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Abstract. We prove the existence of minimal and rigid singular holomorphic foliations by
curves on the projective space CPn for every dimension n ≥ 2 and every degree d ≥ 2.
Precisely, we construct a foliation F which is induced by a homogeneous vector field of
degree d, has a finite singular set and all the regular leaves are dense in the whole of
CPn . Moreover, F satisfies many additional properties expected from chaotic dynamics
and is rigid in the following sense: if F is conjugate to another holomorphic foliation by
a homeomorphism sufficiently close to the identity, then these foliations are also conjugate by
a projective transformation. Finally, all these properties are persistent for small perturbations
of F .

This is done by considering pseudo-groups generated on the unit ball Bn ⊂ Cn by small
perturbations of elements in Diff(Cn, 0). Under open conditions on the generators, we prove
the existence of many pseudo-flows in their closure (for the C0-topology) acting transitively
on the ball. Dynamical features as minimality, ergodicity, positive entropy and rigidity may
easily be derived from this approach. Finally, some of these pseudo-groups are realized in
the transverse dynamics of polynomial vector fields in CPn .

Introduction

A vector field with homogeneous polynomial coefficients of degree d in Cn+1

Z = H0(z)∂z0 + H1(z)∂z1 + · · · + Hn(z)∂zn , z = (z0, z1, . . . , zn)

defines a regular holomorphic foliation by complex curves in Cn+1 \ Sing(Z)

where Sing(Z) stands for the common zero set of the coefficients Hi . The leaves
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are the complex trajectories (integral curves) of Z . This foliation, as well as the
singular set, are invariant under the radial action of C∗ by homotheties. Therefore
it induces a foliation on CPn which is regular away from an analytic set Sing(F )

corresponding to the projection of the set where the vector fieldZ is tangent to the
radial vector field. Modulo dividing Z by the common factor of the polynomials
Hi (which does not change the underlying foliation), we can assume without loss
of generality that the singular set ofF , Sing(F ), has codimension ≥ 2. Conversely,
it turns out that any regular one-dimensional holomorphic foliation on CPn \ S,
where S is an analytic set of codimension ≥ 2, is obtained as above.

The set Fd(CPn) of such foliations inherits a natural structure of finite dimen-
sional complex manifold (actually it is a Zariski-open subset of some projective
space CPN , see Sect. 7). When the degree d is zero (resp. one), all these folia-
tions are easily described. Indeed, they are conjugate under PGL(n + 1,C) to
a foliation given in the main affine chart (z1, . . . , zn) of CPn by a constant ∂z1

(resp. linear
∑

1≤i, j≤n mi, j zi∂z j ) vector field ((mi, j ) ∈ GL(n,C)). In contrast,

very little is known about the dynamics of a generic foliation F ∈ Fd(CPn) for
d ≥ 2. Roughly speaking, the generic foliation F of degree d has dn+1−1

d−1 singular
points which are all hyperbolic and no leaf is contained in an algebraic curve (see
[LN,So]). In particular every leaf has an infinite limit set (consisting of a union
of leaves and possibly singular points). Finally it is also known that every leaf,
viewed as an abstract Riemann surface, is uniformized by the unit disc � (see
[LN]). To be complete, one should also mention that the foliation is topologically
linearizable on neighborhoods of its hyperbolic singularities (see [Ch]), so that the
local dynamics is rather “poor” (see Sect. 7 for details). In fact, these properties are
satisfied by any F belonging to some real Zariski-open subset of Fd(CPn) and, to
the best of our knowledge, these are all the established facts about the dynamics
of generic foliations in Fd(CPn). In particular it is not known whether or not
every leaf must contain a singular point in its closure. This problem, namely the
possible existence of an exceptional minimal set (see [Ca,LN,Sa]), has prevented
further progress on the study of generic foliations for years and remains unsolved.
However, in his report to the Helsinki Conference (cf. [Il2, p. 823]), Il’yashenko
made some conjectures concerning the global dynamical behavior of “most of”
these foliations. The purpose of the present work is to provide a partial (or local)
affirmative answer to his conjectures by proving the following theorem:

Theorem A. For any d ≥ 2, there exists a non-empty open subset U ⊂ Fd(CPn)

such that any foliation F belonging to U has a finite number of singularities and
satisfies:

– Minimality: every leaf is dense in CPn;
– Ergodicity: every measurable set of leaves has zero or total Lebesgue measure;
– Rigidity: if F ′ ∈ Fd(CPn) is conjugate to F by an homeomorphism � :
CPn → CPn close to the identity, then F and F ′ are also conjugate under
PGL(n + 1,C).

Even for n = 2 this result is new, as far as ergodicity and topological rigidity are
concerned. In higher dimensions no example of minimal foliations was previously
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known (cf. below). Besides, following a remarkable idea due to É. Ghys, we deduce
the:

Corollary B. For any d ≥ 2, there exists a subset E ⊂ Fd(CPn) having total
Lebesgue measure such that every elementF ∈ E is tangent to no (strict) algebraic
subset of CPn.

In other words, all leaves of F are Zariski-dense in CPn . This result has been
proved only for n = 2 (see [Jo]) and n = 3 (for a Zariski-open subset of Fd(CP3),
see [So]). In higher dimensions it has been established only for analytic sets of
dimension 1, as mentioned above.

Consider a germ X of degenerate singular analytic vector field defined around
the origin of Cn+1 and having Taylor expansion X = Xd + Xd+1 + · · · (with Xi
homogeneous of degree i). It follows from Corollary B that, if Xd is “generic”, then
X is tangent to no analytic set of dimension ≥ 2 on a neighborhood of the origin.
Indeed, after blowing-up the origin, the tangent cone of a possible invariant analytic
set is an algebraic subset which is invariant by the foliationF induced by Xd on the
exceptional divisor. This fact should be compared to the well-known examples of
analytic vector fields without invariant analytic curves due to [GM,Lu] and [Lu,Ol].
Nevertheless, these latter examples have no intersection with our construction since
the foliations F in question have degenerate singular points.

The rest of the introduction is devoted to discussing the main ideas involved
in the proof of our theorem as well as situating it with regard to previous work.
In dimension n = 2, a great amount of work has been devoted to the dynamical
behavior of foliations inFd(CP2) which are tangent to a projective line, say the line
L∞ at infinity; let us denote by Fd(C2) ⊂ Fd(CP2) the class of these foliations.
A combination of remarkable results due to M.O. Hudai-Verenov and mainly to
Yu. Il’yashenko in the 70’s yields the following theorem:

Theorem (Il’yashenko). For any d ≥ 2, there is a set Ad ⊂ Fd(C2) having
total Lebesgue measure such that any foliation F ∈ Ad has a finite number of
singularities and satisfies:

– Minimality: each leaf (apart from the invariant line at infinity) is dense in C2;
– Ergodicity: any measurable set of leaves has zero or total Lebesgue measure;
– Rigidity: if F ′ ∈ Fd(C2) is conjugate to F by an homeomorphism � : CPn →
CPn close to the identity, then F and F ′ are also conjugate by an affine trans-
formation.

Improvements due to A. Shcherbakov allow us to consider the classAd as being
open insideFd(C2) (cf. [Sh1]). Further improvements have been made as the reader
can check in [GM,OB], [GM] and [LN,Sa,Sc], always under the strong additional
hypothesis that the foliation is tangent to an algebraic curve. Nonetheless, as already
mentioned, the subclass of Fd(CP2) consisting of those foliations admitting an
algebraic invariant curve is very small in the sense that it is contained in a Zariski-
closed subset of high codimension. In particular, the results above fail to provide
an open set of foliations (with fixed degree) exhibiting “chaotic” behavior. In fact,
the open set U of Theorem A contains the class Fd(C2) in its boundary.
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In [Mj], B. Mjuller constructed an open set of minimal foliations in Fd(CP2).
He then derived examples of foliations in CP3 tangent to the projective plane at
infinity and having all leaves dense in the affine part. Actually only recently B. Wirtz
announced a new construction of stably minimal foliations in dimension 2 having
positive entropy. The analogous questions concerning ergodicity and topological
rigidity were not addressed as far as we know.

The original approach of Il’yashenko to study elements of Fd(C2) is based
on studying the holonomy group Hol(L∞) of the invariant line at infinity L∞.
Indeed Hol(L∞) is in general a “large” (e.g. non-solvable) subgroup of Diff(C, 0)

whose dynamics can be well-understood. Furthermore, every leaf of the foliation
F in question must accumulate on L∞ so that it is captured by the dynamics of
Hol(L∞). In this way it is possible to deduce global properties of F from the local
dynamics of Hol(L∞).

The generalization of this approach, however, involves mainly 3 difficulties.
First, for studying generic foliations (even when n = 2), one should be able to deal
with leaves having only “small” (e.g. cyclic) holonomy groups. We overcome this
difficulty by considering perturbations of foliations having large linear holonomy
group and showing the persistence of some “rich” transverse dynamics. On the other
hand, for dimensions greater than 2, there is another additional difficulty, namely
the holonomy groups involved are subgroups of Diff(Cn, 0) (or more generally,
pseudo-groups acting on the unit ball of Cn) whose study is much harder than
the one-dimensional case. Finally, in dimensions greater than 2, a description of
the dynamics of a foliation in a neighborhood of a curve does not automatically
propagates to the entire projective space.

This paper is organized as follows. First we study the dynamics of certain
pseudo-groups acting on the unit ball Bn of Cn without a common fixed point,
which are obtained as “perturbations” of subgroups of Diff(Cn, 0). These pseudo-
groups will later embody pseudo-groups generated by the holonomy groups of
several leaves taken together. Their dynamics are essentially investigated through
their affine part. Indeed, under some assumptions, we prove that the pseudo-groups
approximate many affine “pseudo-flows” as if they were a non-discrete subgroup
of a Lie group (Sects. 2, 3, 4). This approach of the dynamics was already used
in [Sh1], [Na], [Reb1] and [Be,Li,Lo1]. Using these “pseudo-flows” it is easy to
conclude that the original dynamics are minimal, ergodic and rigid (as well as
to show that they have positive entropy, Sects. 5, 6). After realizing the pseudo-
groups considered above as holonomy of a foliation F in CPn+1, we shall obtain
a good control of the dynamics of F in a certain region of CPn+1. We then use
an “induction trick” to deduce the global behavior of F by means of these local
data. An example of the nature of the results obtained in Sect. 5, is the following
theorem.

Theorem C. Let f1, . . . , fd be in Diff(Cn, 0). Suppose that their linear parts
A1, . . . , Ad generate a dense subgroup of GL(n,C). Then, there are constants
ε, r > 0 such that any transformations g1, . . . , gd : Bn

r → Cn satisfying
‖gi − fi‖Bn

r
≤ ε generate a minimal and ergodic pseudo-group either on Bn

r , or
on Bn

r \ {p} if the gi’s share a common fixed point p inside the ball.
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When gi ≡ fi (p = 0), the fact that the pseudo-group in question acts minimally
on the punctured ball was known only for the one-dimension case (see [Il1]) and
was independently proved by S. Lamy in dimension two (see [La]). Finally we
should say that our techniques of producing flows associated to pseudo-groups
acting on Bn might be of interest for other purposes and, for this reason, are
presented in the most general setting. After we started to work on this subject, by
fall 1998, two works of our colleague M. Belliart improved our Theorem C (see
[Be1] and [Be2]). He showed that under further generic conditions on the 3-jet of
g1, . . . , gd , the corresponding minimal pseudo-group actually approximates any
germ g : (Cn, q) → (Cn, q′) of holomorphic diffeomorphism inside the domain
of minimality Bn

r (resp. Bn
r \ {p}).

1. Preliminary constructions within the linear group of Cn

In this section, we shall recall some classical ideas which will be used and general-
ized to the non-linear context of pseudo-groupson the unit ballBn ⊂ Cn in Sects. 3,
4 and 5. Precisely, we are going to prove that, close to the identity I ∈ GL(n,C),
two generic matrices A and B generate a large subgroup G, accumulating on the
whole of SL(n,C). Throughout this section, the dimension is supposed to be n ≥ 2.

Recall that two complex numbers λ,µ ∈ C∗ may generate a dense or a discrete
subgroup � of C∗ depending on their “multiplicative dependence over Z”. In
particular, for subgroups of C∗, properties as being discrete, non-discrete or dense
are not persistent under perturbation of the generators. Nonetheless we point out
that for “most” choices of the generators λ,µ (in the sense of Lebesgue measure
on (C∗)2), the resulting group � is dense in C∗.

Let us now consider the subgroup G ⊂ GL(n,C), n ≥ 2, generated by two
matrices A and B. The determinant map, which associates to an element of G its
determinant, defines a homomorphism from G to the subgroup det(G) = {δ =
det(C) ; C ∈ G} of C∗. Clearly det(G) is generated by the scalars λ = det(A) and
µ = det(B). Thus it follows again that A, B cannot persistently generate a dense
subgroup of GL(n,C). Moreover, consider two matrices A and B whose corres-
ponding projective transformations Â, B̂ ∈ PGL(n,C) generate a Schottky group
onCPn . The group G is a discrete subgroup of GL(n,C) and is, in fact, persistently
discrete: the projective action of matrices A′, B′, respectively close to A, B will
still generate a Schottky group onCPn . On the other hand the classical Zassenhaus
Lemma (which holds for any finite-dimensional Lie group) ensures the existence of
a neighborhood U of the identity such that any non-nilpotent subgroup G admitting
a finite generating set contained in U is not discrete. Clearly, this statement enables
us to find examples of groups G ⊆ PGL(n,C) which are persistently non-discrete.

Let us equip GL(n,C) with the distance dist(M, N) = ‖M − N‖ induced by
the norm ‖M‖ = sup|z|=1 |Mz|. The key ingredient of Zassenhaus Lemma may be
presented as follows:

Lemma 1.0. For any n ≥ 2, there exist constants ε0, C0 > 0 such that any
matrices A, B ∈ GL(n,C) which are ε0-close to the identity I satisfy

‖[A, B] − I‖ ≤ C0 · ‖A − I‖ · ‖B − I‖ .
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Proof. The differentiable map (A, B) 
→ [A, B] is equal to the the identity I on
GL(n,C) × {I} and on {I} × GL(n,C). Hence its differential at (I, I ) is trivial.
Then the Taylor’s formula provides the required estimate. �

Equip GL(n,C)×GL(n,C) with the product distance arising from the distance
in GL(n,C) introduced above.

Corollary 1.1. For any n ≥ 2, there is a Zariski-open subset U1 of the ε1-
neighborhood of (I, I ) in GL(n,C) × GL(n,C), for some ε1 > 0, having the
following property: if a pair of matrices (A, B) belongs to U1, then A, B generate
a non-discrete subgroup G of GL(n,C). In particular, the closure G of G (for the
usual topology) contains a non-trivial real one-parameter group exp(tM), t ∈ R.

Proof. Choose ε1 ≤ ε0 small enough such that C0ε1 < 1/2. According to
Lemma 1.0 the sequence of iterated commutators, inductively given by

B0 = B and Bk+1 = [A, Bk] = ABk A−1 B−1
k for k ∈ N,

converges to the identity and dist(Bk, I ) < ε1/2k.
Now, assume that A has only simple eigenvalues and choose linear coordinates

where A is diagonal. Clearly, BAB−1 is also diagonal if and only if B permutes the
eigendirections of A. We claim that B cannot non-trivially permute these directions
provided that ε1 was chosen small enough. Taking for grant this claim, it results that
BAB−1 (or equivalently [A, B]) is diagonal if, and only if, B is so. By induction,
the sequence {Bk} is non-trivial, i.e. Bk �= I for every k, as long as B is not diagonal
simultaneously with A.

Let us now prove our claim. Set ε1 < 1/n. Then any matrix B which is ε1-close
to identity satisfies |tr(B) − n| < 1 where tr(B) stands for the trace of B. On the
other hand, given a basis of unit vectors vi generating the permuted n directions,
then clearly (these vectors are close to one another and) we have B(vi) = λi · vσ(i)
for a permutation σ and scalars λi which are ε1-close to 1. In the basis (vi), the
matrix B (may lie far from the identity but) has the following special form: on each
row and each column, all coefficients but one are zero and, besides, the unique
coefficient different from zero is equal to λi . The number of λi ’s appearing in the
diagonal is equal to the number of unpermuted directions. If this number is not n,
say k ≤ n − 2, then |tr(B) − k| < k · ε1 which gives a contradiction.

Finally, we have proved that the group G is non-discrete as long as A has only
simple eigenvalues with at least one eigendirection which is not shared with B. The
set U1 of (A, B) satisfying these conditions is clearly the complement of a finite
number of algebraic relations among their coefficients, and thus it is Zariski-open.
According to Cartan’s theorem, the closure G of G is a real analytic Lie group
which, being not discrete, must have a non-trivial Lie algebra G. The Corollary is
proved. ��

It is convenient to recall a direct construction of a non-trivial real one-parameter
group (also called a real flow) contained in G (so that we can dispense with
Cartan’s theorem). This may be outlined as follows. For a suitable sequence Nk ∈ N
(necessarily tending to +∞), the renormalized matrices Ck = BNk

k have distance to
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the identity upper and lower bounded by positive constants, say r1 < ‖Ck − I‖ < r2
for k large, 0 < r1 < r2. Indeed, denote by Bt(M) the ball of radius t centered at
M in gl(n,C) and choose t2, r2, t1, r1, 0 < t1 < t2

2 , so that the exponential map
takes the ball Bt2(0) diffeomorphically onto a neighborhood of Br2(I ) and takes
the annulusB2t1(0)\Bt1(0) inside the annulusBr2(I )\Br1 (I ). Since, every matrix
M ∈ Bt1(0) has an integer multiple nM belonging to the annulus B2t1(0) \ Bt1(0),
the matrix C = exp(M) ∈ Br1(I ) escapes from this ball under iteration and its
orbit intersects the annulusBr2(I )\Br1(I ). Going back to the sequence Ck , modulo
passing to a subsequence, it converges to some C ∈ GL(n,C). Such C is the time-
one map of the one-parameter family Ct = limk→∞ B[t·Nk]

k , t ∈ R, where [ · ]
stands for the integral part.

Using the preceding statements, it is rather easy to ensure that, under further
(open) generic assumptions on the matrices A, B, the closure G is as large as
possible, namely it maps onto PGL(n,C) under the natural projection. This is the
contents of Corollary 1.3 which will follow from:

Lemma 1.2. There is a (real) Zariski-open subset U2 of GL(n,C) × GL(n,C)

having the following property: if (A, B) ∈ U2, and G is a real vector subspace
of gl(n,C) which is invariant under conjugation by A and B (i.e. G satisfies
AGA−1 = BGB−1 = G), then eitherG ⊂ C · I or sl(n,C) ⊂ G (in the first case
we say that G is scalar and in the second thatG is large).

Proof. We show, under generic assumptions on A and B, that any matrix M0 ∈
gl(n,C) which is not a scalar multiple of the identity (in particular M0 does not
have all entries equal to zero) together with its conjugates by A and B, generate
a subspace G over R which contains sl(n,C). First we impose the condition of
Corollary 1.1, namely that A has only simple eigenvalues λ1, . . . , λn and choose
linear coordinates where A is diagonal. The action of A by conjugation on gl(n,C)

gl(n,C) → gl(n,C) ; M 
→ AMA−1,

is linear diagonal with eigenvalues λi, j = λi/λ j in the Kronecker basis (δi, j ) of
gl(n,C). For i = 1, . . . , n, we clearly have λi,i = 1, and for i �= j , we require
that the λi, j ’s are pairwise distinct in norm and non-real. Finally we suppose that B
(resp. B−1) takes the n eigendirections of A to the complement of the n invariant
hyperplanes of A (in the coordinate where A is represented by a diagonal matrix,
the preceding condition means that neither B nor B−1 has a vanishing entry).
Clearly the set U2 of pairs (A, B) defined by those conditions is the complement
of finitely many algebraic relations among the coefficients of the matrices. Indeed,
the conditions on λi are equivalent to the non-vanishing of the algebraic function

F(A) =
∏

i< j

�m

(
λi

λ j
+ λ j

λi

)

.

For example, when n = 2 and A =
(

a b
c d

)

, they become

λ1

λ2
+ λ2

λ1
= (λ1 + λ2)

2

λ1λ2
− 2 = (a + b)2

ad − bc
− 2 �∈ R.
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Similarly the eigenvectors ui of A may be obtained from the λi’s and the coefficients
of A by linear algebra. The second condition is then equivalent to the non-vanishing
of the algebraic function

∏

i, j

det(Bui, u1, . . . , û j , . . . , un).

Denote by �A and �⊥
A the complementary subspaces of gl(n,C) respectively

consisting of diagonal matrices and of matrices with zero entries in the diagonal.
Denote by 	A and 	⊥

A the respective linear projections.

Step 1: we prove that G contains a non-zero matrix M1 ∈ �⊥
A . If M0 is not

diagonal then it is enough to set M1 = AM0 A−1 − M0 which obviously satisfies
our needs. Let us therefore suppose that M0 is diagonal. In this case the new matrix
M̃0 = BM0 B−1 cannot be diagonal. Indeed suppose for a contradiction that M̃0
is also diagonal. Since M0 is not a scalar multiple of the identity, it has at least
2 distinct eigenvalues and hence non-trivial eigenspaces which are direct sums of
eigendirections of A. If M̃0 is also diagonal, it follows that B takes an eigendirection
of A to a direct sum of eigendirections of A whose dimension is strictly less than n.
Therefore B takes an eigendirection of A to an invariant hyperplane. The resulting
contradiction allows us to conclude that M̃0 is not diagonal. Now Step 1 follows
from letting M1 = AM̃0 A−1 − M̃0.

Step 2: we prove thatG contains the complex line C · M2 through some Kronecker
matrix M2 = δi0, j0 , i0 �= j0. If S denotes the set of indices (i, j) corresponding
to the non-vanishing entries mi, j of M1, then the norm of λi, j is maximized by
a unique pair (i0, j0) ∈ S. It follows that the sequence of conjugates Ak M1 A−k,
k ∈ N, tends in direction towards the complex lineC·δi0, j0 . Recalling that no λi, j is
real (for i �= j), it results that the complex lineC · δi0, j0 is completely accumulated
by the sequence of “conjugate real lines” R · Ak M1 A−k. These lines are clearly
contained in G and, since G is closed, Step 2 follows.

Step 3: we prove that G contains the whole of the complex subspace �⊥
A . Since

B = (bi, j ) and B−1 = (̃bi, j ) have no vanishing entry, the same holds for the
conjugate M̃2 = BM2 B−1 = (bi,i0 .̃b j0, j). Therefore M3 = AM̃2 A−1 − M̃2 has
vanishing entries precisely on the diagonal andG contains the complex lineC · M3.
Since the λi, j ’s are pairwise distinct (in norm) for i �= j , it follows that the
conjugates Ak M3 A−k are linearly independent over C for k = 1, . . . , n2 − n and
generate �⊥

A .

Step 4: we prove that G contains the diagonal matrices �A which have trace
equal to zero. Consider the mapping from �⊥

A ⊂ G to gl(n,C) given by M 
→
	A(BMB−1). Because M has trace zero, it results that 	A(BMB−1) has trace
zero as well. In other words, the image of the mapping in question is contained
in the set of diagonal matrices with trace equal to zero. It is therefore sufficient to
show that the rank of this map is equal to n −1. To show this, it suffices to consider
the restriction of this mapping to the space generated by δ1,2, . . . , δ1,n (which is
clearly contained in �⊥

A). Indeed note that the corresponding (n − 1) × n−matrix
(bi,1 .̃b j,i)i=1,... ,n; j=2,... ,n , whose columns are the coefficients of 	A(Bδ1, j B−1)
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in the basis (δi,i) of �A, is such that the subdeterminant det(bi,1 · b̃ j,i)i, j=2,... ,n

equals b1,1·····bn,1
det(B)

which is not zero in view of the preceding assumptions on B. This
completes the proof of the lemma. ��
Corollary 1.3. There is a (real) Zariski-open subset U3 of the ε1-neighborhood
of (I, I ) in GL(n,C) × GL(n,C) having the following property: the subgroup G
generated by any (A, B) ∈ U3 contains a dense subgroup of SL(n,C). In fact the
closure G of G has the form

G = � × SL(n,C) ,

where � ⊂ C∗ · I is a closed subgroup of scalar matrices.

Proof. Set U3 = U1∩U2 so that any (A, B) ∈ U3 generates a non-discrete subgroup
G ⊆ GL(n,C) (Corollary 1.1) whose closure G, and hence whose associated Lie
algebra G, are both invariant by A and B. Since the non-trivial elements of G
were constructed by means of commutators, they clearly belong to sl(n,C) (and
hence are non-scalar). Therefore Lemma 1.2 implies that sl(n,C) ⊆ G and thus
SL(n,C) ⊂ G. Since SL(n,C) is perfect i.e. coincides with its derived group
D1G, we conclude that D1G, is (contained and) dense in SL(n,C). In fact, every
element of SL(n,C) can be written as a composition of commutators and, in turn,
each commutator can be approximated by a commutator of elements in G since
SL(n,C) ⊂ G. Now a simple argument involving the obvious short exact sequence
shows that G/SL(n,C) can be identified with � = n

√
det(G). ��

In the sequel, we will say that G is large if it fulfils the conclusions of Corol-
lary 1.3, namely G = �×SL(n,C). This property is persistent (stable) and generic
for matrices close to I as follows from:

Corollary 1.4. The subset U4 ⊂ GL(n,C) × GL(n,C) of those (A, B) which
generate a large subgroup G ⊆ GL(n,C) is an open set. Furthermore, the inter-
section of U4 with a suitable neighborhood of (I, I ) has total Lebesgue measure in
this neighborhood.

Proof. Only the part involving stability (i.e. the fact that these sets are open) needs
further comments. If the group G generated by (A, B) is large, then it contains
a dense subset of SL(n,C) and one can find two words (w1(A, B),w2(A, B)) ∈ U3
which “persistently generate” a large subgroup of GL(n,C). Since these words
depend smoothly on the generators A and B, we immediately conclude the desired
stability. ��

In this sense, large subgroups are the largest “stable” subgroups of GL(n,C).
Since conditions of Lemma 1.2 make sense and are Zariski-open in PGL(n,C) ×
PGL(n,C) or SL(n,C) × SL(n,C), the same arguments show that the subsets of
those pairs (A, B) which generate a dense subgroup of PGL(n,C) (resp. SL(n,C))
are open sets and have total measure in a neighborhood of (I, I ). We also have:

Corollary 1.5. The subset U5 ⊂ GL(n,C) × GL(n,C) of those (A, B) which
generate a dense subgroup G ⊂ GL(n,C) has total Lebesgue measure in a neigh-
borhood of (I, I ).
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Proof. If we denote by U the subset formed by those (λ,µ) ∈ C∗ × C∗ which
generate a dense subgroup � of C∗, then U5 contains the set

{(A, B) ∈ U3 ; (det(A), det(B)) ∈ U}.
The corollary is therefore established since U has total Lebesgue measure in
C∗ × C∗. ��

We close this section with a simple lemma about large subgroups which will
be used in the proof of the rigidity of pseudo-groups at the end of Sect. 6. Note
that a large subgroup means a subgroup as in the statement of Corollary 1.3. Recall

first that, identifying a complex scalar λ = a + ib with the real matrix
(

a −b
b a

)

,

we define a natural inclusion GL(n,C) ↪→ GL(2n,R).

Lemma 1.6. Let G be a large subgroup of GL(n,C) and assume that G is con-
jugated to another subgroup G′ ∈ GL(n,C) by a real matrix C ∈ GL(2n,R).
If n ≥ 2, then either C or its conjugate C is a complex matrix (i.e. it belongs to
GL(n,C)).

Proof. Denote by J ∈ GL(2n,R) the conjugation by C of the complex scalar
matrix i.I . By construction, J2 = −I and J does commute with all elements of
G and, hence, with all elements of its closure G. Since G is a large subgroup of
GL(n,C), it contains a copy of SL(n,C) whose elements necessarily commute
with J . In particular, J has to commute with the complex scalar matrix n

√
1 · I ∈

SL(n,C). When n ≥ 3, this matrix is not real and it follows that J is actually
a complex matrix belonging to the center of SL(n,C). Thus, J = λ · I and, since
J2 = −I , we obtain λ = ±i. Finally, C conjugates i.I to ±i.I and therefore
is complex or anti-complex ending the proof. In the case n = 2, consider the

commutator of J with a complex diagonal matrix

(
λ 0
0 λ−1

)

∈ SL(2,C). For

a generic real coefficient λ = a + i0 =
(

a 0
0 a

)

it follows that J is block-diagonal

with 2×2 (real) blocks. Then, setting λ = i =
(

0 −1
1 0

)

, we show that these blocks

are actually complex, i.e. of the form

(
a −b
b a

)

. Thus, J ∈ GL(2,C) and the proof

is completed as in the case n ≥ 3. ��

2. Pseudo-groups G on the unit ball Bn of Cn , their closure G and their Lie
pseudo-algebraG

In this section, we recall the definition of a pseudo-group G, define its closure G
with respect to the uniform convergence on compact subsets and introduce the Lie
pseudo-algebraG consisting of those vector fields whose pseudo-flow is contained
in G. This way of associating vector fields to pseudo-groupswas already considered
in [Sh1], [Na], [Be,Li,Lo1] and [Reb1] in order to study the dynamics of certain



Minimal, rigid foliations by curves on CPn 157

pseudo-groups in dimension 1. These notions will be used throughout Sects. 3, 4,
5 and 6. In what follows z = (z1, . . . , zn) stands for the variable of Cn and |z|
for the usual norm. Denote by Bn

r the ball of radius r > 0 centered at the origin
0 ∈ Cn and set Bn = Bn

1. Given a mapping f : Bn
r → Cn , we denote by ‖ f ‖r the

supremum of | f(z)| where z ∈ Bn
r . A pseudo-group G on Bn is any collection of

biholomorphic transformations f : U → V within the ball, U, V ⊂ Bn , which is
closed under:
– restrictions: if ( f : U → V ) ∈ G and W ⊂ U then f |W ∈ G,
– inversions: if ( f : U → V ) ∈ G, then ( f −1 : V → U) ∈ G,
– compositions: if ( f : U → V ), (g : V → W ) ∈ G, then (g◦ f : U → W ) ∈ G).

The pseudo-group G generated on Bn by a collection of injective holomorphic
mappings ( fi : Ui ↪→ Cn)i is the smallest pseudo-group on Bn containing the
dynamics induced by the fi within Bn , i.e. containing the restriction of each fi to
f −1
i ( fi(Ui ∩ Bn) ∩ Bn).

We shall say that an injective holomorphic transformation f : U → V within
Bn is approximated by a sequence of elements fk : Uk → Vk of G, k ∈ N, (or
by G for short) if, for any compact subset K ⊂ U , K is contained in Uk for
sufficiently large k, and the sequence fk|K restricted to K converges uniformly to
f |K . The collection G of all transformations approximated by G is a pseudo-group
(trivially containing G) which will be called the closure of G. The pseudo-group
Diff(Bn) of all holomorphic transformations within Bn can, indeed, be endowed
with a topology for which G becomes the closure of G in Diff(Bn), but this will
not be necessary to our purposes.

In order to follow the ideas developed in the linear case, we would like to
consider the closure G as a real analytic Lie pseudo-group (as in Cartan’s theorem),
i.e. to define its (real) Lie pseudo-algebraG in a reasonable sense.

Let X denote a real vector field defined on an open set U ⊂ Bn and consider the
pseudo-flow φt

X : Ut → Vt , t ∈ R and Ut, Vt ⊂ U , obtained by integration of X
(note that Ut might become empty when |t| increases). Clearly, this pseudo-flow
is a pseudo-group of holomorphic transformations if and only if X is the real part
of a complex holomorphic vector field Z . Explicitly, setting zi = xi + √−1 · yi , if
the vector field Z is given as Z = ∑n

i=1 fi∂/∂zi where the fi ’s are holomorphic,
then X has the form

X =
n∑

i=1

�e( fi)
∂

∂xi
+ �m( fi)

∂

∂yi
.

Here fi = �e( fi) + √−1 · �m( fi). More generally, it will be proved later (Propo-
sition 4.8) that any germ at 0 ∈ R of continuous homomorphism from the additive
group (R,+) into a pseudo-group of holomorphic transformations must be as
above (i.e. it can be represented by the pseudo-flow of a vector field as X).

Now, define the Lie pseudo-algebra (or simply Lie algebra) G associated to
the closed pseudo-group G as the collection G(U), for every open set U ⊂ Bn ,
of the set of holomorphic vector fields X defined on U whose corresponding real
pseudo-flow ϕt

X : Ut → Vt (t ∈ R small) is entirely contained in G. It is easy to
check that G inherits a structure of a presheaf of real Lie algebras, i.e. the set of
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vector fields inG(U) is stable under restrictions and anyG(U) is a real Lie algebra
with respect to the Lie brackets of vector fields.

Finally, each G(U) is closed under uniform convergence on compact subsets
and the entire collection G is invariant under G: if f : U → V belongs to G then
G(V ) = f∗G(U).

For instance, if we still denote by G the pseudo-group obtained by restricting
all transformations of a given linear group G ⊂ GL(n,C), then the closure G in
the previous sense coincides with the pseudo-group induced by the closure of G
with respect to the usual topology of GL(n,C). Then, the Lie pseudo-algebra G
defined as above coincides with the Lie algebra of G, viewed as a real analytic Lie
subgroup of GL(n,C), on the whole of Bn .

In practice we just need to keep in mind that, given a pseudo-group G on Bn ,
the Lie pseudo-algebraG associated to its closure G consists of the complex holo-
morphic vector fields X defined on some U ⊂ Bn (actually in most applications
U will be a sub-ball Bn

r ) and possessing the following property: every local dif-
feomorphism induced by the corresponding real pseudo-flow ϕt

X , t ∈ R fixed, can
uniformly be approximated by a sequence hk of elements of G on any compact
subset of Ut (provided that ϕt

X is defined on Ut ).
Now, let us explain why it is convenient to introduce these notions. First note

that the transitivity of Lie algebra G on the ball Bn automatically implies the
minimality of the original pseudo-group G (i.e. all orbits are dense in Bn). Indeed,
the transitivity of G means that, given any 2 points p and p′ in Bn , there exists
a finite combination of pseudo-flows ϕ = ϕ

t1
X1

◦ · · · ◦ ϕ
tN
X N

satisfying ϕ(p) = p′,
X1, . . . , X N ∈ G. Here, we omit the domain of definitions but we implicitly
require that ϕ is defined at least on a neighborhood of p. By definition of G andG,
ϕ (belongs to G and) is approximated on a neighborhood of p by some sequence
ϕn of elements of G. Thus, p′ is approximated by the sequence of points ϕn(p)

which obviously belong to the orbit of p by G.
In fact, the transitivity of the Lie algebra G has many further consequences

on the dynamics of G as it will be shown in Sect. 6. For instance, we may derive
the ergodicity of the (pseudo-) action of G as well. Another motivation to work
with vector fields rather than with elements of G is that we obtain an easier control
of the domain of definition of the objects during their manipulation and several
computations become linear.

The purpose of the next two sections is to provide sufficient conditions for
a pseudo-group G, consisting of holomorphic transformations within the ball Bn ,
to have non-trivial (real) Lie algebra. Our main result is:

Proposition 2.0. There exists a constant ε2 > 0 such that, for any scalar 0 <

|λ| < 1 satisfying |λ − 1| < ε2, one can find a smaller constant ελ > 0 having
the following property: every ελ-perturbations f, g : Bn ↪→ Cn respectively of the
contracting homothety f0(z) = λ · z and of the identity map g0(z) = z onBn which
do not have a common fixed point (i.e. they satisfy ‖ f − f0‖1, ‖g − g0‖1 < ελ and
f(z) = g(z) = z for no z ∈ Bn), generate a pseudo-group G whose Lie algebra
contains a non-trivial vector field X ∈ G(Bn).
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3. Catching non discrete pseudo-groups

The goal of this section is to provide sufficient conditions on two injective holomor-
phic mappings f, g : Bn ↪→ Cn so that they generate a pseudo-group G containing
a sequence of non-trivial elements converging uniformly to the identity map Id
on some ball Bn

r . Precisely, in order to obtain convergence to the identity, we will
require that f and g are close to the identity on Bn . Besides f will be a contrac-
tion very close to a homothety. Additional generic conditions will be needed to
ensure the non-triviality of the sequence. We begin with a non-linear analogue of
Lemma 1.0 which is borrowed from [Gh].

Lemma 3.0 (Ghys). Fix constants r, ε, τ > 0 satisfying 4ε + τ < r. Let f, g :
Bn

r ↪→ Cn be holomorphic mappings and denote by G the pseudo-group generated
by them on Bn

r . If f and g are ε-close to the identity on Bn
r , then the commutator

[ f, g] = f ◦ g ◦ f −1 ◦ g−1 induces a mapping Bn
r−4ε ↪→ Bn belonging to G.

Furthermore we have the estimate below:

‖[ f, g] − Id‖r−4ε−τ ≤ 2

τ
· ‖ f − Id‖r · ‖g − Id‖r .

In Ghys’s paper, [Gh], the right hand side of the corresponding estimate is given
by sup (|| f − Id ||r, || g − Id ||r)2. However our sharper inequality follows from
similar arguments as can easily be checked.

Proof. By assumption, the variations � f = f − Id and �g = g − Id of f and g
are bounded by ε on Bn . Clearly f ◦ g is well-defined as mapping from Bn

r−2ε to
Bn and can be written as

f ◦ g = Id + � f + �g + (� f ◦ g − � f ).

Cauchy Formula applied on small disks of radius τ , 0 < τ < r, inside Bn provides
the following bound for the partial derivatives

∥
∥
∥
∥
∂� f

∂zi

∥
∥
∥
∥

r−τ

≤ 1

τ
‖� f ‖r .

There is also an analogous estimate for �g. Now the Mean Value Theorem yields:

‖� f ◦ g −� f ‖r−2ε−τ ≤ sup
i

∥
∥
∥
∥
∂� f

∂zi

∥
∥
∥
∥

r−ε−τ

‖�g‖r−2ε−τ ≤ 1

τ
‖� f ‖r‖�g‖r .

Therefore f ◦ g − g ◦ f , which is also well-defined on Bn
r−2ε, satisfies

‖ f ◦g−g◦ f ‖r−2ε−τ ≤ ‖� f ◦g−� f ‖+‖�g ◦ f −�g‖ ≤ 2

τ
‖� f ‖r‖�g‖r .

On the other hand, (g ◦ f )−1 takes the ball of radius r − 4ε − τ to the interior of
the ball of radius r −2ε− τ . Thus [ f, g]− Id = ( f ◦ g − g ◦ f)◦ (g ◦ f )−1 satisfies

‖[ f, g] − Id‖r−4ε−τ ≤ 2

τ
‖� f ‖r‖�g‖r .

The lemma is proved. ��
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In [Gh], this lemma is used to prove the convergence to the identity of some
sequences hk contained in the derived sequence of G.

Corollary 3.1 (Ghys). Given holomorphic mappings f, g : Bn ↪→ Cn, denote by
G the corresponding pseudo-group on Bn, and consider the sequence of subsets
{Zk} ⊂ G defined by

Z0 = { f, f −1, g, g−1} and Zk+1 = {[hk, h′
k]; hk, h′

k ∈ Zk} for k ∈ N.

If f and g are 1
32 -close to the identity, then all elements of Zk are defined at least

on the ball Bn
1/2 and are 1

2k+5 -close to the identity on this ball, for all k ∈ N.

Proof. We are going to prove that any hk ∈ Zk is defined on the ball of radius
rk = 1

2 + 1
2.2k and that the difference hk − Id is uniformly bounded on Bn

rk
by

εk = ε0/2k, ε0 = 1/32. In order to inductively apply Lemma 3.0, notice that
the sharp estimate will be obtained by choosing the constant τk > 0 satisfying
rk+1 = rk − 4εk − τk, so that τk = τ0/2k with 4ε0 + τ0 = 1/4. Now Lemma 3.0
inductively produces

‖[hk, h′
k] − Id‖rk+1 ≤ 2

τk
· ‖hk − Id‖rk · ‖h′

k − Id‖rk ≤ 2

τk
· ε2

k = 2ε0

τ0
· εk

which shows that εk+1
εk

= 1
2 for τ0 = 4ε0. Hence τ0 = 1/8 and ε0 = 1/32. ��

In particular, any sequence (hk)k contained in the sets above, hk ∈ Zk, con-
verges uniformly to the identity on Bn

1/2. Nevertheless, it may be difficulty to
verify the non-triviality of such sequences. To require that G is non-solvable (when
it makes sense) is in general not sufficient. Moreover the existence of sequences
of elements in G which converge uniformly to the identity still does not guarantee
the existence of pseudo-flows, as shown by the next example.

Example 3.2. Due to arithmetic reasons (see [Be,Ce,LN, Corollary 4.2, p. 262]),
the subgroup G0 ⊂ Diff(C, 0) generated by z/(1 − 2z) and z/

√
1 − 4z2 (where

the determination
√

1 = 1 was chosen) is a free group of rank 2. The mappings
f and g are defined on Bn

1/2 and we denote by G the pseudo-group generated by
them within Bn

1/2. Because G0 is free, the series {Zk} considered in Corollary 3.1
does not degenerate into {Id}. Hence G contains sequences of non-trivial elements
converging to the identity on a fixed neighborhood of 0 ∈ C. Nonetheless we
claim that G cannot approximate a non-trivial pseudo-flow on a neighborhood of
0 ∈ C. In fact, suppose for a contradiction that ϕX is a non-trivial pseudo-flow
defined around 0 ∈ C and belonging to the Lie algebra of G (on a neighborhood
of 0 ∈ C). Clearly ϕt

X(0) = 0 for every t ∈ R. Furthermore we can choose
t0 ∈ R so that the Taylor series based at 0 ∈ C of the induced mapping ϕ

t0
X

does not have integer coefficients. By assumption, there is a sequence {hk} ⊂ G
converging uniformly to ϕ

t0
X on a neighborhood of 0 ∈ C. This implies that, for

k large enough, the Taylor series of hk based at 0 ∈ C does not have integer
coefficients. This is however impossible: since the Taylor series based at 0 ∈ C of
f, f −1, g, g−1 all have integer coefficients, the same holds for any element of G0.
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The resulting contradiction proves our claim. Finally, recall that Nakai’s theorem
(see [Na]) asserts the existence of (many!) such pseudo-flows in the closure of G at
the neighborhood of any point z0 �= 0 sufficiently close to 0. Thus, the associated
Lie pseudo-algebraG has “trivial germ” only at 0.

Notice also that, in contrast with the finite dimensional case, Lemma 3.0 is
not sufficient (without further assumptions) to imply that the sequences hk ∈ Sk ,
k ∈ N, contained in the “central” sequence of sets

S0 = { f, f −1, g, g−1} and Sk+1 = {[h0, hk]; h0 ∈ S0, hk ∈ Sk},
are well-defined as elements of the pseudo-group G and, furthermore, converge
uniformly towards the identity. Indeed, if we choose f, g as translations arbitrar-
ily close to the identity, then we can always find an integer k0 for which any
word hk0 ∈ Sk0 has empty domain of definition. Although this counterexample is
somehow trivial (Sk consists of the identity transformation for k > 0) a small “non-
nilpotent” perturbation of it, within the affine group, will have the same property
and will provide serious obstructions to the existence of a “Zassenhaus Lemma”
for pseudo-groups.

In order to ensure that the pseudo-group G is not discrete, our idea is to require
also that f is a contraction. So, instead of dealing with the sequence g0 = g,
gk+1 = [ f, gk] whose common domain of definition of the elements is shrinking,
we are able to “restore” (i.e. “re-enlarge”) domains by working with an alternate
sequence of type h0 = g, hk+1 = f −N [ f, hk] f N . This approach is successful only
if the distortion of f can be bounded. More precisely, if we denote by 0 < λ− ≤ λ+
the lower and upper bounds for directional derivatives of f given by

λ− = inf|v|=1,|z|<1

∣
∣
∣
∣
∂

∂t
f(z + tv)

∣
∣
t=0

∣
∣
∣
∣ and λ+ = sup

|v|=1,|z|<1

∣
∣
∣
∣
∂

∂t
f(z + tv)

∣
∣
t=0

∣
∣
∣
∣ ,

we then require that

(∗) 0 < (λ+)2 < λ− ≤ λ+ < 1 .

The assumption above is strong but sufficient for our purpose. The reader
may notice that the perturbations f of f0(z) = λ · z considered in Proposition 2.0
satisfy this requirement modulo shrinking the ball where they are defined. The con-
dition (∗) will also imply that f can be linearized by a holomorphic change of coor-
dinates at a neighborhood of its fixed point 0 (Poincaré Theorem, cf. Lemma 3.5).

Lemma 3.3. There exists ε3 > 0 such that, for any ε3-close to the identity holo-
morphic mapping f : Bn ↪→ C

n fixing 0 and satisfying (∗), there is N ∈ N having
the following property: consider the pseudo-group G generated on Bn by f and
another ε3-close to the identity holomorphic mapping g : Bn ↪→ Cn. Then the
sequence inductively given by

g0 = g and gk+1 = f −N ◦ [ f, gk] ◦ f N

induces a sequence of mappings Bn
1/3 ↪→ Bn belonging to G and converging

uniformly towards the identity on this ball.
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Further conditions will guarantee (cf. Lemma 3.4) in addition that gk �= Id for
every k.

Proof. The N th iterate of f is well-defined on the ball Bn and satisfies

rλN− ≤ ‖ f N‖r ≤ rλN+ .

for every 0 < r < 1. Indeed, our assumptions ensure that (λ−( f ))N ≤ λ−( f N ) ≤
λ+( f N ) ≤ (λ+( f ))N . Then, for N = 1, the estimates rλ− ≤ r‖D0 f ‖ ≤
‖ f ‖r ≤ rλ+ follow respectively from Cauchy’s inequality and Mean Value Theo-
rem ( f fixes 0).

Now, beginning with constants r, ε3, τ > 0 which satisfy 4ε3 + τ < r < 1, we
can apply Lemma 3.0 to f and g on the ballBn

r ⊂ Bn (these constants will be fixed
later on)

‖[ f, g] − Id‖r−4ε3−τ ≤ 2ε3

τ
· ‖g − Id‖r .

Consider also an integer N ∈ N so large that f N (Bn
r ) ⊂ Bn

r−4ε3−τ . Then

‖[ f, g] ◦ f N − f N‖r ≤ 2ε3

τ
· ‖g − Id‖r .

We now fix τ = τ(r, ε3, N) = r − 4ε3 − ‖ f N‖r so that the preceding estimate is
sharp.

The inverse mapping f −1 is defined on Bn
1−ε3

and satisfies 1
λ+ ≤ ‖ f −1‖1−ε3

≤ 1
λ− . Suppose for the time being that we are allowed to iterate N times f −1 from

[ f, g] ◦ f N (Bn
r ) in G. Then, the estimate above gives

‖ f −N ◦ [ f, g] ◦ f N − Id‖r ≤ 2ε3

τλN−
· ‖g − Id‖r .

Since r −4ε3 − τ = ‖ f N‖r ≤ rλN+ and λ2+ < λ− (condition (∗)), we finally obtain

‖ f −N ◦ [ f, g] ◦ f N − Id‖r ≤ 2r2ε3

τ(r − 4ε3 − τ)2 · ‖g − Id‖r .

The coefficient c(τ) = 2r2ε3/τ(r − 4ε3 − τ)2 attains its minimum for τ0 =
1
3 (r − 4ε3). Fix ε3 = ε3(r) small enough so that the coefficient c(τ0) = 27

2
ε3
r (1 −

4 ε3
r )−3 is less than 1. The proof of Lemma 3.3 will clearly follow by induction from

these estimates applied to the sequence gk provided that we show the existence of
N ∈ N so that (τ = r − 4ε3 − ‖ f N‖r ∼ τ0 and ) c(τ) < 1 and therefore that the
above iteration of f −1 makes sense.

First verification. For τ0 < τ < τ1 = 2
3 (r − 4ε3), we find c(τ) < c(τ1) =

27 ε3
r (1 − 4 ε3

r )−3. Refine ε3 = ε3(r) so that c(τ1) < 1. Then, we want to find
N ∈ N satisfying

1

3
(r − 4ε3) ≤ ‖ f N‖r ≤ 2

3
(r − 4ε3) .
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Using the estimates rλ2N+ ≤ rλN− ≤ ‖ f N‖r ≤ rλN+ , it is enough to find N ∈ N
satisfying √

1

3

(

1 − 4
ε3

r

)1/2

≤ λN+ ≤ 2

3

(

1 − 4
ε3

r

)

.

There exists such integer N if, and only if,
√

3
2 < λ+(1 − 4 ε3

r )1/2. Since f is
ε3-close to the identity, we also have 1 − ε3 ≤ λ+ < 1, and N exists as long as
ε3(r) is very small.

Second verification. From the estimates above, the domain [ f, g] ◦ f N (Bn
r ) is

contained in the ball of radius ‖ f N‖r +4ε3. We just have to ensure that f −k◦[ f, g]◦
f N (Bn

r ) remains in the domain of definitionBn
1−ε3

of f −1 for every k = 0, . . . , N.

Since ‖ f −1‖1−ε3 ≤ 1
λ− , it suffices to require that ‖ f N‖r + 4ε3 ≤ λN−(1 − ε3).

From the inequalities obtained for τ and N during the first verification, it is enough
to impose 4ε3 + 2

3 (r − 4ε3) ≤ 1
3 (1 − 4 ε3

r )(1 − ε3). This can be done by fixing
r = 1/3 and ε3 sufficiently small. ��
Remark. The condition (∗) means that the distortion coefficient

δ = log(λ−)

log(λ+)

which is always ≥ 1 for a uniform contraction, is actually bounded by 2. The
preceding proof may be re-arranged so that it is possible to replace the condition (∗)

by δ < δ0 for a fixed δ0 >> 0. Nonetheless notice that ε3 depends on this bound and
asymptotically ε3(δ0) ∼ 1/δ0 so that we cannot dispense with some assumption
concerning distortion.

The sequence gk constructed in Lemma 3.3 is non-trivial under further generic
assumptions on f and g. This is the contents of Lemma 3.4 below.

Lemma 3.4. Let f, g : Bn ↪→ Cn be as in Lemma 3.3 and denote by A = D0 f
and B = D0g their differentials at 0 ∈ Cn. Suppose that one of the following
conditions holds:

(i) g(0) �= 0;
(ii) g(0) = 0 and [A, B] �= I;
(iii) g(0) = 0, [A, B] = I and [ f, g] �= Id.

Then, all the elements gk of the sequence constructed in Lemma 3.3 also satisfy
the same respective condition (i), (ii) or (iii). In particular none of them coincides
with the identity.

Before proving it, let us complete the preceding statement with the following
lemma.

Lemma 3.5. Assume that f : Bn ↪→ Cn is a holomorphic map which fixes 0 and
satisfies condition (∗). Then f is linearizable by a holomorphic change of coor-
dinates. In other words, letting A = D0 f , there exists a holomorphic embedding
� : Bn ↪→ Bn fixing 0 such that

�−1 ◦ f ◦ �(z) = A · z .
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Moreover, � is unique up to composition on the right side with a matrix commuting
with A.

In particular, when we are in the case (iii) with g(0) = 0 and [A, B] = I ,
“most of” the mappings g still do not commute with f otherwise f and g would
be simultaneously linearizable.

Proof of Lemma 3.5. Denote by λ1, . . . , λn the spectrum of the linear part A of f .
Modulo a permutation of indices, one has

0 < λ− ≤ |λ1| ≤ · · · ≤ |λn | ≤ λ+ < 1.

Furthermore condition (∗) implies that

0 < |λn |2 < |λ1| ≤ · · · ≤ |λn | < 1 .

Since |λi1λi2 · · · λik | < |λi0 | as long as k ≥ 2, there is no resonance among
these eigenvalues. On the other hand, this spectrum obviously belongs to Poincaré
domain since it consists only of eigenvalues whose norm is less than 1. Hence,
thanks to Poincaré Theorem (see [Ar, Il; p. 72]), f is linearizable by a holomorphic
germ of diffeomorphism � at 0. Clearly, � is uniquely defined up to composition
on the right side with a germ of diffeomorphism commuting with A. In particular,
after composition with a convenient homothety, we can assume that � is defined
on Bn . Finally, recall that the formal part of the proof of Poincaré Theorem relies
on the fact that the absence of resonance implies absence of non-linear germ of
diffeomorphism � commuting with A. ��
Proof of Lemma 3.4. Case (i): if g does not fix 0, then g−1(0) �= 0 is not fixed by
f , i.e. g−1 ◦ f −1(0) = g−1(0) �= f −1 ◦ g−1(0). This implies that [ f, g](0) �= 0
and hence f −N ◦ [ f, g] ◦ f N(0) �= 0. Using induction, we conclude that gk(0) �= 0
for every k.

Case (ii): since the linear part of [ f, g] is given by [A, B], this case promtly follows
from the proof of Corollary 1.1 when A has only simple eigenvalues. When A
has Jordan blocks, the proof is similar (replacing invariant directions by invariant
subspaces).

Case (iii): suppose that g does not commute with f . Since the linear part of [ f, g]
is [A, B] = I , [ f, g] is a (non-trivial) map which is tangent to the identity. In the
coordinate given by Lemma 3.5 where f = A is linear, it is clear that [ f, g] is
still a (non-trivial) map tangent to the identity and thus it is non-linear. Employing
again Lemma 3.5, it follows that [ f, g] does not commute with A = f and the
proof follows by induction. ��

In the next section we shall work through the coordinate� given by Lemma 3.5.
Hence we shall deal only with the linear contraction A and the sequence {hk =
�−1 ◦ gk ◦�} (which is converging to the identity as well). All these mappings can
be supposed defined onBn

1/2 without loss of generality (just compose � on the right
with a convenient homothety). Clearly, any pseudo-flow uniformly approximated
on a neighborhood of 0 by words in A and hk will give rise to a pseudo-flow in the
closure of G which, after conjugation by a convenient iterate of the contraction f ,
will also be defined on the entire ball Bn .
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4. Catching pseudo-flows in the closure of non-discrete pseudo-groups

In this section, we consider a holomorphic pseudo-group G on the ball Bn which
contains a non-trivial sequence hk : Bn

1/2 ↪→ Bn which tends uniformly to the
identity. We are going to impose further conditions on G in order to construct
a non-trivial pseudo-flow in the closure G. As mentioned, the fact that the hk’s
converge uniformly to the identity is not sufficient to imply the existence of pseudo-
flows as shown by Example 3.2. The natural strategy (see the proof of Corollary 1.1)
consisting of considering sequences ϕk = (hk)

Nk for suitable Nk ∈ N fails here.
Indeed, in Example 3.2, the growth of the Nk needed to define and to bound the
sequence ϕk on a small ball Bn

r implies the uniform convergence of the sequence
{hk} to the identity on any compact subset of Bn

r . Later on (cf. Proposition 4.6),
we shall give useful additional sufficient conditions on hk in order to avoid such
phenomenon. As an application, we will prove in Proposition 4.8 that a continuous
1-parameter pseudo-group of holomorphic maps is the pseudo-flow of a holomor-
phic vector field. For the time being, thinking of G as the pseudo-group generated
by f and g in Sect. 3, we propose an alternate strategy to construct pseudo-flows
under the assumption that G contains a linear contraction f = A close to a homo-
thety (we do not need any longer the fact that f = A is close to the identity). In
this way we shall fastly obtain a proof of Proposition 2.0.

In the sequel, the map f : Bn ↪→ Bn is linear and will be denoted by A
(A = D0 f ). For the sake of notations, we shall make no distinction between A
thought as a map from Bn into itself or as a diagonal matrix having the form

A =





λ1 0
. . .

0 λn




 .

The eigenvalues λ1, . . . , λn of A are supposed to satisfy the condition

(∗) 0 < |λn |2 < |λ1| ≤ · · · ≤ |λn | < 1 .

Lemma 4.0. Let A be a diagonal matrix which satisfies condition (∗) above and let
hk : Bn

1/2 ↪→ C
n be a sequence of holomorphic mappings converging uniformly to

the identity. Let G be the pseudo-group generated on Bn by these mappings and
let G denote its closure. Suppose that one of the following additional conditions
holds:

(i) hk(0) �= 0 for every k;
(ii) hk(0) = 0 and the differential D0hk at 0 is not lower triangular for every k;

moreover, the eigenvalues of A satisfy |λ1| < · · · < |λn |.
Then, for any ε > 0, there exists an affine transformation h∞ : Bn

1/2 ↪→ Cn

belonging to G which is ε-close to the identity but is not a lower triangular matrix
(and thus, h∞ �≡ Id). Precisely, h∞ is uniformly approximated on Bn

1/2 by the
sequence of maps

A−Nk ◦ hk ◦ ANk

for a convenient sequence of positive integers Nk ∈ N.
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Proof. The proof relies on the fact that the action of A by conjugation increases
the affine part of hk because of (i) or (ii) while it decreases its non-linear part due
to (∗). Let us make precise and prove these facts. Consider the decomposition of
a map h as

h = h+ + h− with h+(z) = T + C+ · z and h−(z) = C− · z + h≥2(z) ,

where T = (ti)i = h(0) stands for the translation part, C+ = (ci, j )i< j and
C− = (ci, j )i≥ j denote the respective strictly upper triangular and lower triangular
part of the differential C+ + C− = (ci, j )i, j = D0h, and h≥2 consists on the
remainder non-linear terms. The sequence of affine mappings Tk + C+

k + C−
k (for

the corresponding decomposition of hk) converges to the identity as one can see
from estimating their coefficients through Cauchy’s formula. The sequence h≥2

k
formed by the higher order terms also goes to zero and satisfies

∣
∣h≥2

k (z)
∣
∣ ≤ 4 · |z|2 · ∥∥h≥2

k

∥
∥

1/2

for every z ∈ Bn
1/2 and every k. Clearly the condition (∗) implies that

∣
∣A−1 ◦ h≥2

k ◦ A(z)
∣
∣ ≤ 4 · |λn |2

|λ1| · |z|2 · ∥∥h≥2
k

∥
∥

1/2 <
∥
∥h≥2

k

∥
∥

1/2 .

On the other hand, for any affine transformation T + C+ + C−, we have

A−1 ◦ (T + C+ + C−) ◦ A = A−1T + A−1C+ A + A−1C− A

= ( ti
λi

)
i + ( λ j

λi
ci, j
)

i< j + ( λ j
λi

ci, j
)

i≥ j .

Clearly, the lower triangular part A−N ◦ C−
k ◦ AN of D0hk remains close to the

identity while either condition (i), or (ii), guarantees that at least one of the Taylor
coefficients of A−N ◦h+

k ◦ AN increases exponentially when N → +∞. Of course
this implies that the norm ‖A−N ◦ h+

k ◦ AN‖1/2 increases too.
Equip the space V of those mappings h+ = T + C+ with the metric induced

by ‖ · ‖1/2 and, for ε > 0 small enough, denote by Uε the ε-neighborhood of
0 ∈ V . The action by conjugation of A on V fixes 0 so that there exists an open
neighborhood Wε ⊂ Uε of the 0 in V such that A−1Wε A remains in Uε. For k very
large, h+

k belongs to Wε. For N sufficiently large, we have seen that A−N ◦h+
k ◦ AN

lies in the complement of Uε, and hence away from Wε. Thus, if one defines Nk

as the smallest positive integer for which A−Nk ◦ h+
k ◦ ANk does not belong to Wε,

the sequence of affine mappings A−Nk ◦ h+
k ◦ ANk will remain in the relatively

compact annulus Uε \Wε. Passing to a subsequence, the sequence A−Nk ◦h+
k ◦ ANk

converges uniformly towards some affine transformation h+∞ on Bn
1/2. Clearly h+∞

is ε-close to zero but lies in the complement of Wε so that it is not trivial. Therefore,
the affine transformation h∞ = I + h+∞ is not a lower triangular matrix and setting
�k = ‖A−Nk ◦ hk ◦ ANk − h∞‖1/2, one has

�k ≤ ∥∥A−Nk ◦ h+
k ◦ ANk − h+∞

∥
∥

1/2 + ∥
∥A−Nk ◦ h−

k ◦ ANk − Id
∥
∥

1/2

≤ ∥∥A−Nk ◦ h+
k ◦ ANk − h+∞

∥
∥

1/2 + ∥∥A−Nk ◦ C−
k ◦ ANk − I

∥
∥

1/2 + ∥∥h≥2
k

∥
∥

1/2 .

The proposition immediately follows from the estimates above. ��
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Remark 4.1. Here let us replace the condition (∗) by the weaker condition

0 < |λn|δ < |λ1| ≤ · · · ≤ |λn | < 1 ,

for some δ > 2. We truncate hk = h<δ
k + h≥δ

k where h<δ
k denotes the Taylor jet of

order δ − 1 of hk and h≥δ
k the remainder higher order terms which satisfy

∥
∥h≥δ

k (z)
∥
∥ ≤ |z|δ · ∥∥h≥δ

k

∥
∥

1 .

Then the same proof shows that, under conditions (i) or (ii), for any ε > 0, some
subsequence of the type A−Nk ◦ hk ◦ ANk tends uniformly to a polynomial trans-
formation h<δ∞ of degree δ − 1. But h<δ∞ does not necessarily belong to a Lie group,
unlike the affine case above, and the subsequent arguments cannot immediately be
adapted.

Corollary 4.2. Let A, hk and G be as in Lemma 4.0. Then, there exists a non-
trivial affine vector field X ∈ G(Bn) belonging to the Lie pseudo-algebraG of the
closure G. Moreover, X has strictly upper triangular linear part.

Proof. Notice first that the limit h∞ constructed in Lemma 4.0 belongs to the Lie
group Aff+(Cn) of those transformations whose linear part have coefficients 1 on
the diagonal and 0 below the diagonal. Applying Lemma 4.0 to the sequence hk, we
conclude the existence of a non-trivial sequence ϕk : Bn

1/2 ↪→ Bn in G consisting
of elements of Aff+(Cn) and tending uniformly to the identity. Then the usual
strategy to construct one-parameter subgroups of non-discrete Lie groups works
out here, modulo checking that the resulting affine flow induces maps which are
approximated, on appropriate domains, by elements in the pseudogroup G. In order
to do this, we equip again Aff+(Cn) with the metric induced by ‖ · ‖1/2. For ε > 0
small enough, the ε-neighborhood Uε of Id in this Lie group is diffeomorphic to
a neighborhood of zero of the Lie algebra via the exponential map and hence is
such that any element ϕ �= Id ∈ Uε escapes after finite iteration, namely there is
N ∈ N such that (ϕ)N �∈ Uε. Also there exists an open neighborhood Wε ⊂ Uε of
the Id in Aff+(Cn) such that any ϕ ∈ Wε satisfies ϕ ◦ ϕ ∈ Uε.

For k large enough, ϕk belongs to Wε. Define Nk as the smallest positive integer
for which (ϕk)

Nk does not belong to Wε, so that this renormalized sequence of affine
mappings remains in the relatively compact annulus Uε \ Wε. Modulo passing to
a subsequence, the sequence (ϕk)

Nk tends uniformly to some affine transformation
ϕ∞ on Bn which is ε-close to the identity and lies in the complement of Wε so that
it does not coincide with the identity. By construction, ϕ∞ is the time-one-map
of the real pseudo-flow ϕt∞ given, for each t ∈ [0, 1], by uniform convergence on
compact subsets of an appropriate subsequence of (ϕk)

[t·Nk] where [·] stands for
the integral part.

Since the pseudo-flow ϕt∞ consists only of elements belonging to Aff+(Cn), it
follows that the generating vector field X on Bn

1/2, obtained as X = ∂
∂t ϕ

t∞|t=0, has
strictly upper triangular linear part. After conjugation by a convenient iterate of A,
the vector field actually becomes defined on the entire ball Bn . ��
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Proof of Proposition 2.0. Let us begin with ε2 ≤ ε3
4 given by Lemma 3.3. We also

consider a scalar 0 < |λ| < 1 satisfying |λ − 1| ≤ ε2. Then, fix 0 < ελ ≤ ε2 so
that the perturbations f and g remain ε3

2 -close to the identity. On the ball Bn
1/2,

the absolute value of any directional derivative of f remains 2ελ-close to |λ|, as
it can be seen by applying Cauchy Formula on the disk of radius 1/2. It follows

that, for ελ <
1−|λ|

8 , the perturbation satisfies the condition (∗) on the ball Bn
1/2.

After conjugating f and g by a homothety of ratio 2, these transformations are
ε3-close to the identity on Bn and f still satisfies condition (∗) on this ball. We
then apply Lemmas 3.3 and 3.4 to f and g to construct some non-trivial sequence
gk+1 = f −N ◦ [ f, gk] ◦ f N converging uniformly to the identity on a sub-ball and
satisfying gk(0) �= 0. On the other hand, f is linear through the coordinate � given
by Lemma 3.5. If the linear part A of f is diagonalizable, we can suppose, without
loss of generality, that �−1 ◦ f ◦ � = A is diagonal and satisfies (∗). Moreover
hk = �−1 ◦gk ◦� converges to the identity uniformly onBn and satisfies condition
(i) of Lemma 4.0. Thus Corollary 4.2 completes the proof in the diagonalizable
case. Note that X has strictly upper triangular linear part in this case. To prove
Proposition 2.0 in full generality, it remains to show that the proofs of Lemma 4.0
and of Corollary 4.2 in the case (i) also hold when A is no longer diagonal but has
Jordan blocks. This is easy and left to the reader. ��
Remark 4.3. It is possible to improve the estimates of Lemma 3.3 and 4.0 so as to
ensure that the vector field constructed is actually non-singular at 0 and, in fact, is
a translation. This can be carried out by writing g = T ◦ g̃, where T stands for the
translation part of g and g̃ is the remainder part fixing 0. We then consider the same
decomposition for g′ = [A, g] = T ′ ◦ g̃′ with respect to the following formula

[A, T ◦ g̃] = [A, T ] ◦ [T, [A, g̃]] ◦ [A, g̃] .

It is possible to manage these terms so that the central double bracket [T, [A, g̃]]
becomes “very small” compared to the other ones and hence T ′ ∼ [A, T ] and
g̃′ ∼ [A, g̃]. So, considering the action by conjugation of A on T ′ and g̃′, as in
Lemma 4.0, we are able to find some sequence gk+1 = A−NK ◦ [A, gk] ◦ ANK

uniformly tending to a translation (maybe passing to a subsequence). In any case
this would had led us to many more estimates, at least in order to control the
domains of definition. In the sequel we shall construct non-singular vector fields
just by considering conjugationsunder A and g with additional generic assumptions
(needed later) in Proposition 5.1.

We also point out that the general discussion of Sect. 3 could have been slightly
simplified by introducing the linearizing coordinate of f (given by
Lemma 3.5) before Lemma 3.3. Also, we could have assumed from the begin-
ning that f = A is a diagonal matrix. This will be anyway required in Sect. 5.
Nevertheless, notice that the diagonalizing coordinate � does not depend continu-
ously on the map f near an homothety f0. Thus, in the coordinate �, the map g
may become very far from the identity preventing us from applying the strategy
above.

The remaining part of the this section is devoted to complementary results that
can easily be derived from our work but that are not strictly needed for the proof of
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our main theorem. The first one will be interpreted in Corollary 5.2 as an analogous
of Proposition 2.0 for the common fixed point case.

Proposition 4.4. Consider ε4 > 0 and matrices A, B ∈ GL(n,C) ε4-close to the
identity which satisfy

– A is diagonal with eigenvalues satisfying 0 < |λn |2 < |λ1| < · · ·< |λn | < 1,
– B is not lower triangular.

If ε4 is sufficiently small, then the pseudo-group G generated on a neighborhood of
0 by mappings f, g ∈ Di f f(Cn , 0) whose respective linear parts are A and B has
non-trivial Lie algebraG. Precisely,G(Bn

r ) contains a vector field X whose linear
part is not lower triangular (in particular X is not trivial) for some ball r > 0.

Proof. Fix ε4 > 0 and A, B, f and g as in the statement. Up to a homothety, we
can suppose that f and g are well-defined on the ball Bn and also arbitrarily close
to A and B respectively. In particular, if ε4 was chosen small enough, f and g are
ε3-close to identity, one-to-one and f is a contraction satisfying the condition (∗).
Therefore Lemmas 3.3 and 3.4 apply to provide a non-trivial sequence gk uniformly
converging to the identity on some smaller ball. Note that, if the linear part of gk is
not lower triangular for every k, then the proof follows from Corollary 4.2 (similarly
to the proof of Proposition 2.0 above).

In order to check that the linear part of gk is not lower triangular notice that if B
is not lower triangular then the same holds for [A, B]. Indeed if [A, B] = T were
lower triangular, then one would have B−1(T−1 A)B = A. Employing an argument
similar to the one used in the proof of Corollary 1.1 (replacing invariant directions
by invariants flags), the last claim implies that B is the product of a lower triangular
matrix and a permutation matrix. In fact, B will be lower triangular provided that
ε4 is sufficiently small. This gives us the desired contradiction. ��

The lemma below is a variant of [Gh, Lemma 2.5].

Lemma 4.5. Fix ε, τ > 0 and a positive integer k ∈ N∗ satisfying 0 < kε+ τ < 1.
Then, given transformations f, g : Bn ↪→ Cn which are ε-close to the identity,
the kth iterates f k and gk are well-defined on Bn

1−kε and the estimate below does
hold

‖ f k − gk‖1−kε−τ ≤ k · ‖ f − g‖1−τ ·
(

1 + (k − 1)

2τ
‖g − Id‖1

)

.

Proof. It is similar to the proof of Lemma 3.0. Consider the decomposition

f k − gk = ( f k − g ◦ f k−1) + (g ◦ f k−1 − g2 ◦ f k−2) + · · · + (gk−1 ◦ f − gk)

= ( f − g) ◦ f k−1 + (g ◦ f − g2) ◦ f k−2 + · · · + (gk−1 ◦ f − gk) .

Clearly

‖ f k−gk‖1−kε−τ

≤ ‖ f −g‖1−ε−τ + ‖g ◦ f −g2‖1−2ε−τ + · · · + ‖gk−1 ◦ f −gk‖1−kε−τ .



170 Frank Loray, Julio C. Rebelo

On the other hand, for l = 1, . . . , k − 1, one has

‖gl◦ f −gl+1‖1−(l+1)ε−τ ≤ ‖ f −g‖1−(l+1)ε−τ + ‖�gl ◦ f −�gl ◦g‖1−(l+1)ε−τ

where �gl = gl − Id. Applying Cauchy Formula to �gl on disks of radius τ , we
conclude that

‖�gl ◦ f − �gl ◦ g‖1−(l+1)ε−τ ≤ 1

τ
· ‖�gl ‖1−lε · ‖ f − g‖1−(l+1)ε−τ

≤ l

τ
· ‖�g‖1 · ‖ f − g‖1−τ .

The lemma results at once. ��
Proposition 4.6. Let hk : Bn ↪→ C

n be a sequence of injective holomorphic
mappings converging uniformly to the identity and denote by G the pseudo-group
generated by them onBn. Consider the sequence δk of positive real numbers defined
by δk = ‖�k‖1, where �k = hk − Id denote the variation of hk. Let X be any limit
obtained from the bounded family �k

δk
. Then X, viewed as a vector field, belongs to

the Lie algebraG(Bn). Besides X is non-trivial unless the sequence �k
δk

converges
uniformly to the identity on compact sets Bn containing 0 ∈ Cn.

Proof. Fix ε, τ > 0 satisfying 0 < ε + τ < 1. By assumption, the sequence
‖�k‖1 = δk converges to zero and, up to passing to a subsequence, the sequence
of maps �k

δk
converges uniformly to a vector field X on compact subsets. Letting

Nk = [ ε
δk

], where [·] stands for the integral part, we prove that the sequence of

iterates hNk
k converges uniformly on the ball Bn

1−ε−τ to the ε-time map ϕε
X of X.

Note that both ϕε
X and hNk

k are defined on the ball Bn
1−ε. Now Lemma 4.5 applied

to hNk
k − (ϕ

ε/Nk
X )Nk provides

∥
∥hNk

k − ϕε
X

∥
∥

1−ε−τ
≤ ∥∥hk − ϕ

ε/Nk
X

∥
∥

1−τ
·
(

Nk + Nk(Nk − 1)

2τ
‖hk − Id‖1

)

≤
(

‖Nk�k − εX‖1−τ + ε

∥
∥ϕ

ε/Nk
X − Id − (ε/Nk)X

∥
∥

1−τ

ε/Nk

)

·
(

1 + (Nk − 1)‖hk − Id‖1

2τ

)

.

The term on the right hand side is bounded by (1+ ε
2τ

). The term
‖ϕε/Nk

X −Id−(ε/Nk)X‖1−τ
ε/Nk

converges to zero by definition of the flow and, finally, ‖Nk�k −εX‖1−τ converges
to zero by assumption. ��
Remark 4.7. The preceding proof shows in particular that the t-time map of
a holomorphic vector field X on Bn is always obtained as uniform limit φt

X =
limk→∞(Id + t

k X)k on any compact subset.
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Proposition 4.8. Let ϕt : Bn ↪→ C
n, t ∈ [−t0, t0], t0 > 0, be a (real) 1-parameter

family of holomorphic transformations satisfying
– the mapping (z, t) 
→ ϕt(z) is uniformly continuous on Bn × [−t0, t0],
– for any z ∈ Bn, we have ϕt ◦ ϕs(z) = ϕt+s(z) whenever s, t, s + t ∈ [−t0, t0],
– ϕ0 = Id.

Then, there exists a unique holomorphic vector field X on Bn such that ϕt(z) =
φt

X(z) for any z ∈ Bn and t ∈ [−t0, t0] whenever φt
X(z) is defined.

Proof. The uniqueness of X is clear since a posteriori it is obtained as X =
∂
∂t (ϕt − Id)|[t=0] or equivalently as uniform limit on compact subsets of ϕt−Id

t . By
virtue of the composition rules of ϕt and φt

X , if, on any subball Bn
r , those families

coincide for t small enough, then they will coincide whenever they are defined in
the ball Bn . So let us fix a ball Bn

r , 0 < r < 1.

It is indeed sufficient to show that the family
ϕtk −Id

tk
is uniformly bounded

for a convenient sequence t0 > t1 > t2 > · · · > 0 decreasing to 0. Let us
first prove this claim. If this family is bounded, then it is relatively compact by
Montel Theorem. Thus, maybe passing to a subsequence and maybe reducing r,

the sequence
ϕtk −Id

tk
converges uniformly on the ball Bn

r to a vector field X. In
particular, as in Proposition 4.6, letting �k = ϕtk − Id and δk = ‖�k‖r , it results
that limk→∞ δk

tk
= δ where δ = ‖X‖r . Furthermore the sequence of renormalized

maps �k
δk

tends uniformly to the renormalized vector field X/δ. Set Nk = [ tδ
δk

]
where [.] stands for the integral part. For t sufficiently small, Proposition 4.6 states
that the sequence of iterates (ϕtk)

Nk = ϕtk Nk tends uniformly to the element of flow
φtδ

X/δ = φt
X . Finally, we have
∥
∥ϕt − φt

X

∥
∥

r ≤ ‖ϕt − ϕt+εk‖r + ∥
∥ϕ

Nk
tk − φt

X

∥
∥

r

where εk = tk Nk − t → 0. The right hand side converges uniformly to zero on
Bn

r when k → ∞ so that ϕt coincides with φt
X . Clearly X is not trivial as long as

ϕt �≡ Id and this proves our claim.
So we just need to find a sequence tk as before such that the corresponding

maps {ϕtk −Id
tk

} are uniformly convergent on Bn
r . We consider a sequence of the

form tk = t/2k with 0 < t < t0 very small. To simplify the notations, let us write
ϕt = Id + �t . First let us show that the �tk are (at least) exponentially decreasing
in norm on the intermediate ball Bn

R , R = r+1
2 . In order to do this, fix ε = 1−r

8 and
τ = 1−r

4 so that 1 − R = R − r = 2ε + τ with τ = 2ε. Let δt
r = ‖�t‖r . Since

δt
1 → 0 when t → 0, maybe reducing t0, we can assume that δt

1 < ε whenever
0 < t < t0. Reasoning as in the proof of Lemma 3.0 (with f = g = �t/2 on the
ball Bn), one gets

‖�t − 2�t/2‖R ≤ 1

τ
‖�t/2‖1−ε‖�t/2‖R ≤ ε

τ
‖�t/2‖R .

By the triangle inequality (and ε
τ

= 1
2 ), we obtain 2‖�t/2‖R ≤ ‖�t‖R + 1

2‖�t/2‖R

and thus

‖�t/2k‖R ≤
(

2

3

)k

‖�t‖R ,
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for all k ∈ N and 0 < t < t0. Using these estimates, we shall imply others on Bn
R .

Indeed, by repeating the discussion above, we now have

2‖�tk+1‖r ≤ ‖�tk‖r + 1
τ
‖�tk+1‖R−ε ‖�tk+1‖r

≤ ‖�tk‖r + 1
2

(2
3

)k+1 ‖�tk+1‖r .

It results that ∥
∥
∥
∥
�tk+1

tk+1

∥
∥
∥
∥

r

(

1 − 1

4

(
2

3

)k+1
)

≤
∥
∥
∥
∥
�tk

tk

∥
∥
∥
∥

r
,

and thus

lim sup
k→∞

∥
∥
∥
∥
ϕtk − Id

tk

∥
∥
∥
∥

r
≤


 lim
k→∞

k∏

l=0

(

1 − 1

4

(
2

3

)l+1
)−1



ε

t
.

Since the right hand side of the inequality above is convergent, we conclude that

{ϕtk −Id
tk

} forms a relatively compact family as required. ��

5. Deriving many pseudo-flows from a given one in the closure of
a pseudo-group

In this section, G is the holomorphic pseudo-group generated onBn by a contraction
f close to a homothety (which satisfies (∗)) and another transformation g as in
Sect. 3 and in the beginning of Sect. 4. We can now assume that the Lie pseudo-
algebra G contains a non-trivial vector field X ∈ G(Bn) (cf. Propositions 2.0
and 4.4). The purpose of this section is to show that, in fact, G is large under
weak additional assumptions on f and g. Precisely, using Lemma 1.2, we are
going to show that, through some coordinate � : Bn ↪→ C (namely the linearizing
coordinate for f ), the image �∗G(Bn) contains a copy of the affine Lie algebra
sl(n,C)�Cn generated by sl(n,C) together with all the translations. The pseudo-
algebra G is said to have large affine part on the ball Bn if it contains a copy of
sl(n,C) �Cn (in appropriate coordinates). In the special case where G fixes 0, it
will be shown thatG has large linear part, i.e. that �∗G(Bn) contains sl(n,C). As
before, � stands for the linearizing coordinate of f . In the sequel f is thought of
as the map Bn ↪→ C

n induced by a diagonal matrix

A =





λ1 0
. . .

0 λn






with eigenvalues satisfying condition

(∗) 0 < |λn |2 < |λ1| ≤ · · · ≤ |λn | < 1 .

We also assume that g is well-defined at 0 viewed as an element of the pseudo-
group G, i.e. g(0) ∈ Bn . Then, denoting by B = D0g the linear part of g, the pair
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(A, B) is supposed to satisfy the following additional conditions (which contains
those of Lemma 1.2):

(∗∗)






the λi are pairwise distinct in norm, none of them being real;
in particular, we have 0 < |λn |2 < |λ1| < · · · < |λn | < 1 ;
the λi

λ j
, i �= j, are pairwise distinct in norm, none of them being real;

finally, neither B nor B−1 admits zero as entry.

Let us begin with a continuous analogous of Lemma 4.0. This lemma also indicates
how simpler the arguments become when diffeomorphisms (mappings) are replaced
by vector fields.

Lemma 5.0. Let A be a diagonal matrix satisfying (∗) and let G be a holomorphic
pseudo-group on Bn containing A. Assume that the Lie pseudo-algebra G of G
contains a non-trivial vector field X ∈ G(Bn). If X does not vanish at 0, then G
also contains some non-trivial translation pseudo-flow on Bn (i.e. the pseudo-flow
induced by a constant vector field). On the other hand, if X vanishes at 0 but
if its linear part is not strictly lower triangular, then G also contains a linear
pseudo-flow on Bn which is not strictly lower triangular.

Proof. Suppose first X(0) �= 0. Let us decompose X into a translation, a linear and
a higher degree parts, X = X0 + X1 + X≥2 in the obvious manner. Then the action
of A by conjugation increases the translation part of X i.e.

‖A−1 X0‖1 ≥ 1

|λn | ‖X0‖1 ,

faster than the linear part since

‖A−1 X1 A‖1 ≤ |λn|
|λ1| ‖X1‖1 ,

since we have by assumption that 1/|λn| > |λn|/|λ − 1|. Assumption (∗) also
implies that this action decreases the higher order terms

‖A∗X≥2‖1 ≤ |λn |2
|λ1| ‖X≥2‖1 .

Therefore there exists a sequence of positive scalars tk ∈ R+, tk → 0, such
that the sequence of holomorphic vector fields defined on Bn by (tk · (Ak)∗X)

has translation part of constant (non-vanishing) norm. Clearly the higher order
components of these vector fields converge to zero. The linear part of them, which
has tk as factor, converges to zero as well since the translation part of the original
(i.e. non-renormalized) vectors fields grows faster than the linear one. Hence some
subsequence uniformly tends to a constant vector field which, by construction, is
non-trivial and contained in the closure of G.

Now, if X(0) = 0 but if its linear part is not strictly lower triangular, then the
action of A is linear diagonal on the entries of X1, i.e. setting X1 = (vi, j )i, j one
has

A−1 X1 A =
(λ j

λi
vi, j

)

i, j
.
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Since the eigenvalues have norm |λ j |
|λi | > 1 for i < j , the norm of the non-zero

upper entries increase under conjugacy by A. Similarly, the lower entries become
closer to zero while the diagonal terms remain unchanged. Now the proof follows
as above. ��
Proposition 5.1. Let G be a holomorphic pseudo-group on Bn whose Lie pseudo-
algebraG contains a vector field X ∈ G(Bn) with non-lower triangular linear part
X1 at 0. Assume that G contains also the linear contraction f : Bn ↪→ Bn induced
by a matrix A as well as another transformation g : Bn

r ↪→ Bn (defined on some
ball Bn

r ). Finally, assume that A together with the linear part B = D0g fulfils the
conditions (∗∗). ThenG(Bn) actually contains the whole of sl(n,C). Furthermore
if g(0) �= 0, then G(Bn) contains also all translations and hence a copy of the
affine Lie algebra sl(n,C) �Cn.

Proof. Suppose first that g(0) = 0 and X(0) = 0. Assumption (∗∗) combined with
Lemma 1.2 implies that the linear part X1 of X along with a finite number of its
conjugates under A and B generate sl(n,C) over R on some ball Bn

r (on which
the iterations of A and B needed for this construction are well-defined). Then,
by a finite number of additional linear operations over R, we can also find on Bn

r
a collection Xi, j of elements of G such that the corresponding linear part is the
Kronecker matrix X1

i, j = δi, j . Now, we proceed as in the proof of the Lemma 5.0
in order to linearize the elements Xi, j for which i ≥ j . Namely one has

A−k X1
i, j Ak =

(
λ j

λi

)k

δi, j .

On the other hand, ‖(Ak)∗X≥2
i, j ‖r tends to 0 when k → +∞. Letting t = |λi ||λ j | ≤ 1,

the sequence of elements of G defined onBn by (tk·(Ak)∗Xi, j ) converges uniformly
(maybe passing to an appropriate subsequence) to the linear Kronecker matrix δi, j .
The same construction can be carried out with purely imaginary Kronecker matrices√−1 · δi, j . Thus G already contains on Bn

r the upper triangular complex Lie sub-
algebra of sl(n,C). A conjugation by a suitable power of A enables us to suppose
that all these vector fields are defined on Bn . In particular, G contains any diagonal
element of SL(n,C) sufficiently close to identity. Next we replace A by some of
these elements, say Ã, with eigenvalues λ̃i now satisfying

0 < |λ̃1|2 < |λ̃n| ≤ · · · ≤ |λ̃1| < 1 .

Therefore the same arguments show that G contains lower triangular elements of
sl(n,C) as well.

Suppose now X(0) �= 0 (whether or not g fixes 0). The translation part of X
together with its conjugates under A generate a real subspace E ⊂ Cn invariant
by A. Employing a procedure of renormalization similar to the one explained above,
we can suppose that the translations by elements in E also belong to G. If E �= Cn ,
then E contains at least a translation parallel to some coordinate axis, say Y0 (A has
only simple eigenvalues). After conjugation by g, this translation becomes a vector
field Y = g∗Y0 whose (new) translation part is given by B−1Y0 (the possible
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translation part of g gives no contribution). By virtue of the condition (∗∗), B−1Y0
lies away from any A-invariant hyperplane. Repeating the same arguments, but
using Y instead of X, we see that any translation pseudo-flow actually belongs
to G. We can then delete the possible translation part of g and X and conclude, as
in the first case, that G contains also sl(n,C).

Finally, suppose that g(0) �= 0 and X(0) = 0. It is sufficient to show that we can
replace X by an appropriate conjugate under A and g which does not vanish at 0.
First, Lemma 5.0 allows us to suppose that X is linear and non-lower triangular.
Assume that the conjugate Y = g∗X still vanishes at 0. The linear part of Y is
given by Y1 = B∗X. Again assumption (∗∗) combined with Lemma 1.2 implies
that a finite number of conjugates of X and Y under A have linear part generating
sl(n,C). Employing once again Lemma 5.0, we conclude that sl(n,C) is contained
inG. Therefore there exists an element Z ∈ sl(n,C) which does not vanish at g(0)

so that g∗Z in turn does not vanish at 0. Now we proceed as in the preceding case.
��

The following corollary is exactly what is needed for the proof of Theorem A
(together with all the consequences establisehd in Sect. 6).

Corollary 5.2. There exist a real Zariski open subset U5 ∈ (GL(n,C)) and a con-
stant ε5 > 0 such that, for any scalar 0 < |λ| < 1 satisfying |λ − 1| < ε5, one
can find a smaller constant 0 < ελ << |λ − 1| having the following property:
all ελ-perturbations f, g : Bn ↪→ Cn respectively of the contracting homothety
f0(z) = λ·z and of the identity map g0(z) = z onBn with f(0) = 0 and derivatives
(D0 f, D0g) at 0 lying in U5 satisfy:
– either g(0) �= 0 and G has large affine part on the whole of Bn,
– or g(0) = 0 andG has large linear part on the whole of Bn.

Proof. Let U be the set of pairs (A, B) satisfying (∗∗). In the first case, Proposi-
tion 2.0 ensures the existence of a non-trivial pseudo-flow X. In the second case,
the existence of such X follows from Proposition 4.4. In both cases, X has strictly
upper triangular part at 0 (which is trivial when X is constant). In the coordinate
� given by Lemma 3.5, the map f is linear so that we can apply Proposition 5.1
to complete the proof of the lemma. ��

As a direct application, we provide a generalization to arbitrary dimension
n ≥ 1 of a result due to Il’yashenko in the case n = 1 and Lamy in the case n = 2
(see [Ill] and [La]):

Corollary 5.3. Suppose we are given holomorphic transformations f1, . . . , fd :
B

n ↪→ C
n fixing 0 ∈ Cn whose derivatives at 0 generate a dense subgroup

G0 ⊂ GL(n,C). Then G has large linear part on some ball Bn
r . In particular the

action of G on the punctured ball Bn
r \ {0} is minimal (all orbits are dense) and

ergodic (w.r.t. Lebesgue).

Recall that two elements f, g ∈ Diff(Cn, 0) will generate such a pseudo-group
G with dense linear part provided that their respective linear part A, B ∈ GL(n,C)

are close to I and “sufficiently generic” (cf. Corollary 1.5).



176 Frank Loray, Julio C. Rebelo

Proof. First we find elements A, B ∈ G0 whose corresponding mappings A, B :
Bn ↪→ Cn fulfil the assumptions of Corollary 5.2 for a given λ. Consider the
corresponding elements f, g ∈ G (A = D0 f and B = D0g). After conjugating f , g
under an appropriate homothety (which will commute with the linear parts), these
(non-linear) mappings are defined on the ball Bn and sufficiently close to A, B so
that they also fulfil the assumptions of Corollary 5.2. Therefore the pseudo-group
G has large linear (or affine) part. This imply in particular the statement about
ergodicity (cf. Property 6.1). ��
Corollary 5.4. Let f1, . . . , fd : Bn ↪→ Cn be as in Corollary 5.3. Then there is
ε > 0 such that the pseudo-group G generated on a neighborhood of 0 by any
ε-small perturbation g1, . . . , gd : Bn ↪→ Cn of the original generators satisfies
the following alternative:

either: the gi’s do not have a common fixed point and G has large affine part on
B

n
r ,

or: the gi’s have a common fixed point p and G has large linear part on Bn
r .

The action of G is minimal and ergodic on Bn
r (or Bn

r \ {p}).
Proof. The elements f and g constructed in the preceding proofs are expressed as
words in terms of the generators f1, . . . , fd . Since assumptions of Corollary 5.2
are open, the same words in the new generators g1, . . . , gd still verify the same
assumptions, provided that the perturbation is sufficiently small. ��

6. Pseudo-groups with large affine part

In this section we are going to complement the results of Sect. 5 by showing
that a pseudo-group having large affine part necessarily possesses many dynami-
cal properties. Precisely, the final results of Sect. 5 gave sufficient conditions on
a pseudo-group G defined on the ball Bn to have large affine part on some ball Bn

r .
In other words, there is a holomorphic coordinate � : Bn ↪→ C

n (namely the
linearizing map of f mentioned in Sect. 5) where the Lie pseudo-algebra G con-
tains the affine Lie algebra sl(n,C)�Cn on the open set �(Bn

r ). Equivalently the
pseudo-group image �◦G◦�−1 approximates (uniformly on compact subsets) the
restriction to �(Bn

r ) of every translation as well as every element of SL(n,C). To
abbreviate notations, we shall simply say thatG contains a copy of sl(n,C) �Cn

on Bn
r (in the original coordinate). The “chaotic” properties of G will hold on the

maximal domain whereG locally contains copies of sl(n,C)�Cn . Throughout the
section, we consider a pseudo-group G on Bn whose Lie algebra G(Bn) contains
the affine algebra sl(n,C)�Cn on the whole Bn (this will be referred to by saying
that G has large affine part on the ball Bn).

First, since the action of sl(n,C)�Cn is transitive in the ball Bn , we automat-
ically have (cf. Sect. 2):

Property 6.0. Let G be a holomorphic pseudo-group having large affine part
on Bn. Then, G is minimal on Bn, i.e. all orbits are dense.
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From the measure-theoretic point of view, the transitivity of G also implies:

Property 6.1. Let G be a holomorphic pseudo-group having large affine part
on Bn. Then, G is ergodic on the ball: every Lebesgue measurable subset which is
invariant by G has null or total Lebesgue measure.

We refer to [Reb1] for a simple proof.

Remark 6.2. Following ideas of [Be, Li, Lo1], we can prove that a holomorphic
pseudo-group G having large affine part on Bn either preserves a volume form or
the set of contracting points

{p ∈ Bn ; there is f ∈ G such that f(p) = p and Dp f is a contraction}
is dense in Bn . If G preserves a volume form, then this volume form becomes
(a constant multiple of) the usual Euclidean volume in the coordinate where G
contains a copy of sl(n,C)�Cn .

More generally, when G does not preserve a volume form, there does not exist
a σ-finite measure µ on the ball which is preserved by elements of the pseudo-
group. A notion of geometric entropy for (regular) foliations and pseudo-groups is
defined in [Gh,La,Wa]. The first example of a pseudo-group with strictly positive
entropy is a Schottky configuration (see [Gh,La,Wa], p. 107). These dynamics
can be recovered from translations and contractions so that they are contained
in the dynamics of G. Since the entropy increases when we increase the set of
generators, it follows immediately that the pseudo-group G has strictly positive
entropy provided that it contains a contraction. The pseudo-group is also chaotic in
the sense of Devaney in this case. Indeed, it is minimal, has dense periodic orbits
(contracting points) and sensitivity may be derived from the affine motions in G.

We may expect from generic foliations or pseudo-groups more complicated
dynamics than affine dynamics. When n = 1 the main result of [Be,Li,Lo2] yields:

Property 6.3. Assume that n = 1 and consider a holomorphic pseudo-group G
having large affine part on the discB1. This means that G contains the restriction of
all translations within B1. Assume moreover that G is not conjugate to a subgroup
of Mœ̈bius transformations. Then any conformal transformation within the unit
disc B1 is uniformly approximated by elements of G. In particular, no differential-
geometric structure other than the conformal one is preserved by G.

M. Belliart recently generalized this property for arbitrary dimensions n ≥ 2
(see [Be1]). If the previous features are those expected by chaotic dynamics, less
expected is the structural instability which immediately results from the topological
rigidity.

Proposition 6.4. Let G be a holomorphic pseudo-group having large affine part
on Bn. Assume moreover, when n = 1, that G contains some element whose
derivative is not real at some point. Consider a homeomorphism � : Bn ↪→ Cn

onto its image conjugating G with an holomorphic pseudo-group G̃ on �(Bn).
Then � is either a holomorphic or an anti-holomorphic diffeomorphism.
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In dimension n = 1, results of measurable rigidity were obtained in [Reb2].

Proof. First let us show that � actually conjugates the respective Lie algebras
G and G̃. To make this notion of conjugation of Lie algebras precise, recall first
that a holomorphic vector field X belongs to G if, and only if, the corresponding
pseudo-flow ϕt

X (induced in the domain of definition of X) is contained in G. Then,
we want to show that the image ϕ̃t = � ◦ ϕt

X ◦ �−1 of such pseudo-flow by �

coincides with the pseudo-flow ϕt
X̃

of a vector field X̃ belonging to G̃. It is clear

from the definition of the closure of a holomorphic pseudo-group (cf. Sect. 2) that

� conjugates G with G̃. This immediately implies that the 1-parameter family of
homeomorphisms defined by ϕ̃t = � ◦ ϕt

X ◦ �−1 actually consists of holomorphic

transformations belonging to G̃. Then, it suffices to show that such 1-parameter
family of holomorphic transformations always coincides with the pseudo-flow of
a vector field X̃. Now, let us be more careful with the domains of definition. If X
is defined on U ⊂ Bn and V = �(U) denotes its image, then for any relatively
compact ball B ⊂ V in V , there is a t0 > 0 such that ϕ̃t is defined as a map
B → V for all −t0 ≤ t ≤ t0. Moreover, the arrow (z, t) → ϕ̃t(z) is uniformly
continuous on B×[−t0, t0]. Indeed, these properties are satisfied on �−1(B) for the
pseudo-flow ϕt

X and thus they result from the continuity of �. On the other hand,
the family ϕ̃t automatically satisfies the composition rule ϕ̃t ◦ ϕ̃s(z) = ϕ̃t+s(z) for
any z ∈ V and any s, t ∈ R provided that both expressions are defined. Thus, it is
enough to prove that the restriction ϕ̃t |B : B → V coincides with the pseudo-flow
of a vector field X̃ inside B for |t| small and a fixed ball B as above. Nonetheless
this is a consequence of Proposition 4.8.

Clearly it is sufficient to prove that � is holomorphic or anti-holomorphic in
a local holomorphic coordinate. Therefore, our assumptions allow us to assume that
G is defined on the ballBn and thatG contains the affine Lie algebra sl(n,C)�Cn .
In particular, there are 2n constant vector fields X1, . . . , X2n inG(Bn) generating
the translation part of G over R. By Lemma 6.5, � conjugates their pseudo-flow
φt

Xi
with the pseudo-flow φt

X̃i
of respective vector fields X̃1, . . . , X̃2n belonging

to G̃. The neighborhood of any point p ∈ Bn possesses a parametrization given by

(R2n, 0) → (Bn, p) ; (t1, . . . , t2n) 
→ φ
t1
X1

◦ · · · ◦ φ
t2n
X2n

(p) .

Similarly the image under�of the neighborhood in question admits the parametriza-
tion

(R2n, 0) → (Cn,�(p)) ; (t1, . . . , t2n) 
→ φ
t1
X̃1

◦ · · · ◦ φ
t2n

X̃2n
(p) .

Since � preserves the dimension as well as the regularity and the commutativity
of the pseudo-flows, the corresponding vector fields X̃1, . . . , X̃2n in G̃ are also
R-linearly independent at �(p). Through these (real) analytic parametrizations,
� is the identity mapping at (R2n, 0) by construction. Hence, � is real analytic at p.
In particular, � is (real) smooth at p. The differential of �, Dp� ∈ GL(2n,R),

conjugates the differential DpG
{p} ⊂ GL(n,C) at p of the isotropy subgroup
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G
{p} = {g ∈ G ; g(p) = p} of G to the corresponding subgroup D�(p)G̃

{�(p)} ⊂
GL(n,C) associated to G̃. Since G is large, DpG

{p}
contains SL(n,C). When the

dimension is n ≥ 2, Lemma 1.6 immediately implies that C = Dp� is complex
or anti-complex which finishes the proof. When the dimension is n = 1, the

additional assumption ensures that DpG
{p}

contains at least a non-real complex
scalar λ ∈ C∗ \R∗. Then arguments similar to (but simpler than) those contained in
the proof of Lemma 1.6 show again that Dp� is, in fact, complex or anti-complex.

��

7. Singular holomorphic foliations by curves on CPn

We recall the basic definitions and properties of foliations by curves onCPn . Proofs
and details can be found in [GM,OB], [LN] or [LN,So].

A 1-dimensional (regular) holomorphic foliation F on a complex manifold M
is given by a collection of open sets Ui covering M and equipped with regular
holomorphic vector fields Xi which satisfy the compatibility condition Xi = fi, j ·
X j on Ui ∩ U j , where fi, j : Ui ∩ U j → C are holomorphic functions. The leaf L p

passing through a point p ∈ M is the orbit of p under the pseudo-group generated
on M by all the local pseudo-flows φt

Xi
. The leaf L p is a connected and injectively

immersed Riemann surface i : � ↪→ M which is tangent to X.
We denote by z = (z0, z1, . . . , zn) the usual coordinate of Cn+1 and by

z = (z1, . . . , zn) the coordinate of the main affine chart of CPn , where zi = zi/z0.
Given homogeneous polynomials H0, H1, . . . , Hn of degree d inCn+1, the homo-
geneous vector field

Z̃ = H0(z)∂z0 + H1(z)∂z1 + · · · + Hn(z)∂zn

defines a regular holomorphic foliation F̃ by complex curves in Cn+1 \ Sing(Z̃)

where Sing(Z̃) denotes the common zero set of the coefficients Hi . The leaf L̃ p

passing through a point p is the complex trajectory (integral curve) of p under the
pseudo-flow of Z̃ (of course, L̃ p = {p} if, and only if, p ∈ Sing(Z̃)). This regular
foliation as well as the singular set are invariant under the radial action of C∗ by
homotheties. Indeed, if �(z̃) = λ· z̃ for some λ ∈ C∗, then �∗Z̃ = λd−1 ·Z̃. Hence
it induces a singular foliation by curves F on CPn . In the main affine chart, F is
also defined by the polynomial vector field Z =∑n

i=1(Hi(1, z) − ziH0(1, z))∂zi .
Notice that Z has degree d + 1 with radial homogeneous component of degree
d + 1

Z = Z0 +Z1 + · · · +Zd + Hd ·R

where






Zk is an homogeneous vector field of degree k;
Hd is an homogeneous polynomial of degree d;
R = z1∂z1 + · · · + zn∂zn is the radial vector field.

The singular set Sing(F ) of F is the projective algebraic subset of tangencies
between Z̃ and the radial vector field R̃ = z̃0∂z̃0 + z̃1∂z̃1 + · · · + z̃n∂z̃n (obviously
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containing Sing(Z̃)). The intersection of Sing(F ) with the main affine chart of
CPn mentioned above is given by

Sing(F ) = {H1 − z1H0 = H2 − z2H0 = · · · = Hn − znH0 = 0} .

Similarly we can express Sing(F ) in the other affine charts of CPn .
Another homogeneous vector field Z̃ ′ of degree d defines the same foliation

F (with the same singular set Sing(F )) if, and only if, Z ′ = λ · Z for a scalar
λ ∈ C∗, i.e. Z̃ ′ = λ · (Z̃ + Hd−1R̃) for a homogeneous polynomial Hd−1 of
degree d. It follows that Sing(F ) = CPn if, and only if, Z is vanishes identically,
i.e. Z̃ = Hd−1 · R̃ is radial. Also, Sing(F ) has a codimension 1 component
{H(z̃) = 0} in Cn+1 if, and only if, we have H · Z̃ ′ = λ · (Z̃ + Hd−1R̃). In this
case, the lower degree homogeneous vector field Z̃ ′ defines a foliation F ′ that
coincides with F away from Sing(F ) but has a singular set Sing(F ′) ⊂ Sing(F )

of codimension ≥ 2. The following lemma is simple and well-known.

Lemma 7.0. Let F be a regular 1-dimensional holomorphic foliation defined
on the complement CPn \ S of an analytic subset of codimension ≥ 2. Then,
F coincides with the foliation induced by a homogeneous vector field of some
degree d in Cn+1. ��

In the sequel, such foliation F will simply be called a foliation by curves on
CPn . The well-defined degree (d) of the homogeneous vector field Z̃ inducing
F coincides with the number of tangencies between F and a generic projective
line L ⊂ CPn . The set Fd(CPn) of degree-d foliations on CPn is naturally
identified with the projectivization of the set of degree-(d + 1) vector fields of
the form Z = Z0 + Z1 + · · · + Zd + Hd ·R which has a singular set in Cn of
codimension ≥ 2 (i.e. whose polynomial coefficients have no common factor).
Since the dimension of the set of homogeneous polynomials of degree d in n + 1
variables, or, equivalently, of arbitrary polynomials of degree d in n variables, has
dimension (d+n)!

d!n! , it follows that Fd(CPn) is a Zariski-open subset of the complex
projective space of dimension

dimC(Fd(CPn)) = (d + n + 1)
(d + n − 1)!
d!(n − 1)! − 1.

Example 0. When d = 0, all (constant) vector fields Z̃ are conjugate under
GL(n + 1,C). Thus, any foliationF is conjugate by a projective automorphism to
the “trivial” foliation F0 defined in the main affine chart by the radial vector field
R = z1∂z1 + · · · + zn∂zn . The origin 0 ∈ Cn ⊂ CPn is the unique singular point.

Example 1. For d = 1 (and only in this case), the (linear) vector field Z̃ is invariant
by homotheties and defines a holomorphic vector field Z on CPn . The dynamic
of the underlying foliation F is well-known and completely understood by means
of the Jordan normal form for Z̃ (see [Ca,Ku,Pa]). Notice that the singular points
of F correspond to the eigendirections of Z̃ . For instance, apart from the radial
vector field λ · R̃, the linear vector fields which do not belong to F1(CPn) (i.e.
those that have underlying foliation of degree zero) have an irreducible eigenspace
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of codimension 1. The “generic foliation of degree 1” has exactly n + 1 singular
points.

Let V ⊂ CPn be an algebraic submanifold. We say that V is an invariant set
for a foliation F if V consists of a union of leaves and singular points for F .
For instance, the hyperplane H∞ at infinity is invariant by F if and only if the
radial component Hd ·R of the vector field Z = Z0 + Z1 + · · · + Zd + Hd ·R
vanishes identically (Hd ≡ 0). In this case, the foliation by curves induced by F
onH∞ � CPn−1 is the degree d foliation defined by Zd . If we denote by Fd(Cn)

the set of those foliations of degree d tangent to the hyperplane at infinity, then
Fd(Cn) is clearly is a submanifold of Fd(CPn) of dimension

dimC(Fd(Cn)) = (d + n)
(d + n − 1)!
d!(n − 1)! − 1

and codimension (d+n−1)!
d!(n−1)! . It is important to notice that the degree of Z is d or

d + 1 depending on whether or not the H∞ is invariant. In [Il1], [Il2] the set of
all foliations on CP2 is stratified by the degree of the corresponding vector field
Z in the affine chart. This leads to consider the fact of leaving H∞ invariant as
a generic property among foliations having affine degree d. Obviously, what is
generic with respect to the degree of Z is not generic with respect to the degree of
Z̃ and vice-versa. Here is another well-known fact:

Lemma 7.1. For any degree d ≥ 2, there is a Zariski open subset U ⊂ Fd(CPn)

such that any F ∈ U has exactly dn+1−1
d−1 = dn + dn−1 + · · · + d + 1 singular

points in CPn. Similarly there is a Zariski open subset U ⊂ Fd(Cn) such that
any F ∈ U has exactly dn singular points in the affine chart Cn and dn−1

d−1 =
dn−1 + dn−2 + · · · + d + 1 singular points in the invariant hyperplane H∞ at
infinity.

The first assertion is an application of the Baum-Bott formula (see [GM]). The
second one is even easier. The dn−1

d−1 = dn−1 + dn−2 + · · · + d + 1 singular points
in H∞ result from the first assertion applied in lower dimension. The dn singular
points in Cn are a consequence of the Bézout Theorem.

An invariant irreducible curve � ⊂ CPn for a foliation F (which is not totally
contained in the singular set) always consists of a regular leaf and finitely many
singular points. Conversely, consider the closure L p of a (regular) leaf L p with
respect to the usual topology. Clearly L p always consists of a union of leaves and
singular points. Then, we have:

Lemma 7.2. Let L p be a regular leaf of some foliationF ∈ Fd(CPn) and assume
that its closure has the form L p = L p ∪ {s1, . . . , sk} for a finite set of (necessarily
singular) points s1, . . . , sk ∈ Sing(F ). Assume moreover that the leaf L p becomes
an embedded Riemann surface in CPn \ {s1, . . . , sk} after deleting these points.
Then, the closure L p = L p ∪ {s1, . . . , sk} is an algebraic curve.

The second assumption means that L p is not contained in its limit set, i.e. it does
not accumulate on itself or on another regular leaf L p′ (in the sense of foliations).
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Proof. We know that Fp is a smooth analytic submanifold of CPn \ {s1, . . . , sk}.
Now, the Remmert-Stein Theorem implies that the extension � = L p is also
analytic in CPn . Finally Chow Lemma ensures it is, in fact, algebraic. ��

The next lemma is rather useful and will be needed later on.

Lemma 7.3. Let F be a foliation by curves on CPn. Then, the closure L p of any
regular leaf L p has non-empty intersection with the hyperplane at infinity (i.e.
H∞ ∩ L p �= ∅).

Naturally L p also has non-empty intersection with every hyperplaneH ⊂ CPn .

Proof. Let L p be a bounded leaf in Cn . Consider a holomorphic vector field Z
defining the foliation F . For any ball Bn

R and any ε > 0, the pseudo-flow φt
X is

well-defined as a holomorphic family of mappings {|z| < ε/M} × Bn
R−ε → B

n
R

where M = ‖X‖R is the supremum of |X(z)| on Bn
R. For R large enough and ε

small enough, the leaf L p is totally contained inBn
R−ε. Then, using the composition

rule φt
X ◦ φs

X = φt+s
X , the previous estimate shows that the pseudo-flow restricted

to L p is indeed defined for all t ∈ C. Thus, we obtain a parametrizationC→ Fp;
t 
→ φt

X(p). However, thanks to Liouville Theorem, this parametrization must be
constant and therefore L p is a singular point. ��

Let X be a germ of vector field at 0 ∈ Cn with an isolated singularity at 0
and denote by λ1, . . . , λn ∈ C the spectrum of its linear part. We say that X is
hyperbolic at 0 if none of the quotients λi/λ j is real. The following result is a more
accurate version of a proposition of [LN,So].

Lemma 7.4. Let X be a germ of vector field with a hyperbolic singularity at
0 ∈ Cn and denote by λ1, . . . , λn ∈ C its spectrum. Then, there are exactly n
germs of irreducible invariant analytic curves �1, �2, . . . , �n at 0 where each �i

is smooth and tangent to the eigendirection corresponding to λi . If another leaf
L has 0 in its closure 0 ∈ L, then it accumulates exactly on two invariant curves
L = L ∪ �i ∪ � j .

Proof. It is proved in [Ch] that a hyperbolic singular point is always topologically
linearizable. In other words, there exists a local homeomorphism � : (Cn, 0) →
(Cn, 0) sending the foliationF defined by X to the one defined by X0 = λ1z1∂z1 +
λ2z2∂z2 + · · · + λnzn∂zn . In fact, it is actually shown that the pseudo-flows are
conjugate, but this will not be needed. The pull-back through � of the coordinate
axis correspond to n special leaves L1, . . . , Ln of the local foliation F whose
closure �i = Li ∪ {0} is a germ of analytic curve (here, we use Remmert-Stein
Theorem). In the linearizing coordinates, we consider the leaf passing through
a point p = (z1, z2, . . . , zn) which does not belong to the hyperplane {z1 = 0}
and denote by I(p) ⊂ {1, 2, . . . , n} the set of indices where the corresponding
coordinate of p is not zero.

Then L is parametrized by t 
→ (etλ1z1, etλ2 z2, . . . , etλn zn) and 0 is in the
closure of L if, and only if, the corresponding set � = {λi ; i ∈ I} lies in some
half-plane �(p) ⊂ {θ < arg(λ) < θ + π}. Then, considering the holonomy map
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of �, namely (z2, . . . , zn) 
→ (e2iπλ2/λ1z2, . . . , e2iπλn/λ1zn), it also follows that
�1 is in the closure of L if, and only if, λ1 has extremal argument in �(p), i.e.
either �(p) ⊂ {arg(λ1) ≤ arg(λ) < arg(λ1) + π}, or �(p) ⊂ {arg(λ1) − π <

arg(λ) ≤ arg(λ1)}. Repeating this discussion for all the eigenvalues λi , we arrive
to the following conlusion. Given a point p �= 0, define I(p) and �(p) as above.
Then, 0 is in the closure L of L if, and only if, �(p) lies in some half-plane of C
(i.e. in Poincaré domain) and L = L ∪ �i1 ∪ �i2 where λi1 , λi2 ∈ �(p) are the
eigenvalues having extremal argument: �(p) ⊂ {arg(λi1 ) ≤ arg(λ) ≤ arg(λi2 )}
with λi2 − λi1 < π. In particular, X lies in Poincaré domain if, and only if, every
leaf accumulates on 0. ��

It should be noted that the domain of definition of Chaperon’s homeomorphism
� used in the preceding proof cannot be uniformly chosen with respect to a local
deformation of the vector field X. Nevertheless, an alternate construction of the
invariant curves �i viewed as intersections of the stable manifolds of some elements
of the pseudo-flow φt

X provides the following stability result (see [LN,So] for
details).

Lemma 7.5. Consider a foliation F0 ∈ Fd(CPn) having a hyperbolic singular
point p0 ∈ CPn and consider one of its local invariant curves �0. Then there exists
a neighborhood U of F0 in Fd(CPn) and a holomorphic map

φ : � × U → CP
n

such that the image φ(�,F0) of the unit disc � ∈ C coincides with �0 and
φ(�,F ) coincides, for every F ∈ U , with a local invariant curve � of F through
the persistent hyperbolic singularity p = φ̃(0,F ).

An application of Lemma 7.4 is the:

Proposition 7.6. Consider a foliation F ∈ Fd(Cn) with a finite singular set
Sing(F ). Assume moreover that all the singularities contained in the invariant
hyperplaneH∞ at infinity are hyperbolic. If the closure L p of a leaf L p has finite
intersection withH∞, then L p is an algebraic curve.

Proof. If L p is analytic in CPn \ Sing(F ), then we just need to apply Remmert-
Stein’s theorem. So we assume for a contradiction that L p is not analytic at a point
q which is regular for F . Therefore L p accumulates on every point of the leaf
Lq (in the sense of foliations, note that the possibility of having L p = Lq is not
excluded). By virtue of Lemma 7.3, the closure Lq intersectsH∞ at some point q′
and this point is therefore an accumulation point of L p. When q′ is smooth for F ,
the closure L p has an infinite intersection with H∞ on a neighborhood of q′ as it
can be seen by considering a local trivialization of F at q′ (the case Lq ⊂ H∞ is
trivial).

Now, assume that q′ is a (hyperbolic) singular point of F . Then, q′ is also
hyperbolic for the restricted foliationF |H∞ andH∞ contains n −1 local invariant
curves at q′. The nth local invariant curve is transverse to H∞ at q′. If Lq is this
transverse invariant curve, then L p also accumulates on another invariant curve
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(cf. Lemma 7.4) which should be contained in H∞. It follows a contradiction. If
Lq is not the local transverse invariant curve, it still accumulates on q′ and (cf.
Lemma 7.4) on two local invariant curves. One of them is contained inH∞ and is
accumulated by L p as well. In any case, we obtain a contradiction establishing the
lemma. ��

The following lemma will also be needed and can be proved by similar argu-
ments. We omit the proof.

Lemma 7.7. Consider a foliationF ∈ Fd(CPn) with a finite singular set Sing(F ).
Assume that the closure L p of a leaf L p has 1-dimensional analytic intersection
with a neighborhood U of the hyperplane at infinityH∞. Then L p is an algebraic
curve in CPn. ��

Finally, the main result of [LN,So] is the:

Theorem 7.8 (Lins Neto, Soares). Given n, d ≥ 2, there exists a Zariski open
subset U7 ⊂ Fd(CPn) such that any F ∈ U7 satisfies:

(i) F has exactly (d+n)!
d!n! hyperbolic singularities and is regular on the complement;

(ii) F has no invariant algebraic curve.

8. The holonomy pseudo-group near a special family of degree d foliations

Let us describe a family of foliations coming from the world of linear differential
equations for which the holonomy may be computed. The foliations of Theorem A
will be obtained as perturbations of foliations in this family. The main result of
this section will enable us to “prescribe” the linear part of the holonomy group
of the foliation obtained by perturbation. For the sake of notations, we shall work
with CPn+1 (n ≥ 1) instead of CPn , denoting by (w, z) the coordinates in the
main affine chart Cn+1 where z = (z1, . . . , zn). In this way, the first coordinate is
distinguished. Given d ≥ 2, we fix pairwise distinct scalars w1, . . . , wd ∈ C and
consider the family of rational vector fields

X(M1, . . . , Md ) = ∂w +
d∑

k=1

Mk

w − wk
z∂z , M1, . . . , Md ∈ M(n,C) .

Here, the notation Mz∂z has to be understood as
∑

i, j mi, j z j∂zi where M = (mi, j ).

Denote by F(M1, . . . , Md ) the foliation induced on CPn+1. We want to describe
some dynamical features of foliations close to FI = F(I, . . . , I ) where I ∈
GL(n,C) is the identity matrix.

Lemma 8.1. Assume that M1, . . . , Md �= (0) and M1 + · · · + Md �= I. Then
the foliation F = F(M1, . . . , Md ) has projective degree d, is tangent to the
projective line L0 : {z = 0} and has d + 1 isolated singularities pk = (wk, 0), k =
1, . . . , d, and pd+1 = (∞, 0) belonging to L0. Furthermore on a neighborhood
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of a singularity pk, the foliation is defined by a holomorphic vector field whose
linear part at pk is respectively given (in matricial notation) by

(
1 0
0 M1

)

, · · · ,

(
1 0
0 Md

)

,

(
1 0
0 I − M1 − · · · − Md

)

.

Finally the hyperplanes {w = w1}, . . . , {w = wd} and the hyperplane at in-
finity {w = ∞} are all tangent to the foliation and intersect over a degenerate
codimension 2 singularity at infinity. There are no other singularities.

Denote by V the (smooth) complex submanifold of Fd(CPn+1), which is
parametrized by (M1, . . . , Md ) 
→ F(M1, . . . , Md ), satisfying the assumptions
of Lemma 8.1 above. Note that the dimension of this submanifold is dn2.

Proof. The conditions M1, . . . , Md �= 0 and M1 + · · · + Md �= I imply that the
polynomial vector field of degree d	d

k=1(w−wk)·X, where X = X(M1, . . . , Md ),
is irreducible. Also the homogeneous part of degree d of the polynomial vector
field in question is not a multiple of the the radial vector field w∂w + z∂z . Using
new projective coordinates (t = 1/w, z̃ = z/w), the foliation is defined by the
rational vector field

t∂t +
(

I −
d∑

k=1

Mk

1 − wkt

)

z̃∂z̃ .

This proves the lemma. ��
A foliation F ∈ V possesses a holonomy (or monodromy) group associated

to the leaf L0. Note that we have already mentioned “local” holonomies relative
to hyperbolic singularities. However the holonomy group in question has a more
global nature and we shall brief recall its construction. This construction will be
extended after the next proposition so as to include small perturbation of F . Fix
a point p0 = (w0, 0) in the leaf L∗

0 = L0 \ {p1, . . . , pd+1} and consider the
vertical affine hyperplane � = {w = w0}. For a very “small” complex time T ,
the complex flow φT

X is well-defined on some affine tubular neighborhood of
� and induces a linear map � → {w = w0 + T }. This map is also given by
integrating the non-autonomous vector field Y(t) = ∑d

k=1
Mk

w+t−wk
z∂z over the

segment t ∈ [w,w + T ]. Analogously, given any smooth loop γ : [0, 1] → L∗
0

with extremities at γ(0) = γ(1) = p0, we define a linear map fγ : � → � by
integrating the non-autonomous vector field Y(t) = ∑d

k=1
Mk

γ(t)−wk
z∂z over [0, 1].

The resulting map fγ depends only on the homotopy class of γ in the fundamental
group π1(L∗

0, p0). Now, choose a collection γ1, . . . , γd : [0, 1] → L∗
0 of generators

for π1(L∗
0, p0) so that each γk has index 1 around pk, is homotopic to 0 in L∗

0 ∪{pk},
and, moreover, γ1 · γ2 · · · · · γd is homotopic to 0 in L∗

0 ∪ {p∞}. Finally, denote by
Ak ∈ GL(n,C) the matrix defining fγk : � → �.

Proposition 8.2. The holomorphic mapping from V to (GL(n,C))d , d ≥ 2, given
by

{
F = F(M1, . . . , Md ) 
→ (A1, . . . , Ad ) ;
FI = F(I, . . . , I ) 
→ (I, . . . , I ) ,

is a local diffeomorphism at F0.
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We have discovered later that the proposition above is a variant of the famous
1920’s Lappo-Danilevskii’s affirmative answer to the Riemann-Hilbert problem in
the case where the monodromy representation is close to the identity.

Proof. Because the Mk’s are close to I , each of the d + 1 singularities of the initial
vector field X = X(M1, . . . , Md ) lying in the projective line L0 are non-resonant
in Poincaré domain (see [Ar,Il], p. 72). Hence they can be linearized by a local
holomorphic change of coordinates. Using these linearizations, it becomes clear
that each fγk is locally conjugate to the (local) holonomy of the corresponding linear
vector field. In other words, there is gk ∈ Diff(Cn, 0) such that fγk = g−1

k e2iπMk gk.
However, since fγk is linear, the previous equation still holds when gk is replaced
by its linear part D0gk = Bk ∈ GL(n,C). Thus

Ak = B−1
k e2iπMk Bk for a suitable Bk ∈ GL(n,C), k = 1, . . . , d.

It should be noted that the transition matrices Bk are generally distinct, each of
them depending non-linearly on all the coefficients (entries) of Mk so that they
cannot be explicited.

Nevertheless, when only one of the Mk differs from the identity by exactly
one of its entries, the Ak are computable as follows. Let k0 ∈ {1, . . . , d} and
i0, j0 ∈ {1, . . . , n}. Let also Mk = I for k �= k0 and Mk0 = I + tδi0, j0 where δi0, j0
stands for the Kronecker matrix. In the main affine chart and away from the poles
{w = wk}, k = 1, . . . , d, the integral curves of the vector field X(M1, . . . , Md )

are locally parametrized by w 
→ (w, z(w)) where the functions zi(w) satisfy the
following system of differential equations






dzi
dw

=
d∑

k=1

zi
w−wk

, i �= i0

dzi0
dw

=
d∑

k=1

zi0
w−wk

+ t
z j0

w−wk0
.

Beginning with initial data p = (w0, z(w0)), a direct integration gives for
i �= i0

zi(w) = zi(w0) ·
d∏

k=1

(
w − wk

w0 − wk

)

,

and for i0 = j0

zi0 (w) = zi0(w0) ·
( ∏

k �=k0

(
w − wk

w0 − wk

))

·
(

w − wk0

w0 − wk0

)1+t

.

In this last case (i.e. i0 = j0), we obtain by continuation over γk






Ak = I, k �= k0

Ak0 =



I i0−1 0

e2iπt

0 In−i0



.
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However, if j0 �= i0, then the differential equation satisfied by zi0(w) becomes

dzi0

dw
=

d∑

k=1

zi0

w − wk
+ t

z j0(w0)

w − wk0

d∏

k=1

(
w − wk

w0 − wk

)

.

Replacing zi0 (w) = c(w) ·∏d
k=1(

w−wk
w0−wk

) in the last equation with initial value
c(w0) = zi0(w0), the function c(w) may be computed by a direct integration
providing

zi0 (w) =
[

zi0 (w0) + tz j0(w0) log

(
w − wk0

w0 − wk0

)] d∏

k=1

(
w − wk

w0 − wk

)

.

Therefore, by analytic continuation over γk, we obtain
{

Ak = I, k �= k0,

Ak0 = I + 2iπtδi0, j0 .

These computations mean that the two holomorphic maps

(M1, . . . , Md ) 
→ (A1, . . . , Ad )

(M1, . . . , Md ) 
→ (e2iπM1 , . . . , e2iπMd )

do coincide nearFI along the coordinate axis (relative to the parametrization given
by Kronecker matrices) and then that they are tangent at FI . ��

Now, we show that the construction of the return maps fk remains valid in the
context of holonomy pseudo-groups of arbitrary foliations F sufficiently close to
the familly V . Fix F1 ∈ V and R > 0. Consider a foliation F ∈ Fd(CPn+1) very
close toF1. Then all the hypersurfaces {(w, z) ; w = γk(t), z ∈ Bn

R} are transverse
to F for t ∈ [0, 1] and k = 1, . . . , d. Indeed, this is clearly true for F1. Since we
can uniformly control the dependence of the slope of the leaves of F on compact
sets where the foliation is regular, this transversality property is persistent for small
perturbations of F1. Consider the immersion

�R : Bn
R ↪→ CP

n+1 ; z 
→ (w0, z)

of the ball Bn
R of radius r > 0 in the vertical affine hyperplane � ⊂ Cn+1. Since no

misunderstanding is possible, we also denote by �R the image �R(Bn
R) ⊂ Cn+1.

A simple compactness argument shows that, for sufficiently small r (0 < r < R)
and for an arbitrary point p ∈ �r , the path γk can be lifted in the leaf L p through p
(with respect to the transverse fibration above) as a path γk,p verifying γk,p(0) = p
and γk,p(1) ∈ �R . This allows us to define the return map fk around the singularity
pk (relative to the choices of the homotopy classes γ1, . . . , γd and r, R) without
ambiguity by

fk,F : �r → �R ; p 
→ γk,p(1) .

Moreover, these return maps depend holomorphically on F . In particular, if F
happens to belong to V , then the maps fk,F coincide with the restriction to �r of
the original linear return maps constructed at the beginning of the present section.
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Set r = 1 and R = 2 supk ‖ fk,F1‖1. Since the return maps of foliation in V are
globally defined, we can suppose that the return maps fk,F are well-defined and
one-to-one on the unit ball �1 � Bn provided thatF is sufficiently close toF1 ∈ V .
Repeating this construction for everyF1 ∈ V , we obtain the following lemma:

Lemma 8.3. There exists a neighborhood U ⊂ Fd(CPn+1) containing V , such
that the return maps constructed above are well-defined and injective on the unit
ball fk,F : Bn ↪→ Cn for everyF ∈ U . Furthermore they depend holomorphically
on F . ��

Now, denote by
Ak,F = D0 fk,F ∈ GL(n,C)

the differential at 0 ∈ Bn
r � �r of the return map fk,F . The matrices Ak,F depend

also holomorphically on F and an immediate consequence of Proposition 8.2 is
the:

Corollary 8.4. The holomorphic mapping
{
U → (GL(n,C))d

F 
→ (A1,F , . . . , Ad,F )

defined by the differential of the return maps as above is a submersion at FI . ��
In other words, for F sufficiently close to FI in V , or more generally in

Fd(CPn+1), the linear parts of all the return maps fk,F may be deformed arbitrarily
and independently by a deformation of F .

In the sequel, we will denote by GF the pseudo-group generated on Bn by the
fk,F . Given a point p ∈ �1, the pseudo-orbit of p under GF is totally contained
in the intersection L p ∩ �1 of the corresponding leaf with the transversal. Thus
L p is dense in a neighborhood of �1 provided that the pseudo-orbit of p is dense
in �1. Next we are going to construct an open set of foliations close to FI which
have dense leaves on a certain open set. In Sect. 9, it will be shown how to ensure
that the leaves are, in fact, dense in the entire CPn+1.

Consider FαI = F(αI, . . . , αI ) ∈ V where I ∈ GL(n,C) denote the identity
matrix and α ∈ C is a scalar belonging to the upper half-plane �m(α) > 0.
The associated return maps can be computed by explicitly integration in this case
and all of them coincide with the linear contraction Ak,FαI = λI , λ = e2iπα.
Assume that FαI is sufficiently close to FI (i.e. α is close to 1) so that the map
F 
→ (A1,F , . . . , Ad,F ) of Corollary 8.4 is still a submersion on the neighborhood
of FαI and the contrations Ak,FαI = λI are close to the identity.

Proposition 8.5. If FαI as before is sufficiently close to FI , then there exists an
open neighborhood U8 ⊂ Fd(CPn+1) of FαI such that any F ∈ U8 satisfy the
following alternative:
– either the pseudo-group GF has a fixed point in Bn and then,F has an invariant

projective line L0,F close to L0,
– or the pseudo-group GF accumulate a non-trivial (real) pseudo-flow on Bn.
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Moreover, there is a (real analytic) Zariski-open subset U ′
8 ⊂ U8 such that the

pseudo-group GF of anyF ∈ U ′
8 has respectively large linear or affine part onBn.

Proof. The d + 1 singular points p1, . . . , pd+1 of FαI belonging to L0 are hyper-
bolic. At each of these points pk, the foliation admits exactly n + 1 local invariant
curves. For a sufficiently small ball Wk centered at pk, denote by Lk = L0 ∩ Wk
the local invariant curve contained in L0.

Given a foliation F sufficiently close to FαI , those d + 1 hyperbolic singular-
ities will persist as singularities p1,F , . . . , pd+1,F of F (cf. Lemma 7.5) and we
denote by Lk,F the corresponding persistent invariant curves in Wk. The persistent
fixed point of the kth return map fk,F within Bn necessarily corresponds to the
intersection with �1 of the leaf Lk,F . Then, if the unique fixed point of f1,F , is
also fixed by the other return maps, this means that the branches Lk,F are parts of
a common leaf which turns out to be an embedded sphere close to L0 and hence
a projective line.

On the other hand, if one of the return maps fk,F does not fix any longer
the unique fixed point of f1,F , then we apply Proposition 2.0 to f = f1,F and
g = ( fk,F )−1 ◦ f1,F and the alternative is proved. The last assertion follows
immediately from Corollary 5.2. ��

9. Construction of minimal foliations on CPn+1

We keep the notations of Sect. 8 and start with the simpler 2-dimensional case.
Given a foliationF and an open set U ⊂ Fd(CPn+1), we say that U approximates
F if F lies in the boundary of U .

Theorem 9.1. Given d ≥ 2, there exists an open subset U ⊂ Fd(CP2) (i.e. n = 1)
approximating FI such that every foliation F ∈ U satisfies:

(i) F has exactly (d+2)(d+1)
2 hyperbolic singularities and is regular on the com-

plement,
(ii) every leaf of F is dense in the whole of CP2,
(iii) the closure GF of the holonomy pseudo-group GF is transitive on �1 � �.

In fact, since the holonomy pseudo-group of a foliation F ∈ Ad contains
contractions arbitrarily close to 1 (cf. Introduction and [Il1]), the following con-
struction can be carried out on a neighborhood of any F ∈ Ad . Since Ad is dense
in Fd(C2), it follows that the subset of those foliations F ∈ Fd(CP2) satisfying
properties (i), (ii) and (iii) above contains an open set U ⊂ Fd(CP2) approximat-
ing the whole of Fd(C2). In other words, the intersection U ∩Fd(C2) is open and
dense in Fd(C2).

Proof. We keep the notations of Proposition 8.5. There exists a neighborhood W0
a compact part of L0 \ (

⋃d+1
k=1 Lk) such that any leaf intersecting W0 will also meet

the transversal �. The existence of W0 can easily be established by considering
a finite covering by trivialization boxes. For each k = 1, ldots, d + 1, recall that
Wk is a small ball around pk as in the proof of Proposition 8.5. Without loss of
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generality we can suppose that W = W0 ∪⋃d+1
k=1 Wk defines a neighborhood of L0.

Because of the hyperbolicity of pk,F , the “horizontal and vertical” invariant curves
Lk,F and �k,F in Wk depend holomorphically onF (where Lk,FαI = L0 ∩ Wk and
�k,FαI = {w = wk} ∩ Wk). Hence we can assume that Lk,F intersects W0. Since
pk,F is non-resonant in Poincaré domain, we can also suppose that this singularity
is linearizable in the whole of Wk for every F close to FαI . Thus any leaf in
Wk, other than �k,F , will accumulate on Lk,F , and hence intersect W0 as well.
As a consequence it will, indeed, meet �. Using Lemma 7.7, we then obtain the
following alternative: any leaf L of F either has algebraic closure or meets �.

IfF lies in the Zariski-open subset U7 ⊂ Fd(CP2) given by Theorem 7.8, then
every leaf L ofF meets � and is captured by the dynamics generated by the return
maps f1,F , . . . , fd,F on �. Furthermore the second alternative of Proposition 8.5
has to occur. In addition, if F ∈ U ′

8, then the closure of GF possesses many
translation pseudo-flows. It results that GF acts minimally on �. Thus, if F ∈
U7 ∩ U ′

8, then any leaf L of F is dense in a neighborhhod of �.
We prove that the leaves are, in fact, dense in CP2 in the following way. Given

a leaf L and a regular point p ∈ CP2 of F , denote by L ′ the leaf passing through
p and by γ(t) a path in L ′ joining γ(0) = p to γ(1) ∈ L ′ ∩ �. We see that L must
accumulate on γ(1). By using a simple argument involving flow-boxes along γ ,
one easily concludes that L accumulates on p as well. So we just need to set
U ⊂ U7 ∩ U ′

8. The theorem is proved. ��
The only reason for which the previous proof cannot immediately be adapted

to the general case is that, for n ≥ 2, there is no reason why an arbitrary leaf must
accumulate on the line L0 and hence meet �. Thus we are not able to deduce that the
leaves are globally dense. Hidden behind the recursive proof below (Theorem 9.3)
is the idea that, for a foliation in CPn+1 tangent to a projective flag

L0 = H1 ⊂ H2 ⊂ · · · ⊂ Hn

(whereHi stands for some i−dimensional linear projective space), we can ensure
that every leaf has to accumulate on Hn (Lemma 7.3). With a few restrictions on
the foliation, we may conclude that L is either contained in an algebraic curve,
or actually accumulate on a regular part of Hn and thus on a leaf L ′ belonging
toHn . On the other hand, the leaf L ′ (and thus L) will accumulate onHn−1, again
by the Lemma 7.3. Proceeding inductively we eventually conclude that any leaf
either accumulates on L0, or gives rise to an invariant algebraic curve. Then, by
perturbing the original foliation, we can destroy the invariant flag as well as all
the invariant curves. The difficulty in this construction is to ensure that the leaves
still intersect a neighborhood of L0 after the perturbation. Precisely, we have to
pay particular attention to the possible invariant curves which could give rise, after
perturbation, to a set of leaves staying far away from L0. In order to do this, we
shall need a last easy lemma:

Lemma 9.2. Let A ∈ GL(n,C) be a hyperbolic matrix (i.e. all eigenvalues λi
satisfy |λi | �= 1). Consider R > r > 0 such that both A(Bn

r ), A−1(Bn
r ) are

contained in Bn
R. Let g : Bn

r ↪→ Cn be a holomorphic mapping sufficiently close to
A on Bn

r . Then the following holds:
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(1) g has a unique fixed point in Bn
r which will be denoted by pg.

(2) If z ∈ Bn
r \ {pg}, then there exists nz ∈ Z such that gnz (z) is well-defined and

lies in Bn
4R/3 \ Bn

3r/4.

Proof. The persistence of a hyperbolic fixed point for g as well as its smooth
dependence on parameters is rather well-known (cf. for example [Ar,Il]). Thus we
just need to prove the assertion 2. A version with parameters of Grobman-Hartman
linearization theorem would be sufficient for the conclusion, but we have not found
such statement in the literature. In any case, we give a direct and elementary proof.
Modulo conjugating g by a translation close to the identity, we may assume without
loss of generality pg = 0 and g close to A. Note also that A′ = D0g is also close
to A.

By assumption, every point z ∈ Bn
r distinct from 0 escapes from Bn

r and
intersects Bn

R \ Bn
r through positive or negative iteration of A. By a compactness

argument, there is N ∈ N such that for every z ∈ Bn
r \ Bn

r/2, the truncated orbit

{Ak(z) ; −N ≤ k ≤ N} intersects Bn
R \Bn

r . If g was sufficiently close to A on Bn
r ,

then the truncated orbit {gk(z) ; −N ≤ k ≤ N} (or the well-defined part of this
pseudo-orbit) still intersects the larger domain Bn

4R/3 \ Bn
3r/4.

Next, observe that the map gk(z) = ( 3
2 )kg(( 2

3)kz), k ∈ N, is closer than g to the
linear map A′, and thus remains close to A. In particular, the previous discussion
shows that the pseudo-orbit of any point in Bn

r \Bn
r/2 under gk escapes from Bn

3r/4.
This also means that the pseudo-orbit of every point in Bn

( 2
3 )kr

\ Bn
( 2

3 )kr/2
under g

escapes from Bn
( 2

3 )k−1r/2
. The natural recursive argument then shows that it escapes

from Bn
( 2

3 )k−2r/2
, . . . ,Bn

( 2
3 )r/2

= Bn
r/3,B

n
r/2 and finally Bn

( 2
3 )−1r/2

= Bn
3r/4. ��

Theorem 9.3. Given n ≥ 1 and d ≥ 2, there exists an open subsetU ⊂ Fd(CPn+1)

approximating FI such that every foliation F ∈ U satisfies:

(i) F has exactly (d+n)!
d!n! hyperbolic singularities and is regular on the comple-

ment,
(ii) every leaf of F is dense in the whole of CPn+1,
(iii) the closure GF of the holonomy pseudo-group GF has large affine part on �1.

Proof. As mentioned before, the proof is recursive on n and Theorem 9.1 already
provides the first step n = 1. Assume now that the degree d ≥ 2 and the dimension
n ≥ 2 are fixed. Let us consider the (d+n)!

d!n! -codimensional subspaceFd(CPn+1,H)

consisting of those foliations of degree d in CPn+1 which are tangent to the
horizontal hyperplane H : {zn = 0}. Since H � CPn , we also have the natural
restriction map

{
Fd(CPn+1,H) → Fd(CPn)

F 
→ F̂ = F |H .

In the sequel the restriction to H of any object relative to F will be assigned with
a hat. The main steps of the proof are contained in the following two lemmas.
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Lemma 9.4. Arbitrarily close to F1 = FαI , there exists a foliation F2 ∈
Fd(CPn+1,H) satisfying:

– F2 has only hyperbolic singular points, namely dn+1−1
d−1 in H and dn+1 in the

complement;
– F2 has finitely many irreducible invariant algebraic curves �1, . . . , �r , each of

them intersectingH transversely at singular points;
– every leaf of F2 apart from the �l ’s intersects �1.

Proof of Lemma 9.4. Recall first that FαI = F(αI, . . . , αI ) ∈ Fd(CPn+1,H)

(cf. Sect. 8). Thus, its restriction F̂αI = F(α̂I, . . . , α̂I ) is a foliation (in lower
dimension) possessing properties similar to those of FαI itself. We now make our
induction assumption namely, we suppose that we have already constructed an
open subset Û ⊂ Fd(CPn) approximating F̂αI whose elements F̂ ∈ Û satisfy
conclusions (i), (ii) and (iii) of the statement of Theorem 9.3.

Recall that affine polynomial vector fields giving rise to degree d foliations
in CPn+1 where characterized in Sect. 7. We have also characterized when the
hyperplan at infinity is invariant. Modulo identifying, for this immediate purpose,
H with the hyperplan at infinity, it becomes clear that we can find a foliationF2 in
Fd(CPn+1,H), close to FαI , whose restriction F̂2 toH lies in Û . In particular the
singularities of F̂2 inH are hyperbolic. Without loss of generality we can suppose
that, indeed, all singularities of F2 are hyperbolic (in particular isolated). In fact,
Lemma 7.1 allows us to suppose that all the singularities of F2 are isolated (and
even simple as it follows from the sketched proof, see also [GM]). It is now easy
to see that a small perturbation F2 turns these singularities into hyperbolic ones
without affecting the fact thatH must be invariant by F2. Since the set Û is open,
this is sufficient for our purposes.

Notice that the importance of our induction assumption relies only on the fact
that every leaf ofF2 which is contained inHmust intersect �̂1. By Proposition 7.6,
any leaf L, apart from those contained in H, either is contained in an invariant
algebraic curve, or accumulates on a regular point p of F̂2. In the second case,
the leaf L automatically accumulates on the leaf L ′ passing through p. Since L ′
intersects �̂1, it results that L intersects �1. Finally, any invariant algebraic curve
� intersectsH at singular points as a local invariant curve. Hence, there are at most
dn+1−1

d−1 distinct invariant curves. This finishes the proof. ��

Lemma 9.5. Every foliation F ∈ Fd(CPn+1) sufficiently close to F2 satisfies:

– F has dn+2−1
d−1 hyperbolic singular points and is regular on the complement;

– F has at most r irreducible invariant algebraic curves, each of them arising as
a “perturbation” of one of the �l ’s;

– every leaf of F , apart from the persistent invariant curves, intersects �1.

Proof. Denote by ps the singularities of F2 while s runs over s = 1, . . . , dn+2−1
d−1

and, for each s, let Ws be a small ball centered at ps. Let Vl be a tubular neighborhood
of the compact part of �l given by �l \⋃ps∈�l

(�l ∩ Ws). Finally, denote by U

a neighborhood of the compact remaining part K = CPn+1 \ (
⋃

s Ws ∪⋃l Vl). In
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fact, we shall prove that this open covering of CPn+1 can be chosen so that every
F sufficiently close to F2 satisfies the following:

– every leaf of F in U intersects �1;
– every leaf of F in Vl intersects U with possible exception of one leaf which

gives rise to a persistent invariant curve close to �l;
– every leaf of F in Ws escapes from Ws .

First notice that any ball Ws satisfies the property above because of Lemma 7.3.
In any case, to control the leaves after the perturbation in the neighborhood Vl ∪⋃

ps∈�l
Ws of each invariant curve �l , we shall follow more or less the ideas

developed in the proof of Theorem 9.1 (neighborhood of L0). Besides we are
going to impose one further condition on Ws . To state this condition, consider the
local invariant curve defined by �l at ps. Here, we omit the possibility that �l

consists of several local invariant curves in Ws , but the same discussion can be
carried out in this case with many additional subscripts in the notation. Denote by
φF : � → CPn+1 the parametrization of the persistent local invariant curve given
by Lemma 7.5. Then we require that the holomorphic disc φF2(�) contains all of
the intersection �l ∩ Ws . This means that the boundary of the disc φF (�) will lie
in the complement of Ws , i.e. in Vl , for every F sufficiently close to F2. This can
be done by choosing Ws very small.

Now fix a small transverse section �l to �l parametrized by some ball il :
B

n
R ↪→ �l . Let fl,s : Br ↪→ BR denote the return maps around each of the

singular (hyperbolic) points. Then, maybe reducing the radius 0 < r < R, fl,s
has a unique fixed point 0 = (il)

−1(�l ∩ �l ) and the corresponding differential
Al,s = D0 fl,s is hyperbolic, i.e. it has no eigenvalue of norm one. Maybe rescaling
the parametrization, we can assume that fl,s is arbitrarily close to the linear map
Al,s. Using Lemma 9.2, we may ensure that the foliation F2, as well as any small
perturbation of F2, satisfies the following property: every point of Bn

r , other than
the unique (persistent) fixed point, reaches Bn

R \ Bn
r either by positive or negative

iteration of f . On the other hand, recall that an algebraic invariant curve �l contains
at least one singularity ps. While this is a general fact, in our context such point
simply arises at the intersection between �l and the hyperplane H. Now, choose
a neighborhood Vl of �l \⋃ps∈�l

�l ∩Ws so that, (�l ∩�l ) is contained in il(B
n
r ) for

every sufficiently small perturbationF of F2. Note that il(B
n
r ) is in turn contained

in the “stably repelling” part of the dynamics of fl,s in view of the discussion
above. Thus il(B

n
R \ Bn

r ) is contained in the compact K . Furthermore every leaf in
Vl intersects the transversal �l . Thus, every leaf necessarily escapes from Vl and
meets K with possible exception of one leaf when the persistent fixed points of all
the fl,s coincide. In this case, the special leaf in Vl corresponding to this common
fixed point glue together with the persistent local invariant curves in the balls Ws

(the discs φF (�) mentioned above) into a global invariant curve, that must be
algebraic by Chow’s lemma.

Finally, the fact that � persistently intersects all the leaves which contain points
of the compact remaining part K = CPn+1 \ (

⋃
s Ws ∪⋃l Vl) (on which F2 is

regular) is standard. By the third property of Lemma 9.4, given point p ∈ K ,
there is a path γp contained in the leaf of F2 through p and joining γp(0) = p
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to γp(1) ∈ �1. Considering a finite covering of γ by trivialization boxes for the
foliation F2, it follows that any point q sufficiently close to p is also linked to
�1 by a path γq close to γp. Indeed, this is just the classical construction of the
holonomy map associated to γp. Since the trivialization boxes depend continuously
on F , we can ensure the existence of εp, rp > 0 such that, for every foliation
F ∈ Fd(CPn+1) which is εp-close to F2 and every point q ∈ CPn+1 which is
rp close to p, there is a path γq,F close to γp joining q to �1 in the leaf of F
passing through q. Finally, using the compactness of K , the desired neighborhood
U can be obtained by selecting a finite covering of K from those rp-neighborhoods.
Denoting by ε the minimum of the corresponding εp, we have proved that for any
foliationF which is εp-close toF2, every leaf intersecting U will also intersect �1.
This finishes the proof of the lemma. ��
End of the proof of Theorem 9.3. We conclude as in the proof of Theorem 9.1.
If FαI was chosen sufficiently close to FI and F2 very close to FαI , then F2 is
approximated by the open subsetU7∩U ′

8 given by Theorem 7.8 and Proposition 8.5.
Thus, every foliation F sufficiently close to F2 belonging to this open set has no
algebraic invariant curve and is minimal. Indeed, each leaf intersects �1 by the
preceding discussion and is dense on the neighborhood of �1 by Proposition 8.5.
The same arguments as in the proof of Theorem 9.1 show that the leaves are, in
fact, dense on the entire CPn+1. Furthermore GF has large affine part on �1. ��
Remark 9.6. Since GF has large affine part, it follows that the foliations con-
structed above are also ergodic with respect to the Lebesgue measure. More gen-
erally they possess all the dynamical properties discussed in Sect. 6.

10. Proof of the topological rigidity and of Corollary B

This last section is mainly devoted to proving the rigidity part of the statement
of Theorem A. In the sequel, a minimal foliation F ∈ Fd(CPn+1) contained in
the open set U of Theorem 9.3 is fixed. In particular, the pseudo-group GF on
�1 has large affine part. Given ε > 0, let Uε denote the ε-neighborhood of F
in Fd(CPn+1). Furthermore ε is supposed to be so small that Uε is contained in
the open set U of Theorem 9.3. In particular, given F ′ ∈ Uε, the return maps
fk,F ′ : �1 � Bn → Cn are well-defined and the pseudo-group generated by
them on �1 also has large affine part. However we are going to deal with another
(larger) pseudo-group too. The definition of this pseudo-group is given below.

Denote by ps, s = 1, . . . , dn+2−1
d−1 , the singular points of F and by Ws a small ball

around ps. Consider the regular foliation F̃ induced byF on the open complement
V = CPn \ W of the union W = ∪sWs of these balls. Without loss of generality
(modulo reducing ε), we can assume that the singularities of all the foliations
F ′ ∈ Uε remain contained in W . Denote also by F̃ ′ the foliation induced by F ′
on V . The pseudo-group induced by F̃ on �1 is defined as follows. Given an open
subset U ⊂ �1, a continuous map

U × [0, 1] → V ; (z, t) 
→ γz(t)
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satisfying γz(0) = z, γz(1) ∈ �1 and a path γz contained in the leaf of F̃ passing
through z, we know that the return map (or holonomy map) from U to �1 defined
by z 
→ γz(1) is holomorphic. Besides this map depends only on the homotopy
class γ of γz . In the sequel we denote by fγ : U → �1 the return map induced by γ .
The set GF̃ (�1) consisting of all such holonomy maps is called the pseudo-group
induced by F̃ on �1. Note that this pseudo-group contains (sometimes strictly) the
pseudo-group GF considered in the preceding section (cf. Remark 9.6).

Lemma 10.0. If ε > 0 is sufficiently small, then there exist finitely many holonomy
maps fγk,F ′ : Uk → �1 (as above), k = 1, . . . , d̃, depending holomorphically on

F ′ ∈ Uε, which generate the pseudo-group GF̃ ′(�1) induced by F̃ ′ on �1.

Indeed the path γk,F ′ depends continuously on F ′. The proof is standard
and relies on the existence of a finite covering of U by trivialization boxes (with
parameter) for the foliation. We omit it. In the sequel, we will simply denote by f k,F ′
the return map fγk,F ′ induced by γk,F ′ . Also we assume without loss of generality
that, for k = 1, . . . , d, these holonomy maps are the return maps constructed in
Sect. 8 (in general d < d̃). Using Chaperon’s linearizing coordinates, it is easy to
see that the entire pseudo-group induced by F ′ on �1 is also finitely generated
as above. We can denote this last pseudo-group by GTotal

F ′ so that we have the
inclusions

GF ⊆ GF̃ ′(�1) ⊆ GTotal
F ′ .

Nevertheless for GTotal
F ′ we cannot find a family of generators depending continu-

ously on the foliation.
On the other hand, denote by Homeo(CPn+1) the set of homeomorphisms

� : CPn+1 → CPn+1 equipped with the C0-topology (uniform convergence on
CPn+1).

Lemma 10.1. Given ε > 0 sufficiently small, there exists an open neighborhood
of the identity W ⊂ Homeo(CPn+1) having the following property: if � ∈ W
conjugates the foliationF (of degree d) to another holomorphic foliation by curves
F ′ on CPn+1, then F ′ also has degree d and is close to F in Fd(CPn) (i.e. by
reducing ε we can make F, F ′ arbitrarily close in Fd(CPn)). Furthermore �

induces a conjugacy � : �1/2 ↪→ �1 between the respective holonomy maps
�∗ fk,F = fk,F ′ for k = 1, . . . , d̃.

Remark 10.2. In the statement above, the induced conjugacy � : �1/2 → �1
between the return maps is a priori only a homeomorphismonto its image. However
it is, in fact, either holomorphic, or anti-holomorphic thanks to Proposition 6.4.
Moreover, assuming that ε is very small, then we may conclude that � is too close
to the identity to be anti-holomorphic.

Proof. Consider a homeomorphism � conjugatingF to another singular holomor-
phic foliation by curves F ′. Clearly � preserves the number of singular points,
namely dn+2−1

d−1 , as well as their Milnor number which are all equal to 1 for F .
This implies that the singularities of F ′ are simple as well. An application of
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Baum-Bott Formula then shows that the number of singularities of F ′ is equal to
Deg (F ′)n+1 + Deg (F ′)n + · · · + 1, where Deg (F ′) stands for the degree of F ′
(cf. [LN,So], Remark 4.1). It immediately results that Deg (F ′) = d, so thatF, F ′
have both degree d.

Now, fix a ball B far away from the singular points of F . If � is sufficiently
close to the identity, thenF ′ is regular and C0-close toF on B. This means that the
maximal distance between the leaves L p and L ′

p inside B is uniformly bounded
by a constant that can be assumed arbitrarily small. Due to Cauchy’s inequality,
this implies that F ′ is C1-close to F on some smaller ball B′ ⊂ B. Thus the slope
of a vector field Z ′ defining F ′ in the affine chart containing B′ is close to the
slope of a corresponding vector fieldZ forF . However this C1-topology coincides
with the topology on Fd(CPn). Indeed, if the slope of a sequence of polynomial
vector fields Z ′

k (of constant degree) tends uniformly on B′ to the slope of Z , then
[Z ′

k] tends to [Z] where [·] denotes the point of the appropriate projective space
associated with the coefficients ofZ, Z ′

k. In other words, the images ofZ ′
k inCPN

(which contains the set Fd(CPn)) converge to the image of Z in CPN . In order to
check this, we just need to observe that, otherwise, the compactness ofCPN would
enable us to find a limit point [Z∞] for the sequence [Z ′

k] which is different from
[Z]. Such point corresponds to a polynomial vector fields, of degree at most d + 1,
tangent to Z on B′ which is impossible.

The homeorphism � sends �1 to a section �′ which is topologically transverse
to the foliation F ′. Moreover �′ is close to �1. By a standard argument involving
a trivialization box for the foliation F ′ (see [Il1]), maybe composing � with
homeorphism close to the identity preserving the leaves of F ′ and coincinding
with the identity outside the trivialization box, we can assume without loss of
generality that � sends, say �1/2, into �1.

Given a path γ in a leaf of F with γ(0), γ(1) ∈ �1/2, the homeomorphism
� takes γ to a path γ ′ contained in a leaf of F ′ with γ(0), γ(1) ∈ �. It is also
well-known that the holonomy map fγ : U → �, U ∈ �1/2, is conjugated to the
corresponding holonomy map of γ ′ by the restriction �|�1/2 on the image �(U).
For the sake of notations, in what follows, we shall make no distinction between
� and the homeomorphism �|�1/2 : �1/2 → �(�1/2) induced on the transversal.

Finally, if � is very close to the identity, then � conjugates each return map
fk,F to the holonomy map fγ of a path γ very close to γk and thus coincides with
the corresponding return map fk,F ′ . ��
Lemma 10.3. For ε > 0 sufficiently small, there exists a holomorphic family

Uε × �1 → C
n+1 ; (F ′, z) 
→ �F ′(z)

of injective mappings �F ′ : �1 → C
n and, for some m ∈ N∗, a holomorphic map

M : Uε → C
m ; F 
→ 0

having the following property: given F ′,F ′′ ∈ Uε, there exists a holomorphic
mapping � : �1/2 → � conjugating their holonomy maps �∗ fk,F ′ = fk,F ′′ for
k = 1, . . . , d̃ if, and only if,M(F ′) =M(F ′′). Moreover, in this case, � can be
obtained as � = (�F ′′)−1 ◦ �F ′ .
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Remark 10.4. In particular, maybe reducing ε, the analytic set T = M−1(0) is
connected (containing at least the germ of the orbit of F under PGL(n + 2,C)).
For F ′′ = F , the preceding statement can be interpreted as follows. If a foliation
F ′ is conjugated to F by an element � ∈ W (given by Lemma 10.1), then there
exists a connected analytic deformation T 
→ FT , T ∈ T , of F = F0 containing
F ′ together with an analytic deformation t 
→ �T : �1/2 → � of the identity
�0 ≡ Id conjugating the return maps (�T )∗ fk,F = fk,FT .

Proof. The statement will result from the existence of a normal form for the
return maps fk,F ′ . By the construction of F , the first return map f1,F is close to
a homothety which has simple eigenvalues. Thus it is linearizable. Precisely, by
Lemma 3.5, there is an injective holomorphic map �F : �1 → Cn+1 conjugating
f1,F to a diagonal linear map

A =





λ1(F ) 0
. . .

0 λn(F )




 .

After we have indexed the eigenvalues, this diagonalizing map is unique up to
composition with a diagonal map. We can use this last degree of freedom to nor-
malize another holonomy map. For instance, since the return maps f1,F , . . . , fd,F
generate a pseudo-group with large affine part, there exists a word in these elem-
ents, say f2,F to abridge notations, taking 0 to the complement of all the invariant
hypersurfaces �−1({zi = 0}) of f1,F , i = 1, . . . , n − 1. We then set (for instance)
the normalization �◦ f2,F (0) = (1, . . . , 1). The map �F : �1 → Cn is therefore
unique and depends holomorphically on F (as long as the spectrum remains in
Poincaré domain and far from resonances).

Given F ′ and F ′′ close to F , any conjugacy between their respective return
maps �∗ fk,F ′ = fk,F ′′ must induce the identity through the normalizing maps, i.e.

�F ′′ ◦ � ◦ (�F ′)−1 ≡ Id.

This strictly follows from the uniqueness of the normalizing map. Conversely, any
transformation � inducing the identity as above will provide a conjugacy between
the return maps. For each k = 1, . . . , d̃, choose a point pk ∈ Uk and consider the
Taylor coefficients ak,i,k(F ) at pk of the return map fk,F = ( fk,1,F , . . . , fk,n,F )

viewed through the normalizing coordinates

�F◦ fk,F◦(�F )−1 =



∑

|k|≥0

ak,1,k(F )(z − pk)
k , . . . ,

∑

|k|≥0

ak,n,k(F )(z − pk)
k



 .

Here k = (k1, . . . , kn) ∈ Nn denotes a multi-index, |k| = k1 + · · · + kn is the cor-
responding length and zk = (zk1

1 , . . . , zkn
n ). For instance, given any i = 1, . . . , n,

we have a1,i,k(F ) = λi(F ) for ki = 1 and k j = 0, j �= i, and a1,i,k(F ) = 0 for any
other multi-index k. Consider the ideal I ⊂ O(Uε ×Uε) of holomorphic functions
on Uε × Uε generated by the differences

�k,i,k(F
′,F ′′) = ak,i,k(F

′′) − ak,i,k(F
′).



198 Frank Loray, Julio C. Rebelo

Thanks to Hilbert Basis Theorem, there is a finite set {�k1,i1,k1
, . . . ,�km ,im ,km

}
generating the ideal on Uε × Uε. Denote by M : Uε → Cm the holomorphic
function defined by

M(F ) = (ak1,i1,k1
(F ), . . . , akm ,im ,km

(F )).

By construction,M(F ′) = M(F ′′) if, and only if, the respective normal forms
for the return maps coincide

�F ′ ◦ fk,F ′ ◦ (�F ′)−1 = �F ′′ ◦ fk,F ′′ ◦ (�F ′′)−1

which proves the lemma. ��
The orbit of F under PGL(n + 2,C) is smooth on Uε and has (maximal)

dimension n2 + 4n. This is a consequence of the fact that no holomorphic vector
field on CPn fixes F . Indeed, such vector field cannot be tangent to all the leaves,
otherwise the foliation would have degree 1. Thus a vector field preserving F
should induce a transversal symmetry, i.e. a non-trivial holomorphic vector field on
�1 commuting with the corresponding pseudo-group. However this is impossible
because of Lemma 10.3. The analytic set T (defined in Remark 10.4) consisting of
those foliationsF ′ ∈ Uε whose pseudo-group GF̃ ′ is conjugate to GF̃ on � clearly
contains the PGL(n + 2,C)-orbit of F . It can be shown that T , in fact, coincides
with this orbit. Here we shall prove this only in the case where T is smooth at F .
The general case would lead to several additional difficulties and is not necessary
to the proof of Theorem A. Indeed, T is smooth at a generic point. Thus, maybe
replacing F by a perturbation, we can assume without loss of generality that T
smooth at F . Now the rigidity part of our statement immediately follows from the
combination of Lemma 10.1, Lemma 10.3 and the lemma below.

Lemma 10.5. Assume that the fiberT = {F ′ ;M(F ′) =M(F )} of the “modular
function”M given by Lemma 10.3 containing F is smooth at F . Then, for ε > 0
sufficiently small, T coincides with the PGL(n + 2,C)-orbit of F in Uε.

Proof. Choosing ε very small, we can assume that T is a smooth connected sub-
manifold of dimension ν inUε. The main part of the proof consists of constructing a
ν + 1-dimensional singular foliation G on T ×CPn+1 having some special proper-

ties. Namely the singular set of G should coincide with the dn+2−1
d−1 analytic subman-

ifolds �s parametrized as T 
→ ps,T and given by the persistence ps,T ∈ Sing(FT )

of the singular points ps ∈ Sing(F ). Let � = ∪s�s . The foliation G is transverse to
all the projective planes {T } ×CPn+1 away from � and induces the foliations FT .
In this sense, the family FT will be made into an integrable unfolding of F . Then,
the main result of [GM] states that this unfolding is holomorphically trivial, i.e.
that there exists a holomorphic family T → PGL(n +2,C) ; T 
→ �T satisfying
(�T )∗FT = F which establishes the proof.

The foliation G is constructed as follows. Recall that we have (cf. Remark 10.4)
a family of maps �T : �1/2 → �1 conjugating the pseudo-group GF̃T

to GF̃ .

Recall also that the intersection of any leaf of F̃T with �1 coincides with an orbit
under GF̃T

. Thus, �T induces a one-to-one correspondence between the leaves of
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F̃T and those of F̃ . The existence of a contraction f1,FT : �1 → �1 in GF̃T
shows

that the exact domains of definitions of the �T are not relevant as long as they
contain the contracting fixed point. The restriction ofG to T ×(CPn \∪s Ws), is the
regular foliation defined by the previous correspondance. Precisely, if we denote
by F̃T,p the leaf of F̃T passing through a point (T, p) ∈ {T } × �, then the leaf
G(T0,p)of G passing through (T0, p) is given byG(T0,p) = ∪T∈T F̃T,�−1

T (p)
. Now, the

ν+1-dimensional regular foliationG extends to T ×CPn+1 as a ν+1-dimensional
singular foliation (as follows, for example, from Levy Extension Theorem). This
extension G still satisfies the required properties. This completes the proof of the
lemma and, therefore, the proof of Theorem A. ��

Let us finish the paper with the proof of Corollary B in the Introduction.

Proof of Corollary B. The fact that a foliation F ∈ Fd(CPn+1) possesses an
invariant algebraic subset V ⊂ CPn+1 may be expressed as a system of algebraic
equations satisfied by the Taylor coefficients of the (degree-d) homogeneous vector
fieldZ =∑n

i=0 Hi(z)∂zi defining the foliation. Indeed, if F1, . . . , Fm is a reduced
family of homogeneous polynomials defining V , then V is invariant by F if, and
only if, for any k = 1, . . . , m,Z · Fk belongs to the ideal (F1, . . . , Fm) defining V ,
i.e. if

n∑

i=0

Hi · ∂Fk

∂zi
= G1 · F1 + · · · + Gm · Fm

for polynomials G1, . . . , Gm . Now, we can apply an idea which was used by
E. Ghys to prove that any two matrices A, B ∈ GL(n,C) with algebraically
independent coefficients generate a free group of rank 2. Consider a homogeneous
vector field Z of degree d in Cn+2 whose Taylor coefficients are algebraically
independent. The set E of such vector fields has obviously total Lebesgue measure.
Given another vector field Z ′ ∈ E, there exists an automorphism σ of the field
C of the complex numbers over Q sending each Taylor coefficients of Z to the
corresponding one forZ ′. IfZ admits an invariant algebraic subset, its coefficients
will satisfy an algebraic relation as above. The corresponding algebraic relations
obtained after applying σ will show that Z ′ also has an invariant algebraic subset
(of the same dimension). Finally, because of the denseness of E, we can choose
Z ′ in the open subset U defined by our Theorem A. It follows that the algebraic
relation considered above is impossible for Z ′ and, therefore also for any Z ∈ E.
The proof of the corollary is over. �� ��
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