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1. Introduction

If C is a smooth projective curve of genus g and KC is its canonical bundle, the
theorem of Noether asserts that the multiplication map

µ0 : H0(C, KC )⊗ H0(C, KC )→ H0(C, K⊗2
C

)
is surjective when C is non hyperelliptic.

The theorem of Petri concerns then the ideal I of C in its canonical embedding,
assuming C is not hyperelliptic. It says that I is generated by its elements of degree
2 if C is neither trigonal nor a plane quintic.

In [7], M. Green introduced and studied the Koszul complexes
p+1∧

H0(X, L)⊗ H0(X, Lq−1)
δ→

p∧
H0(X, L)⊗ H0(X, Lq)

δ→
p−1∧

H0(X, L)⊗ H0(X, Lq+1)

for X a variety and L a line bundle on X. Denoting by K p,q(X, L) the cohomology
at the middle of the sequence above, one sees immediately that the surjectivity
of the map µ0 is equivalent to K0,2(C, KC ) = 0, and that if this is the case, the
ideal I is generated by quadrics if and only if K1,2(C, KC ) = 0. On the other hand,
C being non hyperelliptic is equivalent to the fact that the Clifford index Cliff C is
strictly positive, where

CliffC := Min{d − 2r, ∃L ∈ Pic C, d0 L = d, h0(L) = r + 1 ≥ 2, h1(L) ≥ 2}.
Similarly, C is neither hyperelliptic, nor trigonal nor a plane quintic if and only if
Cliff C > 1.

Green’s conjecture on syzygies of canonical curves generalizes then the theo-
rems of Noether and Petri as follows

Conjecture 1. [7] For a smooth projective curve C in characteristic 0, the condi-
tion Cliff C > l is equivalent to the fact that Kl′,2(C, KC ) = 0, ∀l′ ≤ l.
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The interest of this formulation of Noether and Petri’s theorems is already
illustrated in [9], where these theorems are given a modern proof, using geometric
technics of computation of syzygies.

For our purpose, and as is done in [7], it is convenient to use the duality (cf [7])

K p,2(C, KC ) ∼= Kg−p−2,1(C, KC )
∗

to reformulate the conjecture as follows

Conjecture 2. [7] For a smooth projective curve C of genus g in characteristic 0,
the condition Cliff C > l is equivalent to the fact that Kg−l′−2,1(C, KC ) = 0,
∀l′ ≤ l.

If C is now a generic curve, the theorem of Brill-Noether (cf [2], [11]) implies
that

Cliff C = gon(C)− 2

where the gonality gon(C) := Min {d, ∃L ∈ Pic C, d0L = d, h0(L) ≥ 2}, and
that

gon(C) = g+ 3

2
, if g is odd,

gon(C) = g+ 2

2
, if g is even.

Hence we arrive at the following conjecture (the generic Green conjecture on
syzygies of a canonical curve):

Conjecture 3. Let C be a generic curve of genus g. Then if g = 2k+ 1 or g = 2k,
we have Kk,1(C, KC ) = 0.

Remark 1. The actual conjecture is Kl,1(C, KC ) = 0, ∀l ≥ k; but it is easy to
prove that

Kk,1(C, KC ) = 0 ⇒ Kl,1(C, KC ) = 0, ∀l ≥ k.

Notice that in the appendix to [7], Green and Lazarsfeld prove the Conjecture 1 in
the direction⇐ (i. e. they produce non zero syzygies from special linear systems.)
Hence the conjecture above cannot be improved, namely, under the assumptions
above, we have Kk−1,1(C, KC ) �= 0.

Teixidor [16] has recently proposed an approach to the Conjecture 3. Her
method uses a degeneration to a tree of elliptic curves and the theory of limit linear
series of Eisenbud and Harris [6], adapted to vector bundles of higher rank. It is
very likely that her method will lead to a proof of the generic Green conjecture.

We propose here a completely different approach, which does not prove Con-
jecture 3 in odd genus, but proves Green’s conjecture 2 for generic curves C of
genus g(C) and gonality gon(C) in the range

g(C)

3
+ 1 ≤ gon(C) ≤ g(C)

2
+ 1.

The inequality on the left says that the gonality has to be not too small, but the only
case which is excluded by the inequality on the right is that of a generic curve of
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odd genus g, which has gonality g+3
2 . Combined with the results of Teixidor [17],

this shows that Green’s conjecture is true for any generic curve of given gonality,
except for the generic curve of odd genus.

Recall from [11] that if S is a K3 surface endowed with a ample line bundle L
such that L generates Pic S and L2 = 2g − 2, the smooth members C ∈| L | are
of genus g and generic in the sense of Brill-Noether, so that in particular they have
the same Clifford index as a generic curve. Hence Conjecture 1 predicts that their
syzygies vanish as stated in Conjecture 3. This is indeed what we prove here, in
the case where the genus is even. Note first that the hyperplane restriction theorem
[7] says that

Kk,1(C, KC ) = Kk,1(S, L) (1.1)

whenever C is a hyperplane section of a K3 surface S (note that KC = L |C in this
case). Conjecture 3 for curves of even genus is therefore implied by

Theorem 1. The pair (S, L) being as above, with g = 2k, we have

Kk,1(S, L) = 0. (1.2)

The body of the paper will be devoted to the proof of (1.2). It turns out
that Theorem 1 in turn has much stronger consequences than the generic syzygy
conjecture for curves of even genus, and we shall explain this now. In fact we have
the following corollary:

Corollary 1. For any δ ≤ k
2 , the generic curve of genus 2k− δ which is k+ 1− δ-

gonal satisfies

Kk,1(C, KC ) = 0

or equivalently by the duality theorem

Kk−δ−2,2(C, KC ) = 0.

Notice that this result is optimal and exactly predicted by Green’s Conjecture 1,
since the Clifford index of such curve is less than or equal to k − 1− δ. An easy
computation shows that the pairs

g = 2k − δ, gon = k+ 1− δ, k ≥ 0, δ ≤ k

2

are exactly the pairs satisfying the inequalities

g

3
+ 1 ≤ gon ≤ g

2
+ 1.

Hence Green’s conjecture is proved for generic curves of genus and gonality in
this range.
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Proof of Corollary 1. Let (S, L) be as in Theorem 1. A generic member X of | L |
is k + 1-gonal. As in Sect. 2, and following [11], it follows that there is a rank 2
vector bundle E on S with det E = L, c2(E) = k + 1, and h0(E) = k + 2. The
zero set of a generic section of E is a generic member of a g1

k+1 of a generic curve
X ∈| L |.

Now let x1, . . . , xδ be generic points of S. Beacause δ ≤ k
2 , the space

Hx· = H0(S, E ⊗ Ix1 ⊗ . . .⊗ Ixδ )

has rank at least 2. One checks that for generic xi’s, and for α, β generic in this
space, the curve X defined by the equation

det (α ∧ β) ∈ H0(S, det E) = H0(S, L)

is nodal with nodes exactly as the xi’s. On the other hand, the two sections α, β
generate a rank 1 subsheaf of the restriction E|X . Let now

n : C → X

be the normalization. The rank 1 subsheaf introduced above induces a line subbun-
dle

D ⊂ n∗E

with two sections, and it is obvious that the moving part of this linear system on C
is of degree k+1− δ, since the sections λα+µβ of E vanish at the xi’s, so that the
moving part of their zero sets is of degree k + 1− δ. Hence C is k + 1− δ-gonal.
It remains to show that

Kk,1(C, KC ) = 0. (1.3)

Now we have by the hyperplane restriction theorem and by Theorem 1 the vanishing

Kk,1(X, K X ) = 0. (1.4)

We prove now that this implies (1.3). Notice that there is an identification of
H0(C, KC ) with a subspace of H0(X, K X ), namely the last space is a space of
meromorphic forms on C with logarithmic singularities over the nodes satisfying
the condition that the sum of the residues over each node vanishes. H0(C, KC ) is
then the subspace of forms which are regular.

From this inclusion j : H0(C, KC ) ↪→ H0(X, K X ), we can deduce a commu-
tative diagram of Koszul complexes

∧k+1 H0(C, KC ) → ∧k H0(C, KC )⊗ H0(C, KC ) → ∧k−1 H0(C, KC )⊗ H0
(
C, K⊗2

C

)
j ↓ j ↓ j ↓∧k+1 H0(X, K X ) → ∧k H0(X, K X )⊗ H0(X, K X ) → ∧k−1 H0(X, K X )⊗ H0

(
X, K⊗2

X

)
.
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We claim that this induces an inclusion

j : Kk,1(C, KC ) ↪→ Kk,1(X, K X ).

Indeed, consider in general the Koszul differential

δ :
l∧

H0(Y,L)→ H0(Y,L)⊗
l−1∧

H0(Y,L).

Then if

∧ : H0(Y,L)⊗
l−1∧

H0(Y,L)→
l∧

H0(Y,L)

is the wedge product map, one has

∧ ◦ δ = ±l Id. (1.5)

Consider now the inclusion

j : H0(C, KC )⊗
k∧

H0(C, KC )→ H0(X, K X )⊗
k∧

H0(X, K X ).

Let α ∈ H0(C, KC )⊗∧k H0(C, KC ) such that δα = 0 and j(α) = δβ. Then (1.5)
gives

j(α) = δβ = ± 1

k + 1
δ(∧ ◦ δβ)

= ± 1

k + 1
δ(∧( j(α))).

But ∧( j(α)) = j(∧α), so that this implies by injectivity of j that α = ± 1
k+1δ(∧α).

Hence α is in fact exact. Hence our claim is proven. ��
In the missed case of a generic curve of odd genus, we have the following

corollary:

Corollary 2. Let C be a generic curve of genus g = 2k − 1; then

Kk,1(C, KC ) = 0.

(Notice that the generic Green conjecture predicts in fact that Kk−1,1(C, KC ) = 0.)

Proof of Corollary 2. The K3 surface S being as above, let X be a member of | L |
with exactly one node as singularity. Let C be the normalization of X. Then the
genus of C is equal to 2k − 1.

We have as before an inclusion

H0(C, KC ) ↪→ H0(X, K X ) (1.6)

which induces by the same argument as in the proof of Corollary 1 an inclusion

Kk,1(C, KC ) ↪→ Kk,1(X, K X ).
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The hyperplane restriction theorem can be applied to X ⊂ S, and together with the
vanishing (1.2), it gives

Kk,1(X, K X ) = 0.

Hence Kk,1(C, KC ) = 0. ��
We conclude this introduction with a sketch of the main ideas in the proof of

Theorem 1. The very starting point is the following observation: denote by S[l]
the Hilbert scheme parametrizing 0-dimensional length l subschemes of S. Let
Il ⊂ S × S[l] be the incidence subscheme and

Il

��

q

//
πl

S[l]

S

be the incidence correspondence. Let

EL := R0πl∗q∗L

and Ll := det EL . Then we have

Fact. Kl−1,1(S, L) = 0 if and only if

H0(Il, π
∗
l Ll

) = π∗l H0(S[l], Ll
)
.

Our strategy will be then to construct a subvariety Z of S[k+1], such that

H0(Z̃, π∗l Ll
) = π∗l H0(Z, Ll)

where Z̃ := π−1
l (Z), and the restriction map

H0(Il, π
∗
l Ll

)→ H0(Z̃, π∗l Ll
)

is injective.
As in the papers [11], [8], the key role in constructing our variety Z and verifying

the conditions above will be played by the Lazarsfeld-Mukai vector bundle on S
associated with minimal degree base-point free linear systems on smooth members
of | L |.
Terminology. In this paper, we shall say that a Zariski open subset U ⊂ X is large
if the complementary closed subset Z = X −U has codimension non smaller that
2 in X. In the considered cases, the variety X will be normal, and we will use freely
the fact that for a line bundle L on X

H0(X,L) ∼= H0(U,L|U )

for U a large open subset of X.
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2. Strategy of the proof

We start with the following observation: Let X be a smooth projective variety.
Denote by X[k]curv the Hilbert scheme parametrizing curvilinear 0-dimensional sub-
schemes of X of length k. X[k]curv is smooth, and if X is a curve or a surface, it is
a large open set in the Hilbert scheme X[k] which is smooth.

Let

Ik //
πk

��

q

X[k]curv

X

be the incidence correspondence. For a line bundle L on X denote by EL the vector
bundle on X[k]curv defined by EL = R0πk∗q∗L, and let

Lk := det EL .

We have

Lemma 1. There is a natural isomorphism

Kk,1(X, L) ∼= H0(Ik+1, π
∗
k+1 Lk+1)/π

∗
k+1 H0(X[k+1]

curv , Lk+1
)
.

In particular, Kk,1(X, L) = 0 is equivalent to

H0(Ik+1, π
∗
k+1 Lk+1) = π∗k+1 H0(X[k+1]

curv , Lk+1
)
.

Proof. Recall that Kk,1(X, L) is the cohomology at the middle of the sequence

k+1∧
H0(X, L)

δ→ H0(X, L)⊗
k∧

H0(X, L)
δ→ H0(X, L⊗2)⊗

k−1∧
H0(X, L).

(2.7)

Now note that there is a natural morphism

τ : Ik+1 → X × X[k]curv (2.8)

which to (x, z), x ∈ Supp z associates (x, z′), where z′ is the residual scheme of
x in z. This morphism is well defined because we are working with curvilinear
schemes.

One shows easily that τ identifies Ik+1 to a large open subset of the blow-up
of X × X[k]curv along the incidence subscheme Ik. (Indeed, away from Ik the inverse
τ−1 of τ is given by

τ−1((x, z)) = x ∪ z, x ∈ X, z ∈ X[k]curv.)

Furthermore, if D ⊂ Ik+1 is the exceptional divisor one has

π∗k+1 Lk+1 = τ∗(L � Lk)(−D). (2.9)



370 Claire Voisin

This isomorphism is obtained by studying the natural morphism of vector bundles
over Ik+1

π∗k+1EL → τ∗(pr∗1 L ⊕ pr∗2EL),

which at a point z̃ such that τ(z̃) = (x, z′) identifies to the restriction map

H0(L |z̃)→ L |x ⊕ H0(L |z′).

It is immediate to see that the cokernel of this morphism is supported on the
exceptional divisor D of τ and is of rank 1 on D.

It follows that

H0(Ik+1, π
∗
k+1 Lk+1)

= Ker
(
H0(X, L)⊗ H0(X[k]curv, Lk

) rest→ H0(Ik, L � Lk |Ik )
)
. (2.10)

We now apply the description above to Ik: we note that denoting by pi, i =
1, 2, the compositions of the projections with the inclusion Ik ↪→ X × X[k]curv, we
have

p2 = πk, p1 = pr1 ◦ τ ′,
where

τ ′ : Ik → X × X[k−1]
curv

is defined as in (2.8). Hence applying formula (2.9), we get

L � Lk |Ik = τ∗
(
L2 � Lk−1

)
(−D′),

where D′ is now the exceptional divisor of the blowing-down morphism τ ′ : Ik →
X × X[k−1]

curv . So we conclude that there is a natural inclusion

i : H0(Ik, L � Lk |Ik ) ⊂ H0(X, L⊗2)⊗ H0(X[k−1]
curv , Lk−1

)
.

Hence we have constructed from formula (2.10) an exact sequence

0 → H0(Ik+1, π
∗
k+1 Lk+1

) j→H0(X, L)⊗ H0(X[k]curv, Lk
)

i ◦ rest→ H0(X, L⊗2)⊗ H0(X[k−1]
curv , Lk−1

)
.

Next, it is a standard fact that the natural map

l∧
H0(X, L)→ H0(X[l]curv, Ll

)
(2.11)

induced by the evaluation map

H0(X, L)⊗OX[k]curv
→ EL

are isomorphisms for any l. To check this, one considers the large open subset U [l]
of X[l]curv, made of subschemes z which have at most one point of multiplicity 2
as singularity. This set U [l] has the following description: one considers inside Xl

the large open set Xl
0 made of l-uples (x1, . . . , xl), where at most two of the xi’s
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coincide. Inside Xl
0, one blows-up the generalized diagonal ∪i �= j {xi = x j}, which

is smooth there, and one takes the quotient of the resulting variety X̃l
0 by the action

of the symmetric group Sl . By the same argument as above one finds that if

r : X̃l
0 → U [l]

is the quotient map, one has

r∗Ll ∼= L � . . .� L(−E),

where E is the exceptional divisor of the blowing-up map τ ′′ : X̃l
0 → Xl

0. It follows
that one has an identification

H0(X[l]curv, Ll
) = H0(U [l], Ll

) ∼= H0(X̃l
0, τ

′′∗(�i=l
i=1 L

)
(−E)

)Sl .

The last space is a subspace of

H0(Xl
0,�i=l

i=1 L
)Sl ∼= H0(Xl,�i=l

i=1 L
)Sl = (⊗i=l

i=1 H0(X, L)
)Sl .

But looking more closely at the action of Sl on the line bundle r∗Lk, one verifies
that the induced action of Sl on ⊗i=l

i=1 H0(X, L) is the twisted action. Hence the
invariant subspace (⊗i=l

i=1 H0(X, L)
)Sl

is isomorphic to
∧l H0(X, L). One verifies then that the injective map

H0(X[l]curv, Ll
) → l∧

H0(X, L)

so obtained is a left inverse for the map (2.11). ��
Using the isomorphisms (2.11), the exact sequence above becomes

0 → H0(Ik+1, π
∗
k+1 Lk+1

) j→H0(X, L)⊗
k∧

H0(X, L)

i ◦ rest→ H0(X, L⊗2)⊗
k−1∧

H0(X, L),

hence it remains only to show that the maps j ◦ π∗k+1 and i ◦ rest identify via the
isomorphisms (2.11) to the differentials δ of the sequence (2.7), which is easy. ��

We consider now a K3 surface S endowed with an ample line bundle L gener-
ating Pic S and satisfying

L2 = 2g− 2, g = 2k, k > 1.

We now explain our strategy to prove the vanishing

Kk,1(S, L) = 0.

Assume we have a subscheme T ⊂ S[k+1] such that, if T̃ denotes the subvariety
π−1

k+1(T ) of Ik+1, the following conditions are satisfied:
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1. We have an isomorphism

H0(T̃ , π∗k+1 Lk+1
) = π∗k+1 H0(T, Lk+1).

2. The restriction map

H0(Ik+1, π
∗
k+1 Lk+1

) → H0(T̃ , π∗k+1 Lk+1
)

is injective.

Then we claim that Kk,1(S, L) = 0.
Indeed we have the trace maps

tr : H0(Ik+1, π
∗
k+1 Lk+1

)→ H0(S[k+1]
curv , Lk+1

)
trT : H0(T̃ , π∗k+1 Lk+1

) → H0(T, Lk+1)

which commute with the restriction maps and which compose to (k+1) Id with the
pull-back maps. If σ ∈ H0(Ik+1, π

∗Lk+1), there exists by property 1 an element
β ∈ H0(T, Lk+1) such that

σ|T̃ = π∗k+1β.

Then

β = 1

k + 1
trT (σ|T̃ ) =

(
1

k + 1
tr σ

)
|T
.

Hence the section

σ ′ = σ − π∗k+1

(
1

k + 1
Tr σ

)
vanishes on T̃ , hence it is zero by property 2. So we have

H0(Ik+1, π
∗
k+1 Lk+1

) = π∗k+1 H0(S[k+1]
curv , Lk+1

)
and this proves our claim, using Lemma 1.

We will have to weaken the assumptions above as follows: Suppose we have
a normal scheme Z together with a morphism

j : Z → Ik+1

such that πk+1 ◦ j is generically one to one on its image, which is not contained in
the branch locus of πk+1. Suppose also that we have a normal scheme Z ′ together
with a proper degree k morphism π ′ : Z ′ → Z and a morphism j ′ : Z ′ → Ik+1
satisfying the conditions that

πk+1 ◦ j ′ = j ◦ π ′
and the union j(Z)∪ j ′(Z ′) is equal set theoretically to π−1

k+1(πk+1 ◦ j(Z)). Finally
assume there are subschemes Z ′1 ⊂ Z ′, Z1 ⊂ Z such that

π ′|Z ′1 =: φ : Z ′1 → Z1

is a birational isomorphism and j ◦ φ = j ′|Z ′1 .

(Hence roughly speaking, and up to birational maps, π−1
k+1(πk+1 ◦ j(Z)) is the

scheme obtained by gluing Z ′ and Z along Z ′1 ∼= Z1.)
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Assume now that they satisfy the following set (H) of hypotheses

1. The map

π ′∗ : H0(Z, (πk+1 ◦ j)∗Lk+1)→ H0(Z ′, (πk+1 ◦ j ′)∗Lk+1)

is an isomorphism.
2. The restriction map

H0(Z, (πk+1 ◦ j)∗Lk+1
) → H0(Z1, (πk+1 ◦ j)∗Lk+1|Z1

)
is injective.

3. The restriction map

j∗ : H0(Ik+1, π
∗
k+1 Lk+1

) → H0(Z, (πk+1 ◦ j)∗Lk+1
)

is injective.

Then we claim that Kk,1(S, L) = 0.
Indeed by Lemma 1 we have to show that

H0(Ik+1, π
∗
k+1 Lk+1

) = π∗k+1 H0(S[k+1]
curv , Lk+1

)
.

Now if σ ∈ H0(Ik+1, π
∗
k+1 Lk+1), by hypothesis H1, j ′∗σ = π ′∗α for some

α ∈ H0(Z, (πk+1 ◦ j)∗Lk+1). We show now that j∗σ = α. Indeed, by property H2,
it suffices to show that this is true after restriction to Z1, and since φ : Z ′1 → Z1 is
dominating, it suffices to show that

φ∗(α|Z1) = φ∗( j∗σ|Z1).

But this follows from j ◦ φ = j ′|Z ′1 and from j ′∗σ = π ′∗α, with φ = π ′|Z ′1 .

Finally it follows from the equalities α = j∗σ and j ′∗σ = π ′∗α that

σ ′ = σ − π∗
(

1

k + 1
Tr σ

)

vanishes along j(Z)∪ j ′(Z ′). (Indeed, because we know that j(Z) is not contained
in the ramification locus of πk+1 and πk+1 ◦ j : Z → X[k+1]

curv is generically one to
one on its image, the map πk+1 restricted to j(Z) ∪ j ′(Z ′) is generically a degree
k + 1 unramified map onto its image. On the other hand, the two equalities above
say that σ| j(Z)∪ j ′(Z ′) is generically a pull-back of a section of Lk+1 on this image.
Hence the previously used trace argument applies to an open set of this image.)

Now this implies that σ ′ vanishes by hypothesis H3. This concludes the proof
of our claim. ��

We conclude this section with the description of the schemes Z, Z ′ we will be
considering.

Recall from [8], [11], [12], that there is a unique stable bundle E of rank 2 on S,
(the Lazarsfeld-Mukai vector bundle,) which satisfies the following properties:

det E = L, c2(E) = k + 1, h0(E) = k + 2.
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Such vector bundle is obtained by choosing a line bundle D on a generic member
C of | L |, such that h0(D) = 2 and deg D = k + 1. Such a line bundle exists by
Brill-Noether theory, and it is generated by global sections since C does not carry
a g1

k by Lazarsfeld [11]. Then we have a vector bundle F on S defined by the exact
sequence

0 → F → H0(D)⊗OS → D → 0 (2.12)

and E is defined as the dual of F. The stability of E follows from the fact that
Pic S = ZL and H0(S, E(−L)) = 0. The uniqueness of such E follows then from
the fact that χ(E, E′) = 2 for any other vector bundle E ′ with the same numerical
properties, so that either Hom (E, E ′) �= 0 or Hom (E′, E) �= 0. But then by
stability, E = E′.

The property h0(S, E) = k + 2 follows from the sequence dual to (2.12)

0 → H0(D)∗ ⊗OS → E → KC − D → 0, (2.13)

and from Riemann-Roch which gives h0(KC − D) = k.
Another way to construct the bundle E is via Serre’s construction. By Riemann-

Roch the divisors D of degree k + 1 on smooth members C of | L | which satisfy
h0(C, D) = 2 are exactly the subschemes z of degree k + 1 on S contained in
a smooth member C of | L | and satisfying the condition that the restriction map

H0(S, L)→ H0(L |z)

is not surjective. Note that since the curves C are general in the sense of Brill-
Noether, the corank of this map is exactly 1 and furthermore for any z′ � z the
restriction map

H0(S, L)→ H0(L |z′)

is surjective. Hence, since KS is trivial, to such z corresponds a vector bundle E
together with a section σz vanishing on z. This E is an extension

0 → OS
σz→ E →∧σz→ Iz(L)→ 0. (2.14)

Computing the numerical invariants of this bundle E, and arguing as before by
stability, we see that this bundle is isomorphic to the one constructed above. Notice
that each g1

k+1, D on a smooth member C ∈| L | provides by (2.13) a rank 2
subspace of sections of E, and that the zero sets of these sections identify to the
members of | D |, as subschemes of S.

It follows from the exact sequence (2.14) twisted by E that h0(S, E ⊗ Iz) = 1
for any z as above. Hence the morphism

P(H0(S, E))→ S[k+1]

which to σ associates its zero set, is in fact an embedding. One sees easily that
the open set P(H0(S, E))curv corresponding to curvilinear subschemes is large in
P(H0(S, E)).
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Let now W := π−1
k+1(P(H

0(S, E))curv) ⊂ Ik+1. W is easily shown to be
smooth. There is a natural morphism

ψ : W → S[k]curv

defined as the restriction of pr2 ◦ τ to W . This ψ can be shown to be generically
of degree one on its image.

Consider the blow-up S̃×W of S × W along K := (Id, ψ)−1(Ik). It admits

a morphism (̃Id, ψ) to the blow-up of S × S[k]curv along Ik, and the later contains

Ik+1 as a large open set. One verifies that (̃Id, ψ)
−1
(Ik+1) is a large open set of

S̃×W . This will be our scheme Z . The morphism j : Z → Ik+1 will be simply

the restriction to Z of (̃Id, ψ).
Again one can show (using now the assumption that k > 1) that the morphism

πk+1 ◦ j : Z → S[k+1] is generically of degree one on its image.
Next let π ′′ : W̃ → W be the degree k cover obtained by completing the

Cartesian diagram

W̃ //

��

π′′

Ik

��

πk

W //
ψ

S[k]curv .

Consider the rational map

j ′ : S× W̃ −−−− > Ik+1

which to (s, s1, w), s1 ∈ Suppψ(w) associates (s1, s ∪ ψ(w)). This morphism
becomes well defined after blowing-up K ′ := (Id, π ′′)−1

(K ) and restricting to
a large open subset. Our scheme Z ′ will be this large open set. The morphism
π ′ : Z ′ → Z is the restriction to Z ′ of the morphism BlK ′(S× W̃ )→ BlK (S× Z)
induced by (Id, π ′′). The morphism j ′ : Z ′ → Ik+1 is induced by the rational map
j ′ above. We have

πk+1 ◦ j ′ = πk+1 ◦ j ◦ π ′.
Indeed, both maps send (s, s1, w), s1 ∈ Suppψ(w) to s ∪ ψ(w). It is obvious that
π−1

k+1(πk+1 ◦ j(Z)) is equal to j(Z) ∪ j ′(Z ′). Indeed, the fiber over s ∪ ψ(w) ∈
πk+1 ◦ j(Z) consists in choosing one point in the scheme s∪ψ(w). This point may
be s, in which case we are in j(Z), or has to be a point s1 contained in Suppψ(w)
in which case it determines a point (s1, w) of W̃ overw, and we are then in j ′(Z ′).

Remark 2. The scheme Z is non necessarily smooth, but one can show that K is
reduced, so that its singular locus is of codimension at least two in S × W . The
same thing is true for Z ′ and K ′. If one wants to work with smooth schemes Z0
and Z ′0 (so as to be exactly in the conditions (H) described above), it suffices to
restrict to the blowing-ups of S×W − Ksing along K − Ksing and S×W − K ′sing
along K ′ − K ′sing . All what follows will be true for these subschemes.
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To conclude, it remains now to construct Z1 and Z ′1. Z1 will be the exceptional
divisor of Z (recall that Z is a large open set in BlK (S × W )). Hence Z1 is the
inverse image under the blow-up map Z → S×W of

K = {(s, w) ∈ S×W, s ∈ Suppψ(w)}.
We now construct a generic lifting of Z1 in Z ′, the closure of the image of

which will be Z ′1. By definition of Z ′ as a large open set of BlK ′(S× W̃ ), it suffices
to construct a lifting of K to a component of K ′ in S × W̃ . But if (s, w) ∈ K , we
have that s ∈ Suppψ(w) so that (s, w) identifies to an element w̃ of W̃ . Our lifting
sends simply (s, w) to (s, w̃).

It remains finally to see that the morphisms j ′ and j ◦ π ′ agree on Z ′1. Since

Ik+1 is contained in S × S[k+1]
curv , it suffices to prove that pr1 ◦ j ′ and pr1 ◦ j ◦ π ′

agree on Z ′1 and that pr2 ◦ j ′ and pr2 ◦ j ◦ π ′ agree on Z ′1, with pr2 = πk+1 on
Ik+1. For the first one this is obvious since both maps factor through the contraction
Z ′1 → K ′, and are equal on K ′ ⊂ S × W̃ to the first projection on S, as follows
from the definition of the lifting K → K ′.

As for the second one, it follows from the fact that, by construction, πk+1 ◦ j ′
and πk+1 ◦ j ◦ π ′ agree on Z ′. ��

3. Proof of the assumptions H2 and H3

We start with the proof of hypothesis H2.

Proposition 1. Let

Z1 ⊂ Z
πk+1◦ j−−−−→ S[k+1]

be as in the previous section. Then the restriction map

H0(Z, (πk+1 ◦ j)∗Lk+1)→ H0(Z1, (πk+1 ◦ j)∗Lk+1|Z1
)

is injective.

The proof will be obtained by restricting the construction to a generic smooth
member C ∈| L |. Indeed, recall that Z is a large open set in the blow-up of S×W
along the incidence subscheme K = (id, ψ)−1(Ik), where

W = {
(x, σ) ∈ S× P(H0(S, E))curv, σ(x) = 0

}
,

and ψ : W → S[k] sends (x, σ) to the residual scheme of x in V(σ). Now since
k ≥ 1, the generic element z = V(σ) is supported in a pencil of elements of | L |,
the generic member being smooth. It follows that a generic element of S × W is
of the form (s1, s2, z), z = V(σ), σ(s2) = 0 and there exists a smooth member
C ∈| L | such that s1, s2, z are supported on C. Hence it suffices to prove the
analogue of Proposition 1 with Z replaced by ZC , the proper transform of C×WC
in Z ⊂ BlK (S×W ), where

WC := {(c, σ) ∈ C × P(H0(S, E)), σ(c) = 0, V(σ) ⊂ C},
and Z1 is replaced by Z1,C := Z1 ∩ ZC .
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Proposition 2. The restriction map

H0(ZC, (πk+1 ◦ j)∗Lk+1|ZC
)→ H0(Z1, (πk+1 ◦ j)∗Lk+1|Z1,C

)

is injective.

Proof. By the description of the bundle E given in the previous section, we note
that the set

{σ ∈ P(H0(S, E)), V(σ) ⊂ C},
identifies by the map σ %→ V(σ) to the disjoint union of the P1 ⊂ C(k+1) corres-
ponding to g1

k+1’s on C. If D is such a g1
k+1 on C, D gives a morphism of degree

k + 1
φD : C → P1

or a line bundle L D on C of degree k + 1 with two sections. By definition, WC

identifies (via ψ) to the disjoint union of copies CD of C contained in C(k) and
indexed by the g1

k+1’s D of C, where the map

ψD : C ∼= CD → C(k)

is given by

c %→ the unique effective divisor equivalent to D − c.

Finally ZC identifies to a disjoint union of surfaces ZC,D isomorphic to C×C,
since the pull-back�D to C × CD of the incidence scheme in C × C(k) is of pure
codimension 1, so that the blow-up of C×CD along�D is isomorphic to C×CD.
Note that under this isomorphism, the intersection of Z1 with C × CD becomes
identified to �D.

Recall now that on the large open set Z ⊂ S̃×W , we have

(πk+1 ◦ j)∗Lk+1 = τ∗(L � ψ∗Lk)(−Z1).

We have L |C = KC and in the sequel we will use the notation HD for the line
bundle Lk |CD . (It will be shown that HD ≡ kL D but this will not be used now.)
Restricting the equality above to ZC , we have to show that for each D the restriction
map

H0(C × C, KC � HD(−�D))→ H0(�D, KC � HD(−�D)|�D)

is injective. In other words we want to show that

H0(C × C, KC � HD(−2�D)) = 0. (3.15)

Now, since�D is the restriction to C×CD of the incidence scheme, and since CD

parametrizes the effective divisors of the form L D − x, x ∈ C, it is clear that

�D = (φD, φD)
−1(diag (P1))− diag (C).

Hence we have
�D ≡ L D � L D − diag (C)
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in C × C. It follows that

KC � HD(−2�D) ≡ (KC − 2L D)� (HD − 2L D)+ 2diag C.

Now we have the equality

H0(C, KC − 2L D) = 0, (3.16)

which is proven in [11], since C is generic in S. (Indeed for a base point free pencil,
| L D |, the condition that the µ0-map

H0(C, L D)⊗ H0(C, KC − L D)→ H0(C, KC )

is injective is equivalent by the base-point free pencil trick to the condition

H0(C, KC − 2L D) = 0.)

The equality (3.15) follows now from (3.16) and from the fact that the map
H0(C, 2L D)→ H0(2L D|2x) is surjective for generic x in C. Hence by Riemann-
Roch, H0(C, KC − 2L D) = 0 implies H0(C, KC − 2L D + 2x) = 0 for generic
x ∈ C. It follows that

H0(C × C, (KC − 2L D)� (HD − 2L D)+ 2diag C) = 0,

which proves the Proposition 2, and hence Proposition 1 is proven. ��
We turn now to the proof of hypothesis H3.

Proposition 3. The morphism Z
j→ Ik+1 being defined as in the previous section,

the pull-back map

j∗ : H0(Ik+1, π
∗
k+1 Lk+1)→ H0(Z, (πk+1 ◦ j)∗Lk+1)

is injective.

The proof proceeds in several steps, and occupies the remainder of this section.
Recall that Ik+1 is a large open set in the blow-up of S × S[k] along the incidence
subscheme Ik and that we have the following formula

π∗k+1 Lk+1 = τ∗(L � Lk)(−D),

where D is the exceptional divisor and τ is the blowing-up map. Since Z is
a large open set in the proper transform of this blowing-up under the morphism
(Id, ψ) : S×W → S × S[k], it suffices to prove

Proposition 4. The restriction map

ψ∗ : H0(S[k], Lk
) → H0(W, ψ∗Lk)

is injective.
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In order to prove this proposition, we first show

Lemma 2. Denoting by π : W → P(H0(S, E)) the restriction of the morphism
πk+1 : Ik+1 → S[k+1], we have the formula

ψ∗Lk = π∗OP(H0(S,E))(k).

Proof. By definition, ψ∗Lk = det ψ∗EL,k, where the bundle EL,k has for fiber
H0(L |z) at a point z ∈ S[k]. Now, if z ∈ W , the scheme z′ = ψ(z) has length k,
hence the restriction map

H0(S, L)→ H0(L |z′)

is surjective. On the other hand if z′′ = π(z), we have z′ ⊂ z′′ and the restriction
map

H0(S, L)→ H0(L |z′′)

is not surjective. Hence we have

H0(S, L ⊗ Iz′ ) = H0(S, L ⊗ Iz′′),

and the fiber ofψ∗EL,k at z is canonically isomorphic to H0(S, L)/H0(S, L⊗Iπ(z)).
Hence we have

ψ∗Lk = −π∗detF,

where the bundle F on P(H0(S, E)) is the bundle with fiber H0(S, L ⊗ Izσ ) at
σ, zσ = V(σ). Now recall that for each σ we have the exact sequence

0 → OS
σ→ E

∧σ→ Izσ (L)→ 0.

This induces the exact sequence

0 →< σ >→ H0(S, E)
∧σ→ H0(S,Izσ (L))→ 0.

We conclude immediately from this that F fits into the exact sequence

0 → OP(H0(S,E))(−2)→ H0(S, E)⊗OP(H0(S,E))(−1)→ F → 0.

Since rank H0(S, E) = k + 2, it follows that det F = OP(H0(S,E))(−k). ��
It follows from this lemma that we have a natural inclusion

Sk H0(S, E)∗ ↪→ H0(W, ψ∗Lk). (3.17)

(It will be proven in the next section that this inclusion is in fact an isomorphism,
but we shall not need this here.)

Our strategy to prove Proposition 4 will be first to construct an isomorphism

H0(S[k], Lk) = ∧k H0(S, L) ∼= Sk H0(S, E)∗ (3.18)

and then to show that composed with the inclusion (3.17), it is equal, up to a coef-
ficient, to the pull-back map ψ∗.
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Construction of the isomorphism (3.18). We note first that the determinant map

det :
2∧

H0(S, E)→ H0(S, det E) = H0(S, L)

does not vanish on any element of rank 2. Indeed, such an element of rank 2 is
given by a subspace W of rank 2 of H0(S, E), and if its determinant would vanish
this would imply that W generates a rank 1 subsheaf of E with at least two sections.
But since Pic S is generated by L and H0(S, E(−L)) = 0 this is impossible.Hence
det provides a morphism

d : G2 → P(H0(S, L)),

where G2 is the Grassmannian of rank two vector subspaces of H0(S, E), or dually
a base-point free linear system

K := H0(S, L)∗ d∗→ H0(G2,L) = ∧2 H0(S, E)∗,

whereL is the Plücker polarization on G2. Notice that since rank K = 2k+ 1, and
dim G2 = 2k, d∗ has to be injective. Since K is base-point free, we have the exact
Koszul complex on G2

0 →
2k+1∧

K ⊗ L−(2k+1)→ . . .→ K ⊗ L−1 → OG2 → 0.

We can now tensor this sequence with SkE , where the rank 2 vector bundle E on
G2 is dual to the tautological rank two subbundle and satisfies H0(G2, SkE) =
Sk H0(S, E)∗.

This provides the exact complex

0 →
2k+1∧

K ⊗ L−(2k+1) ⊗ SkE → . . .→ K ⊗ L−1 ⊗ SkE → SkE → 0.

(3.19)

In this complex K., the term SkE is put in degree 0. The hypercohomology
H 0(G2,K·) vanishes. Now we have a spectral sequence

E p,q
1 = Hq(G2,K

p)⇒ H p+q(G2,K
·).

It is obvious for degree reasons that all differentials dr starting from the term E0,0
r

vanish. On the other hand the terms E p,q
1 with p+ q = −1 are of the form

Hq(G2,

q+1∧
K ⊗ L−q−1 ⊗ SkE

)
.

Using the Proposition 9 proven in the appendix, we see that these terms are all 0,
except for

E−k−1,k
1 = Hk(G2,

k+1∧
K ⊗ L−k−1 ⊗ SkE

)
,
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which is equal to
∧k+1 K . It follows that there is only one non zero differential

which arrives in some E0,0
r , namely

dk+1 : E−k−1,k
k+1 → E0,0

k+1.

This implies that

E0,0
k+1 = E0,0

1 = H0(G2, SkE
) = Sk H0(S, E)∗

and that the differential dk+1 above is surjective, since the spectral sequence abuts
to 0. Hence we have build a surjective map dk+1 from a subquotient of E−k−1,k

1 =∧k+1 K to Sk H0(S, E)∗. Since

dim
k+1∧

K = dim Sk H0(S, E)∗ = Ck+1
2k+1

this subquotient must in fact be equal to
∧k+1 K and the map dk+1 has to be an

isomorphism. Finally, since rank K = 2k + 1,

k+1∧
K = (

k∧
K )∗ =

k∧
H0(S, L).

Hence we have constructed our isomorphism

dk+1 :
k∧

H0(S, L)→ Sk H0(S, E)∗.

��
To conclude the proof of Proposition 4, it remains only to show:

Proposition 5. The map dk+1 constructed above identifies up to a coefficient to
the map

ψ∗ : H0(S[k], Lk
) ∼= k∧

H0(S, L)→ H0(W, ψ∗Lk),

which takes values in Sk H0(S, E)∗ ⊂ H0(W, ψ∗Lk).

Proof. First of all it is clear that ψ∗ takes values in π∗H0(P(H0(S, E)),O(k)) =
Sk H0(S, E)∗. Indeed, this map is the pull-back map associated to the morphism

W → Grass(k + 1, H0(S, L))

z %→ H0(S, L ⊗ Iz′ ), z′ = ψ(z).
But as mentioned in the proof of Lemma 2, this morphism factors through π :
W → P(H0(S, E)). More precisely, we noticed in the proof of Lemma 2 that the
restriction map

ψ∗ : ∧k H0(S, L)→ Sk H0(S, E)∗

corresponds to the morphism

P(H0(S, E))→ Grass(k + 1, H0(S, L))
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σ %→ det(σ ∧ H0(S, E)).

But this morphism is the composition of the morphism

β : P(H0(S, E))→ Grass(k + 1,
2∧

H0(S, E))

σ %→ σ ∧ H0(S, E).

and of the rational map

det : Grass(k + 1,
2∧

H0(S, E))→ Grass(k + 1, H0(S, L))

induced by the determinant map det :∧2 H0(S, E)→ H0(S, L).
Next, we note that, with the same spectral sequence argument, and replacing

K = H0(S, L)∗ ⊂ ∧2 H0(S, E)∗ by the base point free linear system K ′ =∧2 H0(S, E)∗ on G2, we could have constructed more generally a surjective map

Dk+1 :
k+1∧
(

2∧
H0(S, E)∗)→ Sk H0(S, E)∗,

whose restriction to
∧k+1 K is equal to dk+1.

Hence Proposition 5 will follow from the following

Lemma 3. The maps Dk+1 and β∗ from
∧k+1

(
∧2 H0(S, E)∗) to Sk H0(S, E)∗

coincide up to a coefficient.

Proof. We could argue by Sl(k+ 2)-equivariance. A more direct way to prove this
is to note the following: If W ⊂ ∧2 H0(S, E)∗ is a rank k + 1 vector subspace in
general position, it defines a codimension k + 1 complete intersection subvariety
GW of G2. Consider the incidence correspondence

P //
f

��

g

P(H0(S, E))

G2

Then we have a hypersurface XW = f(g−1)(GW ) of P(H0(S, E)), which is easily
proven to be of degree k. It is clear that

H0(G2, SkE ⊗ IGW

) = H0(P(H0(S, E)),OP(H0(S,E))(k)(−XW )
)
.

On the other hand, from the linear system W we can construct a Koszul complex
which is a resolution of IGW . Hence it is clear that

Dk+1(

k+1∧
W ) ⊂ H0(G2, SkE ⊗ IGW

)
.



On Green’s generic syzygy conjecture 383

In other words, if η is a generator of
∧k+1 W , Dk+1(η) is a defining equation of

XW or 0. It remains then only to prove that β∗η also vanishes on XW . But by
definition

XW = {x ∈ P(H0(S, E)), ∃0 �= γ ∈ P(H0(S, E)/ < x >), x ∧ γ ⊥ W}.
This means that for x ∈ XW , the composed map

W ↪→
2∧

H0(S, E)∗ → (x ∧ H0(S, E))∗

is not an isomorphism, hence its determinant vanishes. But this determinant is
equal to β∗η(x). ��

4. Proof of the assumption H1

Recall that we have a Cartesian diagram

Z ′

��
τ ′

//π′
Z

��

τ

S× W̃ //
(Id,π′′)

S×W

where the vertical maps τ, τ ′ are blow-ups and the degree k morphism π ′′ fits into
the Cartesian diagram

W̃

��

π′′

// Ik

��

πk

W //
ψ

S[k]curv .

We have the morphisms

j ′ : Z ′ → Ik+1, j : Z → Ik+1

such that πk+1 ◦ j ′ = πk+1 ◦ j ◦ π ′ and the formula

(πk+1 ◦ j)∗Lk+1 = τ∗(L � ψ∗Lk)(−D)

where D is the exceptional divisor of τ . Pulling-back this equality to Z ′, we have

(πk+1 ◦ j ′)∗Lk+1 = τ ′∗(L � (ψ ◦ π ′′)∗Lk)(−D′),

where D′ is the exceptional divisor of τ ′. Since D′ = π ′−1
(D) and π ′ is surjective,

we conclude that in order to prove H1, that is the fact that the pull-back map

π ′∗ : H0(Z, (πk+1 ◦ j)∗Lk+1)→ H0(Z ′, (πk+1 ◦ j ′)∗Lk+1)

is surjective, it suffices to show that the pull-back map

π ′′∗ : H0(W, ψ∗Lk)→ H0(W̃ , (ψ ◦ π ′′)∗Lk)

is surjective.
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Now recall that we have a morphism

π : W → P(H0(S, E))

such that (cf Lemma 2)

ψ∗Lk = π∗OP(H0(S,E))(k).

Denoting by r := π ◦ π ′′ : W̃ → P((H0(S, E)), we shall prove the following
stronger statement

Theorem 2. The pull-back map

r∗ : H0(P(H0(E)),OP(H0(E))(k)
)→ H0(W̃, (ψ ◦ π ′′)∗Lk) (4.20)

is surjective.

The end of this section will be devoted to the proof of this theorem, which proceeds
in several steps. In what follows, we shall use the notation H0(E) for H0(S, E).

Notice to begin with that W̃ is a large open set in the subscheme

W ′ ⊂ S̃× S× P(H0(E)),

where S̃× S is the blow-up of S× S along the diagonal, defined as

W ′ := {(x, y, η, σ), σ|η=0, {x}, {y} ⊂ η}.
(Here η is a subscheme of length 2 of S, and we see elements of S̃ × S as elements
(x, y) of S× S together with a schematic structure η of length 2 on {x} ∪ {y}.)

The map r is just the restriction to W ′ of the second projection. Hence we have

H0(W̃, (ψ ◦ π ′′)∗Lk) = H0(W ′, pr∗2OP(H0(E))(k))

and the surjectivity of (4.20) is equivalent to the condition

H1(S̃ × S × P(H0(E)), pr∗2O(k)⊗ IW ′
) = 0. (4.21)

Now notice that there is a vector bundle Ẽ2 on S̃× S such that W ′ is the zero set
of a section σ of Ẽ2 � OP(H0(E))(1). Indeed it suffices to take for Ẽ2 the vector

bundle with fiber H0(E|η) at the point (x, y, η) of S̃× S. Then the section σ takes

the value τ|η at the point (x, y, η, τ) of S̃× S× P(H0(E)). One checks easily that
W ′ is reduced of codimension 4. Hence we have a Koszul resolution of IW ′

0 →
4∧

Ẽ∗2 �O(−4)→ . . .→ Ẽ∗2 �O(−1)→ IW ′ → 0. (4.22)

Our first goal will be to compute the cohomology groups of S̃ × S × P(H0(E))
with value in

∧i Ẽ∗2 � O(k − i). Since k ≥ 2, i ≤ 4, O(k − i) has no higher
cohomology on P(H0(E)) = Pk+1. Hence we have

Hl(S̃ × S×P(H0(E)),
i∧

Ẽ∗2�O(k−i)
) = Hl(S̃ × S,

i∧
Ẽ∗2

)⊗Sk−i H0(S, E)∗.

We have now the following proposition
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Proposition 6. 1. H2(S̃× S, Ẽ∗2) = pr∗1 H2(S, E∗)⊕ pr∗2 H2(S, E∗) and

H1(S̃ × S, Ẽ∗2) = 0.

2. H2(S̃× S,
∧2 Ẽ∗2) = pr∗1 H2(S,−L)⊕ pr∗2 H2(S,−L).

3. H4(S̃× S,
∧4 Ẽ∗2) is dual to Ker (H0(S, L)⊗ H0(S, L)→ H0(S, 2L)).

4. H3(S̃× S,
∧3 Ẽ∗2) = 0 and H4(S̃ × S,

∧3 Ẽ∗2) admits as a quotient

H4(S̃× S, τ∗(E∗ � (−L))(2�))⊕ H4(S̃ × S, τ∗((−L)� E∗)(2�)),

which is dual to the direct sum of two copies of

Ker (H0(S, E)⊗ H0(S, L)→ H0(S, E ⊗ L)).

(Here � ⊂ S̃ × S is the exceptional divisor.)

Proof. 1. The bundle Ẽ2 fits into the exact sequence

0 → Ẽ2 → τ∗(pr∗1 E ⊕ pr∗2 E)→ τ ′∗E → 0 (4.23)

where τ : S̃× S → S× S is the blowing-down map, and where τ ′ : �→ Diag S
is its restriction to the exceptional divisor.

Dualizing, we get the following exact sequence

0 → τ∗(pr∗1 E∗ ⊕ pr∗2 E∗)→ Ẽ∗2 → τ ′∗E∗ ⊗O�(�)→ 0. (4.24)

Now R0τ ′∗O�(�) = R1τ ′∗O�(�) = 0 hence the sheaf on the right has no co-
homology. It follows that

Hi(S̃× S, Ẽ∗2) = Hi(S̃× S, τ∗(pr∗1 E∗ ⊕ pr∗2 E))

= Hi(S × S, pr∗1 E∗ ⊕ pr∗2 E).

Since E∗ has no odd dimensional cohomology, nor OS, it follows from Künneth
formula that the same is true for pr∗1 E∗ ⊕ pr∗2 E on S× S. Finally we have

H2(S× S, pr∗1 E∗) = H2(S, E∗)

since H0(S, E∗) = 0. This proves 1.
2. From (4.24) we deduce that

∧2 Ẽ∗2 has a filtration whose successive terms
are

2∧
τ∗(pr∗1 E∗ ⊕ pr∗2 E∗), τ∗(pr∗1 E∗ ⊕ pr∗2 E∗)⊗ τ ′∗E∗ ⊗O�(�),

2∧
τ ′∗E∗ ⊗O�(2�).
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The sheaf (pr∗1 E∗ ⊕ pr∗2 E∗)⊗ τ ′∗E∗ ⊗O�(�) has no cohomology, sinceO�(�)
has no cohomology along the fibers of τ ′. Hence we have an exact sequence

H1(�,

2∧
τ ′∗E∗ ⊗O�(2�))→ H2(S̃ × S, τ∗

2∧
(pr∗1 E∗ ⊕ pr∗2 E∗))

→ H2(S̃ × S,
2∧

Ẽ∗2)→ H2(�,

2∧
τ ′∗E∗ ⊗O�(2�)) . . .

But since
R1τ ′∗(2�|�) = OS, R0τ ′∗(2�|�) = 0,

the term on the left is equal to H0(S,
∧2 E∗) = 0 and the term on the right is equal

to H1(S,
∧2 E∗) = 0. Hence we have

H2(S̃× S,
2∧

Ẽ∗2) = H2(S̃× S, τ∗
2∧
(pr∗1 E∗ ⊕ pr∗2 E∗))

= H2(S× S,
2∧
(pr∗1 E∗ ⊕ pr∗2 E∗)).

Finally

2∧
(pr∗1 E∗ ⊕ pr∗2 E∗) = pr∗1

2∧
E∗ ⊕ E∗ � E∗ ⊕ pr∗2

2∧
E∗.

The central term has no cohomology in degree 2 by Künneth formula, because
H1(S, E∗) = H0(S, E∗) = 0, and we have

H2(S× S, pr∗1
2∧

E∗) = H2(S,
2∧

E∗) = H2(S,−L),

where the first equality follows from Künneth formula and H0(S,
∧2 E∗) = 0.

This proves 2.
3. We have det Ẽ∗2 = τ∗((−L) � (−L))(2�) by the exact sequence (4.23).

Hence

3∧
Ẽ∗2 = Ẽ2 ⊗ det Ẽ∗2 = Ẽ2 ⊗ τ∗((−L)� (−L))(2�). (4.25)

The exact sequence (4.23) gives now the long exact sequence

H2(�, τ ′∗(E(−2L))(2�|�))→ H3(S̃× S,
3∧

Ẽ∗2)

→ H3(S̃ × S, τ∗((pr∗1 E ⊕ pr∗2 E)⊗ ((−L)� (−L)))(2�)).

Since R0τ ′∗O�(2�) = 0, R1τ ′∗O�(2�) = OS, the left hand side is equal to
H1(S, E(−2L)), which is easily seen to be 0.

Next we have K
S̃×S

= O
S̃×S

(�), hence

H3(S̃× S, τ∗(pr∗1 E ⊕ pr∗2 E)⊗ ((−L)� (−L)))(2�))
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is dual to

H1(S̃ × S, τ∗((pr∗1 E∗ ⊕ pr∗2 E∗)⊗ (L � L))(−�)). (4.26)

Writing the exact sequence

0 → τ∗((pr∗1 E∗ ⊕ pr∗2 E∗)⊗ (L� L))(−�)→ τ∗((pr∗1 E∗ ⊕ pr∗2 E∗)⊗ (L� L))

→ τ∗((pr∗1 E∗ ⊕ pr∗2 E∗)⊗ (L � L))|�→ 0

where

τ∗((pr∗1 E∗ ⊕ pr∗2 E∗)⊗ (L � L))|� ∼= τ ′∗((E∗ ⊕ E∗)(2L)),

and using the isomorphism
E∗ ⊗ L ∼= E,

we see that the vanishing of the cohomology group (4.26) follows from the fact
that the multiplication map

H0(S, E)⊗ H0(S, L)→ H0(S, E ⊗ L)

is surjective, which is easily checked, and from the vanishing

H1(S× S, (pr∗1 E∗ ⊕ pr∗2 E∗)⊗ L � L) = 0.

Finally the equality (4.25) and the exact sequence (4.23) also show that

H4(S̃× S,
∧3 Ẽ∗2) admits

H4(S̃× S, τ∗((pr∗1 E ⊕ pr∗2 E)⊗ ((−L)� (−L)))(2�))

as a quotient. By Serre’s duality this space is dual to

H0(S̃ × S, τ∗((pr∗1 E∗ ⊕ pr∗2 E∗)⊗ (L � L))(−�)). (4.27)

But this is equal to

H0(S× S, (pr∗1 E∗ ⊕ pr∗2 E∗)⊗ (L � L)⊗ IDiag).

We use then the fact that

pr∗1 E∗ ⊗ (L � L) = E � L

to conclude that (4.27) is equal to the sum of two copies of

Ker (H0(S, E)⊗ H0(S, L)→ H0(S, E ⊗ L)).

4. We already noticed that

4∧
Ẽ∗2 = det Ẽ∗2 = τ∗((−L)� (−L))(2�).

It follows then from Serre’s duality and K
S̃×S

= O
S̃×S

(�) that H4(S̃× S,
∧4 Ẽ∗2)

is dual to

H0(S̃ × S, τ∗(L � L)(−�)) = Ker (H0(S, L)⊗ H0(S, L)→ H0(S, 2L))).

Hence 4 is proven. ��
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Coming back to the Koszul resolution of IW ′ ⊗ pr∗2O(k) induced by (4.22),
we see that in order to prove the vanishing (4.21), it suffices to show:

a) H1(S̃× S× P(H0(E)), Ẽ∗2 �O(k − 1)) = 0.
b) The interior product with σ

int(σ) : H2(S̃ × S × P(H0(E)),
2∧

Ẽ∗2 �O(k − 2)
)

→ H2(S̃× S× P(H0(E)), Ẽ∗2 �O(k − 1)
)

is injective.

c) H3(S̃× S× P(H0(E)),
∧3 Ẽ∗2 �O(k − 3)) = 0.

d) The interior product with σ

int(σ) : H4(S̃ × S × P(H0(E)),
4∧

Ẽ∗2 �O(k − 4)
)

→ H4(S̃× S× P(H0(E)),
3∧

Ẽ∗2 �O(k − 3)
)

is injective.

The conditions a) and c) have been established in Proposition 6. We now dualize
property b) as follows: by Proposition 6, 1 and 2, we have

H2(S̃× S× P(H0(E)),
2∧

Ẽ∗2 �O(k − 2)
)

= (
pr∗1 H2(S,−L)⊕ pr∗2 H2(S,−L)

)⊗ Sk−2 H0(S, E)∗,

H2(S̃× S× P(H0(E)), Ẽ∗2 �O(k − 1)
)

= (
pr∗1 H2(S, E∗)⊕ pr∗2 H2(S, E∗)

)⊗ Sk−1 H0(S, E)∗.

Dualizing, we get

H2(S̃× S× P(H0(E)),
2∧

Ẽ∗2 �O(k − 2)
)∗

= (H0(S, L)⊕ H0(S, L))⊗ Sk−2 H0(S, E),

H2(S̃× S× P(H0(E)), Ẽ∗2 �O(k − 1)
)∗

= (H0(S, E)⊕ H0(S, E))⊗ Sk−1 H0(S, E).

It is then immediate to check that the transpose of the map int(σ) is the map ∧σ ,
so that b) translates into the condition that

∧ σ : (H0(S, E)⊕ H0(S, E))⊗ Sk−1 H0(S, E)

→ (H0(S, L)⊕ H0(S, L))⊗ Sk−2 H0(S, E)

is surjective.
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Now retracing through the isomorphisms given by Proposition 6, one checks
that the map∧σ is up to sign equal to the direct sum of two copies of the composed
map

µ : H0(S, E)⊗ Sk−1 H0(S, E)→H0(S, E)⊗ H0(S, E)⊗ Sk−2 H0(S, E)
det⊗id−−−→H0(S, L)⊗ Sk−2 H0(S, E).

Similarly statement d) dualizes as follows: by Proposition 6, the space

H4(S̃ × S,
4∧

Ẽ∗2 �O(k − 4)) ∼= H4(S̃ × S,
4∧

Ẽ∗2)⊗ Sk−4 H0(S, E)∗

is dual to

Ker (H0(S, L)⊗ H0(S, L)→ H0(S, 2L))⊗ Sk−4 H0(S, E).

Next, we know by Proposition 6, 4, that

H4(S̃ × S,
3∧

Ẽ∗2 �O(k − 3)) ∼= H4(S̃ × S,
3∧

Ẽ∗2)⊗ Sk−3 H0(S, E)∗

admits a quotient which is dual to the direct sum of two copies of

Ker (H0(S, E)⊗ H0(S, L)→ H0(S, E ⊗ L))⊗ Sk−3 H0(S, E)).

Denoting by QE,L := Ker (H0(S, E) ⊗ H0(S, L) → H0(S, E ⊗ L)), QL,E :=
Ker (H0(S, L) ⊗ H0(S, E) → H0(S, E ⊗ L)) and QL,L = Ker (H0(S, L) ⊗
H0(S, L)→ H0(S, 2L)), we have an inclusion

(QL,E ⊕ QE,L)⊗ Sk−3 H0(S, E) ⊂ H4(S̃× S,
3∧

Ẽ∗2 �O(k − 3))∗

and to prove d) it suffices to show that the map dual to int(σ) restricts on this
subspace to a surjection

∧σ : (QL,E ⊕ QE,L)⊗ Sk−3 H0(S, E)→ QL,L ⊗ Sk−4 H0(S, E).

But retracing through the isomorphisms of Proposition 6 and recalling the definition
of σ , one checks easily that the first component

∧σ1 : QL,E ⊗ Sk−3 H0(S, E)→ QL,L ⊗ Sk−4 H0(S, E)

of the map above is the following composite

µ′ : QL,E ⊗ Sk−3 H0(S, E) ⊂ H0(S, L)⊗ H0(S, E)⊗ Sk−3 H0(S, E)→
H0(S, L)⊗ H0(S, E)⊗ H0(S, E)⊗ Sk−4 H0(S, E)

id⊗det⊗id−−−−−−→ H0(S, L)⊗ H0(S, L)⊗ Sk−4 H0(S, E),

which takes obviously value in QL,L⊗Sk−4 H0(S, E), while the second component
is equal to the first composed with the permutation exchanging factors on both sides.
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To conclude then that

∧σ : (QL,E ⊕ QE,L )⊗ Sk−3 H0(S, E)→ QL,L ⊗ Sk−4 H0(S, E)

is surjective, it suffices to show that

µ′− : QL,E ⊗ Sk−3 H0(S, E)→ Q−L,L ⊗ Sk−4 H0(S, E)

and
µ′+ : QL,E ⊗ Sk−3 H0(S, E)→ Q+L,L ⊗ Sk−4 H0(S, E)

are surjective, where Q+L,L , (resp. Q−L,L ) are the symmetric, resp. antisymmetric
part of QL,L and µ′+ (resp. µ′−) are the composition of µ′ with the projections on
the symmetric (resp. antisymmetric) part of QL,L .

In conclusion, Theorem 2 (or the vanishing (4.21)) will be a consequence of
the following propositions

Proposition 7. The composed map

µ : H0(S, E)⊗ Sk−1 H0(S, E)→ H0(S, E)⊗ H0(S, E)⊗ Sk−2 H0(S, E)

det→ H0(S, L)⊗ Sk−2 H0(S, E)

is surjective.

Proposition 8. a) The map

µ′− : QL,E ⊗ Sk−3 H0(S, E)→ Q−L,L ⊗ Sk−4 H0(S, E)

defined above is surjective.
b) The map

µ′+ : QL,E ⊗ Sk−3 H0(S, E)→ Q+L,L ⊗ Sk−4 H0(S, E)

defined above is surjective.

Proof of Proposition 7. Let α, β ∈ H0(S, E) and γ ∈ H0(S, L) such that

γ = det(α ∧ β).
Then we observe first that if D ⊂ H0(S, E) is the rank 2 vector subspace generated
by α and β, we have

γ ⊗ Sk−2 D ⊂ Im µ

since the composite

D⊗ Sk−1 D → D⊗ D⊗ Sk−2 D →
2∧

D⊗ Sk−2 D

is surjective.
Recall now that the map det determines a morphism

d : G2 → PH0(S, L)
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which is surjective and finite since both spaces are of the same dimension 2k. The
fiber d−1(γ) is then a finite subscheme Zγ ⊂ G2 which is the complete intersection
of a space W of hyperplane sections of the Grassmannian G2.

Now by the above observation, and since d is surjective, it suffices to show that
the subspaces Sk−2 D for D ∈ Zγ generate Sk−2 H0(S, E). If we dualize, this is
equivalent to say that the dual map

Sk−2 H0(S, E)∗ → ⊕D∈Zγ Sk−2 D∗

is injective. But this map identifies to the restriction

H0(G2, Sk−2E
)→ H0(Zγ , Sk−2E|Zγ

)
,

at least for a reduced Zγ , which will be the case for a generic γ .
Hence it suffices to show that

H0(G2, Sk−2E ⊗ IZγ

) = 0. (4.28)

Now we use the Koszul resolution

0 →
2k∧

W ⊗ L−2k → . . .→ W ⊗ L−1 → IZγ → 0.

The vanishing (4.28) will then follow from the vanishing

Hi(G2, Sk−2E ⊗ L−i−1), i = 0, 2k − 1

which is proved in Proposition 9 of the appendix. ��
Proof of Proposition 8, a). Notice first that the natural composed map

3∧
H0(S, E)→

2∧
H0(S, E)⊗ H0(S, E)

det⊗id−−−→ H0(S, L)⊗ H0(S, E)

has its image contained in QL,E . Hence it suffices to show that the following
composite

µ′′ :
3∧

H0(S, E)⊗ Sk−3 H0(S, E)→
2∧

H0(S, E)⊗H0(S, E)⊗ Sk−3 H0(S, E)

det⊗µ−−−→ H0(S, L)⊗ H0(S, L)⊗ Sk−4 H0(S, E)→
2∧

H0(S, L)⊗ Sk−4 H0(S, E)

is surjective.
Now note that for α1, α2, α3 ∈ H0(S, E)

µ′′
(
α1 ∧ α2 ∧ α3 ⊗ αk−3

3

) = 2(k − 3)det(α2 ∧ α3) ∧ det(α1 ∧ α3)⊗ αk−4
3 .

(4.29)
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Fix now γ ∈ H0(S, L) and consider the set of couples (α1, α3) such that

det(α1 ∧ α3) = γ.
For any α2 and any such (α1, α3), we have

µ′′
(
α1 ∧ α2 ∧ α3 ⊗ αk−3

3

) = 2(k − 3)det(α2 ∧ α3) ∧ γ ⊗ αk−4
3 .

Note that the vector α3 for such pairs takes arbitrary value in some of the lines
D ∈ Zγ , where the notations are as in the previous proposition.

Now we have the map

µ′′′ : H0(S, E)⊗ Sk−3 H0(S, E)→ H0(S, L)⊗ Sk−4 H0(S, E)

analogous to µ and the formula above shows that

µ′′
(
α1 ∧ α2 ∧ α3 ⊗ αk−3

3

) = 2γ ∧ µ′′′(α2 ⊗ αk−3
3

)
.

With the same proof as in the previous proposition, one shows now that the
Sk−3 D, D ∈ Zγ generate Sk−3 H0(S, E) and that µ′′′ is surjective. Hence the
α2⊗αk−3

3 , α3 ∈ D, D ∈ Zγ generate H0(S, E)⊗Sk−3 H0(S, E) and theµ′′′(α2⊗
αk−3

3 ), α3 ∈ D, D ∈ Zγ generate by the surjectivity of µ′′′ the space H0(S, L)⊗
Sk−4 H0(S, E). Hence Im µ′′ contains γ ∧ H0(S, L) ⊗ Sk−4 H0(S, E), and since
γ was generic, we conclude that µ′′ is surjective. ��
Proof of Proposition 8, b). We want to prove that

µ′+ : QL,E ⊗ Sk−3 H0(S, E)→ Q+L,L ⊗ Sk−4 H0(S, E)

is surjective. Denote similarly, for C a generic member of | L |,
QKC ,E := Ker

(
H0(C, KC )⊗ H0(C, E|C)→ H0(C, E ⊗ KC )

)
,

Q+KC ,KC
:= Ker

(
S2 H0(C, KC )→ H0(C, K⊗2

C

))
.

Then we can define

µ′+,C : QKC ,E ⊗ Sk−3 H0(C, E|C)→ Q+KC ,KC
⊗ Sk−4 H0(C, E|C)

as the composite

QKC ,E⊗Sk−3 H0(C, E|C) ⊂ H0(C, KC )⊗ H0(C, E|C)⊗ Sk−3 H0(C, E|C)
→ H0(C, KC )⊗ H0(C, E|C)⊗ H0(C, E|C)⊗ Sk−4 H0(C, E|C)
id⊗det⊗id−−−−−−→ H0(C, KC )⊗ H0(C, KC )⊗ Sk−4 H0(C, E|C)
→ S2 H0(C, KC )⊗ Sk−4 H0(C, E|C).

Now the restriction map H0(S, E) → H0(C, E|C) is an isomorphism, and the
restriction map H0(S, L) → H0(C, KC ) is surjective with kernel σ , the defining
equation of C. Hence the restrictions induce a surjection

QL,E → QKC ,E
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and an isomorphism
Q+L,L ∼= Q+KC ,KC

,

and it suffices to show that µ′+,C is surjective. A fortiori it suffices to show that the
composite

µ′C : QKC ,E ⊗ Sk−3 H0(C, E|C)⊂H0(C, KC )⊗ H0(C, E|C)⊗ Sk−3 H0(C, E|C)
→ H0(C, KC )⊗ H0(C, E|C)⊗ H0(C, E|C)⊗ Sk−4 H0(C, E|C)

id⊗det⊗id−−−−−−→ H0(C, KC )⊗ H0(C, KC )⊗ Sk−4 H0(C, E|C)

which takes value in QKC ,KC := Ker (H0(C, KC )
⊗2 → H0(C, K⊗2

C )), is surjec-
tive on this last space.

Let us now consider the following diagram of exact sequences

0 → QKC ,E ⊗ Sk−3 H0(C, E|C) → H0(C, KC )⊗ H0(C, E|C)⊗ Sk−3 H0(C, E|C)
µ′C ↓ id ⊗ µC ↓

0 → QKC ,KC ⊗ Sk−4 H0(C, E|C)→ H0(C, KC )⊗ H0(C, KC )⊗ Sk−4 H0(C, E|C)

→ H0(C, E ⊗ KC )⊗ Sk−3 H0(C, E|C) → 0

µC,KC ↓
→ H0(

C, K⊗2
C

)⊗ Sk−4 H0(C, E|C) → 0

,

where the vertical maps µC and µC,KC are defined in a way similar to µ e.g µC is
the composite

H0(C, E|C)⊗ Sk−3 H0(C, E|C) ⊂ H0(C, E|C)⊗ H0(C, E|C)⊗ Sk−4 H0(C, E|C)

det⊗id−−−→ H0(C, KC )⊗ Sk−4 H0(C, E|C),

and µC,KC is defined similarly with a twist by KC .
One checks easily the surjectivity of the multiplication maps on the left.
The proof of Proposition 7 shows as well that µC is surjective, as is µC,KC by

the commutativity of the diagram above. Hence the surjectivity of µ′C will follow
by diagram chasing from the surjectivity of the induced multiplication map

H0(C, KC )⊗ KerµC → KerµC,KC . (4.30)

In what follows we will use again the notation H0(E) for H0(S, E) = H0(C, E|C).
Define the vector bundleQ on C as the kernel of the surjective composite morphism
of vector bundles

Sk−3 H0(E)⊗ E ⊂ Sk−4 H0(E)⊗ H0(E)⊗ E
id⊗det−−−→ Sk−4 H0(E)⊗ KC.

Then we clearly have

KerµC = H0(C,Q), KerµC,KC = H0(C,Q⊗ KC )
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so that the surjectivity of the map (4.30) is equivalent to the surjectivity of the
multiplication map

H0(C,Q)⊗ H0(C, KC )→ H0(C,Q⊗ KC ). (4.31)

Now we proceed as follows: let σ ∈ H0(S, L) be the defining equation for C.
Recall the finite reduced subscheme Zσ = d−1(σ) ⊂ G2 made of the rank 2 vector
subspaces D of H0(S, E) such that det D = σ . For each such D, there is a line
subbundle L D of E on C, of degree k+1 with two sections without common zeroes
(see Sect. 2). The space D identifies naturally to H0(C, L D).

Clearly the image of the inclusion

Sk−3 H0(C, L D)⊗ L D ⊂ Sk−3 H0(E)⊗ E

is contained inQ.
Let now

N := ⊕D∈Zσ Sk−3 D⊗ L D.

Then by the observation above we have a morphism

α : N → Q.
The surjectivity of 4.31 will follow from the following three lemmas:

Lemma 4. The morphism α is surjective.

DenotingM := Kerα we also prove

Lemma 5. The vector bundleM is generated by its sections.

Lemma 6. The space H0(C,M) is generated by the subspaces H0(C,M(−x)),
x ∈ C.

We explain first how these three lemmas imply our result. Using the exact sequence

0 →M→ N → Q→ 0

given by Lemma 4, we see that the map (4.31) will be surjective if the multiplication
map

H0(C,N )⊗ H0(C, KC )→ H0(C,N ⊗ KC )

is surjective, and H1(C,M⊗ KC ) = 0.
The first condition is easy to check. Indeed N is a direct sum of line bundles

L D corresponding to g1
k+1’s on C, and the result is easy to prove for each of them.

As for the second condition, it is equivalent to H0(C,M∗) = 0 by Serre’s duality.
But sinceM is generated by sections by Lemma 5, we have an inclusion

H0(C,M∗) ⊂ H0(C,M)∗.

The image of this inclusion obviously vanishes on each subspace H0(C,M(−x)),
hence it must be 0 since we know by Lemma 6 that these subspaces generate
H0(C,M). ��
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To conclude the proof of 8,b) it remains only to prove these three lemmas.

Proof of Lemma 4. First of all we note that the bundleQ is generated by its sections,
since there is a natural surjection

Sk−2 H0(E)⊗OC → Q→ 0.

Hence it suffices to show that the map

H0(C,N )→ H0(C,Q)

is surjective.
But by definition

H0(C,Q) = Ker
(
H0(E)⊗ Sk−3 H0(E)

µC→ H0(C, KC )⊗ Sk−4 H0(E)
)

and
H0(C,N ) = ⊕D∈Zσ D⊗ Sk−3 D.

Hence we need to show that the sequence

⊕D∈Zσ D⊗ Sk−3 D → H0(E)⊗ Sk−3 H0(E)
µC→ H0(C, KC )⊗ Sk−4 H0(E)

is exact at the middle. Again this will follow from a cohomological computation on
the Grassmannian G2. Indeed, the notations being as in the proof of Propositions 4
and 7, the sequence above dualizes as

IZσ (L)⊗ Sk−4 H0(G2, E)→ H0(G2, E)⊗ Sk−3 H0(G2, E)

→ H0(E ⊗ Sk−3E|Zσ
)
, (4.32)

where the map

IZσ (L)⊗ Sk−4 H0(G2, E)→ H0(G2, E)⊗ Sk−3 H0(G2, E)

is composed of the inclusion

IZσ (L)⊗ Sk−4 H0(G2, E) ⊂ H0(G2,L)⊗ Sk−4 H0(G2, E)

∼= ∧2 H0(G2, E)⊗ Sk−4 H0(G2, E)

and of the (Koszul) map

∧2 H0(G2, E)⊗ Sk−4 H0(G2, E)→ H0(G2, E)⊗ Sk−3 H0(G2, E).

One checks easily that H0(G2, E)⊗Sk−3 H0(G2, E) ∼= H0(G2, E⊗Sk−3E). Hence
the kernel in the middle identifies to H0(G2, E ⊗ Sk−3E ⊗ IZσ ). Furthermore
Sk−4 H0(G2, E) ∼= H0(G2, Sk−4E) identifies to H0(G2, E ⊗ Sk−3E ⊗ L−1) via
the (Koszul) inclusion

Sk−4E ⊗ L = Sk−4E ⊗
2∧
E ⊂ E ⊗ Sk−3E .
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Hence the exactness at the middle of the sequence 4.32 will follow from the
surjectivity of the multiplication map

H0(G2, E ⊗ Sk−3E ⊗ L−1)⊗ IZσ (L)→ H0(G2, E ⊗ Sk−3E ⊗ IZσ

)
. (4.33)

Now let W := IZσ (L). The Koszul resolution of IZσ

0 →
2k∧

W ⊗ L−2k → . . .→ W ⊗ L−1 → IZσ → 0

twisted by E ⊗ Sk−3E shows that the surjectivity of (4.33) will hold if we know
that

Hi(G2, E ⊗ Sk−3E ⊗ L−i−1) = 0, 1 ≤ i < 2k.

Since we have the exact sequence

0 → Sk−4E ⊗ L→ E ⊗ Sk−3E → Sk−2E → 0,

it suffices to know that

Hi(G2, Sk−4E ⊗ L−i) = 0, 1 ≤ i < 2k,

and
Hi(G2, Sk−2E ⊗ L−i−1) = 0, 1 ≤ i < 2k.

This is proved in Proposition 9. ��
Proof of Lemma 5. The bundlesN andQ are generated by global sections. To prove
thatM is generated by global sections, it suffices to prove that for any x ∈ C, the
restriction map H0(C,N (−x))→ H0(C,Q(−x)) is surjective. For each g1

k+1 L D

on C, denote by σD,x ∈ H0(C, L D) ∼= D a generator for H0(C, L D(−x)). We need
to show the exactness of the sequence

⊕D∈Zσ σD,x ⊗ Sk−3 D → H0(C, E(−x))⊗ Sk−3 H0(E)
µC→ H0(C, KC(−x))⊗ Sk−4 H0(E). (4.34)

(Indeed, by definition,⊕D∈Zσ σD,x ⊗ Sk−3 D identifies to H0(C,N (−x)) and

Ker (H0(C, E(−x))⊗ Sk−3 H0(E)
µC→ H0(C, KC(−x))⊗ Sk−4 H0(E))

identifies to H0(C,Q(−x)).)
Denote by Kx ⊂ H0(E) the subspace H0(C, E(−x)). Note that via the identifi-

cation H0(C, L D) = D ⊂ H0(E), σD,x becomes a generator of the 1-dimensional
vector space D ∩ Kx . Furthermore, Kx being of codimension 2 in H0(E) de-
termines a section τx ∈ ∧2 H0(E)∗ up to a coefficient. Clearly τx belongs to
H0(C, KC )

∗ ⊂ ∧2 H0(E)∗ and identifies also to the linear form on H0(C, KC )

defining H0(C, KC(−x)). Let Gx ⊂ G2 be the hyperplane section defined by τx .
The scheme Zσ is a complete intersection of hyperplane sections of Gx . The variety

Gx admits a desingularization Px
g→ Gx defined as

Px = {(u,�) ∈ P(Kx)× G2, u ∈ � ∩ Kx}.
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Note that if

P

��

f

//
g

G2

P(H0(E))

is the incidence variety, Px can also be defined as f −1(P(Kx)) ⊂ P.
Each line D parametrized by Zσ meets Kx along a one dimensional vector

space, because L D has no base-point, so that H0(L D(−x)) ∼= D ∩ Kx is 1-
dimensional. It follows that the scheme Zσ can also be seen as the complete
intersection in Px of hypersurfaces in | g∗L |.

We now dualize the sequence (4.34). The space H0(C, KC(−x)) admits for
dual the space W ⊂ H0(Px, g∗L) defining Zσ ⊂ Px . The vector space< σD,x >

∗
identifies clearly to the fiber of the line bundle Hx := f ∗OP(Kx)(1) at the point
D ∈ Zσ . Hence our sequence dualizes as

W ⊗ Sk−4 H0(E)∗ → f ∗H0(P(Kx),O(1))⊗ H0(Px, g∗Sk−3E
)

→ H0(Sk−3E ⊗ Hx| Zσ
)
. (4.35)

The second space in this sequence is easily shown to identify to H0(Px, g∗Sk−3E⊗
Hx), so that the kernel at the middle is equal to

H0(Px, g∗Sk−3E ⊗ Hx ⊗ IZσ

)
.

The first map in (4.35) is induced by the isomorphism

Sk−4 H0(E)∗ ∼= H0(Px, g∗Sk−4E
)
,

the multiplication

W ⊗ H0(Px, g∗Sk−4E
) → H0(Px, g∗(Sk−4E ⊗ L)⊗ IZσ

)
and the composed bundle map

g∗
(
Sk−4E ⊗ L) → g∗

(
Sk−3E ⊗ E) → g∗Sk−3E ⊗ Hx,

where the last map is induced by the natural surjective map g∗E → Hx.
The exactness of (4.35) will then follow from the surjectivity of

W ⊗ H0(Px, g∗(Sk−3E ⊗ L−1)⊗ Hx
) → H0(Px, g∗Sk−3E ⊗ Hx ⊗ IZσ

)
(4.36)

and from the equality

H0(Px, g∗(Sk−3E ⊗ L−1)⊗ Hx
) = H0(Px, g∗Sk−4E

)
. (4.37)

This last equality is proved as follows: on Px we have the exact sequence

0 → g∗L⊗ H−1
x → g∗E → Hx → 0,
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which gives

0 → g∗Sk−4E ⊗ g∗L⊗ H−1
x → g∗Sk−3E → Hk−3

x → 0.

Tensoring this with Hx ⊗ L−1 we get

0 → g∗Sk−4E → g∗(Sk−3E ⊗ L−1)⊗ Hx → g∗L−1 ⊗ Hk−2
x → 0.

But the right hand side has no non-zero sections since it is of negative degree on
the fibers of f . Hence the equality (4.37).

Since Zσ ⊂ Px is the complete intersection of the space W of sections of g∗L,
we have a Koszul resolution of IZσ , which takes the form

0 →
2k−1∧

W ⊗ g∗L−2k−1 → . . .→ W ⊗ g∗L−1 → IZσ → 0.

We can tensor it with g∗Sk−3E ⊗ Hx, and the surjectivity of the map (4.36) will
follow from the following vanishing

Hi(Px, g∗(Sk−3E ⊗ L−i−1)⊗ Hx
) = 0, 1 ≤ i < 2k − 1 = dim Px . (4.38)

Recall now that Px ⊂ P is the complete intersection of two sections of H =
f ∗OP(H0(E))(1), with Hx = H|Px . The vanishing (4.38) will then follow from

Hi(P, g∗(Sk−3E ⊗ L−i−1)⊗ H ) = 0, 1 ≤ i < 2k − 1

Hi+1(P, g∗(Sk−3E ⊗ L−i−1)) = 0, 1 ≤ i < 2k − 1

Hi+2(P, g∗(Sk−3E ⊗ L−i−1)⊗ H−1) = 0, 1 ≤ i < 2k − 1.

The second equality follows immediately from the Proposition 9, and the third is
obvious since H−1 has no cohomology on the fibers of g. The first equality is
proven as follows: we have

Hi(P, g∗Sk−3E ⊗ L−i−1)⊗ H) = Hi(G2, Sk−3E ⊗ E ⊗ L−i−1),
since R0g∗H = E . Now we have the exact sequence on G2

0 → Sk−4E ⊗ L→ Sk−3E ⊗ E → Sk−2E → 0.

Hence the needed equality will follow from the vanishings

Hi(G2, Sk−4E ⊗ L−i) = 0,

Hi(G2, Sk−2E ⊗ L−i−1) = 0,

for 1 ≤ i < 2k−1, which are proved in proposition (9). Hence Lemma 5 is proven.
��
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Proof of Lemma 6. Let x1, . . . , x2k−1 be points of C in general position. We will
show that the natural map

⊕i H0(C,M(−xi))→ H0(C,M) (4.39)

is surjective.
Recall that

H0(C,M) = Ker ⊕D∈Zσ Sk−3 D⊗ D → Sk−3 H0(E)⊗ H0(E).

It follows from this, using the identifications

H0(E)∗ = H0(G2, E), D∗ ∼= ED

that

H0(C,M)∗ = Coker H0(G2, Sk−3E ⊗ E) → H0(Sk−3E ⊗ E|Zσ
)

= H1(G2, Sk−3E ⊗ E ⊗ IZσ
)
.

Similarly

H0(C,M(−xi)) = Ker ⊕D∈Zσ Sk−3 D⊗ σD,xi → Sk−3 H0(E)⊗ Kxi

which, with the notations of the previous proof, dualizes to

H0(C,M(−xi))
∗ = Coker

(
H0(Pxi , g∗Sk−3E⊗Hxi

)→ H0(Zσ , Sk−3E⊗Hxi

))
= H1(Pxi , g∗Sk−3E ⊗ Hxi ⊗ IZσ

)
,

where we view Zσ as a subscheme of Pxi as well. Hence we have to show that the
natural map (induced by the morphism g∗E → Hxi on Pxi )

H1(G2, Sk−3E ⊗ E ⊗ IZσ

)→⊕i H1(Pxi , g∗Sk−3E ⊗ Hxi ⊗ IZσ

)
(4.40)

is injective.
Let R ⊂ G2 be the curve which is the complete intersection of the sections

σxi ∈ H0(G2,L). We have first

Fact. The restriction map

H0(G2, Sk−3E ⊗ E) → H0(R, Sk−3E ⊗ E|R
)

is surjective.

Using the Koszul resolution of ID this is obtained by application of the Propo-
sition 9. ��
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From this we conclude that the restriction map

H1(G2, Sk−3E ⊗ E ⊗ IZσ

)→ H1(R, Sk−3E ⊗ E|R ⊗ IZσ

)
is injective.

Consider now the fibered product

R̃ := Px1 ×G2 × . . .×G2 Px2k−1 .

Denote by g̃ : R̃ → R ⊂ G2 the natural morphism. One shows easily that the curve
R̃ is isomorphic to R excepted over the intersection of R with the Grassmannian
of lines in P(Kxi ) for some i. Here R has nodes, which are replaced in R̃ by lines.

(This fact is obviously true set theoretically, and is proved scheme theoretically
by the computation of the canonical bundles, which gives:

K R̃ = g̃∗K R.)

The zero set Zσ is supported away of this singular locus. For each i we have
a natural restriction map

H1(Pxi , g∗Sk−3E ⊗ Hxi ⊗ IZσ

)→ H1(R̃, g̃∗Sk−3E ⊗ Hxi ⊗ IZσ

)
,

since R̃ = Px1 ×G2 . . .×G2 Px2k−1 admits a natural morphism to Pxi . Next we have
by the above description of R̃ an isomorphism

H1(R, Sk−3E ⊗ E|R ⊗ IZσ
) ∼= H1(R̃, g̃∗Sk−3E ⊗ E ⊗ IZσ

)
and it follows that the injectivity of the map (4.40) will be a consequence of the
injectivity of the map

H1(R̃, g̃∗Sk−3E ⊗ E ⊗ IZσ

) →⊕i H1(R̃, g̃∗Sk−3E ⊗ Hxi ⊗ IZσ

)
(4.41)

induced by the morphisms g̃∗E → Hxi on R̃. Recall now that Zσ ⊂ R is defined
by a section of L so that similarly Zσ ⊂ R̃ is defined by a section of g̃∗L. Hence
we have

IZσ
∼= g̃∗L−1.

Furthermore

K R̃ = g̃∗K R = g̃∗
(
KG2 |R ⊗ L2k−1) = g̃∗Lk−3.

Hence the map (4.41) dualizes by Serre’s duality as the map

⊕i H0(R̃, g̃∗Sk−3E∗ ⊗ H∗
xi
⊗ g̃∗L⊗ g̃∗Lk−3) (4.42)

→ H0(R̃, g̃∗(Sk−3E∗ ⊗ E∗)⊗ g̃∗L⊗ g̃∗Lk−3) (4.43)

given by the inclusions H∗
xi
⊂ g̃∗E∗ on R̃. Since det E = L, we have

E∗ ⊗ L ∼= E,
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Hence (4.42) rewrites as

⊕i H0(R̃, g̃∗(Sk−3E ⊗ L)⊗ H∗
xi

) → H0(R̃, g̃∗(Sk−3E ⊗ E)) (4.44)

given by the inclusions
H∗

xi
⊗ g̃∗L ⊂ g̃∗E .

We want to show that (4.41) is injective, or that (4.44) is surjective. We already
noticed that the restriction map

H0(G2, Sk−3E ⊗ E) = Sk−3 H0(E)∗ ⊗ H0(E)∗

→ H0(R, Sk−3E ⊗ E) = H0(R̃, g̃∗(Sk−3E ⊗ E))
is surjective. On the other hand, consider the 2-dimensional subspace K⊥xi

⊂
H0(E)∗. It is obvious that it parametrizes sections of

Ker
(
H0(Pxi , g∗E)→ H0(Pxi , Hxi)

) = H0(Pxi , g∗L⊗ H∗
xi
).

Hence the surjective map

Sk−3 H0(E)∗ ⊗ H0(E)∗ → H0(R̃, g̃∗(Sk−3E ⊗ E))
sends Sk−3 H0(E)∗ ⊗ K⊥xi

in the subspace H0(R̃, g̃∗(Sk−3E ⊗ L)⊗ H∗
xi
).

Now since the xi’s are generic, the spaces K⊥xi
generate H0(E)∗, hence the

Sk−3 H0(E)∗ ⊗K⊥xi
’s generate Sk−3 H0(E)∗⊗H0(E)∗. Hence we have shown that

(4.44) is surjective.
��

5. Appendix

We consider the Grassmannian G2 of rank 2 vector subspaces of a k+2-dimensional
vector space V . Let L be the line bundle on G2 whose sections give the Plücker
embedding. If E is the dual of the tautological subbundle S ⊂ V ⊗OG2 , we have
L = det E . The cohomology groups H p(G2,L−q ⊗ Sq′E) are described in the
following proposition.

Proposition 9. For q > 0, q′ > 0, we have

H p(G2,L
−q ⊗ Sq′E

) = 0 if p �= k, 2k.

Furthermore, for p = k, we have

H p(G2,L
−q ⊗ Sq′E

) = 0 if − q + q′ + 1 < 0,

and for p = 2k, we have

H p(G2,L
−q ⊗ Sq′E

) = 0 if − q + q′ ≥ −k − 1.



402 Claire Voisin

Proof. Let

P //
g

��

f

G2

P(V )

be the incidence variety. P is a P1-bundle over G2 and a Pk-bundle over P(V ). Let
H := f ∗OP(V )(1) and let L ′ = g∗L. Then E = R0g∗H and Sq′E = R0g∗(q′H ).
It follows that we have

H p(G2,L
−q ⊗ Sq′E

) = H p(P,−qL ′ + q′H ).

Next the line bundle L ′ restricts toO(1) on the fibers of π. It follows from this that

K P = −(k + 1)L ′ − 2H,

and K P/P(V ) = −(k + 1)L ′ + kH .
Now since q > 0 we have Rl f∗(−qL ′ + q′H ) = 0 for l < k and hence

H p(P,−qL ′ + q′H ) = H p−k(P(V ), Rk f∗(L ′ + q′H )). (5.45)

By Serre’s duality, we have

Rk f∗(−qL ′ + q′H ) = (R0 f∗(qL ′ − q′H − (k + 1)L ′ + kH ))∗

= (R0 f∗((q − (k + 1))L ′ + (k − q′)H ))∗.

Now we have

R0 f∗((q − (k + 1))L ′) = 0 (5.46)

if q < k + 1, and

R0 f∗((q − (k + 1))L ′) ∼= Sq−k−1(�P(V )(2)) (5.47)

for q ≥ k + 1. (The isomorphism (5.47) for q − k + 1 = 1 follows from the
isomorphism

H0(P, L ′) = H0(G2,L) =
2∧

V ∗ = H0(P(V ),�P(V )(2))

and from the comparison of the kernels of the surjective evaluation maps

H0(P, L ′)→ H0( f −1(x), L ′)

and

H0(P(V ),�P(V )(2))→ �P(V )(2)x .)
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Finally we conclude from (5.45), (5.46) and (5.47) that

1. H p(P,−qL ′ + q′H ) = 0 for p < k.
2. H p(P,−qL ′ + q′H ) = 0 for q < k + 1.
3. For p ≥ k, q ≥ k + 1,

H p(P,−qL ′ + q′H ) = H p−k(P(V ), Sq−k−1(TP(V )(−2))(q′ − k)).

To conclude, consider the Euler exact sequence

0 → OP(V )(−1)→ V ⊗OP(V )→ TP(V )(−1)→ 0.

It induces the exact sequences

0 → Sq−k−2V ⊗OP(V )(−q + q′)→ Sq−k−1V ⊗OP(V )(−q + q′ + 1)

→ Sq−k−1(TP(V )(−1))(−q + q′ + 1)→ 0.

Hence we conclude that the space H p(G2,L−q⊗ Sq′E)which by the above is also
isomorphic to

H p−k(P(V ), Sq−k−1(TP(V )(−2))(q′ − k)
)

= H p−k(P(V ), Sq−k−1(TP(V )(−1))(−q + q′ + 1)
)

is equal to 0 for p− k �= 0, k (since p ≤ 2k), and that:
– for p− k = 0 it is 0 if −q + q′ + 1 < 0;
– for p− k = k it is 0 if −q + q′ ≥ −k − 1. ��
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