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Abstract. We construct the CR invariant canonical contact form can(J ) on scalar positive
spherical CR manifold (M,J ), which is the CR analogue of canonical metric on locally
conformally flat manifold constructed by Habermann and Jost. We also construct another
canonical contact form on the Kleinian manifold �(�)/�, where � is a convex cocompact
subgroup of AutCRS2n+1 = PU(n + 1,1) and �(�) is the discontinuity domain of �.
This contact form can be used to prove that �(�)/� is scalar positive (respectively, scalar
negative, or scalar vanishing) if and only if the critical exponent δ(�) < n (respectively,
δ(�) > n, or δ(�) = n). This generalizes Nayatani’s result for convex cocompact subgroups
of SO(n + 1,1). We also discuss the connected sum of spherical CR manifolds.

1. Introduction

The geometry of strictly pseudoconvex CR manifolds has many parallels with Rie-
mannian geometry [BFG], and there is a far reaching analogue between conformal
geometry and CR geometry. Jerison and Lee gave a table [JL1, p. 169] summariz-
ing some important parallels. Since a CR diffeomorphism between CR manifolds
is a conformal transformation, conformal invariant objects are CR invariant. Thus,
the conformal geometry of CR manifolds will contribute to better understanding
of CR geometry.

The complex counterparts of locally conformally flat manifolds are spherical
CR manifolds. The purpose of this paper is to construct CR invariant canonical
contact forms on spherical CR manifolds, which are generalizations of Habermann-
Jost’s and Nayatani’s conformally invariant metrics on locally conformally flat
manifolds.

Let (M,J ) be a 2n + 1 dimensional compact and strictly pseudoconvex CR
manifold with horizontal subspace H . Here H ⊂ TM, dim HP = 2n for any
P ∈ M and J is a complex structure on H . A choice of 1−form θ such that
ker θ = H is called a pseudohermitian structure on (M,J ). Denote by {J} the
set of strictly pseudoconvex pseudohermitian structures on (M,J ). Given a strictly
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pseudoconvex pseudohermitian structure θ on a CR manifold, Webster [W] has
defined the connection, curvature and scalar curvature associated with θ . We say

θ is conformal to θ0 if θ = φ
4

Q−2 θ0, for some positive smooth function φ on M,
where Q = 2n + 2 is the homogeneous dimension of M. A mapping between
pseudohermitian manifolds, f : (M0,θ0) −→ (M1,θ1), is called conformal if

f ∗θ1 = φ
4

Q−2 θ0 for some positive smooth function φ on M0.
We can define the SubLaplacian �θ associated with θ in an analogous way to

define the Laplacian associated with a Riemannian metric. Let Rθ be the Webster
scalar curvature of θ . The conformal SubLaplacian Lθ = bn�θ + Rθ , bn = 2 + 2

n ,
satisfies the transformation law

Lθu = φ
− Q+2

Q−2 Lθ0(uφ)(1.1)

if θ = φ
4

Q−2 θ0 and u ∈ C∞(M). If we put u = 1, then we obtain the transformation
law of the Webster scalar curvatures

Rθ = φ
− Q+2

Q−2 (bn�θ0 + Rθ0)(φ).(1.2)

Thus, φ satisfies the scalar curvature equation

bn�θ0φ + Rθ0φ = Rθφ
Q+2
Q−2 .(1.3)

A CR manifold (M,J ) is called spherical if it is locally CR equivalent to an open
set of the sphere S2n+1 with the standard complex structure, where 2n+1 = dim M.
We can show that there is one and only one of the following cases holding: {J}
contains a contact form with either (1) positive, or (2) negative, or (3) vanishing
Webster scalar curvature. So, we can call a CR structure either scalar positive, or
scalar negative, or scalar vanishing, respectively.

Theorem 1.1. Let (M,J ) be a connected, compact, scalar positive, spherical CR
manifold with dim M > 5, which is not CR equivalent to the standard sphere
S2n+1. Let θ be a strictly pseudoconvex pseudohermitian structure in {J} which
has positive Webster scalar curvature. Define

can(J ) = A2
θθ,(1.4)

where

Aθ(x) = lim
y−→x

|Gθ(x,y) − ρθ(x,y)| 1
Q−2 ,

ρθ(x,y) = 1

φ(x)φ(y)
· CQ

‖xy−1‖Q−2 ,

(1.5)

if θ = φ
4

Q−2 θH on a neighborhood U of x. Here Gθ is the Green function of
the conformal SubLaplacian Lθ , CQ is a constant defined by (3.7), and θH is the
standard contact form on Hn. Then, can(J ) is a well-defined C∞ contact form and
depends only on the CR structure J.
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Here ρθ(x,y) is the singular part of the Green function Gθ(x,y). We call can(J )

the canonical contact form of Habermann-Jost type since it is the CR analogue of
canonical metric on locally conformally flat manifolds constructed by Habermann
and Jost. Similar CR invariant contact form can be defined on open and bounded
sets in Hn . See [L] for the Euclidean case.

We require that dim M > 5 because we use the CR positive mass theorem in
the proof of the theorem, which is available only in such dimensions now [Li1].

Let � be a discrete subgroup of AutCR(S2n+1) = PU(n + 1,1). A point ξ ∈
S2n+1 is called a limit point of � if there exist ξ ′ ∈ B2n+2 = {z ∈ Cn+1||z|2 < 1}
and {γk},γk ∈ �, such that ξ = limk−→∞ γkξ

′. The limit set 	(�) of all limit points
is closed and invariant under �.

�(�) = S2n+1 \ 	(�)(1.6)

is the maximal domain in S2n+1 on which � acts properly discontinuously, which
is called the discontinuity domain of �. � is called a Kleinian group if �(�) is
non empty. A Kleinian group � is called elementary if 	(�) contains at most two
points. A discrete subgroup � is called convex cocompact if the quotient of convex
hull of 	(�) is compact.

Let JS be the standard complex structure on S2n+1 induced from Cn+1 and θS
be the standard contact form on S2n+1. For γ ∈ PU(n + 1,1), we denote by |γ ′|
the positive function on S2n+1 such that

γ ∗θS = |γ ′|2θS.(1.7)

For a convex cocompact group �, we can calculate the canonical contact form
of Habermann-Jost type on �(�)/� as follows.

Theorem 1.2. Let � be a convex cocompact subgroup of PU(n + 1,1), and

π� : �(�) −→ �(�)/�(1.8)

be the canonical projection. Suppose �(�)/� is scalar positive, then

π∗
�can(J�) = A2

�θS,(1.9)

where J� is the complex structure on �(�)/� induced by the canonical projection
π�, and

A�(x) =
( ∑

γ∈�\{1}
|γ ′(x)| Q−2

2 GS(x,γx)
) 1

Q−2
,(1.10)

and GS is the Green function of the conformal SubLaplacian LθS on S2n+1.

The critical exponent δ(�) of a Kleinian group � is defined to be

δ(�) = inf
{

s > 0;
∑
γ∈�

e− 1
2 s·d(x,γy) < ∞

}
(1.11)

where x,y are in the unit ball B2n+2 ⊂ Cn+1 and d(·,·) is the complex hyperbolic
distance on B2n+2. δ(�) is independent of the particular choice of points x,y. Our
definition of critical exponent is different from that in [C] [EMM] with a factor 1

2 .
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Theorem [C] [EMM]. For any convex cocompact Kleinian group � of
SU(n + 1,1), there exists a probability measure µ� supported on 	(�) such
that

γ ∗µ� = |γ ′|δ(�)µ�(1.12)

for each γ ∈ �. If � is non-elementary, measure satisfying (1.12) is unique up to
a constant multiple.

This measure coincides, up to a constant multiple, with the δ(�) dimensional
Carnot-Hausdorff measure restricted to the limit set 	(�), i.e. there exist constants
c and r0 such that if x ∈ 	(�)and r < r0, then

1

c
≤ µ�(Br(x))

rδ(�)
≤ c,(1.13)

where Br(x) is the ball in S2n+1 under the Carnot distance.

Such measure is called Patterson-Sullivan measure. Define a C∞ function ��

on �(�) by

��(x) =
(∫

	(�)

G p
S(x,y)dµ�(y)

) 1
p

, p = 2δ(�)

Q − 2
.(1.14)

It can be shown that the contact form

θ̂� = �
4

Q−2
� θS(1.15)

on �(�) is invariant under �, and hence induces a spherical contact form on
�(�)/�. This is the CR generalization of Nayatani’s canonical metric in confor-
mal geometry. We call θ̂� the canonical contact form of Nayatani type. θ̂� has
remarkable properties and can be also used to prove the following relationship
between its Webster scalar curvature and the critical exponent as in [N].

Theorem 1.3. Let � be a convex cocompact subgroup of PU(n + 1,1) such that
	(�) �= {point}. Then, if δ(�) < n (respectively, δ(�) = n, or δ(�) > n),
the Webster scalar curvature of θ̂� is positive (respectively, zero, or negative)
everywhere.

This theorem has the following important corollary.

Corollary 1.4. For a convex cocompact subgroup � of PU(n + 1,1) such that
	(�) �= {point}, �(�)/� is scalar positive (respectively, scalar vanishing, or
scalar negative) if and only if δ(�) < n (respectively, δ(�) = n, or δ(�) > n).

When � is a convex cocompact subgroup of SO(n+1,1), Nayatani [N] calculate
the curvature term of the Weitzenböck formula for the Hodge Laplacian defined
by his canonical metric, and proved the vanishing theorem for the cohomology
groups of the group �. This result is generalized by Izeki [I]. It is interesting to
find their complex analogue. But their arguments do not seem to work directly in
the complex case.
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Similar to the Riemannian case [H], it is interesting to investigate the structure
of the moduli space of scalar positive spherical CR structures. It seems to be
possible to develope the theory for convex cocompact subgroups of other rank-1
Lie groups.

The paper is organized as follows. In Sect. 2, we collect basic facts about CR
geometry, the Heisenberg group, the complex hyperbolic geometry and discrete
subgroups. In Sect. 3, we construct the CR invariant canonical contact form of
Habermann-Jost type on scalar positive spherical CR manifolds. In Sect. 4, we
construct the canonical contact form of Nayatani type on CR Kleinian manifolds
and prove the relationship between the sign of its Webster scalar curvature and the
critical exponent. In Sect. 5, we prove that the connected sum of two scalar positive
spherical CR manifolds is also scalar positive.

I would like to thank the referees for many valuable suggestions and Dr. Wolf-
gang Staubach for reading of the manuscript.

2. Some basic facts

We collect some basic facts about CR geometry, the Heisenberg group, the complex
hyperbolic geometry and discrete subgroups in this section, (cf. [JL1] [EMM,
Appendix A]).

Let M be a real 2n +1 dimensional orientable C∞ manifold. A CR structure on
M is a n dimensional complex subbundle T1,0 of the complexified tangent bundle
CTM satisfying T1,0 ∩ T0,1 = {0}, where T0,1 = T1,0, and integrability condition:
[Z1,Z2] ∈ C∞(M,T1,0) whenever Z1,Z2 ∈ C∞(M,T1,0). Set

H = Re{T1,0 ⊕ T0,1}.(2.1)

It is the 2n dimensional real horizontal subbundle of TM. H carries a complex
structure J : H −→ H satisfying J2 = −idH and T1,0 = ker(J − i · idCH),
T0,1 = ker(J + i · idCH).

Let E ⊂ T∗M denote the real line bundle H⊥. Because we assume M to be
orientable, the complex structure J induces an orientation on H . E has a globally
non-vanishing section θ .

We can define a Hermitian form on T1,0 associated with θ by

〈V ,W〉θ = −2idθ(V ∧ W ),(2.2)

which is called the Levi form of θ . Note that

〈V ,W〉θ = 2dθ(V ∧ JW).(2.3)

In this form 〈·,·〉θ extends by complex linearity to a symmetric form on CH , which
is real on H . If 〈·,·〉θ is positive definite, (M,θ) is said to be strictly pseudoconvex.
The inner product 〈·,·〉θ determines an isomorphism H∗ ∼= H , which in turn
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determines a dual form 〈·,·〉∗θ on H∗. 〈·,·〉∗θ can be naturally extended to T∗M. This
defines a norm |ω|θ on the space of real 1−forms ω by

|ω|2θ = 〈ω,ω〉∗θ = 2
n∑

j=1

|ω(Z j)|2,(2.4)

where Z1, · · · ,Zn form an orthonormal basis for H with respect to the Levi form
〈·,·〉θ .

For a pseudohermitian structure θ on a strictly pseudoconvex CR manifold
(M,J ), there is a unique vector field T , which is transversal to H , defined by

θ(T ) = 1, dθ(T ∧ ·) = 0.(2.5)

A mapping f : (M1,J1) −→ (M2,J2) is called a Cauchy-Riemann mapping
(or CR mapping) if f∗ J1 = J2 f∗. If f is a CR diffeomorphism, then f∗ H1 = H2,
where H1 and H2 are real horizontal subbundles of TM1 and TM2, respectively.
Then, f ∗θ2 is a globally non-vanishing section of E1 = H⊥

1 if θ2 is a globally non-
vanishing section of E2 = H⊥

2 . For any globally non-vanishing section θ1 of E1,
we have f ∗θ2 = φθ1 for some non-vanishing function φ on M1. It is easy to see
that φ > 0 when θ1 and θ2 are both strictly pseudoconvex. So, CR diffeomorphism
f is conformal.

In [W], Webster shows that there exists a natural connection on the bundle T1,0
adapted to a pseudohermitian structure θ . Let θα be an admissible coframe, i.e.
(1,0)−forms θα form a basis for T∗

1,0 such that θα(T ) = 0 for all α = 1, · · · ,n.
The integrability condition implies

dθ = igαβθα ∧ θβ(2.6)

for some Hermitian matrix of functions (gαβ), which is positive definite if (M,θ)

is strictly pseudoconvex. In this case, θ is a contact form, i.e. θ ∧ (dθ)n is nowhere
vanishing. Webster showed that there are uniquely determined 1-forms ω

β
α and

τβ on M satisfying

dθβ = θα ∧ ω β
α + τβ

ωαβ + ωβα = dgαβ

τα ∧ θα = 0,

(2.7)

where we use (gαβ) to raise and lower indices, e.g. ωαβ = ω
γ

α gγβ. Let

� α
β = dω α

β + ω
γ

β ∧ ω α
γ .(2.8)

Webster showed that � α
β could be written as

� α
β = R α

β ρσθρ ∧ θσ + W α
β ρθρ ∧ θ + Wα

βρθρ ∧ θ.(2.9)

The Webster-Ricci tensor of (M,θ) has components Rαβ = R ρ

ρ αβ
. The Webster

scalar curvature is

Rθ = gαβ Rαβ.(2.10)
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The CR Yamabe problem is to find a contact form θ̃ = u
4

Q−2 θ,u > 0, which
is conformal to the given contact form θ , such that Rθ̃ ≡constant. This problem is
solved by Lee and Jerison [JL1]–[JL3] in the case that (M,θ) not locally spherical
and n > 1, and by Gamara and Yacoub [G] [GY] in the remaining case.

We can define the SubLaplacian �θ associated with a strictly pseudoconvex
contact form θ by

∫

M
�θu · vθ ∧ (dθ)n =

∫

M
〈du,dv〉∗θθ ∧ (dθ)n.(2.11)

Since evidently, |θ|θ = 0, 〈·,·〉∗θ is degenerate on T∗M and the operator �θ is
subelliptic rather than elliptic.

Proposition 2.1 [Le, Proposition 4.10]. If u ∈ C∞
0 , then �θu = −u α

α − u α
α .

By using the regularity result of �θ in Proposition 5.7 in [JL1] repeatedly, we
have

Proposition 2.2. Let U be a relatively compact open set in M. Suppose f ,g ∈
C∞(U), and �θu + gu = f in the distribution sense on U, u ∈ L2(U). Then,
u ∈ C∞(U).

The following maximum principle follows from the Harnack inequality (Propo-
sition 5.12 in [JL1]) by standard argument [GT, pp. 188].

Proposition 2.3 (The maximum principle). Let U ⊂ M be open, g ≥ 0 on U,
P = �θ + g. Suppose u ∈ C2(U) such that Pu ≥ 0 (resp., Pu ≤ 0). Then u can’t
achieve a non-positive minimum (resp., non-negative maximum) in U unless it is
a constant.

The simplest CR manifold is the Heisenberg group Hn , whose underlying
manifold is Cn × R, with coordinates (z,t). Its multiplication is given by

(z,t) · (z′,t′) = (z + z′,t + t′ + 2Imzz′),(2.12)

where zz′ = ∑n
j=1 z j z′

j . It’s obvious that (z,t)−1 = (−z, − t). Define a norm on
Hn by

‖(z,t)‖ = (|z|4 + t2)
1
4 ,(2.13)

and the dilation by

δλ(z,t) = (λz,λ2t), for λ > 0.(2.14)

Note that ‖δλ(z,t)‖ = λ‖(z,t)‖. For (z,t),(z′,t′) ∈ Hn , d((z,t),(z′,t′)) = ‖(z,t)−1 ·
(z′,t′)‖ defines a distance on Hn . The vector fields

Z j = ∂

∂z j
+ iz j

∂

∂t
,(2.15)
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j = 1, · · · ,n, are left invariant vector fields on Hn . The subbundle T1,0 is span{Z1,
· · · , Zn}. Let

θH = dt +
n∑

j=1

i(z jdz j − z j dz j)(2.16)

be the standard contact form on Hn , which is left invariant. Since δ∗
λθH = λ2θH,

δ∗
λ

(
θH ∧ (dθH)n) = λ2n+2θH ∧ (dθH)n,(2.17)

which means the homogeneous dimension of Hn is Q = 2n + 2. Let (x1, · · · ,
x2n,t) be coordinates of Hn , then

θH ∧ dθn
H = n!22ndx1 ∧ · · · ∧ dx2n ∧ dt.(2.18)

The Levi form is given by

〈Z j ,Zk〉θH = −2idθH(Z j ∧ Zk) = 2δ jk.(2.19)

Thus, 1√
2

Z1, · · · , 1√
2

Zn form an orthogonal basis of T1,0. Hence, for u ∈ C1(Hn),

du = ∂u

∂t
θH +

n∑
j=1

Z judz j + Z judz j ,(2.20)

and

|du|2θH
=

n∑
j=1

|Z ju|2(2.21)

if u is real valued. Then,

�θH = −1

2

n∑
j=1

(Z j Z j + Z j Z j).(2.22)

The Cayley transformation between the unit ball B2n+2 = {(ζ,ζn+1) ∈ Cn ×
C||ζ |2 < 1} and the Siegel upper half space D = {(z,zn+1) ∈ Cn × C|Imzn+1 >

|z|2} is given by

zn+1 = i
1 − ζn+1

1 + ζn+1
, z = ζ

1 + ζn+1
.(2.23)

Hence, we have the stereographic projection F : S2n+1 \ {(0, · · · ,0,−1)} −→ Hn

given by

t = Rezn+1 = 2Imζn+1

|1 + ζn+1|2 , z = ζ

1 + ζn+1
.(2.24)

Sphere S2n+1 has the standard contact form

θS = i(∂ − ∂)
(|ζ1|2 + · · · |ζn+1|2

)
(2.25)
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with RθS ≡ n(n+1)
2 . F is a conformal mapping, i.e.

F∗
(

4

|w + i|2 θH

)
= θS,(2.26)

where w = t + i|z|2.
Consider the Hermitian form

Q(ζ,ζ ′) = ζ1ζ
′
1 + · · · + ζn+1ζ

′
n+1 − ζn+2ζ

′
n+2(2.27)

on Cn+2 and the following subset in Cn+2:

V0 = {ζ ∈ Cn+2|Q(ζ,ζ) = 0},
V− = {ζ ∈ Cn+2|Q(ζ,ζ) < 0}.(2.28)

Let P : Cn+2 \ {0} −→ CPn+1 be the canonical projection onto the complex
projective space. Then, Hn+1

C = P(V−) is the complex hyperbolic space and
the group U(n + 1,1) is a subgroup of GL(n + 2,C) whose elements preserv-
ing the Hermitian form Q defined by (2.27). The action of U(n + 1,1) on V−
induces an action on Hn+1

C with kernel isomorphic to S1. Set PU(n + 1,1) =
U(n + 1,1)/kernel. SU(n + 1,1) is the group of unimodular transformations pre-
serving the Hermitian form Q. Its center consists of n+2 transformations: ζ∗

j = εζ j ,

εn+2 = 1, j = 1, · · · ,n + 2. Then SU(n + 1,1)/center acts on P(V0) effectively
and PU(n + 1,1) = SU(n + 1,1)/center. Almost all results for discrete subgroups
of SU(n + 1,1) hold for discrete subgroups of PU(n + 1,1).

We can obtain a model for the complex hyperbolic space in the unit ball by
setting z j = ζ j/ζn+2, j = 1,2, · · · ,n + 1. Then Hn+1

C = P(V−) is just the ball
B2n+2 = {z ∈ Cn+1| ∑n

j=1 |z j |2 < 1}. Under this identification, PU(n + 1,1) acts

on B2n+2 as

γ(z) =
(

γ(z,1)1

γ(z,1)n+2
, · · · ,γ(z,1)n+1

γ(z,1)n+2

)
,(2.29)

for γ ∈ PU(n+1,1) and z ∈ B2n+2, where we denote by γ(z,1) j the j-th component
of γ(z,1). The fundamental invariant is given by

(X,Y ) = 1 − 〈X,Y〉
(1 − |X|2) 1

2 (1 − |Y |2) 1
2

(2.30)

with 〈X,Y〉 = ∑n+1
j=1 X jY j , and

|(X,Y )| = cosh

(
1

2
d(X,Y )

)
,(2.31)

for X,Y ∈ B2n+2, where d(X,Y ) is the complex hyperbolic distance between X
and Y .
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Define a family of measures

µs =
∑

γ∈� e− 1
2 s·d(0,γy)δγy

∑
γ∈� e− 1

2 s·d(y,γy)
(2.32)

for s > δ(�), where δγy is the Dirac measure at point γy. The definition of the
measure µs does not depend on y ∈ B2n+2. The Patterson-Sullivan measure is the
weak limit of these measures,

µ�(x) = lim
s−→δ(�)+

µs(x).(2.33)

The theorem in the introduction about the Patterson-Sullivan measure is proved
in [C] and [EMM] except for (1.12). We prove (1.12) now.

Proof of (1.12). Note that our definition of the critical exponent (1.11) is different
from that in [C] [EMM] with a factor 1

2 . By Lemma A5.10 in [EMM],

γ ∗dµ�(z) = 1

|γ(z,1)n+2|δ(�)
dµ�(z),(2.34)

for z ∈ S2n+1 and γ ∈ PU(n+1,1). It is sufficient to check that |γ ′(z)| = 1
|γ(z,1)n+2| ,

i.e.

γ ∗θS(z) = 1

|γ(z,1)n+2|2 θS(z).(2.35)

Note

dγ(z) =
(

· · · , γ(dz,0) j

γ(z,1)n+2
− γ(z,1) jγ(dz,0)n+2

γ(z,1)2
n+2

, · · ·
)

,(2.36)

by the linearity of γ . We have, for z ∈ S2n+1,

n+1∑
j=1

γ(z) jdγ(z) j =
n+1∑
j=1

γ(z,1) jγ (dz,0) j

|γ(z,1)n+2|2 −
n+1∑
j=1

|γ(z,1) j |2γ (dz,0)n+2

|γ(z,1)n+2|2γ(z,1)n+2

=
n+1∑
j=1

γ(z,1) jγ (dz,0) j

|γ(z,1)n+2|2 − γ(z,1)n+2γ (dz,0)n+2

|γ(z,1)n+2|2

=
n+1∑
j=1

z j dz j

|γ(z,1)n+2|2 ,

(2.37)

by
∑n+1

j=1 |γ(z,1) j |2 − |γ(z,1)n+2|2 = |z|2 − 1 = 0 for γ ∈ U(n + 1,1). (2.35)
follows from the definition of θS in (2.25) and (2.37).
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Proposition 2.4. Let � be a convex cocompact subgroup of PU(n + 1,1). Then,
its critical exponent

δ(�) = inf
{

s > 0;
∑
γ∈�

|γ ′(ξ)|s < ∞
}
,(2.38)

for any fixed ξ ∈ �(�).

Proof. Without loss of generality, we can assume ξ = (1,0, · · · ,0). Let γ ∈
PU(n + 1,1). It follows from (2.30)–(2.31) that

ed(0,γ0) ∼ 1

1 − |γ(0)|2 = 1

1 − ∑n+1
j=1

|γ j(n+2)|2
|γ(n+2)(n+2)|2

= |γ(n+2)(n+2)|2,(2.39)

by

n+1∑
j=1

|γ j(n+1)|2 − |γ(n+2)(n+2)|2 = −1.(2.40)

Since ξ ∈ �(�), there exists ε > 0 such that the Euclidean distant between ξ and

γ(0) for any γ ∈ � is larger than ε. We can assume that |γ(0)1| =
∣∣∣ γ1(n+2)

γ(n+2)(n+2)

∣∣∣ =∣∣∣ γ(n+2)1
γ(n+2)(n+2)

∣∣∣ < 1 − ε. So,

|γ ′(ξ)|2 = 1

|γ(1,0, · · · ,0,1)n+2|2
= 1

|γ(n+2)1 − γ(n+2)(n+2)|2 ∼ 1

|γ(n+2)(n+2)|2
(2.41)

by (2.35) and the above facts. Therefore, e−d(0,γ(0)) ∼ |γ ′(ξ)|2 for fixed ξ ∈ �(�).
(2.38) follows.

It is well known that AutCRS2n+1 = PU(n+1,1) and AutCRHn is the stabilizer
of PU(n + 1,1) fixing the south pole [BS], [KT]. Thus, PU(n + 1,1) is generated
by the following CR transformations on Hn ,

(1) dilations:

δa(z,t) = (az,a2t), a > 0;(2.42)

(2) left translations:

τ(z,t) : (z′,t′) −→ (z,t) · (z′,t′), (z,t),(z′,t′) ∈ Hn;(2.43)

(3) unitary transformations:

UA : (z,t) −→ (Az,t), A ∈ U(n);(2.44)

(4) inversion:

R : (z,t) −→
( −z

|z|2 − it
,

−t

|z|4 + t2

)
.(2.45)
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Each compact spherical CR manifold M has a CR developing mapping
[BS] [KT]:

� : M̃ −→ S2n+1,(2.46)

where M̃ is the universal covering of M, and � is unique up to composition with
elements in AutCR(S2n+1) = PU(n + 1,1). The developing mapping � induces
a group homomorphism:

�∗ : π1(M) −→ PU(n + 1,1).(2.47)

The developing mapping � is not always injective. If it is, π1(M) is a discrete
subgroup of PU(n + 1,1) and M̃ is CR equivalent to an open set � ⊂ S2n+1, and
hence M is �/π1(M).

Since any CR mapping f : U −→ V between open sets U,V ⊂ S2n+1 is the
restriction to U of a mapping holomorphic in a domain containing U , the following
theorem follows from Theorem 1.1 in [BS].

Theorem 2.5 (Liouville-type Theorem). If f is a CR diffeomorphism from an
open set U ⊂ Hn to another open set V ⊂ Hn, then f is the restriction to U of an
element in PU(n + 1,1).

To define the Carnot-Hausdorff measure, we should replace the Euclidean balls
in the classical definition of Hausdorff measure by nonisotropic balls. Let B(ξ,r)
denote the nonisotropic ball {y ∈ Hn;‖y−1 · ξ‖ ≤ r}. Define

mδ,ε(E) = inf
{∑

ν

rδ
ν

∣∣∣E ⊂ ∪ν B(ξν,rν),rν ≤ ε
}
,(2.48)

where infimum is taken over all coverings B(ξν,rν) of E. The δ dimensional
Carnot-Hausdorff measure of a Borel set E ⊂ Hn is given by

mδ(E) = lim
ε−→0

mδ,ε(E).(2.49)

The Carnot-Hausdorff dimension of a Borel set E ⊂ Hn is the number

d = inf{δ|mδ(E) = 0}.(2.50)

We will need the following CR positive mass theorem in the spherical CR set-
ting [Li1].

Theorem 2.6. Let (M,θ) be a compact, pseudohermitian, spherical CR manifold
with positive Webster scalar curvature, where dim M = 2n + 1. Then,

1. For each p ∈ M, there exists a local CR diffeomorphism Cp from a neighbor-
hood of p to the Heisenberg group Hn such that Cp(p) = ∞, (C−1

p )∗(Gt−2
p θ) =

ht−2θH, where t = 2 + 2
n ; h = 1 + Apρ

−2n + o(ρ−2n−1); Gp is the Green
function for the conformal SubLaplacian Lθ with pole at p; ρ is the norm
on Hn; and these CR local diffeomorphisms are parameterized by the CR
automorphism group of S2n+1 fixing ∞. We call Ap CR mass.

2. Sign(Ap) is independent of the choice of coordinates (or CR developing maps)
and so it is a CR invariant. When n ≥ 3, it is nonnegative and is zero if and
only if (M,θ) is CR equivalent to the standard complex unit sphere S2n+1.
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3. Canonical contact form of Habermann-Jost type

Proposition 3.1. Let M be a connected compact manifold of dimension 2n + 1,
J be a strictly pseudoconvex CR structure on M. Then, there is one and only one of
the following cases holding: {J} contains a contact form with either (1) positive,
or (2) negative, or (3) vanishing Webster scalar curvature.

Proof. The proof is similar to the Riemannian case [H, p. 17]. Choose
a θ ∈ {J}. The conformal SubLaplacian Lθ is selfadjoint and subelliptic. Its
spectra are bounded from below. Let λ1 be the first eigenvalue of Lθ and φ be
a corresponding eigenfunction. Then, φ is C∞ and nowhere vanishing, which will

be proved later. We assume φ > 0. Then, θ ′ = φ
4

Q−2 θ is also a contact form

in {J} whose Webster scalar curvature Rθ ′ = λ1φ
− 4

Q−2 by the transformation for-
mula (1.2). Hence, Rθ ′ > 0 (or Rθ ′ < 0, or Rθ ′ ≡ 0) if λ1 > 0 (or λ1 < 0,
or λ1 = 0).

On the other hand, if a contact form θ̂ ∈ {J} has Webster scalar curvature
R

θ̂
> 0 (or < 0, or ≡ 0), then the first eigenvalue λ̂1 of L

θ̂
obviously satisfies

λ̂1 > 0 (or < 0, or = 0).
At last, by the transformation formula (1.1), the sign of the first eigenvalue of

Lθ does not depend on the choice of θ ∈ {J}. The result follows.
It remains to prove that the eigenfunction φ is C∞ and nowhere vanishing.

It can be proved exactly the same way as Theorem 4.4 in [A] in the Riemannian

case. We sketch it here. Define |∇θu| =
(∑n

j=1 |Z ju|2
) 1

2
, where {Z1, · · · ,Zn} is an

orthonormal basis of T1,0 under strictly pseudoconvexpseudohermitian structure θ .
Since any orthonormal basis of T1,0 can be transformed to {Z1, · · · , Zn} by an
unitary transformation, |∇θu| does not depend on the choice of such basis. Define
the nonisotropic Sobolev space W2,1(M) = {u;u,|∇u| ∈ L2(M)}. It can be shown
that |u| ∈ W2,1(M) if u ∈ W2,1(M) by calculus of weak differentiation [GT,
Sect. 7.4]. Then, the first eigenvalue λ1 = infu∈W+{‖∇θu‖2

L2 + ∫
M Rθ |u|2}, where

W+ = {u ∈ W2,1(M);‖u‖L2 = 1,u ≥ 0}. Let {u j} be a minimizing sequence in
W+. There exist φ ∈W+ and a subsequence of {u j} converging to φ in L2(M) and
weakly in W2,1(M). λ1 is attained by φ and the Euler-Lagrange equation yields
Lθφ = λ1φ. Then, φ is C∞ and positive by regularity result in Proposition 2.2 and
the maximum principle in Proposition 2.3, respectively. The proposition is now
proved.

Remark. (1) This proposition does not exclude the possibility that the scalar posi-
tive CR manifolds have contact forms with Webster scalar curvature vanishing or
negative somewhere.

(2) Our definition of functionAθ in (1.5) is a little bit different from that in [H],
since if we choose θ = θH locally for θ ∈ {J} as in [H], θ doesn’t have positive
Webster scalar curvature. The existence of Green function can not directly follow
from the invertibility of Lθ .
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A continuous function Gθ : M × M\diagM −→ R is called a Green function
of the conformal SubLaplacian Lθ if

∫

M
Gθ(x,y)Lθu(y)θ ∧ (dθ)n(y) = u(x)(3.1)

for all u ∈ C∞
0 (M).

Proposition 3.2. Let (M,J ) be strictly pseudoconvex CR manifold, θ ∈ {J} and
Gθ be a Green function of the conformal SubLaplacian Lθ . Then G θ̃ given by

G θ̃ = 1

φ(x)φ(y)
Gθ (x,y)(3.2)

is a Green function of the conformal SubLaplacian L θ̃ with θ̃ = φ
4

Q−2 θ .

Proof. Since

dθ̃ = 4

Q − 2
φ

6−Q
Q−2 dφ ∧ θ + φ

4
Q−2 dθ,(3.3)

we have

θ̃ ∧ (dθ̃)n = φ
2Q

Q−2 θ ∧ (dθ)n.(3.4)

Therefore,
∫

M

1

φ(x)φ(y)
Gθ(x,y)(L θ̃u)(y)θ̃ ∧ (dθ̃)n(y)

= 1

φ(x)

∫
M

Gθ(x,y)Lθ(φu)(y)θ ∧ (dθ)n(y) = u(x),

(3.5)

for any u ∈ C∞
0 (M), by the transformation formula (1.1). The proposition is

proved.

From now on in this section, we assume (M,θ) to be compact and scalar
positive. So, Gθ always exists by using Beals-Greiner calculus [BG] since Lθ is
invertible in L2(M) by Rθ > 0. The Green function of the conformal SubLaplacian
Lθ is unique in this case.

The Green function of the conformal SubLaplacian LθH on the Heisenberg
group Hn is [JL1, pp. 180]

GθH(x,y) = CQ

‖x · y−1‖Q−2 ,(3.6)

for x �= y,x,y ∈ Hn , where ‖ · ‖ is the norm on Hn defined by (2.13) and constant

CQ = 22−2nπn+1

�( n
2 )2 .(3.7)

The limit (1.5) exists and is C∞ by the following proposition. In the proof of
the following proposition, we also give a direct construction of the Green function
of the conformal SubLaplacian Lθ on a spherical CR manifold (M,J ) for θ ∈ {J}.
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Proposition 3.3. Let (M,J ) be a compact spherical CR manifold, θ ∈ {J} have
positive scalar curvature, and U be a sufficiently small open set. Then the function
Gθ(x,y) − ρθ(x,y) can be extended to a C∞ function on U × U.

Proof. Suppose U � Ũ ⊂ Hn and θ = φ
4

Q−2 θH on Ũ. We choose ρ so small that
B(η,ρ) ⊂ Ũ for any η ∈ U . We can construct the Green function as follows. For
ξ,η ∈ U , define

G0(ξ,η) = G̃0(ξη
−1),

G̃0(y) = CQ

‖y‖Q−2 f(y), y ∈ Hn,
(3.8)

where f ∈ C∞
0 (Hn) satisfying f ≡ 1 on B(0,

ρ
2 ) and f ≡ 0 on B(0,ρ)c. Denote

Z j = X j − iX j+n, j = 1, · · · ,n. Then, �θH = − ∑2n
j=1 X2

j . Note LθH = bn�θH .
Then,

LθH G̃0(y) = δ0 − bn

2n∑
j=1

X j

(
CQ

‖y‖Q−2

)
X j f(y) + CQ

‖y‖Q−2 LθH f(y)

= δ0 + G̃1(y),

(3.9)

by CQ

‖y‖2−Q being the fundamental solution of LθH and X j f ≡ 0 on B(ξ,
ρ
2 ), where

δ0 is the Dirac function at the origin under the measure θH ∧ (dθH)n . Set G1(ξ,·) =
G̃1(ξη

−1) for ξ,η ∈ U . Then, G1(ξ,η) ∈ C∞(U ×U) and for each ξ ∈ U , G1(ξ,·)
can be natually extended to a smooth function on M satisfying G1(ξ,η) = 0 for
η /∈ Ũ . By (1.1),

Lθ

(
φ(ξ)−1φ(·)−1G0(ξ,·)) = φ(ξ)−1φ(·)− Q+2

Q−2 LθH G0(ξ,·)
= δξ + φ(ξ)−1φ(·)− Q+2

Q−2 G1(ξ,·),
(3.10)

on U for ξ ∈ U , where δξ is the Dirac function at point ξ under the measure

θ ∧ (dθ)n = φ
2Q

Q−2 θH ∧ (dθH)n . Now set

G(ξ,η) = φ(ξ)−1φ(η)−1G0(ξ,η) + G2(ξ,η)(3.11)

for ξ ∈ U,η ∈ M, where G2 satisfies Lθ G2(ξ,·) = −φ(ξ)−1φ(·)− Q+2
Q−2 G1(ξ,·).

G2(ξ,·) exists since Lθ is invertible in L2(M). G2(ξ,·) ∈ C∞(U) for fixed ξ by
regularity of Lθ in Proposition 2.2. G2(·,η) is also in C∞(U) by differentiating
LθG2(ξ,·) = G1(ξ,·) with respect to variable ξ repeatedly. Then, Lθ G(ξ,·) = δξ ,
i.e., G(ξ,η) is the Green function Gθ(ξ,η) of Lθ . By (3.11), Gθ(ξ,η) − ρθ(ξ,η) ∈
C∞(U × U). It follows from (3.11) that G(ξ,η) −→ +∞ as η −→ ξ . By the
maximum principle (Proposition 2.3), Gθ (ξ,η) > 0 for all ξ �= η.

Proof of Theorem 1.1. Let’s verify that Aθ is independent of the choice of local
coordinates and A2

θθ is independent of the choice of θ ∈ {J}. Suppose θ,θ̃ ∈ {J}
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and θ̃ = φ̃
4

Q−2 θ . Let U ⊂ M be an open set, � : U −→ V ⊂ Hn and �̃ : U −→
Ṽ ⊂ Hn be two coordinates such that

θ = �∗(φ
4

Q−2
1 θH

)
,

θ̃ = �̃∗(φ
4

Q−2
2 θH

)
,

(3.12)

for two positive functions φ1,φ2. Then, f = �̃ ◦ �−1 : V −→ Ṽ is a CR
diffeomorphism and

f ∗θH(ξ) = φ
4

Q−2 (ξ)θH(ξ),(3.13)

for ξ ∈ V , where φ(ξ) = φ1(ξ)φ2( f(ξ))−1φ̃(�−1(ξ)). We claim that, for ξ,η ∈ V ,

‖ f(ξ) f(η)−1‖ = φ
1

Q−2 (ξ)φ
1

Q−2 (η)‖ξη−1‖.(3.14)

By applying (3.14) to ξ = �(x),η = �(y) and f = �̃ ◦ �−1, we find

Aθ̃ (x) = lim
y−→x

∣∣∣∣∣G θ̃ (x,y) − CQ‖�̃(x)�̃(y)−1‖2−Q

φ2(�̃(x))φ2(�̃(y))

∣∣∣∣∣

1
Q−2

= lim
y−→x

∣∣∣∣
Gθ (x,y)

φ̃(x)φ̃(y)
− CQ‖�(x)�(y)−1‖2−Q

φ̃(x)φ̃(y)φ1(�(x))φ1(�(y))

∣∣∣∣
1

Q−2

= φ̃
2

Q−2 (x) lim
y−→x

∣∣∣∣Gθ (x,y) − CQ‖�(x)�(y)−1‖2−Q

φ1(�(x))φ1(�(y))

∣∣∣∣
1

Q−2

= φ̃
2

Q−2 (x)Aθ (x).

(3.15)

So,

A2
θ̃
θ̃ = A2

θθ.(3.16)

We will use positive mass theorem to show that Aθ is non-vanishing. Now let

θ = φ
4

Q−2 θH locally. Denote by A(x) the smooth function limy−→x(Gθ (x,y)
−ρθ(x,y)). Note that

Gθ(x,y)
4

Q−2 θ(y) = (
ρθ(x,y) + A(x) + O(‖x−1 y‖)) 4

Q−2 θ(y)

= α(x)

‖x−1 y‖4 · (1 + β(x)‖x−1y‖Q−2 + O(‖x−1 y‖Q−1)
) 4

Q−2 θH(y),
(3.17)

where α(x) = (
CQφ(x)−1

) 4
Q−2 and β(x) = A(x)φ(x)2

CQ
. Note that the inversion R

defined by (2.45) is just F◦ I ◦ F−1, where F is the stereographic projection defined
by (2.24), and I is the CR automorphism of S2n+1 given by (ξ1, · · · ,ξn+1) −→
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(ξ1, · · · ,ξn,− ξn+1). It follows from the transformation formula (2.26) and the fact
I preserving θS that

(R∗θH)(z,t) = 1

‖(z,t)‖4 θH(z,t).(3.18)

(cf. [JL1, p. 192]). Now Let Cx = R ◦ δr ◦ τx−1 , a CR mapping on a neighborhood

of x to Hn , where δr is the dilation, r = α(x)− 1
2 . It is easy to see that Cx(x) = ∞

and
(
(C−1

x )∗G
4

Q−2
θ θ

)
(ỹ) =

(
(R∗ ◦ δ∗

r−1 ◦ τ∗
x )G

4
Q−2
θ θ

) 4
Q−2

(ỹ)

= (
1 + β(x)r−Q+2‖ỹ‖−Q+2 + O(‖ỹ‖−Q+1)

) 4
Q−2 θH(ỹ),

(3.19)

where ỹ = Cx(y). Note Q = 2n +2. The CR positive mass theorem (Theorem 2.6)
promises β(x)r−Q+2 to be positive. Therefore, A(x) is positive and Aθ is non-
vanishing.

It remains to check (3.14). By Liouville-type theorem, f is a restriction on U
of a CR automorphism of Hn . We denote it also by f . By the transformation law

(1.1), for θ = f ∗θH(ξ) = φ
4

Q−2 (ξ)θH(ξ),

LθH

(
φ̃−1ũ

)
( f(η)) = Lθ

(
φ−1u

)
(η) = φ

− Q+2
Q−2 (η)(LθHu)(η),

f ∗(θH ∧ (dθH)n)(η) = φ
2Q

Q−2 (η) · θH ∧ (dθH)n(η).

(3.20)

where φ̃ = φ ◦ f −1,ũ = u ◦ f −1. Therefore, by substituting (3.20) and taking
transformation f(η) −→ η′, we have∫

Hn
CQφ(ξ)φ(η)‖ f(ξ) f(η)−1‖2−Q LθHu(η) · θH ∧ (dθH)n(η)

=
∫

Hn
CQφ(ξ)‖ f(ξ) f(η)−1‖2−Q(

LθH

(
φ̃−1ũ

))
( f(η))

· f ∗(θH ∧ (dθH)n)
(η)

=
∫

Hn
CQφ(ξ)‖ f(ξ)η′−1‖2−Q(

LθH

(
φ̃−1ũ

))
(η′) · θH ∧ (dθH)n(η′)

= u(ξ).

(3.21)

Now, by the uniqueness of positive Green’s function of LθH , we find that GθH(ξ,η)

= CQφ(ξ)φ(η)‖ f(ξ) f(η)−1‖2−Q . Thus, (3.14) follows. The theorem is proved.

The following is the invariance of the canonical contact form under CR diffeo-
morphisms.

Proposition 3.4. Let (M1,J1) and (M2,J2) be two connected, compact, scalar
positive, spherical CR manifolds with dim M1 = dim M2 > 5, which are both not
CR equivalent to the standard sphere S2n+1. Suppose f : (M1,J1) −→ (M2,J2)

be a locally diffeomorphic CR mapping. Then,
∣∣ f ∗can(J2)(V )

∣∣ ≥ |can(J1)( f∗V )|(3.22)

for any tangent vector V ∈ TM.
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Proof. Since f is a local diffeomorphism and M1 and M2 are connected and
compact, f is a finite regular covering. Fix x ∈ M1 and choose θ2 ∈ {J2} such
that θ2 has positive Webster scalar curvature. Let U2 be a neighborhood of f(x),

�2 : U2 −→ V ⊂ Hn be a coordinate transformation and θ2 = �∗
2(φ

4
Q−2 θH) on U

for some positive function φ. Then, θ1 = f ∗θ2 ∈ {J1} has positive Webster scalar
curvature, U1 = f −1(U2) is a neighborhood of x, �1 = �2 ◦ f is a coordinate

transformation and θ1 = �∗
1(φ

4
Q−2 θH).

By the definition of Green function,

Gθ2( f(x), f(y)) =
∑
γ∈�

Gθ1(x,γy)(3.23)

for y ∈ M1 and f(x) �= f(y), where � is the covering group. It follows that

AQ−2
θ2

( f(x)) = lim
y′−→ f(x)

∣∣∣∣Gθ2( f(x),y′) − CQ‖�2( f(x))�2(y′)−1‖2−Q

φ(�2( f(x)))φ(�2(y′))

∣∣∣∣

= lim
y−→x

∣∣∣∣∣∣
∑
γ∈�

Gθ1(x,γy) − CQ‖�1(x)�1(y)−1‖2−Q

φ(�1(x))φ(�1(y))

∣∣∣∣∣∣

= lim
y−→x

∣∣∣∣Gθ1(x,y) − CQ‖�1(x)�1(y)−1‖2−Q

φ(�1(x))φ(�1(y))

∣∣∣∣ +
∑

γ∈�\{1}
Gθ1(x,γy)

= AQ−2
θ1

(x) +
∑

γ∈�\{1}
Gθ1(x,γy) ≥ AQ−2

θ1
(x).

(3.24)

In the third equality, we use the fact that Gθ1(x,y) − CQ‖�1(x)�1(y)−1‖2−Q

φ(�1(x))φ(�1(y)) and
Gθ1(x,γy) are all positive. Hence,

∣∣ f ∗can(J2)(x)(V )
∣∣ = ∣∣A2

θ2
( f(x))θ2( f∗V )

∣∣
≥ ∣∣A2

θ1
(x)θ1(V )

∣∣ = ∣∣can(J1)(x)(V )
∣∣(3.25)

for V ∈ TM.

Since CR mapping preserves orientation, we have the following invariance of
can(J ).

Corollary 3.5. Let (M1,J1) and (M2,J2) be as in Proposition 3.4. If f is a CR
diffeomorphism, then

f ∗can(J2) = can(J1).(3.26)

can(J ) is invariant under the CR diffeomorphisms of (M,J ).

Let us calculate the canonical contact form of Habermann-Jost type on Kleinian
manifolds. Suppose θ is a spherical contact form on M = �(�)/�. Note that by
the canonical projection π� : �(�) −→ �(�)/�, π∗

�θ is conformally equivalent
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to the restriction of the standard contact form θS of S2n+1 to �(�). Let φ̂ be the
positive function on �(�) such that

π∗
�θ = φ̂

4
Q−2 θS.(3.27)

The Green function of the conformal SubLaplacian Lθ on �(�)/� can be expressed
by φ̂ and the Green function GS of the conformal SubLaplacian LθS on S2n+1 as
follows.

Proposition 3.6. Let M, φ̂ and π� be defined as above. Then,

Gθ(π�(ξ),π�(ξ ′)) = 1

φ̂(ξ)φ̂(ξ ′)

∑
γ∈�

|γ ′(ξ ′)| Q−2
2 GS(ξ,γξ ′),(3.28)

for ξ,ξ ′ ∈ �(�) with π�(ξ) �= π�(ξ ′).

Proof. By (3.2),

Ĝ(ξ,ξ ′) = 1

φ̂(ξ)φ̂(ξ ′)
GS(ξ,ξ ′)(3.29)

is the Green function of the conformal SubLaplacian Lπ∗
�θ on (�(�),π∗

�θ). Since
π∗

�θ is invariant under �, we have

φ̂(γξ)|γ ′(ξ)| Q−2
2 = φ̂(ξ), for ξ ∈ �(�),(3.30)

by the definition (1.7) of |γ ′|. Thus, the right side of (3.28) is
∑
γ∈�

Ĝ(ξ,γξ ′),(3.31)

which is equal to the left side of (3.28). It remains to prove that
∑
γ∈�

|γ ′(ξ ′)| Q−2
2 GS(ξ,γξ ′) < ∞(3.32)

for all ξ,ξ ′ ∈ �(�) with π�(ξ) �= π�(ξ ′). Since M is scalar positive, we have
δ(�) < n = Q−2

2 by Theorem 1.3 (We can use Theorem 1.3 here since its proof is
independent of Theorem 1.1 and Theorem 1.2), which implies that

∑
γ∈�

|γ ′(ξ ′)| Q−2
2 < ∞,(3.33)

by Proposition 2.4. On the other hand, since � acts properly discontinuously on
�(�), there exists a constant c(ξ,ξ ′) such that d(ξ,γξ ′) ≥ c(ξ,ξ ′) for all γ ∈ �.
Thus,

GS(ξ,γξ ′) < Cc(ξ,ξ ′)2−Q < ∞,(3.34)

for some constant C > 0. (3.32) is proved. This completes the proof of the
proposition.
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Proof of Theorem 1.2. Let θ be a contact form on �(�)/� in {J�} and φ̂ is a
C∞ function on �(�) such that (3.27) holds on �(�). Let ξ ∈ �(�). Let F−ξ :
S2n+1 \ {−ξ} −→ Hn be the stereographic projection, which is the composition
of an unitary transformation mapping −ξ to (0, · · · ,0, − 1) and the standard
stereographic projection (2.24), and let the function φS be defined by

θS = F∗−ξ

(
φ

4
Q−2
S θH

)
.(3.35)

Then, F−ξ ◦ π−1
� locally defines a coordinate transformation near π�(ξ) and

θ = (
F−ξ ◦ π−1

�

)∗((
φ̂ ◦ F−1

−ξ · φS
) 4

Q−2 θH

)
.(3.36)

Thus, can(J�) = A2θ with A(π�(ξ)) equal to

lim
ξ ′−→ξ

∣∣∣∣Gθ(π�(ξ),π�(ξ ′)) − CQ

(φ̂ · φ̂S)(ξ)(φ̂ · φ̂S)(ξ ′)
‖F−ξ (ξ

′)‖2−Q
∣∣∣∣

1
Q−2

,(3.37)

by the definition ofA and F−ξ (ξ) = (0, · · · ,0). Here φ̂S = φS ◦ F−ξ . On the other
hand,

Gθ (π�(ξ),π�(ξ ′)) − CQ

(φ̂ · φ̂S)(ξ)(φ̂ · φ̂S)(ξ ′)
‖F−ξ (ξ

′)‖2−Q

= 1

φ̂(ξ)φ̂(ξ ′)

∑
γ∈�\{1}

|γ ′(ξ ′)| Q−2
2 GS(ξ,γξ ′)

(3.38)

by Proposition 3.6 and

GS(ξ,ξ ′) = CQ

φ̂S(ξ)φ̂S(ξ ′)
‖F−ξ (ξ

′)‖2−Q ,(3.39)

which follows from the transformation formula of Green functions (3.2) and the
Green function of LθH . Hence,

A(π�(ξ)) = φ̂(ξ)
− 2

Q−2

( ∑
γ∈�\{1}

|γ ′(ξ)| Q−2
2 GS(ξ,γξ)

) 1
Q−2

.(3.40)

Let π∗
�can(J�) = A2

�θS. Then,

A�(ξ) = φ̂
2

Q−2A(π�(ξ))(3.41)

by (3.27) and can(J�) = A2θ . Formula (1.10) follows from (3.40) and (3.41).
Theorem 1.2 is proved.

Remark. If � is nontrivial, then A� > 0 everywhere by (1.10). Hence can(J ) is
a spherical contact form on �(�)/�. Namely, Theorem 1.1 holds for scalar positive
Kleinian manifolds in any dimensions.
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4. Canonical contact form of Nayatani type

In this section, we construct another canonical contact form θ̂�, which is the CR
generalization of Nayatani’s canonical metric in conformal geometry, and calculate
its curvature. Since

GS(γξ,γξ ′) = |γ ′(ξ)|− Q−2
2 |γ ′(ξ ′)|− Q−2

2 GS(ξ,ξ ′)(4.1)

by the definition of |γ ′| in (1.7) and the transformation formula of Green functions
(3.2), we have

��(γξ) =
(∫

	(�)

G
2δ(�)
Q−2

S (γξ,ξ ′)dµ�(ξ ′)
) Q−2

2δ(�)

=
(∫

	(�)

G
2δ(�)
Q−2

S (γξ,γξ ′)dγ ∗µ�(ξ ′)
) Q−2

2δ(�)

=
(∫

	(�)

|γ ′(ξ)|−δ(�)G
2δ(�)
Q−2

S (ξ,ξ ′)dµ�(ξ ′)
) Q−2

2δ(�)

= |γ ′(ξ)|− Q−2
2 ��(ξ),

(4.2)

by using the transformation formula (1.12) for Patterson-Sullivan measure. There-
fore, θ̂� defined by (1.15) is invariant under the action of �. It is obvious nonzero
and induces a spherical contact form on �(�)/�.

Example. Let 	(�) consists one point. δ(�) = 0 in this case. When 	(�) is
a single point y, the Patterson-Sullivan measure µ� is the Dirac measure at y, and

therefore θ̂� = G
4

Q−2
S (·,y)θS. It is easy to verify that θ̂� is the standard contact

form θH.

Proof of Theorem 1.3. We will calculate the curvature of θ̂�, which is defined by
(1.14) and (1.15), locally on Hn . Without loss of generality, we can assume the
south pole (0, · · · ,0,−1) of sphere S2n+1 contained in �(�). Let ξ ∈ �(�). Under
the stereographic projection F defined by (2.24),

GS
(
F−1(ξ),F−1(ξ ′)

) =
(

4

|w + i|2
)− Q−2

4
(

4

|w′ + i|2
)− Q−2

4

GθH(ξ,ξ ′),(4.3)

by (2.26) and (3.2), where

ξ = (z,t), ξ ′ = (z′,t′) ∈ Hn,

w = t + i|z|2, w′ = t′ + i|z′|2.(4.4)

Define the set 	̃(�) and the measure µ̃� on Hn by

	̃(�) = F(	(�)),

µ̃�(ξ) =
(

4

|w + i|2
)− δ(�)

2

µ�(F−1(ξ)),
(4.5)
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and the contact form θ̃� on Hn by

θ̃� = (π� ◦ F−1)∗θ̂�.(4.6)

By the stereographic projection F, � induces an action on Hn . It is easy to see that
the set 	̃(�) and the contact form θ̃� on Hn are both invariant under the action
of �. Note that π� ◦ F−1 is locally a CR diffeomorphism. So, the Webster scalar
curvature of θ̃�(ξ) is the same as that of θ̂� at the point π� ◦ F−1(ξ).

Let us calculate the Webster scalar curvature of θ̃�(ξ) now. If we write

θ̃�(ξ) = u
4

Q−2 (ξ)θH(ξ),(4.7)

then,

u(ξ) =
(

4

|w + i|2
) Q−2

4
(∫

	(�)

G p
S(F−1(ξ),ζ)dµ�(ζ)

) 1
p

=
(∫

	̃(�)

G p
θH

(ξ,ξ ′)dµ̃�(ξ ′)
) 1

p

,

(4.8)

by (4.3)–(4.5), (2.26) and the definition of θ̂�, where p = 2δ(�)
Q−2 . Now denote

θ̃�(x) = e2 f(x)θH(x),

φ(x,y) = GθH(x,y)
2

2−Q = C
2

2−Q
Q ‖xy−1‖2,

(4.9)

for x,y ∈ Hn . Then,

f(x) = 1

δ(�)
log

(∫

	̃(�)

φ(x,y)−δ(�)dµ̃�(y)

)
,(4.10)

and the transformation formula of the Webster scalar curvature (Proposition 5.15
in [JL1]) is

Rθ̃�
= e−2 f

(
Q�θH f − Q

2
(Q − 2)

n∑
j=1

|Z j f |2
)

.(4.11)

Note

Z j f(x) = −
∫

	̃(�)

φ−1
y (x)Z jφy(x)dν(y),(4.12)

where φy(·) = φ(·,y) and let measure

dν(y) =
(∫

	̃(�)

φ−δ
y dµ̃�(y)

)−1

φ−δ
y dµ̃�(y).(4.13)
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Here δ = δ(�). Direct manipulation gives

Z j Z j f = −
∫

	̃(�)

φ−1
y Z j Z jφydν + (δ + 1)

∫

	̃(�)

φ−2
y Z jφy Z jφydν

− δ

∫

	̃(�)

φ−1
y Z jφydν

∫

	̃(�)

φ−1
y Z jφydν.

(4.14)

Note �θH = − 1
2

∑n
j=1(Z j Z j + Z j Z j ). We find that

�θH f − Q − 2

2

n∑
j=1

|Z j f |2 = −
∫

	̃(�)

φ−1
y �θHφydν

− (δ + 1)

∫

	̃(�)

φ−2
y

n∑
j=1

|Z jφy|2dν + δ

n∑
j=1

∣∣∣∣
∫

	̃(�)

φ−1
y Z jφydν

∣∣∣∣
2

− Q − 2

2

n∑
j=1

∣∣∣∣
∫

	̃(�)

φ−1
y Z jφydν

∣∣∣∣
2

=
(

Q

2
− 1 − δ

)(∫

	̃(�)

φ−2
y

n∑
j=1

|Z jφy|2dν −
n∑

j=1

∣∣∣
∫

	̃(�)

φ−1
y Z jφydν

∣∣∣
2
)

− Q

2

∫

	̃(�)

φ−2
y

n∑
j=1

|Z jφy|2dν −
∫

	̃(�)

φ−1
y �θHφydν.

(4.15)

Note that

�θHφy = 2

2 − Q
G

Q
2−Q
θH

�θH GθH − 2Q

(2 − Q)2 G
2Q−2
2−Q

θH

n∑
j=1

|Z j GθH|2(4.16)

by the definition of φy in (4.9), and

n∑
j=1

|Z jφy|2 = 4

(2 − Q)2 G
2Q

2−Q
θH

n∑
j=1

|Z j GθH |2.(4.17)

Moreover, �θH GθH(x,y) = 0 for x �= y. The last two terms in (4.15) are cancelled.
Thus,

Rθ̃�
= Q(n − δ)e−2 f

(∫

	̃(�)

φ−2
y

n∑
j=1

|Z jφy|2dν

−
n∑

j=1

∣∣∣
∫

	̃(�)

φ−1
y Z jφydν

∣∣∣2
)

.

(4.18)

Let be A = (A jk) the Hermitian matrix with

A jk =
∫

	̃(�)

φ−2
y Z jφy Zkφydν −

∫

	̃(�)

φ−1
y Z jφydν

∫

	̃(�)

φ−1
y Zkφydν.(4.19)
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Since
∫
	̃(�) dν = 1, it is easy to see that A is non-negativeby the Cauchy-Schwarz’s

inequality, i.e. TrA(x) ≥ 0. Then,

Rθ̃�
= (2n + 2)(n − δ)e−2 f TrA(x).(4.20)

Hence, Theorem 1.3 follows from fact that TrA(x) is nowhere vanishing on �(�)

by the following lemma.

Lemma 4.1. If

TrA(x) =
∫

	̃(�)

φ−2
y

n∑
j=1

|Z jφy|2dν −
n∑

j=1

∣∣∣∣
∫

	̃(�)

φ−1
y Z jφydν

∣∣∣∣
2

(4.21)

vanishes at some point x ∈ �̃(�) and δ(�) �= n, then the limit set 	̃(�) is exactly
one point, and A vanishes identically.

Proof. We still work on Hn as in the proof of Theorem 1.3. Note that the support
of Patterson-Sullivan measure µ̃� coincides with the support of δ(�)−dimensional
Carnot-Hausdorff measure mδ(�) on 	̃(�). Suppose TrA(x0) = 0 for some x0 ∈
�̃(�) = Hn \ 	̃(�). This is equivalent to the vector v(x0,y) = (φ−1

y Z1φy, · · · ,
φ−1

y Znφy) being a constant vector at x0 for µ̃� almost all y in 	̃(�). For x0 =
(z′,t′) ∈ �̃(�) and y = (z,t) ∈ 	̃(�), φy = C

2
2−Q
Q ‖(ẑ,t̂)‖2, where (ẑ,t̂) =

(z′,t′)−1(z,t), and the j-th component of v(x0,y) is

v j = φ−1
y Z jφy = (|ẑ|2 + i t̂)ẑ j

|ẑ|4 + t̂2
,(4.22)

by Z j left invariant for j = 1, · · · ,n.
Now suppose δ(�) > 0. We can find a Lebegues point y0 of the limit set

	̃(�). Namely, there exists constants c and r0 > 0 such that the Carnot-Hausdorff
measure

mδ(�)(B(y0,r) ∩ 	̃(�)) ≥ crδ(�).(4.23)

for all r < r0, where B(y0,r) = {ξ ∈ Hn;‖y0ξ
−1‖ < r}. Note Rθ̃�

(x0) = 0 by

(4.20). Since θ̃� is invariant under the action of �, Rθ̃�
is invariant under the action

of �. So we find that Rθ̃�
(γx0) = 0 for all γ ∈ �. Therefore, by (4.20) again,

TrA(γx0) = 0 for all γ ∈ �. Note the fundamental domain of � is compact. We can
find a sequence γn ∈ � such that Pn = γn x0 −→ y0. From above, for each n,
v(Pn,y) is a constant vector for µ̃� almost all y in 	̃(�). Thus, there exists a subset
	̂ ⊂ 	̃(�) such that µ̃�(	̂) = µ̃�(	̃(�)) and

v(Pn,y) = v(Pn,y′)(4.24)

for any y,y′ ∈ 	̂ and any n. We can not promise y0 ∈ 	̂. However, since y0 is
a Lebegues point, we can choose a sequence ym ∈ 	̂ such that ym are all different
and different from y0, and ym −→ y0 as m −→ ∞. So,

v(Pn ,ym) = v(Pn,y1), m,n = 1,2, · · · .(4.25)
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But

‖v(x,y)‖2 =
n∑

j=1

|v j |2 = |ẑ|2
|ẑ|4 + t̂2

≤ (|ẑ|4 + t̂2)−
1
2 −→ +∞(4.26)

as ‖x−1 y‖ −→ 0, where (ẑ,t̂) = x−1 y. If we let m and n tend to infinity, i.e.
Pn −→ y0 and ym −→ y0 in (4.25), the left side of (4.25) tends to infinity while
the right side of (4.25) remains finite. This is a contradiction. If δ(�) = 0 and 	(�)

is not a single point, we can find similar contradiction. The lemma is now proved.

Remark. If we assume x0 to be the origin. Then ‖v(x0,(z,t))‖ = ∑n
j=1 |v j |2 =

(|z|4 + t2)−1|z|2 is a constant for µ̃� almost everywhere (z,t). Thus, if |z| �= 0,
(· · · ,z j + iz j t|z|−2, · · · ) is a constant vector. Note 	̃(�) is a bounded set in Hn .
If necessarily by translation and rotation, we can assume (1,0, · · · ,0) ∈ 	̃(�)

and the axis {(z,t),z = 0} ∩ 	̃(�) = ∅. Thus, v(x0,(z,t)) = (1,0, · · · ,0) for all
(z,t) ∈ 	̃(�). It follows that almost all points of 	̃(�) are contained in the set
defined by

z1 + i
z1

|z|2 t = 1, z j + i
z j

|z|2 t = 0,(4.27)

j = 2, · · · ,n. From the later equations in (4.26), z j = 0 since 1 + it|z|−2 �= 0.
This is a curve. In the case of locally conformally flat manifolds, such argument
shows 	(�) to be a single point. In our case, we need the fact TrA(γx0) = 0 for
all γ ∈ � to prove 	̃(�) being a single point.

5. Connected sum of of spherical CR manifolds

Let M be a connected, closed, spherical CR manifold of dimension 2n + 1 with
two punctures ξ1,ξ2, or disjoint union of two connected spherical CR manifolds
M(1),M(2) with one puncture ξi ∈ M(i),i = 1,2, each. Let J be a scalar positive
spherical CR structure on M, U1 and U2 be two disjoint neighborhoods of ξ1 and ξ2,
respectively, and local coordinates

ψi : Ui −→ B(0,2),(5.1)

such that ψi(ξi) = 0, i = 1,2, and

B(P,ε) = {ξ ∈ Hn;‖P · ξ−1‖ < ε}(5.2)

for P ∈ Hn,ε > 0. For 0 < s < t < 2, define

Ui(s,t) = {ξ ∈ Ui;s < ‖ψi(ξ)‖ < t},
Ui(t) = {ξ ∈ Ui;‖ψi(ξ)‖ < t},(5.3)

i = 1,2. For t ∈ (0,1), A ∈ U(n), we can form a new spherical CR manifold Mt,A
by removing the closed balls Ui(t), i = 1,2, and identifying U1(t,1) with U2(t,1)

along the mapping �t,A : U1(t,1) −→ U2(t,1) defined by

�2 ◦ �t,A(ξ) = δt ◦ R ◦ UA(�1(ξ)).(5.4)
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Here R is the inversion defined by (2.45) and UA is the unitary transformation
defined by (2.44). Let

πt,A : M \ U1(t) ∪ U2(t) −→ Mt,A(5.5)

be a canonical projection. Since �t,A is CR with respect to the standard CR
structure J , there is a unique spherical CR structure on Mt,A, whose pull back
along πt,A agrees with the structure J restricted to M \ U1(t) ∪ U2(t). We denote
this spherical CR structure by Jt,A. (Mt,A,Jt,A) degenerates to the spherical CR
manifold (M \ {ξ1,ξ2},J ) with two punctures ξ1,ξ2 as t −→ 0.

Example. Let {Ci,C′
i}k

i=1 be the boundary of balls {Di,Di}k
i=1, where Di and D′

i are
mutually disjoint, Di = B(Pi,ri),D′

i = B(P′
i ,r

′
i), Pi ,P′

i ∈ S2n+1, ri > 0,r ′
i > 0,

i = 1, · · · ,k. Suppose γi(Di) = D′
i , γi ∈ PU(n + 1,1). Then, {γi} generates

a convex cocompact group � which is isomorphic to the free group of rank k. As
in the Riemannian case, we call such group the Schottky group. It is easy to see
that S2n+1 \ ∪k

i=1(Di ∪ D′
i) is the fundamental domain for � [EMM]. �(�)/� is

CR diffeomorphic to k(S1 × S2n). Here

k(S1 × S2n) = S1 × S2n� · · · �S1 × S2n,(5.6)

� is the connected operation defined by (5.4). By the following proposition,
k(S1 × S2n) admits a spherical CR structure with positive Webster scalar curvature.

Proposition 5.1. If t is sufficiently small, (Mt,A,Jt,A) is scalar positive.

Recall the Yamabe invariant

µ(M,J ) = inf
f>0

bn
∫

M |∇θ f |2θ ∧ (dθ)n + ∫
M Rθ f 2θ ∧ (dθ)n

( ∫
M f

2Q
Q−2 θ ∧ (dθ)n

) Q−2
Q

,(5.7)

where θ ∈ {J}. By the solution of the Yamabe problem for connected strictly
pseudoconvex CR manifolds (cf. [JL1]–[JL3], [G] and [GY]), there exists f ∈
C∞(M) such that the Webster scalar curvature of f

4
Q−2 θ is the constant µ(M,J ).

Thus, (M,J ) is scalar positive if and only if µ(M,J ) is positive. So, Proposition 5.1
follows from the following proposition.

Proposition 5.2. If t is sufficiently small, µ(Mt,A,Jt,A) > 0.

Proof. The proof is similar to the Riemannian case [Ko]. Let

M0 = M \ {ξ1,ξ2}.(5.8)

Choose a contact form θ̂ ∈ {J}. Then, by multiplying a positive function λ ∈
C∞(M0 \ {ξ1,ξ2}), we can assume θ = λθ̂ satisfying

ψi∗θ(ξ) = ‖ξ‖−2θH(ξ) on (B (0,2)) \ {0}.(5.9)

This means that (M0,θ) has cylindrical ends. It is easy to see that the gluing mapping
�t,A preserves the contact form ‖ξ‖−2θH(ξ) on t < ‖ξ‖ < 1

t , 0 < 2
3 t < 1, by the
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transformation formula (3.18). Hence we can glue θ along �t,A to obtain a spherical
contact form θt,A on Mt,A satisfying

π∗
t,Aθt,A = θ on M \ U1(t) ∪ U2(t).(5.10)

Define a mapping

� : B(0,1) −→ [0,∞) × �n(5.11)

by �(ξ) = (log 1
‖ξ‖ ,

ξ
‖ξ‖ ), where �n = {ξ ∈ Hn;‖ξ‖ = 1}. Define a contact form

θ̃ = �∗(‖ξ‖−2θH). (B(0,1),‖ξ‖−2θH) is CR equivalent to ([0,∞) × �n,θ̃). Since
ψi∗θ ∧ (dψi∗θ)n = ‖ξ‖−QθH ∧ (dθH)n is invariant under rescaling, it is easy to
see that the measure θ̃ ∧ (dθ̃)n is invariant under translation (s,x) −→ (s + s0,x)

on [0,∞) × �n . As a measure,

θ̃ ∧ (dθ̃)n = dldS�n ,(5.12)

where dS�n is a measure on �n . We write

(M0,θ) = ([0,∞) × �n,θ̃) ∪ (M̂,θ) ∪ ([0,∞) × �n,θ̃),(5.13)

where M̂ = M \ U1(1) ∪ U2(1). We can glue (M̂,θ) and ([0,l]×�n,θ̃) along their
boundaries to get (Mt,A,Jt,A), where l = log 1

t .
By the definition of µ(Mt,A,Jt,A), we can find a positive function fl ∈

C∞(Mt,A) such that

bn

∫

Mt,A

|∇θt,A fl|2θt,A ∧ (dθt,A)n +
∫

Mt,A

Rθt,A f 2
l θt,A ∧ (dθt,A)n

< µ(Mt,A,Jt,A) + 1

l
,

(5.14)

and
∫

Mt,A

f
2Q

Q−2
l θt,A ∧ (dθt,A)n = 1.(5.15)

By the property of measure θ̃ ∧ (dθ̃)n in (5.12), we can show the following claim
exactly as Lemma 6.2 in [Ko]: there exists a section l∗ × �n with 0 ≤ l∗ ≤ l such
that

∫

l∗×�n

(
bn|∇θ̃ fl |2 + Rθ̃ f 2

l

)
dS�n <

C

l
,(5.16)

where C is a constant independent of l. Now define a Lipschitz function Fl on M0
by Fl = fl on [0,l∗) × �n ∪ M̂ ∪ [0,l − l∗) × �n and

Fl(s,x) =
{

(l∗ + 1 − s) fl(l∗,x) for (s,x) ∈ [l∗,l∗ + 1] × �n

0 for (s,x) ∈ [l∗ + 1,∞) × �n,
(5.17)
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and similarly on [l − l∗,∞) × �n . By (5.14) and (5.16), we have

bn

∫

M0

|∇θ Fl |2θ ∧ (dθ)n +
∫

M0

Rθ F2
l θ ∧ (dθ)n < µ(Mt,A,Jt,A) + B

l
,(5.18)

where B is a constant independent of l. Obviously,
∫

M0

F
2Q

Q−2
l θ ∧ (dθ)n > 1.(5.19)

Therefore,

inf
F>0

bn
∫

M0
|∇θ F|2θ ∧ (dθ)n + ∫

M0
Rθ f 2θ ∧ (dθ)n

( ∫
M0

F
2Q

Q−2 θ ∧ (dθ)n
) Q−2

Q

< µ(Mt,A,Jt,A) + B

l
,(5.20)

where the infimum is taken over all nonnegative Lipshitz functions with compact
support. Since for compact supported function f , the integrals in the left side of
(5.20) is equal to integrals on M with respect to θ∗ with θ∗ = θ on supp f . Thus, it
follows from the definition of the Yamabe invariant that the left side is greater than
or equal to µ(M,J ). If (M,J ) is a disjoint union of (M1,J1) and (M2,J2), we have

µ(M,J ) = min{µ(M1,J1),µ(M2,J2)},(5.21)

by the definition of Yamabe invariant. From (5.20) and (5.21), µ(Mt,A,Jt,A) is
positive if l is sufficiently large, i.e. t is sufficiently small. The proposition is
proved.

Remark 5.3. For radial function u, i.e. u(ξ) = f(‖ξ‖) for some function f on R+,
we have (cf. [GL, p. 327],

�θHu(ξ) = −ψ0(ξ)

[
f ′′(‖ξ‖) + Q − 1

‖ξ‖ f ′(‖ξ‖)
]

,(5.22)

where ψ0(ξ) = |z|2
‖(z,t)‖2 for ξ = (z,t) �= 0. It is easy to see that the Webster scalar

curvature of ‖ξ‖−2θH is non-negative and vanishes on the axis {(z,t) ∈ Hn|z = 0}.
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