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Abstract. The distributional k-dimensional Jacobian of a map u in the Sobolev space
W1,k−1 which takes values in the the sphere Sk−1 can be viewed as the boundary of
a rectifiable current of codimension k carried by (part of) the singularity of u which is
topologically relevant. The main purpose of this paper is to investigate the range of the
Jacobian operator; in particular, we show that any boundary M of codimension k can be
realized as Jacobian of a Sobolev map valued in Sk−1. In case M is polyhedral, the map we
construct is smooth outside M plus an additional polyhedral set of lower dimension, and
can be used in the constructive part of the proof of a �-convergence result for functionals of
Ginzburg-Landau type, as described in [2].

Key words. Jacobian – Sobolev maps – singular maps – integral currents – rectifiability –
dipole construction – complete intersections – Brouwer degree – coarea formula – Ginzburg-
Landau functionals

1. Introduction

Given a map u = (u1, u2) from a domain � ⊂ R2 into R2 which belongs to the
Sobolev class W1,2, the Jacobian determinant of u is Ju := det(Du) (notice the
absence of modulus). This pointwise definition may not give an L1-function for
less regular maps u, but the Jacobian can be still defined in some cases using the
identity

Ju = ∂

∂x1

(
u1

∂u2

∂x2

)
− ∂

∂x2

(
u1

∂u2

∂x1

)
. (1.1)

Indeed, the right-hand side of (1.1) makes sense, as a distribution, for all u of class
W1,1 ∩ L∞; the two definitions clearly agree for maps of class W1,2.
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If we restrict our attention to maps u which take values in the unit circle S1,
for smooth u the area formula implies that Ju vanishes, because S1 has null two-
dimensional measure. In fact, the same holds for maps of class W1,p when p ≥ 2,
but is no longer true when p < 2: for example, the (distributional) Jacobian of
u(x) := x/|x| defined by (1.1) is πδ0, where δ0 is the Dirac mass centered at the
origin, while det(Du) is almost everywhere null. More generally, if u is smooth
except for finitely many singular points xi , then Ju is a sum of Dirac masses
centered at xi , endowed with a multiplicity that can be recovered from the degree
of the restriction of u to any curve which winds around xi (see Sect. 3.6 below).
The distributional Jacobian was first applied in the context of nonlinear elasticity
by J. Ball in [5] (see also [31]), while the relation with topological singularities
and Dirac masses was pointed out by H. Brezis, J.-M. Coron, and E. Lieb [14] in
the context of harmonic maps and liquid crystal theory.

For domains and target spaces of general dimension, the situation is quite simi-
lar. Given a regular map u = (u1, . . . , uk) from � ⊂ Rn intoRk , it is convenient to
define the k-dimensional Jacobian as the pull-back according to u of the standard
volume form on Rk, that is, Ju := du1 ∧ · · ·∧ duk. This definition makes sense for
all maps of class at least W1,k, and can be extended to maps of class W1,k−1 ∩ L∞
using the identity Ju = 1

k d
(∑

(−1)i−1ui
∧

j �=i du j
)
. As before, if u : � → Sk−1

is of class W1,p with p ≥ k, then Ju = 0, but this may be no longer true when
p < k. More precisely, if u is smooth outside a regular surface M of codimension k,
then Ju is supported on the set M, and can be reconstructed from M and the degree
of the restriction of u to any surface of dimension k − 1 which winds around M
(cf. [28] and §3.7 below). In this sense, we may say that Ju represent the part of
the singularity of u which is topologically relevant1.

The previous observations on maps with regular singularity suggest the follow-
ing general structure theorem (see [27], [28]): if u : � → Sk−1 is of class W1,k−1

and Ju is a locally bounded measure, then Ju is concentrated on a set of (Haus-
dorff) codimension k, and more precisely it can be identified2 with a rectifiable
current of codimension k and without boundary. This result can also be obtained as
a corollary of Federer-Fleming boundary rectifiability theorem and the following
slightly more general statement (see Theorem 3.8 below): the Jacobian of a map
u : � → Sk−1 of class W1,k−1 agrees with the boundary of a rectifiable current of
codimension k − 1. For k = 2, 4, 8 this theorem was proved independently in [32],
using results from [21]; a similar statement for maps in the trace space W1−1/k,k

was given in [23] for any k.
The distributional Jacobian of maps in W1,k−1(�, Sk−1) is particularly interest-

ing because is the obstruction to strong approximation by smooth maps (see [6], [7],

1 This statement must be taken with care: if h : S3 → S2 is the Hopf map – namely
the one that generates the third homotopy group of S2 – and u : R4 → S2 is given by
u(x) := h(x/|x|), then u belongs to W1,p(�, S2) for every p < 3, and in particular Ju = 0;
yet the singularity at the origin cannot be discarded as topologically unrelevant (cf. [24]).

2 The Hodge-type � operator defined in Sect. 2.7 provides a canonical identification of
k-covectors and (n − k)-vectors; thus �Ju is an (n − k)-current, although in general not
a rectifiable one. In the rest of this introduction we tacitly assume this identification.
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and also [32], [33], [34], where the Jacobian is known as topological singularity).
In fact, Ju is just the projection of the boundary of the graph of u, which plays
an essential rôle in the theory of cartesian currents developed by M. Giaquinta,
G. Modica, and J. Souček ([19], [20], [21]); in particular, the rectifiability of Ju
can be recovered by the product structure of this boundary (cf. Remark 7.10). More
recently, R.L. Jerrard and H.M. Soner [28] proposed a systematic study of the
distributional Jacobian of maps valued in Rk which underlines the analogy with
the theory of BV functions.

The main purpose of this paper is to investigate which surfaces, or currents,
can be obtained as Jacobians of Sk−1-valued maps, that is to say, to construct maps
with a prescribed singularity. Our main result in this direction is the exact converse
of Theorem 3.8:

Main result (see Theorem 5.6). Let � be an open set in Rn, and let M be the
boundary of a rectifiable current of codimension k−1 in �. Then there exists a map
u ∈ W1,k−1(�, Sk−1) whose Jacobian agrees, up to a canonical identification, with
the current M.

The proof of this result is based on a dipole construction much in the spirit
of [14], and a careful iteration argument. In Sect. 6.7 we sketch a very simple proof
for the case k = 2 based on the theory of BV functions.

Note that the previous statement, although very general, does not settle the
question completely. In particular, it is natural to ask how regular can be u when
M is a regular surface. In this direction, we can show that when M is a smooth
surface of codimension k = 2, then u can be taken of class W1,p

loc for every
p < 1∗ = n/(n − 1) and smooth in the complement of M (see Theorem 4.4 and
Sect. 6.4).

Such a result could not be proved for surfaces of codimension k > 2: as pointed
out in Sect. 6.5, constructing a map u smooth in the complement of M is quite close
to proving that M is the boundary of a smooth surface (and not just of a rectifiable
current) and even a complete intersection, and it is known that both statements may
not hold when the codimension of M is strictly larger than 2 (see [9]).

Nevertheless, u can be taken smooth in the complement of M ∪ S, where S is an
additional singular set of codimension k+1 (see Theorem 5.10). Note that we have
preferred to state this result for polyhedral chains rather than smooth surfaces, the
reason being that polyhedral chains, and not smooth surfaces, are dense in the class
of integral currents. Indeed, the original motivation for this research was to provide
an upper bound for a �-convergence result for functionals of Ginzburg-Landau
type, and this required constructing a map u as above for every M in a suitably
dense subclass of integral currents (cf. [1], [2], see also [29] for related lower bound
and compactness results).

The paper is organized as follows. In Sect. 2 we set the notation and briefly
recall the notions of geometric measure theory which are needed throughout the
paper, plus some additional results which are not widely available in reference texts.
Section 3 contains the definition of Jacobian and summarize some of the existing
results, here included the structure theorem for the Jacobians of Sk−1-valued maps
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(Theorem 3.8 and Corollary 3.10). In Sects. 4 and 5 we describe two constructions
for maps with prescribed singularity, or Jacobian, respectively in the case k = 2 and
k arbitrary (when k = 2, the special structure of S1 allows for a construction which
is simpler and more powerful than that for general k). In Sect. 6 we have gathered
some additional remarks on the results described in the previous sections, together
with some open problems. For the sake of a clear exposition, we have postponed to
Sect. 7 some technical lemmas: a version of the coarea formula for Sobolev maps,
the proof of Theorem 3.8, and an approximation result for rectifiable currents.

Acknowledgements. This research was supported by C.N.R. through grant 99.01699.CT01,
and by MURST research project “Calcolo delle Variazioni”. During a very early stage of
the collaboration, the first and third authors were respectively supported by fellowships of
the Max Planck Institute for Mathematics in the Sciences (Leipzig) and C.N.R.

2. Notation and preliminary results

Throughout this paper � is an open subset of Rn with n ≥ 2; Sk−1 is the unit
sphere in Rk. The constant αk stands for the k-dimensional volume of the unit ball
in Rk; thus kαk is the (k − 1)-dimensional volume of Sk−1. The open ball of radius
r and center x is denoted by B(x, r), and we simply write B(r) if x is the origin;
a k-dimensional disk inRn is an oriented isometric embedding of a closed ball inRk,
and is usually denoted by E; we may write Ek to recall the dimension.

By k-surface in � we mean, if not otherwise specified, a smooth, oriented,
closed k-dimensional submanifold of �, possibly with boundary.Hk stands for the
k-dimensional Hausdorff measure (and agrees with the usual k-dimensional volume
on every smooth k-surface), whileLn is the n-dimensional Lebesgue measure; when
no doubts may arise, we omit any explicitly mention of the measure in integrals.
Sets and maps are always at least Borel measurable.

We write Du to denote indifferently the classical, the approximate, and the
distributional derivative (or gradient) of u, the precise meaning being usually clear
from the context. We denote by Liploc(�) the class of all maps which are locally
Lipschitz on �. We say that a map is a Sobolev map when it belongs to W1,1

loc ;
we recall that for such maps the distributional and the pointwise (approximate)
derivative agree. As usual, W1,p(�, Sk−1) is the class of all u in the Sobolev space
W1,p(�,Rk) which take values in Sk−1 almost everywhere. For the basic properties
of Sobolev functions we refer to [16].

Throughout this paper we will make frequent use of many elementary results
and notions from geometric measure theory and differential topology which are not
widely available in reference texts. In order to give precise definitions, and allow
the reader to verify all formulas, we summarize beforehand the basic notations
about forms and currents. We refer the reader to [17], [20], or [35] for detailed
expositions of geometric measure theory, and to [25], [22] for differential topology.

2.1. Vectors and covectors. For k-vectors and k-covectors in Rn we follow the
standard notation (see for instance [35, §25], or [20, §2.2.1]) and just recall here
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some basic facts: {e1, . . . , en} is the canonical basis ofRn , and given a multi-index i
of order k, namely i := {i1, . . . , ik} with 1 ≤ i1 < i2 < · · · < ik ≤ n, we denote
by ei the k-vector ei1 ∧ · · · ∧ eik , and by êi the (n − k)-vector associated to the
complement of i. The set of all ei with i ranging among all multi-indexes of order k
is a basis of the space ∧k(R

n) of all k-vectors inRn . We denote by dxi the 1-covector
(or linear form) which takes x ∈ Rn into the i-th component xi , and define the
k-covector dxi and the (n−k)-covector d̂xi as above. The n-covector dx1∧· · ·∧dxn

is sometimes simply denoted by dx. The set of all dxi with i = 1, . . . , n is the
canonical basis of the dual of Rn (the space of 1-covectors ∧1(Rn)), and the set
of all dxi with i ranging among all multi-indexes of order k is a basis of the space
∧k(Rn) of all k-covectors3. Vectors and covectors are dual to each other via the
duality pairing defined by dxi · ej := δij – that is, 1 if i = j, and 0 otherwise.

2.2. Rectifiable sets. A set M is k-rectifiable if it has locally finite Hk measure,
and can be covered, up to an Hk-negligible subset, by a countable family of
k-dimensional surfaces of class C1. For such sets the tangent space Tan(M, x) is
well-defined in a measure theoretic sense at Hk-almost every point x ∈ M; an
orientation τ is any Borel map which associates to x a simple unit k-vector τ(x)

which spans Tan(M, x) forHk-a.e. x ∈ M (cf. [17, §3.2.14-16], or [20, §2.1.4]). If
M is an orientable k-surface, then the orientation is always taken to be continuous,
and induces a canonical orientation on ∂M (so that η ∧ τ∂M = τM , where η is the
unit outer normal to ∂M).

2.3. Currents and forms. A k-form ω on � is a map (or even a distribution) which
takes values in k-covectors, and dω denotes its (external) differential; the action of
a smooth oriented k-surface in � on a k-form is given by the usual integration (cf.
Sect. 2.5).

A k-dimensional current on � is a distribution which takes values in k-vectors,
or equivalently, an element of the dual of the space of smooth k-forms with compact
support. The action of a current T on a form ω is sometimes denoted by T [ω]. The
boundary of T is defined in order to satisfy Stokes theorem, that is, ∂T [ω] := T [dω]
for every k-form ω of class C∞

c .
The mass ‖T‖ of T is its total variation (as a distribution); therefore T has

(locally) finite mass if and only if it can be represented as a (locally) bounded
measure valued in k-vectors, that is, as the product of a (locally) bounded positive
measure µ and an orientation τ , namely a ∧k(R

n)-valued map such that |τ| = 1
µ-a.e. The measure µ is called variation of T , and denoted by |T |.

2.4. Basic operations on currents and forms. Given a proper map f : � → �′,
the pull-back of k-form ω on �′ according to f is the k-form on � defined by

3 We endow ∧k(R
n) and ∧k(Rn) with the euclidean norms associated to the previous

basis. These are different from the usual mass and co-mass, but sometimes more convenient.
On the other hand, the euclidean norm and the mass agree for simple vectors (those which
can be written as a wedge product of 1-vectors), and therefore the difference is not relevant
to most of this paper.



280 G. Alberti et al.

f �ω(x) := (D f(x))�ω( f(x)),4 while the push-forward f�T of a k-current T on
� is the k-current on �′ defined by the obvious duality (that is, f� is the adjoint
of f �). Recall that d( f �ω) = f �(dω) and ∂( f�T ) = f�(∂T ).

The cartesian product of a k1-current T1 in Rn and a k2-current T2 in Rm

is a (k1 + k2)-current T1 × T2 in Rn × Rm . In particular, if T1 = τ1 · µ1 and
T2 = τ2 · µ2, then T1 × T2 = τ · µ where µ is the product measure µ1 × µ2, and
τ(x, y) := τ1(x) ∧ τ2(y).5

2.5. Integral and polyhedral currents. Given a rectifiable set M equipped with
an orientation τM and a multiplicity σM (namely a real function which is locally
summable on M), we can define a current T by

T [ω] :=
∫

M
σM (ω · τM ) dHk for every k-form ω of class C∞

c . (2.1)

In other words, T is the k-vector-valued measure given by σM · τM · Hk M
(the last term stands for the restriction of the measure Hk to the set M). Thus
the variation of T is the positive measure |T | = |σM | ·Hk M, and the mass is
‖T‖ = ∫

M |σM | dHk, that is, the measure of the set M counted with multiplicity.
We may occasionally denote this current simply by M.
When M is a regular k-surface, the current canonically associated to M is given

by formula (2.1) with the multiplicity σM set equal to 1 everywhere.
A current T is called rectifiable if it can be represented as in (2.1) with an

integer multiplicity σM , and integral if both T and ∂T are rectifiable. A polyhedral
current in Rn is a finite sum of k-dimensional oriented simplexes Si endowed with
constant integer multiplicities σi . It is also usually assumed that Si ∩ Sj is either
empty or a common face (of any dimension) of Si and Sj .

Note that polyhedral currents are just the usual simplicial chains of algebraic
topology, and the boundary coincides with the usual algebraic object; they are
particularly relevant because they are dense in the class of integral currents (with
respect to flat convergence with convergence of masses).

Remark 2.6. Every integral k-current M in Rn with finite mass, bounded support,
and no boundary is the boundary of an integral current N with finite mass, e.g.,
the cone over M with vertex at the origin (more precisely, the push-forward of the
product current M × (0, 1) in Rn × R according to the map (x, t) �→ tx). Then
when M is a polyhedral current, N is polyhedral, too.

2.7. Further operations on vectors and covectors. There is a canonical way to
identify k-covectors and (n − k)-vectors, namely the operator � which takes every

4 Given a linear map L : Rn → R
m , then L� : ∧k(Rm) → ∧k(Rn) is defined by

L�(β1 ∧ · · · ∧ βk) := β1L ∧ · · · ∧ βk L for simple k-covectors, and then extended by
linearity.

5 Here one tacitly identifies multi-vectors in Rn and Rm with those in Rn × {0} and
{0} × Rm , respectively.
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k-covector β into the (n − k)-vector �β defined by the identity6

α · �β = (α ∧ β) · (e1 ∧ · · · ∧ en) for every α ∈ ∧n−k(Rn).

Thus � takes k-forms into (n − k)-currents; moreover the exterior derivative is
conjugate to the boundary operator via �, in the sense that

�(dω) = (−1)n−k∂(�ω) . (2.2)

If we apply an h-covector β to a k vector v with k < h, we get an (h − k)-covector,
denoted by β v, which is defined by the identity7

(β v) · w = β · (v ∧ w) for every w ∈ ∧h−k(R
n).

One easily checks that

�(β v) = (�β) ∧ v . (2.3)

2.8. Convolution of currents and forms. The convolution of two maps U : Rn →
∧h(Rn) and T : Rn → ∧k(R

n) (resp. an h- and a k-current) is defined by

U ∗ T(x) :=
∫
Rn

U(x − y) ∧ T(y) dy . (2.4)

Since |U ∗ T | ≤ |U| ∗ |T |, all the usual inequalities for the convolution of real
functions hold in this case, too. For instance, U ∗ T is a well-defined map in, say,
L1 if both U and T belong to L1, and ‖U ∗ T‖1 ≤ ‖U‖1‖T‖1. Moreover definition
(2.4) can be extended, as for the usual convolution, to the case both T and U are
bounded measures, or to the case T is a distribution and U is of class C∞

c .
Since U ∗ T is the push-forward of the product current U × T according to the

map � : Rn × Rn → R
n which takes (x, y) into x + y, the well-known formula

∂(U × T ) = ∂U × T + (−1)hU × ∂T gives

∂(U ∗ T ) = ∂U ∗ T + (−1)hU ∗ ∂T , (2.5)

provided all convolution products in (2.5) are well-defined (at least as distributions).
The convolution of an h-form ω : Rn → ∧h(Rn) and a k-current T : Rn →

∧k(R
n) is defined by the obvious analogous of (2.4) – with the ∧-product replaced

by the -product – and enjoys the same basic properties. In particular, identity (2.3)
yields �(ω ∗ T ) = (�ω) ∗ T , and then (2.5) implies

d(ω ∗ T ) = (−1)k[dω ∗ T + ω ∗ ∂T ] . (2.6)

6 A direct definition is �dxi := σ(i′, i) êi for every multi-index i of order k, where i′ is
the set of indices not contained in i and σ(i′, i) is the sign of the permutation (i′, i). Up to
the identification of k-vectors and k-covectors induced by the scalar product, � is the usual
Hodge operator.

7 A direct definition is the following: given multi-indexes i and j of order h and k
respectively, then dxi ej := 0 if j �⊂ i, and dxi ej := σ(j, i′) dxi′ otherwise, where
i′ := i \ j is the set of indices in i not contained in j. Up to a sign, this is the “elbow” interior
multiplication of [17, §1.5.1].
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2.9. Forms on manifolds and submanifolds. An h-form on a smooth k-dimensional
manifold M is a map which associates to every y ∈ M an h-covector on Tan(M, y).8

The restriction of an h-covector α in Rn to a k-dimensional subspace T of Rk is
the h-covector on T which represents the restriction of the dual map v �→ α · v

to h-vectors v in ∧h(T ). Accordingly, if M is a k-surface in Rn , the restriction of
an h-form ω on Rn to M is the map which takes every y ∈ M into the restriction
of ω(y) to Tan(M, y); we say that the h-form ω on Rn extends the h-form ω′ on
M if ω′ agrees with the restriction of ω to M. For forms of class C1 the exterior
differential commutes with the restriction, that is, dω′ is the restriction of dω.

A particularly relevant (k − 1)-form on Rk is

ω0(y) :=
k∑

i=1

(−1)i−1 yi d̂yi . (2.7)

Indeed dω0 = k dy1 ∧ · · · ∧ dyk = k dy, while the restriction of ω0 to the unit
sphere Sk−1 is the standard volume form on Sk−1.

2.10. Brouwer degree and area formula. Given k-dimensional oriented manifolds
M and M′, M compact and M′ without boundary, and a continuous map f :
M → M′, then deg( f, M, M′, y) denotes the Brouwer degree of f at the point
y ∈ M′ \ f(M) (see [25, Chap. 5], and [22, Chap. 3]).

If f is of class C1 and y is a regular value of f , then deg( f, M, M′, y) is
the number of points x ∈ f −1(y) where the derivative D f(x) is orientation-
preserving, minus the number of those where the derivative is orientation-reversing.
We recall that the degree is constant on each connected component of M′ \ f(∂M);
in particular, if ∂M = ∅, deg( f, M, M′, y) does not depend on y, and we simply
write deg( f, M, M′), or even deg( f ).

Using the degree we can write an “oriented” version of the area formula: for
every k-form ω on M′∫

M
( f �ω) · τM dHk =

∫
M′

deg( f, M, ·) ω · τM′ dHk .

The following fact will be needed later: if M′ = Rk, and f maps ∂M into Sk−1,
then deg(u, M,Rk, y) = 0 for |y| > 1 and

deg(u, M,Rk, y) = deg( f, ∂M, Sk−1 ) for |y| < 1. (2.8)

Indeed deg(u, M, ·) is constant on both components of Rk \ Sk−1, and must vanish
in the unbounded one. Moreover, denoting by d its value on the unit ball of Rk and
taking ω0 as in (2.7),

αk d =
∫
Rk

deg( f, M,Rk , y) dy =
∫

M
f �(dy) · τM dHk

=
∫

M

1

k
d f �(ω0) · τM dHk

=
∫

∂M

1

k
f �(ω0) · τ∂M dHk−1 = αk · deg( f, ∂M),

8 To be precise, this is a section of the h-cotangent bundle of M.
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where the second and fifth equalities follow from the area formula, the third one
from the identity dy = 1

k dω0, and the fourth one from Stokes theorem.

2.11. Intersection and linking numbers. Let M and M′ be surfaces in Rn with
dimensions n−k and k, respectively, endowed with (locally constant) multiplicities
σM and σM′ . If M and M′ are transversal and ∂M ∩ M′ = M ∩ ∂M′ = ∅, then
the intersection number of M and M′, int(M, M′), is defined as the sum over all
x ∈ M ∩ M′ of ±σM(x) · σM′(x), where the sign is + if τM(x) ∧ τM′(x) agrees
with e1 ∧ · · · ∧ en , and is − if the opposite holds (cf. [25, Sect. 5.2], or [22, §3.5]).

If M′′ is a (k − 1)-surface in Rn endowed with multiplicity σM′′ , and ∂M, ∂M′′
and M ∩ M′′ are all empty, the linking number of M and M′′, link(M, M′′), is
defined as the degree – computed taking the multiplicities into account – of the
map that takes (x, y) ∈ M × M′′ into (x − y)/|x − y| ∈ Sn−1 (cf. [25, Sect. 5.1,
Exercise 7]).

The relation between intersection and linking number is given by the following
formula: if M and M′ are as above, and M has no boundary, then

int(M, M′) = (−1)klink(M, ∂M′) . (2.9)

Take indeed g : M × M′ → [0, 1] such that g(x, y) = 1 when (x, y) ∈ M × ∂M′,
g(x, y) > 0 unless x = y, and g(x, y) = |x − y| for |x − y| sufficiently small. Set
�(x, y) := g(x, y) · (x − y)/|x − y| for all (x, y) ∈ M × M′. Then link(M, ∂M′) is
equal to deg(�, M×∂M′, Sk−1) which is equal to deg(�, M×∂M′,Rk, 0) by (2.8),
and it is easily verified that the latter is (−1)kint(M, M′).

3. Jacobians of Sobolev maps

In this section we recall the basic definitions and main results about the Jacobian
of Sobolev maps (see [28] for further details).

3.1. Differentials and Jacobians. The differential of a scalar function u on � is, as
usual, the 1-form du := ∑n

1 Diu dxi , where Di denotes the i-th partial derivative.
For k ≤ n, the k-dimensional Jacobian of a (smooth) map u = (u1, . . . , uk) :
R

n → R
k is the pull-back according to u of the volume form dy on Rk , that is

Ju := u�(dy) = du1 ∧ · · · ∧ duk , (3.1)

and since dy = 1
k dω0, where ω0 is given in (2.7), then

Ju = 1

k
du�(ω0) = 1

k
d

( k∑
i=1

(−1)i−1ui d̂ui

)
. (3.2)

While (3.1) makes sense for maps u with gradient in Lk, (3.2) makes sense (as
a distribution) as long as the products within brackets are well-defined, e.g. for
bounded maps u with gradient in Lk−1. This motivates the following definition
(cf. [28]):
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Definition 3.2. The Jacobian of a map u : � → R
k of class L∞

loc ∩ W1,k−1
loc is the

k-form with distributional coefficient Ju defined in (3.2).

Remark 3.3. For many purposes it is sometimes more convenient to consider,
instead of the k-form Ju, the (n − k)-current �Ju, where � is the operator defined
in Sect. 2.7. Since Ju is an exterior differential (cf. (3.2)), then �Ju is always
a boundary, and in particular ∂(�Ju) = 0.

Remark 3.4. The Jacobian operator J , although nonlinear, is continuous, in the
sense that given any bounded closed set E ⊂ R

k and a sequence of maps
u j ∈ W1,k−1(�, E) which converge strongly to u, then the Jacobians Ju j converge
to Ju in the sense of distributions: in fact, the expression within brackets at the
right-hand side of (3.2) converges strongly in the L1-norm.9 It follows that (3.1)
and (3.2) agree for all maps of class W1,k

loc , and in particular

Ju =
∑

det(Diu) dxi , (3.3)

where the sum is taken over all multi-indexes i of order k, and Diu denotes the
k × k matrix with columns Di1 u, . . . , Dik u.

Remark 3.5. Assuming that u is sufficiently regular (say, of class W1,k), the notion
of Jacobian is better understood in some special cases:

◦ for k = 1, Ju is just the differential of u;
◦ for k = 2 and n = 3, �Ju is the vector product Du1 × Du2;
◦ for k = n, Ju = det(Du) dx and �Ju = det(Du).

If k = n and u is a map of class L∞ ∩ W1,n−1, then �Ju is the distributional
determinant introduced in [5], and usually denoted by Det(Du). Although Det(Du)

may not agree with the pointwise determinant det(Du) for maps in W1,p with
p < k, it was proved in [31] that if Det(Du) is a measure, then its absolutely
continuous part (with respect to Lebesgue measure) is represented by det(Du).
Using this result and a standard slicing technique (cf. [28, Sect. 5]), it is easy to
show that if Ju has bounded mass then its absolutely continuous part is represented
by the k-form at the right-hand side of (3.1) or (3.3).

Sk−1-valued maps

For the rest of this paper we confine our attention to maps with values in the
sphere Sk−1. First of all we remark that for any u ∈ W1,k

loc (�, Sk−1) the Jacobian
Ju is just pointwise defined as the pull-back of the standard volume form on Rk

(cf. Remark 3.4) and therefore is 0, because Lk(Sk−1) = 0.
The situation is different if we consider maps u ∈ W1,k−1(�, Sk−1). For sim-

plicity, let us first assume that u is regular (say, locally Lipschitz) in the complement

9 This result still holds if we replace strong convergence in W1,k−1 by weak convergence
in W1,k+ε

loc for some ε > 0, and even ε = 0 when k = 2. This stronger statement can be
proved by induction on k.



Functions with prescribed singularities 285

of a closed singular set S. The previous argument shows that the restriction of the
distribution Ju to � \ S vanishes, that is, Ju is supported on S. If in addition the
singular set S is a regular surface of codimension k, then Ju can be expressed in
terms of S and the degree of the singularity of u at S, as shown in the paragraphs
below.

3.6. Maps with regular singularities, case n = k. When S = {xi} is a finite set, it
is not difficult to show that �Ju is a linear combination of Dirac masses centered
at the points xi . Moreover, if we take for every i a ball Bi which contains xi and no
other point of S, and set di := deg(u, ∂Bi, Sk−1), then

�Ju = αk

∑
di · δxi . (3.4)

This formula can be found in [14] (see also [28, Example 3 of Sect. 3]). A sketch
of proof is the following: knowing that �Ju is of the form

∑
βi δxi , and denoting

by τBi = e1 ∧ · · · ∧ ek the standard orientation of Bi , then

βi =
∫

Bi

Ju · τBi =
∫

∂Bi

1

k
u�(ω0) · τ∂Bi = 1

k
Hk−1(Sk−1) di = αk di ,

where the second equality follows from Stokes theorem and definition (3.2), and
the third one from the area formula and the fact that ω0 is the volume form on Sk−1.

3.7. Maps with regular singularities, case n > k. If u belongs to W1,k−1(�, Sk−1)

and is regular outside a Lipschitz surface S with codimension k and no boundary
in �, then (cf. [28, Example 4 of Sect. 3])

�Ju = αk · M ,

where M is the integral current associated to S and to the multiplicity σ defined
for every x ∈ S by the formula

σ(x) = deg(u, ∂E, Sk−1) , (3.5)

where E is a k-dimensional disk in � which satisfies S ∩ Ex = {x}, is transversal
to S, and oriented so that τS(x) ∧ τE(x) = e1 ∧ · · · ∧ en .

Note that �Ju has no boundary and is supported on a regular surface S with same
dimension and no boundary, and therefore σ must be constant on every connected
component of S (e.g., by the constancy theorem – see [20, §2.2.3]). Formula (3.5)
can be derived from (3.4) using a dimension reduction argument based on slicing
formulas for the Jacobian (see [28, Sect. 5]).

We can generalize formula (3.5) using the notions introduced in §2.11: for
every k-surface A relatively compact in � which is transversal to S and such that
∂A ∩ S = ∅, the intersection number of S, endowed with multiplicity σ , and A is
equal to deg(u, ∂A, Sk−1). Moreover, if � = Rn , formula (2.9) yields

int(S, A) = (−1)klink(S, ∂A) = deg(u, ∂A, Sk−1) . (3.6)
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Fig. 1.

Identity (3.6) completely characterizes the multiplicity σ , and therefore also �Ju
(see Fig. 1 for an example with n = 3, k = 2).

Paragraphs 3.6 and 3.7 show that the current �Ju is related to the part of the
singular set of u which is topologically meaningful. In fact, the same conclusions
holds also for maps in W1,k−1 which are continuous in the complement of a finite
sum of Lipschitz surfaces with codimension k and no boundary (a discrete set in
the case n = k).

Of course, not all maps in W1,k−1 are so regular. Yet, for n = k, the Jacobian
Ju can still be represented as in (3.4) for suitable xi ∈ � and di ∈ Z (cf. [28,
Proposition 1 of Sect. 5]), although in this case it is more difficult to interpret the
integers di as degrees and the points xi as singularities. In the general case we have
the following structure theorem (cf. [23] for maps of class W1−1/k,k):

Theorem 3.8. If u belongs to W1,k−1(�, Sk−1), then �Ju can be represented as
�Ju = αk ∂N, where N is a rectifiable current with codimension k − 1 in �. More
precisely, we can take N = (−1)n−k+1 Ny where Ny is any regular level set of u
(in the sense of Sect. 7.5), and we can choose y so that

‖N‖ ≤ 1

kαk

∫
�

|Du|k−1 . (3.7)

Corollary 3.9. If u ∈ W1,k−1(�, Sk−1) and φ is a Lipschitz map of Sk−1 into
itself, then the Jacobian of the composition φ ◦ u is J(φ ◦ u) = deg(φ) Ju.

Corollary 3.10 (see [27]). If u belongs to W1,k−1(�, Sk−1) and Ju has locally
finite mass, then

�Ju = αk M

where M is an integral current in � with codimension k and no boundary.

The proof of Theorem 3.8 has been postponed to Sect. 7. For smooth φ,
Corollary 3.9 follows immediately by the characterization of �Ju as boundary of
any regular level set of u and the definition of degree, while the general case is
obtained by approximation. Corollary 3.10 is a straightforward consequence of
Theorem 3.8 and the boundary rectifiability theorem of Federer and Fleming (see
[35, Theorem 30.3], or [17, Theorem 4.2.16(2)]).
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In [28] the rectifiability of Jacobian is proved by a dimension-reduction argu-
ment based on a rectifiability criterion by slicing proved in [37], [26]. Alternatively,
one can use the product structure of the boundary of graphs with finite mass ([21,
§4.2.1]) and, again, the boundary rectifiability theorem (cf. Remark 7.10).

S1-valued maps

In this subsection we fix some notation for the case k = 2. If we identify R2 with
the complex field, the map θ �→ exp(2πiθ) is an isometry (up to a scaling factor 2π)
of the quotient space R/Z into S1. Therefore for every map u : � → S1 there
exists exactly one map θ : � → R/Z such that u = exp(2πiθ).

Furthermore, for every C1 function θ , dθ is a well-defined 1-form10, and

2π dθ = u1du2 − u2du1 = −iū du and 2π|dθ| = |Du| . (3.8)

Based on these identities, we say that θ is of class W1,p when u is so11.
However, since θ is not a real-valued function, d(dθ) may not vanish, and indeed
the first identity in (3.8) implies

π d(dθ) = 1

2
d(u1du2 − u2du1) = −i

2
d(ū du) = Ju . (3.9)

3.11. Lifting Sobolev maps. When can we lift a map θ : � → R/Z to a map with
values in R? If we disregard regularity, this is clearly always possible. On the other
hand, if θ is of class W1,1 and we look for a lifting with the same regularity, then
it must be d(dθ) = 0.

If � is simply-connected, this condition is also sufficient (and the lifting is
uniquely determined up to integer constants). Hence a map u ∈ W1,1(�, S1) can
be written as u = exp(2πiθ) for some θ ∈ W1,1(�,R) if and only if Ju = 0 as a dis-
tribution (cf. [15], see also [8], [11] for more general results). In fact, this is an im-
mediate consequence of the following classical lemma on exact forms/conservative
vectorfields: if � is simply connected, a 1-form ω ∈ L1(�) is the differential of
a real-valued function θ ∈ W1,1(�) if and only if dω = 0 (as a distribution).

4. Maps with prescribed singularity: construction for k = 2

In this section we address the converse of Theorem 3.8 in codimension two, that
is, we construct an S1-valued map u with prescribed Jacobians M (Theorem 4.4).
For the rest of this section we assume that � = Rn . We begin with an elementary
geometric construction.

10 The tangent space to R/Z at every point is identified with R.
11 Since the distributional derivative of a Sobolev function agrees with the approximate

derivative, dθ is still a well-defined 1-form of class L p; in other words, the complex 1-form
−iū du has no imaginary part. This is no longer true for BV functions; the point is that the
distributional derivative of a R/Z-valued function cannot be defined independently of the
embedding of R/Z in some euclidean space.
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4.1. Geometric construction. Let M be an oriented, boundaryless smooth surface
with codimension two (and multiplicity 1) in Rn . As explained in Sect. 3.7, a map
u : Rn → S1 which is smooth in the complement of M satisfies �Ju = πM if (and
only if)

deg(u, γ, S1) = link(M, γ) for every closed curve γ in Rn \ M. (4.1)

If we write u = exp(2πiθ) with θ : Rn \ M → R/Z smooth, and denote by ωM the
differential of θ , condition (4.1) can be re-written in terms of ωM as

∫
γ

ωM · τγ = link(M, γ) for every closed curve γ in Rn \ M. (4.2)

Let now be given a smooth 1-form ωM on Rn \ M which satisfies (4.2). Then
the integral of ωM on every closed curve in Rn \ M is an integer, which implies
that ωM is the differential of a smooth map θ : Rn \ M → R/Z,12 and the map
u := exp(2πiθ) satisfies �Ju = πM.

It remains to construct such a form ωM . Recall that link(M, γ) = deg(�, M×γ,

Sn−1), where �(x, y) := (x − y)/|x − y| for every x �= y ∈ Rn . On the other hand,
denoting by ω̃ the pull-back of the volume form on Sn−1 according to �, by the
area formula nαn deg(�, M × γ, Sn−1) is the integral of ω̃ on M × γ , and then
(cf. Sect. 2.7)

nαn link(M, γ) =
∫

M×γ

ω̃(x, y) · (τM(x) ∧ τγ (y))

(4.3)

=
∫

γ

[ ∫
M

ω̃(x, y) τM(x)

]
· τγ (y) .

Hence the 1-form defined by the integral within square brackets in (4.3) satisfies
(4.2) up to a factor nαn , and therefore we just set

ωM(y) := 1

nαn

∫
M

ω̃(x, y) τM(x) for every y ∈ Rn \ M. (4.4)

When the surface M is replaced by a less regular surface, or by a rectifiable
current, the construction described above must be suitably re-interpreted. Notice
that the map �(x, y) used to define ω̃(x, y) in Sect. 4.1 depends only on x − y,
and this suggests that the right-hand side of (4.4), and ultimately also θ , can be
re-written as convolution products (in the sense of Sect. 2.8). We show in Sect. 4.3
below that this is indeed the case. To this purpose, we first recall some basic facts
about BV functions.

12 A continuous 1-form ω on a connected open set � ⊂ Rn is the differential of a map
θ : � → R/Z of class C1 if and only if the integral of ω along any closed curve in � is an
integer. To construct such a θ it suffices to fix a base-point x0 ∈ �, and set, for every x ∈ �,
θ(x) := ∫

γ ω · τγ , where γ is any path connecting x0 and x.
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4.2. Differentials of BV functions. The measure which represents the distribu-
tional differential of a real-valued BV function v can be uniquely decomposed as
(see [3, Sect. 3.9])

dv = dav + dcv + djv

where the term dav is absolutely continuous with respect to Ln , the term dcv

(called “Cantor” part of dv) is singular and does not charge any Hn−1-finite set,
and the term djv (called “jump” part of dv) is concentrated on a rectifiable set of
codimension one. Furthermore the density of dav with respect to Ln agrees with
the approximate differential of v, and djv can be written as djv = [v] ηHn−1 Sv,
where Sv is the singular set (set of point of approximate discontinuity) of v, and is
(n − 1)-rectifiable, η is the 1-covector associated to an orientation τ of Sv via the
� operator (cf. Sect. 2.7), and the jump [v] is the difference between the traces v+
and v− of θ ′ on the two sides of S. When the Cantor part dcv vanishes, v is called
an SBV function.

4.3. Construction of for general M. Let M be an integral (n − 2)-current with
finite mass in Rn , and take an integral (n − 1)-current N with finite mass such
that M = ∂N (cf. Remark 2.6). By formula (3.9), in order to solve the equation
�Ju = π M it suffices to construct a function θ ∈ W1,1

loc (Rn,R/Z) such that
�d(dθ) = M and take u := exp(2πiθ). As suggested before, such a θ can be
obtained as a suitable convolution product – which is just formula (4.4) re-written.

Let ω be the pull-back on Rn \ {0} of the standard volume form on Sn−1

according to the projection x �→ x/|x|, that is

ω(x) =
n∑

i=1

(−1)i−1 xi

|x|n d̂xi . (4.5)

Thus ω ∈ L p
loc(R

n) for every p < 1∗ := n/(n − 1), and

dω = nαn δ0 dx , (4.6)

where, as usual, dx = dx1 ∧ · · · ∧ dxn.13 We set

θ ′ := −1

nαn
ω ∗ N , (4.7)

and, denoting by π the canonical projection of R onto R/Z,

θ := π(θ ′) . (4.8)

The usual estimates for the convolution product show that θ ′ is a well-defined
real-valued function (0-form) in L p

loc(R
n) for every p < 1∗, and using (4.7), (2.6),

and (4.6), we obtain

dθ ′ = (−1)n

nαn

[
dω ∗ N + ω ∗ ∂N

]
= (−1)n

[
dx N + 1

nαn
ω ∗ M

]
. (4.9)

13 Indeed dω is an n-form, smooth outside the origin, whose integral on any open set A
with smooth boundary is, by Stokes theorem, the integral of ω on ∂A, that is, nαn (the
volume of Sn−1) if the origin belongs to A and 0 otherwise.
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Thus θ ′ is a function of class BVloc whose differential is the sum of a term absolutely
continuous with respect to Lebesgue measure, ω ∗ M, and a jump term of the form
dx N. Since N has integer multiplicity, the jump of θ ′ is always integer, and
therefore θ has no jump; thus θ is of class W1,1

loc
14 and dθ is given by

dθ = (−1)n

nαn
ω ∗ M . (4.10)

Since ω is smooth outside the origin, dθ , and θ as well, are smooth outside the
support of M. Moreover, using (2.6), (4.6), and taking into account that ∂M =
∂2 N = 0,

d(dθ) = 1

nαn

[
dω ∗ M + ω ∗ ∂M

] = dx M ,

and recalling (2.3),

�d(dθ) = M . (4.11)

The following statement summarizes what we have obtained so far.

Theorem 4.4. Let M be a codimension-two integral current with finite mass and
no boundary in Rn, and set u := exp(2πiθ), where θ is defined in (4.8). Then u
belongs to W1,p

loc (Rn, S1) for every p < 1∗, it is smooth outside the support of M,
and satisfies �Ju = πM.

5. Maps with prescribed singularity: construction for arbitrary k

In this section we address the converse of Theorem 3.8 in arbitrary codimension,
namely the construction of a map u : � → Sk−1 with prescribed Jacobian �Ju =
αk M, where M is the boundary of a rectifiable current N of codimension k − 1
in �. In Proposition 5.2 we give a simple construction for special M, akin to the
dipole construction of [14] (see also [21, §4.2.3]), that will provide the building
blocks for the construction in the general case. In Theorem 5.6 we prove that any
boundary M of a rectifiable current is the Jacobian of a map of class W1,k−1. After
this general result we examine what further regularity can be obtained on u when
M is a polyhedral current (see Theorem 5.10).

14 More precisely, the differential of the complex-valued SBV function u := exp(2πiθ′)
con be computed by the chain-rule for BV functions (see for instance [3, Sect. 3.10]):

du = 2πi · exp(2πiθ′) · daθ
′ + (exp(2πiθ′+) − exp(2πiθ′−)) · η ·Hn−1 Sθ′ .

By (4.9) the singular set Sθ′ is N, and the jump θ′+ − θ′− is the multiplicity of N. Since the
latter is integer, exp(2πiθ′+) − exp(2πiθ′−) = 0. Thus u is a function of class W1,1, and
so is θ.
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5.1. Additional notation. For the rest of this section we fix a point yN ∈ Sk−1

(called “north pole”) and a family of smooth maps φσ : Sk−1 → Sk−1 for every
σ ∈ Z with the following properties: φ0 takes constant value yN , φ1 is the identity,
φ−1 is a reflection with respect to an hyperplane which contains yN , each φσ has
degree σ , maps yN into itself, and has Lipschitz constant lower than 2|σ |.15

Proposition 5.2. Let P be an oriented (n − k + 1)-dimensional affine subspace
ofRn, let N be the current in Rn associated with a bounded Lipschitz domain of P,
endowed with constant multiplicity 1, and assume that M := ∂N is connected.

Then there exists u ∈ W1,k−1
loc (Rn, Sk−1) such that �Ju = αk M. Moreover u is

locally Lipschitz in Rn \ M and constant outside a bounded neighbourhood of N,
Du belongs to L p(Rn) for every p < k and satisfies |Du(x)| = O(1/dist(x, M)).

Proof. We fix two positive parameters δ and γ , and set

U = U(N, δ, γ) :=
{

x : dist(x, N) ≤ min
{
δ,

γ√
1+γ 2

dist(x, ∂N)
}}

. (5.1)

Now we identify P with Rn−k+1, Rn with the productRn−k+1 ×Rk−1, and denote
a point in Rn as x = (x′, x′′). Thus U can be written as (cf. Fig. 2 below)

U = {
x : x′ ∈ N, |x′′| ≤ g(x′)

}
, (5.2)

where

g(x′) := min
{
δ, γ dist(x′, ∂N)

}
. (5.3)

Let Bk−1 be the closed unit ball in Rk−1 with center 0, and let π be the usual
identification of Bk−1 into the sphere Sk−1 which takes the boundary of Bk−1 into
the north pole yN and preserves the orientation16, and set

u(x) :=



π

(
x′′

g(x′)

)
for x ∈ U \ ∂N,

yN elsewhere in Rn .

(5.4)

Thus u is constant on the complement of U .
Since g is a real Lipschitz function which vanishes only on ∂N and π is

a Lipschitz map from the closed unit ball Bk−1 to Sk−1, then the restriction of u
to U \ ∂N is locally Lipschitz. Moreover π takes unit vectors in yN , and since
|x′′| = g(x′) for all x ∈ ∂U , then u maps ∂U into yN , and consequently u ∈
Liploc(R

n \ ∂N).

15 For example, write Rk � C×Rk−2, where C is the complex field, take yN of the form
yN = (0, y) and, for σ �= 0,

φσ (z, y) :=
{

(zσ |z|1−σ , y) for z �= 0,

(0, y) for z = 0.

16 For example, take π(x) := (
sin(π|x|) · x/|x|, cos(π|x|)) for every x ∈ Bk−1, and

identify Rk−1 × R with Rk so that yN = (0,−1).
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Fig. 2.

To give a precise estimate of the pointwise derivative |Du|, we notice that
Dg(x′) = 0 when γ dist(x′, ∂N) > δ, and then |D(x′′/g(x′))| ≤ 1/δ. On the other
hand, if γ dist(x′, ∂N) < δ, then g(x′) = γ dist(x′, ∂N) and |Dg(x′)| = γ , which
imply

∣∣D(x′′/g(x′))
∣∣ ≤

(
1

γ
+ 1

)
1

dist(x′, ∂N)
≤ (1 + γ)2

γ dist(x, ∂N)

(here we have used that dist(x, ∂N) ≤ dist(x′, ∂N) + |x′′| ≤ (1 + γ) dist(x′, ∂N),
cf. (5.2)). Together with the previous estimate and (5.4), this yields

|Du(x)| ≤ ‖Dπ‖∞ max

{
1

δ
,

(1 + γ)2

γ dist(x, ∂N)

}
, (5.5)

and the pointwise derivative Du is p-summable for every p < k by Lemma 7.1.
Since u is locally Lipschitz in Rn \ ∂N, then the pointwise derivative Du agrees
with the distributional derivative on Rn \ ∂N, and since it is 1-summable and N has
codimension strictly larger than one, Du agrees with the distributional derivative
on Rn , too. In other words, u is a Sobolev map on Rn .

It remains to verify that �Ju = αk M, up to a sign that can be corrected
by changing the identification of P and Rn−k+1. Since u is continuous in the
complement of the Lipschitz connected (n − k)-surface M = ∂N, as remarked in
Sect. 3.7 the Jacobian �Ju is supported on M, and is of the form αkσ M where σ

is an integer. In view of formula (3.6), to prove that σ = ±1 if suffices to exhibit
a k-surface A transversal to M such that A ∩ M consists just of one point and
deg(u, ∂A, Sk−1) = ±1.

Take then x̄ ∈ M, and v ∈ Rn−k+1, and let A be the cylinder in Rn−k+1 ×Rk−1

given by the segment [x̄ − v, x̄ + v] times the closed ball rBk−1, where r := γ |v|
(see Fig. 2 above). If we have chosen x̄ and v so that (x̄, x̄ + v] is contained in N,
[x̄ − v, x̄) is contained in the complement of N, and x is the projection of x̄ + v

onto N, then one easily checks that u is equal to yN on the whole boundary of A
except the face {x̄ + v}× rBk−1, where it agrees, up to rescaling, with the injective
map π. Thus the deg(u, ∂A, Sk−1) = ±1, and the proof is complete. ��
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Corollary 5.3. When the surface N in the statement of Proposition 5.2 is an
(n − k + 1)-dimensional disk E with center x and radius r, we may also require
that u is constant on the complement of the ball B(x, r) and satisfies∫

Rn
|Du|k−1 ≤ C‖E‖ , (5.6)

where C is a constant which depends only on n and k.

Proof. Let u0 be the map given by Proposition 5.2 when N is a fixed disk E0 with
center 0 and radius 1. If the parameters δ and λ in the definition of U (cf. (5.1) and
(5.2)) have been chosen sufficiently small, then U is included in B(1), and therefore
u0 is constant on the complement of B(1). Now it suffices to take u := u0 ◦ ψ,
where ψ is an affine similitude – a composition of an isometry and a homothety –
with scaling factor r which maps E onto E0 preserving the orientation. ��

Construction for general rectifiable currents

We begin with a Lemma for pasting together Sk−1-valued maps. In this subsection
� is an open subset of Rn .

Lemma 5.4. Let u0, u1 be maps in W1,k−1
loc (�, Sk−1), let F0, F1 be disjoint closed

sets in �, and set �′ := � \ (F0 ∪ F1). If dist(F0, F1) > 0 and

|u0 − u1| ≤ 1 a.e. on �′, (5.7)

then there exists u ∈ W1,k−1
loc (�, Sk−1) such that u = u0 in F0, u = u1 in F1.

If Du0 and Du1 are essentially bounded in the “transition zone” �′, then Du is
essentially bounded on �′ and

‖Du‖L∞(�′) ≤ 2√
3

[‖u0 − u1‖L∞(�′)
dist(F0, F1)

+ ‖Du0‖L∞(�′) + ‖Du1‖L∞(�′)

]
. (5.8)

If the Jacobians of u0 and u1 are supported on F0 and F1, respectively, then
Ju = Ju0 + Ju1.

Proof. Let π be the projection of Rk \ {0} onto Sk−1, that is, π(x) := x/|x|, and
take a Lipschitz function λ which agrees with 0 on F0 and with 1 on F1, and has
Lipschitz constant smaller than dist−1(F0, F1), e.g.,

λ(x) := min

{
1,

dist(x, F0)

dist(F0, F1)

}
.

Then set

u := π
(
λu1 + (1 − λ)u0

)
. (5.9)

Given x ∈ �′, |u0(x)| = |u1(x)| = 1, while |u0(x) − u1(x)| ≤ 1 by assumption.
Thus the angle spanned by the vectors u0(x) and u1(x) is smaller than 60◦, and
then every convex combination of u0(x) and u1(x) has norm larger than

√
3/2.
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This shows that the argument of π in formula (5.9) is always contained in
R

k \ Bk(
√

3/2), where π has Lipschitz constant 2/
√

3. Thus u belongs to W1,k−1
loc

too, and a straightforward computation gives (5.8). The last part of the statement
is trivial. ��
Remark 5.5. In the proof of Theorem 5.6 we will apply Lemma 5.4 with F1 =
B(x, r) and F0 = Rn \ B(x, 2r), u1 constant on the complement of F1, u0 contin-
uous in �′ = B(x, 2r) \ B(x, r) and equal to u1 at some point of �′. Under these
assumptions we have

‖u0 − u1‖L∞(�′) ≤ osc(u0,�
′) ≤ 4r‖Du0‖L∞(B(x,2r)) .

Hence condition (5.7) is implied by

r ≤ (
4‖Du0‖L∞(B(x,2r))

)−1
, (5.10)

while inequality (5.8) yields ‖Du‖L∞(�′) ≤ 10√
3
‖Du0‖L∞(B(x,2r)), and then

∫
�′

|Du|k−1 ≤
(

10√
3
‖Du0‖L∞(B(x,2r))

)k−1

2nαnrn ≤ Crn−k+1 , (5.11)

where the last inequality follows from (5.10), and C is a constant which depends
on n and k only.

The following statement contains the exact converse of Theorem 3.8; for k = 2
there exists a simpler proof which is briefly sketched in Sect. 6.7.

Theorem 5.6. Let � be an open set in Rn, and M the boundary of a rectifiable
current N in � with finite mass and codimension k − 1. Then there exists u in
W1,k−1

loc (�, Sk−1) such that

�Ju = αk M . (5.12)

Moreover ‖Du‖k−1 ≤ C‖N‖, where C depends only on n and k. In particular u
belongs to W1,k−1(�, Sk−1) when � has finite measure.

Proof. We define, by induction on j , a sequence of maps u j ∈ W1,k−1(�, Sk−1)

which are locally Lipschitz on the complement of a closed sets Sj ⊂ � of codi-
mension k, and rectifiable currents R j in � of codimension k − 1 so that R0 = N,
Du0 = 0, S0 = ∅ and

�Ju j = αk(M − ∂R j ) , (5.13)

‖Du j − Du j−1‖k−1 ≤ C‖R j−1‖1/(k−1) , (5.14)

‖R j‖ ≤ (1 − 2k−n−2)‖R j−1‖ , (5.15)

where C depends only on n and k.
We first show that (5.13–5.15) allow us to conclude the proof. Inequality (5.15)

implies ‖R j‖ ≤ (1 − 2k−n−2) j‖R0‖, which is a summable sequence in j . Hence
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(5.14) shows that the derivatives Du j form a Cauchy sequence in Lk−1 and there-
fore the maps u j converge (up to subsequence) to some map u in the strong top-
ology of W1,k−1

loc (�, Sk−1). Hence Ju j converge to Ju in the sense of distributions
(cf. Remark 3.4). On the other hand, identity (5.13) shows that �Ju j converge to
αk M in the sense of currents (because R j converge to 0 in norm), and (5.12) is
proved. The estimate on ‖Du‖k−1 follows from (5.14), (5.15) and the fact that
R0 = N and Du0 = 0.

Description of the inductive procedure. Given u j−1, Sj−1, and R j−1, we construct
u j , Sj , and R j . Since Sj−1 is closed, for every x ∈ � \ Sj−1 we can find r j =
r j(x) > 0 such that B(x, r j) is relatively compact in �\ Sj−1. Since u j−1 is locally
Lipschitz on the complement of Sj−1, |Du j−1| is essentially bounded in B(x, r j).
We choose ρ j : � → [0,+∞) so that ρ j (x) = 0 for x ∈ Sj−1 and

0 < ρ j ≤ min
{

r j

2
,

1

4‖Du j−1‖L∞(B(x,r j))

}
for x ∈ � \ Sj−1. (5.16)

Since Sj−1 isHn−k+1-negligible, we can apply Corollary 7.13 with h := n −k+1,
N := R j−1 and ρ := ρ j , and get finitely many disks E ji , with centers x ji ∈ �

and radii r ji < ρ j (x ji), and rectifiable currents R j and Pj which satisfy statements
(i)–(iv) of Corollary 7.13. In particular (iii) implies (5.15).

Then for every i we take a map u ji according to Corollary 5.3 for N := E ji .
Thus u ji is constant on the complement of B(x ji, r ji), and, possibly composing u ji

by a suitable isometry of Sk−1, we can assume that this constant agrees with the
value of u j−1 at some point of the annulus B(x ji, 2r ji) \ B(x ji, r ji). Now we use
Lemma 5.4 to construct a map u j such that

u j = u ji on B(x ji, r ji) for every i, and u j = u j−1 on � \ ⋃i B(x ji, 2r ji).

Indeed, the balls B(x ji, 2r ji) are disjoint by statement (iv) of Corollary 7.13, the
inequalities r ji < ρ j (x ji) and (5.16) imply that u j−1 satisfies condition (5.10) in
Remark 5.5, while u ji is constant on the complement of B(x ji, r ji) by construction,
and then Lemma 5.4 can be applied.

Verification of the properties of u j . By construction, the map u j belongs to
W1,k−1

loc (�) and is locally Lipschitz on the complement of

Sj := Sj−1 ∪
(⋃

i

∂E ji

)
.

Moreover (cf. Lemma 5.4)

Ju j = Ju j−1 +
∑

i

Ju ji . (5.17)

On the other hand, we have chosen u ji so that �Ju ji = αk ∂E ji (cf. Proposition 5.2),
while

∑
∂E ji = ∂R j−1 − ∂R j by condition (i) of Corollary 7.13 and �Ju j−1 =
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αk(M − ∂R j−1) by the inductive assumption (5.13) for j − 1. Thus (5.17) yields
(5.13) for j .

It remains to prove (5.14). If we denote by �′ the union of all transition zones
B(x ji, 2r ji) \ B(x ji, r ji), then u j satisfies

∫
�′

|Du j |k−1 ≤ C
∑

i

rn−k+1
ji ≤ C

αn−k+1

∑
i

‖E ji‖ ≤ C2k−n

αn−k+1
‖R j−1‖ , (5.18)

where the first inequality follows from (5.11), and the third one from statement (ii)
of Corollary 7.13 (with R j−1 playing the rôle of N). On the other hand, estimate
(5.6) and the fact that u j = u ji on B(x ji, r ji) yield

∑
i

∫
B(x ji,r ji)

|Du j |k−1 ≤ C
∑

i

‖E ji‖ ≤ C2k−n‖R j−1‖ , (5.19)

while (5.16) and the fact that r ji ≤ ρ(x ji) give

∑
i

∫
B(x ji,2r ji)

|Du j−1|k−1 ≤ αn2n−2k+2
∑

i

rn−k+1
ji

(5.20)

= αn2n−2k+2

αn−k+1

∑
i

‖E ji‖ ≤ αn22−k

αn−k+1
‖R j−1‖ .

Estimates (5.18–5.20) imply (5.14). ��

Construction for polyhedral currents

When M is a polyhedral current, we can use Proposition 5.2 to construct a map u
which is more regular than that provided by Theorem 5.6. To this end we need the
following:

Lemma 5.7. Let p ≥ k−1, and let be given finitely many maps ui ∈ W1,p
loc (Rn, Sk−1)

which are locally Lipschitz in the complement of closed sets Si and equal to the
north pole yN in the complement of bounded open sets �i .

If the sets �i are disjoint and u is the map which agrees with ui on each �i , and
takes the value yN elsewhere in Rn, then u belongs to W1,p

loc (Rn, Sk−1), is locally
Lipschitz in the complement of ∪Si , and Ju = ∑

i Jui .

Proof. It is clear that u is locally Lipschitz on Rn \ ∪Si . The rest of the statement
is trivial if the sets �i have disjoint closures, and the general case follows by
approximation. ��
Proposition 5.8. Let M be the boundary of a polyhedral current N of codimension
k−1 inRn, and denote by � the union of the faces of N of codimension k. Then there
exists a map u ∈ W1,k−1

loc (Rn, Sk−1) such that �Ju = αk M. Moreover u is locally
Lipschitz in Rn \ � and constant outside a bounded neighbourhood of N, and Du
belongs to L p(Rn) for every p < k and satisfies |Du(x)| = O(1/dist(x,�)).
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Proof. Write N as the finite sum
∑

σi Ni , where each Ni is a simplex (endowed
with multiplicity 1), and σi is an integer. We assume as usual that Ni ∩ N j is either
empty or a common face of Ni and N j , and then we can find δ, γ > 0 such that the
sets Ui := U(Ni , δ, γ) defined in (5.1) have pairwise disjoint interiors (see Fig. 3).

Fig. 3.

For every i, take ui according to Proposition 5.2 for N := Ni , set ũi := φσi ◦ ui

where φσi is taken as in Sect. 5.1, and let u be the map which agrees with ũi on
the interior of each Ui , and with yN elsewhere in Rn . By Corollary, 3.9, �Jũi =
αkσi ∂Ni for every i, and �Ju = αk

∑
σi Ni = αk M by Lemma 5.7. ��

The previous result gives a map u with Jacobian �Ju = αk M, which is singular
on the union � of the (n − k)-dimensional faces of N. Notice that � contains the
support of M = ∂N, but in general can be larger (see Fig. 3). In other words, part
of the singularity of u supports no Jacobian. In the next paragraph we describe
a procedure to remove some (but not all) of this “unnecessary” singularity, and
optimize the singularity around M.

5.9. Optimization of singularities. Let M, N, � and u be given as in the proof
of Proposition 5.8. Let F be an (n − k)-dimensional face of N, endowed with
some orientation, and σ the multiplicity of M = ∂N on F (thus σ = 0 if F is not
contained in the support of ∂N).

In the following we identify Rn with the product Rn−k × Rk, denoting a point
in Rn as x = (x′, x′′), and assume that F lies on Rn−k . Then we set (cf. (5.2)
and (5.3))

U ′ = U ′(F, δ′, γ ′) := {x : x′ ∈ F, |x′′| ≤ g′(x′)} , (5.21)

where g′(x′) := min
{
δ′, γ ′ dist(x′, ∂F)

}
, and the parameters δ′, γ ′ > 0 are chosen

small enough to have δ′ < δ/γ , where δ, γ are the parameters in the proof of
Proposition 5.8, and (see Fig. 4 below)

dist(x,�) = dist(x, F) for every x ∈ U ′. (5.22)

We claim that within U ′, the map u depends only on x′′/|x′′|, that is, it can
be written as u(x) := φ′(x′′/|x′′|) for some Lipschitz map φ′ : Sk−1 → Sk−1.
Let indeed Ni be any of the (n − k + 1)-faces of N whose boundary contains F,
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Fig. 4.

and let Ui be the corresponding set defined in (5.1). In U ′ ∩ Ui , u is defined by
formula (5.4)17. Now, the inner normal to ∂Ni agrees on F with a vector which lies
in {0}×Rk, and we can freely assume that it agrees with the (n −k +1)-th element
of the canonical basis ofRn . Hence, writing x′′ ∈ Rk as x′′ = (x′′

1 , x′′
2 ) ∈ R×Rk−1,

formula (5.4) becomes

u(x) = π

(
x′′

2

g(x′, x′′
1 )

)
for all x ∈ U ′ ∩ Ui .

Moreover, (5.22) implies g(x′, x′′
1 ) = γ dist(x, ∂Ni ) = γ dist(x, F) = γx′′

1 for
every x ∈ U ′, therefore u(x) = π(γ−1 x′′

2/x′′
1), and the claim is proved.

Since �Ju = αk M and M has multiplicity σ on F, then the degree of φ′ must
be σ (recall Sect. 3.7). And since the degree classifies the homotopy classes of
maps from any (k −1)-dimensional compact manifold without boundary into Sk−1

(Hopf theorem, see for instance [25, Chap. 5, Theorem 1.10]), then φ′ must be
homotopic to φσ , that is, there exists a Lipschitz map � : Sk−1 × [0, 1] → Sk−1

such that �(·, 0) = φσ(·) and �(·, 1) = φ′(·). Obviously, we can also require that
�(·, t) = φσ(·) for all t ≤ 1/2. Finally we set (cf. Fig. 5)

u′(x) :=



u(x) when |x′′| > g′(x′),

�

(
x′′

|x′′| ,
|x′′|

g′(x′)

)
when |x′′| ≤ g′(x′).

(5.23)

Thus u′ agrees with u on the complement of U ′, and with φσ(x′′/|x′′|) on U ′′ :=
U ′(F, δ′/2, γ ′/2) (see definition (5.21)). In particular, if σ = 0 then u′ is constant
on this set. As in the proof of Proposition 5.2, one easily verifies that u′ is a Sobolev
map from Rn → Sk−1 which is locally Lipschitz on the complement of � when
σ �= 0, and on the complement of (� \ F) ∪ ∂F when σ = 0. The derivative of
u′ satisfies Du′ ∈ L p(Rn) for every p < k and |Du′| = O(1/dist(x,�)) when
σ �= 0, |Du′| = O(1/dist(x, (� \ F) ∪ ∂F)) when σ = 0. Finally, �Ju′ = �Ju =
αk M.

If we iterate this construction for all (n − k)-dimensional faces of N we imme-
diately obtain the following improved version of Proposition 5.8:

17 Note that the variables x′ and x′′ in formula (5.4) have a different meaning than here.
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Fig. 5.

Theorem 5.10. Let M be the boundary of a polyhedral current N of codimension
k −1 in Rn, and let S denote the union of the faces of N of codimension k +1. Then
there exists u ∈ W1,k−1

loc (Rn, Sk−1) such that �Ju = αk M, u is locally Lipschitz in
the complement of M ∪ S and constant outside a bounded neighbourhood of N, Du
belongs to L p(Rn) for every p < k and satisfies |Du(x)| = O(1/dist(x, M ∪ S)).

Moreover, given a face F of M of codimension k, if we identify the affine
plane of codimension k which contains F with Rn−k, and write x ∈ Rn as a
x = (x′, x′′) ∈ Rn−k × Rk, then

u(x) = φσ

(
x′′

|x′′|
)

for all x ∈ U ′(F, δ, γ),

where σ is the multiplicity of M on F, φσ is defined in Sect. 5.1, and U ′(F, δ, γ) is
defined as in (5.21) for suitable δ and γ .

6. Additional remarks and open problems

We collect in this section, with no precise order, some remarks and questions
related to the previous sections. We being with an open problem on the structure
of Jacobians.

6.1. Pointwise characterization of the Jacobian. There is a clear analogy between
Corollary 3.10 and the structure theorem for finite perimeter sets of De Giorgi.
Indeed, for k = 1 the maps from � into Sk−1 reduce to characteristic functions
of sets, while the Jacobian is just the distributional derivative. To this regard,
we recall that the rectifiable set which carries the derivative of the characteristic
function of a finite perimeter set E can be pointwise characterized as the measure-
theoretic boundary of E, namely the set of points where E has neither density 1 nor
density 0 (see for instance [3, Theorem 3.61] or [17, Theorem 4.5.6(3)] – in fact,
finite perimeter sets can be characterized via the measure of their measure-theoretic
boundary, cf. [17, Theorem 4.5.11]).

It would be interesting to know if there exists an analogous characterization of
the rectifiable set which carries the Jacobian of an Sk−1-valued map.
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6.2. Algebraic structure of the Jacobian. The space W1,1(�, S1) is a group under
complex multiplication, and it is easy to check that the operator �J defines, up
to a factor π, a homomorphism of this group into the group of boundaries of
rectifiable currents in � with finite mass (use the isomorphism of W1,1(�, S1)

onto W1,1(�,R/Z), identity (3.9), and the fact that θ �→ d(dθ) is obviously
additive). Theorem 5.6 shows that this homomorphism is also surjective.

Notice moreover that in Sect. 4.3 we (almost) construct an explicit right-
inverse of the homomorphism �J : indeed the map which takes M into dθ described
in (4.10) is linear and satisfies �d(dθ) = M, and therefore the map which takes
M into u := exp(2πiθ) – modulo multiplication by a unit complex number – is
a homomorphism, and satisfies �Ju = πM, that is, it is a right inverse of �J (but
it may be not defined when M has not locally finite mass, cf. Sect. 6.3).

In the next paragraphs we examine the regularity properties of the map u in
Theorem 4.4. Thus M, θ and u are defined as in Sect. 4.3 and Theorem 4.4.

6.3. Relation with the Laplace equation. If ω is the (n −1)-form in (4.5), then the
vectorfield �ω agrees, up to some constant, with the gradient of the function |x|n−2

(log |x| for n = 2), which is the fundamental solution of the Laplace equation
onRn . Therefore, if we identify N with a vector measure µ via the Hodge operator,
the function θ ′ in (4.7) agrees, up to some constant, with the divergence of the
solution v of �v = µ.

Now it is well-known that if v solves the Laplace equation with measure or
even L1 right-hand side, then the second derivative D2v may be not a measure,
and the best Sobolev regularity one can expect is, in general, v ∈ W1,p for every
p < 1∗ (see [4] for examples in the context of measure forms).

This remark suggests (but does not prove) that without the assumption that
M = ∂N has finite mass, the gradient Dv, and perhaps also θ ′ = div v, may be not
BV functions. In particular, the function θ in (4.8) may be not W1,1, and then the
construction in Sect. 4.2 fails. On the other hand, if M has finite mass, the same
argument applied to the convolution product at the right-hand side of (4.10) shows
that the Sobolev regularity we have obtained for θ and u is probably optimal.

6.4. Behaviour close to the singularity. Let M be a plane of codimension two; if
we identify M with Rn−2, and write x ∈ Rn as x = (x′, x′′) ∈ Rn−2 ×R2, then an
explicit computation shows that the map u in Theorem 4.4 agrees, up to a rotation
in S1 which depends on the choice of N, with x′′/|x′′|.

Using this fact one can show that when M is a smooth surface, u displays
a similar behaviour in the proximity of M. In particular, it is possible to modify u
in a neighbourhood of M so that it remains smooth in the complement of M, and
for every x0 ∈ M there exist a neighbourhood U of x0 and a diffeomorphism �

which maps U into the product M × R2, so that u(x) = x′′/|x′′| for all x ∈ U ,
where (x′, x′′) = �(x).

6.5. Geometric consequences. Let u be the map modified as in the previous
paragraph, and y a regular value of u, then M is the boundary of the smooth
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hypersurface N := u−1(y). Moreover, if (y1, y′
1) and (y2, y′

2) are two couples
of antipodal regular values of u, then N1 := u−1(y1) ∪ u−1(y′

1) and N2 :=
u−1(y2)∪u−1(y′

2), suitably oriented, are smooth, transversal hypersurfaces without
boundary, and M = N1 ∩ N2.

In other words, every smooth surface of codimension two and without boundary
in Rn is the boundary of a smooth hypersurface, and even more, it is a complete
intersection; notice that these results do not hold in codimension larger than two
(see [9], and references therein).

The next paragraphs are devoted to the construction described in Sect. 5.

Remark 6.6. The construction in the proof of Proposition 5.2 can be extended,
with few straightforward modifications, to every surfaces N of class C1 with trivial
normal bundle in Rn ,18 and yields a map u which satisfies �Ju = αk M and is
smooth in the complement of M – cf. Theorem 5.10. This triviality condition is
automatically satisfied by every oriented surface N of codimension one, and such
an N can be found for every M of codimension two (cf. Sect. 6.5).

6.7. A simple proof of Theorem 5.6 for k = 2. Let M be the boundary in �

of a rectifiable current N of codimension one. Then there exists a real function
θ ′ ∈ SBV(�) whose differential can be decomposed as �dθ ′ = �ω + (−1)n N,
where ω is a suitable 1-form in L1(�).19 Now we set θ := π(θ ′), where π is the
canonical projection of R onto R/Z. Since N has integral multiplicity, the jump
of θ ′ is integer, and then θ has no jump. Hence θ belongs to W1,1(�,R/Z) and
�dθ = �ω = �(dθ ′) + (−1)n−1 N, and therefore, using (2.2) and recalling that
∂N = M and d2θ ′ = 0,

�d(dθ) = �d(dθ ′) + ∂N = M .

By (3.9), the map u = exp(2πiθ) satisfies �Ju = π d(dθ) = π M.

6.8. Is it possible to reduce the singular set of u? The singular set of the map
u in Theorem 5.10 is the union of the datum M and an additional polyhedral
set S of codimension k + 1 (disjoint from M). It is then natural to ask if S can
be removed, or at least replaced by a set of lower dimension. To this end, it is
conceivable to adapt the procedure described in Paragraph 5.13: given a face F of
dimension n − k + 1 of S, we take a set U ′ as in (5.21), so that u is continuous
on U ′ \ F, and try to replace u inside U ′ \ ∂F with a continuous extension of its

18 The triviality of the normal bundle implies that some neighbourhood of N is diffeomor-
phic to the product N × Rk−1.
19 This claim is a particular case of the following statement: given an oriented (n − 1)-

rectifiable set S in � and a real function g in L1(Hn−1 S), there exists an SBV function
v such that Sv = S, [v] = g and ‖dav‖ ≤ 2‖g‖1 (cf. [17, §4.1.18]). Indeed, when S is
(contained in) the boundary of a domain A of class C1 relatively compact in �, it suffices
to apply a well-known result of E. Gagliardo [18] to find v ∈ W1,1(A) with ‖dv‖1 ≤ 2‖g‖1
and trace equal to g on ∂A, and then extend v to 0 on the rest of �. The general case can be
reduced to this one by covering S with countably many boundaries of class C1.
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restriction to ∂U ′ \ ∂F. Now U ′ \ ∂F is homeomorphic to the product F′ × Bk+1,
where F′ is the interior of F and Bk+1 is the unit closed ball in Rk+1, and the
problem becomes to find a continuous extension of u : F′ × ∂Bk+1 → Sk−1 to
F′ × Bk+1. Since F′ is a contractible space, this can be done if and only if, taken an
arbitrary point x′ ∈ F′, the restriction of u to {x′}×∂Bk+1 (which is homeomorphic
to Sk) is homotopic to a constant map. Unfortunately, the k-th homotopy group
of Sk−1 is not trivial for k > 2,20 and therefore such a homotopy may not exist
(for a general overview of topological obstruction problems, see for instance [36,
Part III]).

Thus we do not know if, and at which cost (in terms of regularity) S can be
removed. However, we know that for k > 2 there cannot always exists a map u
which is smooth in the complement of M and behaves close to the singularity M
as regularly as the one in Sect. 6.4, because the geometric consequences described
in Sect. 6.5 do not hold in codimension larger than two.

7. Appendix

We begin this section with a statement on the integrability of certain singular
functions. Then we define the notion of Jacobians for Sobolev maps valued in
some manifold, and give a version of the coarea formula for such maps; this is the
key lemma in the proof Theorem 3.8. We conclude with an approximation result
for rectifiable currents.

Lemma 7.1. Let S ⊂ Rn be (contained in) a finite union of Lipschitz surfaces of
codimension h. Then, given a bounded set E ⊂ Rn,

∫
E

dx

[dist(x, S)]p
< +∞ for every p < h.

Proof. Let M be the supremum of dist(x, S) for x ∈ E, and for every t > 0 denote
by St the t-neighbourhood of S, and by 1t its characteristic function. Then

1

[dist(x, S)]p
= M−p + p

∫ M

0
t−(p+1)1t(x) dt for every x ∈ Rn .

Since Ln(St) ≤ Cth for some finite C (see [17, §3.2.39]),

∫
E

dx

[dist(x, S)]p
= Ln(E) M−p +

∫ M

0

p

t p+1L
n(St) dt

≤ Ln(E) M−p + C p
∫ M

0
th−1−pdt < +∞ .

��
20 In particular π3(S2) = Z and πk(Sk−1) = Z2 for k ≥ 3, see for instance [13, Chap. VII,

Theorem 8.3].
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7.2. Pull-back according to Sobolev maps. Let � be an open subset of Rn , and ω

a fixed smooth h-form in Rk, with h ≤ k ≤ n. For every C1 map u : � → R
k , we

denote by Jωu the pull-back of ω according to u (we adopt this notation to mark
the analogy with the Jacobian). Since

|Jωu(x)| ≤ |ω(u(x))| · |Du(x)|h , (7.1)

this pointwise definition makes sense (almost everywhere) for every bounded map
of class W1,p with p ≥ h, and Jωu belongs to L p/h . Moreover the operator Jω

is continuous, in the sense that given a sequence of uniformly bounded maps u j
that converge to u strongly in W1,p, the Jacobians Jωu j converge to Jωu strongly
in L p/h .

The pull-back according to a map u of class C2 commutes with the exterior
differential, that is

Jdωu = d(Jωu) , (7.2)

and therefore, if ψ is the differential of an h-form ω, for all u of class C2 there
holds

Jψu = d(Jωu) . (7.3)

Since Jωu is well-defined for all bounded maps of class W1,h , formula (7.3) allows
us to define Jψu as a distribution for all such maps21, and not only for those
of class W1,h+1. The continuity of Jψ (and Jω) ensures that distributional and
pointwise definition of Jψ agree for all bounded maps of class W1,h+1 (and of
course identity (7.2) holds too).

7.3. Integration of maps valued in a Banach space. Let E be the dual of a separable
Banach space, X a subset of some euclidean space endowed with a finite positive
measure µ, and f a map in L1∗(X, E) – that is, a Borel map from X into E,
endowed with the weak* topology, such that ‖ f ‖1 := ∫

X | f |E dµ is finite. Then
the integral of f on X is the element of E defined by 〈e, v〉 = ∫

X〈 f, v〉 dµ for every
v in the pre-dual of E.

We say that f is approximately continuous in the weak* sense at x̄ ∈ X if:
(a) the function x �→ | f(x)|E is approximately continuous at x̄,22 and (b) the
function x �→ 〈 f(x), v〉 is approximately continuous at x̄ for every v in the pre-
dual of E. It is easy to see that in this case, the averages of f(x) over x ∈ B(x̄, r)
converge to f(x̄) in the weak* topology of E, and also their norms converge. More
generally, the integrals

∫
X f ρi dµ converge weakly* to f(x̄) if the real functions

ρi converge to a Dirac mass at x̄, and are sufficiently well-distributed around x̄,
e.g., for every i there exists ri > 0 such that ρi is supported in B(x, ri) and

21 The Jacobian Ju agrees with Jψu = dJω0 u where ψ(y) = dy = dy1 ∧ · · · ∧ dyk is the
standard volume form on Rk , and ω0 is given in (2.7) divided by k.
22 Approximate continuity of g at x̄ is intended in the usual L1 sense, namely that the

average of |g(x) − g(x̄)| over all x ∈ B(x̄, r) tends to 0 as r → 0.
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|ρi | ≤ C/µ(B(x̄, ri)) for some finite constant C. Note that every f in L1∗(X, E) is
approximately continuous in the weak* sense at almost every x̄ ∈ X.23

In Sects. 7.4 and 7.5 we apply these notions when E is the space of bounded
measures on � – dual of C0(�), space of continuous functions vanishing at ∂� – or
the space of d-dimensional currents with finite mass in � – dual of C0(�,∧d(Rn)),
space of continuous d-forms vanishing at ∂�. Notice that neither spaces are sep-
arable or have the Radon-Nikodym property, i.e., there are functions in L1∗(X, E)

which cannot be integrated in the sense of Bochner and are nowhere approximately
continuous in the usual (strong) sense.

Oriented and unoriented coarea formula

For the rest of this subsection M is a smooth oriented h-surface in Rk without
boundary, and ω is the standard volume form on M.

7.4. Coarea formula for Lipschitz maps. The usual coarea formula (see [17, Theo-
rem 3.2.22]) says that for every Lipschitz map u : � → M, every Borel set A ⊂ �,
and every continuous function ρ : M → R there holds∫

A
|Jωu| · |ρ(u)| dLn =

∫
M
Hn−h(Ny ∩ A) · |ρ(y)| dHh(y) , (7.4)

where Ny is the level set u−1(y) for every y ∈ M. Moreover Ny is (n−h)-rectifiable
forHh-a.e. y ∈ M.

If A is the complement of the set of all x such that u is differentiable at x and
Jωu(x) �= 0, then the integral of |Jωu| on A vanishes, and applying formula (7.4)
with ρ(y) ≡ 1 we deduce that, for Hh-a.e. y ∈ M, the map u is differentiable at
Hn−h -a.e. x in Ny , and the (n −h)-vector �Jωu(x) does not vanish. Hence �Jωu(x)

is a simple vector which spans the tangent space to Ny at any such point x.
Now we equip each rectifiable level set Ny with the orientation �Jωu/|�Jωu|

and the multiplicity 1, and make it a rectifiable current with finite mass, still denoted
by Ny . Since |ω| = 1 on M, for ρ ≡ 1 inequality (7.1) and formula (7.4) yield∫

M
‖Ny‖ dHh(y) =

∫
�

|Jωu| dLn ≤
∫

�

|Du|h dLn . (7.5)

Hence, taking into account that ρ(u)Jωu = Jρωu, identity (7.4) can be rewritten as
a decomposition of the measure |�Jρωu| as a weighted average over the parameter
y of the measures |Ny|, that is,

|�Jρωu| =
∫

M
|Ny| · |ρ(y)| dHh(y) , (7.6)

where the integral is intended in the sense of Sect. 7.3 (the map y �→ |Ny| is
summable by (7.5); we omit checking that it is also weak* Borel measurable).

23 Indeed, if x̄ satisfies (a), then (b) holds for all v in the pre-dual of E if (and only if) it
holds for all v in a given countable dense subset of the pre-dual of E.
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From (7.6) we immediately derive the analogous decomposition for the current
�Jρωu in terms of the currents Ny (oriented coarea formula):

�Jρωu =
∫

M
Ny · ρ(y) dHh(y) . (7.7)

7.5. Coarea formula for Sobolev maps. Formulas (7.4–7.7) can be extended with
some care to maps u in W1,h(�, M). The key step is to establish a suitable version
of (7.4).

We first choose finitely many smooth h-surfaces Mi , which are diffeomorphic
to closed balls in Rh and cover M. Let now E be the set of all points where u is
not approximately differentiable: then E is Lebesgue negligible, and � \ E can be
covered by a countably many sets B j where u agrees with a Lipschitz map (cf. [17,
Theorem 3.1.8]). We also require that the sets B j are pairwise disjoint and u(B j)

is contained in one of the surfaces Mi .
Since each Mi is diffeomorphic to a closed ball in Rh , we can use Kirszbraun’s

extension theorem (for maps into a closed convex subset of Rh) to find a Lipschitz
map u j : � → Mi which agrees with u on B j . Thus formula (7.4) holds for u j ,
and since u agrees with u j in B j and Du agrees with Du j a.e. in B j , formula (7.4)
holds also for u provided A ⊂ B j for some j . As the sets B j cover � \ E, (7.4)
can be made true for every u and every set A ⊂ � by re-defining Ny as

Ny := u−1(y) \ E for every y ∈ M. (7.8)

Since u agrees with u j on each B j , each Ny is rectifiable for Hk-a.e. y ∈ M
and �Jωu/|�Jωu| is an orientation of Ny . Now we can proceed as in the previous
paragraph and endow Ny with the structure of rectifiable current, and show that the
decomposition formulas (7.6) and (7.7), and estimate (7.5) hold.

Since y �→ Ny is an L1∗ map from M into the Banach space of (n − h)-currents
with finite mass, as pointed out in Sect. 7.3, it is approximately continuous in the
weak* sense atHh-a.e. y ∈ M. We call such y regular values, and the corresponding
Ny regular level sets. In the following we use the notation Ny only for regular level
sets.

Remark 7.6. Formula (7.4) holds also for maps u of class W1,1, provided that the
level sets Ny are defined as in (7.8), and |Jωu| is defined in the pointwise sense.
The assumption that u is of class W1,h is used to prove thatHn−k(Ny) is finite for
a.e. y ∈ M and that the map y �→ ‖Ny‖ is summable (cf. (7.5)), which in turn is
needed to ensure that the integrals at the right-hand sides of (7.6) and (7.7) make
sense (cf. Sect. 7.3).

Remark 7.7. If we define the level sets Ny of a map u ∈ W1,1(�, M) simply as
u−1(y) – that is, we do not remove the points of non-differentiability of u – then
formula (7.4) remains valid provided that u satisfies the following version of the
(N) property: for every null set E ⊂ Rn , Hn−h(u−1(y) ∩ E) = 0 for Hh -a.e.
y ∈ M. Formula (7.4), with A replaced by E, shows that every Lipschitz map u
satisfies the (N) property. It has been recently proved in [30] that the same is true
when u is the precise representative of a map of class W1,p for some p > h.
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Remark 7.8. If M is the boundary of an (h + 1)-surface M′ and u is sufficiently
regular, and precisely of class W1,h+1, then ∂Ny = 0 for every regular value y ∈ M.
Indeed, taken any extension of the form ω to M′, formulas (7.7) and (2.2) yield,
for every smooth function ρ,∫

M
∂Ny · ρ(y) dHh(y) = ∂(�Jρωu) = (−1)n−h�Jd(ρω)u ,

and since u takes values in a negligible subset of M′, the (h +1)-form Jd(ρω)u – the
pull-back of d(ρω) according to u – must vanish. Thus the integral in the formula
above vanishes for every ρ, which proves that ∂Ny = 0 for a.e. y ∈ M, and by
continuity for every regular value y.

Proof of Theorem 3.8

The geometric idea behind the proof of Theorem 3.8 is very simple: if we assume
that u is smooth outside a singular set S of codimension k, then, up to a factor αk
and some integer multiplicity σ , the current �Ju agrees with S (see Sect. 3.7), and,
as shown in Fig. 6 below, S is the boundary of every level set Ny := u−1(y), which
is indeed a surface of codimension k − 1.

We claim that the same is true, in some sense, also for maps in W1,k−1. The
key observation is that not only Ju = 1

k d(Jω0u) where ω0 is the standard volume
form on Sk−1, but in fact Ju = 1

k d(Jρω0u) for any smooth function ρ with average
one (Proposition 7.9). Therefore we can use the coarea formula to represent �Ju
as the boundary of the integral combination

∫
Ny ρ(y) dHk−1(y), and then pass to

the limit as the functions ρ converge to a Dirac’s mass at some regular value y.

Fig. 6.

In the following statement we consider a compact, oriented h-surface M without
boundary. Notice that in this case any smooth h-form on M can be written as ρω

where ω is the standard volume form on M, and ρ is a real function on M.

Proposition 7.9. If M is connected and ρ : M → R is a smooth function with
average 1, then

d(Jωu) = d(Jρωu) for every u ∈ W1,h(�, M). (7.9)
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Proof. It suffices to show that Jωu − Jρωu = J(1−ρ)ωu is the differential of an
(h − 1)-form.

The h-form (1 − ρ)ω has vanishing integral over M, and since the h-th De
Rham cohomology group of a connected h-dimensional manifold M is R, and
the cohomology class of an h-form is determined by the integral over M (cf. [10,
Corollary 5.8]), then (1 − ρ)ω belongs to the class 0, i.e., it is an exact form. Thus
there exists an (h −1)-form ϕ on M such that dϕ = (1 −ρ)ω. If we extend ϕ to the
rest of Rk in an arbitrary way, then dϕ is an extension of (1 − ρ)ω, and for every u
of class W1,h there holds (cf. (7.2))

J(1−ρ)ωu = Jdϕu = dJϕu . ��

Proof of Theorem 3.8. By Definition 3.2, the Jacobian of u is Ju = 1
k d(Jω0u),

where ω0 is the standard volume-form Sk−1. Let ρ be a smooth function on Sk−1

with average 1, that is, with integral kαk. Then, Ju = 1
k d(Jρωu) by Proposition 7.9,

and recalling (2.2),

�Ju = (−1)n−k+1 1

k
∂(�Jρ0ωu) . (7.10)

As discussed in Sect. 7.5, decomposition formula (7.7) applies to �Jρω0 u, too, and
therefore (7.10) becomes

�Ju = (−1)n−k+1 1

k
∂

[ ∫
Sk−1

Ny · ρ(y) dHk−1(y)

]
, (7.11)

where the currents Ny are the y-level set of u, as defined in Sect. 7.5.
If ȳ is a regular value of u, namely a point of approximate continuity (in the

weak* sense) of the map y �→ Ny , and we properly choose a sequence of smooth
functions ρ which converge to the Dirac’s mass kαkδȳ, then the integral between
square brackets at the right-hand side of (7.11) converge in the sense of currents to
kαk Nȳ (cf. Sect. 7.3), and then

�Ju = (−1)n−k+1αk ∂Nȳ .

If in addition we have chosen ȳ so that ‖Nȳ‖ is smaller than the average of ‖Ny‖
over all y ∈ Sk−1, inequality (7.5) yields (3.7). ��
Remark 7.10. The key lemma in the proof of Theorem 3.8, namely Proposition 7.9,
is a rephrasing of a known fact on the structure of the boundary of graphs with
finite area. Let u be a map in W1,h(�, M), and let Gu be the regular part of the
graph of u, namely, the set of all (x, u(x)) such that u is approximately continuous
and approximately differentiable at x. One easily checks that Gu is an n-rectifiable
set with finite measure (and according to [20, §3.2.1], we write u ∈ A1(�, M)),
and the canonical orientation induced by the projection on � makes it a rectifiable
n-current. Moreover, if M is connected, ∂Gu can be represented as a product T ×M,
where T is a current of dimension n−h−1 in � (see, e.g., [21, §4.2.1], for a special
case), and using the coarea formula one can prove that T remains unchanged if we



308 G. Alberti et al.

replace the volume form on M by any other form with same integral. If M = Sk−1,
the relation with the Jacobian is given by the identity �Ju = 1

k

(
π�(∂Gu ω0)

)
,

where π is the projection of � × Sk−1 onto �, and ω0 is the (k − 1)-form in (2.7).
In particular �Ju = αkT .

Approximation of rectifiable currents

The main result in this subsection is Theorem 7.12 below, which is a fairly simple
consequence of Theorem 4.2.22 in [17].

Definition 7.11. Given two rectifiable h-currents N1 and N2 in �, we consider the
distance d(N1, N2) defined by

d(N1, N2) := inf(‖R‖ + ‖P‖) (7.12)

where the infimum is taken over all rectifiable currents R and P of dimension h and
h + 1, respectively, such that N1 − N2 = R + ∂P.24 In the following we say that
a sequence of rectifiable currents Ni converge in the flat metric with convergence
of the masses to N if d(Ni , N) → 0 and ‖Ni‖ → ‖N‖.

Theorem 7.12. Let N be an h-dimensional rectifiable current in � with finite
mass. Then N can be approximated in the flat metric with convergence of masses
by finite sums

∑
Ei, where each Ei is an oriented h-dimensional disk with center

xi and radius ri , endowed with constant multiplicity 1.
Moreover, given a function ρ on � which is strictly positive Hh-a.e., we may

require that the radii ri satisfy ri < ρ(xi), and the balls B(xi, ri) are pairwise
disjoint and contained in �.

Proof. By Theorem 4.2.22 in [17], there is no loss of generality in assuming that
N is a polyhedral current compactly supported in N.

Moreover, we may also assume that the multiplicity of N is 1 on each face of the
polyhedron. Indeed, if some face of N was initially assigned a multiplicity σ > 0,
it can be replaced by σ copies of itself (where each of the copies is translated by
a small vector, and equipped with multiplicity 1): this operation does not change
the mass of N, and the resulting current can be made arbitrarily close to N in the
flat distance.

To prove the theorem for this special class of currents, it suffices to use Besi-
covitch covering theorem to cover each face S of N with finitely many pairwise
disjoint disks Ei of center xi and radius ri which cover all of S except a subset with
small measure and satisfy ri < ρ̄(xi), where ρ̄(x) is the minimum between ρ(x)

and half the distance between x and N \ S. This choice of ρ̄ implies the second part
of the statement. ��
Corollary 7.13. Let N be an h-dimensional rectifiable current in � with finite
mass, and ρ a function on � which is strictly positive Hh-a.e. Then there exist
finitely many oriented h-disks Ei with centers xi and radii ri < ρ(xi), rectifiable
currents R and P of dimension h and h + 1, respectively, so that

24 Thus d is a modification of the usual flat metric – see [17, §4.1.12] or [35, §31].
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(i) N = ∑
i Ei + R + ∂P;

(ii)
∑

i ‖Ei‖ ≤ 21−h‖N‖;
(iii) ‖R‖ + ‖P‖ ≤ (1 − 2−1−h)‖N‖;
(iv) the balls B(xi, 2ri) are pairwise disjoint.

Proof. Let ε > 0 be fixed for the time being (to be properly chosen later). By
Theorem 7.12 (and Definition 7.11) we can find disjoint disks E′

i , and rectifiable
currents R′ and P′ such that

N=
∑

i

E′
i + R′ +∂P′ ,

∑
i

‖E′
i‖ ≤ (1+ε)‖N‖ , ‖R′‖+‖P′‖ ≤ ε‖N‖ . (7.13)

Let now Ei be a copy of E′
i scaled by a factor 1/2 and concentric to E′

i , P := P′
and R := ∑

(E′
i − Ei) + R′. Then the first identity in (7.13) yields (i), the first

inequality in (7.13) yields (ii) (at least for for ε ≤ 1), and

‖R‖ + ‖P‖ ≤
∑

i

‖E′
i − Ei‖ + ‖R′‖ + ‖P′‖

≤ (1 − 2−h)
∑

i

‖E′
i‖ + ε‖N‖

≤ [
(1 − 2−h)(1 + ε) + ε

]‖N‖ ,

which gives (iii) if we choose ε small enough to have (1 − 2−h)(1 + ε) + ε ≤
1 − 2−h−1. Finally, if the disks E′

i satisfy the second part of Theorem 7.12, then
(iv) holds. ��
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