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Abstract. In this paper, we establish rectifiability of the jump set of an S1–valued con-
servation law in two space–dimensions. This conservation law is a reformulation of the
eikonal equation and is motivated by the singular limit of a class of variational problems.
The only assumption on the weak solutions is that the entropy productions are (signed)
Radon measures, an assumption which is justified by the variational origin. The methods
are a combination of Geometric Measure Theory and elementary geometric arguments used
to classify blow–ups.

The merit of our approach is that we obtain the structure as if the solutions were
in BV, without using the BV–control, which is not available in these variationally motivated
problems.

Key words. entropy solutions – partial regularity – singular perturbation – conservation
laws – rectifiability

1. Introduction

1.1. Motivation

Consider an energy functional of the form

Fε(mε) =
∫

�

(
ε |∇mε|2 + 1

ε

(
1 − |mε|2

)2)+ 1

ε

∫
R2

∣∣∇−1(∇ · mε)
∣∣2 (1)

defined on the space of vector fields m : � → R2. Here
∫

R2

∣∣∇−1(∇ · mε)
∣∣2 =
∫

R2
|∇u|2 where − �u = ∇ · mε.

In this paper, we study the regularity of elements m of the “asymptotic admissible
set”. By the asymptotic admissible set of a sequence of functionals {Fε}ε↓0, we
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understand the set of all strong limits m (say, in L p(�) for all p < ∞) of sequences
{mεn}n↑∞ which are bounded in energy.

What can we expect? In view of the 1
ε
–terms in (1), such a limit m satisfies

|m|2 = 1 a.e. and ∇ · m = 0 distributionally. (2)

There are two ways of looking upon (2) which are particular to two space dimen-
sions. The first point of view is: since ∇ · m = 0, there exists a stream function ψ

such that m can be written as its gradient rotated by π
2 , that is, ⊥∇ψ = m. Then

the first condition of (2) turns into the eikonal equation

|∇ψ|2 = 1 a.e. . (3)

The second point of view is: since |m|2 = 1, we may introduce a phase θ such that
m can be written as (m1, m2) = (cos θ, sin θ). Then the second condition of (2)
turns into a scalar conservation law

∂ cos θ

∂x1
+ ∂ sin θ

∂x2
= 0 distributionally. (4)

Both (3) and (4) are rigid for smooth ψ resp. θ , as can be seen from the charac-
teristics of these first order equations. But they practically lose all this rigidity if
ψ is only Lipschitz or θ is only an essentially bounded function. The concept of
viscosity solution resp. of entropy solution restores the “right amount” of rigidity.
But these concepts seem a priori unrelated to our variational problem.

Which properties beyond (2) can be expected? In view of the ε in front of
the Dirichlet integral, finite–energy limits m will not be smooth in general. As
we shall presently see, the scaling of the energy Fε is just such that it “sees”
one–dimensional discontinuities (jumps) of the limit m. In view of (2), the normal
component of m is continuous across jumps. The line–energy density associated
with jumps of m can be inferred from the one–dimensional version of (1), the local
variational problem

F̃ε(mε) :=
∫ (

ε

∣∣∣∣dmε

dx1

∣∣∣∣
2

+ 1

ε

(
1 − |mε|2

)2 + 1

ε
(mε,1 − m0,1)

2

)
dx1 . (5)

Here m0,1 corresponds to the (prescribed) normal component of m. Rescaling
length as x1 = ε x̂1, one sees that the line–energy density is indeed O(1) in ε. More
precisely, a standard calculation shows that for m±

0 ∈ S1 with m±
0,1 = m0,1,

min
{

F̃ε(mε) | mε → m±
0 as x1 → ±∞

}
= O
(∣∣m+

0 − m−
0

∣∣3). (6)

The fact that the line–energy density is O(1) in ε naively suggests that a finite–
energy limit m has a moderately regular one–dimensional discontinuity set. The
cubic degeneracy O(|m+

0 − m−
0 |3) in the jump size |m+

0 − m−
0 | on the other hand

indicates that we possibly do not control the total variation of m (more discussion
on this in Subsect. 1.4). In the main result of this paper, Theorem 1, we will
nevertheless establish regularity properties for m as if it were of bounded variation.
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1.2. Statement of result

The point of view (4) suggests to borrow the concept of entropies from conservation
laws to further characterize the asymptotic admissible set. Following [13], we
introduce

Definition 1. A smooth and compactly supported function � : R2 → R2 will be
called an entropy if for every open set � and every smooth m : � → R2 we have(∇ · m = 0 and |m|2 = 1

) 	⇒ ∇ · [�(m)] = 0.

A particular set of entropies has first been introduced by Jin and Kohn as
“calibrations” to establish lower bounds on the energy which are optimal in the
limit ε ↓ 0 [19]. Later, the concept of entropies, together with other tools from
conservation laws such as the div–curl–Lemma and Young measures, has been
used to establish

{Fε(mε)}ε↓0 bounded 	⇒ {mε}ε↓0 ⊂ L p precompact,

see [2], [13], [26]. An important ingredient was the estimate
∣∣∫∇ · [�(mε)]ζ

∣∣ ≤ C�

(
Fε(mε) sup |ζ | + (ε Fε(mε)

∫ |∇ζ |2)1/2
)

(7)

for an arbitrary entropy � and test function ζ . As a variation of Definition 1.3
in [2], this motivates the following:

Definition 2. We call A(�) the set of essentially bounded m : � → R2 with (2)

and such that for every entropy �,

µ� := ∇ · [�(m)] is a measure of locally finite total variation.

We call the µ�’s entropy measures.

In view of (7), the asymptotic admissible set is a subset of A(�). Our main
result is on the structure of m ∈ A(�):

Theorem 1. For m ∈ A(�) there exists J ⊂ � such that

(a) J isH1 σ–finite and rectifiable;
(b) forH1–a.e. x ∈ J,

lim
r↓0

1

r2

∫
Br(x)

|m(y) − m̄x,r | dy = 0,

where m̄x,r is the average of m on Br(x);
(c) forH1–a.e. x ∈ J, there exist m+(x), m−(x) ∈ S1 with

lim
r↓0

1

r2

{∫
B+

r (x)
|m(y) − m+(x)| dy +

∫
B−

r (x)
|m(y) − m−(x)| dy

}
= 0,

where B±
r (x) := {y ∈ Br(x)| ± y · η(x) > 0} and η(x) is a unit vector normal

to J in x;
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(d) for every entropy �

µ� J = [η · (�(m+) − �(m−))]H1 J, (8)

µ� K = 0 for any K ⊂ � \ J with H1(K ) < ∞. (9)

This is somewhat less than what we would get for free if m had bounded total
variation using the fine properties of BV functions and the Vol’pert Chain Rule (see
Sect. 3.7 and Theorem 3.96 of [3]). Despite the fact that we cannot expect bounded
total variation, we conjecture that m has the same structure. Hence we expect that
points (b) and (d) can be improved to

Conjecture 1.

(b’) forH1–a.e. x ∈ J , x is a Lebesgue point of m.
(d’) µ� = [η · (�(m+) − �(m−))]H1 J for every entropy �.

1.3. Mathematical context

Why are we interested in (1)? Because its asymptotic admissible set contains the
asymptotic admissible sets for two other problems which have been intensively
studied in the past years:

Problem 1. The functionals

F1
ε (mε) =

∫
�

(
ε |∇mε|2 + 1

ε

(
1 − |mε|2

)2)
(10)

on the set of vector fields satisfying ∇ · mε = 0.

Problem 2. The functionals

F2
ε (mε) =

∫
�

ε |∇mε|2 + 1

ε

∫
R2

∣∣∇−1(∇ · mε)
∣∣2 (11)

on the set of vector fields satisfying |mε|2 = 1.

Problem 1 was first considered by Aviles and Giga [6]. It was later proposed by
Gioia and Ortiz [24] as a model for delamination of compressed thin elastic films
(“blisters”), where the stream function ψ is the height of the delamination (for more
on modeling of thin–film blistering phenomena see [8]). Since then, many partial
results on the asymptotic admissible set and the limiting variational problem (the
�–limit) have been obtained: [6], [7], [2], [19], [13], [18], [17], [10].

Problem 2 was introduced by Rivière and Serfaty [26] in the context of thin
ferromagnetic films. Here m is the magnetization; see for instance [12] for thin–
film models in ferromagnetism. The results for Problem 2 are stronger than for
Problem 1 (see [26], [25], [21], [5] and [4]). This might be related to the fact that
there are no vortices on the ε–level, which leads to a tighter control of the asymp-
totic admissibility set. Since vortices play an important role in micromagnetics,
Alouges, Rivière and Serfaty [1] have introduced a slight variation of (1) (where
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the penalization of |m|2 − 1 is stronger than the one of ∇ · m) which allows for
vortices on the ε–level — and therefore has more the character of Problem 1.

One might wonder whether we give up too much information by replacing
the asymptotic admissible set of Problem 1 or 2 by A(�). Indeed, it can be seen
from making C� in (7) more explicit that the measures µ� enjoy a weak form
of uniform control in �. The kinetic formulations (see [18] and [25]) quantify
this uniform control. But this uniform control differs from problem to problem
and would not substantially simplify our proof. This is why we stick to the more
flexible A(�).

Parallel to but independently from us, Ambrosio, Kirchheim, Lecumberry and
Rivière [4] have proved the same result for a set Ã(�) which contains the asymptotic
admissible set of Problem 2. Ã(�) is potentially different from A(�): next to (2),
its definition is based on a phase θ , see (4). Their class of entropies � are functions
of the phase θ , and not just of m — which is appropriate for Problem 2. As
a particular consequence, ∇ · [�(m)] = 0 for their entropies if m is a vortex
m(x) = (−x2, x1)/|x|, whereas our entropies are oblivious to a vortex — as
they should be for Problem 1. In this sense, our entropies yield less control than
their entropies. This is reflected in the fact that our class of possible blow–ups is
a priori richer than theirs, so that we need more arguments to rule most of them
out. The proof of [4] is shorter and uses different methods, in particular based on
a comparison among certain maps in Ã(�) and viscosity solutions of the eikonal
equation (see [5]).

1.4. Outlook

One might wonder what the difficulties in this problem are. In our opinion the
difficulties come from the fact that the asymptotic admissible sets for Problem 1
and 2, and a fortiori A(�), are not subsets of vector fields of bounded variation:
in [2], an example of an asymptotically admissible m for Problem 1 which is not
in BV is given. To be more precise, the paper [2] only establishes that ∇ · [�(m)]
is a Radon measure for the Jin–Kohn entropies �, but the approximation argument
introduced in [9] can be used to show that m is indeed in the asymptotic admissible
set. In [26] some evidence was given that a similar example can be constructed for
Problem 2.

The reason for this phenomenon lies in the fact that the total variation of the
measures µ� only control the cube |m+ − m−|3 of the jump size |m+ − m−| —
for BV, one would have to control |m+ − m−| itself. This is reflected by (6). The
cubic control, which is bad for small jumps, should not be dissociated from (2)
— only taken together they give a certain rigidity. Hence our problem is far from
a Modica–Mortola scenario.

One might wonder whether this is a problem of broader interest. In a joint work
with Michael Westdickenberg [11] suitable modifications of our methods allow us
to establish an analogous result for entropy solutions of genuinely nonlinear multi–
dimensional scalar conservation laws. We think that the same could be true even for
system with simple structure. What would be the merit of such a result? After all, at
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least for scalar conservation laws, the solution is of bounded variation if the initial
data are. The merit rather would consist in pinning down the regularizing effect
of nonlinearity. The traditional method which achieves this for multi–dimensional
scalar conservation laws is based on the kinetic formulation [22] and velocity
averaging [15]. Unfortunately, the linear function space which encodes this gain
in regularity is far from BV. Our method could be an alternative route to uncover
this regularizing mechanism of nonlinearity in terms of structure properties of the
solution. Again, the problem with the linear approach is that the entropy production
measure (the analogue of µ�), only controls the cube of the jump size (the analogue
of |m+ − m−|), as is generic for conservation laws. Our approach is oblivious to
this inherent nonlinearity.

Acknowledgements. We would like to thank Luigi Ambrosio, Pierre–Emmanuel Jabin,
Bernd Kirchheim and Benoît Perthame for many helpful conversations. In particular, dis-
cussions with Kirchheim on related measure–theoretic questions (see Sect. 9) encouraged
us to come up with the (non–measure–theoretic) arguments of Sect. 7. Felix Otto acknowl-
egdes partial support by the German Science Foundation through the SFB 611 “Singular
phenomena and scaling in mathematical models” at the University of Bonn.

2. Overview of the proof

Since the proof of Theorem 1 is lengthy and consists of several parts, we give an
outline. We first introduce some language for blow–ups of m.

Definition 3. We call

(a) vortex any vector field which up to translation is equal to m(x) = ⊥x/|x| or
m(x) = −⊥x/|x|;

(b) line–roof any vector field m ∈ A(R2) which, up to rotation and translation, is
equal to

m(x) =
{

m+ if x1 > 0
m− if x1 < 0

for some choice of constants m+ and m−;
(c) half–roof any m ∈ A(R2) which coincides with a vortex inside a sector and

with a line–roof outside, see Fig. 1;
(d) segment–roof any m ∈ A(R2) which coincides with a vortex in a sector A,

with another vortex in a sector B and with a line–roof in the remaining portion
of the plane, see Fig. 1.

A generic field in (b), (c) and (d) will be called a roof.

The sets of fields introduced in (c) and (d) are nonempty, as can be seen from
Fig. 1. In this figure, the thick segment represents the jump set of m and the thin
rays represent the characteristics of m, that is, the rays along which m is constant
and normal. Here we use the language of first order equations, see (2) resp. (4).
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Fig. 1. The singular sets and the characteristics of a segment–roof (on the left) and of
a half–roof (on the right)

Definition 4.

(a) For any x ∈ �, r > 0, a field m and measure µ we introduce the rescalings

mx,r(y) = m(x + ry) and µx,r(A) = µ(r A + x).

If µ� is the entropy measure of m ∈ A(�) with respect to �, 1
r µ

x,r
� is the

corresponding entropy measure for mx,r .
(b) A field m∞ will be called a blow–up of m in x if there exists a sequence rn ↓ 0

such that {mx,rn }n↑∞ converges to m∞ in L p
loc(R

2) for all p < ∞.
(c) B∞(x) denotes the set of all blow–ups of m in x.

Our proof is a combination of general measure theoretic arguments, arguments
from Geometric Measure Theory and specific geometric reasoning. We start by
a measure theoretic argument in Sect. 3. We interpret the family {µ�}� of entropy
measures as a single measure on � with values in the space of linear forms
T on the space of entropies �. This allows us to use an infinite–dimensional
polar factorization of {µ�}� into an x–dependent family of linear forms {Tx}x∈�

on �–space and a nonnegative measure ν on �. Roughly speaking, up to an
H1–negligible set, we split � into two sets G \ J and J which are characterized as
follows

– G \ J consists of x with

lim sup
r↓0

1

r
‖µx,r

� ‖ = 0 for all entropies. (12)

– J consists of x with

lim sup
r↓0

1

r
‖µx,r

� ‖
{

< ∞ for all entropies
> 0 for some entropies

}
(13)

x is Lebesgue point of {Tx}x∈�. (14)

The compactness results [2], [13] imply that the control (12) resp. (13) yields
for all y ∈ G

{my,r}r↓0 is precompact in L p
loc for every p < ∞.
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Hence for y ∈ G \ J , any m∞ ∈ B∞(y) ⊂ A(R2) satisfies

∇ · [�(m∞)] = 0 for all entropies.

According to [17] this yields

B∞(y) ⊂ {constants, vortices} for all y ∈ G \ J. (15)

In view of (14), we expect that for any y ∈ J and m∞ ∈ B∞(y) ⊂ A(R2)

∇ · [�(m∞)] = Ty(�) ν∞ for all entropies, (16)

where ν∞ is a nonnegative measure on R2. Hence the information we gain after
blow–up is that the family of entropy measures factorizes into a �–dependent
part Ty and an x–dependent part ν. If m ∈ A(R2), a linear form T on �–space
and a nonnegative measure ν on R2 satisfy (16), we call the triplet (m, T, ν)

a split–state. Sections 4, 5, 6 are devoted to the classification of non–degenerate
split–states, i. e. (m, T, ν) with nontrivial T ν. We will establish that non–degenerate
split–states are roofs. We proceed in several steps. In Sect. 4 we prove that ν is
a rectifiable one–dimensional measure. In Sect. 5 we prove by a second blow–up
that the tangent to the rectifiable set which supports ν is constant (it only depends
on T ). In Sect. 6 we prove that this support is a connected piece of a single line
and thus obtain that m is a roof.

The above identification of non–degenerate split–states yields in particular an
analogue of (15) for the points of J

B∞(y)

{⊂ {constants, vortices, roofs}
⊂ {constants, vortices}

}
for all y ∈ J. (17)

This information does not yield directly the rectifiability of J ; we give some reasons
for this in Sect. 9. We need to further characterize the set B∞(y). So in Sect. 7 we
also take into account that

– Ty in (16) does not depend on m∞ ∈ B∞(y)
– m∞ ∈ B∞(y) are blow–ups of a single field in a single point.

From this we infer that (17) can be improved to

B∞(y)




either contains a single line–roof
or contains a single half–roof,

both centered at the origin


 for all y ∈ J. (18)

By a similar argument, (15) can be improved to

B∞(y)




either contains only constants
or contains a single vortex

centered at the origin


 for all y ∈ G \ J. (19)

The classification (18) in particular yields a lower bound on the one–dimensional
density of J . In Sect. 8 we evoke Geometric Measure Theory to conclude recti-
fiability of J . Finally the classification (19) ensures that m has vanishing mean
oscillation in all but countably many points of G \ J .
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3. Splitting of measures

In this section we introduce two sets G and J (where J will be the set of Theorem 1).
Loosely speaking the definition of these sets is based on a “polar factorization” of
the distribution–valued measure {µ�}� and on the approximate continuity of its
first factor. This polar factorization is achieved by using differentiation of measures.

Proposition 1. Given m ∈ A(�) there exist Borel sets J ⊂ G such that

(a) J isH1 σ–finite andH1(� \ G) = 0;
(b) for x ∈ G \ J B∞(x) consists of constants and vortices;
(c) for x ∈ J every m∞ ∈ B∞(x) satisfies

∇ · [�(m∞)] = Tx(�)ν∞ for every entropy �,

where Tx is a distribution which only depends on the point x, though the
measure ν∞ could depend on m∞; moreover Tx = 0 and there exists at least
one m∞ ∈ B∞(x) such that ν∞ = 0;

(d) if H ⊂ � \ J andH1(H ) < ∞ then µ�(H ) = 0 for every entropy �.

Warning 1. The definition of J potentially may depend on the selection of a count-
able dense subset of the space of all entropies endowed with the C0(S1)–norm. So
here and in the sequel we fix a countable family C := {�i}i∈N with such a density
property and we agree that ‖�‖ denotes the C0(S1)–norm of �.

Since we will use it several times, we introduce the following notation.

Definition 5. We call split–state every m ∈ A(R2) which satisfies

∇ · [�(m)] = T(�)ν for every entropy � (20)

for some distribution T on the vector space of entropies and some nonnegative
measure ν. A split–state will be called non–degenerate if µ� = 0 for at least
one entropy �. Moreover with a triplet (m, T, ν) we denote an m ∈ A(R2),
a nonnegative measure ν and a distribution T which satisfy (20).

Using this language point (c) of Proposition 1 becomes

(c) for x ∈ J every m∞ ∈ B∞(x) is a split state and at least one of them
is non–degenerate; there exists a unique distribution T such that to every
m∞ ∈ B∞(x) we can associate a triplet (m∞, T, ν∞);

Before addressing the proof we first state some basic properties of rescaling of
maps in the class A(�) and possible blow–ups.

Lemma 1. Given m ∈ A(�) the following holds:

(a) for every entropy � we have

‖µ�‖ � H1; (21)
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(b) if we have

lim sup
r↓0

‖µ�i ‖(Br(x))

r
< ∞ for every �i ∈ C (22)

then {mx,r}r↓0 is strongly precompact in L p
loc(R

2) for p < ∞;
(c) if (22) holds and mx,rn → m∞ then

∇ · [�i(mx,rn )] = µ
x,rn
�i

rn

∗
⇀ ∇ · [�i(m

∞)] (23)

in the sense of measures.

Proof. First Step Proof of (a).
Since µ� = ∇ · [�(m)] is the divergence of an L∞ field it is easy to see

that the upper one–density of µ� is finite everywhere. Indeed, testing the identity
∇ · [�(m)] = µ� with the mollification of the characteristic function of Br(x) we
obtain

|µ�(Br(x))| ≤ 2πr‖�‖. (24)

Now for every x such that

lim
r↓0

|µ�(Br(x))|
‖µ�‖(Br(x))

= 1 (25)

we thus obtain

lim sup
r↓0

‖µ�‖(Br(x))

r
≤ 2π‖�‖. (26)

Since (25) holds for ‖µ�‖–a.e. x, standard arguments in Geometric Measure
Theory (see Theorem 2.56 of [3]) imply (21).

Second Step Proof of (b).
If m ∈ A(�) then mx,r ∈ A(�x,r), where �x,r denotes a suitable rescaling

of � (and for r ↓ 0, �x,r ↑ R2). Indeed it is easy to see that

∇ · [�(mx,r)] = µ
x,r
�

r
. (27)

So slightly modifying the proof of compactness of [13] we conclude that (22)
yields L p

loc–strong precompactness of mx,r for every p < ∞.

Third Step Proof of (c).
If mx,r → m∞ strongly in L p

loc, then clearly (23) holds in the sense of distri-
butions. Finally (27), (22) and compactness of the weak∗ topology of the space of
Radon measures give that (23) holds in the sense of measures. ��
Remark 1. Choosing suitably C we could have proved (b) using the compactness
result of [2]. Indeed there it is proved that a control on two particular entropies
is sufficient for compactness and hence for our purposes it would be enough to
include these two entropies in C.
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Proof of Proposition 1. First Step After fixing C = {�i} as in Warning 1 let

X N := linear span of {�1, . . . ,�N };
we define the vector–valued measure µN taking values into X∗

N (the dual of X N )
as

〈µN ,�〉 := ∇ · [�(m)].
To fix ideas we endow X N with the C0(S1)–norm and X∗

N with the dual one and
we introduce the notation

‖µN‖ := total variation measure of µN .

By the Radon–Nykodim Theorem there exists UN ∈ L1(�, X∗
N , ‖µN‖) such that

‖UN‖ = 1 ‖µN‖–a.e. and µN = UN‖µN‖.
Second Step We introduce the following two families of sets:

SN :=
{

x ∈ �

∣∣∣∣∣lim sup
r↓0

‖µN‖(Br(x))

r
> 0

}
, (28)

L N := {x ∈ � |x is a Lebesgue point for UN } .

We start by collecting some properties of the SN ’s. From the ordering of X N we
obtain that

‖µN‖ ≤ ‖µN′ ‖ for every pair N < N ′. (29)

This implies that

∀N < N ′ SN ⊂ SN′ . (30)

Since the measure µN has finite total variation we have by standard arguments (see
for example Theorem 2.56 of [3]) that

∀N SN isH1 σ–finite (31)

and

∀N H1 SN � ‖µN‖ SN . (32)

We now turn to the L N ’s. Because L N consists of Lebesgue points of UN we have
by standard arguments that

‖UN (x)‖ = 1 ∀x ∈ L N . (33)

From the ordering of the X N ’s for any pair N < N ′ we obtain that

UN′ |X N = 0 and UN′ |X N = ‖UN′ |X N ‖UN µN′ –a.e. on {UN = 0}.
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In view of (33) this yields
{

UN′ (x)|X N = 0
UN′ (x)|X N = ‖UN′ (x)|X N ‖UN (x)

}
∀x ∈ L N ∩ L N′ . (34)

By elementary measure theory we get

‖µN‖(� \ L N ) = 0. (35)

Third Step We now define G and J in Proposition 1

G0 := � \
⋃
N∈N

SN

J :=
⋃
N∈N


SN ∩

⋂
N′≥N

L N′


 (36)

G := J ∪ G0.

The H1 σ–finiteness of J follows immediately from (32) and J ⊂ ⋃ SN . Let us
now argue thatH1(� \ G) = 0. We have

� \ G ⊂
⋃
N∈N


SN \

⋂
N′≥N

L N′


 =

⋃
N′∈N


 ⋃

N≤N′
SN \ L N′




(30)=
⋃

N′∈N

(SN′ \ L N′ ) .

We now observe that for fixed N ′ ∈ N we have, according to (35),

‖µN′ ‖(SN′ \ L N′ ) ≤ ‖µN′ ‖(� \ L N′ ) = 0

and according to (32)

H1 � ‖µN′ ‖ on SN′ ⊃ SN′ \ L N′

so thatH1(SN′ \ L N′ ) = 0. This proves thatH1(� \ G) = 0 and hence completes
the proof of point (a).

Fourth Step We now construct T on J . In this step T(x) for x ∈ J will be
constructed as a possible unbounded linear form on

⋃
N X N . We will extend it to

a bounded linear functional on the space of all entropies in a later step.
Fix x ∈ J and let Nx ∈ N be the smallest N ∈ N with x ∈ SN ∩⋂N′≥N L N′ .

We will renormalize the linear forms UN (x) for N ≥ Nx so to have that they
are extensions of one another. Since x ∈ L Nx and in view of (33) there exists
a �x ∈ X Nx such that ‖�x‖ = 1 and 〈UNx (x),�x〉 = 1.

Since for N ≥ Nx we have x ∈ L N ∩ L Nx , from (34) we conclude

〈UN (x),�x〉 = 0 for any N ≥ Nx .
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We use the value in �x to renormalize the linear forms UN (x):

TN (x) := 1

〈UN (x),�x〉UN (x) (37)

so that we have

〈TN (x),�x〉 = 1. (38)

Since x ∈ L N ∩ L N′ for N ′ ≥ N ≥ Nx , (38) and (34) imply that

TN′ (x)|X N = TN (x).

Hence there exists a linear form T(x) on the union of all X N ’s such that

T(x)|X N = TN(x) for all N ≥ Nx . (39)

Fifth Step We now study the blow–ups in a point x ∈ G0. We have by definition
of G0 that

lim
r↓0

‖µN‖(Br(x))

r
= 0 for all N ∈ N. (40)

Hence (b) in Lemma 1 implies that {mx,r}r↓0 is strongly precompact in L p
loc for

p < ∞. Moreover for all i (40) holds with ‖µ�i‖ in place of ‖µN‖, which translates
into

µ
x,r
�i

r

∗
⇀ 0.

Hence we obtain for every blow–up m∞ that ∇ ·[�i(m∞)] = 0. Since C is C0(S1)–
dense in the set of entropies we have ∇ · [�(m∞)] = 0 for all entropies �. Now
the results in [17] imply that every m∞ ∈ B∞(x) is either a constant or a vortex
and hence gives point (b).

Sixth Step We now study the blow–ups in a point x ∈ J . We notice that (25)
holds since x is a Lebesgue point for UN . Hence (b) in Lemma 1 implies that
{mx,r}r↓0 is precompact in the strong L p

loc topology.
Let us fix m∞ ∈ B∞(x) and a sequence of radii rn ↓ 0 such that mx,rn → m∞

in L p
loc. Moreover recall the definitions of Nx and �x given in the Fourth Step.
Without loosing our generality we may assume that for some N ∈ N

lim sup
n→∞

‖µN‖(Brn (x))

rn
> 0 (41)

otherwise reasoning as in the previous step we would have ∇ · [�(m∞)] = 0 for
every entropy � and hence m∞ would be a degenerate split–state.

Let N∗ be the smallest integer satisfying (41). According to our definition
N∗ ≥ Nx . After passing to a subsequence we can assume that

lim inf
n→∞

‖µN∗‖(Brn (x))

rn
> 0 (42)
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which, thanks to (29), implies

lim inf
n→∞

‖µN‖(Brn (x))

rn
> 0 ∀N ≥ N∗. (43)

Let us now fix N ≥ N∗. Thanks to (43) we can assume, passing to another
subsequence, that there exists a nonnegative measure νN = 0 such that

( 〈UN (x),�x〉‖µN‖x,rn

rn

)
∗
⇀ νN . (44)

According to the definition of J and because of N ≥ N∗ ≥ Nx , x is a Lebesgue
point for UN . Hence we have

lim
r↓0

1

‖µN‖(Br(x))

∫
Br(x)

‖UN (y) − UN (x)‖d‖µN‖(y) = 0

which thanks to (43) implies

lim
r↓0

1

rn

∫
Brn (x)

‖UN (y) − UN (x)‖d‖µN‖(y) = 0.

This last equation yields that

µ
x,rn
N

rn
− UN (x)‖µN‖x,rn

rn

∗
⇀ 0 (45)

in the sense of measures. Now for every � ∈ X N we may write

∇ · [�(mx,rn )] = 〈UN ,�〉‖µN‖x,rn

rn

and hence from (45) together with (44) we obtain

∇ · [�(mx,rn)]
∗
⇀

〈UN (x),�〉
〈UN (x),�x〉νN

(37,39)= 〈T(x),�〉νN .

Since from (39, 38) 〈T(x),�x〉 = 1, we see that νN does not depend on N and so
we define ν := νN . Hence we have

∇ · [�(m∞)] = 〈T(x),�〉ν ∀� ∈
⋃
N∈N

X N . (46)

Since ν = 0 there exists ζ ∈ C∞
c (R2) with

∫
ζdν = 1 and so we have

〈T(x),�〉 = −
∫

�(m∞(y)) · ∇ζ(y)dy.

We conclude that T(x) is bounded with respect to the C0(S1)–norm. Since with
respect to this norm

⋃
X N is dense in the set of all entropies we can extend T in

a unique way to a bounded linear functional on the space of entropies endowed
with the C0(S1)–norm. This implies that (46) holds for every entropy � and hence
concludes the proof of point (c).
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Seventh Step We now come to the proof of (d). Let us fix H ⊂ � \ J such
that H1(H ) < ∞ and suppose that � is a given entropy. From the previous steps
we know that forH1–a.e. x ∈ H B∞(x) is made of degenerate split states. So we

conclude that for every sequence rn ↓ 0 we have ∇ · [�(mx,rn )]
∗
⇀ 0 in the sense

of distributions. Hence {µx,r
� /r}r↓0 converges to 0 in the sense of distributions. But

we also recall (see (26)) that

lim sup
r↓0

‖µx,r
� ‖(B1)

r
≤ 2π‖�‖ for ‖µ�‖–a.e. x ∈ H .

This means that {µx,r
� /r}r↓0 converges to zero in the sense of measures in ‖µ�‖–

a.e. x ∈ H . Reasoning as in the Sixth Step, we can conclude that also {‖µx,r
� ‖/r}r↓0

converges to 0 in the sense of measures in ‖µ�‖–a.e. x ∈ H . But since these last
measures are nonnegative we infer

lim
r↓0

‖µ�‖(Br(x))

r
= 0 for ‖µ�‖–a.e. x ∈ H ,

which (see for example Theorem 2.56 of [3]) implies ‖µ�‖(H ) = 0. ��

4. Rectifiability for split measures

In this section we start with the classification of the non–degenerate split states
(m, T, ν).

Proposition 2. Let (m, T, ν) be a non–degenerate split–state. Then ν is supported
on a closed rectifiable one–dimensional set, therefore it is a rectifiable one–
dimensional measure.

We achieve this by using a certain family of “generalized entropies” which
are discontinuous but pointwise limits of smooth entropies. These generalized
entropies were first introduced in [13] to study the compactness for the variational
problem (10) and they are very similar to the ones introduced by Kruzkov in the
theory of scalar conservation laws, [20].

Proposition 3. Using polar coordinates for (ξ, z) ∈ S1 × S1 (i.e. ξ = eiα and
z = eiθ ) we define the “Kruzkov functions” χ(ξ, z) as

χ(ξ, z) =
{

1 if (θ − α) ∈ [2kπ, (2k + 1)π[ for some k ∈ Z
0 otherwise.

If (m, T, ν) is a split state, then for every ξ ∈ S1 we have

ξ · ∇x[χ(ξ, m)] = f(ξ) ν distributionally on R2. (47)

Moreover f(−ξ) = f(ξ) and f ∈ BV(S1).
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Equation (47) is a particular example of a kinetic formulation of a scalar
conservation law, see [22]. As in the traditional setting of scalar conservation laws,
the kinetic formulation encodes the information of all Kruzkov entropies. Its merit
is that it encapsulates the characteristics for the first order equation (2): a smooth
m would be constant along the lines perpendicular to m. The right hand side of
(47) measures the deviation from this geometric principle. The kinetic formulation
for Problem 1 has first been introduced by Jabin & Perthame in [18], see also [25].
(47) slightly differs from [18] since we start from a split–state instead of a general
m ∈ A(�): our right hand side is more regular and hence can be written without
distributional derivatives in ξ .

Proposition 3 will be used to prove the following

Lemma 2. There exists α > 0 such that if x is a Lebesgue point of m then there is
a one–sided open cone Cx of opening α and vertex x such that ν(Cx) = 0.

We see below that this Lemma easily implies the rectifiability of ν.

Proof of Proposition 2. Let us fix x ∈ R2 and take a sequence of points {xn}n↑∞
which are Lebesgue for m and converge to x. Possibly passing to a subsequence
the cones Cxn of Lemma 2 converge to an open cone Cx of opening α with vertex
in x. Hence ν(Cx) = 0. Take now the closed set S = supp (ν). We can find a finite
family of closed sets Si and unit vectors ξi such that

(i) Si ⊂ S and
⋃

Si = S;
(ii) ∀x ∈ Si , if C′

x := {x + y : α|y|/2 ≤ y · ξi} then ν(C′
x) = 0.

This gives that C′
x ∩ Si = ∅ for every x ∈ Si (because ν(C′

x) = 0 and
Si ⊂ supp (ν)). Hence Si is contained in the graph of a Lipschitz function. ��

The remaining part of the section is devoted to proving Lemma 2 and Proposi-
tion 3 above.

Remark 2. In the following we fix an orientation for S1, e.g. the counterclockwise
one. Moreover if ξ, ξ1, ξ2 ∈ S1 and the angle between ξ and ξ1 is positive and
strictly less than the angle between ξ2 and ξ1 then we write ξ ∈]ξ1, ξ2[.

Proof of Proposition 3. First Step Let ξ ∈ S1 be given. Reasoning as in Lemma 4
of [13] one can prove that there exists a sequence of entropies �n such that ‖�n‖ is
equibounded and �n(x) → ξ χ(ξ, x) for every x. Now thanks to the fact that T of
equation (20) is a bounded linear functional on C0(S1) we can pass to the limit in
∇ · [�n(m)] = T(�n)ν to get ∇ · [ξ χ(ξ, m)] = f(ξ)ν for some real number f(ξ).
A trivial computation gives the homogeneity of f .

Second Step We now come to the proof that f is a BV function. First of all
we take a function ϕ ∈ C1

c (R
2) such that

∫
ϕdν = 1. We will prove that if the

angle between ξ1, ξ2 ∈ S1 is less than π, then f is of bounded variation in ]ξ1, ξ2[.
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We fix ξ1 and ξ2 and for every ξ we call θ(ξ) the angle between ξ1 and ξ . Pick up
z1, . . . , zn such that ξ1 ≤ z1 < z2 < . . . < zn ≤ ξ2. Using equation (47) we get

| f(zi) − f(zi−1)| =
∣∣∣∣
∫

R2
zi · ∇ϕ χ(zi , m) −

∫
R2

zi−1 · ∇ϕ χ(zi−1, m)

∣∣∣∣
≤
∣∣∣∣
∫

R2
(zi − zi−1) · ∇ϕ χ(zi , m)

∣∣∣∣
+
∣∣∣∣
∫

R2
zi−1 · ∇ϕ (χ(zi, m) − χ(zi−1, m))

∣∣∣∣
≤ |zi − zi−1|‖∇ϕ‖L1 + ‖∇ϕ‖L∞L2(supp (ϕ) ∩ Si)

where

Si =
{

x

∣∣∣∣ either θ(zi) ≤ θ(m(x)) < θ(zi+1)

or π + θ(zi) ≤ θ(m(x)) < π + θ(zi+1)

}
.

Notice that, since the angle between ξ1 and ξ2 is less than π, the sets Si are all
disjoint. Hence we find that
∑

| f(zi) − f(zi − 1)| ≤ |ξ2 − ξ1|‖∇ϕ‖L1 + ‖∇ϕ‖L∞L2(supp (ϕ))

and this completes the proof. ��
We are now ready to prove Lemma 2 and end this section. Before doing it we

will give the heuristic explanation which is hidden in the proof. Let x be a given
Lebesgue point for m. Thanks to what proved so far there is a sector G ⊂ S1 such
that

χ(ξ, m(x)) = 1 and ξ · ∇x(χ(ξ, m)) = f(ξ)ν ≥ 0 ∀ξ ∈ G.

So if we call rξ the half–line starting from x and directed along ξ we have
χ(ξ, m(x′)) = 1 for every x′ ∈ rξ . Loosely speaking this tells us that rξ “does
not meet” the measure ν. Since this happens for every ξ ∈ G one would like to
conclude that ν is identically zero inside the cone given by

⋃
ξ∈G rξ .

Proof of Lemma 2. From the condition ∇ · m = 0, integrating on S1 both sides
of equation (47) we get

∫
S1 f(ξ) = 0. Since m corresponds to a non–degenerate

split–state it cannot be f = 0. Hence there must be a measurable subset on which
f is positive. Thanks to Proposition 3 f is continuous except for an at most
countable number of points. So we can choose a ξ for which f is positive in an
interval containing ξ . Thanks to its homogeneity, f is positive even on an interval
containing −ξ . As a consequence we have that there exist α, β, γ > 0 such that for
every w ∈ S1 there is a couple ξ1, ξ2 which satisfies:

(i) f(ξ) ≥ β for every ξ ∈]ξ1, ξ2[;
(ii) the cone individuated by ξ1 and ξ2 has opening bigger than α;
(iii) w · ξ ≥ γ > 0 for every ξ ∈]ξ1, ξ2[.



124 Camillo De Lellis, Felix Otto

Hence we now take as w the unique element of S1 such that

lim
r→0

1

r2

∫
Br(x)

|m(y) − w|dy = 0

(which exists thanks to the fact that x is a Lebesgue point for m) and we chose ξ1
and ξ2 which satisfy the three conditions above. Moreover for the sake of simplicity
we will denote w by m(x).

We claim that if we consider the cone

Cx := {x + rξ | ξ ∈]ξ1, ξ2[, r > 0},
then ν(Cx) = 0. We will prove this in several steps.

First Step We fix ρ > 0 and for every ε > 0 and every ξ ∈]ξ1, ξ2[ we call Rξ
ε

(see Fig. 2 below) the open set made by the union of:

(i) the rectangle given by {x + aξ + b⊥ξ}, with b ∈ (−ε, ε), a ∈ (0, ρ);
(ii) the ball Bε(x) and the ball Bε(x + ρξ).

Fig. 2. The open set Rξ
ε

The boundary of Rξ
ε is made of two segments parallel to ξ and two half–circles.

We call Sξ,1
ε the half–circle centered at x, Sξ,2

ε the half–circle centered at x + ρξ

and η the exterior unit normal to ∂Rξ
ε . We now want to estimate ν(Rξ

ε). We take
a standard family of mollifiers ψδ and we recall that, since ν is nonnegative,

ν
(
Rξ

ε

) ≤ lim
δ→0

ν ∗ ψδ

(
Rξ

ε

)
(48)

(indeed we have ν ∗ ψδ(Rξ
ε) = ∫ ψδ ∗ χ

Rξ
ε
dν and, since ψδ ∗ χ

Rξ
ε
(x) ↑ 1 on every

x ∈ Rξ
ε , letting δ ↓ 0 we get (48)). Since f(ξ) ≥ β we obtain

β ν ∗ ψδ

(
Rξ

ε

) ≤ f(ξ) ν ∗ ψδ

(
Rξ

ε

) =
∫

Rξ
ε

ξ · ∇x(χ(ξ, m) ∗ ψδ)

=
∫

Sξ,2
ε ∪Sξ,1

ε

(χ(ξ, m) ∗ ψδ) ξ · η

≤
∫

Sξ,2
ε

ξ · η +
∫

Sξ,1
ε

(χ(ξ, m) ∗ ψδ) ξ · η (49)

where the last inequality comes from the fact that ξ ·η ≥ 0 on Sξ,2
ε and χ(ξ, m) ≤ 1.
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Second Step For every set B, call Leb(B) the set of Lebesgue points for m
which belong to B. Standard arguments involving Fubini–Tonelli Theorem imply
that there is a sequence εn ↓ 0 such that

H1(Leb(∂Bεn(x)))

2πεn
= 1.

Moreover, from the fact that m(x) · ξ ≥ γ > 0 and using again Fubini–Tonelli
Theorem, it is easy to see that we can choose εn so that

H1(Leb(∂Bεn (x)) ∩ {y|χ(ξ, m(y)) = 1})
2πεn

→ 1

uniformly in ξ ∈]ξ1, ξ2[. Going back to (49), if we let δ ↓ 0 we gain

βν
(
Rξ

εn

) ≤
[∫

Sξ,2
εn

ξ · η +
∫

Sξ,1
εn

ξ · η
]

+ o(εn) = o(εn). (50)

Third Step If we integrate on ξ both sides of (50) we obtain

β

∫ ξ2

ξ1
ν
(
Rξ

εn

) ≤ αo(εn),

from which, dividing by εn and changing the order of integration, we get

lim
n→∞ β

∫
R2

[∫ ξ2

ξ1

χ
Rξ

εn
(y)

εn
dξ

]
dν(y) = 0.

We notice that the sequence of functions

gn(y) :=
∫ ξ2

ξ1

χ
Rξ

εn
(y)

εn
dξ

converges to 2α/|y − x| in every y ∈ Cρ
x := {x + rξ : ξ ∈]ξ1, ξ2[, 0 < r < ρ}. We

then have

β

∫
Cρ

x

2α

|y − x|dν(y) = 0.

Hence ν(Cρ
x ) = 0, which (letting ρ ↑ ∞) gives ν(Cx) = 0. ��
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5. Blow–up for non–degenerate split–states

In this section we continue to investigate split–states (m, T, ν). According to the last
section the blow–ups of ν are given (ν–a.e.) by multiples of the Hausdorff measure
concentrated on lines. In this section we will show that this forces the blow–up
of m to be a line–roof in H1–a.e. point where ν is concentrated. Furthermore this
line–roof only depends on T .

Proposition 4. Let (m, T, ν) be a non–degenerate split–state. Then there exists
a line–roof mT , determined by T , such that B∞(x) = {mT } for ν–a.e. x. Hence we
may assume (after possibly multiplying T by a positive constant) that ν = H1 J
for some rectifiable set J.

Remark 3. Given a line d which contains the origin, we call ξd := eiφ the unique
vector in S1 which is parallel to d and such that φ ∈ [0, π). Since d divides R2 in
two half–planes we call

upper half–plane the one which contains ⊥ξd

lower half–plane the other.

If m is a line–roof we will call m+∗ and m−∗ its values on the upper half–plane and
the lower half–plane respectively. Hence to every line–roof, up to translations, cor-
responds one and only one triplet (ξd, m+∗ , m−∗ ). The triplet (ξ, m+, m−) associated
to mT in Proposition 4 can be explicitly computed from T .

Before coming to the proof we introduce the following two lemmas: the first
one is proved in [13] whereas the second one is proved in [17]. The first one will
allow us to characterize jumps from their entropies and the second will be the
starting point of our geometric arguments.

Lemma 3. If ϕ ∈ C∞
c (R2) then �(z) = ϕ(z)z + (∇ϕ(z) · ⊥z)⊥z is an entropy.

Lemma 4. Let us suppose that � is an open convex set and that m ∈ A(�) is such
that for every entropy � we have µ� = 0. Then

(a) either there exists a point x0 ∈ � such that m is a vortex centered at x0 (see
Definition 3(a));

(b) or m is Lipschitz in every compact subset of �.

In the second case in every point x ∈ � passes a characteristic, i.e. a line d such
that m is constant on d and perpendicular to it. Moreover these characteristics
stop only when they hit ∂�.

Proof of Proposition 4. First Step Thanks to rectifiability we know that for ν–a.e.
x the measures {νx,r/r}r↓0 converge to g(x)H1 d(x), where d(x) is a line passing
through the origin and g(x) a positive number. Let us call J the set of these points.
If x ∈ J and m∞ ∈ B∞(x) we then have

∇ · [�(m∞)] = T(�)g(x)H1 d(x). (51)
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Second Step Let x ∈ J and m∞ be a given field in B∞(x) and suppose, to
fix ideas, that d(x) = {(z, 0) : z ∈ R}. For the sake of simplicity let us use d in
place of d(x). From Lemma 4 (see also Lemma 3.1 of [17]) we know that on the
line d, m has well defined left and right trace m+, m− ∈ L∞(d) (right and left is
defined in the same way as in Remark 3). Thus for every interval D ⊂ d we have

lim
ε↓0

1

ε

∫
D×(0,ε)

|m∞(z, y) − m+(z)| dz dy = 0 (52)

lim
ε↓0

1

ε

∫
D×(−ε,0)

|m∞(z, y) − m−(z)| dz dy = 0.

Now let us fix a rectangle D × (−ε, ε): using the Fubini–Tonelli Theorem, inte-
grating by parts (51) and letting ε go to 0 we can easily see that

g(x)T(�)H1(D) =
∫

D
(�(m+(z)) − �(m−(z)) · (1, 0) dH1(z). (53)

This gives that (�(m+) − �(m−)) · (1, 0) is a constant. For an m∞ having the line
of discontinuity with direction ξd we then have

(�(m+) − �(m−)) · ⊥ξd is constant for every entropy �. (54)

Third Step We now prove that m+ and m− are constant. Thanks to the
divergence–free constraint, m+(z) − m−(z) is parallel to ξd in H1–a.e. z (from
now on we will write ξ for ξd). Notice also that we must have m+ − m− = 0 a.e.,
otherwise we would have �(m+)−�(m−) = 0 for every �, which contradicts (51).
Since m± take values in S1 we can conclude that m+(z) · ξ = −m−(z) · ξ = 0 for
H1–a.e. z.

Let us fix two couples (m+
1 , m−

1 ), (m+
2 , m−

2 ) ∈ S1 × S1 and suppose that we
have

(
m+

1 − m−
1

) · ⊥ξ = (m+
2 − m−

2

) · ⊥ξ = 0 (55)

m−
1 · ξ = −m+

1 · ξ = 0 (56)

m+
2 · ξ = −m2

1 · ξ = 0 (57)(
�
(
m+

1

)− �
(
m−

1

)) · ⊥ξ = (�(m+
2

)− �
(
m−

2

)) · ⊥ξ ∀� (58)

We claim that these conditions imply m+
1 = m+

2 , m−
1 = m−

2 (hence from (54) we
conclude that m+ and m− are both constant). Arguing by contradiction we would
have three possibilities:

(i) m−
2 = m+

1 = m+
2 ;

(ii) m−
2 = m−

1 = m+
2 ;

(iii) m+
1 = m−

2 and m−
1 = m+

2 .

According to Lemma 3 if ϕ ∈ C∞
c (R2) the map �(z) = ϕ(z)z + (∇ϕ(z) · ⊥z)⊥z

is an entropy. So in case (i) we choose a function ϕ such that:
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– ϕ(m±
i ) = 0 for i ∈ {1, 2};

– ∇ϕ(m±
2 ) = 0 and ∇ϕ(m−

1 ) = 0.

– ∇ϕ(m+
1 ) = ⊥m+

1 .

Then thanks to (56) we would have (�(m+
1 ) − �(m−

1 )) · ⊥ξ = 0 and (�(m+
2 ) −

�(m−
2 )) · ⊥ξ = 0 which are incompatible with (58). If we were in case (ii) we

could argue in a similar way (just by exchanging the roles of m+
1 and m−

1 ). For
handling case (iii) we choose

– ϕ(m±
i ) = 0 for i ∈ {1, 2};

– ∇ϕ(m+
1 ) = ∇ϕ(m−

2 ) = ⊥m+
1 = ⊥m−

2 ;

– ∇ϕ(m−
1 ) = ∇ϕ(m+

2 ) = 0.

Indeed such a choice would imply(
�
(
m+

1

)− �
(
m−

1

)) · ⊥ξ = −(�(m+
2

)− �
(
m−

2

)) · ⊥ξ = 0.

Fourth Step Now let x, y ∈ J and m∞
1 ∈ B∞(x), m∞

2 ∈ B∞(y). We call ξi

the directions of the two lines of discontinuity and m±
i the right and left traces of

m∞
i on its line of discontinuity. Then equation (53) implies that

(
�
(
m+

1

)− �
(
m−

1

)) · ⊥ξ1 = g(y)

g(x)

(
�
(
m+

2

)− �
(
m−

2

)) · ⊥ξ2. (59)

It is straightforward to check that if we replace (58) with (59) and (55, 56, 57) with(
m+

i − m−
i

) · ⊥ξi = 0

m−
i · ξi = −m+

i · ξi = 0

the proof of the previous step still works and implies m+
1 = m+

2 and m−
1 = m−

2 . As
already noticed m+

i −m−
i is parallel to ξi . Hence the couple (m+

i , m−
i ) determines ξi

and we can conclude that g(x) = g(y), d(x) = d(y).

Thus there exists a fixed constant c such that νx,r/r
∗
⇀ cH1 d for every x ∈ J .

This easily implies ν = cH1 J and so our initial split–state can be characterized
also with the triplet (m, c T,H1 J ).

Fifth Step We will now end the proof by showing that for x ∈ J every
m∞ ∈ B∞(x) is constant on both the half–planes individuated by d. We fix our
attention on the upper half–plane. We know that we have the two alternatives of
Lemma 4: anyway we can rule out alternative (a), since a vortex would not give
a constant trace on the line d. So we are in case (b) and for every point w in the
upper half–plane we can find a characteristic line lw which passes through w and
stops only when it hits d.

We notice that thanks to (52) for every w′ ∈ d there is a sequence of points {wn}n

lying in the upper half–plane and such that {m∞(wn)}n converges to m+. If we take
the characteristics lwn we easily conclude that they converge (up to a subsequence)
to a half–line lw′ which originates in w′ and is perpendicular to m+. Moreover
Lipschitz continuity of m∞ on compact subsets of the half–planes gives that m∞
is constantly equal to m+ on lw′ . This implies that m∞ is constantly equal to m+
on the whole upper half–plane. ��
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Remark 4. We notice that Kruzkov functions are not able to distinguish every line–
roof from another since, for example, the line–roofs individuated by the triplets

((0, 1), (a, b), (−a, b)) ((0, 1), (a,−b), (−a,−b))

have the same f in equation (47). This gives a difference between the problem we
are treating and the scalar one–dimensional conservation laws, in which Kruzkov’s
entropies alone are able to distinguish among all the “jumps”.

6. Classification of split–states

In this section we conclude with the classification of split–states.

Proposition 5. If (m, T,H1 J ) is a non–degenerate split–state then m is a roof
(either a line–roof or a half–roof or a segment–roof: see Definition 3 and compare
with Fig. 1 and Fig. 7). Moreover the values m+ and m− in Definition 3 are
completely determined by T .

Remark 5. From Proposition 2 we know that J is rectifiable. Hence without loosing
our generality we may assume that in every x ∈ J there is a line tangent to it. From
Proposition 4 we know that this line is determined by T , i.e. is the same in every x.
In the following we denote it by d. Again according to Proposition 4, for every
x ∈ J , B∞(x) consists of a single line–roof which jumps on d between two fixed
values. We call these values m+∗ and m−∗ .

Before addressing the proof of Proposition 5 we need some preliminary re-
marks.

Remark 6. Thanks to what we have proved in the previous section we can calculate
explicitly the function f in terms of m+∗ , m−∗ and d. To fix ideas we suppose that
d is directed along (1, 0) and m+∗ = (a, b) with a, b > 0. Then the shape of f can
be easily described by Fig. 3. So we conclude that f is positive on the two–sided
cone C+ := A ∪ C and negative on C− := B ∪ D.

Lemma 5. Define C+ and C− as in Remark 6. Then

H1((x + (C+ ∪ C−)) ∩ J ) = 0 for every x ∈ J . (60)

Proof. In view of Proposition 4 there are two sequences of Lebesgue points
{x+

n }n↑∞ and {x−
n }n↑∞ both converging to x such that m(x+

n ) → m+∗ and
m(x−

n ) → m−∗ . Let us fix our attention on x+
n . Since m(x+

n ) is close to m+∗ , there is
a cone An close to A such thatH1((x+

n + A)∩ J ) = 0 by the argument of Lemma 2
and Remark 6. In the limit we obtainH1((x + A) ∩ J ) = 0, since A is open. Since
the proof of Lemma 2 can be adapted to the case χ(ξ, m(x)) = 0 and f(ξ) < 0 we
obtain analogouslyH1((x + D) ∩ J ) = 0. HenceH1((x + (A ∪ D)) ∩ J ) = 0. By
symmetryH1((x + (B ∪ C)) ∩ J ) = 0. ��
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Fig. 3. The shape of f

Proof of Proposition 5. We divide the proof into several steps.

First Step If x ∈ J thanH1((x + d) ∩ J ) > 0.
Let x ∈ J be fixed and without loosing our generality suppose x = 0. From

Proposition 4 we know that the blow–up ofH1 J in 0 is H1 d. Since the open
set C+ ∪ C− ∪ d \ {0} contains d \ {0} we have

lim
r↓0

H1((C+ ∪ C− ∪ d \ {0}) ∩ J ∩ Br(x))

2r
= 1

and henceH1((C+ ∪ C− ∪ d) ∩ J ) > 0. On the other hand by Lemma 5 we have
H1((C+ ∪ C−) ∩ J ) = 0 and thus

H1((C+ ∪ C− ∪ d) ∩ J ) = H1(d ∩ J ).

Second Step If x ∈ J then J ∩ (x + d) is connected.
Let us suppose that x, y ∈ J ∩ (x + d) and fix a system of coordinates in which

d = {(t, 0) : t ∈ R}. We know that in x and y every blow–up has to be a jump
between m+∗ and m−∗ . To fix ideas let us suppose that m−∗ and m+∗ are oriented as in
Fig. 3. Consider the half–stripe denoted by A in Fig. 4: this half–stripe is bounded
by the segment [x, y] and by the two half–lines perpendicular to m+∗ which start
from x and y. Consider also the symmetric half–stripe B. We will prove that

m ≡ m+∗ on A, (61)

m ≡ m−∗ on B. (62)

Of course this will imply [x, y] ⊂ J and hence completes the proof of this step.
Lemma 5 ensures thatH1(J ∩ A) = H1(J ∩ B) = 0. Since A and B are convex

we may apply Lemma 4. If m were a vortex on A we would have the wrong trace
either near x or near y. Hence Lemma 4 implies that the characteristics drawn in the
stripe stop only if they hit the boundary and that m is Lipschitz on every compact
subset of the stripe.
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Fig. 4. The half–stripes A and B

From the first step we know that for every ε > 0 we can find x′, y′ ∈ J ∩ d
such that x < x′ < y′ < y and |x − x′|, |y − y′| ≤ ε. Reasoning exactly as in
the fifth step of the proof of Proposition 4 we draw two half–lines l′x and l′y both
perpendicular to m+∗ and starting respectively from x′ and y′. We remark that m
is constantly equal to m+∗ on them. This implies that every characteristic lying in
the stripe delimited by the two half–lines lx′ and ly′ (and by [x′, y′]) have to be
parallel to lx′ . Hence m ≡ m+∗ in this stripe, and letting x′, y′ converge to x and y
we get (61). A symmetric argument gives (62) and completes the proof.

Fig. 5. Regions with no entropy measure when the segment S is a connected component
of J

Third Step J is contained in one line.
The previous steps imply that J is the countable union of open subsets of

parallel lines. Let us suppose that J is not connected. Then condition (60) implies
that the connected components of J are finite segments. Now, if we have a finite
segment, then in the region indicated in Fig. 5 H1 J is identically 0.
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Fix one of the segments and call it S. In the second step we have already
identified m in the half–stripes A and B. We now will identify m in the cone C.
Let l1 and l2 denote the characteristic half–lines which bound C and O its vertex,
see Fig. 6. We apply Lemma 4 to C and we easily conclude that m|C cannot be
a vortex with center in the interior of C. Since the characteristics lying in C cannot
hit l1 or l2 (there cannot be a vortex centered at a point of li since m is constant on
them) they all have to hit O. Hence m looks as in Fig. 6.

Fig. 6. Characteristics emanating from the endpoint O and from the segment S

Finally it is easy to see that if J consists of more than one segment then the
characteristics emanating from the acute endpoints of the segments (which are all
either the left ones or the right ones) would intersect. But this is not possible.

Fourth Step Conclusion of the proof.
From the last step we know that J is either a line or a half–line or a segment.

Since outside the closure of J the entropy measures are identically zero, we can
draw the characteristic lines as we have done in the proofs of the previous steps. It
is easy to conclude that they have to be as summarized in Fig. 7 below. ��

Fig. 7. The three different classes of split–states: segment–roofs, half–rofs, line–roofs

7. Further characterization of B∞(x)

In the previous sections we identified all m∞’s with

∇ · [�(m∞)] = 0 for all entropies
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and all split–states, that is, m∞’s of the form

∇ · [�(m∞)] = T(�) ν∞ for all entropies.

So far, we have not made use of the fact that all these m∞’s come from the
blow–up of a single field in a single point. This will be done now. We obtain
a complete classification of B∞(x) for x ∈ G \ J in Proposition 6 and for x ∈ J in
Proposition 7. Before stating them we introduce a bit of terminology.

Definition 6. A vortex will be called

– centered if its unique point of singularity is the origin;
– counterclockwise if it is of the form mv(x − x0) (see Definition 3(a));
– clockwise if it is of the form −mv(x − x0).

A line–roof is centered if its singular line contains the origin.
A half–roof is centered if its singular half–line starts from the origin.

Proposition 6. Let x ∈ G \ J (see the proof of Proposition 1 for the definition).
Then

either B∞(x) contains only constants
or B∞(x) contains only the centered counterclockwise vortex
or B∞(x) contains only the centered clockwise vortex.

Proposition 7. Let x ∈ J. Then

either B∞(x) contains only the centered line–roof
or B∞(x) contains only the centered left half–roof
or B∞(x) contains only the centered right half–roof.

Proof of Proposition 6. We recall from Proposition 1 that

B∞(x) contains only constants and vortices.

Without loosing our generality we assume that x = 0 and that m is defined
everywhere in B2(0).

First Step A functionalF on m–space.
We will define a functionalF on all essentially bounded and weakly divergence–

free vector fields m on B2(0). Because m is divergence–free, there exists a Lipschitz
continuous “stream function” ψ with ⊥∇ψ = m; ψ is unique up to additive con-
stants. We take F(m) to be an “averaged second derivative” of ψ in the origin

F(m) := 3

2 π

∫
B1(0)

(ψ(x) − ψ(0)) dx.

This functional is normalized such that |∇ψ|2 = 1 a.e. implies

F(m) ∈ [−1, 1]. (63)
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We will be interested in how F behaves under rescaling. It is easy to check that

2 π

3

d

dr

∣∣∣∣
r=1

[
F(m0,r)

]

=
∫

∂B1(0)

(ψ(x) − ψ(0)) dx − 3
∫

B1(0)

(ψ(x) − ψ(0)) dx (64)

=
∫

∂B1(0)

(
ψ(x) − ψ(0) − 3

∫ 1

0
(ψ(s x) − ψ(0)) s ds

)
dx.

Second Step F separates the elements of B∞(0).
We now state how F acts on m∞ ∈ B∞(0), i. e. on constants and vortices. We

list the obvious equivalences in the following table

F(m∞) = 1 centered counterclockwise vortex
F(m∞) ∈ (0, 1) off–center counterclockwise vortex
F(m∞) = 0 constant
F(m∞) ∈ (−1, 0) off–center clockwise vortex
F(m∞) = −1 centered clockwise vortex

We next state how F acts on rescaled versions m∞
0,r of m∞ ∈ B∞(0):

F(m∞) ∈ (0, 1) 	⇒ d

dr

∣∣∣∣
r=1

[
F
(
m∞

0,r

)]
> 0, (65)

F(m∞) ∈ (−1, 0) 	⇒ d

dr

∣∣∣∣
r=1

[
F
(
m∞

0,r

)]
< 0.

Let us now argue in favor of, say, (65). In view of the table, F(m∞) ∈ (0, 1)

implies that m∞ is an off–center counterclockwise vortex. In particular, the related
stream function ψ∞ is convex and we have

ψ∞(r x) − ψ∞(0) ≤ (ψ∞(x) − ψ∞(0)) r for x ∈ ∂B1 and r ∈ [0, 1].
From the last line in (64) we see that d

dr

∣∣
r=1

[
F(m∞

0,r)
]

is always nonnegative, and
vanishes only if ψ∞ is homogeneous of degree 1 in B1(0). But this is not the case
for an off–center vortex. Hence (65) holds.

Third Step Compactness argument.
We set for convenience

f(r) := F(m0,r) = 3

2 π

∫
B1(0)

(ψ0,r(x) − ψ0,r(0)) dx

and observe that (see (64))

2 π

3
r f ′(r) =

∫
∂B1(0)

(ψ0,r(x) − ψ0,r(0)) dx

−3
∫

B1(0)

(ψ0,r(x) − ψ0,r(0)) dx, (66)
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where ψ0,r(x) − ψ0,r(0) = 1
r (ψ(r x) − ψ(0)) is the stream function for m0,r . We

claim that for all δ > 0, there exist ε > 0, r0 > 0 s.t.

f(r) ∈ [δ, 1 − δ] and r ≤ r0 	⇒ r f ′(r) > ε, (67)

f(r) ∈ [−1 + δ,−δ] and r ≤ r0 	⇒ r f ′(r) < −ε.

We reason by contradiction in favor of (67) and assume that there exists a sequence
{rn}n converging to zero such that

lim
n→∞ f(rn) ∈ (0, 1) and lim

n→∞ rn f ′(rn) ≤ 0. (68)

We may also assume that {m0,rn }n converges strongly to an m∞ ∈ B∞(0), which
implies uniform convergence of {ψ0,rn }n to the corresponding ψ∞. Hence we
obtain

F(m∞) = lim
n→∞ f(rn)

(68)∈ (0, 1),

d

dr

∣∣∣∣
r=1

[
F(m∞

0,r)
] (64,66)= lim

n→∞ rn f ′(rn)
(68)≤ 0.

This is a contradiction according to (65).

Fourth Step Ode argument.
Since
∫ r0

0
1
r dr = ∞, (67) implies

lim inf
r↓0

f(r) < 1 − δ 	⇒ lim sup
r↓0

f(r) ≤ δ. (69)

Indeed, it is obvious from (67) that

lim inf
r↓0

f(r) ≤ δ 	⇒ lim sup
r↓0

f(r) ≤ δ (70)

lim inf
r↓0

f(r) ≤ 1 − δ 	⇒ lim sup
r↓0

f(r) ≤ 1 − δ . (71)

We conclude from (70) that for proving (69) it is sufficient to show

lim inf
r↓0

f(r) ≤ δ.

We argue by contradiction: if this is false then for some ρ1 we have f(r) ∈ [δ,+∞[
for any r ∈]0, ρ1]. But, taking into account (71) and the left–hand side of (69) we
also conclude that there exists ρ2 such that f(r) ∈] − ∞, 1 − δ] for any r ∈]0, ρ2].
So if ρ = min{ρ1, ρ2} we would have f(r) ∈ [δ, 1 − δ] for all r ∈]0, ρ] and
therefore

+∞ > lim sup
t↓0

( f(ρ) − f(t)) ≥ lim sup
t↓0

∫ ρ

t
f ′(r)dr

(67)≥ ε

∫ ρ

0

dr

r
= +∞,

which is a contradiction.
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Since δ > 0 was arbitrary (69) yields

lim inf
r↓0

f(r) < 1 	⇒ lim sup
r↓0

f(r) ≤ 0.

By symmetry, we also have

lim sup
r↓0

f(r) > −1 	⇒ lim inf
r↓0

f(r) ≥ 0.

Hence in view of (63), we only have three cases:

lim
r↓0

f(r) = 0 or lim
r↓0

f(r) = 1 or lim
r↓0

f(r) = −1.

HenceF(B∞(0)) either is {0}, {1}, or {−1}. In view of the above table, this implies
the claim of the lemma. ��

Proof of Proposition 7. We recall that from Proposition 5 we know already

B∞(x) contains only constants, vortices and roofs (72)

B∞(x) contains at least one roof (73)

all roofs in B∞(x) have same triplet (ξ, m+, m−).

This last statement means that

– the direction of the set of discontinuity (which is a connected piece of a line)
is determined by a vector ξ not depending on m;

– on this set any m ∈ B∞(x) jumps between two given values m− and m+ (and
only one possibility is given, i.e. fixed ξ as in Remark 3, m jumps from m− to
m+ along ⊥ξ , while it cannot jump from m+ to m−).

By a change of coordinates, we may without loosing our generality assume
x = 0 and ξ = (1, 0). Also, possibly passing to −m instead of m, we may assume
that

all roofs in B∞(x) are convex (74)

and, rescaling if necessary, that m is defined in all of B2(0).

First Step The functionalF .
As in Proposition 6, ψ denotes the stream function of m: ⊥∇ψ = m. Let v+, v−

denote the vectors with ⊥v± = m±. Hence v± are the singled–out values of ∇ψ

in the line–roof case. We consider

F(m) :=
∫ 1

0
(ψ(s v+) + ψ(s v−) − 2 ψ(0)) ds
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and observe that

d

dr

∣∣∣∣
r=1

[
F(m0,r)

]

= ψ(v+) + ψ(v−) − 2 ψ(0) − 2
∫ 1

0
(ψ(s v+) + ψ(s v−) − 2 ψ(0)) ds

= ψ(v+) − ψ(0) − 2
∫ 1

0
(ψ(s v+) − ψ(0)) ds

+ ψ(v−) − ψ(0) − 2
∫ 1

0
(ψ(s v−) − ψ(0)) ds. (75)

Second Step How functional F acts on B∞(0)

Let m∞ ∈ B∞(0) be given. It follows immediately from |∇ψ|2 = 1 a.e. that

F(m∞) ∈ [−1, 1]. (76)

In view of (72) we have

F(m∞)

{≥
≤
}

0 	⇒ ψ∞
{

convex
concave

}
. (77)

The directions v+, v− are just chosen such that F(m∞) = 1 for roofs m∞ whose
singular set (ridge) contains 0. Of course F(m∞) = ±1 is also true for a vortex
m∞ with singular set (center) in 0. Hence in view of (72) we have

0 ∈ singular set 	⇒ F(m∞) ∈ {−1, 1}. (78)

The converse statement

F(m∞) ∈ {−1, 1} 	⇒ 0 ∈ singular set (79)

is also true: since |∇ψ|2 = 1 a.e. , F(m∞) ∈ {−1, 1} implies that ψ∞ is affine
with slope one along the segments [0, 1] v+ and [0, 1] v−. Assume that 0 ∈ sin-
gular set. Then ∇ψ∞(0) exists so that the above translates into ∇ψ∞(0) · v+ =
∇ψ∞(0) · v− = 1. Since v+ = v−, this yields |∇ψ∞(0)|2 > 1 — a contradiction.
This establishes (79).

We now observe that there exists a c0 ∈ (0, 1) such that

ψ∞ linear 	⇒ |F(m∞)| ≤ c0. (80)

Indeed, if ψ∞ is linear, we have F(m∞) = 1
2 (v+ + v−) · ∇ψ∞(0) and thus

|F(m∞)| ≤ | 1
2 (v+ + v−)| =: c0 because of |∇ψ∞(0)|2 = 1. Observe that c0 < 1

because of v+ = v−. This establishes (80). Finally, we have that

F(m∞) ∈ (c0, 1) 	⇒ d

dr

∣∣∣∣
r=1

[
F
(
m∞

0,r

)]
> 0, (81)

F(m∞) ∈ (−1,−c0) 	⇒ d

dr

∣∣∣∣
r=1

[
F
(
m∞

0,r

)]
< 0. (82)
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Let us argue in favor of, say, (81). Since in particular F(m∞) ≥ 0 we have that
ψ∞ is convex according to (77). Looking at (75), one realizes that as in the proof
of Proposition 6, the convexity implies that d

dr

∣∣
r=1

[
F(m∞

0,r)
] ≥ 0. It also shows

that equality, which we shall assume, can only occur if ψ∞ is affine along [0, 1] v+
and [0, 1] v−. Since |F(m∞)| < 1, 0 is not in the singular set according to (78).
Hence ∇ψ∞(0) exists and thus ψ∞ is affine on the union [0, 1] v+ ∪ [0, 1] v−
of the two segments. Since F(m∞) only depends on the restriction of ψ∞ onto
[0, 1] v+∪[0, 1] v−, we may apply (80), which yields |F(m∞)| ≤ c0 — the desired
contradiction.

Third Step Conclusions from functionalF
From (76, 81, 82), we obtain, by the same argument as in the proof of Propo-

sition 6, that

F(B∞(0)) = {1}, F(B∞(0)) = {−1} or F(B∞(0)) ⊂ [−c0, c0].
The second case, i.e.F(B∞(0)) = {−1}, is easily ruled out: according to (77) this
implies that for any m∞ ∈ B∞(0) ψ∞ is concave and according to (79) it implies
that 0 is in its singular set. In view of (72, 74) this means that any m∞ ∈ B∞(x) is
a vortex, which contradicts (73).

Also the third case, i.e. F(B∞(0)) ⊂ [−c0, c0], can be ruled out: according
to (73) there exists an m∞ ∈ B∞(0) with non–empty singular set. Consider its
rescaled versions and their “blow–down” m∞,−∞:

m∞
0,r

r↑∞−→ m∞,−∞.

A diagonal argument shows that also m∞,−∞ ∈ B∞(0). On the other hand, 0 must
be in the singular set of m∞,−∞ so that |F(m∞,−∞)| = 1 in view of (78) — which
is in contradiction with F(B∞(0)) ⊂ [−c0, c0].

Hence we must have F(B∞(0)) = {1} which in view of (79), (77) and (74)
translates into

B∞(0) contains only the centered counterclockwise vortex
or roofs whose singular set runs through 0.

(83)

Fourth Step The functional G
In order to further restrict B∞(0), we introduce

G(m) := 2
∫ 1

0
(ψ(s (1, 0)) − ψ(0)) ds

and notice that

d

dr

∣∣∣∣
r=1

[
G(m0,r)

]

= 2
(

ψ((1, 0)) − ψ(0) − 2
∫ 1

0
(ψ(s (1, 0)) − ψ(0)) ds

)
. (84)
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Fifth Step How G acts on B∞(0).
Let m∞ ∈ B∞(0) be given. We now list the properties which immediately

follow from (83)

G(m∞) ∈ [0, 1], (85)

G(m∞) = 1 	⇒ m∞ is the centered counterclockwise vortex

or the centered left half–roof, (86)

G(m∞) = 0 	⇒ m∞ is the centered line–roof

or the centered right half–roof. (87)

We also have

G(m∞) ∈ (0, 1) 	⇒ d

dr

∣∣∣∣
r=1

[
G
(
m∞

0,r

)]
> 0. (88)

Indeed, consider (84): The convexity of ψ∞ (guaranteed by (83)), implies as in
Proposition 6 that d

dr

∣∣
r=1

[
G(m∞

0,r)
] ≥ 0 with equality only if ψ∞ is affine on the

segment [0, 1] (1, 0). In view of (83), affinity would imply ψ∞((1, 0))−ψ∞(0) ∈
{0, 1} and therefore G(m∞) ∈ {0, 1} — a contradiction.

Sixth Step Conclusions from functional G
Again, we apply the argument from Proposition 6 and obtain from (85, 88) that

G(B∞(0)) = {1} or G(B∞(0)) = {0}.

In view of (86, 87), this means

either B∞(0) ⊂ {centered c.c. vortex, centered left half–roof}
or B∞(0) ⊂ {centered line–roof, centered right half–roof}.

By symmetry, we also have

either B∞(0) ⊂ {centered c.c. vortex, centered right half–roof}
or B∞(0) ⊂ {centered line–roof, centered left half–roof}.

The combination of both yields that B∞(0) either consists of the centered
counterclockwise vortex, or the centered left half–roof, or the centered line–roof,
or the centered right half–roof. Since the first case is not an option in view of (73),
we obtain the claim of the proposition. ��

8. Rectifiability

In this section we will prove that the set J defined in Proposition 1 satisfies the
requirements of Theorem 1. We recall that (9) has already been proved as point (d)
of Proposition 1.
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Proposition 8.

(a) J is rectifiable.
(b) ForH1–a.e. x ∈ J there exist m+(x) and m−(x) such that

lim
r↓0

1

r2

{∫
B+

r (x)
|m(y) − m+(x)| dy

+
∫

B−
r (x)

|m(y) − m−(x)| dy

}
= 0. (89)

(c) ForH1–a.e. x ∈ J we have

lim
r↓0

1

r2

∫
Br(x)

|m(y) − mr |dy = 0. (90)

(d) If � is an entropy, then

µ� J = [η · (�(m+) − �(m−))]H1 J.

Proof. First Step Proof of (a).
Let � be an entropy. Relation (21) and point (d) of Proposition 1 imply that

there exists a Borel function g� such that µ� = g�H1 J + µ̃, where µ̃(H ) = 0
ifH1(H ) < ∞. Hence if we define ν := g�H1 J we have

µ
x,r
� − νx,r

r

∗
⇀ 0 forH1–a.e. x ∈ J . (91)

Proposition 7 implies that

µ
x,r
�

r

∗
⇀ c(x)H1 l(x) forH1–a.e. x ∈ J , (92)

where c(x) is a real number and l(x) is either a line which contains the origin or
a half–line emanating from the origin.

Standard arguments imply that ‖ν‖ = |g�|H1 J and hence reasoning as in
the Sixth Step of the proof of Lemma 1 we conclude that

‖ν‖x,r − sign (g�(x))νx,r

r

∗
⇀ 0 (93)

in every x which is a Lebesgue point for g� with respect to H1 J .
Hence (92), (91) and (93) give

‖ν‖x,r

r

∗
⇀ |c(x)|H1 l(x) for ‖ν‖–a.e. x. (94)

Since ‖ν‖ is a nonnegative measure this implies that

lim inf
r→0

‖ν‖(Br (x))

r
= lim sup

r→0

‖ν‖(Br (x))

r
for ‖ν‖–a.e. x (95)
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and that for ‖ν‖–a.e. x there exists a cone Cη(x) := {v : 2|v · η(x)| ≥ |v|} such that

lim sup
r→0

‖ν‖((x + Cη(x)) ∩ Br(x))

r
= 0. (96)

Then it is a standard fact (see for example the Proof of Theorem 2.83 in [3]) that
‖ν‖ is rectifiable (actually ‖ν‖ = |g�|H1 J and (96) are already sufficient for
rectifiability: see Corollary 15.16 in [23]).

Hence we have that {g� = 0} ∩ J is a rectifiable set for any entropy �. Now
recall the set of entropies C introduced in Warning 1. According to (36) and (28)
we have

J ⊂
⋃
�∈C

{
x : lim sup

r→0

‖µ�‖(Br(x))

r
> 0
}

. (97)

Hence we conclude

H1

((⋃
�∈C

{g� = 0}
)

\ J

)
= 0,

which proves the rectifiability of J .

Second Step Proof of (b).
Proposition 7 implies that, forH1–a.e. x ∈ J , B∞(x) consists either of a single

line–roof or of a single half–line roof. But thanks to the rectifiability of J and to
(97), forH1–a.e. x ∈ J we can find an entropy � such that

µ
x,r
�

r

∗
⇀ g�(x)H1 d(x)

where g�(x) = 0 and d(x) is the tangent line to J in x. In such an x, B∞(x) must
then consist of a line–roof which jumps on d(x). This easily gives (89).

Third Step Proof of (c).
We know from Proposition 6 that, for H1–a.e. x ∈ J , either B∞(x) consists

of constants, or it consists of a single centered vortex. If B∞(x) contains only
constants then for every sequence rn ↓ 0 we can extract a subsequence rh(n) such
that

lim
n→∞

1

r2
h(n)

∫
Brh(n)

(x)
|m(y) − mrh(n)

|dy = 0.

Thus in this case x satisfies (90). We will complete the proof by showing that

V := {x | B∞(x) consists of the centered counterclockwise vortex}
is countable (the same holds for the clockwise vortex). Let mx denote the counter-
clockwise vortex centered at x and define

δ :=
∫

B1(x)∩B1(y)
|mx(z) − my(z)|dz for |x − y| = 1.
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A scaling argument yields
∫

Bρ(x)∩Bρ(y)
|mx(z) − my(z)|dz = δρ2 for |x − y| = ρ (98)

Hence the set

Vr :=
{

x :
∫

Bρ(x)
|m(z) − mx(z)|dz <

δρ2

2
for every ρ ≤ r

}

is at most countable, because for x = y ∈ Vr we have |x − y| > r by (98) and the
triangle inequality. On the other hand we have by definition

V ⊂
∞⋃

i=1

V 1
i

so that also V is countable.

Fourth Step Proof of (d).
Let � be a given entropy. By (b) we know that, for H1–a.e. x ∈ J , B∞(x)

consists of a line roof m∞
x , jumping between the two values m+(x) and m−(x) on

the tangent line d(x) to J in x. Hence for these x we have

mx,r → m∞
x strongly in L p

loc for p < ∞
and thus

µ
x,r
�

r

∗
⇀ [η(x) · (�(m+(x)) − �(m−(x))]H1 d(x), (99)

where η(x) is the unit normal to J in x such that (89) holds.
We recall again that thanks to relation (21) and point (d) of Proposition 1 we

have µ� J = g� J + µ̃ where µ̃(H ) = 0 ifH1(H ) < ∞. Hence we have

µ
x,r
�

r

∗
⇀ g�(x)H1 d(x) forH1–a.e. x ∈ J . (100)

Comparing (100) with (99) we conclude that g�(x) = η(x) · (�(m+(x)) −
�(m−(x)) forH1–a.e. x ∈ J . This completes the proof. ��

9. Final remarks

In this last section we show the fact which encouraged us to come with the argu-
ments used in Sect. 7 and we also explain why the classification of Sect. 6 is still
not sufficient for proving directly the rectifiability of J .

Bernd Kirchheim pointed out to us that the following result holds:

Theorem 2. Let ν = gH1 S for some S such that H1(S) < ∞ and moreover
suppose that for ν–a.e. x the weak limits of sequences of rescaled measures νx,rn /rn

with rn ↓ 0 can only be
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(a) a constant c(x) times the Hausdorff measure concentrated on a line parallel
to a fixed one (d(x));

(b) the zero measure.

Then S is rectifiable.

See [4] for a proof. The core of the argument is the fact that the measure H1

restricted to a line l is a monotone measure, i.e. for every x and every r < s

H1(l ∩ Br(x))

r
≤ H1(l ∩ Bs(x))

s
,

where the equality holds if and only if x ∈ l.
Using known results in Geometric Measure Theory one can extend the previous

theorem substituting (a) with

(a’) a constant c > k(x) > 0 times the Hausdorff measure concentrated on some
line d, where both c and d may depend freely on the chosen sequence {rn},
whereas k(x) does not depend on it.

Also, see again [4], one could allow for a third possibility for the limits of rescaled
measures, namely

(c) a constant c times the Hausdorff measure concentrated on some half–line d
(where, as in (a’), d is allowed to vary among all half–lines and c is only
subject to the constraint c > k(x) > 0).

Anyway it is not clear to us if the same could hold allowing the rescaled
measures to possibly converge also to segments. We are here very near to a border–
line between rectifiability and unrectifiability. Indeed let us take the measure ν

given by the restriction ofH1 to the graph of the function

f(x) :=
∞∑

i=1

2−n2
χAn (x),

being An the union of the closed segments
[(

k − 2−[log n]) 2−n2
, k2−n2

]
, where

k ∈ {1, 2, . . . , 2n2} and [x] denotes the integer part of x. This example is a slight
modification of one shown by Dickinson in [14] and it can be proved that

(i) ν is not rectifiable (i.e. the graph of f is an unrectifiable set);
(ii) for ν–a.e. x, if the measures νx,rn /rn converge then their weak limit is given

by H1 restricted to a subset J of {(x, y), x ∈ R} for some y ∈ R (where y
depends on the sequence {rn});

(iii) the subsets J which appear in (ii) consist all of at most two connected com-
ponents (more precisely they can be the full line, an half–line, a segment, the
full line minus a segment or the empty set).

The proofs of these facts are just a routine modification of those present in [14].
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