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Abstract. In this paper we present two upper bounds on the length of a shortest closed
geodesic on compact Riemannian manifolds. The first upper bound depends on an upper
bound on sectional curvature and an upper bound on the volume of the manifold. The second
upper bound will be given in terms of a lower bound on sectional curvature, an upper bound
on the diameter and a lower bound on the volume.

The related questions that will also be studied are the following: given a contractible
k-dimensional sphere in Mn , how “fast” can this sphere be contracted to a point, if
πi(Mn) = {0} for 1 ≤ i < k. That is, what is the maximal length of the trajectory de-
scribed by a point of a sphere under an “optimal” homotopy? Also, what is the “size” of
the smallest non-contractible k-dimensional sphere in a (k − 1)-connected manifold Mn

providing that Mn is not k-connected?

0. Introduction

The first objective of this paper is to find explicit upper bounds for the length of
a shortest closed geodesic. The first results of this nature were obtained by Loewner
and Pu for 2-dimensional torus and 2-dimensional projective plane, respectively.
The upper bound problem has received considerable attention from M. Berger and
M. Gromov, (see [Br], [G2]) and was also stated by S.T. Yau as problem 87 in the
problem list [Y].)

Among the obtained results giving an upper bound for the length of a shortest
closed geodesic on nonsimply-connectedmanifolds we can mention the fundamen-

tal result of M. Gromov, that states that l(M) ≤ c(n)vol(M)
1
n , where l(M) denotes

the length of a shortest closed geodesic, n is the dimension of M providing that
M is essential. Recall that M is called essential if there exists a continuous map
f : M −→ K(�, 1) of M into an aspherical space K(�, 1) such that f∗([M]) �= 0,
where [M] is the fundamental homology class of M and f∗ is the homomorphism
between the homology groups induced by f (see [G2]).

For simply connected manifolds there are results by Ballmann, Thorbergsson
and Ziller for nonnegatively curved manifolds (in particular, for spheres endowed
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with a 1
4 -pinched metric of positive sectional curvature), the results of Croke

and of Treibergs for convex hypersurfaces, and curvature free result of Croke for
the manifold diffeomorphic to the 2-dimensional sphere, (which was somewhat
improved by Maeda in [M]) (see [BalThZ], [Cr2], [T]).

The only known upper bounds valid for simply connected Riemannian mani-
folds of dimension ≥ 3 with an arbitrary Riemannian metric were obtained in [R].
However, those bounds were obtained only for manifolds with H2(M) �= 0. One of
the main goal of this paper is to get rid of this restriction and to find upper bounds
valid for all compact Riemannian manifolds.

In this paper we will prove the following two theorems.

Theorem 0.1. Let Mn be a compact Riemannian manifold of sectional curvature
K ≤ 1 and volume bounded from above by V . Then the length of a shortest
closed geodesic l(Mn) ≤ 2π(V + 1)c(n)V n

. The same upper bound will hold if the
assumption that K ≤ 1 is replaced by the assumption that the injectivity radius
of Mn is greater than or equal to π.

Theorem 0.2. Let Mn be a compact Riemannian manifold of sectional curvature
K ≥ −1, diameter ≤ d and volume ≥ v. Then the length of a shortest closed
geodesic l(Mn) ≤ exp(

exp(c1(n)d)

min{1,v}c2(n) ).

In the statement of Theorems 0.1, 0.2 c(n), c1(n), c2(n) are constants that
depend on the dimension n of the manifold only. Our proofs of Theorems 0.1
and 0.2 can be used to obtain some explicit values of these constants, if desired.

It is obvious that Theorems 0.1, 0.2 immediately imply bounds for l(Mn) in the
situation when K is not necessarily bounded from above (or below) by 1 since we
always can do the appropriate rescaling. So, if K ≤ k2, k ≥ 1 in Theorem 0.1, then

l(Mn) ≤ 2π
k (Vkn +1)c(n)V nkn2

. If we assume that K ≥ −k2, k ≥ 1 in Theorem 0.2,

then l(Mn) ≤ 1
k exp(

exp(c1(n)dk)
min{1,vkn}c2(n) ).

In the future, the class of manifolds of dimension n, of sectional curvature
K ≥ −1, diameter ≤ d and of volume ≥ v will be denoted asMd

−1,v.

One should note that a lower bound for l(Mn), where Mn ∈ Md
−1,v was

discovered by J. Cheeger, (see [Cg]).
Before we will discuss the proofs of Theorems 0.1 and 0.2 in any detail, we

would like to give a very short outline of it. Theorems 0.1 and 0.2 will be proved
as follows. First, one assumes that there is no closed geodesics of length smaller
than some fixed L. Therefore all closed curves of length less than or equal to L
can be contracted without length increase. Next one constructs a non-trivial sphere
in the space of closed curves on Mn of length less than or equal to L that cannot
be “pulled down” to Mn along the integral curves of the energy functional E and,
thus, obtain a closed geodesic of length less than or equal to L that lies below that
sphere as a critical point of E.

Now, we note that the construction of a sphere in the space of closed curves
on Mn is equivalent to the construction of the sphere on Mn of one dimension higher.
If we want the sphere in the space of closed curves to pass through curves of small
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length then the corresponding sphere on a manifold should have a controllable
shape, (thus, we will construct short-tentacled spheres, see Definition 1.2).

In order to construct a sphere of this special shape we will need to learn how
to contract contractible spheres “optimally”, which in our case means that each
point does not travel for too long until it gets to its destination. This is done by
induction on the dimension of spheres. The first step of this was essentially done
in [R], and uses the assumption about the closed curves being contractible with no
length increase.

The rest is done by looking at the proof of the Hurewicz theorem and making it
effective. For example, in order to contract a simplicial sphere of dimension k > 1
we find a chain that it bounds and use it to construct a homotopy that connects this
sphere to a point. The details of this procedure will follow.

The starting point of our proof is the Existence theorem of Lusternik and
Fet (Theorem 14 in [F]) that asserts that on any closed Riemannian manifold
there exists at least one closed geodesic. The simplest proof of this theorem (that
apparently first appeared in [O]) uses Morse theory on the space of all continuous
maps α : S1 −→ Mn , that will be denoted by �Mn and, roughly speaking, runs
as follows, (see also [B], [Ml] for the complete proof).

First, consider the smallest q, such that πq(Mn) �= {0}. Looking at the homo-
topy exact sequence of the fibration �Mn −→ �Mn −→ Mn one concludes that
πq−1(�Mn) �= {0}, (whereas πq−1(Mn) = {0}).

Next, consider the energy functional on �Mn and take a non-trivial sphere,
(here, by a sphere one will mean the image of a standard sphere under a continuous
map) representing a non-trivial element of πq−1(�Mn) and try to deform it along
the integral curves of the gradient flow of the energy functional. It is impossible to
deform it into Mn , since one can then contract it in Mn and that would contradict
non-triviality of that sphere. Thus, it should “get stuck” on a critical point of the
energy functional, which is a closed geodesic, (see Fig. 1).

Fig. 1. Illustration of the Theorem of Lusternik and Fet

Let us note that each point of that sphere is a closed curve, and that with respect
to the energy functional, or equivalently the length functional, it lies “above” the
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closed geodesic. Therefore, if we could actually construct a non-trivial sphere in
�Mn, so that the length of curves through which it passes is bounded from above,
that would automatically give us an upper bound on the length of a shortest closed
geodesic.

As it becomes clear from the proof of the theorem of Lusternik and Fet, our
main task is to construct a non-trivial φ̃ : Sq−1 −→ �L Mn , where �L Mn is the
space of all continuous maps α : S1 −→ Mn of length bounded from above by L
and where L can be bounded from above in terms of the parameters of the manifold.

This φ̃ : Sq−1 −→ �L Mn , can be obtained from φ : Sq −→ Mn , “composed”
of curves of controlled length, so we can, informally, restate that problem, as the
problem of constructing a non-trivial sphere in the manifold that is composed of
short curves. (The exact relationship between φ̃ and φ will be explained below.)

We will now proceed with an outline of the proof.

(i) The sphere φ : Sq −→ Mn will be obtained as an obstruction to the
extension.

The non-trivial sphere φ : Sq −→ Mn will be obtained as follows: we will start
with any non-trivial sphere � : Sq −→ Mn. The above sphere being non-trivial,
the map � cannot be extended to a disc Dq+1, so our attempts at extending it should
fail, and as an obstruction to this extension we will obtain a new non-trivial sphere
φ : Sq = ∂σq+1 −→ Mn , where ∂σq+1 is a boundary of a (q + 1)-dimensional
simplex. Since the new sphere will be the result of an explicit construction, we will
have a control over its shape and its size.

The new map φ will be defined on skeleta of ∂σq+1 inductively. That is, assum-
ing, we have defined a map on (q − 1)-skeleton, the map will take q-dimensional
faces to subsets generated by a homotopy that connects the image of its boundary
and a point. We will consider a new sphere to be small if those homotopies are
such that the distance travelled by each point under this homotopy is small, i.e.
controllable in terms of the parameters of the manifold.

(ii) The sphere φ : Sq −→ Mn can be viewed as φ̃ : Sq−1 −→ �L Mn .
(For example, consider the identity map φ of the standard euclidean sphere
Sn ⊂ Rn+1, and consider its “decomposition” into spheres Ft : Sn−1 −→ Sn ,
such that Ft(Sn−1) = {∑n

i=1 x2
i = 1, xn+1 = 4t − 1}, where t ∈ [0, 1

2 ] and
Ft(Sn−1) = (0, ..., 0, sin 2πt,− cos 2πt), where t ∈ [1/2, 1]. This can be inter-
preted as F : [0, 1] −→ Map(Sn−1, Sn), where F(0) and F(1) map Sn−1 to
the south pole of Sn . Then the length of each closed curve Ft(p∗), t ∈ [0, 1]
is bounded from above by 2π, and we can alternatively view this as a map
φ̃ : Sn−1 −→ �2π Sn .)

A sphere obtained in the way described above can be decomposed into spheres
of one dimension smaller as follows: we can construct a map F : [0, 1] −→
Map(Sq−1, Mn), so that F(t) = Ft(p), p ∈ Sq−1, having the following properties:

(a) F(0) = F(1) = a constant map;
(b) the length of each curve F(t)(p∗), t ∈ [0, 1], p∗ ∈ Sq−1 is fixed, can be

bounded from above in terms of the parameters of the manifold.
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In other words, we use here a specific map α : [0, 1] × Sq−1 −→ Sq which
is homotopically just the quotient map from Sq−1 × [0, 1] to the suspension

Sq−1 = Sq . (This map is explained in more details in Sect. 5, but note that
the exact choice of α is not really imortant.) We define F(t) as (φ ◦ α)(t, ∗).

Or, alternatively, one can view the above map as f̃ : Sq−1 −→ �L M, where L
is a supp∗∈Sq−1 length of Ft(p∗), t ∈ [0, 1], (see Fig. 2), f̃ (p) = φ ◦ α(∗, p).

Fig. 2. “Decomposition” of Sq into Sq−1′
s reduces the construction of a map φ̃ from Sq−1

to �Mn to the construction of a map φ : Sq −→ Mn

Steps (i) and (ii) are quite elementary. The crux of the matter lies in step (iii):

(iii) We will use an effective version of the proof of Hurewicz theorem in order
to construct homotopies that connect spheres of dimension less than q with
a point.

It follows from (i) and (ii) that from the technical point of view our main
objective is to be able to construct an “optimal”, in a sense of (ii), homotopy
for contractible spheres. In order to achieve our goal we will prove results that
immediately imply effective version(s) of the Hurewicz theorem. These theorems
are the second major goal of the present paper (along with the upper bounds for
the length of a shortest contractible geodesic).

The Hurewicz theorem asserts that if Mn is (q − 1)-connected then every
q-dimensional homology class is representable by a map of Sq −→ Mn (the sur-
jectivity of the Hurewicz homomorphism), and that every q-dimensional sphere
in Mn that can be filled by a chain is, in fact, contractible (the injectivity of the
Hurewicz homomorphism). This leads to the following natural questions: Let c be
a q-dimensional chain in Mn representing a non-trivial homology class. What is the



208 Alexander Nabutovsky, Regina Rotman

“size” of the “smallest” sphere Sq −→ Mn realizing this class? In particular, what
is the complexity of the “smallest” sphere realizing a non-trivial q-dimensional ho-
mology class of Mn providing that Hq(Mn) �= 0? We can regard an answer to these
questions as a quantitative version of the surjectivity part of the Hurewicz theorem.
On the other hand given the “size” of a q-sphere in Mn that can be filled by a chain
what is the complexity of the “simplest” homotopy contracting the sphere? (An
answer to this question can be regarded as a quantitative version of the injectivity
of the Hurewicz homomorphism.) In the PL-case it is natural to deal only with sim-
plicial chains and maps and to measure the complexity (or the “size”) essentially
as the number of simplices they are made of. In the differential-geometric situation
we have more possibilities: The most natural measure of complexity of a sphere
f : Sq −→ Mn or of a homotopy g is the Lipschitz constant Lip f (or Lip g). How-
ever, other measures of complexity, such as the width of homotopies can also be
of interest. The width of a homotopy is, by definition, the largest distance travelled
by a point during the homotopy ([SW]). It is of interest to us because it arises in
the proofs of Theorems 0.1, 0.2.

These questions pertain to the field of Quantitative Homotopy Topology. This
study of quantitative measures of complexity of maps between Riemannian mani-
folds the existence of which is predicted by homotopy theory was suggested by
M. Gromov (cf. [G 1], [G 3], [G 4]).

The upper bounds that provide the quantitative versions of the Hurewicz theo-
rem use the following information about the geometry of the ambient manifold Mn .
First, we need the number of simplices of Mn in the PL-situation (when Mn is
assumed to be triangulated). In the Riemannian situation we need either:

1. A positive lower bound for the injectivity radius of Mn and an upper bound for
the volume of Mn , or

2. A lower bound for the sectional curvature, a positive lower bound for the
volume and an upper bound for the diameter.

But that is not enough. We need to know a value of c(Mn) such that any closed
curve γ on Mn can be contracted to a point via curves of length ≤ c(Mn)× the
length of γ . Can one get the desired upper bounds without using c(Mn)? The
answer is both “yes” and “no”. “Yes”, because there exists a (non-computable)
upper bound for c(Mn) in terms of the other available geometric data about Mn .
(The existence of such c(Mn) in the PL-situation immediately follows from the
finiteness of the number of triangulations with ≤ N simplices. In the Riemannian
situation the existence of c(Mn) follows from an easy compactness argument.)
“No”, because even if q = 2 (and n ≥ 5) then there is no computable function of
the number of simplices of Mn that can be used as an upper bound for the minimal
size of a non-contractible q-sphere. (Here we are talking about the PL-situation.
In the Riemannian situation there is no computable function of |K |, v, D that can
be used as an upper bound for the minimal size of a non-contractible q-sphere,
where |K | majorizes the absolute value of the sectional curvature, D majorizes the
diameter, and v > 0 minorizes the volume of Mn .)

Here are the statements of our results. By a simplicial homotopy contracting
a closed simplicial curve γ in a triangulated manifold we will mean below a finite
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sequence of closed simplicial curves in Mn such that the first curve is γ , the last
curve is a point, and any two consecutive curves can be homotoped to each other
through exactly one two-dimensional simplex of Mn .

Theorem 0.3. Let Mn be a closed connected PL-manifold triangulated with ≤ N
simplices. Let q = min{i|πi(Mn) �= 0}. Assume that a number α satisfies the
following condition: For any L and any closed simplicial curve γ in Mn made of
at most L simplices there exists a simplicial homotopy contracting γ to a point
passing through simplicial curves made of at most αL simplices. Then there exists
a constant c(n) > 0 depending only on n such that

(a) There exists a triangulation of Sq with less than exp((αN)c(n)) simplices and
a non-contractible simplicial map of this triangulated sphere into Mn

(b) Any simplicial q-cycle such that the sum of absolute values of its coefficients
does not exceed A can be realized by a simplicial map of a q-sphere triangu-
lated with less than A exp((αN)c(n)) simplices

(c) Any contractible simplicial map of a triangulated k-dimensional sphere Sk

into Mn such that k ≤ q and Sk is triangulated into ≤ A simplices can be
extended to a simplicial map of the disc Dk+1 triangulated into not more than
A exp((αN)c(n)) simplices.

Theorem 0.4. Let Mn be a closed connected Riemannian manifold such that its
first (q − 1) homotopy groups vanish, but its q-th homology group is non-trivial.
Assume that for some constant α any closed curve γ on M can be contracted
to a point via closed curves of length ≤ α× length(γ). Assume that either the
injectivity radius inj(Mn) ≥ π or the sectional curvature of Mn ≥ −1. In the
first case let x ≥ 2 denote an upper bound for vol(Mn), and in the second case
let x ≥ 2 be an upper bound for exp((n − 1) diam(Mn))/ min{vol(Mn), 1}. Then
there exists a constant c(n) depending only on n such that

(a) There exists a non-contractible map of Sq−1 into the space of closed curves
�Mn on Mn such that its image contains only curves of length ≤
exp((αx)c(n));

(b) Any map f : Sk −→ Mn can be contracted to a point by a homotopy of width
not exceeding exp((αx)c(n)), providing that k ≤ q − 1 or k = q and f is
contractible, (recall, that the width of the homotopy is the maximal distance
travelled by a point of the contracted sphere in Mn during the homotopy.)

Theorem 0.5. For any n > 4 there is NO computable function fn(N) with the
following property: For any simply connected n-dimensional PL-manifold Mn

triangulated with ≤ N simplices and satisfying H2(Mn) �= 0 there exists a trian-
gulation of S2 with ≤ fn(N) simplices and a non-contractible simplicial map of
the resulting simplicial complex into Mn.

Remarks.

1. As it was mentioned before the existence of an upper bound fn(N) for the num-
ber of simplices in the triangulation of S2 required to realize a non-contractible
2-sphere in Mn is obvious. It follows from the finiteness of the number of
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n-dimensional simplicial complexes with ≤ N simplices. The theorem above
asserts that such an upper bound cannot be a computable function of N.

2. An obvious analog of the theorem holds in the Riemannian geometric situation:
There is no computable function of |K |, inj, diam, vol, n, q that enables one
to majorize the “size” of the “smallest” non-contractible 2-sphere in a closed
simply-connected Riemannian manifold.

3. In fact, one can specify a certain PL-homeomorphism type of the manifold Mn

for any n ≥ 5 in this theorem.
4. It is not very difficult to prove the existence of (some) upper bounds in Theo-

rems 0.1, 0.2 using an argument based on the precompactness of subsets of
the space of isometry classes of all n-dimensional Riemannian manifolds of
curvature bounded from below and diameter bounded from above (or of the
volume bounded from above and the injectivity radius bounded from below).
The theorem above helps one to appreciate the constructive (explicit) nature of
our upper bounds for the length of a shortest closed geodesic.

Our paper is organized as follows. The next section contains a very detailed de-
scription of the scheme of the proof of our main results (Theorems 0.1–0.4).
There we also take care of some technical matters that can be easily resolved.
In Sect. 2 we introduce the notion of a triangulation tower. Our need for this
notion can be very informally explained as follows: Let Mn be a Riemannian
manifold with injectivity radius ≥ 1 or contractibility radius ≥ 1. Consider the
nerve of a covering of Mn by metric balls of radius 1

1000 . This nerve need not be
homotopy equivalent to Mn because it can have small size cycles made of several
simplices, but its large scale topology will be the same as the topology of Mn .
Consider now the nerve of the covering of Mn by balls of radius 1

10 with the
same centres as the balls of the first covering. The first nerve is embedded into
the second nerve and all “small” cycles of the first nerve become trivial in the
second nerve. However the large scale topology survives. In fact, we need sev-
eral “nested” nerves of coverings of Mn by concentric balls of larger and larger
(but still very small!) radii for our purposes. In Sects. 3–5 we explain how to
contract spheres using homotopies of bounded width. In Sect. 6 we construct a ho-
motopy non-trivial sphere “made” of free loops of controlled length and as the
result establish the upper bounds for the length of a shortest closed geodesic. In
Sect. 7 we discuss Theorems 0.3–0.5. In fact, Theorems 0.3, 0.4 follow almost
immediately from the results of Sects. 3–6, so the real content of Sect. 7 is the
proof of Theorem 0.5. We deduce it from the (well-known) non-existence of an
algorithm that decides whether or not a finite presentation of a group is a finite
presentation of the trivial group even if it is a priori known that the given finite
presentation is a finite presentation of a group G such that its Eilenberg-Maclane
space K(G, 1) is homotopy equivalent to a finite CW-complex of dimension at
most two.

Finally, note our method yields somewhat more than results asserted by Theo-
rems 0.1, 0.2, 0.4. Namely, one can obtain an explicit upper bound for the length
of a shortest geodesic only in terms of the following geometric data about Mn :
1) A function N(ε) such that for any ε > 0 there exists an ε-net in Mn made
of not more than N(ε) points; 2) A number R > 0 and continuous increas-
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ing functions β, γ : [0, R] −→ [0,∞], β(0) = γ(0) = 0, such that any met-
ric ball of radius x ≤ R in Mn can be contracted to a point inside the con-
centric ball of radius β(x) by a homotopy such that all points travel distances
not exceeding γ(x). The result of Theorem 0.4 also can be similarly general-
ized.

1. The scheme of proof of main results

1.1. More details on steps (i)–(iii) explained in the introduction. Definitions
of the width of a homotopy and short-tentacled spheres. Let us discuss steps
(i)–(iii) of the proof of main results outlined in the previous section in some details.

(i) How to obtain a non-trivial sphere φ : Sq −→ Mn? Let � : Sq −→ Mn

represent any non-trivial element of πq(Mn). We are going to try to extend �

to Dq+1 that fills Sq . As an obstruction we will obtain a different non-contractible
sphere on Mn .

To demonstrate how it works we will use as an example the case of q = 2.
That is, we want to extend � : S2 −→ Mn to D3. We will use induction on skeleta
of D3, (see Fig. 3).

Fig. 3. Extending a map � from a sphere to a disc
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We will begin by triangulating S2, so that the simplices are very small. We
will also triangulate D3 as follows: Add a new vertex, p̃, at the center of D3 and
triangulate D3 as the cone over the triangulation of S2 with vertex at p̃.

Since � : S2 −→ Mn is homotopically non-trivial, we cannot hope to extend
it to a disc, thus as an obstruction to the extension we are going to obtain another
sphere, which will be in some ways better than the original sphere.

1. Extending a map to 0-skeleton:
Let �̃ take p̃ to p, where p is any point on a manifold.

2. Extending the map to 1-skeleton:
We extend the map � to 1-skeleton by letting �̃ take edges of the form [ p̃, ṽ] to
geodesic segments joining p with �(ṽ) = v. Let us denote those segments by
[p, v].

3. Extending the map to 2-skeleton:
We extend the map � to 2-skeleton by letting �̃ take simplices of the form
[ p̃, ṽ1, ṽ2] to the surfaces generated by special homotopies explained below
contracting curves of the form [p, v1] ∪ [v1, v2] ∪ [p, v2] to the point.

Fig. 4. A sphere of a special shape

Figure 4 illustrates what the image of the boundary of every 3-simplex in the
triangulation of D3 will look like: It will be made of four surfaces (“tentacles”)
formed by homotopies contracting boundaries of four 2-dimensional simplices to
a point in Mn . Special properties of the used homotopies will make these tentacles
short in the sense that will be made clear later, and so spheres that have this
special shape will be called short-tentacled spheres. At least one of those 2-spheres
should be non-trivial, otherwise we could extend � to 3-skeleton, which would be
a contradiction.



Closed geodesic and quantitative Hurewicz theorem 213

In general, for an arbitrary q we will perform a similar procedure, as a result of
which we will obtain a short-tentacled sphere of dimension q, and in parallel to the
case q = 2, the size of that sphere will depend on the properties of the homotopies
that connect spheres of dimension q − 1 and a point.

Definition 1.1 (Width of Homotopy, (see [SW])). Let Fτ (t) be a homotopy that
connects two closed curves parametrized by t ∈ [0, 1] on a Riemannian mani-
fold M. We say that WF is the width of the homotopy Fτ (t) if WF = maxt∈[0,1]
length of the curve Fτ (t). That is WF is the maximal length of the trajectory de-
scribed by a point of one of the original closed curves during the homotopy. More
generally if X, Y are metric spaces and F : X × [0, 1] −→ Y is a homotopy then
WF is defined as supx∈X length of F(x, ∗).

Definition 1.2 (Short-tentacled sphere). We will say thatφ : Sk = ∂σk+1 −→ Mn

is a short-tentacled sphere of dimension k if one dimensional simplices of ∂σk+1

are mapped to minimal geodesics between the images of vertices, and every simplex
of dimension at least two is mapped by a special homotopy described below in the
paper contracting its boundary.

Observe that the restriction of φ to the boundary of every simplex of any dimen-
sion > 1 is also a short-tentacled sphere. The only property of special homotopies
in this definition that is important to us is that their widths are bounded in terms
of the geometric parameters of the manifold, such as the upper bound on volume
in Case A and both lower bound on volume and the upper bound on diameter in
Case B. We will refer to such special homotopies as “thin”.

(ii) How to decompose a short-tentacled sphere into spheres of one dimension
lower, so that each point on that sphere describes a short trajectory? In other
words, given the short-tentacled sphere φ : Sq −→ Mn constructed in (i) we would
like to obtain a map F : [0, 1] −→ Map(Sq−1, Mn) with the properties discussed
above.

This step can be illustrated using the following series of pictures, (see Fig. 16
and Fig. 17).

For instance, consider a short-tentacled sphere φ : S3 = ∂σ4 −→ Mn of dimen-
sion 3, where σ4 = [w1, w2, w3, w4, w5]. Then ∂σ4 = ∑5

j=1(−1) j−1[w1, ..., ŵ j ,

..., w5]. Each face [w1, ..., ŵ j , ..., w5] is mapped to the surface generated by con-
tracting its boundary to a point. Let us begin with one of the faces σ3

1 = [w1, ..., w4].
This is a 3-simplex and we can “decompose” it into 2-spheres in the obvious way.
We know that it is generated by contracting its boundary to a point. Let us call this
homotopy H2

τ . H2
0 (S2) = ∂σ3

1 ; H2
1 (S2) = v0. Define H̃2

τ = H2
1−τ . For each fixed

τ H̃τ(S2) is a 2-sphere. Note that H̃2
1 (S2) = ∂σ3

1 and the width of H̃2
τ is the same

as the one of H2
τ , (see Fig. 5).

Next, consider other faces of dimension 3, namely σ3
2 , σ3

3 , σ3
4 , σ3

5 and all faces
of dimension 2, σ2

i = σ3
i ∩ σ3

1 . For each ∂σ3
i there exists a homotopy of “small”

width that connects it with a point p denoted as h2,i
τ .



214 Alexander Nabutovsky, Regina Rotman

Fig. 5. Decomposing [w1, w2, w3, w4] into 2-spheres

Then there is a homotopy that joins ∂σ3
1 and the following sphere S2

τ∗ : instead
of σ2

i consider the following disc Ds2
i that has the same boundary as σ2

i and that
is obtained by taking the annulus generated by h2,i

τ |τ∈[0,τ∗](∂σ2
i ) together with the

disc h2,i
τ∗ (σ2

i ). Ds2
i ’s can be naturally glued by the boundary. S2

τ∗ is the result of this
glueing, (see Fig. 6).

Fig. 6. Ds2
2, D̃s

2
2

Now, consider a disc D̃s
2
i that has the same boundary as before and is obtained

by glueing the annulus h2,i
τ |τ∈[0,1−τ̃](∂σ2

i ) and a disc that is obtained as h2,i
τ̃

(∂σ3
i −

σ2
i ), τ̃ ∈ [0, 1], (see Fig. 6).

Now note that combining the above three homotopies parametrized corre-
spondingly by τ, τ∗, τ̃ we obain a homotopy between a point p and a 2-sphere
(∂σ3

2 − σ2
2 ) ∪ (∂σ3

3 − σ2
3 ) ∪ (∂σ3

4 − σ2
4 ) ∪ (∂σ3

5 − σ2
5 ). This 2-sphere can be con-

tracted to the vertex w5 by “cancelling” simplices σ2
i j = ∂σ3

i ∩∂σ3
j , i, j ∈ 2, 3, 4, 5,

each of which occurs twice with the opposite orientation.

(iii) How to construct thin homotopies? This question is the main point of
the present paper. As it was stated before, we will consider two different cases:
The first case is that of a manifold of curvature and of volume bounded from
above, and the second case is that of a manifold Mn ∈ Md−1,v. In the first case,
Klingenberg’s lemma asserts that the injectivity radius of a compact Rieman-
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nian manifold with sectional curvature bounded above is greater than or equal to
min{l(Mn)/2, π/

√
K }, where l(Mn) is the length of a shortest closed geodesic

on a manifold Mn . It allows us to assume right away that the injectivity radius is
bounded from below by π, (see [GoHL]), (Otherwise, l(Mn) ≤ 2π and we are
done.)

In the second case, the work of Grove and Petersen gives us the lower bound
for the radius of contractibility, (see [GrP]).

The knowledge of either radius of injectivity or radius of contractibility enables
us to construct a triangulation tower of a manifold, a notion that generalizes that
of a regular triangulation of a manifold, but is somewhat weaker. The reason we
use this notion is that geometrical data available to us in the second case is not
sufficient to estimate the number of simplices in a triangulation of Mn . However,
the nerve of a covering of Mn by metric balls of a controllable radius with centers
at a minimal controllably dense net captures a significant part of topology of Mn

([GP]). It turns out that for our goals it is convenient to use a tower of nerves of
coverings with the same centers but of larger and larger radii which however are
less than the radius of contractibility. The numbers of simplices in these nerves
can be estimated and their collection (called triangulation tower) turns out to be
almost as adequate for us as the usual triangulation. To clarify our ideas first we
will assume that Mn is endowed with a usual triangulation.

1.2. Construction of homotopies of controlled width: simplicial case. Assume
that Mn is endowed with a triangulation into small simplices, and we know the
upper bound for the number of simplices and (small) upper and (positive) lower
bounds for the lengths of 1-dimensional simplices of the triangulation.

As it was stated before, from the technical point of view the main goal is to
construct an optimal homotopy, i.e. a homotopy of controlled width, for a sphere
that is known to be contractible.

The procedure that we develop in order to construct a homotopy that connects
a sphere with a point can be viewed as an effectivisation of Hurewicz Theorem.

1.2.1. The proof of Hurewicz Theorem uses two basic facts:

(a) Any q-connected cellular complex is homotopically equivalent to the space
with one 0-dimensional cell and no cells of dimension i ≤ q.

(b) ith homotopy group is abelian for i > 1.

We will need quantitative analogues of these statements for our proof.
We will use an induction procedure in order to contract simplicial spheres.

1.2.2. The first step in this induction procedure is to learn how to contract 1-
dimensional spheres, so that the width of the homotopy h1

τ is bounded in terms of
the parameters of a manifold, and so that the surface generated by this homotopy
is “built” of “controlable” number of simplices. That procedure was essentially
developed in [R]. Here we can use the assumption that every closed curve in Mn up
to a sufficiently large length can be contracted to a point by a homotopy that does
not increase the length of the curve (otherwise, we will immediately get a short
closed geodesic), but we do not have a control over the width of this homotopy.
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1.2.3. Now assume that we know how to construct a thin homotopy that connects
a simplicial sphere of dimension ≤ k to a point. (Here we assume that 1 ≤ k < q
= min{i|πi(M) �= 0}.) Assume also that this thin homotopy is simplicial and the
surface it generates is composed of a controllable number of simplices. Let us
consider a contractible simplicial sphere sk+1 of dimension (k + 1) that lies in the
(k+1)-skeleton of Mn , and assume that we know an upper bound for the number of
simplices in this simplicial sphere. We can also view this sphere as a (k + 1)-chain
Ck+1 = ∑nk+1

i=1 ai
k+1σ

k+1
i .

We know that the above chain bounds a chain Ck+2.
The two key ideas are the following:

1.2.3.1. Since we know the number of simplices that compose the original chain
it is possible to estimate the number of simplices of which an optimal Ck+2 is
composed. Indeed, consider the boundary operator as a linear operator from the
linear space of (k + 2)-dimensional chains with real coefficients to the space of
(k+1)-dimensional chains. In order to represent the considered (k+1)-dimensional
chain as the boundary of a (k + 2)-dimensional chain with integer coefficients, we
need to find an integer solution of the corresponding linear system. We know that an
integer solution of this system exists. All entries of the matrix of the system and the
right hand side are integer, and we know an upper bound for their absolute values.
Therefore there exists a “small” integer solution, i.e. an integer solution where
absolute values of all entries can be estimated. The last assertion is an exercise in
linear algebra, see Sect. 4 below for the details.

1.2.3.2. One can use this optimal Ck+2 in order to construct the required homotopy.
Informally and somewhat imprecisely the idea can be explained as follows: Contract
the k-skeleton of Mn to a point. Then the (k+1)-skeleton will become a wedge of k-
spheres. The (k+2) chain becomes a collection of discs bounded by these k-spheres.
Now we can start from the boundary (k + 1)-sphere sk+1 and remove one by one
the (k +2)-dimensional cells forming the (k + 2)-chain by successive homotopies.
At the end we will find a homotopy of the initial sphere that bounds Cn+2 into
a “sum” of “basic” (k + 1)-dimensional spheres, each of which corresponds to
a (k + 1)-dimensional simplex of Mn . However, each of these spheres can be, in
principle, encountered many times with different positive and negative coefficients,
and the sum is equal to zero when regarded as a (k + 1)-dimensional chain. So,
for each “basic” (k + 1)-dimensional sphere S we can permute spheres in this sum
combining all occurrences of S with different coefficients together, and then cancel
all terms corresponding to S by a homotopy.

More formal explanation of (1.2.3.2): Having now constructed a chain Ck+2 that
has as its boundary Ck+1 we will proceed as follows:

1.2.3.2.1. We want to use the chain Ck+2, in order to construct a homotopy hk+1
τ

that connects the (k + 1)-dimensional sphere sk+1 with a point. Of course, we
know how to contract each simplex σk+1

i in that chain with a thin homotopy. The
width of hk+1

τ will depend on the number of simplices in the chain Ck+2, taken
with their multiplicities, the width of contracting a single simplex and on the width
of contracting spheres of lower dimension.
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We will begin with the following:

1.2.3.2.2. We have already noted that a (q−1)-connected manifold is homotopically
equivalent to a CW-complex with one 0-dimensional cell and no cells of dimension
1 ≤ i ≤ (q − 1). Assuming that our manifold has been triangulated, q-skeleton
of this CW-complex will consist of a wedge of spheres of dimension q with one
sphere for each simplex of Mn . We will denote this complex CW(q−1). Let us also
consider complexes CWi for 0 ≤ i ≤ q − 1, which are obtained from Mn by
identifying the i-skeleton of Mn to a point.

We are going to describe maps g̃i : CWi −→ Mn . First of all let us point
out that the only 0-dimensional cell of CWi , ṽ0 will always be mapped to v0,
a preselected vertex of Mn .

Now let us consider 1-skeleton of CW0. It will be a wedge of circles: one circle
for each edge of Mn . Consider a circle that corresponds to the edge ei j that connects
vertices vi and v j . For each vertex vi fix a shortest path Pi that connects this vertex
with v0 and lies in 1-skeleton of Mn . The circle will be mapped to Pi ∪ ei j ∪ −Pj ,
where Pi, Pj are paths that lie in 1-skeleton of Mn and that connect vertices vi, v j
to v0. This map can be extended to the whole of CW0. For instance, consider
the 2-skeleton of CW0. Each 2-cell of CW0 is the image of a 2-simplex of Mn .
Without loss of generality consider a 2-cell that is the image of σ2 = [v1, v2, v3]
and view it as a union of the “inside” disc and an “outside” annulus glued along
their common boundary. Map the disc onto the simplex. The outer boundary of the
outside annulus is mapped using the 3 maps of the three closed 1-cells of CW0.
The annulus is mapped using a homotopy between the maps of its inner and outer
boundaries.

Next, consider the 2-skeleton of CW1. This is a wedge of 2-spheres corres-
ponding to each 2-simplex σ2 of Mn . (Each 2-sphere in the wedge is the image
of a 2-simplex of Mn .) Then we will let the image of any such 2-sphere be the
simplex, (that is its inverse image) together with the disc generated by a previously
fixed homotopy that connects the boundary of this simplex with v0. It is essential
in this case that all the homotopies that contract (simplicial) 1-spheres with v0
have been fixed and if two simplices σ2

1 , σ2
2 share a face then those homotopies

(for the boundaries of σ2
1 , σ2

2 ) will agree, when restricted to this face. This scheme
is illustrated on Fig. 7. Here SF2

i for i = 1, 2, 3 denotes a surface generated by
a homotopy that contracts the closed curve that consists of the edge ei in the
boundary of σ2 together with two curves that join corresponding verteces with v0
to a point.

To extend this map to the 3-skeleton of CW1 we consider a 3-cell, which is the
image of a 3-simplex σ3 = [v1, v2, v3, v4]. As in the previous case, we can view
this cell as the union of the inside disc and the outside annulus. We will map the disc
onto the simplex σ3; the outer boundary of the outside annulus is mapped using
the 4 maps of cells of CW1. The annulus is mapped using a homotopy between the
maps of its inner and outer boundary. This homotopy is just the extension of the
homotopies h̃1

τ contracting boundaries of 1-dimensional cells σ̃1 in the boundary
of σ̃2. Similarly, to extend this map to the k-skeleton consider a k-cell, the image of
k-simplex σk = [v1, ..., vk+1]. Subdivide this cell into a disc and the annulus, map
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Fig. 7. The map from S2 to the manifold

the disc onto the k-simplex σk. Then the outer boundary of the annulus is mapped
using the maps of cells of CW1, and the annulus is mapped using a homotopy
between the maps of its inner and outer boundary.

Similarly, we can deal with the rest of g̃′
is. That is, consider a complex CWi−1.

Its i-skeleton is a wedge of i-spheres: a sphere for each i-simplex of Mn . Interpret
this sphere as the boundary of an (i +1)-dimensional simplex and denote one of the
faces σ̃ i . Then we will map σ̃ i to the simplex σ i to which this sphere corresponds.
Next consider the boundary of σ i . For each of the faces of the boundary there
is already a fixed homotopy of its boundary to a point. (Here we are using the
induction assumption.) This homotopy together with the face forms a sphere.
Denote the subset generated by a homotopy that connects this sphere with a point
by SFi

j . Now our original sphere S̃i will be mapped to the sphere formed by

SFi
j , j = 1, 2, ..., i + 1 together with σ i . This map can be extended to skeleta of

CWi1 of higher dimensions as in the previous cases.
The above considerations enable one to “view” Mn as a singular complex

with one cell of dimension 0, and no cells of dimension 1 ≤ i ≤ (q − 1). To
illustrate this observe that if q = 1 we can view a 1-simplex ei j as a closed 1-cell
cli j = Pi ∪ ei j ∪ −Pj .

1.2.3.2.3. Now, in order to contract a sphere sk+1 , we can first map it to CWk, note
that there it is homologous to zero, thus bounds a disc, by Hurewicz theorem; use the
optimal chain Ck+2 that it bounds to construct an explicit homotopy, then transfer
everything back to the manifold using g̃k and note that the width will depend on
the number of simplices in the chain Ck+2 (taken with their multiplicities) and
the width of previous homotopies. However, in order to make the width of the
homotopy of the sphere in Mn independent of the number of simplices in sk+1 we
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Fig. 8. The “transformation” of a 1-simplex

first represent sk+1 as a sum of simplicial spheres with a controllable number of
simplices and contract them using CWk and cobounding chains as described above.
(The number of these spheres is equal to the number of (k + 1)-simplices of sk+1.
Here we use a homotopy of controlled width contracting the k-skeleton of sk+1.
See Sect. 5 for more details.)

1.3. Construction of homotopies of controlled width: the general case. How-
ever, the above does not explain what one can do if the radius of convexity is not
known and there is no way to construct a triangulation of Mn where the number of
simplices can be estimated in terms of the parameters of Mn .

Suppose Mn ∈Md−1,v. We will use the result of Grove and Petersen that allows
us to estimate the radius of contractibility r on such a manifold and (important!) the
width of a homotopy contracting a metric ball of radius x < r to a point inside the
concentric metric ball of radius Cx, where C = C(n, v, d) also can be estimated.
As an example, we will describe how to construct a thin homotopy for a sphere of
dimension 2 that connects it with a constant map.

We will begin by covering Mn by balls of radius much smaller than the radius
of contractibility. The number of such balls can be estimated. Next, we consider
the (n + 1)-skeleton of the nerve of this cover and call it K1. Increase radii of
balls by some factor explained later, keeping their centers fixed and consider the
(n + 1)-skeleton of the nerveK2 of that cover. There is a natural embedding ofK1
to K2. Now, we increase the radii of balls by the same factor one more time and
consider K3 of the nerve of this cover. Again, there will be a natural embedding
of K2 to K3. We choose the radii of the balls of the cover so that all small spheres
in Ki are contractible in Ki+1. Since Mn is (q − 1)-connected all spheres up to
dimension (q − 1) in Ki are contractible in Ki+1. (Here we use the same trick as
throughout the paper: We can map the sphere in Ki to Mn , contract it in Mn , then
map it back to Ki and obtain there a new sphere that is contractible in Ki . This
new sphere will be different from the original one, however the distance between
them will be small enough for them to be homotopic in Ki+1). However, we need
a control over parameters of this homotopy and therefore prefer to use several
nerves. Note also, that we have maps Mn −→ Ki and Ki −→ Mn that enable
us to replace the problem of contracting spheres in Mn by its simplicial analog.
The first of these maps is the composition of the map to the nerve K1, a simplicial
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approximation, and the inclusion K1 −→ Ki . The second map can be constructed
by an induction procedure explained below. The key idea of this procedure is that
if we already have a map of the boundary of a simplex into a small ball in Mn , then
it can be extended to a “nice” map of the simplex into a somewhat larger but still
small ball in Mn using the local contractibility properties of Mn as in [GrP], [P2].

First, let us explain how to contract a simplicial 2-sphere that is in K1. Denote
this sphere by S̃2 and denote the map of Ki to Mn by gi and the map going in the
other direction by fi . The image S2 of S̃2 in Mn is contractible in Mn , assuming Mn

is (q −1)-connected and q ≥ 3. Therefore, the image S̄2 of S2 is contractible inK1.
S̄2 does not coincide with S̃2, but g1 and f1 can be selected in such a way that

they don’t lie far from each other. Thus, they are homotopic in K2. So, we see that
a sphere S̃2 ⊂ K1 is contractible in K2.

However, in order to get a good control over the width of the contracting
homotopy (indepent of the number of simplices in S̃2) we will contract S̃2 in K4
as follows: First, fix paths connecting all vertices of S̃2 with the base point. Every
1-simplex of S̃2 becomes a simplicial 1-sphere passing through the base point after
combining it with the paths connecting its endpoints with the base point. These
simplicial 1-spheres can be contracted in K2 by a homotopy of controlled width.
Now consider S̃2 as a simplicial sphere inK2. It is homotopic to the sum of 2-spheres
obtained as follows: For any 2-simplex σ of S̃2 consider a simplicial sphere obtained
from σ by adding 3 simplicial discs formed by contracting 3 simplicial 1-spheres
obtained from edges of σ as above. (The homotopy between S̃2 and the sum of
these spheres will insert pairs of oppositely oriented discs obtained in this way.) So,
it is sufficient to learn how to contract each of these spheres in a satisfactory way
in order to learn to contract S̃2. Note that the number of simplices in any of these
spheres does not depend on the number of simplices in S̃2. Let S̃2

0 be one of these
spheres. It is contractible in K3. (One can use the argument used to show that S̃2

is contractible in K2). Therefore it bounds a chain in K3 and we can estimate the
number of simplices in the optimal chain C that it bounds.

Consider the CW-complex, obtained fromK3 by identifying its 1-skeleton with
a point. Let us denote it by Comp3,1. This CW-complex will have one vertex, no
1-dimensional cells and its 2-dimensional skeleton will be a wedge of 2-spheres
with one sphere corresponding to each 2-simplex of K3. There is a quotient map
fromK3 to Comp3,1 and one can construct a map from Comp3,1 to K4 that will be
denoted by ˜̃g3,1 and will be described later on.

The next step is to consider the image ˜̃S0
2

of S̃0
2

in Comp3,1. ˜̃S0
2

bounds
a chain, so it is contractible, and, due to the nature of Comp3,1 one can construct the
contracting homotopy that uses the underlying space of this chain. Now, consider

the image of ˜̃S0
2

in K4. The map from Comp3,1 to K4 is constructed so that
each sphere that is the image of a 2-simplex in K3 is mapped back to this simplex
together with the disc that is generated by the homotopy that connects the boundary
of this simplex (regarded as the wedge of three 1-spheres as explained above)

with the base point. The image of ˜̃S0
2

in K4 will be obviously null homotopic by

a homotopy with the desired properties. This image is not S̃0
2
, but we can construct



Closed geodesic and quantitative Hurewicz theorem 221

a homotopy between this image and S̃2
0. Roughly speaking, the image of ˜̃S0

2
is S̃0

2

plus pairs of oppositely oriented discs contracting simplicial 1-spheres obtained

from 1-simplices of S̃2
0. The homotopy between ˜̃S0

2
and S̃2

0 will cancel these pairs
of discs.

1.4. Plan of the remaining part of the paper. In Sect. 2 we introduce the trian-
gulation towers mentioned in 1.3. Section 3 starts from the discussion of complexes
Compi,k obtained from Ki by collapsing its k-skeleton to a point and their maps
to/from Mn (see the discussion in 1.2.3.2.2 and 1.3 above). Then we state Propo-
sition 3.2 asserting that if all closed curves in a (q − 1)-dimensional Riemannian
manifold Mn of length less than a certain explicit quantity are contractible without
length increase, then any contractible simplicial sphere of dimension k ≤ q can be
contracted by a homotopy of controlled width. Then we take care of the case, k = 1,
establishing the basis for an inductive proof of Proposition 3.2. Section 4 contains
a detailed description of the result mentioned in 1.2.3.1: If a m-dimensional chain
in Mn bounds a (m +1)-dimensional chain with integer coefficients, then it bounds
an (m+1)-dimensionalchain with integer coefficients such that the sum of absolute
values of these coefficients does not exceed a certain explicit quantity depending
on n, the numbers of m-dimensional and (m + 1)-dimensional simplices in Mn

and the sum of the absolute values of the coefficients of the given m-dimensional
chain.

Section 5 starts from the proof of Proposition 3.2 along the lines of the dis-
cussion in 1.2.3.2 (with the modifications outlined in 1.3 that take care of the fact
that Mn is not triangulated but only endowed with a triangulation tower). Then
we observe that the width of the contracting simplicial homotopy can be made
independent of the number of simplices in the sphere that is being contracted as
it was explained in 1.2.3.2.3 (Important Remark 5.2). This observation enables us
to complete the construction of maps Compi,k −→ Mn . (Here we would like to
observe that the proof of Proposition 3.2 in Sects. 3–5 has a recursive nature: In
order to contract a k-dimensional sphere by a homotopy of controlled width we
need maps Compi,l −→ Mn for all l < k, which can be defined only after we
will show how to contract all spheres of dimension ≤ l < k by such homotopies).
Then we extend Proposition 3.2 for k-dimensional spheres that are not necessarily
simplicial (Theorem 5.2). At the beginning of Sect. 6 we combine Theorem 5.2 and
the trick explained in Sect. 1.1(i) above to construct the required short-tentacled
spheres. Then we use the idea explained in 1.1(ii) to prove Theorems 0.1 and 0.2. At
the beginning of Sect. 7 we observe that our proofs of Theorem 5.2 and Theorems
0.1, 0.2 immediately imply Theorems 0.3, 0.4. Then we prove Theorem 0.5. The
proof of Theorem 0.5 does not use any material from Sects. 1–6 and can be read
independently of the rest of the paper.

2. Triangulation tower and the nerve of the covering

In this section we define the notion of a triangulation tower of a Riemannian
manifold Mn , outline a construction of such towers in the situation when the
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contractibility radius and a contractibility function of Mn are known and estimate
the number of simplices in the constructed triangulation tower.

We will consider two examples of such manifolds, namely, manifolds, with
injectivity radius bounded from below, and manifolds with curvature and volume
bounded from below, and diameter bounded from above.

Definition 2.1 (Triangulation tower). A triangulation tower of a (q − 1)-con-
nected manifold Mn is the data of a collection of simplicial complexes K1 ⊂
K2 ⊂ . . . ⊂ K2q and maps fi : Mn −→ Ki , gi : Ki −→ Mn that com-
mute with inclusions of Ki ’s and such that the composition of gi and fi is ho-
motopic to the identity map Mn −→ Mn. Moreover, let ki : Ki −→ Ki+1
be the inclusion homomorphism. We require that ki∗ j = fi+1∗ j ◦ gi∗ j for all
j ≤ n, where ki∗ j : π j(Ki) −→ π j(Ki+1); fi+1∗ j : π j(Mn) −→ π j(Ki+1) and
gi∗ j : π j(Ki) −→ π j(Mn) are induced homomorphisms.

Definition 2.2 (The contractibility function). The contractibility function � :
[0, R] −→ [0,∞) takes ε to �(ε) if a ball of radius ε is contractible inside the ball
of radius �(ε). Here, R is called the radius of contractibility.

For example, if the injrad(Mn) ≥ π then � : [0, π] −→ [0,∞) and �(ε) = ε.
If Mn ∈Md

−1,v then �(ε) = C(n, v, d) · ε, where one can take C = C(n, v, d) =
(exp(d)/ min{1, v})c(n), R = R(n, v, d) = (

min{1,v}
exp(d)

)c(n) for some constant c(n).
For brevity we will be using the letter C for C(n, v, d). (see [P], [GrP]).

We will now describe a specific triangulation tower of Mn required for our
purposes in two cases:

Case A. the case of Mn , when injrad(Mn) ≥ π;

Case B. the case of Mn ∈Md
−1,v.

First, we will construct a sequence of four-tuples {Ui,Ki , fi , gi}2q

i=1, where Ui

will be covers of Mn by balls of radii δi increasing with i, Ki will be the (n + 1)-
skeleton of the nerve of this cover, f1 will be a map from the manifold to K1
via a partition of unity subordinate to U1 plus subsequent pushing to the (n + 1)-
skeleton (a specific choice of how to push the image of the map to the nerve to
the (n + 1)-skeleton will not be important for us providing that the image of every
point remains in the closure of the original cell in the nerve), and fi will be the
composition of f1 and the inclusion of K1 into Ki . Finally, gi will be constructed
later on.

In our construction U1 will be a covering of the manifold by sufficiently small
balls of some radius 5δ, chosen appropriately and Ui+1 will be obtained from Ui

by keeping centers of balls the same as before and increasing their radii by a factor
of ξ1(n), in Case A and by a factor of ξ2(n) · C(n, v, d)n+1, in Case B, where δ

should be chosen so that the image of any j-simplex, where j ≤ n from Ki lies
within a ball of radius less than π in Case A and the lower bound R for radius of
contractibility in Case B. ξ1(n), ξ2(n) are constants that depend on the dimension
of a manifold only.
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Since we are not going to evaluate the dependence of upper bounds on n in this
paper, we will often denote different constants that depend only on n by the same
notation. So c(n) may have different meanings in different parts of the paper (and
the same is true for c1(n), c2(n), etc.).

Let us begin by constructing the first covering of Mn : U1. First, let’s construct
a δ-net on our manifold and estimate the number of elements in it, where in

Case A we let δ = π
c(n)

; and in

Case B δ = R
c1(n)·(Cc2(n)+1)

.

In order to estimate n0, the number of elements in the δ-net, we need to recall
certain facts.

Case A. In the first case we will use Croke’s inequality: vol(B(r, p)) ≥ const.nrn ,
where B(r, p) is any metric ball of radius r centered at p ∈ Mn and r < inj(Mn)/2.
We can take const.n = 2n−1

(n!)2 , see [Ch].

Using this inequality we can estimate n0, the number of elements in the mini-
mal δ-net, by estimating the maximal number of pairwise disjoint metric balls of
radius δ

2 .

The number of such balls will be less than or equal to c(n)vol(Mn)
δn .

Let us call this estimate N0.

Case B. In the second case the estimate will be obtained using to the volume
comparison theorem, i.e. we have

volMn

maxi volBδ/2(vi)
≤

∫ d
0 (sinh s)n−1ds

∫ δ/2
0 (sinh s)n−1ds

,

from where we obtain N0 = c(n)end

δn .

Next, let us cover Mn by {B5δ(vi)}n0
i=1.

We will now proceed to construct φ = g1 by means of the following lemma,
which is a particular case of the Main Lemma from [P].

Lemma 2.3. Let L = K1 be the nerve of the covering of Mn, constructed as above.
Consider the two cases:

Case A: the radius of injectivity of Mn, inj(Mn) is bounded from below by π.

Case B: Mn ∈Md
−1,v.

Let L0 denote the 0-skeleton of the nerve of the covering. Then the natural map
φ0 : L0 → Mn can be extended to a continuous map φ : L −→ Mn in such a way
that if σ̃k ⊂ L is a k-simplex then

Case A: φ(σ̃k) ⊂ B(φ(v), kδ) for any vertex v of σ̃k.

Case B: φ(σ̃k) ⊂ B(φ(v)), 3k δ(Ck+1−1)
C−1 ), (see [P]).
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Proof. Once again, the construction is by induction on skeleton of L.
1. 1-skeleton.

Let φ(ẽi j ) = ei j , where ei j is a minimizing geodesic that connects vi and v j .
2. 2-skeleton.

Consider σ̃2
i jk with the boundary ∂σ̃2

i jk = ẽi j ∪ ẽ jk ∪ ẽki . By the first step, we

know that φ(∂σ̃2
i jk) = ei j ∪ e jk ∪ eki , so φ(∂σ̃2

i jk) ⊂ B(v, 2δ), so, in Case A, it

can be contracted to v along the minimal geodesics that join v and φ(∂σ̃2
i jk), and

in Case B B(v, 2δ) is also contractible to v inside the ball of a larger radius, so
φ(∂σ̃2

i jk) can be contracted to v as well. Then we can map σ̃2
i jk using this homotopy.

The rest follows by induction:
Let σ̃k(ṽ0, ..., ṽk) be a k-simplex and assume φ(∂σ̃k) ⊂ B(v, kδ) in Case A, and

φ(∂σ̃k) ⊂ B(v, 2(3k−1+3k−2)
δ(Ck−1)

C−1 ) in Case B. Then φ(∂σ̃k) can be contracted to
a vertex v by either continuously connecting v with φ(∂σ̃k) with minimal geodesics
in Case A, or by connecting it with v with the trajectories of the points of φ(∂σ̃k)

under the contraction of the ball. We then extend φ by letting the image of σ̃k be
the set generated by the homotopy above. ��

The construction of (Ki , gi) is analogous to the above.
In order to pass from Ki to Ki+1 we increase the radii of the balls of the cover

of Mn used to constructKi by a factor which is chosen so that all “small” spheres
in Ki will be contractible in Ki+1, and, as the result, the composition of maps
of Ki to Mn and back will be n-homotopic to identity in Ki+1. (The meaning of
the expression “n-homotopic to identity” is that the restriction of this map to the
n-skeleton is homotopic to identity. The necessity to use this notion here is due to
the fact that Ki ’s were defined not as nerves of the coverings but as (n + 1)-di-
mensional skeleta of these nerves.) More specifically it is not difficult to see that
we can take the radii of the balls used to construct Ki+1 to be c(n)C(n, v, d)n+1

times as large as the radii of the balls used to constructKi , where C(n, v, d) is the
contractibility constant in Case B. In Case A, we can take radii of the balls used to
construct Ki+1 to be equal to the radius of the balls that are used to construct Ki

multiplied by n + 1.

Remark. To give a partial explanation why we need 2q nerves in the definition
of a triangulation tower note that although any simplicial sphere of dimension
i ≤ (q − 1) from K1 can be contracted in K2 we need a control over the number
of simplices in a contracting simplicial homotopy. In order to obtain this control
we devised an inductive procedure described below, when in order to contract
a simplicial sphere inK1 of dimension i effectively, we first learn how to effectively
contract simplicial spheres of all dimensions < i using nerves with larger and larger
indices. Using this procedure, one can effectively contract a sphere of dimension
i ≤ (q − 1) only in K2q (see below).

3. Thin homotopies of k-dimensional simplicial spheres

In the next three sections we will develop the procedure for a construction of
a homotopy of a simplicial k-dimensional sphere Sk to a point, such that the width
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of this homotopy will be bounded in terms of an upper bound on the volume of
a manifold Mn in Case A and in terms of a lower bound on the volume and an
upper bound on the diameter in Case B.

This procedure will be inductive on the dimension of the sphere.
First, we will give a proof of a version of this statement using the notion of

triangulation tower and useful for our purposes.

Definition 3.1 (Singular cell subdivision sequence). Given a triangulation tower
K1 ⊂K2 ⊂ ...⊂K2q , for each Ki we can construct a singular cell subdivison se-
quence, which will be a sequence of triplets {Compi,k, f̃ i,k, g̃i,k}i−1

k=0, where Compi,k

will beKi with its k-skeleton identified to a point, f̃ i,k = πi,k ◦ fi : Mn → Compi,k ,
where πi,k : Ki −→ Compi,k is a quotient map and the construction of g̃i,k :
Compi,k −→ Mn will be described below.

The construction of g̃i,k . We will now define g̃i,k : Compi,k −→ Mn by first
defining a map ˜̃gi,k : Compi,k −→ Ki−1+2k and then composing it with gi−1+2k .

In order to define ˜̃gi,k first we need to introduce simplicial homotopies h̃i,l,σ l that
contract certain simplicial spheres of dimension l ≤ k from Ki+2l−1−1 in Ki+2l−1.
These spheres are in a bijective correspondence with l-dimensional simplices σ l

of Ki .
Fix the shortest simplicial paths connecting each vertex of K1 with the base

point in K1. Let l = 1. Then we assign to a 1-dimensional simplex σ1 the
1-dimensional simplicial sphere obtained from σ1 by attaching the simplicial paths
connecting its endpoints with the base point. The resulting simplicial 1-sphere can
be contracted in Ki+1 by a simplicial homotopy described below in Lemma 3.3.
The homotopies h̃i,l,σ l for all l ≤ k will be constructed later in Lemma 5.1. The

construction of h̃i,l,σ l uses the construction of maps ˜̃g j,m : Comp j,m −→ K j+2m−1
for all j and for all m < l. So, we obtain an inductive “bootstrap” procedure
defining h̃i,k,σk and ˜̃gi,k that starts from Lemma 3.3 below. Now we are going to

describe how to construct ˜̃gi,k if h̃i,l,σ l , l ≤ k, are already constructed.
First, we are going to explain which simplicial sphere is going to be contracted

by h̃i,l,σ l . Connect all vertices of σ l with the base point by the fixed simplicial
paths. Then every 1-dimensional simplex σ1 ⊂ σ l becomes a 1-sphere S(σ1)

that is contracted to the base point by h̃i,1,σ1 . Now consider the boundary of a
2-simplex σ2 ⊂ σ l . Its boundary consists of three 1-simplices that can be turned
into 1-spheres by attaching the fixed paths connecting their endpoints with the base
point. As the result of contraction of these 1-spheres by h̃ we obtain three 2-discs.
If we attach these discs to σ2 and to each other along the common boundary we
will obtain a simplicial 2-sphere S(σ2). Now proceed by induction. Eventually we
consider l + 1 (l − 1)-dimensional simplices in the boundary of σ l . Each of them
can be turned into a simplicial sphere by adding simplicial discs obtained by con-
tracting simplicial spheres obtained from its boundary by h̃ (and gluing these discs
together along common parts of their boundary. For any two discs this common
part of their boundary is generated by the homotopy h̃ that contracts the simplicial
sphere obtained from the intersection of the (l − 1)-simplices corresponding to the
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discs.) As the result we will obtain a simplicial sphere denoted S(σ l ) and called
a special simplicial sphere corresponding to σ l . Observe that S(σ l ) will lie in
Ki+2l−1−1. (This follows from the definition of h̃i,l−1,σ l−1 that is supposed to con-
tract special simplicial spheres obtained from (l − 1)-dimensional simplices ofKi

inside Ki+2l−1−1.) The homotopy h̃i,l,σ l will be a homotopy that contracts S(σ l )

in Ki+2l−1 defined in the proof of Lemma 5.1 below.

Now let us explain the construction of ˜̃gi,l . We will begin by considering
˜̃gi,0 : Compi,0 −→ Ki , where Compi,0 is obtained from Ki by identifying its

0-skeleton with a point ṽ0. Let us construct ˜̃gi,0 by extending it from skeleton to
skeleton.

First, let us consider the 0-skeleton of Compi,0. It consists of a single vertex ˜̃v0.
Naturally, we will let the image of it be equal to ṽ0.

Next, the 1-skeleton of Compi,0 will consist of a wedge of 1-spheres, with

a sphere for each simplex of Ki . Consider a typical sphere ˜̃S1
that corresponds to

the edge ẽ that joins both vertices ṽ j and ṽl . Both of those vertices can be joined
with ṽ0 by minimal simplicial paths: P̃j and P̃l respectively. Then P̃j ∪ ẽ ∪ −P̃l is

a simplicial 1-sphere. We will let the image of ˜̃S1
under ˜̃gi,0 be that sphere.

Now, we will extend this map to the 2-skeleton, which consists of 2-cells: a cell
for each 2-simplex of Ki . Each such cell will be mapped to the corresponding
simplex together with one dimensional paths “attached” to each vertex of this
simplex, each taken twice in different directions.

Similarly, we can extend this map to any skeleton of the complex, the image of
an m-cell being a corresponding m-simplex in Ki together with paths that connect
each vertex to ṽ0 taken twice, but with different orientations.

Now we will consider the general case of a complex Compi,k . Its 0-skeleton
will always consist of a single vertex ˜̃v0, which will always be mapped to a vertex
ṽ0 of Ki . It will not have any cells in dimensions between 0 and (k + 1). Consider
its (k +1)-skeleton. It will be a wedge of spheres of dimension (k +1): a sphere for
each (k + 1)-simplex of Ki . We will want to know where to map a typical sphere.
Consider the corresponding simplex σ̃k+1 = [ṽ1, ...ṽk+2] ofKi . Using homotopies
h̃ we can construct the special simplicial sphere S(σ̃k+1) ∈ Ki+2k−1 as above. The
cell corresponding to σ̃k+1 will be mapped into this simplicial sphere. (The image
of σ̃k+1 minus an annulus near its boundary in Compi,k will be mapped into the
image of σ̃k+1 in Ki+2k−1 whenever the image of the annulus near the boundary
of σ̃k+1 in Compi,k will be mapped using the homotopy contracting the boundary
of σ̃k+1 to the base point in Ki+2k−1 made of the homotopies h̃.)

To extend this homotopy to higher skeleta we proceed similarly to the case
of Compi,0. For example, consider (k + 2)-skeleton of Compi,k and consider the

(k + 2)-cell ˜̃σ k+2
, the image of σ̃k+2 under the quotient map. Let ∂ ˜̃σk+2 = ˜̃Sk+1

1 +
... + ˜̃Sk+1

k+3. Subdivide this cell into the inner disc and the outside annulus. Map
the inner disc onto the σ̃k+2. The outer boundary of the annulus is mapped using
k + 3 maps of cells of Compi,k constructed in the previous step. The annulus is
mapped using a homotopy between the maps of its inner and outer boundaries.
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This homotopy is just the extension of the homotopies h̃ contracting boundaries
of (k + 1)-dimensional cells σ̃k+1 in the boundary of σ̃k+2 using the standard
extension technique “wagon in dirt”.

Once again note, that in order to construct maps from Compi,k to Ki−1+2k and
to Mn we fixed homotopies h̃ that connect special simplicial spheres with a point.
In Sect. 5 we will construct h̃ with following properties:

1. The simplicial disc D̃k+1 generated by this homotopy will have a controllable
number of simplices, (i.e. the number of simplices can be bounded from above
in terms of the number of simplices ofK j or in terms of the available parameters
of the manifold);

2. hi,k,σk = gi−1+2k ◦ h̃i,k,σk will have a controlable width.

Now recall that K1 is the (n + 1)-dimensional skeleton of the nerve of a mini-
mal δ-net in Mn , that n0 > 1 denotes the number of vertices, i.e. points in the net,
that R is the lower bound for the contractibility radius of Mn (in the case when Mn

satisfies conditions of Theorem 0.1 we define R = π), and that δi < R are radii of
balls of the covers of Mn used to construct Ki . The main goal of the next two and
a half sections will be to present an inductive proof the following proposition:

Proposition 3.2 (The width of homotopies). Let Mn be a closed (q − 1)-
connected Riemannian manifold satisfying the assumptions of Theorem 0.1 or
Theorem 0.2. Assume that any closed curve in Mn of length ≤ 3n0 R can be
contracted by a length non-increasing homotopy. Let Sk be any simplicial sphere
in Mn, (i.e. Sk = g1(S̃k), where S̃k is a simplicial sphere in K1). Then there exists
a homotopy hk

τ that connects this sphere to v0, such that in

Case A injrad(Mn) ≥ π, the width of this homotopy is bounded from above by

(δ + 1)n
ξ(n)nn

0
0 .

Case B Mn ∈Md
−1,v, the width of the homotopy is bounded from above by

(Cc1(n)δ + 1) · n
c(n)·nn

0
0 .

Proposition 3.2 is a technical version of the following informal assertion:
Let Mn be a closed (q − 1)-connected Riemannian manifold. Let Mn be either
triangulated into “small” simplices or endowed with a triangulation tower as
above. Assume that any closed curve in Mn of length less than a certain quantity
L(Mn) that can be explicitly determined can be contracted without increasing
its length. Then each contractible simplicial sphere of dimension ≤ q can be
contracted by a homotopy of controlled width. Observe that here we can take
L(Mn) = 2 diam(Mn), but we do not need this fact. Also, this assertion generalizes
to the case when the sphere that we need to contract is not necessarily simplicial.
This generalization will be stated as Theorem 5.2 and proven in Sect. 5. Finally,
our proof of this informal assertion will work equally well if instead of assuming
that closed curves of small length in Mn can be contracted without increase of their
length we will assume that the length during a contracting homotopy increases not
more than by a factor α. (Of course, α will then enter into the expresssion for the
upper bound for the width of the contracting homotopy).
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In this section we will prove the first step of the induction.

Lemma 3.3 (First step). Let γ̃ : S1 −→ Ki be a 1-dimensional simplicial sphere
in Ki , and γ = gi ◦ γ̃ : S1 −→ Mn be a piecewise geodesic curve of length
≤ 3n0δi for some i < 2q. Assume that all closed curves in Mn of length ≤ 3n0 R
can be contracted to a point by a length non-increasing homotopy. (Recall that n0
is the number of vertices in Ki . In Case A 3n0 R is majorized by c(n)vol(Mn).)

Then there exists a homotopy h1
τ = gi+1 ◦ h̃1

τ of γ to a point, that has the
following properties:

Case A.
1. The width of this homotopy Wh1

τ
≤ c1(n) · (volMn)c2(n)·volMn

.

2. h̃1
τ is a simplicial homotopy that connects γ̃ with a point in Ki+1 , and the

number of 2-simplices forming this homotopy and counted with multiplicities
is bounded from above by c3(n)vol(Mn)c4(n)vol(Mn).

Case B.
1. The width of this homotopy Wh1

τ
≤ nc(n)n0

0 (Cδ + 3n0 R/δ).

2. h̃1
τ is a simplicial homotopy that connects γ̃ with a point inKi+1, and the number

of 2-simplices of Ki+1 forming this homotopy and counted with multiplicities
is bounded from above by nc1(n)n0

0 .

Lemma 3.3 is almost a particular case of Proposition 3.2 when k = 1 and the
closed curve that we want to contract is short. (The assumption of shortness will be
dropped in Lemma 3.4 below). But it asserts somewhat more. Namely, it asserts that
the contracting homotopy of controlled width can be chosen to be the projection
of a simplicial homotopy (in Ki+1) with a controlled number of simplices.

Proof. The proof of this statement is very similar to the proof of Lemma 3.5(1)
in [R]. Therefore here we will present an outline of the proof only.

We can first construct an ε-net in the neighborhood of the space of all closed
curves in Mn of length bounded from above by 3n0δi , where ε = 3δi .

In fact, this net is constructed by considering a 1-skeleton ofKi , and by taking
all subcomplexes that form closed curves, the length of which is bounded by
100n0δi .

Then, using the fact that our curve is contractible, one can construct a sequence
of simplicial curves, that starts with our original curve and ends with a point and
estimate the number of curves in this sequence, where the distance between two
consecutive curves is smaller than 10δi .

After that it only remains to show that two consecutive curves in the sequence
can be joined with a thin homotopy and the proof will be completed.

The idea is to decompose their “difference” into small “triangles” (or “quad-
rangles”) and to use the homotopies contracting these “triangles” in Ki+1. (Each
of these triangles bounds a 2-simplex in the (i + 1)st nerve.) The details of how
one can use the homotopies of these short “triangles” in order to construct the
homotopy between the long curves can be found in [R]. ��
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The same trick as in the proof of Theorem 3.6 of [R] can be used to generalize
this lemma to the situation when the length of γ is not bounded. Namely one can
choose any vertex and decompose any closed curve into a sum of closed curves of
length < 3d using the “spikes in a wheel” trick. This trick and the previous lemma
immediately impy the following result:

Lemma 3.4. Let Mn be a closed Riemannian manifold of dimension n. Assume
that any closed curve of length ≤ 3n0δi can be contracted to a point without length
increase. Let γ : S1 −→ Mn be a piecewise differentiable curve that consists of Q
piecewise geodesics between adjoint vertices of Ki . Then there exists a homotopy
that connects this curve to a point, and satisfies the same conditions as in the
previous lemma with the only difference that the upper bounds for the number of
2-simplices ofKi+1 in Case A.2 and Case B.2 becomes c3(n)Qvol(Mn)c4(n)vol(Mn)

and Qnc(n)n0
0 , correspondingly.

Proof. The proof is very similar to that of Lemma 3.6 in [R]. ��

4. Linear Algebra and homological “filling”

In this section we find an upper bound for the number of simplices in the min-
imal chain that bounds a null homologous cycle by interpreting this question
as a question from Linear Algebra. By “the number of simplices” in a chain∑

i niσi, ni ∈ Z, σi is a simplex, we mean
∑

i |ni |. Let us start from the following
lemma from Linear Algebra:

Lemma 4.1 (Linear Algebra). Let A be an l × m matrix with integer entries and
b = (b1, . . . , bl ) ∈ Zl be an integer vector. Suppose also that the equation Ax = b
has an integer solution x ∈ Zm. Then it has an integer solution x∗ = (x1, . . . , xm)

such that
|xi | ≤ ll+1 M2l

A (Mb + m), i = 1, . . . , m,

where MA = maxi, j |ai j |, Mb = maxi|bi |.
Proof. First note that the system is equivalent to a subsystem that consists of r
equations, where r = rank(A) ≤ l. Denote the r × m matrix of this new system
by A0 and the right hand side vector by b0. Without any loss of generality we can
assume that the r ×r submatrix Ar of A0 formed by its first r columns is invertible.
Let Br denote the submatrix of Ar formed by its remaining m − r columns. Then
the general real solution (x1, . . . , xm) of the system A0x = b0 and, thus, of the
original system can be written as follows: xr+1, . . . , xm are arbitrary and the vector
x(r) = (x1, . . . , xr) = A−1

r (b0 − Br x(m−r)) = 1
detAr

(adj Ar)(b0 − Br x(m−r)). Here

x(m−r) denotes the vector (xr+1, . . . , xm) and adjA denotes the adjoint matrix of
Ar . If x(m−r) has integer entries then the solution will be integer if and only if every
entry of adjAr(b0 − Br x(m−r)) is divisible by detAr . But all entries of adjAr(b0 −
Br x(m−r))(mod det Ar) are periodic with period detAr with respect to each of the
variables xr+1, . . . , xm . So, if there is an integer solution of the system then there is
an integer solution of the system with xr+1, . . . , xm ∈ {0, 1, 2, . . . , |det Ar | − 1}.
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Now it remains to notice that 1 ≤ |det Ar | ≤ l
l
2 Ml

A , maxi, j (Br)i j ≤ MA and the

absolute value of any entry of adj Ar does not exceed l
l
2 Ml−1

A . ��
Corollary 1 (Number of simplices). Let ck = ∑

i ai
kσ

k
i be a k-cycle in a simpli-

cial complex with n0 vertices that bounds a (k + 1)-dimensional chain. Then this
cycle bounds a (k+1)-dimensional chain ck+1 = ∑

ai
k+1σ

k+1
i , where

∑
i |ai

k+1| ≤
n

4n nn
0

0 maxi |ai
k|.

Proof. Let us apply Lemma 3.1 in the situation when A is the matrix of the
boundary operator ∂k+1 from the chain complex Ck+1 freely generated by all
(k + 1)-dimensional simplices to the chain complex freely generated by all k-
dimensional simplices. It is clear that MA = maxi j |ai j | = 1, m = nk+1, l = nk .
Let b be the vector of coefficients at all k-simplices of ck. So, Mb = maxi |ai

k|.
Vectors of coefficients of (k + 1)-chains bounded by ck are integer solutions of the
equation Ax = b. Now we can apply Lemma 3.1. It remains to notice that for any
k ≤ n nk ≤ (n0

k

) ≤ nn
0. ��

5. Proof of Proposition 3.2

The goal of this section is to establish Proposition 3.2 and to extend it to the case
where the sphere that we want to contract is not necessarily simplicial.

Assume that for some N1 for any 1-dimensional simplicial sphere in Ki that
is composed of not more than 3n0 simplices there is a simplicial homotopy that
connects this sphere with a point, and the disc generated by this homotopy is
composed of no more than N1 simplices. First, we are going to prove the following
lemma under the assumption just made:

Lemma 5.1. Let S̃k be a simplicial sphere of dimension k ≤ (q − 1) or a con-
tractible simplicial sphere of dimension q in Ki composed of Q simplices. Then it
can be contracted to a point ṽ0 along a simplicial disc D̃k+1 inKi+2k−1 , which will

be composed of no more than c1(n)Qn
c2(n)nn

0
0 N1 simplices.

Proof. We know how to construct homotopies for a sphere of dimension 1 from
our assumption.

Now assume that we have learned to construct such homotopies for spheres up
to and including dimension k − 1.

We want to construct a homotopy for any simplicial sphere S̃k . The desired
homotopy will be constructed in three steps.

Step 1. Let S̃k be a simplicial sphere, composed of Q simplices. This sphere is
contractible in Ki+1, therefore, it bounds a chain in Ki+1. Therefore, we can find
an “optimal” such chain C̃k+1 = ∑

a j
k+1σ̃

k+1
j that has S̃k as its boundary. The

number of simplices in C̃k+1 is bounded as in Corollary 1.

Step 2. Consider Compi+1,k−1 and the image ˜̃Sk
of S̃k in it. ˜̃Sk

will be a wedge
of spheres, with one sphere corresponding to each of k-simplices that compose S̃k .
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˜̃Sk
bounds the chain ˜̃Ck+1, the image of C̃k+1, therefore it is contractible to

a point ˜̃v0. In this step we construct a contracting homotopy that will consist
of homotopies that create (k + 1)-cells of Ki+1 as well as of some auxilliary
homotopies discussed later.

The basic “building blocks” are homotopies that create cells and are the images
in Compi+1,k−1 of homotopies creating the boundary of a (k + 1)-simplex from
a constant map (see Fig. 9).

Fig. 9. A homotopy that connects a constant mapping with the boundary of the 2-cell

We will need
∑nk+1

i=1 |ai
k+1| successive homotopies. Each of these successive

homotopies adds (or subtracts) the boundary of a cell in Compi+1,k−1 which
corresponds to a (k + 1)-simplex in Ki+1 (and therefore corresponds to a singular
simplex in Mn contained in a ball of radius much smaller than the contractibility
radius of Mn . Later it will become important for us that as a conequence of this
simplex being small the image of this homotopy in Mn will have a small width.)

As the result we obtain a homotopy between ˜̃Sk
and ˜̃Sk − ∂

∑nk+1
i=1 ai

k+1
˜̃σ k+1

i .
The last expression is equal to zero when regarded as a chain, and thus, it is
homotopic to a point by a homotopy that is easy to construct.

The last homotopy can be explicitly described as follows: Let { ˜̃Sk

l } be spheres

corresponding to each k-simplex inKi+1 Note that ˜̃Sk = ∑nk
1 bk

l
˜̃Sk

l , when regarded

as a chain, and
∑nk

l=1 bl
k
˜̃Sk

l = ∑nk+1
i=1 ai

k+1

∑k+1
j=0

˜̃Sk

i j , where ˜̃Sk

i j equals to ±˜̃Sk

l for

some l, and
∑k+1

j=0
˜̃Sk+1

i j corresponds to the image of the boundary of σ̃k+1
i in

Compi+1,k−1. The fact that
∑nk

l=1 bl
k
˜̃Sk

l − ∑nk+1
i=1 ai

k+1

∑k+1
j=0

˜̃Sk

i j is equal to zero as

a chain implies that each sphere ˜̃Sk

l in the above expression will be encountered
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Fig. 10. How to construct a thin homotopy that connects a constant mapping with the
“boundary” of a 2-cell in Mn

an even number of times, where the number of times it comes with a positive sign
equals to the number of times it comes with a negative sign.

So, during the homotopy, we need to “move” the same spheres that come with
a “+” sign and then with a “−” sign close to each other and then contract them
to a point (by “move”, we will mean a sequence of homotopies that exchange two
spheres), see Fig. 14.

Step 3. Next consider ˜̃gi+1,k−1 : Compi+1,k−1 −→ Ki+2k−1 . Recall that the image
of each closed cell of dimension k (that is of a k-sphere) of Compi+1,k−1 is a simplex
σ̃k = [ṽ1, ..., ṽk+1] of dimension k inKi+1 that corresponds to this sphere together
with a disc that is generated by a homotopy of the boundary of this simplex that
connects it with a point. More precisely, this homotopy of ∂σ̃k to v0 is constructed
as follows: Connect each vertex ṽi of this complex by a fixed path P̃i , that lies in
1-skeleton of Ki+1. Obtain 1-dimensional spheres P̃i ∪ ẽi j ∪ −P̃j , where ẽi j is
the edge joining ṽi and ṽ j . Those spheres can be contracted in 2-skeleton of Ki+2.
Next, consider 2-spheres that are obtained from the 2-simplices in Ki+1 and the
disk obtained by contracting their boundary to the point. They lie in the 2-skeleton
ofKi+2. We can contract those spheres in the 3-skeleton ofKi+4. If we continue in
the above manner we will reach the stage at which we will have to contract spheres
of dimension (k −1) that lie inKi+2k−1 that are obtained from [ṽ1, ..., ˆ̃v j , ..., ṽk+1]
togeher with the disk generated by the homotopy that connects the boundary of it
with a point.

The image of the sphere ˜̃Sk
under ˜̃gi+1,k−1 is contractible in Ki+2k−1 , be-

cause ˜̃Sk
is contractible in Compi+1,k−1. However, the image of the above sphere
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will not be our original sphere S̃k . Let us denote the image sphere by S′k. Recall that
˜̃gi+1,k−1(

˜̃f i+1,k−1(σ̃
k)) is a simplex σ̃k together with the disc obtained by contract-

ing its boundary to ṽ0. Note also that if σ̃k
1 and σ̃k

2 share a face then the homotopies
that connect the boundary of each simplex with ṽ0 will agree when restricted to

this face. Therefore, S′k will be S̃k with “inserted wedges” S̃F
k
j , where each S̃F

k
j

is a simplicial complex generated by a homotopy that connects each simplex of
dimension (k − 1) of S̃k with the point ṽ0. (Note that this simplex together with
the already fixed homotopy contracting its boundary is a (k − 1)-sphere. By the

induction hypothesis Lemma 5.1 is true for this sphere and S̃F
k
j denotes the image

of the contracting simplicial homotopy.) Note also that each ˜SF
k
j will enter twice

with a different orientation and therefore can be easily cancelled by a homotopy.
Therefore, we can see that S′k is homotopic to S̃kin Ki+2k−1 . ��

Important Remark 5.2. The proof of Lemma 5.1 provides us with homotopies
h̃i,l,σ l introduced at the beginning of Sect. 3 and used in the construction of the maps
Compi,k −→ Ki+2k−1. We take the special simplicial sphere S(σ l ) ⊂ Ki+2l−1−1
and contract it in Ki+2l−1−1+2l−1 as in the proof of Lemma 5.1. But a general
simplicial sphere S̃k can be contracted in a somewhat different way. For each
k-dimensional simplex σk consider the corresponding special simplicial sphere
S(σk). (Recall that its construction involves contracting special simplicial spheres
corresponding to lower dimensional simplices in the boundary of σk using the
homotopies h̃ constructed as in the proof of Lemma 5.1.) There is an obvious
homotopy between S̃k and the union of these special simplicial spheres inKi+2k−1−1

(see Figs. 11 (a)–(c) and 12 (A)–(C). This union consists of S̃k and surfaces obtained
by contracting the special simplicial spheres corresponding to faces of σk . Each
of these surfaces enters twice (or more generally an even number of times) with
opposite orientations. The homotopy in question consists of inserting pairs of
these surfaces.) So, it remains to contract each of the considered special simplicial
spheres. Each of these special simplicial spheres is located inKi+2k−1−1 and can be
contracted as in the proof of Lemma 5.1 inKi+2k−1−1+2k−1 = Ki+2k−1. Combining
these homotopies we obtain a homotopy contracting S̃k (see Figs. 11 and 12). It is
this homotopy that we will be using from now on. In order to explain its advantage
over the homotopy of Lemma 5.1 observe that the number of simplices in any
special simplicial sphere does not depend on the number of simplices of S̃k . If K j

were metric spaces then the width of this homotopy also would be independent of S̃k

and of the number of simplices in S̃k . Therefore when we will construct a homotopy
in Mn using the simplicial homotopy in nerves introduced in the present remark
we avoid the unpleasant dependence of the width of the homotopy on the number
of simplices in intermediate simplicial spheres (see below for details).

Proof of Proposition 3.2. We must verify that the width of the pull-down to Mn

of the homotopy of a simplicial sphere S̃k ⊂ K1 constructed as in Important Re-
mark 5.2 is as stated in Proposition 3.2. It follows from the discussion in Important
Remark 5.2 that it is sufficient to estimate the width of the pull-down to Mn of the
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Fig. 11. The homotopy that connects Sk with a point

Fig. 12. The homotopy that connects Sk with a point

homotopies of special simplicial spheres h̃i,k,σk . We are going to do this by induc-
tion. The base of induction, (k = 1), is covered by Lemma 3.3. The homotopies h̃
can be broken into the following simpler homotopies:

1. The basic homotopy is the contraction of the boundary of a k-dimensional sim-
plex through the simplex. The image of the boundary of a k-dimensional simplex
fromK j in Mn is contained in a metric ball of radius much less than the injectivity
radius of Mn (Case A) or the lower bound for the contractibility radius of Mn
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(Case B). In fact when we introduced gi we mapped any simplex using a homotopy
of controlled width contracting the already constructed map of its boundary to
Mn (see the proof of Lemma 2.3) (Recall that in Case A we homotoped along
the geodesics connecting the image of the boundary with the image of one of the
vertices. In Case B we used the homotopy of controlled width in a larger ball
introduced by Grove and Petersen in [GrP].)

2. Permutation of two elements of πk(Mn) (see Fig. 14). A permutation of two
elements of a homotopy group is illustrated on Fig. 14. Recall that in our situation
each of these spheres corresponds to a standard simplicial sphere. We already know
how to represent a k-dimensional short tentacled sphere as a (k − 1)-dimensional
sphere in the space of loops passing through the base point of controlled length.
The standard simplicial sphere can be represented as the sphere in the space of
loops of controlled length in exactly the same way. These loops can be used in
order to move points while exchanging the k-spheres in Mn . However, we need
the control over the length of two systems of loops going in different directions.
Assume, for example, that we are permuting 2-dimensional spheres. Looking at the
left side of Fig. 14 we see that we need a representation of each of these spheres by
a map of the square [0, 1] × [0, 1] such that the boundary of the square is mapped
to the point of intersection of two spheres and the images of straight line segments
parallel to each side of the square have a controlled length. As we already observed
we will have the required control over the length in one direction in our situation.

This control is due to the fact that the spheres we are considering are obtained
by gluing two homotopies of bounded width of a closed curve of controlled length
in the manifold. These homotopies are “made” out of homotopies of sufficiently
close (less than the contractibility radius/5) closed curves. These last homotopies
are “made” out of homotopies of bounded width of short curves obtained using the
gradient flow of an appropriate vector field. (In the situation when Mn ∈ Md

−1,v

the existence of this field follows from ideas of Grove and Petersen; see [GrP].)
It is precisely at this point that we loose the control over the length of curves that
are being contracted during the homotopy because we do not have a control over
the derivative of this vector field. (Whenever the width of the homotopy, i.e. the
length of trajectories corresponds to one dimension of the square, the length of
curves during homotopy corresponds to the second required dimension.) But one
can use a trick from [R] in order to gain control over the length of curves during
the homotopy (between two sufficiently close closed curves γ1 and γ2) without
loosing control over the width. (See the proof of Proposition 5.1 in [R] and, in
particular, Fig. 11 A–H in [R].) The trick can be called “an expanding tooth”.
We start from γ1. First, we create an extremely narrow tooth between γ1 and γ2.
Points of a very small interval in γ1 go all the way to γ2 along their trajectories
(of bounded length); points outside a very small neighborhood of this interval stay
on γ1; points in between go along their respective trajectories but not all the way.
Then we make this tooth wider and wider allowing points further and further from
the initial narrow interval of γ1 to reach γ2. At any moment of time the image
of γ1 is made of a piece of γ1, a piece of γ2 and two curves that are extremely
close to trajectories of two points of γ1 under the homotopy (and therefore have
length not exceeding the width of the homotopy plus an arbitrarily small number).
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So, we gained control over the length of the curves during the homotopy without
loosing control over the width since each individual point will still move along its
original trajectory. (Observe however that the Lipschitz constant for this homotopy
will still be uncontrollably large!). Without any loss of generality we can assume
that the homotopy between two sufficiently close closed curves in the proof of
Lemma 3.3 is as described. It is clear that this trick immediately generalizes to
higher dimensions giving us control over the length of the second system of loops
required to permute two elements of the homotopy groups.

The number of these permutations does not exceed the square of the number of
simplices of the standard simplicial sphere that is being contracted. This number
obviously does not depend on the number of simplices in the original simplicial
sphere that we are trying to contract.

3. Cancellation of pairs of constructed spheres with opposite orientations. Again
we use the possibility to represent standard simplicial spheres by maps [0, 1]k−1 ×
[0, 1] −→ Mn such that the boundary of the cube is mapped to the base point
and the length of any circle obtained as the image of {x} × [0, 1] is bounded
in terms of the width of homotopies contracting spheres of dimension k − 1
forming the tentacles of the sphere. This possibility was already discussed in
Sect. 1 (for short-tentacled spheres). More details can be found in Sect. 6 (see
the proofs of Theorems 0.1 and 0.2 there). The fact that the width of homotopies
corresponding to this step is bounded by 2 supx length(the image of x × [0, 1]) is
now obvious.

Fig. 13. How to construct a thin homotopy that connects a constant mapping with the
mapping that takes a sphere to the “boundary” of a three dimensional cell in Mn

The above provides us with a recursive formula for the width of the homotopies
and implies Proposition 3.2. ��

Next, we generalize Proposition 3.2 to the case of an arbitrary (not necessarily
simplicial) contractible sphere:
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Fig. 14. A homotopy of exchanging two cells

Theorem 5.2. Let Mn be a compact, (q −1)-connected Riemannian manifold and
let

(1) injrad(Mn) ≥ π; or
(2) Mn ∈Md

−1,v.

Assume that all closed curves in Mn of length ≤ 3n0 R can be contracted by
a homotopy not increasing their length. (In Case (1) R = π, in Case (2) R is the
Grove-Petersen lower bound for the contractibility radius of Mn.)

Let f : Sk −→ Mn be an arbitrary continuous map, where 1 ≤ k ≤ q − 1, or
an arbitrary contractible map f : Sq −→ Mn. Then there exists a homotopy hk

τ

between f and a constant map, such that the width of this homotopy is bounded
from above by

(1) Whk
τ

≤ c1(n)V c2(n)V n
.

or, correspondingly,

(2) Whk
τ

≤ ξ1(n)(Cc3(n)R + 1)n
ξ2(n)nn

0
0 .

Proof. Approximate f(Sk) by a simplicial sphere S′k = g1(S̃k), where S̃k is the
simplicial approximation to f1( f(Sk)) in the k- skeleton of K1. A homotopy that
connects f(Sk) with a point is then constructed in two steps. In the first step one
shows that f(Sk) is homotopic to S′k so that the width of this homotopy is not too
large, and in the second step one contracts S′k to a point as in Important Remark 5.2
following Lemma 5.1. The second step was already described above so it remains
to describe the first step. Observe that f is close to the composition of f , the
simplicial approximation f1, and g1, and the distance can be majorized in terms
of δ and the contractibility constant C. Now apply the standard Grove-Petersen
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technique (cf. Corollary 6 on p. 500 in [P2]). This Corollary implies that when
we chose a controllably small δ f(Sk) and S′k are homotopic. (Recall that δ was
defined in Sect. 2 above. It is the radius of the balls of the covering U1 used to
construct the first nerve, K1.) Corollary 6 in [P2] does not say anything about the
width of the homotopy but this information easily follows from the proof. Roughly
speaking the proof works as follows. We consider a fine triangulation of Sk that is
being mapped into Mn by the two close continuous maps. We construct inductively
the homotopies between restrictions of these maps to skeleta of the triangulation
of higher and higher dimension. Each of these homotopies is made of homotopies
contracting small spheres in Mn . These spheres are so small that they lie either
inside of a ball of radius < injrad(Mn) (Case A) or less than the contractibility
radius of Mn (Case B). In the first case the bound on the width is obvious; in the
second it follows from the construction of the homotopy in the paper by K. Grove
and P. Petersen [Gr P]. (We need here not only the contractibility radius and the
(linear) contractibility function of Mn but all the assumptions on the geometry
of Mn : K ≥ −1, vol(Mn) ≥ v > 0 and diam(Mn) ≤ d.) We will spare the reader
the details of the calculation. ��

6. Proof of Theorems 0.1 and 0.2

In this section we complete the proof of Theorems 0.1 and 0.2.

Lemma 6.1. Let Mn be a compact (q − 1)-connected Riemannian manifold that
is not q-connected. Assume that either injrad(Mn) ≥ π or Mn ∈ Md−1,v. In the
first case let R = π, in the second case let R denote the Grove-Petersen lower
bound for the contractibility radius of Mn. Assume that for any closed curve of
length ≤ 3n0 R there exists a homotopy that connects this curve with a point without
length increase. Then there exists at least one short-tentacled sphere of dimension q
representing a non-trivial element of πq(Mn), such that the size of its tentacles is

≤ c1(n)(V c2(n)(V n+1) + 1) if injrad ≥ π.(1)

≤ exp

(
exp(c3(n)d)

min{1, v}c4(n)

)

, if Mn ∈Md
−1,v.(2)

Proof. We will obtain this sphere as an obstruction to extension of an arbitrary non-
contractible sphere g : Sq −→ Mn to the disc Dq+1 as explained in Sect. 1.1(i)
using homotopies provided by Theorem 5.2 to contract spheres of dimension < q
during the extension process.

Let g : Sq −→ Mn represent any non-trivial element of πq(Mn). We are going
to try to extend g to Dq+1 that fills Sq . As an obstruction we will obtain a different
non-contractible sphere on Mn . Since this sphere is obtained as a result of an
explicit construction, we will have the desired control over its parameters.

Here is the procedure that we will use in order to extend g inductively to
skeleta of Dq+1. We will begin by considering a very fine triangulation of Sq and
extending it to the triangulation of Dq+1 as a cone over the triangulation of Sq .
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(This triangulation has one extra vertex, p, that can be thought of as the center of
Dq+1 or as the vertex of the cone.)

Then we extend the map g from Sq to Dq+1 inductively extending this map
to skeleta of higher and higher dimension. At each step but the last one it will be
necessary to extend the map of Si to Mn to a map of Di+1, where i ≤ q − 1.
We will be using homotopies of controlled width provided by Theorem 5.2. As
a result boundaries of all simplices in the triangulation of Dq+1 will be mapped to
short-tentacled spheres.

Now, note the following: if we are able to extend the map g to the (q + 1)-
skeleton then we can extend it to the disk. We know that this is impossible, so at
the last (q + 1)-st stage this process should be interrupted. Therefore, there should
exist a non-trivial short-tentacled sphere of dimension q. ��
Proof of Theorems 0.1 and 0.2. If there exists a closed curve of length ≤ 3n0 R
that cannot be contracted without the increase of its length then there exists a closed
geodesic of length ≤ 3n0 R and both theorems immediately follow. So, the assump-
tions of Lemma 6.1 are satisfied and there exists a non-contractible short-tentacled
q-dimensional sphere.

Now we are going to construct a map F : [0, 1] −→ Map(Sq−1, Mn), where
F(t) = Sq−1

t (p), such that

(a) F(0) = F(1) = a constant map;
(b) the length of each curve Sq−1

t (p∗), t ∈ [0, 1] is bounded from above by
L = c(n)(V c(n)(V n+1) + 1), in the case of Theorem A, and it is bounded by
L = exp(

c1(n) exp(c2(n)d)

min{1,v}c3(n) ) in the case of Theorem B.

It will remain to reinterpret this map as a map f̃ : Sq−1 −→ �L Mn , as was
explained in Sect. 1.1(i) (see also Fig. 6 above).

Then f̃ is not contractible, and L will be our upper bound.
We will begin with a non-contractible short-tentacled sphere f : Sq = ∂σq+1 →Mn

constructed as in Lemma 6.1, (see Fig. 15) where σq+1 = [v1, ..., vq+2]. By
abuse of notation we will denote the image of ∂σq+1 also as ∂σq+1. ∂σq+1 =
∑q+2

i=1 (−1)i−1[v1, ..., v̂i , ..., vq+2] = σ
q
1 − σ

q
2 + ... + (−1)q−1σ

q
q+2. Each face

[v1, ..., v̂ j , ..., vq+2] is mapped to the surface generated by contracting its bound-
ary to a point by a homotopy of controlled width constructed above.

Let us consider σ
q
1 , one of the proper faces of σq+1 of dimension q. The image

of σ
q
1 is SFq

1 , which is generated by the homotopy that connects f(∂σq
1 ) with a point.

Let us denote this homotopy by Hq−1
τ . Hq−1

0 (Sq−1) = f(∂σq
1 ). Hq−1

1 (Sq) = p.

Let H̃q−1
τ = Hq−1

1−τ , so the widths of H̃q−1
τ and Hq−1

τ are the same and

H̃q−1
0 (Sq−1) = p; H̃q−1

1 = f(∂σq
1 ), (see Figs. 16 (c,d,e)). Note that the width

of this homotopy is the same as the size of the tentacle, i.e. it is the same as the
width of contracting the sphere of dimension (q − 1) to the point, provided by
Proposition 3.2.

Next, consider the remaining σ
q
2 , ..., σ

q
q+2 and let σ

q−1
i = σ

q
1 ∩ σ

q
i . The image

of σ
q
i is SFq

i and is obtained by contracting ∂σ
q
i to a point. We will denote these

homotopies hq−1,i
τ .
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Fig. 15. A short-tentacled sphere f : Sq = ∂σq+1 −→ Mn “split” up

Fig. 16. Decomposing S2 into S1’s

Then there is a homotopy parametrized by τ∗ that joins ∂σ
q
1 and the following

(q − 1)-dimensional sphere Sq−1
τ∗ : instead of σ

q−1
i consider the disc Dsq−1

i that

has the same boundary as σ
q−1
i and is obtained by taking the annulus generated by

hq−1,i
τ |τ∈[0,τ∗](∂σq−1

i ) together with the disc hq−1,i
τ∗ (σ

q−1
i ). All discs Dsq−1

i can

be naturally glued along their boundaries. Sq−1
τ∗ is the result of this glueing (see

Figs. 16 (f,g), 17 (b)).

Now, consider a disc D̃s
q−1
i that has the same boundary as before and is

obtained by glueing the annulus hq−1,i
τ |τ∈[0,1−τ̃](∂σ

q−1
i ) and a disc that is obtained
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as hq−1,i
1−τ̃

(∂σ
q
i −σ

q−1
i ), τ̃ ∈ [0, 1]. These discs can be used to construct the obvious

homotopy parametrized by τ̃ (see Figs. 16(h), 17(d)).
Now we combine the above described three homotopies parametrized corre-

spondingly by τ, τ∗, τ̃ and obtain a homotopy between a point and a (q−1)-dimen-
sional sphere (∂σ

q
2 − σ

q−1
2 ) ∪ ... ∪ (∂σ

q
q+2 − σ

q−1
q+2 ), (see Figs. 16 (g,h), 17 (d,e)).

This (q − 1)-sphere can be contracted to the vertex vq+2 by “cancelling” simplices

(= tentacles) σ
q−1
i j = ∂σ

q
i ∩∂σ

q
j , i, j ∈ {2, ..., (q +2)}, each of which occurs twice

with opposite orientation (see Fig. 16 (i)). ��

Fig. 17. “Decomposing” S3 into spheres of smaller dimension

7. Quantitative versions of the Hurewicz theorem

Observe that Theorems 0.3, 0.4 are in fact already proven. They easily follow from
Theorem 5.2 and Lemma 6.1. The only formal complication is that homotopies
that connect short closed curves to a point can now increase their length by the
factor of α. But this just leads to the necessity of constructing nets in the space of
longer curves in the Lemma 3.3. As the result one gets the α factor in Lemma 3.3
that propagates through all subsequent results.

In order to prove Theorem 0.5 we start from the (known) observation that the
standard construction of a finitely presented group with unsolvable word problem
as in [Rt] being combined with the version of the “witness” construction as in
[Mil] yields an explicit infinite sequence of finite presentation of groups Gi and
two-dimensional finite simplicial complexes Ki such that:
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1) For each of these groups Gi either Gi is trivial or Ki is an aspherical CW-
complex with the fundamental group G, K(G, 1);

2) There is no algorithm (= a Turing machine; or a computer program) that decides
for a given i whether or not Gi is trivial;

3) For any i H2(Ki) �= 0.

Here is a brief explanation how one can construct Gi and Ki : Theorem 4.12 in
[Mil] asserts that there exists a finitely presented group G with unsolvable word
problem that can be obtained from a free group by applying three successive HNN-
extensions where the associated subgroups are finitely generated free groups. It is
well-known that the classifying space of a free group is a wedge of circles. Also,
the classifying space of an HNN-extension A∗B of a group A with associated group
B can be described as K(A, 1)

⋃
K(B,1)×{0,1} K(B, 1) × [0, 1]. Therefore K(G, 1)

can be represented by an explicit finite 2-dimensional simplicial complex.
The witness construction described on p. 14 of [Mil] assigns to G and any

word w in G an explicit finite presentation of a group Gw so that 1) Gw is trivial
if and only if w = e in G; 2) If w is non-trivial in G then Gw is an amalgamated
free product of G ∗ Z and the free group with two generators over a free group.
Therefore we obtain an explicit 2-dimensional finite complex Kw such that if
w �= 0 in G, then Kw = K(Gw, 1). It is not difficult to see that Kw is the standard
realization complex of the considered finite presentation of Gw: it has one 1-cell
corresponding to each generator and one 2-cell corresponding to each relator of the
considered finite presentation of Gw. Examining relations of Gw on p. 14 of [Mil]
we see that H2(Kw) �= 0 for any w. Now we can enumerate all words w in G and
define the groups Gi and complexes Ki as Gw and Kw.

It is well-known that one can embed any finite two-dimensional simplicial
complex P into Rn+1 for any n ≥ 4, consider the boundary of a small neighborhood
of the embedded complex in Rn+1, and then smooth out corners of this boundary
obtaining as the result a smooth hypersurface Mn

P such that its fundamental group
is isomorphic to π1(P) (see [BHP]). This hypersurface can then be triangulated.
It is well-known that the whole construction of the triangulated Mn

P from P is
effective (i.e. can be done by means of an algorithm). Further, it is easy to see
that if n > 4 then π2(Mn

P) also coincides with the second homotopy group of P
([BHP]). Applying this construction to Ki we obtain a sequence of manifolds Mn

i
such that π1(Mn

i ) = Gi and π2(Mn
i ) = π2(Ki) = 0, if Gi is non-trivial, and

π2(Mn
i ) = π2(Ki) = H2(Ki) �= 0, if Gi is trivial. Therefore there is no algorithm

deciding whether or not π2(Mn
i ) is trivial.

Now let us prove Theorem 0.5 by contradiction. Assume that there exists
a computable fn(N) as in the text of Theorem 0.5. We are going to construct an
algorithm that decides the triviality of π2(Mn

i ) and therefore obtain a contradiction
as follows. It is well-known that there exists an algorithm listing for any K the
list of all triangulations of S2 with ≤ K simplices. (Just list all simplicial 2-
complexes with ≤ K simplices and check which of them is a triangulation of S2).
So, compute fn(N) and construct the list of all triangulations of S2 with ≤ fn(N)

simplices. For each of these triangulations there is a finite number of simplicial
maps of this triangulation into the triangulation of Mn

i . All these simplicial maps
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can be listed. If Mn
i is simply connected, then it has a non-trivial π2, and one of

these maps is non-contractible and therefore homologically non-trivial (by virtue of
the Hurewicz theorem). If Mn

i is non-simply connected, then it has trivial second
homotopy group, and all these maps are homotopic to the constant map and,
therefore, are homologically trivial. So, it is sufficient to check whether or not all
these maps induce the trivial homomorphism between the second homology groups.
But it is easy to verify by means of an algorithm whether or not a given simplicial
map of S2 into a simplicial complex sends the fundamental homology class of S2

to zero. So, there is an algorithm telling us whether or not there is a homotopy
non-trivial simplicial map of S2 triangulated with ≤ fn(N) simplices into Mn

i
which is equivalent to the non-vanishing of π2(Mn

i ). The resulting contradiction
completes the proof of Theorem 0.5.
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