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Abstract. We obtain rigidity and gluing results for the Morse complex of a real-valued
Morse function as well as for the Novikov complex of a circle-valued Morse function.
A rigidity result is also proved for the Floer complex of a hamiltonian defined on a closed
symplectic manifold (M, ω) with c1|π2(M) = [ω]|π2(M) = 0. The rigidity results for these
complexes show that the complex of a fixed generic function/hamiltonian is a retract of the
Morse (respectively Novikov or Floer) complex of any other sufficiently C0 close generic
function/hamiltonian. The gluing result is a type of Mayer-Vietoris formula for the Morse
complex. It is used to express algebraically the Novikov complex up to isomorphism in terms
of the Morse complex of a fundamental domain. Morse cobordisms are used to compare
various Morse-type complexes without the need of bifurcation theory.
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Introduction

A Morse type complex associated to a generic pair ( f, α) with f a functional and
with α an additional geometric structure is a complex freely generated by the critical
points (assumed in the paper to be finite in number) of f and with a differential given
by counting “flow lines” that join successive critical points of f . The definition
of these “flow lines” depends on both f and α. For example, f might be a Morse
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function, α a Riemannian metric and then the differential counts flow lines of
−∇α f . The complex is in this case the classical Morse complex variously attributed
to Thom, Smale, Milnor and under a different form to Witten. Other examples that
will appear in this paper are provided by the Novikov complex where f is an
S1-valued function (the additional structure being again a metric) and the Floer
complex which, from this perspective, is associated to an action functional defined
on a space of unbased, contractible loops on a symplectic manifold together with
an almost complex structure on the manifold. In this last example, the “flow lines”
to be counted are deformed pseudo-holomorphic cylinders. In this introduction we
shall denote any complex of one of these three types by C( f, α).

Our focus in this paper is not on the homology computed by C( f, α) (which,
indeed, is in all these cases independent of the pair ( f, α)) but rather on the
complexes themselves.

The first type of result that we prove for the Morse, Novikov as well as for
the Floer complex is a rigidity statement: it shows that small C0 perturbations of
f accompanied by arbitrary perturbations of α do not decrease the complexity
of C( f, α). Precisely, for fixed ( f, α) there exists δ f > 0 such that if ( f ′, α′) is
another generic pair such that C( f ′, α′) is defined and with || f − f ′||0 ≤ δ f ,
then C( f, α) is a retract of C( f ′, α′) (which means that there are chain morphisms
i : C( f, α) → C( f ′, α′), j : C( f ′, α′) → C( f, α) such that j ◦ i = id). When
f = f ′ we immediately deduce that the isomorphism type ofC( f, α) is independent
of α.

For the classical Morse complex and for the Novikov complex, this corollary
is implicit in the work of Latour [12] where the approach is that of bifurcation
analysis. The general case, when f ′ is different from (but C0-close to) f , is new
even in the standard Morse case and bifurcation analysis does not suffice to prove
it. The reason is that C0-closeness to f is not naturally encoded in some restriction
of the type of modification that may occur in the Morse complex at passage through
bifurcation points when tracing a generic path of (of C∞ functions) from f to f ′.
Of course, without the C0-closeness condition the result fails. Moreover, in the
Floer setting bifurcation theory is very little understood and therefore particularly
inefficient for this type of problem.

In this paper we do not use bifurcation analysis at all. Rather, we introduce and
apply a notion of Morse cobordism. Roughly speaking, this is a generic pair ( f, α)

with f a Morse function and α a Riemannian metric both defined on a cobordism
(M; N0, N1) and such that ∇α f is tangent to the boundary and the restrictions
fi = f |Ni are Morse functions whose critical points verify ind fi (x) = ind f (x)+ i,
i ∈ {0, 1}. The role of Morse cobordisms is to transform a k-parametric deformation
question for Morse functions or complexes in a problem concerning a Morse
function (or complex) defined on a space with k more dimensions (in the paper the
actual values of k that are used are just 1 and 2). We introduce this notion in Sect. 1
and discuss its immediate properties in Sect. 1.1. In Sect. 1.2 we show the rigidity
result for the Morse complex. This serves as prototype for the Floer and Novikov
cases which are shown respectively in Sect. 2.1 and Sect. 2.2 Theorem 2.10 (i).
It should be noted that the whole idea of Morse cobordisms is inspired by the
continuation method in Floer theory. Indeed, the special Morse cobordisms without
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critical points in the interior of M (which implies that (M; N0, N1) is a trivial
cobordism) have an excellent Floer theory translation provided by the monotone
homotopies introduced by Floer and Hofer in [5] (see also [2]) and which we shall
use in Sect. 2.1.

In Sect. 1.3 we show a Mayer-Vietoris type formula for the Morse complex.
A geometric cobordism (M; N0, N1) can be split along a two-sided hypersurface
N ⊂ Int(M) into two cobordisms (M′; N0, N), (M′′; N, N1). Of course, the initial
cobordism can easily be recovered by gluing back the two pieces. We discuss
how to split a Morse cobordism f : (M; N0, N1) → R along a Morse function
g : N → R into two Morse cobordisms h′ : M′ → R and h′′ : M′′ → R. The key
point showed in the gluing Theorem 1.29, is that, if a certain technical property
is satisfied by g, then it is possible to express in a purely algebraic manner the
Morse complex of f in terms of the Morse complexes of h′ and h′′. Again, for
this result bifurcation methods are not directly usable (see Remark 1.30). Even if
g does not satisfy the technical property indicated the same method still produces
the isomorphism type of the Morse complex of f .

The result in Sect. 1.3 is applied to the study of the Novikov complex in 2.2.
In Theorem 2.10 (ii–iii) we describe a way to recover this complex algebraically
out of information on one fundamental domain. For a fixed Morse-Smale function
( f, α) : M → S1 the procedure consists in first splitting f along a Morse function
g : N → R with N a regular level surface of f . This produces a Morse cobordism
on one fundamental domain of f . We then consider the Morse complex associated
to this Morse cobordism and, by a purely algebraic procedure, we glue together an
infinite number of copies of it thus getting a new complex C. The problem then is to
compare C with C( f, α). By using again Morse cobordisms we show that these two
complexes are isomorphic. The complexC is viewed as an approximationof C( f, α)

and special choices of g result in a complex C agreeing with the Novikov complex
of f with any finite degree of precision desired. This last point is related to results
of Pajitnov [16] which provide an exact formula for the Novikov complex but only
apply to a special class of Morse-Smale functions. We discuss these relations in
Remark 2.14(c).

1. Cobordism of Morse functions

1.1. Basic constructions. This subsection is concerned with the basic definitions
and properties of Morse cobordisms.

1.1.1. Definitions. We start by introducing an extension of the usual notion of
a Morse-Smale function on a closed manifold to a manifold with boundary. Our
definition is designed to ensure that the standard construction of the chain complex
in the closed case extends to a construction of a chain complex for a Morse-Smale
function on a manifold with boundary.

Let M be a compact manifold, possibly with non-empty boundary. A Morse
function f : M → R is a smooth function with nondegenerate critical points
(that might belong to the boundary). We denote by Criti( f ) (or Criti(M, f )) the
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critical points x of index i, ind f (x) = i, of such a function and we let Crit∗( f ) (or
Crit∗(M, f )) be the set of all critical points of f .

Given a Morse function f : M → R and a Riemannian metric α on M let ∇ f
be the gradient vector field of f . Let φ = {φt : M → M : t ∈ R} be the flow
(possibly only partially defined) on M induced by −∇ f , so that

dφt(x)/dt = −∇ f(φt(x)) , φ0(x) = x (x ∈ M) .

For a critical point p ∈ M of f let

Wu
f (p) = {x ∈ M : lim

t→−∞ φt(x) = p}
be the unstable manifold of p and let

Ws
f (p) = {x ∈ M : lim

t→∞ φt(x) = p}
be the stable manifold of p.

Definition 1.1. A Morse-Smale function ( f, α) on a compact manifold with bound-
ary (M, ∂M) is a Morse function f : M → R together with a Riemannian metric
α such that

(i) for each boundary component N of ∂M one of the two following conditions is
satisfied:
(a) f is regular on N, meaning that for all x ∈ N

∇ f(x) /∈ Tx N ⊂ Tx M .

(b) For all x ∈ N we have

∇ f(x) ∈ Tx N .

(ii) for any two critical points p, q ∈ M the stable and unstable manifolds Wu(p)

and Ws(q) intersect transversely (due to point (i) the stable and unstable
manifolds are indeed submanifolds of M, possibly with boundary if ∂M �= ∅).


�
Remark 1.2. The classical definition of a Morse-Smale function assumes the
boundary behaviour of (i) (a). Let (g, β) = ( f, α)|N be defined when condition
(i) (b) is satisfied. Then (g, β) is also a Morse-Smale function on N. In this case,
Crit∗(g) ⊂ Crit∗( f ) (because the component of ∇ f(x) normal to the boundary is
null for all x ∈ N) and if x ∈ Crit∗(g) we have

indg(x) = ind f (x) − δx

with δx ∈ {0, 1}. 
�
Let ( f, α) : M → R be Morse-Smale. Denote the set of critical points of f

with index i by Criti( f ). For p ∈ Criti( f ), q ∈ Crit j( f ) the space Z(p, q) of
(non-broken) flow lines of φ that join p to q is homeomorphic to any intersection
Wu(p) ∩ Ws(q) ∩ f −1(a) where a is some regular value of f such that f(q) <

a < f(p). The space
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Z(p, q) ∼= Wu(p) ∩ Ws(q) ∩ f −1(a)

is a (i− j−1)-dimensional manifold. If j = i−1 (and as M is compact) this is a finite
set. We fix orientations of Tx M for all x ∈ Crit∗( f ) as well as for each tangent space
to the unstable manifolds Tx(Wu(x)). This provides orientations for Tx(Ws(x)) by
demanding that the orientation on Tx(Wu(x)) and that on Tx(Ws(x)) give that fixed
on Tx(M). Moreover, as Ws(x), Wu(x) are contractible these orientations induce
orientations of the tangent spaces to the whole stable and unstable manifolds. For
a point z ∈ Z(p, q) we now let ε(z) be equal to 1 if the orientation of Tz(Wu(p))

and that of Tz(Ws(q)) (in this order) give the orientation induced on Tz M from
Tp(M). Finally, let

n f,α(p, q) =
∑

z∈Z(p,q)

ε(z) ∈ Z .

Definition 1.3. The Z-coefficient Morse complex C(M, f, α) of a Morse-Smale
function ( f, α) : M → R is defined by

d : C(M, f, α)i = Z[Criti( f )] → C(M, f, α)i−1 = Z[Criti−1( f )] ;
p �→ ∑

q∈Criti−1( f )

n f,α(p, q)q .

�

The Z[π]-coefficient Morse complex is defined for a Morse-Smale function
( f, α) : M → R and a regular cover M̃ of M with group of covering translations π.
Let ( f̃ , α̃) : M̃ → R be the pullback of ( f, α), and let φ̃ be the pullback of φ. The
critical points p̃ ∈ M̃ of f̃ are the lifts of the critical points p ∈ M of f . Fix two
critical points p̃ ∈ Criti( f̃ ) and q̃ ∈ Crit j( f̃ ). As each path in M that originates
at p lifts to a unique path in M̃ of origin p̃, the space

⋃
g∈π Z (̃p, g̃q) of flow lines

of φ̃ that join p̃ to one of the points g̃q, g ∈ π is homeomorphic to Z(p, q). In
particular, for j = i − 1 the sum below is well defined and satisfies:

∑

g∈π

n f̃ ,̃α(̃p, g̃q) = n f,α(p, q) ∈ Z

and

n f̃ ,̃α(g p̃, g̃q) = n f̃ ,̃α(̃p, q̃) ∈ Z (g ∈ π) .

Choose a lift of each critical point p ∈ Criti( f ) to a critical point p̃ ∈ Criti( f̃ ),
allowing the identification

Criti( f̃ ) = π × Criti( f ) .

Definition 1.4. The Z[π]-coefficient Morse complex C(M, f, α) is the based f.g.
free Z[π]-module chain complex given by

d : C(M, f, α)i = Z[π][Criti( f )] → C(M, f, α)i−1 = Z[π][Criti−1( f )] ;
p �→ ∑

q∈Criti−1( f )

(
∑
g∈π

n f̃ ,̃α(̃p, g̃q)g)q .

�
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This clearly depends on the choices of the lifts p̃. More invariantly, the Z[π]-
coefficient Morse complex can be written as

d : C(M, f, α)i = Z[Criti( f̃ )] → C(M, f, α)i−1 = Z[Criti−1( f̃ )] ;
s̃ �→ ∑

q̃∈Criti−1( f̃ )

n f̃ ,̃α( s̃, q̃)̃q .

Remark 1.5. (a) In the classical situation

( f, α) : (M; N0, N1) → ([0, 1]; {0}, {1})
is a Morse-Smale function on a cobordism (Milnor [14]). This fits into our definition
of a Morse-Smale function (1.1) provided that f is regular on Ni and its negative
gradient points “out” on N0 and “in” on N1. Such a Morse-Smale function on an
m-dimensional cobordism (M; N0, N1) determines a handle decomposition

M = N0 × [0, 1] ∪
m⋃

i=0

⋃

Criti ( f )

Di × Dm−i .

The handle decomposition of (M; N0, N1) gives (M, N0) the structure of a relative
CW pair, with one i-cell for each i-handle. Franks’ paper [7] identifies the Morse
complex of f with the associated cellular chain complex C(M;Z[π]) = C(M̃). It
is easy to verify that the definition gives a chain complex also in our more general
context.

(b) Morse-Smale functions f : M → R have the important property that if
p ∈ Crit∗( f ) and {xn} ⊂ Wu(p) is a convergent sequence in M with limit x∞ ∈ M,
then x∞ is situated on a possibly broken flow line originating at p (that is a flow
line that passes geometrically through some other critical points besides p before
arriving in x∞). In fact, one of the proofs that the Morse complex is indeed
a complex is obtained by understanding precisely the natural compactifications of
the spaces of flow lines. 
�

To simplify notation, we shall write C(M, f ) (resp. n f (p, q)) instead of
C(M, f, α) (resp. n f,α(p, q)) whenever the choice of metric α is clear from the
context. Also, by an abuse of terminology, we shall write C(M;Z[π]) = C(M̃) as
C(M), and H∗(M;Z[π]) = H∗(M̃) as H∗(M).

Definition 1.6. A cobordism from a Morse-Smale function

(g1, β1) : N1 → R

to a Morse-Smale function

(g0, β0) : N0 → R

is a cobordism (M; N0, N1) together with a Morse-Smale function

( f, α) : M → R

such that
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(i) ( f, α)|N0 = (g0, β0) with

ind f (p) = indg0(p)

for each critical point p ∈ N0,

(ii) ( f, α)|N1 = (g1, β1) with

ind f (p) = indg1(p) + 1

for each critical point p ∈ N1. 
�

N0 M N1

��

(g0, β0)

��

(f, α)

��

(g1, β1)

R

Remark 1.7. (a) We denote a Morse cobordism as before by

( f, α) : (M; N0, N1) → R .

Clearly, N0 and N1 play different roles in the definition above. However, because
we only work here with compact manifolds, it follows from Lemma 1.14 below that
Morse-Smale functions (g0, β0) : N0 → R, (g1, β1) : N1 → R are cobordant if
and only if the manifolds N0, N1 are cobordant and therefore the Morse-cobordism
relation is an equivalence.

(b) The condition (i) in Definition 1.6 together with the Definition 1.1 imply that
no negative gradient flow lines of ( f, α) can leave N0 towards M\∂M. Similarly,
no trajectory can enter N1 from the interior due to condition (ii). 
�
Example 1.8. An m-dimensional cobordism (M; N0, N1) admits an embedding

(M; N0, N1) ⊂ Rn

for n ≥ 2m + 1, with

M ⊂ {(x1, x2, . . . , xn) ∈ Rn : 0 ≤ xn ≤ 1} ,

N0 = {(x1, x2, . . . , xn) ∈ M : xn = 0} ,

N1 = {(x1, x2, . . . , xn) ∈ M : xn = 1}
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and such that the height function

f : M → R ; (x1, x2, . . . , xn) �→ xn

is Morse-Smale on M\∂M. As f is constant on N0 and N1, it is not a cobordism of
Morse-Smale functions. However, it is possible to slightly tilt M insideRn to obtain
an isotopic embedding (M; N0, N1) ⊂ Rn such that the height function M → R

restricts to Morse-Smale functions on N0 and N1. This is not yet a cobordism of
Morse-Smale functions as in 1.6 because the component of the gradient of the
height function that is normal to ∂M does not generally vanish. As we shall see in
Lemma 1.14 below, it is possible to perturb the height function in a neighbourhood
of ∂M such that the resulting function becomes a cobordism of Morse-Smale
functions. 
�

1.1.2. Immediate Properties of Morse cobordisms. We recall that the algebraic
mapping cone C(φ) of a chain map φ : C → D is the chain complex defined by

dC(φ) =
(

dD φ

0 −dC

)
: C(φ)i = Di ⊕ Ci−1 → C(φ)i−1 = Di−1 ⊕ Ci−2 .

A chain homotopy ψ : φ � φ′ : C → D determines an isomorphism of the
algebraic mapping cones

h =
(

1 ψ

0 1

)
: C(φ) → C(φ′) .

If C, D are based f.g. free Z[π]-module chain complexes (as will be the case in
the applications to Morse complexes) then h is a simple isomorphism of based f.g.
free Z[π]-module chain complexes.

The Morse complex of a cobordism of Morse-Smale functions has the following
homological properties:

Proposition 1.9. Let ( f, α) : (M; N, N ′) → R be a cobordism of Morse-Smale
functions (g, β) : N → R, (g′, β′) : N ′ → R, write

D = C(N, g) , D′ = C(N ′, g′) , F = C(M\∂M, f |) ,

and let M̃ be a regular cover of M with group of covering translations π.

(i) There are 3 types of critical points of f

Criti(M, f ) = Criti(N, g) ∪ Criti(M\∂M, f |) ∪ Criti−1(N ′, g′) .

The Morse complex of f is given by

C(M, f )i = Z[π][Criti(M, f )] = Di ⊕ Fi ⊕ D′
i−1 ,

dC(M, f ) =



dD θ −ψ

0 dF −θ ′
0 0 −dD′



 :

C(M, f )i = Di ⊕ Fi ⊕ D′
i−1 → C(M, f )i−1 = Di−1 ⊕ Fi−1 ⊕ D′

i−2
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with

θ : Fi → Di−1 ; p �→
∑

q∈Criti−1(g)

n f,α(p, q)q ,

θ ′ : D′
i → Fi ; p �→

∑

q∈Criti (e)

n f,α(p, q)q ,

ψ : D′
i → Di ; p �→

∑

q∈Criti (g)

n f,α(p, q)q

such that

dDθ + θdF = 0 : Fi → Di−2 ,

dFθ ′ − θ ′dD′ = 0 : D′
i → Fi−1 ,

dDψ + ψdD′ + θθ ′ = 0 : D′
i → Di−1 .

(ii) The Morse complex C(M, f ) is simple chain equivalent to C(M, N ′), the
Z[π]-coefficient cellular complex for any relative CW structure on (M, N ′), with
homology

H∗(C(M, f )) = H∗(M, N ′) .

(iii) The subcomplex of C(M, f )

C(M\N ′, f |) = C(θ) = (
Di ⊕ Fi ,

(
dD θ

0 dF

) )

is simple chain equivalent to C(M), with homology

H∗(C(M\N ′, f |)) = H∗(M) .

(iv) The quotient complex of C(M, f )

C(M\N, f |) = C(θ ′) = (
Fi ⊕ D′

i−1 ,

(
dF −θ ′
0 −dD′

) )

is simple chain equivalent to C(M, ∂M), with homology

H∗(C(M\N, f |)) = H∗(M, ∂M) .

(v) The subquotient complex of C(M, f )

C(M\∂M, f |) = F

is simple chain equivalent to C(M, N), with homology

H∗(C(M\∂M, f |)) = H∗(F) = H∗(M, N) .

(vi) The chain maps (up to sign)

θ : F = C(M\∂M, f |) → D∗−1 = C(N, g)∗−1 ,

θ ′ : D′ = C(N ′, g′) → F = C(M\∂M, f |)
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induce the natural morphisms in homology

θ∗ = ∂ : H∗(F) = H∗(M, N) → H∗−1(D) = H∗−1(N) ,

θ ′∗ : H∗(D′) = H∗(N ′) → H∗(F) = H∗(M, N)

and ψ is a chain homotopy

ψ : θθ ′ � 0 : D′ = C(N ′, g′) → D∗−1 = C(N, g)∗−1 .

Proof. (i) For any x ∈ N

lim
t→∞ φt(x) ∈ N ,

corresponding to the entry dD in the first column of dC(M, f ).
For any x ∈ M\∂M

lim
t→∞ φt(x) ∈ N or M\∂M ,

corresponding to the two entries θ, dF in the second column of dC(M, f ).
For any x ∈ N ′

lim
t→∞ φt(x) ∈ N ′ or M\∂M or N ,

corresponding to the three entries −ψ,−θ ′,−dD′ in the third column of dC(M, f ).

(ii) Slightly extend M to a manifold M′ by pasting to M collars homeomorphic
to N × [0, 1] and N ′ × [0, 1]. We also extend the function f and the metric α to
a function f ′ respectively a metric α′ in such a way that f ′ has the same critical
points as f and is regular and its gradient points out on N ′×{1} and points inside and
is regular on N ×{1}. Then, by standard Morse theory, C(M, f ′, α′) is simple chain
equivalent to C(M′, N ′). On the other hand we have C(M, f ′, α′) = C(M, f, α).

(iii) The projection from C(M, f ) to C(N ′, g′)∗−1 is given by

C(M, f ) � C(M, N ′) ��∂
C(N ′, g′)∗−1 � C(N ′)∗−1 .

The kernel of this projection is precisely C(M\N ′, f |) and this complex is therefore
simple chain equivalent to C(M).

(iv) The chain inclusion

C(N, g) � C(N) → C(M, f ) � C(M, N ′)

is a chain representative of the inclusion N ↪→ (M, N ′). Therefore, C(M\N, f |)
(which is the co-kernel of the map above) is simple chain equivalent to C(M, N∪N ′)
= C(M, ∂M).

(v) The chain inclusion

C(N, g) � C(N) → C(M\N ′, f |) � C(M)

is a chain representative of the inclusion N ↪→ M.

(vi) Combine (ii), (iii), (iv) and (v). 
�
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A particular type of Morse cobordism will play an important role further on.

Definition 1.10. A cobordism of Morse-Smale functions

( f, α) : (M; N, N ′) → R

is simple if f does not have any critical points in M\∂M, so that

Criti(M, f ) = Criti(N, g) ∪ Criti−1(N ′, g′) . 
�
Proposition 1.11. Let ( f, α) : (M; N, N ′) → R be a simple cobordism of Morse-
Smale functions (g, β) : N → R, (g′, β′) : N ′ → R.

(i) The identity N → N extends to a diffeomorphism

(M; N, N ′) → N × ([0, 1]; {0}, {1}) .

(ii) The inclusions N ↪→ M, N ′ ↪→ M induce simple chain equivalences

C(N, g) � C(M) , C(N ′, g′) � C(M)

with C(M) the Z[π]-coefficient cellular chain complex of any CW structure on M.

(iii) The chain map

f M : C(N ′, g′) → C(N, g)

defined by

f M : C(N ′, g′)i = Z[π][Criti(g′)] → C(N, g)i = Z[π][Criti(g)] ;
x �→ ∑

y
n f (x, y)y

is a simple chain equivalence, with n f (x, y) the algebraic number of downward
gradient flow lines in M̃ from x to y, for any critical points x ∈ Ñ ′, y ∈ Ñ with

indg′(x) = ind f (x) − 1 = indg(y) = ind f (y) = i .

Proof. (i) It is possible to find a small perturbation of the negative gradient flow
of f in a neighbourhood of ∂M such that the resulting flow γ ′ points inside M on
N ′ and outside on N; it is gradient like and has no stationary points inside M. The
existence of such a flow implies the claim. To construct this perturbation fix some
Morse charts Ui around the critical points of f that are situated on N. Fix also
a collared neighbourhood of N that is diffeomorphic to N × [0, ε]. With respect
to this parametrization notice that, for all small enough δ the projection of ∇ f(x)

on Tx(N × {δ}) is non-zero for all sufficiently small δ and x �∈ ∪Ui . Moreover, for
δ small and x ∈ Ui we have that ∇ f(x) is not tangent to Tx(N × {δ}) and points
towards N × {0} = N (because of the Morse lemma). This means that by adding
to −∇ f a vector field which is 0 outside N × [0, τ] (τ small enough) and is equal
to −h(t)∂/∂t for x = (z, t) ∈ N × [0, τ] with h : [0, τ] → [0, 1] decreasing,
h(0) = 1, h(τ) = 0 the induced flow will satisfy the desired properties with respect
to N. Of course, a similar construction is possible relative to N ′ and produces γ ′.
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(ii) Immediate from (i).

(iii) The chain map f M is the chain homotopy of Proposition 1.9 (vi)

ψ = f M : 0 � 0 : C(N ′, g′) → C(N, g)∗−1 .

For any CW structure on M the chain map f M is chain homotopic to the composite
of the simple chain equivalences given by (ii)

C(N ′, g′) → C(M) → C(N, g) . 
�

1.1.3. Construction of Morse-Smale cobordisms. We shall discuss here a few
simple ways to construct Morse cobordisms. We first fix some more notation. For
i = 0, 1, 2, . . . let Ci(N,R) be the space of Ci -functions h : N → R, with the
following topology. For i = 0 use the norm

||h||0 = sup {|h(x)| : x ∈ N} .

For i ≥ 1 use the Whitney Ci -topology, in which a neighbourhoodof f ∈ Ci (N,R)

consists of those g ∈ Ci(N,R) such that in local coordinates, f and g together
with their first i derivatives are within ε at each point of N (Hirsch [8], p. 35).

Here is a result that summarizes the output of some of our constructions. All
the arguments here are simple once the correct statements are formulated – similar
constructions have been independently used by Abbondandolo and Majer [1]. We
include the details because we shall use these constructions repeatedly later in the
paper.

Proposition 1.12. Fix a Morse-Smale function (h, γ) on a compact closed mani-
fold N. Consider (h′, γ ′) : N → R, another Morse-Smale function on N, such
that h(x) > h′(x), ∀x ∈ N. There exists a simple Morse-Smale cobordism
(H, �) : N × [0, 1] → R from (h, γ) to (h′, γ ′) such that

h′(x) ≤ Ht(x) ≤ h(x) (x ∈ N, t ∈ [0, 1]) .

The resulting chain map

i = H N×[0,1] : C(N, h, γ) → C(N, h′, γ ′)

is a simple chain equivalence.

Proof. The proof is an immediate consequence of the constructions of Morse
cobordisms described in the lemmas below.

Lemma 1.13. Let ( f0, α0) be a Morse-Smale function on a closed manifold N.
Let c : N → R be such that c(x) > f0(x) for all x ∈ N and let α1 be a second
metric on N. There is a Morse-Smale function ( f, α) on N × [0, 1] such that
f |N0 = f0, f |N1 = c, α extends the αi ’s and ∂ f/∂t(x, t) > 0 for all x ∈ N, t > 0
(Ni = N × {i}).
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Proof. Let u : [0, 1] → [0, 1] be a C∞ function such that

u(0) = 1 , u(1) = 0 , u′(0) = 0 , u′(t) < 0 (t > 0) , u′′(0) < 0 .

Consider the function

f(x) = u(t) f0(x) + (1 − u(t))c(x) .

We have

∂ f/∂t = u′(t)( f0(x) − c(x)) ,

∂ f/∂x = u(t)∂ f/∂x + (1 − u(t))∂c/∂x

and this together with the fact that

(∂2 f/∂x2)(x, 0) = (∂2 f0/∂x2)(x) ,

(∂2 f/∂t2)(x, 0) = u′′(t)( f0(x) − c(x))

implies immediately the statement (notice that f is regular on N1), except that
we also need to remark that there is a metric α extending the αi ’s such that f is
Morse-Smale with respect to α. By using a partition of unity argument it follows
that there is a metric α′ that extends the αi ’s. Moreover, as ( f0, α0) is already
a Morse-Smale function we can slightly modify α′ away from ∂(N × [0, 1]) to
obtain α. 
�
Lemma 1.14. Consider a compact cobordism (M; N0, N1), and suppose given
Morse-Smale functions ( fi , αi) : Ni → R (i = 0, 1). Let g : M → R be
a Morse function with all its critical points in the interior of M and which
is constant, maximal on N1, and constant, minimal on N0. For any neighbour-
hood W of ∂M there are suitable constants c0, c1 and a Morse-Smale cobordism
( f, α) : (M; N0, N1) → R between the Morse-Smale functions ( f0 + c0, α0) and
( f1 + c1, α1) such that

f | = g| : M\W → R .

Proof. Inside the neighbourhood W of ∂M we can find a tubular neighbourhood
that we shall identify with N0 × [0, 1]∐ N1 × [0, 1]. We may assume that ∂M =
N0×{0}∐

N1×{1} and that g is constant, regular and equal to k0 on N0×{1} and is
constant, regular and equal to k1 on N1 ×{0}. Pick ci ∈ R such that f0(x)+c0 < k0
and f1(x)+ c1 > k1. Now Lemma 1.13 provides a cobordism between f0 + c0 and
the constant function k0 on N0 ×[0, 1]. By the same method as in 1.13 we also get
an analogous cobordism between k1 and f1 + c1 on N1 × [0, 1]. Another partition
of unity argument shows that these two cobordisms can be pasted together with
g to provide the function f . The metric α is obtained by the same argument as
in 1.13. 
�
Remark 1.15. For the cobordism ( f, α) constructed in 1.14 the chain complex
C(M\∂M, f ) of Proposition 1.9 coincides with C(M, g). 
�
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Definition 1.16. Let ( f0, α0), ( f1, α1) : N → R be Morse-Smale functions on
a closed manifold N such that

f1(x) > f0(x) (x ∈ N) .

A linear cobordism between ( f0, α0) and ( f1, α1) is a simple cobordism (1.10)

( f, α) : N × ([0, 1]; {0}, {1}) → R

with ( f, α)|N×{i} = ( fi , αi) (i = 0, 1) such that for all t ∈ [0, 1], ft is a convex,
linear combination of f0 and f1 and ∂ f/∂t > 0 for all points (x, t) ∈ N × (0, 1). 
�
Lemma 1.17. Any two Morse-Smale functions ( f0, α0), ( f1, α1) on a closed mani-
fold N such that

f1(x) > f0(x) (x ∈ N)

are related by a linear cobordism. If α0 = α1 there is a simple cobordism ( f, α)

with α = α0 +dt2 the product metric. If moreover f1 = f0 +c with c > 0 constant,
then there exists a linear cobordism with α the product metric and for any such
linear cobordism the chain map f N×[0,1] : C(N, f1) → C(N, f0) is a simple
isomorphism.

Proof. As in the proof of Lemma 1.13 we consider a C∞ function v : [0, 1] →
[0, 1] such that

v(0) = 1 , v(1) = 0 , v′(1) = v′(0) = 0 ,

v′(t) < 0 (0 < t < 1) , v′′(0) < 0 < v′′(1) .

We define

f(x) = v(t) f0(x) + (1 − v(t)) f1

with the immediate consequence that, as above, one can find a metric α such that
the Morse-Smale function ( f, α) satisfies the properties required in the first part of
the statement. For the second part, assume that α is the product metric α0 +dt2. As
both ( f0, α0), ( f1, α1) are Morse-Smale we can modify f outside a neighbourhood
of ∂(N × [0, 1]) to obtain the desired Morse-Smale cobordism. If f1 = f0 + c
this modification is not necessary, because the function f itself is already Morse-
Smale with respect to α. Moreover, if x ∈ Crit( f0) then for all t ∈ [0, 1] the
flow induced by −∇ f is tangent to x × [0, 1]. As ind f (x × {0}) = ind f0(x),
ind f (x × {1}) = ind f0(x) + 1 the proof is concluded. 
�

The proof of Proposition 1.12 follows by applying the construction in Lem-
ma 1.17 to the Morse-Smale functions ( f0, α0) = (h′, γ ′) and ( f1, α1) = (h, γ). 
�
Remark 1.18. Note that if (g, β) is a Morse-Smale function on N, then the Morse
complexes C(N, g, β) and C(N, c(g + k), β), where c, k ∈ R are constants, are
canonically identified. This implies that, on a compact manifold, we may use
Proposition 1.12 to compare the Morse complexes of any two Morse functions h and
h′ by simply adding to h a sufficiently large constant S such that h(x)+ S > h′(x),
∀x ∈ N. 
�
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1.2. Rigidity of the Morse complex. We now state and prove the Rigidity Theo-
rem 1.19 for Morse complexes.

Fix a Morse-Smale function (h, γ) on a compact closed manifold N. Consider
(h′, γ ′) : N → R, another Morse-Smale function on N, and let S > 0 be such
that S > ||h′ − h||0. By Proposition 1.12 and Remark 1.18 there exists a simple
Morse-Smale cobordism (H, �) : N × [0, 1] → R from (h + S, γ) to (h′, γ ′) such
that

h′(x) ≤ Ht(x) ≤ h(x) + S (x ∈ N, t ∈ [0, 1])
and the induced chain map

i(H ) = H N×[0,1] : C(N, h, γ) → C(N, h′, γ ′)

is a simple chain equivalence.

Rigidity Theorem 1.19. In the setting above let

δ = min{|h(x) − h(y)| : x, y ∈ Crit∗(h) , Wu(x)
⋂

Ws(y) �= ∅} .

(i) If S < δ/2, then there exists a chain map j : C(N, h′, γ ′) → C(N, h, γ) such
that

j ◦ i(H ) = identity : C(N, h, γ) → C(N, h, γ) .

(ii) There exists a C2-neighbourhood of h, Uh, such that if h′ ∈ Uh then the simple
chain equivalence i(H ) is a simple isomorphism. 
�

Remark 1.20. (a) The existence of a constant S satisfying condition (i) is implied
by the assumption ||h−h′||0 < δ/2. This means that whenever this last condition is
satisfied the Morse complex of h is a retract of the Morse complex of h′. Moreover,
this relation is independent of the metrics used in the definition of these complexes.
This also implies that the number of critical points of index k of h′ is at least that
of h. It should be noted that h and h′ do not play symmetric roles in the statement,
since δ depends on h. One of the most striking features of (i) is that only the
closeness of h′ to h in the C0 norm is required for the relation between the Morse
complexes of h and h′ to hold. This allows h′ to have a different number of critical
points than h and, in particular, one could apply (i) to a function h′ obtained from
h by a process analogous to the subdivision of a cell decomposition of a CW
complex.

(b) Even if f0 = f1 it is easy to produce examples such that the isomorphism at
(ii) is not equal to the identity.

(c) The condition S < δ/2 appears to be optimal. It is certainly essential for the
proof we shall present below.

In Sect. 1.2 we prove 1.19 (i), and deduce 1.19 (ii) as an immediate consequence.
The key new idea appears in the proof of (i) and is as follows. As Morse-Smale
cobordisms are themselves Morse functions we may apply the constructions in
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Sect. 1.1.3 to cobordisms. This leads in Lemma 1.21 to a Morse function g de-
fined on N × ([0, 1] × [0, 1]) having critical points only for the second coordinate
belonging to the corners of the square [0, 1] × [0, 1]. The function g restricts to
h+ convenient constants in the corners (00), (01), (11) and to h′+ some constant
in the corner (10). The critical points of g in the corner (i j) are those of h (resp. h′)
but of index raised by i + j . Moreover, the simple cobordism H (+ some constant)
appears on the side (10)(11). On the sides (00)(01) and (01)(11) we have a cer-
tain type of trivial simple cobordism that induces the identity in terms of Morse
complexes. The purpose is to show that the restriction of g on the sides (10)(11)

and (00)(10) induce morphisms whose composition A is an isomorphism. For this
we compare this composition with that of the morphisms appearing on the sides
(01)(11) and (00)(01) which, as said before, is the identity. The two compositions
are measured by flow lines of g that join critical points of indexes differing by 2,
that originate in (11) and end in (00), and are broken precisely once at one critical
point of intermediate index that belongs to (10) for the first composition and to
(01) for the second. If a flow line of g originating at a critical point in (11) and
reaching a critical point in (00) which is broken once would break necessarily in
a point in (10) or (01), then the two compositions would be equal. This is not
necessarily the case though: the breaking point can belong also to (00) or to (11).
However, when the assumption on S at (i) is assumed, such a flow line with the
origin in a critical point of x ∈ Criti(h) × (11) and ending at y ∈ Criti(h) × (00)

with h(y) ≥ h(x) can only break at a point in (01) or in (10) (by Lemma 1.22)
essentially because along the negative-flow lines of g the value of g has to decrease
and a break in a point of (00) or (11) would force the change in value of g to be
bigger than allowed by the fact that h(y) ≥ h(x). This is enough to show that our
composition A is an isomorphism even if it might not be the identity.

We now proceed to the actual proof of the Rigidity Theorem 1.19.

Proof. We first observe that the notion of Morse-Smale cobordism introduced in
Definition 1.6 can be generalized in an obvious way to the case when N0 and N1
have boundaries and fi is tangent to ∂Ni (in the sense that ∇ fi(x) ∈ Tx∂Ni for all
x ∈ ∂Ni , i = 0, 1).

All the previous statements have analogues in this case. In particular, the state-
ments of 1.9, 1.11, 1.13, 1.14, 1.17 remain true when assuming that the manifold
N has a non-empty boundary. A general existence result for two-parameter Morse-
Smale functions follows.

Lemma 1.21. Let W be a compact manifold without boundary. Let ( f j , α j )

be Morse-Smale functions on W, j = 0, 1, 2, 3 and let (gi j , βi j ) be simple
Morse-Smale cobordisms on W × [0, 1] of (αi , fi) and (α j , f j ) for (i, j) ∈
{(0, 1), (0, 2), (1, 3), (2, 3)}. Assume g13 > g02 and suppose that g01 and g23
are linear cobordisms. There exists a simple Morse-Smale cobordism (g, β) on
(W × [0, 1]) × [0, 1] of (g02, β02) and (g13, β13) which restricts to (g0+2k,1+2k,

β0+2k,1+2k) on W × {k} × [0, 1] (k = 0, 1), with

Criti(g) = Criti−2( f3) ∪ Criti−1( f2) ∪ Criti−1( f1) ∪ Criti( f0) .
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Proof. Let

g01 = u(t) f0 + (1 − u(t)) f1 , g23 = r(t) f2 + (1 − r(t)) f3

with u, r : [0, 1] → [0, 1] functions with the properties described at the beginning
of the proof of Lemma 1.17. Let w : [0, 1] → [0, 1] be another such function.
Define

g(x, t, τ) = g02(x, τ)(u(t)w(τ) + r(t)(1 − w(τ))

+g13(x, τ)((1 − u(t))w(τ) + (1 − r(t))(1 − w(τ))) .

By the same type of argument as those used before it is easy to see that g is a Morse
function. Moreover, by a partition of unity argument one can construct a metric
β′ extending the βi j ’s. A small perturbation of β′ away from the boundary of
W × [0, 1] × [0, 1] leads to a new metric β such that the pair (β, g) satisfies the
desired properties. 
�

f1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

g13

g23

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f0
g02

g01

f2

DD

t

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

V

��
τ

Lemma 1.22. In the setting of Lemma 1.21 above, there is an ε > 0 such that for
any u ∈ Critk−2( f3) and v ∈ Critk−2( f0) with f3(u) − f0(v) < ε we have

∑

x∈Critk−2( f1)

ng13(u, x)ng01(x, v) +
∑

y∈Critk−2( f2)

ng23(u, y)ng02(y, v) = 0 .


�
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Proof. For i = 0, 3, let

εi = min{ fi(a) − fi(b) : a ∈ Critk( fi),

b ∈ Critk−1( fi), Wu(a)
⋂

Ws(b) �= ∅, k ∈ N} .

As W is compact εi > 0. Let µ > 0 be a small positive constant such that

ε = min{ε0, ε3} − µ > 0 .

As a consequence of the fact that C(M, g) is a chain complex we have

∑
x∈Critk−2( f1)

ng13(u, x)ng01(x, v) + ∑
y∈Critk−2( f2)

ng23(u, y)ng02(y, v)+
∑

s∈Critk−1( f0)

ng(u, s)n f0(s, v) + ∑
l∈Critk−3( f3)

n f3(u, l)ng(l, v) = 0 .

The condition imposed to u and v implies that the two last sums of this expression
vanish. Indeed, in the sum before last the only terms that count are those that
satisfy f0(v) < f0(s) < f3(u). This implies f0(s) − f0(v) < ε. It follows that
n f0(s, v) = 0. The argument for the vanishing of the last sum is similar. 
�

We now use Lemma 1.22 to prove the Rigidity Theorem 1.19 (i). We return
to the setting of the statement of the theorem. Thus N, (h, γ), δ, S < δ/2 and
(h′, γ ′) are fixed as well as the simple Morse-Smale cobordism (H, �) of (h′, γ ′)
and (h + S, γ). Let µ > 0 such that S + µ < δ/2. We intend to use Lemmas 1.21
and 1.22. We take

W = N , ( f0, α0) = (h, γ) ,

( f1, α1) = (h′ + S + µ, γ ′) , ( f2, α2) = (h + µ, γ) ,

( f3, α3) = (h + 2S + µ, γ) , (g13, β13) = (H + S + µ,�)

and (g02, β02) a linear Morse-Smale cobordism of (h, γ) and (h + µ, γ) with β02
a product metric. As we have h′(x) + S > h(x) for all x ∈ N we note that

g13(x, τ) = H(x, τ) + S + µ ≥ h′(x) + S + µ > h(x) + µ ≥ g02(x, τ) .

Therefore the conditions in Lemma 1.21 are verified. We may also take (g23, β23)

such that this is a linear cobordism with β23 the product metric (see Lemma 1.17).
We use Lemma 1.21 to construct (g, β). Lemma 1.22 can now be applied and by
inspecting its proof we see that we may take ε = δ − µ. We fix a total order
on the set Crit∗(h) = Crit∗( f0) = Crit∗( f3) such that for x, y ∈ Crit∗(h) the
inequality h(x) ≤ h(y) implies x ≤ y. With this total ordering we consider the
matrix A = (ai j ) of the composition gN×[0,1]

01 ◦ gN×[0,1]
13 as well as the matrix

B = (bi j ) of the composition gN×[0,1]
02 ◦ gN×[0,1]

23 . Because both g02 and g23 are
linear cobordisms with the product metric it immediately follows that B = Id.
We now want to observe that A is an upper triangular matrix with −1’s on the
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diagonal. Indeed, assume x, y ∈ Critk(h) correspond to elements i, j respectively
in the fixed order of Crit∗(h) with i ≤ j . Then f0(x) ≤ f0(y) and

f3(x) − f0(y) = f0(x) + 2S + µ − f0(y) < δ − µ = ε .

Therefore, by Lemma 1.22 we have

ai j =
∑

z∈Critk( f1)

ng13(x × (1, 1), z × (0, 1))ng01(z × (0, 1), y × (0, 0)) = −bi j

and as mentioned above bi j = δi j , the Kronecker symbol. As a consequence
we get that A has determinant equal to ±1 and is therefore an isomorphism. But
gN×[0,1]

13 = H N×[0,1], and this completes the proof of the Rigidity Theorem 1.19 (i).
We now turn to 1.19 (ii). If Uh is sufficiently small, then the number of critical

points of h′ ∈ Uh equals the number of critical points of h. Of course, we may
assume Uh sufficiently small such that ||h − h′||0 < δ/2 and this implies that our
chain maps

H N×[0,1] = gN×[0,1]
13 : C(N, h, γ) → C(N, h′, γ ′)

and gN×[0,1]
01 are both isomorphisms. This completes the proof of the Rigidity

Theorem 1.19. 
�
Remark 1.23. (a) The proof of the Rigidity Theorem 1.19 (i) can be used to show
that for Uh sufficiently small and H ′ a second cobordism satisfying the properties
of H the two isomorphisms H N×[0,1] and (H ′)N×[0,1] differ by a nilpotent chain
map.

(b) If (h, γ), (h′, γ ′) : N → R are Morse-Smale functions with h′ sufficiently
C0-close to h, the construction of the simple cobordism H in the proof of the
Rigidity Theorem 1.19 implies that the resulting chain map

i = H N×[0,1] : C(N, h, γ) → C(N, h′, γ ′)

respects the “critical value” filtration of the chain complexes. In particular, if
h′ = h and the critical points of h are alone on their critical levels, then i is
a simple isomorphism given in each degree by

i = 1 + lower triangular matrix : Cr (N, h, γ) → Cr(N, h′, γ ′) .

(c) The Rigidity Theorem 1.19 (iii) shows that a Morse function has simple isomor-
phic Morse complexes for any two metrics with respect to which it is Morse-Smale.
This can also be shown using bifurcation methods as in Latour [12] (p. 21). 
�

1.3. Mayer-Vietoris type formula for the Morse complex. With topological
cobordisms one is able to perform two natural, geometric operations. The first
associates to a pair formed by a cobordism (M; N0, N1) and a separating closed
hypersurface N ⊂ Int(M) the two cobordisms (M′; N0, N) and (M′′; N, N1)
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where M = M′ ∪N M′′. The second is its inverse and it associates to a pair of
two cobordisms (M′; N0, N) and (M′′; N, N1) the new cobordism (M; N0, N1)

obtained by pasting M′ to M′′ over N. The fact that these two operations are
inverses is essential for using Mayer-Vietoris type arguments to deduce properties
of a “long” cobordism out of knowledge about the smaller pieces in which it can
be divided.

The purpose of this section is to put into place the same two operations for
Morse-Smale functions defined on cobordisms and to show a Mayer-Vietoris type
theorem for Morse complexes.

Consider the pair formed by a Morse-Smale function ( f, α) : (M; N0, N1) → R

and a Morse-Smale function (g, β) : N → R with N a regular hypersurface of M
(we shall assume N = f −1(0)). In this setting, the first operation will associate to
this pair two Morse-Smale functions h′ : (M′; N0, N)→R, h′′ : (M′′; N, N1)→R
such that M′ = f −1(−∞, 0], M′′ = f −1[0,∞), h′|N = kg + c′, h′′|N = kg + c′′
with k, c′, c′′ small constants and h′, h′′ equal to f away from a neighbourhood
of N .

Conversely, given two such Morse-Smale functions h′ and h′′ the second oper-
ation produces a Morse-Smale function h : (M; N0, N1) → R. Obviously, h can
not be obtained by simply identifying h′ and h′′ on N even if h′|N = h′′|N = kg+c
(with c = c′ = c′′) because such an identification does not produce a Morse func-
tion. Instead, we consider a linear Morse-Smale cobordism L : N × [0, 1] → R

from kg + c + c′ = L|N×{0} to kg + c′′ = L|N×{1} with c > 0 small such that
c + c′ > c′′. We paste L with h′ + c over N × {0} and then paste the result with h′′
at N × {1} and we thus obtain a Morse- Smale function h as desired.

Contrary to the case of usual cobordisms, if the two operations are applied
in succession starting from f : M → R, then the resulting function h is quite
different from the initial f . As h is in fact obtained quite canonically from the
pieces h′, h′′ in which f has been “split” we shall call such an h a splitting of f .
This terminology is also justified by the fact that h coincides with f away from
a tubular neighbourhood of N and, at the same time, any (negative) gradient flow
line of h that passes through a point belonging to M′ (or to M′′) never crosses
N × {1/2}.

We formalize the construction of splittings in Sect. 1.3.1 and remark that it is
immediate to express the Morse complex of h purely algebraically in terms of the
complexes of h′ and h′′.

It is natural to wonder why in constructing h′, h′′ we do not take simply h′ = f ′,
h′′ = f ′′ where f ′ = |M′ , f ′′ = f |M′′ . The reason is that the simplest form of
a Mayer-Vietoris type formula for Morse complexes should provide the Morse
complex of f out of the Morse complexes of the pieces h′ and h′′. However, the
Morse complexes of f ′ and f ′′ are inappropriate for this task because they do not
encode the flow lines of −∇ f that cross from M′′ into M′. On the other hand,
the gluing Theorem 1.29 in Sect. 1.3.2 shows that if g satisfies a certain, generic,
technical condition, then the Morse complexes of h′ and h′′ can be “glued” together
in a canonical way to give the Morse complex of f . The isomorphism type of the
Morse complex of f can be recovered out of any splitting of f even if the technical
condition is not satisfied.
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1.3.1. Splittings. In this section we consider a Morse-Smale function

( f, α) : (M; N0, N1) → R

with f(x0) < 0 for all x0 ∈ N0, f(x1) > 0 for all x1 ∈ N1, and 0 ∈ R a regular
value of f . We write

N = f −1(0) ⊂ M .

The restrictions

( f ′, α′) = ( f, α)| : (M′; N0, N) = f −1(−∞, 0] → R ,

( f ′′, α′′) = ( f, α)| : (M′′; N, N1) = f −1[0,∞) → R

are Morse-Smale functions with

( f, α) = ( f ′, α′) ∪ ( f ′′, α′′) :
(M; N0, N1) = (M′; N0, N) ∪N (M′′; N, N1) → R .

Definition 1.24. The attaching chain map

φ : C(M′′, f ′′, α′′)∗+1 → C(M′, f ′, α′)

is the chain map given by

φ : C(M′′, f ′′, α′′)i+1 → C(M′, f ′, α′)i ; x �→
∑

y∈Criti ( f ′)
n f,α(x, y)y .


�
Proposition 1.25. The Morse complexes fit into a short exact sequence

0 → C(M′, f ′, α′) → C(M, f, α) → C(M′′, f ′′, α′′) → 0

with

C(M, f, α) = C(φ)

the algebraic mapping cone of the attaching chain map

φ : C(M′′, f ′′, α′′)∗+1 → C(M′, f ′, α′) .

Proof. Immediate from the definitions. 
�
The key technical construction of this section is contained in the following

definition. To fix ideas we will proceed from here under the following assumption:
there exists a neighbourhood N×[−δ, δ] ⊂ M of N such that on this neighbourhood
f has the form f(x, t) = t and the metric α has the form dt2 + β, β = α|N . The
existence of such a parametrization of f around N is clear from the fact that N is
a regular level hypersurface of f . Moreover, because ∂/∂t is orthogonal to N × {t}
the metric α has the form u(x, t)dt2+v(x, t)β (with u, v smooth positive functions)
on our neighbourhood. This means that by replacing α in this neighbourhood with
the product metric we do not perturb the flow lines of f . Therefore, our assumption
is in no way restrictive.
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Definition 1.26. An (ε, τ)-splitting of a Morse-Smale function

( f, α) : (M; N0, N1) → R

along a Morse-Smale function (g, β) : N = f −1(0) → R (β = α|) is a Morse-
Smale function (h, α) : M → R such that for (h′, α′) = (h, α)|M′ , (h′′, α′′) =
(h, α)|M′′ we have

(i) h′|N = h′′|N = τg : N → R with τ ∈ R+.
(ii) (h, α) = ( f, α) except in a small tubular neighbourhood W = N ×[−ε, ε] ⊂

M, ε ∈ R+, of N = N × {0} ⊂ M.
(iii) With respect to this parametrization f(x, t) = t for all (x, t) ∈ N × [−ε, ε]

and

Criti(h) = Criti( f ) ∪ (Criti−1(g) × {−ε/2}) ∪ (Criti(g) × {ε/2}) ,

Criti(h′) = Criti( f ′) ∪ (Criti−1(g) × {−ε/2}) ,

Criti(h′′) = Criti( f ′′) ∪ (Criti(g) × {ε/2}) .

(iv) The restrictions of (h, α) to the submanifolds

Wε = N × [−ε/2, ε/2] ⊂ W ,

M′
ε = M′\(N × (−ε/2, 0]) ⊂ M′ ,

M′′
ε = M′′\(N × [0, ε/2)

) ⊂ M′′

(which are copies of W, M′, M′′ respectively) are Morse-Smale cobordisms

(gε, βε) = (h, α)| : (Wε; N × {ε/2}, N × {−ε/2}) → R ,

(h′
ε, α

′
ε) = (h′, α′)| : (M′

ε; N0, N × {−ε/2}) → R ,

(h′′
ε , α

′′
ε ) = (h′′, α′′)| : (M′′

ε ; N × {ε/2}, N1) → R .

(v) The cobordism (gε, βε) is linear. 
�
The key properties of a splitting are collected next.

Proposition 1.27. Let ( f, α) : (M; N0, N1) → R be a Morse-Smale function, with
0 ∈ R a regular value.

(i) For every Morse-Smale function (g, β) : N = f −1(0) → R with β = α|N
and every δ > 0 there exists an (ε, τ)-splitting (h, α) of ( f, α) along (g, β) with
||h − f ||0 ≤ δ.

(ii) The Morse complexes of a splitting of ( f, α) along (g, β)

(h, α) = (h′
ε, α

′
ε) ∪ (gε, βε) ∪ (h′′

ε , α
′′
ε ) :

(M; N0, N1) = (M′
ε; N0, N × {−ε/2}) ∪ (Wε; N × {−ε/2}, N × {ε/2})

∪(M′′
ε ; N × {ε/2}, N1) → R ,
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f and its splitting h

are given by

C(M, h, α) = C(θ) ,

C(M′
ε, h′

ε, α
′
ε) = C(M′, h′, α′) = C(θ ′) ,

C(M′′
ε , h′′

ε , α
′′
ε ) = C(M′′, h′′, α′′) = C(θ ′′)

C(Wε, gε, βε) = C(1 : C(N, g, β) → C(N, g, β))

with

θ : C(M′, h′, α′)∗+1 → C(M′′, h′′, α′′) ,

θ ′ : C(N, g, β) → C(M′, f ′, α′) ,

θ ′′ : C(M′′, f ′′, α′′)∗+1 → C(N, g, β)

the chain maps (up to sign) defined by

θ : C(M′, h′, α′)i+1 = C(M′, f ′, α′)i+1 ⊕ C(N, g, β)i

→ C(M′′, h′′, α′′)i = C(N, g, β)i ⊕ C(M′′, f ′′, α′′)i ;
(x, z × {−ε/2}) �→ (z × {ε/2}, 0) (x ∈ Criti+1( f ′), z ∈ Criti(g)) ,

θ ′ : C(N, g, β)i → C(M′, f ′, α′)i ; z �→ ∑
y∈Criti ( f ′)

nh′,α′
(z × {−ε/2}, y)y ,

θ ′′ : C(M′′, f ′′, α′′)i+1 → C(N, g, β)i ; x �→ ∑
z∈Criti (g)

nh′′,α′′
(x, z × {ε/2})z .

In particular, there are defined exact sequences

0 → C(M′′, h′′, α′′) → C(M, h, α) → C(M′, h′, α′) → 0 ,

0 → C(M′, f ′, α′) → C(M′, h′, α′) → C(N, g, β)∗−1 → 0 ,

0 → C(N, g, β) → C(M′′, h′′, α′′) → C(M′′, f ′′, α′′) → 0 .
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(iii) Let ph : C(Wε, gε, βε) → C(M, h, α) be the chain map defined by the split
injections

ph : C(Wε, gε, βε)i = C(N, g, β)i−1 ⊕ C(N, g, β)i →
C(M, h, α)i

= C(M′, f ′, α′)i ⊕ C(N, g, β)i−1 ⊕ C(N, g, β)i ⊕ C(M′′, f ′′, α′′)i ;
(x, y) �→ (θ ′(y), x, y, 0) .

The algebraic mapping cone of ph is the Morse complex of a splitting (h, α) :
M → R

C(ph) = C(M, h, α) .

The cokernel of ph is the algebraic mapping cone of θ ′θ ′′ : C(M′′, f ′′, α′′)∗+1 →
C(M′, f ′, α′)

0 → C(Wε, gε, βε)
ph−→ C(M, h, α)

jh−→ C(θ ′θ ′′) → 0 ,

with jh the natural projection.

Proof. (i) This follows easily from the constructions in Sect. 1.1.3. We first choose
a > 0 such that [−a, a] contains only regular values of f , with

f | : W = f −1([−a, a]) = N × [−a, a] → R ; (x, t) �→ t

and the assumption that α is the product metric here. After possibly multiplying g
with a sufficiently small constant we may assume that the image of g belongs to
[−b, b] with b ∈ (0, 1) such that b � a. Let

Nδ = N × {δ} ⊂ W = N × [−a, a] ,

W(u, v) = N × [u, v] ⊂ W .

By using Lemmas 1.13, 1.14 for each 0 < ε < b we construct a Morse-Smale
function fε : M → R of f along g such that: fε agrees with f outside W(−ε, ε);
the gradient of fε is everywhere tangent to Nε/2 and N−ε/2,

fε|Nε/2 = ε(g + k) , fε|N−ε/2 = ε(g + k′)

with k′ > k small; if x ∈ Crit fε
⋂

Nε/2 then ind fε (x) = indg(x) and if x ∈
Crit fε

⋂
N−ε/2, then ind fε (x) = indg(x) + 1; on the cobordism (W(−ε/2, ε/2);

N−ε/2, Nε/2) the function fε restricts to a linear cobordism. The construction of the
function fε is done by applying Lemma 1.13 to the two cobordisms W(−ε,−ε/2)

and W(ε/2, ε) and Lemma 1.14 to the cobordism W(−ε/2, ε/2). In particular, fε
is a linear combination of the form u(t)(−ε) + (1 − u(t))ε(g + k′) inside N ×
[−ε,−ε/2] with u : [−ε,−ε/2] → R an appropriate function with u(−ε) = 1 and
u(−ε/2) = 0 = u′(−ε/2), u′′(−ε/2) > 0 (see 1.13); a similar linear combination
is valid inside N × [ε/2, ε/]. To understand the pasting between the cobordism
W(−ε/2, ε/2) and, for example, W(−ε,−ε/2) notice that on W(−ε/2, ε/2) we
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have a cobordism from (ε(g + k′), N−ε/2) to (ε(g + k), Nε/2). In other words,
on both sides of N−ε/2 we have cobordisms having N−ε/2 as “high end”. This
allows the pasting to occur by simply using in the formula above u defined on
a larger interval, say u : [−ε, 0] → R, and using the same formula to define
fε on both sides of N−ε/2. For a generic choice of g the function fε is already
Morse-Smale with respect to the metric α. In general, to obtain a function h
such that (h, α) is Morse-Smale we might need to still slightly perturb fε inside
N × ([−ε,−3ε/4] ∪ [3ε/4, ε]). We may assume that the construction has been
made such that || f − fε||0 ≤ 5ε and by adjusting the various relevant constants
we see that (h, α) is a splitting of f along g with the required properties.

(ii) + (iii) Immediate from the definition and construction of a splitting. 
�

1.3.2. Assembly of the Morse complex. Given the algebraic data extracted from
a splitting of a Morse-Smale function ( f, α) : (M; N0, N1) → R we now describe
how to reconstruct the Morse complex of f from the Morse complexes of h′ and h′′.
One expects the composite chain map

θ ′θ ′′ : C(M′′, f ′′, α′′)∗+1 → C(M′, f ′, α′)

to be a good approximation of the attaching chain map φ.

Definition 1.28. A Morse-Smale function (g, β) : N = f −1(0) → R is adapted
to splitting ( f, α) : (M; N0, N1) → R at N ⊂ M if

(i) (g, β) : N → R is Morse-Smale, with β = α|N .
(ii) For any p ∈ Criti( f )

Wu
f (p)

⋂
N ⊂

⋃

z∈Crit≤i−1(g)

Wu
g (z) .

(iii) For any q ∈ Crit∗( f ) and any z ∈ Crit∗(g) the intersections Wu
f (q)

⋂
Ws

g(z)
and Wu

g (z)
⋂

Ws
f (q) are transversal. 
�

Gluing Theorem 1.29. Let ( f, α) : (M; N0, N1) → R be a Morse-Smale func-
tion, with N = f −1(0) a regular hypersurface.

(i) Let (g, β) : N → R be a Morse-Smale function. For any (ε, τ)-splitting (h, α) of
f along g with ε, τ sufficiently small there exists a chain homotopy ψ : φ � θ ′θ ′′,
defining a simple isomorphism

(
1 ψ

0 1

)
: C(M, f, α)

∼=−→ coker(ph) .

(ii) There exist Morse-Smale functions (g, β) adapted to splitting ( f, α).

(iii) If (g, β) is adapted to splitting ( f, α) at N, then there exist splittings h of f
along g with ψ = 0. Equivalently, we have the equality φ = θ ′θ ′′ or, explicitly:

n f,α(x, y) =
∑

z∈Criti−1(g)

nh′′,α′′
(x, z × {ε/2})nh′,α′

(z × {−ε/2}, y)

for each pair x ∈ Criti( f ′′), y ∈ Criti−1( f ′). 
�
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Remark 1.30. To our knowledge, a gluing formula as the one above has not yet ap-
peared in the literature. However, a closely related result is that of Laudenbach [13]
and has been extended to S1-valued functions by Hutchings [10]. To see the relation
with these results notice that, in the situation of Proposition 1.27, the based f.g.
free Z[π]-module chain complex

coker(ph) = C(θ ′θ ′′)

is the Morse complex C(M, f̂ , α) of a Morse-Smale function ( f̂ , α) : M → R ob-
tained from (h, α) by cancelling the pairs of critical points added in the construction
of h from f , with

Crit∗( f̂ ) = Crit∗( f ) .

Indeed, the results of Laudenbach describe the modifications occurring in the Morse
complex after the birth (or death) of two mutually annihilating critical points of
successive indexes. By applying iteratively his result when cancelling all such
pairs of critical points of h that belong to Wε one obtains a function f̂ whose
Morse complex does equal C(θ ′θ ′′). Moreover, this function may be assumed to
be C0-close to f . Therefore, this argument, together with the rigidity theorem,
is sufficient to prove the point (i) of the theorem. On the other hand, this is not
enough to show the point (iii). The reason is that “cancelling of critical points” is
a non-unique operation and there is no way to insure in general that the function
f̂ obtained at the end of this process is C2-close to f and has therefore a Morse
complex identical to that of f . Because of this we shall prove the whole theorem
without the use of bifurcation arguments (as we shall see, the point (i) is in fact
immediate by using Morse cobordisms).

Other constructions related to the gluing formula appear in Pajitnov [16]. The
role of our formula is played there by an analysis of the intersections of stable and
unstable manifolds of f with the stable and unstable manifolds of g. 
�
Proof. (i) This point is quite immediate. Assume (h, α) is an (ε, τ)-splitting of f
along g as in the statement. By the constructions in Sect. 1.1.3 there is a Morse
cobordism H between (h, α) and ( f + c, α). If ε is small enough, then h is
sufficiently C0 close to f such that

min{ f(Crit∗( f ′′))} ≥ max{h(Crit∗(h) − Crit∗( f ))} ,

min{h(Crit∗(h) − Crit∗( f ))} > c + max{ f(Crit∗( f ′))}
and we may construct H such that it restricts to linear cobordisms with a product
metric on M′\(N × (−ε, ε)) and on M′′\(N × (−ε, ε)) (we use the notations in
Proposition 1.27). Denote by G : C(M, f, α) → C(M, h, α) the chain map induced
by this cobordism. Due to the linearity of H on the complement of N × (−ε, ε) the
composite

j ′ = jh ◦ G : C(M, f, α) → coker(ph)
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is a simple isomorphism of the form

j ′ =
(

1 ψ

0 1

)
: C(M, f, α)i = C(M′, f ′, α′)i ⊕ C(M′′, f ′′, α′′)i

→ coker(ph)i = C(M′, f ′, α′)i ⊕ C(M′′, f ′′, α′′)i

for a chain homotopy

ψ : φ � θ ′θ ′′ : C(M′′, f ′′, α′′)∗+1 → C(M′, f ′, α′) .

(ii) Clearly, a Morse-Smale function (g, β) : N → R is not in general adapted to
splitting ( f, α) : M → R. We obtain an adapted (g, β) by starting with an arbitrary
(g′, β) : N → R and adding pairs of mutually cancelling critical points such that
the unstable manifolds of g give a CW decomposition of N which is sufficiently
fine to ensure that Definition 1.28 (ii) is verified. In particular, this means that
Wu

f (R)
⋂

Wu
g′(R′) = ∅ whenever indg′(R′) ≥ ind f (R). After further subdivision

we may also assume that for any pair R′ ∈ Crit∗(g′), R ∈ Crit∗( f ) we either
have Wu

f (R) ∩ Wu
g′(R′) = ∅, or Wu

g′(R′) ⊂ Wu
f (R). We then modify g′ such as to

perturb the stable manifolds Ws
g′(R′′) to render them transverse to Wu

f (R) for all
pairs R′′ ∈ Crit∗(g′), R ∈ Crit∗( f ). This modification is performed successively
for R′′ of increasing indexes and it may be achieved without modifying those
unstable manifolds Wu

g′(R′) which intersect some unstable manifold of f . This
happens because if Wu

g′(R′) intersects Wu
f (R), then Wu

g′(R′) ⊂ Wu
f (R) and as g′ is

Morse-Smale we also have that Ws
g′(R′′) is transversal to Wu

g′(R′) (for all R′, R′′ ∈
Crit∗(g′)). This means that if Ws

g′(R′′) intersects Wu
f (R) in a point which belongs

also to Wu
g′(R′), then Ws

g′(R′′) is already transversal to Wu
f (R) at this point. We also

need to modify our function g′ such as to obtain one which also has the property that
the second type of intersections in Definition 1.28 (iii) are transversal. We perturb
successively each unstable manifold Wu

g′(R′), R′ ∈ Crit∗(g′) such as to make
Wu

g′(R′) transversal to the stable manifolds of f . Obviously, we need to insure that
condition (ii) in Definition 1.28 is preserved and therefore the critical points R′ such
that Wu

g′(R′) intersects some Wu
f (R) need to be discussed separately. In this case

we have Wu
g′(R′) ⊂ Wu

f (R). Suppose that ind f (R) = indg′(R′)+1, then as Wu
f (R)

is transverse to all stable manifolds Ws
f (Q) (by the Morse- Smale condition) it also

follows that Wu
g′(R′) is transverse to these stable manifolds and no modification of

Wu
g′(R′) is needed. In case indg′(R′) < ind f (R) + 1 it follows from condition (ii)

in Definition 1.28 that Wu
g′(R′) ⊂ Wu

f (R) ∩ N ⊂ ⋃
indg′ (z)=ind f (P)−1 Wu

g′(z) = T .

We then perturb Wu
g′(R′) inside Wu

f (R) such as to obtain the needed transversality.
This will also perturb the higher dimensional Wu

g′(z)’s that appear in the union T
above but can be made such that T does not diminish and thus (ii) of Definition 1.28
continues to be satisfied.

It is useful to note that one can obtain in this way an adapted g that is arbitrarily
close in C0 norm to the function g′ that was given initially.

(iii) We now assume that (g, β) is adapted to splitting ( f, α). Recall the functions
fε constructed in the proof of Proposition 1.27. We shall work below with functions
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of this form and with the notations of that proof. In particular,

W = f −1([−a, a]) , W(u, v) = N × [u, v] = f −1([u, v]) , N = f −1(0) .

It is immediate to see that because of the transversality properties of the adapted g,
the function fε is Morse-Smale with respect to α. Therefore ( fε, α) is itself a split-
ting and we will show below that any such splitting with (ε, τ) sufficiently small
verifies the conclusion.

By inspecting the construction in 1.27, we see that, in each point of W(−ε, ε),
the tangent vector ∇ fε projected onto N has the same direction as ∇g. We intend to
compare the Morse complex of f with that of fε using a special Morse cobordism
between fε and f +c. For this we start with a linear cobordism F : M×[0, 1] → R

of Morse-Smale functions between f and f + c with c > 0 fixed. We assume
F0 = f and F1 = f + c. We denote by τ ∈ [0, 1] the deformation parameter of F.
We may also assume that in a neighbourhood M ×[0, 1/3] of M ×{0} the function
F has the form F = f + τ2. We shall identify below M and M × {0} (for example
we write F|M×{0} = f etc).

We want to show that we can modify F only inside Mε = W(−ε, ε) ×
[0, (5ε)1/3] such that the resulting function Fε will be a Morse-Smale cobor-
dism of fε and f + c. By a similar method to to that used in 1.13 we can define Fε

inside Mε by

Fε|Mε = τ2 + v(τ) f + (1 − v(τ)) fε

where

v : [0, 1] → [0, 1] is C∞;
v is constant equal to 1 if τ > (5ε)1/3;
v(0) = v′(0) = v′′(0) = 0;
|v′(τ)5ε| < 2τ for all τ .

(Such a function exists, it can be modelled on τ3/5ε) and Fε = F outside of Mε .
The function Fε is smooth because f ε = f outside of W(−ε, ε) and it is clear
that it is Morse. Note for each point of Mε the gradient of Fε with respect to the
product metric α + dτ2 decomposes as an orthogonal sum of a component tangent
to N0 which is a multiple of the gradient of g and two other components, one in the
direction of ∂/∂t, and the other into that of ∂/∂τ . We can change slightly the metric
α + dτ2 inside a set M × [l, l′] with (5ε)1/3 < l < l′ < 1 thus getting a metric
αε sufficiently close to α such that with respect to this new metric F remains
Morse-Smale and its complex is not modified and Fε becomes also Morse-Smale.
In fact, the set of metrics α∗ such that F remains Morse-Smale with respect to
α∗ and has the same Morse complex as with respect to α is dense and open in
some neighborhood of α. Therefore, if we now consider the sequence of functions
F1/n , n ∈ N∗, n ≥ n0 � 1, we see that there is a metric α′ on M × [0, 1] such
that α′ equals α + dτ2 outside M × [1/3, 2/3], for all n, F1/n is Morse-Smale
with respect to α′ and F is also Morse-Smale with respect to α′ and has the same
Morse complex as it has with respect to α + dτ2 (in fact, the set of such metrics,
as a countable intersection of open dense sets, is even dense in the mentioned
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neighborhood of α). It will be convenient to use the convention that nt(p, q) = 0
whenever the difference of indexes between the critical points p and q of a Morse-
Smale function t is strictly greater than 1, or if one of p, q is not a critical point
of t.

Lemma 1.31. In the setting above there is some n ∈ N such that in the Morse
complex of F1/n we have:

(i) nF1/n
(p, q) = nF(p, q) if p, q ∈ Crit(F1/n)

⋂
Crit(F), p ∈ M × {1}.

(ii) nF1/n
(p, q) = 0 for p, q ∈ Crit(F1/n), with p ∈ M × {1} and q ∈ N1/(2n).

(iii) nF1/n
(p, q) = 0 for p, q ∈ Crit(F1/n) with p ∈ M × {1},

q ∈ N−1/(2n)

⋃
N1/(2n) and F1/n(p) < 0.

Assuming this lemma, here is the end of the proof of the gluing Theorem 1.29.
To simplify notation we denote G = F1/n , h = f1/n with n satisfying the conclu-
sion of 1.31. Denote by F, G respectively the chain maps FM×[0,1] and GM×[0,1].
If x ∈ M × {0} ⊂ Crit( f )

⋂
M × [0, 1] we let x′ = x × {1}. As F is a lin-

ear cobordism we have F(x′) = x. Consider now the function h. It restricts to
a linear cobordism on W(−1/(2n), 1/(2n)). If y ∈ Crit(h)

⋂
N−1/(2n), then let

θy = hW(−1/(2n),1/(2n))(y). Clearly,

θy = u × {1/(2n)} , y = u × {−1/(2n)}
with u a critical point of g. Assume x, y ∈ Crit( f ) are such that f(x) > 0 and
f(y) < 0 and i = ind(x) = ind(y) + 1. Then

n f,α(x, y) = nF,α(x′, y′) = nG,α′
(x′, y′) .

All the counting of flow lines below will be done with respect to the metric α′
which we shall omit from the terminology.

As G is a chain map and in view of the definition of the Morse complex we
have

nG(x′, y′)nG(y′, y) +
∑

z∈Criti (G),z �=y′
nG(x′, z)nG(z, y) = 0 .

Now Lemma 1.22 implies that:

if z ∈ M × {1}, z �= y′ then nG(z, y) = 0;
if z ∈ (M × {0})\(N1/(2n)

⋃
N−1/(2n)) then nG(x′, z) = 0 except for z = x

and then nG(x′, x) = 1;
if z ∈ N−1/(2n)

⋃
N1/(2n) then nG(y′, z) = 0;

if z ∈ N1/(2n) then nG(x′, z) = 0.

As also nG(y′, y) = 1, nG(x, y) = 0 we obtain

nG(x′, y′) +
∑

z∈N−1/(2n)

nG(x′, z)nG(z, y) = 0 .
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Moreover for each z ∈ N−1/2n , we also have

nG(x′, z)nG(z, θz) +
∑

v∈Criti (G)

nG(x′, v)nG(v, θz) = 0

which gives

nG(x′, z) + nG(x, θz) = 0 .

So we get

n f (x, y) = nG(x′, y′)

=
∑

z∈Criti−1(g)

nG(z, y)nG(x, θz)

=
∑

z∈Criti−1(g)

nh(z, y)nh(x, θz) .

We can now define

h′ = h| f −1(−∞,−1/(2n)] , h′′ = h| f −1[1/(2n),∞)

and modulo the obvious identification of N−1/(2n) with N1/(2n) we obtain the
desired formula.

It remains now to prove the lemma.

Proof of Lemma 1.31. We fix p ∈ Criti(F)
⋂

M × {1}. We have p = p1 × {1}
with p1 ∈ Criti−1(F)

⋂
M × {0}. Consider q ∈ Criti−1(F)

⋂
M × {0}. We have

nF(p, q) = 0 if q �= p1 and nF(p, q) = 1 if q = p1. We shall now consider two
cases:

(a) F(p) < 0. In this case, by choosing n sufficiently large, we have

F(p) = F1/n(p) ≤ inf(F1/n(M1/n))

and therefore Wu
F1/n

⋂
M1/n = ∅, so that

nF1/n
(p, q) = nF(p, q),

nF1/n
(p, r) = 0 for all r ∈ N−1/(2n)

⋃
N1/(2n).

As the number of critical points of f is finite this implies that for a sufficiently
large n the three properties of Lemma 1.22 are verified for all critical points p such
that F(p) < 0.

(b) F(p) > 0. The same argument as above shows that for all q with f(q) > 0 we
have that for sufficiently large n

nF1/n
(p, q) = nF(p, q) .

There are two other properties that we still have to verify (and it is only here that
we shall need to use the specific form of F1/n) :

(1) if f(q) < 0, then nF1/n
(p, q) = 0,

(2) if r ∈ N1/(2n), then nF1/n
(p, r) = 0.
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We first note that for each ε the boundary of Mε has the property that W (−ε,ε)×
{5ε1/3}⋃

Nε × [0, 5ε1/3] is an entrance set into Mε for the flow induced by the
negative of the gradient of Fε . Similarly, N−ε × [0, 5ε1/3] is an exit set. Assume
that for arbitrarily large n the property (1) above is not satisfied. As the number
of critical points of f is finite this means that there is a critical point q of f of
index i − 1 and a sequence nk → ∞ such that nF1/nk

(p, q) �= 0 with f(q) < 0.
Clearly, as nF(p, q) = 0 this means that for each nk there is at least one flow
line λk (for the flow induced by F1/nk ) that joins p to q and that intersects M1/nk .
Let xk be the entrance point of this flow line into M1/nk and let yk be the exit
point of this same flow line. Inside M1/nk the flow line joining xk to yk projects
onto N = N0 as a flow line λ′

k of g joining the projection of xk denoted by x′
k

to the projection y′
k of yk. This happens because the gradient of F1/nk can be

decomposed into two components, one orthogonal to N and the other having the
same direction as the gradient of g. We now make k → ∞. Then, by compactness,
we may assume that xk → x0 ∈ N, yk → y0 ∈ N. As in the exterior of M1/nk

the function F1/nk coincides with F we obtain that y0 ∈ W
s
F(q) and x0 ∈ W

u
F(p).

Because F is a linear cobordism this implies x0 ∈ W
u
f (p1) and y0 ∈ W

s
f (q) (see

Remark 1.5 (b)). Of course, we also have x′
k → x0 and y′

k → y0. Property (i) of
the function g implies that x0 ∈ ⋃

z∈Crit≤i−2
Wu

g (z). As x′
k and y′

k were joined by
the flow lines λ′

k of the flow induced by the negative of the gradient of g we obtain
that y0 also belongs to

⋃
z∈Crit≤i−2

Wu
g (z). But this means that the intersection of

some g-unstable manifold of dimension ≤ i − 2 with the f -stable manifold of q is
non trivial. By property (ii) of g that means

dim(M) − ind f (q) + (i − 2) = dim
(
Ws

f (q)
) + (i − 1) ≥ dim(M) .

This implies ind(q) ≤ i − 2 and leads to a contradiction.

We use a similar argument to deal with condition (2). As above, if for arbitrarily
large n (2) is not satisfied there is a critical point of F1/nk , rk ∈ N1/(2nk) such that
there exists at least one F1/nk -flow line λk joining p to rk and ind(rk) = i − 1.
Obviously, when k → ∞ we may assume that rk → r with r a critical point of
index i − 1 of g. As before, let xk be the entrance point of λk inside M1/nk and let
x′

k be the projection of xk onto N. The portion of λk inside of M1/nk projects to a
g-flow line λ′

k joining x′
k to r. Let

x0 = lim(xk) = lim(x′
k) .

As above we obtain

x0 ∈ W
u
F(p)

⋂
M × {0} = W

u
f (p1) .

At the same time we also have x0 ∈ Ws
g(r). Property (ii) of g implies

dim
(
Ws

g(r)
) + dim

(
Wu

f (p1)
) ≥ n

which means

n − 1 − indg(r) + ind f (p1) ≥ n .
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It follows that indg(r) ≤ i −2, which contradicts the hypothesis on r and completes
the proof of the lemma (we have actually proved more: not only the relevant
numbers of flow lines counted with signs are zero but actually the respective sets
of flow lines are empty), and also of the gluing Theorem 1.29. 
�

2. Applications

2.1. Rigidity of the Floer complex. The purpose of this section is to adapt the
technique described in Sect. 1.2 to show a rigidity result for the Floer complex
which is similar to Theorem 1.19. This adaptation is rather immediate as it only
makes use of very standard tools from the construction of Floer homology.

2.1.1. The Floer complex. We start by recalling – sketchily – some elements of
the construction of the Floer complex. This construction is presented in detail in
many sources and we refer to them for details [18], [9] [19]. We follow closely the
last two sources mentioned as our sign conventions are like there.

Let M be a symplectic closed manifold with symplectic form ω and of dimen-
sion 2m. We shall work under the assumption that ω vanishes when evaluated on
π2(M). There exist almost complex structures J on M that are compatible with ω

in the sense that the bilinear form gJ(X, Y ) = ω(X, J(x)Y ), X, Y ∈ Tx M, gives
a Riemannian metric on M. In fact, the set of such compatible almost complex
structures – which will be denoted by J – is contractible and therefore there exists
a well defined Chern class c1 ∈ H2(M;Z). We shall also assume c1|π2(M) = 0.

Fix a 1-periodic hamiltonian H on M. In other words, this is a smooth function
H : S1 × M → R where S1 = R/Z. Such a hamiltonian induces a one parameter
family of Hamiltonian vector fields Xt

H , t ∈ S1, on M which is defined by the
equality ω(Xt

H , Y ) = −d(Ht)(Y ) that is required to hold for all vector fields Y
on M. To this family we associate the time dependent differential equation

ẋ(t) = Xt
H(x(t)) .(1)

The solutions to this equation define a one-parameter family of symplectic diffeo-
morphisms φt on M given by φt

H(x(0)) = x(t).
The problem which is addressed by the Floer complex is to estimate the number

of solutions of equation (1) that satisfy x(1) = x(0) and are contractible as loops
in M. We denote by �0 the space of all smooth, contractible loops in M and we
denote by P(H ) ⊂ �0 these 1-periodic solutions.

Let aH : �0 → R be the function defined by

aH(x) = −
∫

D
x∗ω +

∫ 1

0
H(t, x(t))dt .

Here x : D → M is an extension of x : S1 → M to the unit disk D ⊂ R2, S1 =
∂D. Because ω|π2(M) = 0, the first integral in the formula of aH is independent of
the choice of the extension x and aH is well defined.

The critical points of aH are identified with the elements of P(H ) and Floer’s
theory is a sort of Morse theory for functionals of this type. Of course, a number
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of non-degeneracy conditions are needed. The first – which we shall assume from
now on – is that all elements of P(H ) are required to be non-degenerate in the
sense that

det
(
1 − dφ1

H(x(0))
) �= 0 .(2)

This condition is generically satisfied and is similar to the requirement that a func-
tion be Morse in the classical situation. Given that M is compact and non-degenerate
periodic orbits are isolated, it follows that the number of elements of P(H ) is finite.
To each element x ∈ P(H ) we may associate an integer µH(x) = µCZ(x′) which
will play the role of the Morse index in the classical Morse case. Here µCZ(x′)
is the Conley-Zehnder index [19] of the path x′ : [0, 1] → Sp(2m) defined as
follows. We first choose x : D → M extending x. We fix a trivialization of the
tangent bundle of M over Im(x) and we use it to view the family d(φt

H)x(0) as
a path x′ : [0, 1] → Sp(2m) with x′(0) = Id and det(Id − x′(1)) �= 0 (because
x is non-degenerate). One important point here is that because c1|π2(M) = 0 any
two extensions x produce homotopic paths x′ and thus the definition of µH(x) is
independent of the choice of extension.

The fundamental problem is that the gradient of the functional aH does not
define a flow. However, the solutions u(s, t) : R× R/Z→ M of the equation

∂u

∂s
+ J(u)

∂u

∂t
+ ∇x H(t, u) = 0(3)

may be viewed as “negative gradient flow lines” of this functional. Here J ∈ J
and ∇x H is the gradient of H(t,−) with respect to the metric gJ .

The energy of a map u : R× S1 → M is defined by

EH(u) = 1

2

∫ ∞

−∞

∫ 1

0

(∣∣∣∣
∂u

∂s

∣∣∣∣
2

+
∣∣∣∣
∂u

∂t
− Xt

H(u)

∣∣∣∣
2
)

dtds .(4)

We shall denote by M(H, J ) the space of solutions u of the equation 3 that
verify EH(u) < ∞. This space has the remarkable property to be compact and to
decompose as the union of the spaces

M(y, x; H, J ) = {u ∈M(H, J ) : lim
s→−∞ u(s, t) = y(t) , lim

s→+∞ u(s, t) = x(t)}

where x, y ∈ P(H ). Here, convergence is uniform in t and, as it should hap-
pen for true gradient flow lines of aH , the elements of M(y, x; H, J ) also ver-
ify lims→±∞ ∂u

∂s (s, t) = 0 uniformly in t. Moreover, for u ∈ M(y, x; H, J ) we
have EH(u) = aH(y) − aH(x). There is an obvious action of R on the space
M(y, x; H, J ) and we shall denote byM′(y, x; H, J ) the resulting orbit space.

For our fixed almost complex structure J there exists a subset Hreg(J ) of the
second Baire category inside C∞(S1 × M) such that whenever H ∈ Hreg(J ) the
natural linearization Du,H,J of the operator ∂H,J (u) = ∂u

∂s + J(u) ∂u
∂t + ∇x H(t, u)

is surjective at each u with ∂H,J (u) = 0 [6]. We shall call the pair (H, J ) regular
whenever H satisfies (2) and H ∈ Hreg(J ). In the Morse case, the analogue of the
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condition H ∈ Hreg(J ) is the Morse-Smale transversality requirement (when the
Riemannian metric is fixed).

If (H, J ) is a regular pair, the surjectivity of Du,H,J for all solutions u of (3)
implies thatM(y, x; H, J ) are manifolds whose dimension can be computed to be
µH(y)−µH(x). Therefore, the spacesM′(y, x; H, J ) are manifolds of dimension
µH(y) − µH(x) − 1. Moreover, in our setting, these manifolds admit coherent
orientations [4]. The spaces M′(y, x; H, J ) also have natural compactifications
M′(y, x; H, J ) which are manifolds with boundary and whose combinatorics is
quite similar to that of the moduli spaces of flow lines in the Morse-Smale case. In
particular, if µH(x) = µH(y) − 1, thenM′(y, x; H, J ) is finite and if µH(x) =
µH(y) − 2, then we have the (oriented) equality:

∂M′(y, x; H, J ) =
∐

z∈P(H )

µH (z)=µH (y)−1

M′(y, z; H, J ) ×M′(z, x; H, J ) .

The Floer complex of (H, J ) is now defined by:

CFi(H, J ) = Z[x ∈ P(H ) : µH(x) = i], d : CFi(H, J ) → CFi−1(H, J ),

d(x) =
∑

z∈P(H ),µH(z)=µH−1

nH,J (x, z)

where nH,J (x, z) is the number of elements (counted with signs) ofM′(x, z; H, J ).

2.1.2. Rigidity. For a fixed hamiltonian H : S1 × M → R let

δH = inf{aH(y) − aH(x) : x, y ∈ P(H ) , M(y, x; H, J ) �= ∅} .

When all the 1-periodic orbits of X H are non-degenerate the set P(H ) is finite and
we have δ > 0. The purpose of this section is to prove the following result.

Theorem 2.1. Fix a regular pair (H, J ). If (H ′, J ′) is another regular pair with
||H ′ − H ||0 ≤ δH/4, then the Floer complex CF∗(H, J ) is a retract of the complex
CF∗(H ′, J ′).

As in the Morse case, we immediately deduce.

Corollary 2.2. Given a Hamiltonian H : M → R let J, J ′ be two almost complex
structures such that the pairs (H, J ) and (H, J ′) are regular. There exists an
isomorphism of chain complexes CF∗(H, J ) ≈ CF∗(H, J ′).

Proof. The proof of the theorem is based on the idea described in 1.2 and, besides
the usual approach to comparing the Floer complexes of two different regular pairs,
it makes use of monotone homotopies as introduced in [5], [2].

The standard way to compare the Floer complexes associated to the two regular
pairs (H0, J0) and (H1, J1) is as follows [19] [9]. Take smooth homotopies H01 :
R × S1 × M → R and J01 : R × M → End(TM), J01

s ∈ J ,∀s ∈ R such that
there exists R > 0 with the property that, for s ≥ R, we have (H01

s (x), J01
s (x)) =
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(H0(x), J0(x)) and for s ≤ −R, (H01
s , J01

s ) = (H1(x), J1(x)), ∀x ∈ M. Consider
the equation:

∂u

∂s
+ J01(s, u)

∂u

∂t
+ ∇s

x H01(s, t, u) = 0(5)

where ∇s
x H01(s, t,−) is the gradient of the function H(s, t,−) with respect to

the Riemannian metric induced by J01
s . Let M(H01, J01) be the space of all

finite energy solutions u : R × R/Z → M of this equation (where the energy
EH01 is defined by using H01 in (4) instead of H). Again this space is compact
and it decomposes as the union of the spacesM(y, x; H01, J01) containing those
solutions u that also satisfy

lim
s→−∞ u(s, t) = y(t), lim

s→+∞ u(s, t) = x(t)

for some with x ∈ P(H0) and y ∈ P(H1). Moreover, for generic choices of
(H01, J01), the associated linearized operator Du,H01,J01 is surjective for each
solution u of (5). Whenever (Hi, Ji) are regular pairs for i ∈ {0, 1} and this
additional condition is satisfied we shall say that the pair (H01, J01) is a regular
homotopy. As in the case of equation (3) a consequence of regularity is that the
spacesM(y, x; H01, J01) are manifolds and they also admit coherent orientations.
The dimension of such a manifold is given by µH1(y) − µH0(x). Define now
ψH01,J01 : CF∗(H1, J1) → CF∗(H0, J0) by

ψH01,J01
(y) =

∑

x∈P(H0),µH0(x)=µH1(y)

nH01,J01
(y, x)

where nH01,J01
(y, x) is the number of elements inM(y, x; H01, J01) (counted with

signs). Obviously, the key point is that this application is a chain homomorphism
which induces an isomorphism in homology ([19], [18]). For such a homotopy H01

let

aH01(s, x) = −
∫

D
x∗ω +

∫ 1

0
H01(s, t, x(t))dt .

We now consider u : R→ �0, u ∈M(y, x, H01, J01) and by composition define
a(s) = aH01(s, u(s)). We derive a(s) with respect to s and we obtain (as, for
example, in [5] p. 50 – except for a change in signs)

da

ds
(s) = d(aH01

s
)(u(s, t))

∂u

∂s
(s, t) +

∫ 1

0

∂H01

∂s
(s, t, u(s, t))dt

where d(aH)(γ)ξ is the derivative of the functional aH : �0 → R at γ ∈ �0 in the
direction of the vector field ξ defined along γ . Now

d(aH01
s

)(u(s, t))
∂u

∂s
(s, t) =(6)

=
∫ 1

0
gJ01

s
(J01(s, u(s, t))

∂u

∂t
(s, t) + ∇s

x H01(s, t, u(s, t)),
∂u

∂s
(s, t))dt

and, because u verifies equation (5), this is always negative.
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If it happens that H1(t, x) > H0(t, x) for all (t, x) ∈ S1 × M we may
take H10 to be a monotone homotopy in the sense that ∂H01

∂s (s, t, x) ≤ 0 for
all (s, t, x) ∈ R× S1 × M (this is quite analogue to our simple morse cobordisms
from Definition 1.10). These homotopies have been introduced and used by Floer
and Hofer in [5]. If H01 is monotone, the formula above shows that da

ds ≤ 0 which
shows that

aH1(y) = aH10(−R, y) ≥ aH10(R, x) = aH0(x) .(7)

Suppose now that we have two regular homotopies (Hi(i+1), Ji(i+1)), i ∈ {0, 1}
relating the regular pairs (Hi, Ji) and (Hi+1, Ji+1). It is then possible to glue the
two homotopies together thus getting a new homotopy (H02, J02) which is defined
by H02

T (s, t, x) = H01(s + T, t, x) for s ≤ 0, H02
T (s, t, x) = H12(s − T, t, x) for

s ≥ 0 and by analogue formulae for J02. For T sufficiently big this homotopy
is regular and it verifies ψH02,J02 = ψH01,J01 ◦ ψH12,J12

([19], Lemma 6.4; [18]
Lemma 3.11). Notice also that if both H01 and H12 are monotone, then so is H02.

We now turn to the statement of the theorem. We fix the regular pair (H, J ) and
we let (H ′, J ′) be a regular pair with |H ′(t, x)− H(t, x)| ≤ δH/4, ∀(t, x) ∈ S1 ×M.
We have H(t, x) − δH/3 < H ′(t, x) < H(t, x) + δH/3, ∀(t, x) ∈ S1 × M. Let
(H2, J2) = (H + δH/3, J ), (H1, J1) = (H ′, J ′), (H0, J0) = (H − δH/3, J ). We
may find monotone homotopies (H01, J01), (H12, J12) relating these pairs such
that for all s ∈ R we have H0 ≤ H01

s ≤ H1 ≤ H12
s ≤ H2. For fixed Hi j the pair

(Hi j , Ji j ) is regular for a generic choice of Ji j inside the set of time-dependent,
period one, almost complex structures compatible with ω, [5] Theorem 23 (the
use of time dependent almost complex structures does not change the form or the
behaviour of any of the previous equations).

We consider the “glued” regular homotopy (H02, J02) = (H02
T , J02

T ) defined
as above which is monotone and regular for large T .

In essence, we have now constructed the two non-trivial faces of the cube in the
proof of Theorem 1.19 and, to end the proof, we need to show that ψH02,J02

is an isomorphism. We consider the monotone homotopy (H
02

, J ) such that
H02(s, t, x) = H(t, x) + h(s) with h : R → R some convenient, decreasing

function and Js = J . Obviously, this homotopy is regular and ψH
02

,J = id. Let
(G, J) be a smooth homotopy of homotopies G : [0, 1] ×R× S1 × M → R such

that Gλ = G(λ,−,−,−) verifies G0 = H02, G1 = H
02

and we have similar
identities for J . There exists a notion of regularity for such a homotopy of homo-
topies (G, J). If our (G, J) is regular in this sense it induces a chain homotopy
� = ψG,J : CF∗(H2, J2) → CF∗+1(H0, J0) defined by

ψG,J (y) =
∑

x∈P(H0),µH0(x)=µH2(y)+1

nG,J(y, x)

where nG,J(y, x) is the number of elements (counted with signs) of the moduli
spaces

M(y, x; G, J) = {(u, λ) : λ ∈ [0, 1], u ∈M(y, x; Gλ, Jλ)}
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which, are finite by regularity when µH0(x) = µH2(y)+1 and also admit a coherent
choice of orientations (see [19] Lemma 6.3, [5] Sect. 4.3). With this definition we

have d� − �d = ψH
02

,J − ψH02,J02 = Id − ψH02,J02
. We index the elements in

P(H2) = P(H0) = P(H ) = {p1, p2, . . . pk} such that aH(pi) < aH(p j) ⇒ i < j
and we denote by A = (ai j ) the matrix of the linear map d� − �d in this basis.

Because both H02 and H
02

are monotone homotopies we may take G to
be a homotopy of monotone homotopies in the sense that Gλ is a monotone
homotopy for all λ ∈ [0, 1]. Simultaneously, we also need the pair (G, J) to
be regular. This can be achieved generically (with again J time-dependent) as
discussed in [5] Sect. 4.3. In this case, it follows from (7) that nG,J(y, x) �= 0 ⇒
aH2(y) ≥ aH0(x). The coefficients of the Floer differential in CF∗(H, J ) verify
nH,J (y, x) �= 0 ⇒ aH(y) ≥ δH + aH(x). By looking to the matrix A we obtain
that ai j �= 0 ⇒ aH2(p j) ≥ aH0(pi) + δH . But aH(p j) + δH/3 = aH2(p j),
aH0(pi) = aH(pi)− δH/3 so we get that if ai j �= 0, then aH(p j) > aH(pi) which

means j > i. Therefore, A is upper triangular and we conclude that ψH02,J02
is an

isomorphism which ends the proof. 
�
Remark 2.3. It is clear that the result above can be extended in many ways. One
such possibility is to consider monotone symplectic manifolds which means that
the two morphisms c1 : π2(M) → Z and [ω] : π2(M) → R are proportional.
Besides other technical complications, this implies that the action-functional aH is
S1 valued. In the next section we discuss rigidity (and gluing) for S1 valued Morse
functions. It is quite likely that the rigidity statement proved below in the S1-valued
case carries over to the Floer monotone setting.

2.2. Circle-valued functions. The purpose of this subsection is to apply the
methods of Sect. 1 to S1-valued functions. We shall obtain a rigidity statement
similar to that in 1.2 and we shall also adapt to this context the gluing result 1.29.
This is then used to show how to algebraically recompose the Morse-Novikov
complex out of information on a single fundamental domain.

2.2.1. The Novikov complex. We now consider a circle-valued Morse-Smale func-
tion on a compact manifold M

( f, α) : M → S1 = R/Z .

In this section we fix the main definitions and properties of the Novikov complex
of f .

The pullback infinite cyclic cover

M = f ∗
R = {(x, t) ∈ M × R | f(x) = [t] ∈ S1}

is non-compact, and ( f, α) lifts to a Z-equivariant Morse-Smale function

( f , α) : M = f ∗
R→ R
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with

f : M → R ; (x, t) �→ t .

M ��f

��

R

��
M ��f

S1

and where we identify the metric α with its pull-back to M. The generating covering
translation along the downward gradient flow of f is given by

z : M → M ; (x, t) �→ (x, t − 1) .

We shall assume that M and M are connected, so that there is defined an exact
sequence of groups

{1} �� π1(M) �� π1(M) ��f∗
π1(S1) = Z �� {1} .

Let M̃ be a regular cover of M with group of covering translations π (e.g. M itself
with π = {1}, or the universal cover of M with π = π1(M)). Then M̃ is a regular
cover of M, and the group of covering translations � fits into an exact sequence

{1} �� π �� � ��
Z

�� {1} ,

so that

� = π ×ζ Z

with ζ the monodromy automorphism defined by

ζ : π → π ; g �→ z−1gz

for any lift of a generator 1 ∈ Z to an element z ∈ �. The group ring

Z[�] = Z[π]ζ [z, z−1]
consists of the polynomials

∞∑

j=−∞
a j z

j (a j ∈ Z[π])

with { j ∈ Z : a j �= 0} finite and

az = zζ(a) (a ∈ Z[π]) .
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For any Z[π]-module F and j ∈ Z let z j F be the Z[π]-module with elements z j x
(x ∈ F) and

z j x + z j y = z j (x + y) , az j x = z jζ j(a)x ∈ z j F .

Let

( f , α) : M → R

be a lift of ( f, α) to a Z-equivariant real-valued Morse function on the infinite
cyclic cover M of M. Lift each critical point of f : M → S1 to a critical point of
f : M → R, allowing the identification

Criti( f ) =
∞⋃

j=−∞
z j Criti( f ) .

Definition 2.4. (i) The Novikov ring

Z[π]ζ ((z)) = Z[π]ζ [[z]][z−1]
is the ring of formal power series

∞∑

j=−∞
a j z

j (a j ∈ Z[π])

such that { j ≤ 0 : a j �= 0} is finite.

(ii) The Novikov complex of ( f, α) is the based f.g. free Z[π]ζ ((z))-module chain
complex C = CNov(M, f, α) with

d : Ci = Z[π]ζ ((z))[Criti( f )] → Ci−1 = Z[π]ζ ((z))[Criti−1( f )] ;

x �→
∞∑

j=−∞
∑
g∈π

∑
y∈Criti−1( f )

n f̃ ,α(x, z j gy)z j gy .


�
Assume that 1 ∈ S1 is a regular value of f and let N = f −1(1) ⊂ M. Cutting

M along N gives a fundamental domain (MN ; N, z−1 N) for M with a Morse-Smale
function

( fN , αN ) : (
MN ; N, z−1 N

) → ([0, 1]; {0}, {1})
which is constant on N and z−1 N.

zN N z−1 N z−2 NzMN MN z−1 MN
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Each critical point x ∈ M of f has a unique lift to a critical point of fN , which is
also denoted by x ∈ MN , with

f =
∞⋃

j=−∞
z j fN : M =

∞⋃
j=−∞

z j MN → R ,

Criti( fN ) = Criti( f ) , Criti( f ) =
∞⋃

j=−∞
z jCriti( fN ) ,

n f ,α(z j x, zk y) =
{

n f,α(x, y) if j = k

0 if j > k
(x ∈ Criti( f ), y ∈ Criti−1( f )) .

Use the lifts of the critical points of f to MN in the construction of the Novikov com-
plex CNov(M, f, α), so that the coefficients of the differentials are in Z[π]ζ [[z]] ⊂
Z[π]ζ ((z)).
Lemma 2.5. The Novikov complex of ( f, α) : M → S1 is

CNov(M, f, α) = Z[π]ζ ((z)) ⊗Z[π]ζ [[z]] lim←−
�

C(MN (�), fN (�), αN (�))

with C(MN (�), fN (�), αN (�)) the Z[π]-coefficient Morse complex of the Morse-
Smale function

( fN (�), αN (�)) = ( f , α)| : (
MN (�); z�N, z−1 N

) → R

on

MN (�) =
�⋃

j=0

z j MN ⊂ M =
∞⋃

j=−∞
z j MN .

The inverse limit is a based f.g. free Z[π]ζ [[z]]-module chain complex, where the
limit is with respect to the natural projections

C(MN (� + 1), fN (� + 1), αN (� + 1)) → C(MN (�), fN (�), αN (�)) .

Proof. Let Fi be the based f.g. free Z[π]-module generated by the index i critical
points of f . For any � ≥ 0

C(MN (�), fN (�), αN (�))i =
�∑

j=0

z j Fi ,

and

lim←−
�

C(MN (�), fN (�), αN (�))i = lim←−
�

�∑

j=0

z j Fi = (Fi)ζ [[z]]

so that

CNov(M, f, α)i = (Fi)ζ ((z))

= Z[π]ζ ((z)) ⊗Z[π]ζ [[z]] lim←−
�

C(MN (�), fN (�), αN (�))i .


�



Rigidity and gluing for Morse and Novikov complexes 383

2.2.2. Assembly and rigidity for the Novikov complex. It is clear that the Novikov
complex of ( f, α) : M → S1 only depends on the geometric behaviour of the
lift f on a single fundamental domain. With the notations of the last section, one
expects therefore that there should exist an assembly process that would consist
in extracting from fN (or, equivalently, from f |M\U(N) with U(N) a small tubular
neighbourhood of N) precisely the data necessary to algebraically piece together
CNov(M, f, α). The work of Pajitnov [16] describes one such method. We shall
present below a different one which is based on the techniques described in the
first parts of the paper. We will compare in more detail our results with those of
Pajitnov at the end of the section.

The notion of a splitting of a real-valued Morse function has an obvious ana-
logue for circle-valued Morse functions. As in the real valued case (see just above
Definition 1.26), there is no restriction to assume that α equals the product metric
β + dt2 in a tubular neighbourhood of N with β = α|N .

Definition 2.6. A (ε, τ)-splitting of a Morse-Smale function ( f, α) : M → S1

along a Morse-Smale function (g, β) : N = f −1(1) → R with β = α|N is
a Morse-Smale function (h, α) : M → S1 such that:

(i) h|N = e2πiτ g : N → J for a convenient interval J ⊂ S1.
(ii) (h, α) = ( f, α) except in a small tubular neighbourhood W = N×[−ε, ε] ⊂ M

of N = N × {0} ⊂ M. We let M′ = M\N.
(iii) With respect to this parametrization f(x, t) = e2πit ∈ J ′ for (x, t) ∈ N ×

(−ε, ε) with J ′ ⊂ S1 an interval containing 1 and

Criti(h) = Criti( f ) ∪ (Criti−1(g) × {−ε/2}) ∪ (Criti(g) × {ε/2}) .

(iv) The restrictions of (h, α) to the submanifolds

Wε = N × [−ε/2, ε/2] ⊂ W ,

M′
ε = M′\(N × (−ε/2, ε/2)

) ⊂ M′ ,

are Morse-Smale cobordisms

(gε, βε) : (Wε; N × {ε/2}, N × {−ε/2}) → J ′′,
(h′, α′) : (M′

ε; N × {ε/2}, N × {−ε/2}) → J ′′′ ⊂ S1 − {1}
with J ′′ ∪ J ′′′ = S1.

(v) The cobordism (gε, βε) is linear, so that

C(Wε, gε, βε) = C(1 : C(N, g, β) → C(N, g, β)) . 
�
The key point of the construction is that, by contrast to the Novikov complex

of ( f, α), the Novikov complex of a splitting (h, α) is very simple because the flow
lines of the corresponding lift h are never longer than one fundamental domain.
Indeed, the only way a flow line of h can cross N is by joining inside N×[−ε/2, ε/2]
a critical point contained in N × {−ε/2} to one in N × {ε/2}. As h restricts to
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a linear cobordism on N × [−ε/2, ε/2] this leads to a simple description for the
Novikov complex of h.

For any such splitting we may identify the interval J ′′′ with [ε/2, 1−ε/2] (such
that, in S1, 1−ε = −ε) and if we denote N ′ = N ×{ε/2} and N ′′ = N ×{1−ε/2},
then the cobordism (h′, α′) equals (h, α)|

h
−1

([ε/2,1−ε/2]). Clearly, (M′
ε; N ′, N ′′) is

diffeomorphic to (MN ; N, z−1 N). The cobordism

(h′, α′
N ) = (hN , αN )| : (M′

ε; N ′, N ′′) → R

has

Criti(h′) = (Criti(g) × {ε/2}) ∪ Criti( fN ) ∪ (Criti−1(g) × {1 − ε/2}) .

The algebraic data contained in a splitting of an S1-valued map is brought
together in the following structure.

Definition 2.7. The algebraic cobordism of a splitting (h, α) : M → S1 of ( f, α) :
M → S1 along g is defined by

�N (M, h, α) = (F, D, θ, θ ′, ψ)

with Z[π]-module chain complexes and chain maps

D = C(N, g, β) , F = C(M′
N \∂M′

N , h′
N |, α′

N |) = C(MN , fN , αN ) ,

θ : Fi → Di−1 ; x �→ ∑
y∈Criti−1(g)

nh′
N ,α′

N (x, (y × {ε/2}))y ,

θ ′ : Di → Fi ; x �→ ∑
y∈Criti ( fN )

nh′
N ,α′

N ((x × {1 − ε/2}), y)y ,

ψ : Di → zDi ; x �→ ∑
y∈Criti (g)

nh′
N ,α′

N ((x × {1 − ε/2}), (y × {ε/2}))y .


�
By analogy with Proposition 1.27:

Proposition 2.8. Let ( f, α) : M → S1 be a Morse-Smale function, with 0 ∈ S1

a regular value.

(i) For every Morse-Smale function (g, β) : N = f −1(0) → R with β = α|N

and every δ > 0 there exists an (ε, τ)-splitting of (h, α) along (g, β) such that
‖h − f ‖0 ≤ δ.

(ii) The Novikov complex of a splitting (h, α) of ( f, α) along (g, β) with algebraic
cobordism �N (M, h, α) = (F, D, θ, θ ′, ψ) is given by

CNov(M, h, α) = E

with E the based f.g. free Z[π]ζ ((z))-module chain complex defined by

dE =



−dD 0 0

1 − zψ dD θ

−zθ ′ 0 dF



 :

Ei = (Di−1 ⊕ Di ⊕ Fi)ζ ((z)) → Ei−1 = (Di−2 ⊕ Di−1 ⊕ Fi−1)ζ ((z)) .
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Proof. (i) As for 2.8 (i).

(ii) The Morse complex of (h, α) : M → R is

dC(M,h,α) =



−dD 0 0

1 − zψ dD θ

−zθ ′ 0 dF



 :

C(M, h, α)i = (Di−1 ⊕ Di ⊕ Fi)ζ [z, z−1]
→ C(M, h, α)i−1 = (Di−2 ⊕ Di−1 ⊕ Fi−1)ζ [z, z−1]

and

CNov(M, h, α) = E = Z[π]ζ ((z)) ⊗
Z[π]ζ [z,z−1] C(M, h, α) . 
�

In the setting of Proposition 2.8 define a based f.g. free Z[π]ζ ((z))-module
chain complex F̂(h) by

dF̂(h) = dF + zθ ′(1 − zψ)−1θ = dF +
∞∑
j=0

z j+1θ ′ψ jθ :

F̂(h)i = (Fi)ζ ((z)) → F̂(h)i−1 = (Fi−1)ζ ((z)).

The role of this complex is to eliminate in a purely algebraic way the contribution
of g from the Novikov complex of the splitting (h, α). Clearly, this suggests that
F̂(h) is a good approximation of CNov(M, f, α) and we shall see further that this
is indeed the case.

It is convenient to fix the notations

R = Z[π]ζ ((z)) , R′ = Z[π]ζ [[z]] ⊂ R .

All complexes and isomorphisms in this result are understood to belong to the
category ofR-module chain complexes.

Definition 2.9. An isomorphism of based f.g. free R-modules � : F → G is
R′-simple if

τ(�) ∈ im(K1(R
′) → K1(R)) . 
�

The result below is the S1-analogue of the Rigidity Theorem 1.19 (iii) and the
gluing Theorem 1.29.

Theorem 2.10. Fix the Morse-Smale function ( f, α) : M → S1.

(i)There exists δ f > 0 such that if ( f ′, α′) is a Morse-Smale function with || f ′ −
f ||0 ≤ δ f , then CNov(M, f, α) is a retract of CNov(M, f ′, α′). In particular, the
R′-simple isomorphism type of the Novikov complex of ( f, α) is independent of the
choice of α.
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(ii) For any (ε, τ)-splitting (h, α) : M → S1 of ( f, α) along a Morse-Smale function
(g, β) : N → R with ε, τ sufficiently small there is anR′-simple isomorphism

� : CNov(M, f, α)
∼=−→ F̂(h) .

(iii) For any n ∈ N there exist Morse-Smale functions (gn, β) : N → R and
splittings (hn, α) : M → S1 of ( f, α) along (gn, β) such that there is anR′-simple
isomorphism

�n : CNov(M, f, α)
∼=−→ F̂(hn)

with �n(x) − x ∈ znR′[Crit∗( f )] for each basis element x. 
�
Remark 2.11. The complex F̂(h) behaves as if it were the Novikov complex
CNov(M, f̂ , α) of a Morse-Smale function ( f̂ , α) : M → S1 obtained from a split-
ting (h, α) by cancelling the pairs of critical points added to those of f in the
construction of h, with

Crit∗( f̂ ) = Crit∗( f ) .

Indeed, as in the real-valued case (see Remark 1.30) such a function does exist
(this follows from Hutchings’ extension in [10] of the bifurcation analysis of
Laudenbach [13]) and one may construct it such that it is C0-close to f . Using
point (i) of the theorem and the existence of such an f̂ is sufficient to prove (ii)
but, again as in the real-valued case, it is not enough for (iii). In the following we
shall prove the whole statement independently of bifurcation considerations. 
�
Proof. Order the critical points of fN following their critical values. Explicitly, we
fix a total order on the finite set S = Crit∗( fN ) = Crit∗( f ) such that x ≤ y implies
fN (x) ≤ fN (y) for x, y ∈ S.

The proof of the theorem uses the adaptation to the S1-valued case of the
techniques developed in the first three sections of this paper. These methods will
produce certain morphisms relating the various chain complexes involved. Showing
that these morphisms are isomorphisms is less immediate than in theR-valued case,
but it will always follow from the fact that our morphisms satisfy the assumptions
of the rather obvious lemma below.

Lemma 2.12. Consider the free R-module R{S} generated by a finite ordered
set S. AnR-module endomorphism � : R{S} → R{S} such that for each x ∈ S

�(x) − x ∈ zR′{S} +R′{y ∈ S : y < x}
is anR′-simple automorphism.

Proof. Write S = {x1, x2, . . . , xk}, with xi < x j for i < j . The matrix of � has
entries inR′, of the form

� =





1 + a11 b12 b13 . . . b1k
a21 1 + a22 b23 . . . b2k

a31 a32 1 + a33 . . . b3k
...

...
...

. . .
...

ak1 ak2 ak3 . . . 1 + akk




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with ai j ∈ zR′ = zZ[π]ζ [[z]], bi j ∈ R′. The augmentation

ε : R′ → Z[π] ; z �→ 0

sends � to an upper triangular matrix of the form

ε(�) =





1 ε(b12) ε(b13) . . . ε(b1k)

0 1 ε(b23) . . . ε(b2k)

0 0 1 . . . ε(b3k)
...

...
...

. . .
...

0 0 0 . . . 1





which is clearly invertible. The matrix defined by

� = �ε(�)−1 − I

has entries in zR′. Thus � itself is invertible, with inverse

�−1 = ε(�)−1(1 +
∞∑

j=1

(−�) j)

defined overR′. 
�
We now return to the proof of Theorem 2.10. The first remark is that the Def-

initions 1.1, 1.6 and 1.10 apply ad literam to the case of S1-valued maps because
the relevant conditions are local in nature. Similarly, the statements in Proposi-
tion 1.9 (i) and Proposition 1.11 (iii) remain valid if we replace the relevant Morse
complexes by the corresponding Morse-Novikov complexes with one exception:
the argument given for the proof of 1.11 (iii) only shows that f M is a chain map in
the S1-valued case.

More care is necessary for the constructions of Morse cobordisms.

Lemma 2.13. (i) Let ( f0, α0), ( f1, α1) : M → S1 be two Morse-Smale functions
with M closed. Suppose that f0 and f1 are homotopic. Then there exists c ∈ R and
a simple Morse cobordism (F, α′) : M × [0, 1] → S1 between (e2πic f0, α0) and
( f1, α1).

(ii) If there exists a constant c ≥ 0 such that

( f1, α1) = (
e2πic f0, α0

) : M → S1

then there exists a cobordism (F, α′) : M × [0, 1] → S1 between f0 and f1 such
that FM×[0,1] is the identity.

Proof. The difference between proving this statement and the constructions in
Sect. 1.1.3 comes from the fact that the formulas for the homotopies given there are
no longer applicable in this case. Let µ : S1×R→ S1 be given by µ(τ, t) = e2πitτ .
We also use the following convention: dτ ∈ �1S1 is the standard volume form on
S1 and for an S1-valued function g we let dg = g∗(dτ).
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(i) Let F′ : M × [0, 1] → S1 be the homotopy of f0 and f1. By a simple partition
of unity argument we may assume that F′ is flat at the ends of the cobordism in
the sense that there are collared neighbourhoods Ui ≈ M ×[ai, ai + δ] of M ×{i},
i ∈ {0, 1}, a0 = 0, a1 = 1 − δ, δ small, such that for (x, t) ∈ Ui we have F′(x, t) =
fi(x). Because M is compact there exists m such that |(∂F′/∂t)(x, t)| ≤ m for all
(x, t) ∈ M × [0, 1] (where ∂F′/∂t = 〈dF′, ∂/∂t〉). Let k : (−1/2, 3/2) → R be
a Morse function with exactly two critical points, a minimum at 0 and a maximum
at 1 that has value 1 and such that for t ∈ [δ, 1−δ]we have k′(t) < −m. Now define
F : M×[0, 1] → S1 by F = µ(F′×k). As F′ is flat close to ∂(M×[0, 1]), to verify
that F is a Morse cobordism we only need to notice that F has no critical points in
M × [0, 1]\(U0 ∪ U1). This happens because in this set ∂F/∂t = ∂F′/∂t + k′ < 0
(which is computed by using polar coordinates τ → e2πiτ on S1). It is obvious that
there are metrics α′ that extend αi and such that (F, α′) is Morse-Smale.

(ii) This is the analogue of the construction of linear Morse cobordisms in Lem-
ma 1.17. We consider a Morse function k : (−1/2, 3/2) → R as above (without
any derivative restrictions). Let ν : [0, 1] → [0, 1] be an increasing C∞-function
with ν([0, δ]) = 0, ν([1 − δ, 1]) = 1. We let F′ : M × [0, 1] → S1 be a smooth
homotopy of f0 and f1 that is defined by F′(x, t) = e2πiν(t) f0(x). Finally, we define
F as before F(x, t) = µ(F′ ×k). We take on M ×[0, 1] the metric α′ = α0 +dt2. It
is easy to verify that (F, β) is a cobordism whose induced morphism is the identity.
Indeed, the lift of this pair to F : M × [0, 1] → R is an obvious linear cobordism
in the real valued sense and this implies that FM×[0,1] is the identity. 
�
(i) Given these two lemmas item (i) of Theorem 2.10 follows exactly by the same ar-
gument as item (ii) of Theorem 1.19. More precisely, assume that ( f i, αi) : M → S1

are homotopic Morse-Smale functions such that f1 is C0 close to f0. Then there
exists a homotopy F′ : M × [0, 1] → S1 of f0 to f1 which is C0-close to the
constant homotopy f0. This means that by taking f1 sufficiently C0 close to f0 we
may also assume the constant c in Lemma 2.13 (i) to be as small as desired. We now
construct Morse cobordisms relating e2πic′

f0, e2πic f1 and f0 for small constants c
and c′ that are similar to those in Lemma 1.21 and the argument in Lemma 1.22
applied to the lifts of f 0, f 1 to M implies that the resulting chain maps

w : CNov(M, f0, α0) → CNov(M, f1, α1) ,

w′ : CNov(M, f1, α1) → CNov(M, f0, α0)

have the property that w′ ◦ w satisfies the assumptions of Lemma 2.12 and is
therefore an isomorphism. If f0 = f1 the fact that w′ is surjective implies that it
is an isomorphism (because any module epimorphism between finitely generated
free modules of the same rank is an isomorphism).

(ii) Again, the proof here consists of adapting the proof of Theorem 1.29 (i) to
the S1-valued case. We shall use the notations introduced in Definition 2.6. In
particular f and h only differ in the interior of a small tubular neighbourhood
U = N ×[−ε, ε] and on this set, if we identify the interval [−ε, ε] with a small arc
we have f(x, t) = t. By taking τ small we can make the function h|U as C0 close
to the function f |U as desired. Therefore, we may find a small constant l such that
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h(x, t) < t + l = f(x, t) + l. We then construct by the methods in Lemma 1.17
a Morse function F1 : U ×[0, 1] → [−ε, ε+c] which is of the form (1−u(t))h +
u(t)( f + l) with u(1) = 1, u(0) = 0, u′(0) = u′(1) = 0, u′′(0) > 0 > u′′(1) and
such that (∂F1/∂t)(y, t) < 0 if (y, t) ∈ U×(0, 1). Because, h and f coincide outside
U we notice that on ∂U we have F1(y, t) = f(y)+ lu(t). Recalling that actually the
image of F1 is in S1 we rewrite F1|∂U×[0,1] as F1(y, t) = e2πilu(t) f . This shows
that F1 extends to a function H : M ×[0, 1] → S1 which is equal to e2πilu(t) f(y) if
(y, t) ∈ (M\U) × [0, 1]. With an appropriate metric α′ the function H is a Morse
cobordism between (h, α) and (e2πil f, α). By inspecting its lift H we see that
the induced morphism T = H M×[0,1] : CNov(M, f, α) → CNov(M, h, α) has the
following property: for each generator x ∈ Crit∗( f ) we have T(x) = x +o(x)+ z p
with o(x) ∈ Z[π]{Crit∗(h)\Crit∗( f )} and p ∈ Z[π]ζ [[z]]{Crit∗(h)}. We consider
the composition J ′ = Jh ◦ T . The description of Jh now shows that J ′(x) = x + zq
with q ∈ Z[π]ζ [[z]]{Crit∗( f )}. Lemma 2.12 implies that J ′ is an isomorphism.

(iii) We intend to prove this item by showing that for a fixed n and some special
choice of function gn leads by the construction above to a splitting hn , a cobordism
(Hn, αn) and a corresponding morphism Tn that has the form Tn(x) = x +on(x)+
zn p such that with the notations in Definition 2.6 we have

p ∈ Z[π]ζ [[z]]{Crit∗(h)}
and

on ∈ Z[π]ζ [[z]]{Crit∗−1(gn) × {−ε/2}} .

Notice that if such a Tn is constructed, then as Jhn : CNov(M, hn) → F̂(hn) vanishes
on Z[π]ζ [[z]]{Crit∗−1(gn) × {−ε/2}} the composition Jhn ◦ Tn is an isomorphism
of the form required. Therefore, we have reduced the proof to the construction of
hn , Hn such that Tn is as above. This construction may be accomplished in a way
similar to the proof of Theorem 1.29 (iii). We recall that the metric α is the product
metric β + dt2 inside a neighbourhood N × [−δ, δ].

As in Theorem 1.29 (iii), the key point is to work with an adapted function g (see
Definition 1.28). In our setting, consider a Morse-Smale function (gn, β) : N → R

which is adapted to splitting the Morse-Smale function ( f N(i), αN (i)) : MN (i) →R
along zi−1 N for all 0 < i ≤ n (the notations are as in Lemma 2.5). Such a function
exists by the same argument as in the real valued case (there are more conditions to
be verified but they are of the same type and finite in number). We now construct
the (ε, τ)-splitting hn such that inside the set N × [−ε, ε] the function hn has the
particular form of the functions fε in the proof of Proposition 1.27. There is one
minor additional point that needs to be looked at: we need to be sure that (hn, α)

satisfies the Morse-Smale transversality condition. The needed transversality is
certainly satisfied with respect to the unstable and stable manifolds of the critical
points in Crit∗(h) ∪ Crit∗( f ) by the transversality part in the “adapted” condition.
The rest of the transversalities needed can be insured by possibly slightly perturbing
the stable manifolds of gn . This can preserve the transversalities already achieved
and does not affect the part (i) of the adapted condition (see Definition 1.28).

We now construct the Morse cobordism (Hn, αn) : M × [0, 1] → S1 in the
same general way as for item (ii), but now we need to control the behaviour of
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the flow lines of Hn over the set K = MN (n)\(zn + z−1)(N × (−ε,+ε)). More
precisely, we shall construct a cobordism (Hn, αn) which satisfies

nHn (x, y) = 0(8)

for all x ∈ Critk( f ) × {1} ⊂ M × {1} and

y ∈ zi(Critk( f ) ∪ (Critk(gn) × {ε/2}))
for all 0 < i ≤ n − 1. This immediately implies our claim for Tn (as in the proof of
Theorem 1.29). The argument providing this (Hn, αn) follows. It is quite similar
to that in the proof of Theorem 1.29 (iii), but with the additional difficulty that all
the constructions initially accomplished for real valued functions (on M) will need
to be adjusted such that they are periodic in order to descend to M.

We first make the properties of hn more explicit. We assume that the neigh-
bourhood N × [−2ε, 2ε] is like in the definition of splittings (after reparametriza-
tion f has the form (x, t) �→ t and the metric is the product one here). On
N × [−2ε, 2ε] we consider a Morse-Smale function g′ such that g′(x, t) = t for
(x, t) ∈ N × ([−2ε,−ε] ∪ [ε, 2ε]); g′ is a linear cobordism between ε(gn + k)
and ε(gn + k′) on N × [−ε/2, ε/2] and is a linear combination of the form
u(t)(−ε) + (1 − u(t))ε(gn + k′) inside N × [−ε,−ε/2] with u : [−ε,−ε/2] → R

an appropriate function with u([−2ε−ε) = 1 and u(−ε/2) = 0 as in Lemma 1.13;
a similar linear combination is valid inside N ×[ε/2, ε]. The function hn equals g′
on N × [−ε, ε] and is equal to f on M\N × [−ε, ε].

Similarly, we may define a standard cobordism (H ′, α′) between g′ and the
function (x, t) �→ t +c which is defined on (N ×[−2ε, 2ε])×[0, 1] and where c is
a very small constant depending on k, k′, ε. This cobordism H ′ differs from a linear
cobordism only in the interior of N × [−ε, ε] × [0, ε]. The metric α′ is the product
metric α+dτ2. We fix δ > 0 such that if (x, t, t′) ∈ N ×[−2ε, 2ε]×[1−δ, 1], then
the flow line of −∇α′

H ′ containing (x, t, t′) does not intersect N × [−2ε, 2ε] ×
[0, 2ε].

Now let 0 < εi < ε < 1/3 and consider φi : N × [−2ε, 2ε] × [0, 2ε] →
N × [−2ε, 2ε] × [0, 2ε] a diffeomorphism given by (x, (t, t′)) �→ (x, li(t, t′))
where li : [−2ε, 2ε] × [−2ε, 2ε] → [−2ε, 2ε] × [−2ε, 2ε] is a diffeomorphism
such that li restricts to the identity on the complement of the square of side
[−(3/2)ε, (3/2)ε] and the image of the square of side [−εi , εi ] is the square of
side [−ε, ε]. We also require that li restricts to diffeomorphisms when t = 0 and
when t′ = 0. Let (Hi, hi) = (εi/ε)(H ′, h′)◦φi . The metric associated to the Morse
cobordism Hi is the metric αi = φ∗

i α
′. It is useful to note that Hi coincides with

a linear cobordism outside of N × [−εi, εi ] × [0, εi ] and that ∇αi
Hi(x, t, t′) and

∇α′
Hi(x, t, t′) have the same projection on N. Clearly, αi and α′ differ only outside

N × [−(3/2)ε, (3/2)ε] × [0, (3/2)ε]. For 0 ≤ i ≤ n we fix the following notation
Ki = zi(N × [−(3/2)ε, (3/2)ε]) and K ′ = K\ ∪ Ki .

We intend to construct a cobordism (H ′′, α′′) : K × [0, 1] → R between
a Morse-Smale function h′′ and fN (n) such that there exists a sequence of εi ’s
with the property that H ′′ is a linear cobordism on K ′ × [0, 1] × [0, 1], on
(H ′′, α′′)|zi (N×[−ε,ε]×[0,1]) it agrees with (zi Hi, α

i) and it coincides with zi H ′
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on each set zi(N × ([−2ε,−(3/2)ε] ∪ [(3/2)ε, 2ε])×[0, 1]). Moreover, (H ′′, α′′)
should verify the obvious analogue of (8).

To construct H ′′ we proceed by induction. We start with the trivial linear
cobordism with a product metric. Assume now that we have already constructed
(εn−1, . . . εi) and the function h′

i and (H ′
i , α

′
i ) such that H ′

i |K j×[0,1] = z j H j for all
j < i and H ′

i is a cobordism between f and h′
i which is linear on (K\ ∪ j<i K j) ×

[0, 1] and is such that the equation (8) is satisfied by (H ′
i , α

′
i). We now want to

construct εi−1, H ′
i−1, α

′
i−1.

We first pick some choice for Rε′ = H ′
i−1 defined with respect to some εi−1 = ε′

and which satisfies the properties required from H ′
i−1 except possibly (8) and such

that Rε′ |Ki−1×[0,1] = zi−1 Hi−1 and Rε′ = H ′
i in the complement of Ki−1 ×

[0, 1]. As in the Morse case we might need to modify the associated metric on
K × [1/3, 1 − δ] (in the real case it was enough to take δ = 3/2 but here it is
useful to use the constant fixed above) such that Rε′ is Morse-Smale (see above
Lemma 1.31). In fact, it is easy to see that we may assume that the metric αε′
associated to Rε′ satisfies property (8) with respect to H ′

i (because it can be chosen
to be arbitrarily close to α′

i ) in the exterior of Ki−1 ×[0, 2ε])), it coincides with the
standard product metric outside K × [1/3, 1 − δ] ∪ ∪i Ki , it coincides with φ∗

i (α
′)

on z j N × [−2ε, 2ε] × [0, 1], j ≤ i − 1, and is arbitrarily close to the product
metric α′. In fact, the set of choices for the metrics αε′ is dense and open in some
neighborhood of α′ viewed as a metric on K ′ × [0, 1]. As the difference between
Rε′ and H ′

i appears around zi−1 N, as in the proof of Lemma 1.31, we assume that
there exists a pair of critical points x, y of Rε′ that do not satisfy (8) even if we
make ε′ → 0. By using the induction hypothesis and proceeding as in the proof of
that lemma (see also Remark 1.5 b.) we are lead to the existence of a sequence of
points x1, x2, . . . , xt with the following properties: x1 is a critical point of fN (n)

such that x = x1 × {1},
x2, x3 ∈

⋃

indgn (q)<ind f (x1)

Wu
gn

(q) ⊂ zi−1 N ,

xt = y, x3 is related to x4 by a flow line of h′
i , x1 is related to x2 by a flow line

of f , x2 is related to x3 by a flow line of gn and all the points x4, . . . , xt are critical
points of h′

i and appear as vertices in a sequence of broken flow lines of h′
i (in

the proof of Lemma 1.31 this sequence only had 4 elements). Moreover, and this
is a key point, all the points xl for l > 3 belong to Wu

H ′
i
(x). By transversality this

means that indh′
i
(xl) ≤ ind(x1). By the transversality properties of gn we have that

indh′
i
(x4) < ind f (x1) = indH ′

i
(x) − 1 = k − 1 .

Notice that this implies that indh′
i
(xt) < ind(x1) which contradicts our assumption

that ind(y) = k−1. Indeed, if t = 4 this has already been shown above and if t > 4
then y is in the unstable manifold of the point xt−1 whose index is at most k − 1.
Again by transversality the index of y is at most k − 2. Therefore, the existence of
the εi has been established and hence the construction of (H ′′, α′′), h′′ follows by
recurrence.
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In order to complete the proof we need to adjust H ′′, h′′, α′′ in such a way
that the validity of equation (8) is preserved, but the new functions and metric are
periodic and hence induce corresponding notions on M. Let ψ : K × [0, 1] →
K ×[0, 1] be a diffeomorphism which leaves invariant (K −∪zi(N×[−2ε, 2ε]))×
[0, 2ε] and is the inverse of φi on each set zi(N × [−2ε, 2ε]) × [0, 2ε]). Consider
the composition Q = H ′′ ◦ ψ. This function still satisfies (8) but, of course, with
respect to the metric α∗ = ψ∗(α′′). Notice that α∗ = α′ in ∪i(Ki × [0, 1]) ∪
(K × [1 − δ, 1] ∪ [0, 1/3]) and so it is immediate to see that we can choose α′′ as
described above on K ′ × [0, 1] but also such that α∗ is periodic. On each of the sets
zi(N × [−2ε, 2ε] × [0, 1]) the function Q satisfies Q(x, t, t′) = ui(t)zi H ′(x, t, t′)
where ui(t) equals 1 on [−2ε,−(3/2)ε] ∪ [(3/2)ε, 2ε] and equals εi/ε on [−ε, ε]
(these functions ui appear when the cobordisms Hi are pasted with the linear
cobordisms on K ′ × [0, 1]). This means that there exists a diffeomorphism ν :
[−n, 1] → [−n, 1] which satisfies ν(t) = t for t �∈ ∪[k − 2ε, k + 2ε] and with the
property that for (x, t, t′) ∈ (N ×[k−2ε, k+2ε]×[0, 1]), we have ν◦ Q(x, t, t′) =
H ′(x, t, t′)+k (we have identified everywhere zi f(x) and f(x)+ i). We now define
H ′′′ = ν ◦ Q. By factorization this cobordism provides the desired cobordism
Hn : M×[0, 1] → S1. Indeed, by construction, Hn satisfies the required properties
relative to equation (8) with respect to the metric α∗. The pair (Hn, α

∗) might not
be a Morse-Smale pair even if the Morse-Smale condition is satisfied up to order n.
Therefore, we obtain the metric αn by a new (and last) perturbation of α∗ away
from M ×{0, 1} such that αn is sufficiently close to α∗ for condition (8) to continue
to be satisfied (this is possible because this condition concerns only the behavior
of flow lines of “length” n). On M × {0, 1} the metric αn coincides with α.
Moreover, Hn|M×{1} is equal to f up to a constant and Hn|M×{0} is a splitting
of f . By construction the morphism induced by Hn satisfies equation (8), and this
concludes the proof. 
�
Remark 2.14. (a) For any fixed Morse-Smale function ( f, α) : M → S1, a splitting
(h, α) of ( f, α) along g : N = f −1(0) → R can be viewed as a geometric
approximation of finite nature for ( f, α). Indeed, ( f, α) and (h, α) are compared
by a simple Morse cobordism and the flow lines of h are never longer than one
fundamental domain. Theorem 2.10 (ii) indicates that the isomorphism type of the
Novikov complex of ( f, α) can be recovered from any such finite approximation h
that is sufficiently C0-close to f . It is important to note that g can be here any Morse-
Smale function g : N → R. Theorem 2.10 (iii) shows that by using �-adapted g’s
in the sense of being adapted to splitting fN (�) along z�−1 N for higher and higher
�’s we reconstruct the Novikov complex itself. Producing �-adapted g’s is a finite
process that only depends on fN (�) and its difficulty increases with �. As in any
approximation process more effort is needed to produce better approximations.

(b) A natural question is whether there is some g : N → R and an associated
splitting h(g) such that there exists an isomorphism

�∞ : CNov(M, f, α) → F̂(h(g))

which is basis preserving. The major difficulty in proving such a statement along
the method above comes from the fact that one would need g to be adapted to
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splitting fN (�) : MN (�) → R along z�−1 N for any �. The existence of such a
g is not at all clear. It is also possible to use a slightly less restrictive condition
at the point (ii) in Definition 1.28 but as it turns out this leads to some technical
difficulties related to transversality issues (in the S1-valued case).

(c) The work of Pajitnov [16] shows that for a certain class L of pairs ( f, α) which
is C0-dense and open in the set of Morse-Smale pairs, there exists an algebraic
cobordism (F, D, θ, θ ′, ψ) such that the differentials of the Novikov complex of
( f, α) are described by the formula

dCNov(M, f,α) = dF +
∞∑
j=0

z j+1θ ′ψ jθ :

CNov(M, f, α)i = (Fi)ζ ((z)) → CNov(M, f, α)i−1 = (Fi−1)ζ ((z)) .

with ψ : Di → zDi constructed by means of a homological version of the partially
defined flow-return. Although (F, D, θ, θ ′) was not constructed from a splitting it
certainly suggests that, at least for this class of functions, the answer to the question
discussed in (b) is positive. This seems even more likely because the property that
distinguishes ( f, α) ∈ L from the rest of Morse-Smale functions appears to be
quite close to demanding the existence of an “infinitely” adapted g. It should be
noted that it is a rather difficult task to decide whether a particular Morse-Smale
function ( f, α) : M → S1 belongs to L or not. Therefore, Theorem 2.10 is a result
essentially complementary to the results in [16] because 2.10 applies to all Morse-
Smale functions ( f, α) the only choices involved having to do with the auxiliary
function g.

(d) As in Farber and Ranicki [3] define the Cohn localization �−1
Z[π]ζ [z, z−1] of

Z[π]ζ [z, z−1] inverting the set � of square matrices overZ[π]ζ [z] sent to invertible
matrices overZ[π] by the augmentation z �→ 0. Let (F, D, θ, θ ′, ψ) be the algebraic
cobordism over Z[π] determined by a splitting (h, α) of ( f, α) as in Theorem 2.10,
with

D = C(N, g, β) , F = C(MN , fN , αN ) .

The rational Novikov complex CFR(M, f, α) of [3] is the based f.g. free
�−1
Z[π]ζ [z, z−1]-module chain complex defined algebraically by

CFR(M, f, α) = (
�−1(Fi)ζ [z, z−1], dF + zθ ′(1 − zψ)−1θ

)
.

The rational analogue of Theorem 2.10 shows that the basis-preserving isomorph-
ism type of CFR(M, f, α) is independent of the choice of generic metric α, and
gives an isomorphism

Z[π]ζ ((z)) ⊗�−1Z[π]ζ [z,z−1] CFR(M, f, α) ∼= CNov(M, f, α) .

See [17] for further details of this isomorphism, and of the construction of
CFR(M, f, α). 
�
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