Noetherian. Then, for any M ε �-mod,

Ei(M) ∼= Hom�

(
Hd−i
M
(M),Hd

M
(�)

) ∼= Hd−i
M
(M)∨ =: T i(M).

Proof. Consider the right exact contravariant additive functor T 0(−) = Hd
M
(M)∨

on �-mod (note that Hi
M
(M) = 0 for all i > d as � has global dimension d).

By [30, Theorem 3.36 and Remarks] there is a natural equivalence of functors

T 0(−) ∼= Hom�(−, T 0(�)) ∼= Hom�(−,�)

on �-mod. Therefore, it suffices to show that the functors T i(−) are the left
derived functors of T 0(−). But {T i(−)}i≥0 is a universal δ-functor because they
are effaceable by projectives in �-mod (Since T 0 is additive, it is sufficient to
verify that Hi

M
(�) = 0 for all i < d, which is done by Lemma 5.5 (iii)). ��

6. Auslander-Buchsbaum equality

In this section we assume the same conditions on � as in the previous one and,
under this conditions, we are going to prove the Auslander-Buchsbaum equality

pd(M) + depth(M) = depth(�)

for all M ε �-mod. In the theory of commutative local rings this equality can
be proved using regular sequences. Since this concept is lacking in the non-
commutative theory, we will have to replace it by homological methods, i.e. we
will work in derived categories. Our proof is analogous to Jørgensen’s proof of the
Auslander-Buchsbaum equality in the case of (non-commutative) graded algebras
over a field (cf. [24]).
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First, we recall the definitions of total Hom and total tensor product. Let
X,Y ε K(�-Mod) and define

(Hom�(X,Y ))n =
∏
i ε Z

Hom�(X
i,Yi+n ), dn =

∏
i

(
di−1

X + (−1)n+1di+n
Y

)
and

(X ⊗� Y )n =
⊕

i+ j=n

Xi ⊗� Y j , dn =
⊕

i+ j=n

(
di

X ⊗ 1+ (−1)n ⊗ d j
Y

)
.

They become bifunctors

Hom�(−,−) : K(�-Mod)op ×K(�-Mod)→ K(Zp-Mod),

−⊗� − : K(Mod-�)×K(�-Mod)→ K(Zp-Mod),

where we denote by Mod-� the category of right �-modules. Note that the latter
category is equivalent to �-Mod due to the involution on the group algebra �.
Moreover, if Y is a complex of bi-modules, then the values of Hom�(−,Y ) are in
K(Mod-�), if X is a complex of bi-modules, then X⊗�− has values in K(�-Mod).

Since�-Mod has enough projectives, the derived functors exist (cf. [17, Chap. I,
Theorem 5.1] or [36, Theorem 10.5.6]):

RHom�(−,−) : D−(�-Mod)op × D(�-Mod)→ D(Zp-Mod),

respectively

RHom�(−,−) : D−(�-Mod)op ×D(�-Mod-�)→ D(Mod-�)

and

−⊗L
� − : D(Mod-�)× D−(�-Mod)→ D(Zp-Mod),

respectively

−⊗L
� − : D(�-Mod-�)×D−(�-Mod)→ D(�-Mod).

RHom, respectively⊗L, is computed via a projective resolution in the first, respec-
tively second variable.

Proposition 6.1. Let Y εDb(�-Mod-�), Z εDb(�-Mod) and let X εDb(�-Mod)
be a bounded complex which is quasi-isomorphic to a bounded complex consisting
of finitely generated free �-modules. Then

RHom�
(
X,Y ⊗L

� Z
) ∼= RHom�(X,Y )⊗L

� Z.
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Proof. (See [24, Proposition 2.1] for the case of graded algebras over a field.)
Replacing X with a quasi-isomorphic complex L ε Db(�-Mod) consisting

of finitely generated free �-modules and replacing Z with a quasi-isomorphic
complex F ε D−(�-Mod) consisting of projectives, we see that we have to prove

Hom�(L,Y ⊗� F) = Hom�(L,Y )⊗� F.

But due to the boundedness condition and the fact that L consists of finitely
generated free modules, the nth module on either side becomes⊕

i, j

Hom�(L
i,Y j )⊗� Fn+i− j

while the differentials on each summand Hom�(Li ,Y j )⊗� Fn+i− j are given by

di−1
L ⊗ 1+ d j

Y ⊗ (−1) j−i−1 + (−1)n ⊗ dn+i− j
F , respectively

di−1
L ⊗ 1+ d j

Y ⊗ (−1)n + (−1)i+1 ⊗ dn+i− j
F .

We will construct an isomorphism between the two complexes: If the minimal non-
zero module of each of the complexes is Hom(Li0 ,Y j0) ⊗ �Fn0+i0− j0 , then the
multiplication by suitable signs on the summands associated to the triple of indices
(a, b, c) = (i, j, n+ i− j) defines an isomorphism of complexes. For example, we
can choose these signs by the following rules, which determine them uniquely:

(i) sign((i0, j0, n0 + i0 − j0)) = 1,
(ii) sign((a + 1, b, c)) = sign(a, b, c),

(iii) sign((a, b+ 1, c)) = (−1)csign((a, b, c)),
(iv) sign((, a, b, c+ 1)) = (−1)c+b+1sign((a, b, c)). ��
In the proof of the next theorem we use the notation

σ≥n(Y ) := · · · −→ 0 −→ Yn/im(Yn−1) −→ Yn+1 −→ Yn+2 −→ · · ·
for the truncation of a complex Y at the degree n.

Theorem 6.2 (Auslander-Buchsbaum equality). For any M ε �-mod, it holds

pd�(M)+ depth�(M) = depth�(�).

Proof. (See [24, Theorem 3.2] for the case of graded algebras over a field.) Regard
k, M, � as complexes concentrated in degree zero. Then the invariants in question
are related to each other by the following isomorphism

RHom�(k,M) ∼= RHom�

(
k,�⊗L

� M
) ∼= RHom�(k,�)⊗L

� M,

where we use Proposition 6.1. Choosing a minimal free resolution L of M (see
Appendix) and noting that the truncation

T = σ≥d(RHom�(k,�))

is quasi-isomorphic to RHom�(k,�), we can replace the right term by T ⊗� L.
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The lowest non-zero module in T is T d with d = depth(�) while the low-
est non-zero module in L is L−pd(M) according to Appendix, Corollary 7.2.
So the lowest non-zero module in T ⊗� L becomes (T ⊗� L)d−pd(M) =
T d ⊗� L−pd(M). Obviously, depth(M) ≥ d − pd(M), because depth(M) =
min{i | Hi(RHom�(k,M) �= 0}. So we need to see that Hd−pd(M)(T ⊗� L)
is nonzero.

However, k ∼= Extd�(k,�) = ker(dd
T ) ⊆ T d and the “beginning” of the com-

plex T ⊗� L looks like

0 −→ T d ⊗� L−pd(M) −→ T d ⊗� L−pd(M)+1 ⊕ T d+1 ⊗� L−pd(M) −→ · · · .
Now it holds that

0 �= ker
(
dd

T

)⊗� L−pd(M) ⊆ ker
(
dd−pd(M)

T⊗L

) = Hd−pd(M)(T ⊗� L).

Indeed, for t ⊗ l ε ker(dd
T )⊗� L−pd(M), we have

dd−pd(M)
T⊗L (t ⊗ l) = dd

T (t)⊗ l + (−1)d−pd(M)t ⊗ d−pd(M)
L (l).

The first summand is zero because t ε ker(dd
T )while, due to the minimality of L (cf.

Appendix, Proposition 7.1 (ii)), the second one lies in ker(dd
T )⊗�MLd−pd(M)+1 ∼=

�/M⊗�MLd−pd(M)+1 = 0. ��
Corollary 6.3. If M is a finitely generated�-module, then

pd(M) = max{i | Ei(M) �= 0}.

Proof. Using Lemma 5.5 (ii) and local duality, we get

pd(M) = d − depth(M)

= d −min
{
i
∣∣Hi
M
(M) �= 0

}
= max{i | Ei(M) �= 0}. ��

Remark 6.4. The statement of the last corollary holds over an arbitrary Noetherian
ring for a finitely generated modules M with finite projective dimension pd�M and
can be proven directly in the following way. Consider a projective resolution of
minimal length

0 −→ Pn
dn−→ Pn−1

dn−1−→ · · · −→ P0 −→ M −→ 0.

Then the (n − 1)th syzygy K = ker(dn−2) has projective dimension pd�K = 1,
i.e. DK � E1(K ) ∼= En(M). Hence, En(M) cannot vanish because otherwise K
would be projective.
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7. Appendix: Minimal resolutions

For lack of a reference we give the proofs of some basic facts on minimal reso-
lutions. Let � = Zp[[G]] the completed group algebra over Zp of a finitely gener-
ated pro-p-group G and k = �/M ∼= Fp its residue class field. We assume that
� is Noetherian. For any finitely generated �-module M we have the minimal
representation

�d0 // //ϕ0
M

with d0 = dimk M/MM by the Nakayama-Lemma. Proceeding in the same man-
ner for ker(ϕ0) and d1 = dimk ker(ϕ0)/M ker(ϕ0), we construct a minimal free
resolution

F• : · · · −→ �
dn ϕn−→ �

dn−1 ϕn−1−→ · · · −→ �
d1 ϕ1−→ �

d0 ϕ0−→ M −→ 0.

It is easily verified that F• is determined by M up to isomorphism of complexes.

Proposition 7.1. Let M be a finitely generated�-module and

F• : · · · // Fn //ϕn
Fn−1 //ϕn−1 · · · // F1 //ϕ1

F0 // 0.

a free resolution of M. Then the following are equivalent:

(i) F• is minimal,
(ii) ϕi(Fi) ⊆MFi−1 for all i ≥ 1,

(iii) rk�(Fi) = dimk Tor�i (M, k) for all i ≥ 0,
(iv) rk�(Fi) = dimk Exti�(M, k) for all i ≥ 0.

Proof. The equivalence of (i) and (ii) follows easily from Nakayama’s lemma.
Since Tor�i (M, k) = Hi(F• ⊗ k), (iii) holds if and only if ϕi ⊗ k = 0 for all i ≥ 0,
which is equivalent to (ii). Using Exti�(M, k) = Hi(Hom�(F•, k)) the equivalence
of (ii) and (iv) follows similarly. ��
Corollary 7.2. Let M be a finitely generated�-module. Then

pd(M) = max{i | Fi �= 0}
= max

{
i
∣∣Tor�i (M, k) �= 0

}
= max

{
i
∣∣Exti�(M, k) �= 0

}
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