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Abstract. We provide a mathematical proof of the existence of traveling vortex rings solutions to
the Gross—Pitaevskii (GP) equation in dimensidrn> 3. We also extend the asymptotic analysis

of the free field Ginzburg—Landau equation to a larger class of equations, including the Ginzburg—
Landau equation for superconductivity as well as the traveling wave equation for GP. In particular
we rigorously derive a curvature equation for the concentration set (i.e. line vortives:i8).
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1. Introduction

In this paper, we consider the Gross—Pitaevskii equation

0
ia—‘f+Aw+<l—|w|Z>x/fzo, 1)

wherey : RY x R — C andN > 3. In dimension 3, this equation, or its close variants,
are often used as models in various areas of physics: nonlinear optics, superfluidity, Bose—

Einstein condensation (see elg./[21,[35, 38] for surveys). At least formally, it possesses a
Hamiltonian structure, whose energy is given by

1 1
EW) =3 A{N VY (-, )% + Z/RN(l— 1y (-, )32 )

Another important quantity conserved by the fl@ (1) is the momerRumRY, given,
again formally, by

P(y) :=Im/ 1//~W=/ iy, V), 3)
RN RN
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where(-, -) stands for the scalar productR?. The first component of the vect&rwill
be denoted by, i.e.P =P -e;.

Traveling wave solutions tg (1) are known to play an important role in the full dynam-
ics of (1). More precisely, these are solutions[¢f (1) of the form (up to rotation)

Y(x,t) =Ux1—Ct,x2,...,%XN), (4)

whereC > 0 is the wave’s speed arld : RY — C. One easily verifies thay is a
solution of 1) iff the “profile” U is a solution to the equation

icV _Avtu— v, (5)

0x1

The focus of this paper is dinite energy solutions tq [5). Our purpose is twofold. First,
we embed equatiof(5) in a larger class of equations (which contain in particular the equa-
tions of superconductivity) and study qualitative properties of solutions in an asymptotic
regime which is described below. Since these results are of independent interest (and will
be used in forthcoming works), we devote a large appendix to this analysis. It will then
enter in a crucial way in our second scope, namely the existence probleftj for (5). The
existence of solutions in the cade= 2 was considered in [14]; our main existence result
here concerns its extension to higher dimensions. For that purpose, consider in cylindrical
coordinategxy, r, 0), wherer := (x2 + - -- +x2)Y/2, the sphere := {(0, 1, 6)}, and on
the upper half-planéf, := {(x1, ) : r > 0}, the operator

Ly =rN"25. % No,w) + 92 W

The linear problem

—LY =276, q=1(0,1),

¥ (x1,0) =0,
has a unique solutio#, bounded at infinity. Up to a phase change, there also exists (see
e.g. [9]) a unigue function, € C*°(H4 \ {¢}) such thatiw,| = 1 and

0wy 0wy ov, oY,
Wy X —, Wy X =-—, —
dx1 ar or  0x1

(herea x b := a1by — asb1 is the exterior product of two vectors b € R2 ~ C). Finally,
we consider the functioty, defined by

U*(xls r, 9) = U)*(Xl, r)'

The functionU, is cylindrically symmetric, smooth dR™ \ S, with values in the circle?.

In particular, in dimension 3/, is singular on a circle (often referred to as a “concentrated
vortex ring”). Our main result states that, after scalings, there are solutiopf of (5) close
to Us.

Theorem 1. There existgg > 0 such that for everp < ¢ < ¢gg there exists a solution
U, to (B) with C = C(¢) satisfying

C(¢)
elloge|

— N -2 aseg— 0, (6)



Vortex rings 19

and forE(¢) := E(U,;) and P(¢) .= P(U,) we have

= BN, %‘fﬁoggl > 1sh2, @)
and
|Usg(x)] > 1  as |x| — oo. 8
Moreover, for every € N,
Ue(x/e) — Up  inCE(RN\S). 9)

Remark 1.Notice that both the energy(e) and the momentun® (¢) diverge ag — 0,
and instead thaf' (¢) — 0 ase — 0.

A few comments are in order. First, observe that (1) corresponds to a defocusing nonlin-
ear Schodinger equation (NLS); it has been widely studied with respect to the Cauchy
problem in case the initial data areif(RV) (see e.g[[41]). In this (different) situation,

due to dispersion, any solution vanishes as time tends to infinity. This phenomenon of
course excludes traveling wave solutions except for the trivial one. Instead, in our situa-
tion, the L2-norm is not bounded (this is incompatible with the fact thais bounded)

for the solutionU,; we have seen that/.(x)| — 1 as|x| — oo, and dispersion effects

are balanced by the nonlinearity. Our results provide some rigorous mathematical proofs
to the study in[[30].

Second, the Cauchy problem f@] (1) with an initial dataHh(R"Y) + {1} having its
vorticity concentrating on round spheres has been considered by Jérrard [28]. Although
our results are of a different nature, some of the arguments there are closely related to
ours.

Third, some properties of (1) can be usefully analyzed through the Madelung trans-
form

V(x,t) = /pexpip),

which is meaningful ifiy| is not zero. In thep andv := Vg variables, equationf 1) can
be written as

ap .

— +div =0,

o + div(pv) .
W wn) 4 vt _ow( VPP 40

Plog 70 7Y Pr="P"gp2 T2 )

If we neglect the term on the right-hand side[of](10) (which is often termed the “quantum
pressure” in the physics literature), this system reduces to the Euler equations for com-
pressible ideal fluids with pressure given p¥. The full system ) enters the larger
class of quantum fluid equations (see €.gl [36]).

The existence of traveling wave solutions for the incompressible Euler equations was
already considered by Helmholtz in his celebrated paper of 1858 [27]; more precisely, the
solutions he proposed have vorticity concentrated on a ring of small cross-section (like
“smoke rings”). Later, Lord Kelvin computed the relations between the cross-section, the
radius of the ring, and its propagation speed. The first rigorous proofs of existence of such
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steady vortex rings (steady in a traveling frame) were given by Fraenkel and Eerger [22]
in the seventies, and later by Ambrosetti and Struwe [4]. Concerning the compressible
Euler equation, we are only aware of numerical results in this directian [33].

We will turn later to the properties of the solutions in Theofgm 1. In view of the last
statement of the theorem, it is clear that they behave like vortex rings. The remainder of
this introduction is a detailed description of the strategy of the analysis.

1.1. The variational approach

Since, as already mentionefd] (1) is Hamiltonian, it follows that (5) is variational. At least
two different variational approaches are available. First, as consideried in [14], one could
introduce the Lagrangian

Fc(U) =EWU)—-CP),

whose critical points are solutions {d (5). This approach has the advantage that the wave
speedC is prescribed a priori. It was shown [n]14], for = 2, that for some&Cg > 0, F¢
has the mountain-pass geometry t@r< Co, providing existence in a full interval of
speed ]0Cql. In this approach, however, the question of stability seems more difficult to
address.

The second possible approach, the one we will use here, is by minimizing the energy
E keeping the momenturR fixed. It is convenient to perform the following rescaling for

O<e<l/2:
()'-U(f) (e) = o)
ue () = Us( — ). cle) = slloge|’

so that ifU, is a solution of[(b), them, solves the equation

d 1
ic@)lloge S = Auy + ue(1— ug|?), (11)
0x1 e
and
2N 1 2, 1 2.2
Ec(ug) ' =¢ EU,) = =|Vug|® + T2 (1 — |ugl®) = eg(ug).
RN 2 4e RN

The energyE. is often called the Ginzburg—Landau energy, and has been extensively
studied, in particular in the asymptotic limit— O (see e.g[[9]). Likewise, the momen-
tum rescales as

Plus) = eV P(U,) = / (iug, Vite).
RN
One major difficulty comes from the fact that in the natural energy space
X = {ue HYRY) : Ec(u) < 00},

the momentunp is not well defined. Indeed, consider for example the function=
exp(ig), wheregp is smooth an@ (x) = |x|* for some(l — N)/2 <« < (2— N)/2 and

Ix| > 1. Notice thatjw| = 1 and|Vw| = |Vg| € L3(R") so thatw € X. On the other
hand,(iw, Vw) = Vg ¢ LY(RY) and similarly(i (w — 1), Vw) ¢ LY(R"); hencep(w)

is not well defined in the Lebesgue sense. To overcome this difficulty, we will introduce a
series of approximate probleniB:) on expanding tori. A price has to be paid, however:
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e one has to find uniform bounds for both the Lagrange multipliers and the solutions
associated toP?),

e some information (energy, momentum, ...) could be lost in the limit (see the discus-
sion on stability later).

1.2. The approximating problems

Setting. Forn € N*, consider the flat torus
I, ~ 2, =[—n, n]N,
with opposite faces identified, and the space
Xy 1= H'(IT,, C) ~ Hpe(82,,C)

of 2n-periodic H* functions. SincdT, is compact, we can define the (first component of
the) momentum as

pu) == / (iu, 01u),
I,
and this clearly defines a quadratic functionalXon Let
Lyi={ueX,: pu =2r|BV71},
and consider the minimization problem:

(P?) Ine = inf Eg(u).

uely,

The constraint is easily seen to be nonvoid. Itis also straightforward to prove existence of
a minimizer for(P5).

Proposition 1. There exists a minimizes, . € X, for (P;) and some constait, . € R
such thatu, . satisfieg(I1), i.e.

. Oty e 1 2
icplloge| = Aup e + _zun,s(l — |un, %) onil,.
dx1 &

In what follows, for simplicity, we will skip the subscriptsor ¢ when this is not mis-
leading.

Remark 2. There is presumably some freedom in the choice of the approximate problem.
A natural candidate might have been

Y, i={u e HY2,,C) : u =10nd,}.

One advantage df, is that

p(u) = m(u) :=/ (Ju,&) forall ueVv,,
2,
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which follows easily by integration by parts. Hergy (the Jacobian of;) denotes the
2-form ong2,

1
Ju = Sd(u x du) = Z(aiu x d;u)dx; A dx;, (12)

i<j

and the 2-forn%q is defined org2,, by

N
£1(x) = Ni_l ;xid)q Adx;. (13)
Finally (-, -) stands for the scalar product of 2-forms. As we will see latenas a conve-
nient geometric interpretation which we will use throughout. On the thysioweverm
is not well defined (due tg1), and we will have to circumvent this difficulty by choosing
suitable unfoldings.

Whereas part of the analysis is somewhat simpléf,irthe main disadvantage is that
the translation invariance of our original problem is brokei,jn

Upper bound for 7, . and ¢, .. The upper bound o#, . is obtained using appropriate
comparison functions fo{P;). As already mentioned, in the limit — 0, the solution
u. (and alsau, ) will ultimately look like thin vortex rings. In what follows, foR > 0
(2R < n) we propose a simple construction of such a vortex ting of radiusR, which
will turn out to be an almost optimal candidate.

We carry out the construction in cylindrical coordinates, r, 6), wherer = (x% +
-+ +x2)1/2_ The functionw,, ¢ will be independent of (i.e. cylindrically symmetric); we
therefore just need to describe it in tha, r) half-planeH. . For that purpose, consider
in the complex plane the poink := i R and the functionvg defined onByg by

wr(z) = 2R ZHIR explig),
|z —zr| 1z + 2]

whereg is a real harmonic function such thag = 1 ond By (seel[9]). Then we set

wr(x1+ir) if x4 4 ir € Bog \ B:(2R),

we,R(X1,7,0) 1= { 8_1|x1 +i(r — R)|wr(x1+ir) if x1+ir € Bs(zr).

By standard computations,

1 1 _ _
—f IVwe gl = ZISV 2| | |Vwe g2r¥N 2 dx1dr
2 RN 2 Hy

=7RY2SV 2| lloge| + O(D),
and similarly

1 2,2
E/RN(l— lwe, g1 = O(D),

so that
Ec(we.g) = 7|SY 2RV 2|loge| + O(1). (14)
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For the momentunp (w, ) = m(w,, r), We have

d d 2
p(We.R) = |SN2 < We.R X wS’R> ! N2 dx1dr
H+ axl 8r N — 1
SN—Z

:27rﬁRN_l+o(l) =27 |BYYRY L 4 o(D), (15)
since

Jwe g(x1,7,0) = (Ox,we, R X 0y We g)dx1 A dr
and since

Oy We, R X 0pWg R — TO(0,R)

in the sense of measures éf . The detailed computations to obtain estimafie$ (14) and
(15) are standard and can be found in many places (seéle.g. [9]), so we do not repeat them
here. With the help of these estimates, it is then fairly easy to obtain a (sharp) upper bound
for I .

Lemma 1. There exists some constakiy, which is independent afande, such that

|In.el < Kolloge]. (16)
Moreover,
. 1
lim sup<sup L) < x|sVN2. (17)
e—>0 \neN* [logs|

We next turn ta, .. As a consequence of the Pohozaev identity[fof (11) and some careful
analysis of the boundary terms relatipg:) andm () in X,, we obtain the following.

Lemma 2. There existg; > 0 such that fol0 < ¢ < g1 andn > n(¢), wheren(e) € N
depends only op, we have
lcnel < K1. (18)

Here K1 is some constant which is independent @inde.

Remark 3.1t follows from our proof of Lemmg ]2 that an upper bound fofe) is
Kollogele3~N, where K> is some sufficiently large constant. With a little more work,
one should be able to prove that a large (but independesjit@dnstant is a valid upper
bound. Since our final goal is to let— oo at fixede, the first upper bound is sufficient.

1.3. Some properties of the Euler—Lagrange equation
An important part of our results relies on the analysis of the Euler-Lagrange equation
(17)). Since we believe that it is of interest in related topics, as, for instance, supercon-

ductivity (see Remark]4(iv)) we will be more general than what is strictly needed for the
proof of Theorenp [L. Therefore, we will consider solutiansto the class of equations

illoge|c(x) - Vw = Aw + izw(l— lw|?) — |logel?d(x)w  ong2, (19)
&
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where2 € R¥ is a piecewis&?! simply connected domaie,: 2 — R" is a bounded
Lipschitz vector field and/ : 2 — R is Lipschitz nonnegative and bounded [in our
original problenc is constant and = 0]. If we allow ¢ andd to depend o (in view in
particular of the application to superconductivity), then we require that there exists some
constantAg > 0 not depending on such that

ez o) + IVEIZ (o) + 1100y + IVAIZ (o) < A

Notice that[(IP) can be rewritten as
: 1 2
illogelc(x) - Vw = Aw + —w(as(x) — [w]*), (20)
&

where
ae(x) =1 — d(x)e?|loge|?.

When divc = 0 it is also equivalent to

c\? 1
(V—i|loga|5> w+;w(b8(x)—|w|2):0, (21)

where
2

be (x) := as (x) + 82|Iogg|2%x).
Equation [(ID) is variational whea is divergence free; we will make this assumption
throughout. It is likely however that a large part of the analysis can be done in the general
case. Notice also that no boundary condition is prescribed here so that the focus in this
section will be on local properties.

The outline of our analysis of (19) follows closely the corresponding theory for the

Ginzburg-Landau equation developed|in([9} 40,[13,[ 37/ 31} 32, 10,/ 29] 5, 16] and the
references therein. In particular, the emphasis is placed there on the set

Se i ={x e 2 |w.(x)| <1/2},

where vorticity and energy will eventually concentrate in the limit- 0. Notice that for
the proof of Theorerp]1, the structure §f for ¢ fixed but expanding2 will also play a
key role. We first start with the following standard pointwise estimates.

Lemma 3. LetK be any compact subset@f. Then, for any solutiow, of (I9)we have:

2

e
sy <14+ c2 e2llogel?P+C—o——,
lwellew) = 14 exellogel” + Caa—os

IVwellzeoxy < Ck /e,

wherecy, := ||IC|lL~, C is a constant depending only awi, and Ck is a constant de-
pending only orV, ¢, and K.
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In order to describe the properties &f, monotonicity formulas play an important role

(as in the works quoted above). More generally, they have been extensively used in the

context of regularity for various problems in PDE’s and geometry (se€ eld. [34, 23]).
Forxg € £2 andr > 0 such thatB, (xg) C £2, consider the scaled energy

- 1
E¢(wg, x0,7) 1= mES(ws»x& r)

1/ <|sz|2+(as(x)—|wg|2)2> 22)
}’N_Z By (x0) 2 482

When this does not lead to confusion, we will also denote iﬁpyco, r) or evenk, (r).

Lemma 4. There exist€ > 0 depending only oV such that for
A= C(coo + Dlloge|, QO := CAglloge|?e,

and for anyw, satisfying(IS) on Br(xo) C £2, we have

d - 0? 1
E(exp(Ar)(Eg(xo, r) + 7)) = N-2 /BB
/ (ag(x> |w |2>2
rN 1

for 0 < r < R. In particular, exp(Ar)(E, (xo, r) + Q2%/A) is increasing.

ow, 2

The above inequality is obtained using a crude estimate for the JacéhianThis re-
stricts somehow its usefulness to balls of szé€l/|loge|). In order to handle balls of
radiusO (1), refined estimates on Jacobian integrals are needed (séé [29, 1]).

Proposition 2. There exisC > 0and g > 0 depending only ov such that for anyw,
satisfying(I9) on Br (xo) C £2, we have

E¢(x0,0r) < C(Ee(x0,7) + (1+ Ag)V ~teP) (23)
forO0 <6 <1/2and0 < r < min(R, 2/(Ag + 1)).

Using the previous two results, and following the arguments_of [10] (seelals0 [B7, 31,
32]), we derive the following result, which plays an important role in the analysis.

Theorem 2. Letw, be a solution ofI9)on §2 ando > 0be given. There exist constants
n > 0andeg > 0, depending only oV, o and Ag, such that ifxp € 2, ¢ < o,
Ve <r <1/(1+ Ao), Bz2-(x0) C £2, and

E.(xo,r) < nlloge|,

then
|lwe (x0)] = 1—o.
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Asymptotic analysis of concentrating measuresWe assume from now on thaf, sat-
isfies the bound

Eu(w,) = / e:(ws) < Molloge, (24)
2

whereMy is some fixed constant. In this regime, one of the main consequences of The-
orem[2 is that as tends to zero, the sé} concentrates on a rectifiable limiting s&t

of locally finite N — 2 Hausdorff measure. It is convenient to introduce the following
measures:

_ es (W)
° lloge|
Ne = 8_215611)6,
Je = Jws.

In view of assumption| (34).. is bounded. Therefore, up to a subsequence we may as-
sume that
e = W AS measures.

Using Theoren |2 again, combined with a Besicovitch covering argument, we find that
5—2155 is locally bounded in.1(£2). Extracting possibly a further subsequence, we may
thus assume that

Ne — Nx  As measures.

Concerning/, (a measure with values in 2-forms), it is tempting to believe that it is also
bounded inLﬁ)C(.Q). We have no proof of that fact, but we may invoke Jerrard—Soner’s
[29] compactness result (valid for arbitrary functions satisfying (24), se€lalso [1]) to assert
that J, is bounded in¢%¢(K)]* for any compack c £ and any O< « < 1. Going

possibly to a third subsequence, we thus have
Jo = J,in[CO¥(K, ARN)]*,  for every compacK C £2.
It is proved moreover in [29,]1] that

1l < pes, (25)

and that the currentJj.] associated to/, is an integer multiplicity N — 2)-current. In
particular, its geometrical support

Yyi={x €2 :On-2(Jl.x) >0}

is an (N — 2)-rectifiable set. Here, for a Radon measure M(£2) andm > 0, the
m-dimensional density of atx € §2 is defined by

B
O (v, x) = liminf VB, 1)
r— rm

Likewise we set
Zu={xe€R:0y _2(u, x) > 0}

and similarly we define,,.
In the next theorem we will clarify the structure of the meagurand we will specify
its relation toJ,.. We emphasize thaio boundary condition has been prescribed 012.
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Theorem 3. The following properties hold.

(i) The set¥, is closed ins2 and (N — 2)-rectifiable. There existgo > 0 such that for

(i)

(iii)

(iv)

eachxg € ¥,
6.(x0) = O 2(ytz, 10) = limint L0 (26)
Moreover, for every compact setc §2 \ X,
|lwe(x)] = 1 uniformly onF ase — 0. (27)
The measure, can be decomposed as
e = VA2 - HY + 0,(x) - HN 213, (28)

whereh is some harmonic function.
Let K C £ be any compact set. There exists some congtantdepending only
on K, such that

(Cx)™H Jx <y < Ck Mo s

The varifoldV := V (X, ©,) satisfies the equation

dJ. .
H(x) = * <C(x) A * *> for u.-a.e.x in Xy, (29)
dphy
whereH (x) denotes the generalized mean curvatur® @t x, x refers to the Hodge
duality, andd J, /d i+ is the Radon—Nikodym derivative &f with respect tqu..

A short comment is needed concerning the interpretatiop ¢f (29). The generalized mean
curvatureH of the varifoldV is defined by (seé [39])

/div;MX:—/ H-X forallX e C&(2,RY),
2 2

where div;, denotes the divergence restricted to the tangent space. Moreover, we identify
vector fields and 1-forms.

Remark 4. (i) In the casec = 0 andd = 0, (19) is the standard Ginzburg—Landau

(ii)

equation and thefi (29) means thvats a stationary varifold (se€l[5, 110]).
Equation [29) is very reminiscent of the prescribed mean curvature equation in codi-
mension 1. However here, in codimension 2, an important difference is that the right
hand side of[(29loesdepend or¥’ through its tangent space. To give a flavor of the
structure of[(2P), let us first consider the caée= 3, andd|| J.||/du« = 1. ThenV
is a smooth curve anfl (R9)

K=CXT, (30)
wherer is the unit tangent vector td andk its curvature vector. In the case= ¢y
is a constant vector field, the solutions are

e straight lines parallel tap,
e circles of radius Jcg in a plane orthogonal toy,
¢ helicoids of axis parallel tog.
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On the other hand, any constant mean curvature hypersurface in dimensidh
yields a solution of (29) for some constant vector figJdin dimension 3, this yields,
as already mentioned, the round circle as unique compact solution. In higher dimen-
sions, however, there is a rich class of constant mean curvature hypersurfaces be-
sides spheres (e.g. Wente's tori in dimenshn= 4). It is tempting to believe that
any compact solution of (29) with a constant vector fi@jds contained in an affine
hyperplane (and is thus a constant mean curvature hypersurface).

(iii) In the cased| J.||/dw« = 1,V has integer multiplicity. In the optimal case where
Ji has constant multiplicity, it follows fronj (29) and Allard’s theorem (s€é [2, 39])
thatV is ac>* manifold.

(iv) Equation ) withc(x) = A(x) andd(x) = |A(x)|%/4 is the first equation in the
Ginzburg-Landau system of superconductivity, namely

(V —iAlloge|/2)%u = izu(l— lul?).
&

In particular, for solutions satisfying the energy bound (24) in the Coulomb gauge,
vortices will be curved according to the equation

K=AXT,
providedd || Ji||/d s = 1.

Theoren| B states some compactness properties for the measures. However, without as-
sumptions on the boundary data, we cannot expect compactness for the fungtiass
noticed in [17]. The presence in the decomposit[or} (28) of one part which is absolutely
continuous with respect to the Lebesgue measure is precisely due to possible wild oscil-
lations ofw, on the boundary.

Asymptotics for w.. If we impose boundary conditions a2, then we may obtain
compactness properties for the sequengen this subsection, we will focus only on the
case which is of interest for Theorgrh 1, namely

2 =11, >~ §2,,

with the convention thafl,, := R¥; we refer to Appendix A for more general state-
ments. We make the assumption that

n > (Mg + 1l|loge|. (31)

The main point here is that we would like to obtain estimates which are uniform with
respect to the domain size (i.e. independent)ofn this situation we obtain:

Theorem 4. Letw, be a solution of1]]) such that(24) and (31)) are satisfied.

(i) Letl < p < N/(N —1). Then there exists some constéahtdepending only omp,
Ao and Mo, but independent af andn, such that for anyg € I7,, we have

/ [Vwe|? < C.
B(xo,1)
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(i) There existR > 0, C > 0 and! e N, depending only omg and Mp, and g
poiNtsxy,, ..., xqe (g < 1) in [T, such thatS, ¢ J’_; B(xj¢, R), B(xj ¢, 8R) N
B(xj., 8R)=0if i # j,and

es(we) < C.

/I\Yn\U B(xj¢,R)

1.4. The isoperimetric problem

After this rather lengthy discussion on the Euler-Lagrange equation, we go back to our
original problem and consider from now on only minimizess, of (P;). Since our
ultimate goal is to provide the existence of a solutiprof (11)) as well as some qualitative
properties (see Theordm 1), we will eventuallydefo tooco keepinge fixed (in particular,
we assume throughout that [31) is satisfied). In order to describe properly the behavior
of u, (including the stability properties, which will be discussed later), it is extremely
important, in this approach, to get more information than a sirﬁﬁﬂgconvergence.

The first crucial observation in this section is the relation of the enggy,, .) and
the flux p(u, o) with geometrical properties ofu, . (as already observed in [14] and
[28]). This relation is best understood by taking the limitaends to 0 whem is fixed
(note, however, that this is incompatible with> n(e) of Lemmd2!). It follows from the
analysis of([29] 1] that, up to a subsequence,

Jupe > T, =7dR, in [Co’l(ﬂn)]*,

whereT, = 90R, is an(N — 2)-dimensional integral boundary, i.&, is a rectifiable
current with integer multiplicities (of course the choice of the rectifiable cumgri$ not
unique). Moreover,

plune) — TR, (%61) = 7w Ry (xd*§1) = 27 Ry (xdx1) = F(Ty),

where F(T,,) represents 2 times the flux of the vectoe; through R,. Notice that in
particularF(T,) < 2rM(R;). On the other hand, it is also proved|in[29, 1] that

inf Ea(un,s) >
e—0 mlloge|

M (T},).

This establishes immediately the inequality

M(OR,) V=2 27 Ey(ty o) V2
O fiminf — e . (32)
M(Ra) =220 (x|loge|) =2 p(itn.c)
Using Lemma [l we deduce that

N-1 N-1

M (3 R,) V=2 |SV -2 =2
2O = 33
MRy~ "7 BN 53)

Since the right hand side df (83) is the best constant in the isoperimetric inequality it
follows that7,, = 9R, is a round(N — 2)-sphere (contained in atv — 1)-hyperplane
orthogonal toey).
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In our situation, we will obtain an inequality similar o {33), but uniformly fdiarge.
To be more precise, assume from now on that n(e), wheren(e) was defined in
Lemmd2. Then we have

Lemma 5. For everyn > n(¢) there exists aifN — 2)-dimensional integral boundary
T,.. = OR, ¢ supported in at mogtballs of radiusr (¢, R being independent afande),
such that

() 1 une =T ellicor(m,y- < re),
(i) |pQune) = F(Tne)l < r(e),

Es(un,s)
(i) M(Tne) < 71|Tge| +r(e),

wherer(¢) — 0ase — 0, independently of.

As mentioned, the choice of a curre®y . such thatr;, . = R, is not unique. We may
therefore additionally require that

M(Ry.e) = inf{M(R) : 3R = T, .}. (34)

For such a choice (which is always possible by [20, 4.1.12]), the following isoperimetric
inequality is valid (se€ [3]):

N-1

M (T, ) V-2
— > AnN. 35
MRy — N (35)

Proposition 3. We have
N-1
M(ORy ) V=2
M (Rn.e)

wherer(¢) — 0ase — 0, independently of. In particular, for all sequences; — 0
andn; > n(gj) there exist subsequences (still denate@ndn;) and translationsr; in
Iy, such that

= AN +r(e), (36)

1Ty, — SV 72 in[COTRY)]* asj — oo, (37)
where SV =2 is the unit round(N — 2)-sphere contained in the hyperspace orthogonal
to e1.

Remark 5.Actually, asj — oo we haver; R, ., — BY¥-1 and alsor; T, ¢, — §N-2

in the flat norm sense (sele [20, 4.1.12]), WtH(Ry, ¢;) — |BN=1| andM (T},
1SV=2).

j.e) =

Note that [[3]) states a rather weak convergence. In particular, it does not exclude very
small structures even far from the linsit’ —2. The next lemma, which improves statement
(i) of Theoren{ 4, excludes such structures.

Lemma 6. There exisi® > 0, C > 0 independent of andn, andx, . € IT, such that
(l) Ss(”n,a) C B(-xn,é‘s R),

(") es(”n,e) <C,
ITp\B(xn.e,R)

for everye < gg andn > n(e), eg being independent af.
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As already mentioned, our problem is invariant under translation. We now remove this
invariance. To that end, in view of Lemrpj 6 and Proposftion 3, we assume that the iden-
tification I7,, ~ [—n, n]" is such that

X =0 and Junj,é‘j — 75N-2 in [Cg’l(RN)]*

for all sequences; — 0 andn; > n(e;), wheresV 2 s the unit(N —2)-sphere contained
in the subspace orthogonalég.

1.5. Limits of growing tori

It remains at this stage, for fixed(but chosen sufficiently small), to lat — oo. Since
E¢(uy,¢) is bounded uniformly im by Lemmg 1 (but not irz!), up to a possible subse-
guence we may assume

Upe — Ug N Hléc(RN) asn — 00,

so that
Ec(ug) <Iliminf E(uy ¢).
n—oo

Moreover, by standard elliptic estimatesig fixed),
Une — us  strongly inHE (RY) asn — oo.

Note also that sincéu, . ),cN iS bounded inL°°, so isu., and we may pass to the limit
in the equation. Hence, satisfies[(I]l) with

c(e) = lim cpe.
n—oo

Since we also havéu, . — 7SVN-2 asg¢ — 0, for fixed but smalk the Jacobialu, . is
far from zero (for alln > n(¢)) and therefore:, is not a trivial solution. Hence, existence
of Ug(x) := u(ex) in Theorenj L is established. Propertiels (6)—(9) then follow from the
analysis of Subsectign 1.3 (see Secfipn 4 for the details).

The definition of P(U,) needs some clarification. For this purpose, we consider the
class of functions

W={ueL®R"): E;(u) <ooandIR > 0: | i‘nfR lu(x)| > 1/2}.
If u € W, we may write, forlx| > R,
u = pexpiyp,
whereg is a real function oRY \ B (0) defined modulo a multiple of2 We define
pu) = / (iu, du)x +f (1= x)(p? — Dy +/ pn(l—x), (38)
RY R¥ R¥

wherey is an arbitrary smooth function with compact support such ¢hat 1 on B (0)
and 0 < xy < 1. One checks immediately that the definition makes send& ind is
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independent of the choice gfandy. [To motivate this choice, notice that formally

/ (iu, 01u) =/ (iu, 01u) x +/ (iu, 01u)(1 — x)
RN RN RN

= fRN(iu,alu)x +fRN(1—x)p281<p

=/ (iu,alu)x+/ (1—x)(p2—1)31<p+/ 0d1(1—x)
RN RN RN

so that we recover the usual formula wHen € L1(R").] Clearly, in view of our analy-
sis,u, € W so thatP (U,) := eV ~1p(u,) is well defined.

Remark 6.Consider the affine space
Y=H'®RY)+{l}={u=1+v:veL’RY), Vve L?R")},

equipped with thed I-distance. For functions i, one may set

p1(u) =/ (u -1, 8—“)
RN 3)(1

as a definition of the momentum. It is straightforward to see fids continuous orY
(for the H'-norm). On the other hand®(RV) + {1} is dense int, and included irv.
One verifies, in view of the definition gf, that

pr) = pr(uw), Vu e CCRY) 4+ {1} c W.

1.6. Discussion on stability

The discussion about stability of special solutions for dynamical systems is a fundamental
issue, in particular if one aims at some physical relevance. This is a vast topic, and the
very notion of stability appears in different places with different meanings. We want to
stress first that we are not yet able to state any trully satisfactory result concerning the
stability of U,. We next explain the main difficulty in this direction, and the partial results
we have obtained.

When dealing with PDE’s, a first step commonly needed for stability is to solve the
Cauchy problem, at least in a neighborhood of the special solution. In particular, one has
to define a suitable function space, and this usually requires some knowledge of the decay
properties of the solution. In our case, it can be proved [see [14]) that the Cauchy problem
is well defined ory = HYX(RY) N L*(RY) + {1} and that both energl, and momentum
p are conserved during the flow. However, it is not known whether the solutibelongs
to Y (see however results by Gravejat|[25] for the asymptotic behavior of finite energy
traveling waves), and the possibility to solve the Cauchy problem in other spaces has not
been investigated yet.

Assume that in some way one is able to overcome this difficulty. Then in our context
the notion of (nonlinear) orbital stability seems to be the most suitable (se¢le.al [6, 15,
18,/26]). Indeed, recall that our solution is obtained as a limit of constrained minimizers
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for which both the constraint and the minimized quantity are conserved by theVflew.
will show that u, is itself a constrained minimizer. For this purpose, set

oo '={ue€W: pu)=27|BN71.

Theorem 5. We have
plus) = 27| BN (39)
so thatu, € W and
E.(ug) := ir}j E:.(u). (40)
uel

The proof of Theorerp|5 relies essentially on the following proposition which provides a
decay of the energy at infinity.

Proposition 4. There exist constants > 0 andC > 0, independent ot > n(¢), such
that

/ ec(itn,e) < CR™*. (41)
2,\B(R)
In particular,
lim Ee(“n,s) = E.(ug) (42)
n—>0o0o
and
im pune) = plue) = 27| BN 7. (43)
n—oo

Recall that the definition o (u,) was given in[(3B).

Remark 7. (i) The result of Propositiop]4 is aexactresult forfixed ¢, and has to be
compared with the weaker asymptotic result

Es(un,s) =FE.(u;)+ 0(1) ase— 0,

which is an easy consequence of Theorgms 1 and 4.

(ii) In fact, it follows from the proof of Propositiofi]4 thaf (41) holds for any <
/N — 1, providede is sufficiently small. One might expect, however, that the gra-
dient ofu, decays as the gradient bf,, andi. = N should be the optimal constant
in (7).

(iif) The statements in Propositipi 4 essentially mean that there is no loss of compactness
at infinity (it excludes for example a sliding bump “escaping” towards infinity, or
vanishing but widespread oscillations).

Comments. (i) The existence of a unique solution for the Cauchy probler# i/7,,)

is standard. Moreover, it is easily proved that the set of minimizer&§Apg) (which
containsu, .) is orbitally stable. In particular, the uniquenessugf. (up to trans-
lation and multiplication by a complex number of modulus one) would imply its
orbital stability.

(i) One may wonder whether there is a direct proof (i.e. avoiding the approximate prob-
lems) of Theorem]5, and thus also of Theofgm 1. This seems to be a difficult task,
mainly sinceW is not open.
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(i) A rigorous proof of the orbital stability o/, would require, in addition to solving
the Cauchy problem, obtaining compactness properties for minimizing sequences
for (40). We will not tackle this problem here.

Added in proof. After the completion of this work, P. Gravejat was able to prove that any
finite energy solution (in particular,) belongs toy . It follows therefore from Remaik 6
that

Ee(us) = Inf{E;(w) tu € ¥, plu) = 2| BY ),

which is certainly an important step towards orbital stability, since, as mentioned, the
Cauchy problem is well defined dn

1.7. Cylindrically symmetric solutions

Since equatior| (11) is invariant under rotations preservingethexis, it is tempting to
believe that up to a translatioli, inherits this symmetry; i.e. thdf,(x1, x’) depends

only onx1 and|x’|, wherex’ = (x2, ..., xy). We have no proof of this fact. However,

the following variant of Theorein| 1 can be easily established with minor changes in the
proof.

Theorem 6. There existg; > 0 such that for every) < ¢ < g1 there is a solution
U, to equation(B) with C = C(e) satisfying(6)—(9) and such that/, is cylindrically
symmetric.

The slight change is to introduce the spageof axially symmetric functions ondn, n]V
with periodic boundary conditions:

Z, ={ue Hl([—n, nl™) i u = u(xy, |x') andvk € {1,..., N}

u(-xla ey Xg—1, —H, xk-‘rl’ ey -xN) = u(-xl’ ey Xk—1, 1, -xk+la ceey -xN)}
and to consider the minimization problem
inf{E,(u) i u € Z,, p(u) =2r|BN71|).

All the arguments in the proof of Theorgr 1 can be carried out similarly if we work with
Z, instead ofX,,, yielding the proof of Theorefn 6.

We emphasize, however, an important difference, concerning stability. Stability prop-
erties oft/, can be obtained (in the same way) for axially symmetric perturbations only.
This is a rather restricted class, and it seems difficult to obtain stability results for general
perturbations.

Remark 8. (i) As already mentioned, we nevertheless suspect that, up to translation and
multiplication by a complex number of modulus og, = .

(i) An alternate proof of Theoreln 6 would be to work directly in the upper half-plane
(x1,r), wherer = |x’|, at the cost of introducing a degenerate elliptic operator.
Since this approach is basically two-dimensional, the results of the Appendix could
possibly be replaced by easier two-dimensional analysis.
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2. The approximating problems

The main purpose of this section is to present the proofs of Propdsjtion 1 and of Lemmas
@and2. In particular, we stress the fact that Lerfiina 2 provides an important upper bound
for the Lagrange multiplier, .. This is the first step in order to implement the PDE
analysis of the Appendix.

Before we start with the proofs, we wish first to clarify the identificati@p ~
[—n, n]N = £2,, as well as the notion of unfolding.

Unfolding the torus. We start with the usual definitiolf,, = R" /(2nZ)" obtained by

the identificationx ~ x’ iff x — x’ € (2nZ)". For a fixede = (a1, ..., ay) € RY, the
cubeC, = ]_LNzl[—n + «;, n + ;[ contains a unique element of each equivalence class
(C, is often termed a fundamental domain); it may therefore be identifiedjttGiven

o € RV, theunfoldingz, of I, associated ta is by definition the one-to-one mapping

Ty . I, — $2, E[—n,n[N, p=[x1+a1,...., x5y +any)] — (x1,...,xn).

This corresponds to a translation of the origirRiff, and thus on the torus. For a given
function f defined on/T,, each unfolding, induces a 2-periodic functionf, defined
on £2,,.

In some computations (in particular dealing with integration by parts for functions
which are not necessarily all periodic), we will need to estimate boundary integrals. The
following lemma provides a choice of a “good” unfolding of the torus, by averaging.

Lemma2.1. Let f € L1(I1,) be given. There exists an unfolding of the tofs such

that
V fa(x)dx

Moreover, for any0 < o < 1 there exists a subsemg of £2,, of measure larger than
o|$2,| such that for any € D, we have

oN-1
= — Ifa(x)l dx. (44)

Ja(x)dx| < % | fa(x)|dx. (45)

082,

Proof. Integrate the left hand side @4) far € [—n, n[Y and use the mean value
theorem to ge{ (44). Fof (#5), argue similarly. O

[Notice that the trace of,, is well defined for almost every unfolding.] In what follows,
we will no longer distinguisty” and f,,; hopefully this will not lead to a confusion.
Proof of Propositiorﬂl.Let (uﬁ)g)keN be a minimizing sequence feP;). SinceEE(u’,j’g)

is uniformly bounded with respect fq (uf ,)en is bounded inF*(17,) so that up to a
subsequence we may assume
uk  —u,. in HY(I1,) ask — oo,

n,e

for someu, . in H(IT,). By weak lower semicontinuity and the Rellich compactness
theorem, we infer that

Ec(un,e) < liminf Ecuf ) = I.c.
k—o00
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On the other hand, the Rellich compactness theorem also yields
pine) = lim / (iuk ,, 01uk ) =2m|BN 7.
k—o0 J 1, ’ ’

Henceuy, . is a minimizer for(P;). The Lagrange multiplier rule implies that for some
Ane €R,

dEs(un,a) = )\n,s . dp(un,a)-

Definec, . := 2i, ¢ /|l0ge|. The previous equality is precisely the weak formulation for
the equation

ou
icpellogel e

1
= Attpe + S5ttne(1—lunel?)  ONIT,.
0x1 e

This ends the proof. O

Proof of Lemm4 [1.We will use the test functions, r constructed in Subsecti¢n 1.2.
Notice thatE (w, z) and p(w, z) depend continuously oR. It then follows from )
that

dR() >0 were) € In

for each large enoughand that
R(e)—1 ase— 0.

The conclusion of Lemnig 1 then follows from [14). ]

We now turn to the proof of Lemnig 2. As often in elliptic PDE’s, Pohozaev’s identity
(also termed virial identity in the physics literature) leads to useful estimates. In our case,
after unfolding it reads (see Lemina AA.2)

N -2 N N -1
T/Q |wn,s|2+@/9n<1— ltn.e|?)? = cpe 5 |Ioge|fgn<Jun,g,sl>

[Vuy, €|2 n 2.2 Oty ¢ al I
— Pimel 4 " 1 _ e . £,
/a N [n 5t gz luneH? = =2 ;x i

whereé; is the 2-form defined ir (33). Notice thét is not periodic and thereforg (46)
depends on the choice of unfolding. In order to boupd, we thus need to provide a
lower bound for the quantity

| e

As we have already noticed in the Introduction (see Rerpri 2), (47) is related to the
momentump (u, ) (actually they would even be equalif . were constant 0£2,). In
the situation which is of interest for us, we have the following.

. (47)
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Lemma 2.2. Let My > 0. There exists a constakt, > 0 (depending only oiMp) such
that for anyn € N andu € H(IT,) satisfying

n > Kolloge|e3~V,
E.(u) < Mplloge|,

there exists an unfolding df,, such that

'/ (iu,31M)—/ (Ju, &1)
I, 2y

wherer(¢) — 0ase — 0, independently of, and

nf es(u) < C/ e.(u).
82, I,

Proof. We first claim that there exisise X, such that

<r(e),

[Vulloo < C/e,  lvllo =1, Ee(v) < 2Molloge|

‘/ (iu,Blu)—/ (iv, 01v)
, 1,

wherer(e¢) — 0 ase — 0, independently ofi. Indeed, consider first the functian
defined by

and

<r(e),

u(x) if lu(x)] =1,

va(x) = {u(x)/lu(x)l if not.

Clearly, E;(v1) < E;(u) and

'/ (iu,31M)—/ (iv1, 91v1)
1, 1,

S/ |M_Ul|‘|vu|+’/ (ivy, 01u — 01v1)
m, m,
=/ IM—U1I~IVMI+‘/ (id1v1, u — v1)
n’l n’l
12
< C</ e — v1|2> Eo(w)¥?

172
< c(/ 1- |u|2>2> Ec()Y?
Jlul>1
< Celloge| =: r1(¢). (48)

Next, consider a functiony defined as a solution of the minimization problem

. lw — v1|2
min [ E.(w) + — ).
weHL(IT,) o, 2
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Clearly, we also havé&, (v2) < E.(v1) and

'/ (iv1, 3101)—/ (iv2, d1v2)
I, I,

1/2
§C</ |v1—v2|2) Ee(v)Y2
i,

< CVe Ec(w)? E,(w)"/?
< C/elloge| =: ra(e). (49)
On the other handj, satisfies the equation

1 v2 — V1
Avz + —ua(1 = lu2|?) = -—,

so thatvo(x) := va(ex) satisfies
At + D2(1 — |921?) = & (32 — ¥1)

(v1 is defined similarly). Sincév1 |0, [172]lcoc < 1, it follows from standard elliptic esti-
mates that
[Vizlleo < C andso ||[Vuzlle < C/e.

Combining [(48) and (49) we conclude that= v, satisfies the conditions of the claim
with r(e) :=ri1(g) + r2(s).
We will now choose a suitable unfolding. Notice first that for any unfoldingrpf

f (iu,Blu)—f (Ju,él)zn/ (iu, 01u). (50)
I, 2, 082,

By Lemmg 2.1, there exists an unfolding such that

Y
/a N (% + Vel () + eg(vz))>

N-1 _ 2
<2 / ('” U2|+«/E(€s(u)+€a(v2))>- (51)
A

Hence, arguing as ifi (#8),

n / (Gu, d110) — (v, dyv2))| < C - n/ = val - (V| + [Vvzl)
92, 82,
2
<C-n /a . (% + e(es (u) + es(vz))>
9
<c /H ” (% + Ve(esw) + es(vz))>
< Cy/elloge| = ra(e). (52)

If n > Coe® " logel, then it follows from (51) that

C
/ ee(v2) < —e3 NV, (53)
320 K>
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Itis an easy matter to verify that the last inequality, combined with the estivaé,, <
C/e, implies that forK sufficiently large,

lva(x)] > 1/2 forallx € 082,.

We may thus write, = p exp(ig) on 352, and from [[53) it follows thaip is 2:z-periodic
(see step 4 of Theorgm 4 in Appendix C for a detailed proof of this last statement). Hence,

/ (iv2, Bv2) f P10 =' / (02 = Dy
082, 082, 92,

2 _ 12 1/2 1/2
<eo( [, ) ([ )
982, 2 982,

Ec(v2)  ri(e)
e = —=,

<C (54)
n n
Combining [(50),[(5R) and ($4) we finally obtain
‘/ (fu, d1u) —/ (Ju, §1)| < ra(e) +ri(e),
1, 2
which finishes the proof. O

We are now in a position to obtain the expected upper bound for the Lagrange multi-
plier ¢, .

Proof of Lemm@]2.We deduce froni (46) that for each unfolding we have

/ (June, &1) SC[H/ ee(un,8)+/ es(”n,a)]- (55)
25 982, e

By Lemmg 2., there exists an unfolding such that

n/ e (u) < C/ es (1) (56)
082, I,

‘/ (iu,alu)—/ (Ju, 1)
m, 2,

providede is chosen sufficiently small andl > n(e). Therefore, since, . satisfies the
constraint/p; (it,e, 91ty ¢) = 27|BN~1|, we obtain

cn.ellogel

and

< 7|BN 7Y

V (Ju )| = 7BV Y. (57)
2
Combining [55)-{(5]7) we deduce
enel = 0220 g
’ lloge|

where we have used Leminp 1 for the last inequality.
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3. Relation with the isoperimetric problem

In this section, we specify the geometrical interpretation of both the momentum and the
energy, in the asymptotic limi¢ — 0. Roughly speaking, foN = 3, E.(uy ) iS pro-
portional to the length of the concentration set, wherg@s, ) is proportional to the
flux (alonger) through the concentration set. As we emphasized in the introduction, the
concepts of geometric measure theory are appropriate to express these properties.

We start with the proof of Lemmg 5. Recall that in view of Theofgm 4, there exist
¢ e N, R > 0andg pointsxy,, ..., x4, With ¢ <1 such that

ltn,e ()| > 1/2  onIl, \ UL B(xie. R). (58)

Without loss of generality, we may assume that the balls ., 8R) are disjoint. For a
mapu € H(I1,, C), leti be defined by

u(x) if x € Ulq:]_ B(-xi,é‘a R)’
u(x) = { A@)ux)+ A —-Ax)Hulx) ifxe Ule B(xi ¢, 2R) \ B(xi¢, R),
(x) otherwise
where
_ o Ju) /w0 ju(x)] > 1/2,
(x) 1= {2u(x) otherwise,

andi(x) := (2R — |x — xi ¢[)/R if x € B(xi¢, 2R) \ B(x; ¢, R). In view of (5§),
Jipe =0 onll, \ U/_; B(xie, 2R) (59)
and

/ Jiiy o = 0; (60)
B(xi,SyZR)

this last inequality follows by integration by parts, by using the fact that| = 1 on
dB(x; ¢, 2R). These localization properties dfi, . will be useful below. On the other
hand,Ji, . andJu, . are close in view of the following lemma.

Lemma 3.1. Letu € H(IT,, C) be such that, (1) < Mo|loge|. Then there exists an
unfolding ofIT, such that for every € C*®(£2,, A2RV), we have

/ (Ju — Ju, ¢)
Qn

and in particular

1
=< (;IlwllooJr ||d*¢||oo>cg||098|, (61)

”JM — Jﬁ||[001(nn)]* < CSlIOgEI, (62)

whereC depends only oV and Mg but is independent of.
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Proof. According to Lemmé 2|1 there exists an unfoldingdf such that

N—-1

/ lu xdu—axdu| < / lu x du — i x dit |. (63)
982, £2,

n

Lety € C®(£2,, A?RY). Integrating by parts of,, we obtain

1 1
f(Ju—JzZ,go}:— (uxdu—llxdﬁ)-r/\(*go)-r——/(uxdu—ﬁxdﬁ,d*go).
e} 2 Jag, 2 Ja,

Hence, we deduce frorp (63) that

/ (Ju — Ju, @)
2

The proof is completed by using the estimate [for< du — i x dii||1(g, ) given in the
next lemma. O

2N—l - -
< C(Tllwllw + ||d*<0“°°>”“ x du —ii x dii]l 1, (64)

Lemma 3.2. There exists an absolute constaht- 0 such that
lu x du —u x dull 1, < CeEg(u). (65)

Proof. Let A = {|u| > 1/2}, B = 2 \ A. A simple computation gives

1— 232\ 1/2 1/2
2, € n

< CeEc(u). (66)

On the other hand, we have

1/2
lu x du — @i x dii|| 15, < C/ lu x du| < C|B|*? </ |Vu|2>
B 20
1— 2\2\ 1/2
sc8( /Q %) E:wY? < CeE.w).  (67)

Combining [[66) with[(67) yield§ (65). O

In view of ), Ju, ¢ is localized in ballsB(x; ., 2R). Concerning the existence of inte-
gral boundaries close téii., we will make use of recent works on the geometry of the
Jacobians [29,]1]. In particular thé-convergence results contained in the above quoted
works lead to the following.

Lemma3.3. LetMg> 0, R > 0andX := {u € HY(Bag, C) : |u| > 1/20n Bag \ Br}.
Then, for every > 0, there existgg > 0 (depending only oA, R and Mp) such that for
anye < go, and for anyu € X such thatE, (1) < Mp|loge|, there exists aniN — 2)-
dimensional integral boundary, = d R, supported inBg satisfying
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.. E¢(u)
M(T,) < .
(i) M(T) < miloge]

Proof. We argue by contradiction. Assume that there exists sbéme 0, a sequence
g; — 0, and mapsg; € X satisfying the bound

Eg; (uj) < Molloge;| (68)

and such that for every integral bounddhsupported inBg and satisfying (i), statement
(ii) does not hold, i.e.

E.(u)
m|loge| )
According to thel"-convergence results in [29, 1] (see e.g. Theorem 3.1 and Remark 3.2
in [1]), there exists an integral bounddfy supported inB4g such that

M(T) > (69)

| Ju; —nT*H[Cg,l -0 asj— (70)

(Bap)]*

and

E. (uj
M(T) < liminf e, (4)
gj—0 7T||Ogé‘j|
We deduce fron{ (10) that (i) is satisfied fbr= T* and sufficiently large, so thaf (1)
contradicts[(6P) [indeed the fact tHEt is supported imBg, and therefore can be used as
a test current in (i), follows from its construction [n [1]]. O

Proof of Lemmg |5 completedVe apply Lemmg 3|3 tai, . restricted to the balls
B(xi¢,4R), fori = 1,...,q. This yields integral boundarieg (depending of course
one¢ andn) supported inB(x; ¢, R) such that

. (71)

”Jﬁl’l,é‘ - 7TT1 ||[C8’1(B(X,"£,4R))]* S r(s) (72)
and
E.(ty ¢; B(xj¢, 4R E ; B(xij¢, 4R
M(T;) < s(un,s (xz,s ) +re) < s(”n,s (xz,e ) +r(e) (73)
7|loge| m|loge|

[here and in the following; (¢) denotes a generic function such thét) — 0 ase — 0,
independently of:, but whose exact value may differ from place to place]. Bet
Y4 7. By (79),

E; (un,s)
m|loge|
so that (jii) is established. Concerning (i), sint#, . is supported in the balls of radius
2R, we deduce fron{ (12) that

M(T) = +r(e), (74)

q
1 dine = 7T llicoaqmpye < Y 1 ine = 7 Tillicoanes . 261
i=1

q
S C Z ”Jﬁn,s - T[’Tl ”[Cg'l(B(x,;gAR))]* S I"(S),
i=1
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Sincel|Jup,e — Jiinelljcor(m, )+ < r(e) in view of Lemm, we derive (i) from the
previous inequality.
Finally, we turn to (ii). For any unfolding we have

/ <J“n,s —nT,&)| < / (J’zn,e —nT, &)+ / <Jﬁn,e —June, &1)|. (75)
Notice that
q
[ Vine=arien| < YN[ i - a7
2, i=1!/B(xi¢,2R)
q .
=) f (Jitne — Ty, 61— 1)), (76)
i=1 B(xie,2R)

whereg{ denotes the constant form

. 2 X
%’i = m Z(xi,g)jdx,- A dx]',
j=1

and (x; ;); denotes thei-component of the point; .. For the last inequality, we have
used|[(GP). By construction,

4R

161 = &1l 2m) < g

(whereas|&1| LB, ,.2r)) diverges aa — o0). Hence, we obtain the estimate

=< C”]ﬁn,a —nT; ||[C8’1(4R)]* <r(e). (77)

[ W= aTig -
B(xi¢,2R)
We now choose the particular unfolding given by Lenima 3.1, and similarly we obtain

<r(e), (78)

/ (J“n,e - Jﬁn,s’ 1)
Qll

so that (ii) follows from[(75)+(78). O
Proof of Propositior B.First, observe that

/ <7T Tn,e» %_1>
2

In view of (ii) and (iii) of Lemmd®% and (79), we deduce

<27M(Ry ;). (79)

/ (an,Sa 2dx1)
Q”

N-1 N-1
M (Ty,¢) N2 < 2m E¢(uy,e) V-2
MRne) ™ (xllogel) =2 puy,)

wherer(e) — 0 ase — 0, independently of. The last inequality together with (J17)
proves|(3p).

+r(e), (80)
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Moreover, from Lemma]1 anfl (B5), we deduce
IM(T.0) = ISY72) < r(e),  [M(Rue) — 1BV Y| < r(e), (81)
and

‘ f (Rne,dx1) — |BN7Y| < r(e), (82)

wherer () — 0 ase — 0, independently ot. From [8]) we infer in particular (see [20,
4.2.17]) that for any sequences — 0 andn; > n(s;) there exist subsequences (still
denoteck; andn;) and translations; in /1,;, such that

Tnje; = Too @Nd Ry e — Roo in [CEHRM)]*
asj — oo, whereT,, = d R, Satisfies

M (o) N2
M (Roo)

From [83) and[(81) we conclude th#g, = SV~2 and R», = BY~1. Combining [(79)
with (87) we also obtain
/ (Roo, dx1)
RN

i.e. R is contained in a hyperplane orthogonakio The proof is complete. O

=in. (83)

=M (Rwo), (84)

Proof of Lemmé6.We claim first thatT,, . is contained in a single baB(x; ¢, R). The
other statements are then direct consequences of Thgprem 4.

We argue by contradiction. Assume there exist sequesjces 0 andn; > n(g;) for
which the claim is false. In particular, for eveRy> 0 and every sequenag € IT,;,

(ITn; \ B(xj, R)) N\ Sp; e; # 9 (85)
for j sufficiently large. By Propositign| 3, up to some subsequence we have
T; Tnj,sj — SN_Z, (86)
wherer; is a translation irﬂ,,_/.. Letxy; ¢ = rj_l(O) andr > 1 be such that
lunj e;l = 1/2  ONB(xXn;e;, 4r) \ B(xn ;. 1)

(the fact that such analways exists follows easily by Theorérm 2). Frgm|(85) with=
8r we infer that

(Hnj \ B(xnj,sja 8r)) N Snj,sj- # 9

for j sufficiently large. From Theorefnj 2 we deduce the inequality

/ ee; (Un; e;) 5/ ee; (Un; e;) _n 87)
B, o4 7lOge;l = Jm, wlloge;|  w



Vortex rings 45

wheren > 0 is the constant given by Theoréin 2 tor= 1/2. Taking the limitj — oo
we obtain, using respectively (86), Lemfna3.3(ii) with= n/(27), and [17),

o ec.(Un;¢;)
|sN=2| < liminf e
J— B(x,,j,gj,4r) 7T||0g8j| 2
o Ee (U ep)
fllmlnfw_ﬂ_i_i < |SN—2| _i'
j—ooo mlloge;l w27 27
This is a contradiction. -

4. Proof of Theorem1 completed

Recall that in Section 115 of the introduction we have already constructed dar @ &g
small butfixed, a subsequence of, . (still denoted here,, ) such that

Une — e strongly inHL RY),
Cne —> ¢z INR,
asn — oo. Moreover, ag — 0, we have
Jug —> wSVN2 (88)

andu, is a solution oRY of
ou 1
icelogel s = Aug + —ue (1~ lue ). (89)
0x1 e

In view of (88),u. is nontrivial (nonconstant) at least for small

Theoren 1L is stated with; (x) := u.(ex). We will prove the equivalent statements
for u,; itis then straightforward to come backlt. We decompose the remainder of the
proof into several steps.

Step 1. We have
lim SUP|Eg (ug) — Ea(un,s)| <C,

n—o0

where(C is independent of.

Proof. This is a direct consequence of Theo@m 4 and of the stfqlgtgconvergence at
¢ fixed. O

Step 2. We have
Ec(ue)

m|loge|

= ISV +r(e),

wherer(¢) — 0 ass — 0.

Proof. This is a direct consequence of Step 1, Lemiina 1, assertion (iii) of L¢rhma 5, and
@9). 0

Step 3. Similarly, we have
pug) = plune) +r(e) = 27| BV +r(e)

wherer(¢) — 0 ase — 0, independently of.
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Proof. Recall that by Lemmp]6,
lunel = 1/2 onll, \ B(O, R),
so that we may write
Uns = Pn,c €XPigns)  ONIT, \ B(O, R).

The definition ofp(u,) is then given by (se¢ (38))

plus) = / (itte, D) x + / (1= (2 — Digge + / i1 ). (90)
RN RN RN

wherey is an arbitrary smooth function with compact support such ¢hat 1 on Bg(0)
and 0< x < 1. On the other hand, we have, fesufficiently large,

P(”n,s) = v/RN(i”n,as alun,s)X +/ (1—X)(/33,5—1)81<Pn,s+/RN ‘pn,sal(l_X)- (91)

n

By stronngéc convergence, the first and third terms on the right hand si@f (91) con-
verge to the corresponding terms|[in|(90). For the second term, we have

172 1/2
5(/ <p,%,g—1)2) (/ |wn,s|2)
2 $2,\B(O,R)

< CeE; (un,s)~

/ (1= )02, — Dorgn s

A similar estimate holds for the second term[in](90), so that the proof is complete

Step 4.We have
c(e) > N—2 ase— 0.

Proof. The proof relies (as in Lemnja 2) on Pohozaev’s identity; however, we are now in
a position to use Theorefn) 4 and Lempja 6, which provide a better decay of the energy
at infinity. SetB := B(0, R). By Lemm& 2.1, there exists an unfolding of the torus such
thato$2, N B = ¥ and

n / ee(un,e)
082,

the last inequality being a consequence of Thedrem 4. On the other hand, by Corollary
[A. of the Appendix, we know that

=< / ee(un,e) : l.Q,,\B <C, (92)
$2n

(1 — |up,e|?)?

2 =o(|]loge|) ase — 0. (93)

I,

Finally, using Lemm 2|2, we may choose our unfolding so that it satisfies the additional
condition

‘L ((iun,ss 81”11,8) - <Jun,8» 1)) <r(e).
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Hence, by Step 2,
/ (June. £1) = plun,e) +r(e) = 2| BN 1 +r(e). (94)
I,

Going back to[(46), we have by (92), for fixed

— |Vun,s| + 2 1- |”n,8| )= Cn,e ||Og€| (Jun,s» &) <C.
2 2, 4e 20 2 2,
Dividing by |loge| and using[(98) and (94) we are led to
N-1 E.(u
—5— Pln)ene = (N =2) ﬁég’;‘;) +r(e). (95)
The conclusion follows from Steps 2 and 3. O

From now on, we will not consider, . any more in this section, and derive asymptotic
properties of., ase goes to zero.

Step 5.Up to a subsequence, there exists some Bigps W,i’c”(RN, sh@a<p<
N/(N — 1)) such that

ug — U, weaklyin W|%{cp (RY) ase — 0,
whereU, is defined (up to a constant phase) in the statement of Theorem 1.

Proof. By Theorenﬂa(i),ug is bounded inW,i’c” (RM). Therefore, up to a subsequence,

there exists some map, < Wli’c” (RV) such thatu, — u, weakly in Wé’cp (RV) and
almost everywhere. Moreover,

/ Vi, 2 < C (96)
RN\ Bg(0)

since the same inequality holds fef. We next show that, = U,. Sinceu, satisfies
equation[(8P), taking the exterior product of|(89) withandiu, respectively we are led
to

d
d*(ue x dug) = icelloge| — (|ue|? — 1),
0x1
d(ug, x dug) = 2Ju,.

Passing to the limit — O [notice thatc; |loge|(Jus|2 — 1) — 0 in L2(R") so that the
right hand side of the first equation above converges to zelyih(R")], we obtain

d*(uy x duy) =0,
d(uy x duy) = 2w SN2,

This elliptic system together with (55) determinesuniquely (up to a constant phase).
Indeed, from the first equation and classical Hodge—de Rham theory (see e.g. the Ap-
pendix of [10]) there exists a 2-formx such that

uy X dus =d*y, dy =0, V¢ e L>RY\ Br(0)).
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Inserting this in the second equation satisfied:pyve obtain
Ay = 27 SN2
so thaty = ¥, (¥« is defined before Theoren 1), and the conclusion follows. O

Step 6. Let K ¢ RY \ $¥—2 be compact and simply connected. Emufficiently small,
we have
lus(x)| > 1/2 onk.

Proof. We apply Theorerﬂs with the sequengg).-o. Indeed, we haver,, = §N—2
[this can be established arguing as in the proof of Lerfima 4]. The claim then follows
directly for (27). O

We may now write

ug(x) 1= pe(x) €XPlige(x)) ONK.
For convenience we skip the subscripis what follows. It remains to prove the stronger
convergence in the compact gét In contrast with the case = 0, where(1 — |u|?)/&?
remains bounded asgoes to zero (seel[8]), this is not the case here (it diverges like
[logel|). We rely instead on a cancellation effect.

Step 7. We have

() IVelickky < Cx Yk =0, (97)
2= 3
(ii) H% +colloge] 22 <Ci k=0 (98)
& X1 Ck(K)
In particular
IVplicrxy < Cre®lloge|  Vk >0 (99)

and the convergence claim in Theorem 1 follows fronj (97) anfl (99).

Proof. The first important point is to obtain uniford?® bounds, namely
||M|ICO,Q(K) S C, (100)

for somea > 0. This is achieved as in [10, Theorem IV.1], by obtaining first a mono-
tonicity property

E.(8r,x0) < $E+(r,x0) forall0 <r < r,

for everyxg € K and for somé > 0, and then using the Morrey embedding theorem. We

skip the details [see however Step 1 of the proof of Thegriem 3 for a very similar proof to

obtain [B-9)]. The analysis of the further regularity properties isflong and technical in

the case of the general equatipn|(19). For equdfidn (89), we make use of the following trick

which gives rather directly some first rough (in the sense “nonuniform”) estimates for all

the derivatives (see also [19]). The remaining analysis is then substantially simplified.
Letv := exp(—ic.|loge|x1)u. Thenv satisfies the equation

1
Av + Sv(he — [v]?) =0,
&
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whereh, = 1+ c2¢?|loge|?. Setw(x) := (h,)"?v(x) andi(x) := w(x/|logel). We
have

1
A+ (L~ |[D]?) =0,
&
wherez? := ¢2|log¢|?h; L. By (100) and the construction df,
0]l H00 < C.
1@l o <

Using the regularity theory for the Ginzburg—Landau equation, we thus infer[(see [10,
Theorem IV.1]) that

l®llee <C Chul L RS

w ) po =

Cllf)c =~k 32 ck k

loc
for all k > 0. Coming back ta, this yields
k 1- |u|2 2+k
lullor < Cillogel”, > < Clloge|™. (101)
loc &

loc

Starting with these rough estimates we are now going to pfove (97)[ahd (98) using a
bootstrap argument. Define

Bl
B, :=21-p)+ cg|log£|828—;i, A; = ¢ °B,.

The equations needed for the bootstrap are

. d
div(p®Ve) = celloge|— (p? — 1), (102)
dx1
9 2(1— p)?

~4p = A+ ecllogel(p — D — =0 +2), (103)

1+ p) 0 0
—AB, + 22 B = 201V + p(p — Dllogelee - — (1— pPe2A—L-. (104)

e 0x1 0x1

Sincep is bounded irc®¢ by (100), we infer from Schauder regularity theofy, (101) and
(102) that
IVollgox < C. (105)

Using [101) and[(135), we deduce that the right hand sidp of (104) is boundgf}.in
Hence, by|(105) and standard arguments,

||Bg||clo < Ce? andthus ||A8||C|o <C. (106)
Using [101) and (106), we deduce from (1.03) and then ffom]|(102) that
IVeollpoe <C, Vel 1e < C. (107)
loc loc

We are now in a position to differentiafe (104) once. This leads us, (L07), (107), to
the estimate
IBellgr < Ce?, ie. Aellga <C. (108)
loc loc

We have thus proved that (i) and (ii) hold foe= 1. The estimates for the next derivatives
are obtained following exactly the same steps. This finishes the proof of Thgprem 1.



50 F. Bethuel et al.

5. Proof of Theorem®

The main ingredient in the proof of Proposition 4 is the following inequality:

Lemma 5.1. There exists a constagt > 0 such that

/ es(un,s) < CR/ ea(un,s)
£2,\B(R) dB(R)

for R > 2, n > n(¢e), ande sufficiently small.

Proof. We multiply the equation

. c 0
div(p?Ve) = —§|Iogs|a—m(p2 ~-1

by ¢ — ¢, where
_ 1

§1=——n ¢
[0B(R)| JaB(r)

denotes the mean value of the phasé 810, R). Integrating by parts o2, \ B(R), we
obtain

dp .. C d(p% -1 _
f p%|Vp|? = f 2= (¢ — @) + —|loge| ———(p — )
2.\B(R) aB(R) OV 2 2)\B(R)  0x1

0 _ c _
=f pz—‘”<¢—¢)—i|loge|/ (02— D@ — §)n1
9B(QR) OV 2 IB(R)
c d
+ Zloge| 1- )2
2 2,\B(R) dx1

We estimate each of the three terms on the right hand side separately. For the first term,
we invoke the Poincér~Wirtinger inequality to assert that

3¢ 1/2 1/2
/ P2~ p) §C</ |V¢|2) (/ (¢—¢)2>
9B(R) v 9B(R) 9B(R)

§CR<[ |V¢|2)§CR f elins).  (109)
IB(R) dB(R)

Similarly, we obtain

c _ (1-p?? b2
§|Ioge|/ (0* =D — P)n1 sosuogsm(/ —2/ |Vel?

3B(R) 3B(R) € dB(R)

< CellogelR [ eatuno). (110)
3B(R)
and
0
Shogel [ @-pA%) < celloge| eluns).  (111)
2 2:\B(R) dx1 2:\B(R)
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Combining [(I0P)(11]1) we are led to
f |V(p|2 = CR[ ee(un,e) + Celloge| ec(Upn,e). (112)
£2,\B(R) dB(R) £2:\B(R)
We now turn to the equation far,

1—p?

2 dp
—Ap + plVyl +cs||098|p8—=p >
X1 &

Multiplying by p? — 1 and integrating by parts a2, \ B(R) gives

(1-p%? dg
/ (2p|Vp|2+p—2 =f (1= p?)
2,\B(R) € IB(R) OV

¢
4 c.lloge| p<1—p2>3—+f p(L— )|Vl (113)
2,\B(R) x1 Je\B®)
We have 5
@
/ 3_(1 - ,02) =< CS/ ee(un,e)» (114)
dB(R) OV dB(R)
and
2, 0p
ce|loge p(l—p%)—| < Celloge| ee(Utne). (115)
2,\B(R) dx1 2,\B(R)

For the third term, we invoke the fact (see Theofém 1) tRat] < C in £, \ B(R) so
that

/ p(1—pD|Vel?
2,\B(R)

Combining [IIB)£(116), we are led to

2, (1—p??
IVpl©+ Q> <Ce¢ es(un,s) + C8||095| ea(un,s)'
£2,\B(R) € dB(R) £2,\B(R)
(117)

Finally, from (112) and[(177) we derive the conclusion. o
Proof of Propositior 4.Set, forR > 2,

Su(R) == / ec(Upe).
£2,\B(R)

We infer from Lemma 5]1 that thé, satisfy the differential inequality
fa(s) < =Csf,(s) foralls> 2.

<c / p(1—p?)| V| < Ce / eeline).  (116)
£2,\B(R) $2,\B(R)

Integrating between 2 ankl yields

2 A
fn(R) = fn(2)<E) )

wherei := 1/C. This proves[(4]l). The other statemeifis| (42) gndl (43) follow directly
from this decay. O
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Remark 5.1.In the previous computations, we have not tried to optimize the constants.
Using the best constant in the Poingawirtinger inequality for{ (109), we may prove that
(41) is valid with anyn < +/N — 1 provideds is sufficiently small (depending on).

Proof of Theorenfi|5Equality [39) has already been established in Proposifion 4. For
(40), we argue by contradiction and assume it is false. Then there exist& such that

E;(v) < Eg(ug) = Ii—>moo Ec(upe) (118)

and
p(v) = 27|BN Y. (119)

If v were constant outside some large bdlR), then its restriction taz,, forn > R,
would be well defined ord7,, and therefore, in view 0@9), a test function G?2).
This contradictg (138) far sufficiently large.

In the general situation, we will construct frama functionv, constant outside some
large ballB(R), and satisfying

p(@) = 2m|BN 7Y (120)
and
Ec (V) < Ee(ue), (121)

so that a contradiction holds similarly.
Construction of ¢. Sincev € W, we may write
v=nexpiy) onRN\ B(R),

providedR is sufficiently large. We begin by the construction of a functign constant
outsideB(3R), but which will not yet satisfy[(120). For that purpose, consider the func-
tions7z andyx defined orRY \ B(R) by

7 . 2R — |x]|
MrR(x) == o ()nx) + (1 —0o(x)) with o (x) 1= "
Yr(x) == ()Y (x) + (1 — r(x))( ! / w) with 7 (x) 1= 3R — |x|
B 0B(R)| JoB(r) ~— R
Set
V) if x| < R,
MR (xX) eXP(i Y (x)) if R < |x| < 2R,
Ur(x) = | EXPUVR) if2R < |x| < 3R,

1
expl i ——— otherwise.
p( 9B Jasce) w)

Some computation shows that for some constant 0 independent oR,
|Ec(Vr) — Ec(v)| + |p(Ur) — p(v)] < C[f ex(v) +f eg(v)}.
dB(R) £2,\B(R)
We may next take a sequen@®,,),,cn such thatr,, — oo and

/ e.(v) —> 0 asm — oo,
dB(Rm)
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so that
p(g,) =21|BY Y +01) asm — oo (122)

and
E:(Vg,) = E:(v) +0(1) asm — oo. (123)

We finally complete the construction by setting
UR,, (x) = UR,, (otmx),

wherea,, > 0 is uniquely defined by the relatign@g,) = 27 |BV~1|. It follows from
(122) thata,, = 1+ o(1) asm — oc. Hence, if we choosé := i, we verify thatd
satisfies the required conditions farsufficiently large. O

Appendices

The purpose of these appendices is to develop the asymptotic analysis of the equation
1
illogelc(x) - Vw = Aw + Sw(d — [w|?) — [loge’d(x)w  ong, (124)
&

where2 € R¥ is a piecewis&?! simply connected domaie,: 2 — RV is a bounded
Lipschitz vector field and : 2 — R is Lipschitz, nonnegative and bounded. The main
results of this analysis have been stated in Lenjmas 8Jand 4, Proppéition 2 and Theorems
[2,[3 and #. We will provide proofs here. Notice tHat ([L24) can be rewritten as

illoge|c(x) - Vw = Aw + 8—12w(a5(x) — ), (125)

where
ae(x) =1 — d(x)&?|loge|?.

When divc = O it is also equivalent to

2
1
(V—i|logs|g> w+?w(b8(x)—|w|2)=0, (126)

where 5
be(x) i= as (x) + 82||ogs|2%x).
In what follows, we assume throughout that

divc=0.

Appendix A: the PDE analysis

In this first appendix we establish some basic estimates, in particular we give the proof of
Lemmada3.
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Proof of Lemm@[3.Let w satisfy [124) angb(x) := |w(x)|. Then we have
= (2w, Aw) + 2|Vw|?

2
—;pz(ag(x) — p?) + |logs|(2iw, ¢ Vw) + 2|Vw]|?

v

2 Z 1
— 5P (x) = p)+<f|Vw| ﬁcoo|loge||w|) — 5¢&llogel?p?

2 S 02 (b3 = p?), (A-1)

whereb° = ||bs || L (k). Hence the functio (x) := ,oz(x)—bgOO satisfies the inequality
2 o0
AW > —ZW(WerE ) ong2.
&

If xo € K andR := dist(xg, 0£2), the rescaled function
Y (x) := W(R(x — x0))

is thus a subsolution to the equation
2
Ay = Sy + by onB(0,1), (A-2)

whereé := ¢/R. On the other hand, it is easy to check that there exists a cortand
depending only oV such that the function

20y i (CEUxI =172 i Ix] e [5. 1]
T 2ca2+ Bk ? if 1x] € [0, 4],

is a supersolution t¢ (A}2) [notice th&t(x) — oo as|x| — 1]. It then follows from the
maximum principle tha¥ (x) < Z(x) for all x in B(0, 1), and in particular
&2

W (x0) = Y (0) < C&? CdistKk, 052)7"

Hence, we obtain the desired estimate
2

&

(k) < [[W[peo b® <1+ 2 ?|logel? + C ———.
lwlizeeky < IWllLeek) + b7 < 14 c5e%loge|” + distK. 952)2
Concerning the estimate on the gradientylet dist(K, 9§2) and

={x e 2 :dist(x, K) <r/2}.

By the first step1|w||Loo(Ig) < Cg, whereCg does not depend om or ¢. Let U be the
solution of

2
< —illoge|= > U=0 onk, (A-3)
U= ondk.
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Sincew — U € H?(K) N H}(K), we deduce from the Gagliardo-Nirenberg inequality
that

1/2 1/2
IV = D)l iy < 1AW = OIZ o) - w = UILE )
= /2 1/2 _ 1/2
< cK(S + lloge[MZexl |V (w U)||m,;)>

1 1
=< CK (; + E”V(w - U)HLOO([%) + ZCKCOO“OgS')v (A'4)

so that

Ck

Hence, sincé/ satisfies[(A-B)

Ck _Ck Ck _Ck
\% 00 < |VU|| — < —||U o[ F _— < —, A-5
IVwlizem) < IVUILe@) + == = —=MUllpsogy + —— = — (A-5)
whereCk depends only oK, N andcs.. The lemma is proved. O
Let us now define the 2-forms @&,
2
£ (x) ::mindxj Adx; forj=1,...,N,

i#]
which satisfy the equationt'¢; = 2dx;.
Lemma A.2 (Pohozaev identity). Letw be a solution of equatio(fZ24)on 2. Then

S et 5 [ - —T|Ioge|/g<1w,12c,<x)a(x>)

IVw|?  x-v 2o 0w ow
=/m[x-v > +E(ae(x)—|w|) i ina_)ci

+;|Iogs|2/ (@ (x) — [w|?) x - Vd(x). (A-B)
2

In particular, for B, (xg) C £2 we have

N2 vwps N (4 () — [w]?)?
- w — ag(X) — (W
2 JBao) 46?2 Jp. )
N-1
= lloge] Jw, ) ci(x)&(x — x0)
2 Br<xo>< 2,: o >
1 2 2
+ §||098| (ag(x) — |[w|9)(x — xg) - Vd(x)
B, (x0)

dw |2

on

\V/ 2
+/ |:r| Twl® 1
9B, (xo) 2 2

+ ﬁ(agoc) - |w|2>2] (A7)
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Forxp € £2 andr > 0 such thatB, (xg) C £2, consider the scaled energy

2, (a:() - |w|2)2>

- 1 1 1
E.(w,xo,7) = —=E.(w, x0,7) = — —|Vw
£(0.30.1) 1= 5 e (w,30,7) = /B MO)( IVl e

2

When this will not lead to confusion, we will also denote it By(xo, ) or evenE, (r).

Lemma A.3. Letw satisfy(I24)on Bg(xg) C §2. Then for0 < r < R,

ow

an

rN-1 262

2+ 1/ (@e(x) — [w|?)?
By (x0)

d - o) 1 /
—Ec(x0.7) = ——
dr* V=2 J38,(x0)

N-1
- W|Iogs| /Br(xo)<Jw, Zci(x)g,.(x — x0)>

1

lloge|? ((x — x0) - Vd(x))(ae (x) — [w|?).  (A-8)

ZFN_l By (x0)

Proof. Without loss of generality, we can assume thgt= 0. First one has

d Vw2 1 2.2
—E — _ _
dr (1) /33, 2 + 122 aB,(ag(X) [w]?)

_/ |va|2+1 dw |2
- 9B, 2 2 8]’[

1
+ g @) - |w|2>2).

Hence,
d - N-—2 1 Viw?  1lowl|? (ac(x) — |w|?)?
ZEWr=-"_""E bl Pl B A e
dr () rN-1 e(r) + rN-2 _/33r< 2 + 2| 0n + 4g2

N—-2( Vw2 N-=2 22

= - rN_l B, 2 + 482}’N_1 Br(as(-x) - |w| )
1 IVTw? 1]ow 2

T N2 % T35,

r 9B, 2 2| on

=~ |, Vet ) @@ =)

1
+ 4@ ) - |w|2>2>

2

+;f (as(x) — [w]2)?
2:2,N-1 B, €

1 / |va|2+1 dw |2
rN-2 9B, 2 2| on

+

1
+ 27000 - |w|2)2>.
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Using Lemmg A.R, we obtain

d ¢ " 1 / <|VTw|2 1‘8w 2
LB = — —— _ |
‘ rN=2 9B,

+ L - lw|?)?
2 2| on 4g2

N-1
— 5=z llogel /B,<"w’ Xijcxx)si(x)}

1
2rN-1

N 1 / |va|2+1 w

rN*2 3B, 2 2 8]’!
_ 1 f ow® 1 /(ag<x)—|w|2>2
_rN*Z 9B, on VNfl B, 282

N-1
- W'|098|/13r<~’w’ Xi:Ct(X)Ei(X)>

1 [ 2 2
- W' 0ge| /Br(x-Vd(x))(as(X) — |w[9),

|Iogs|2fB (x - V() (@ (x) — [w]?)

2

1
+ g @) - |w|2>2)

which yields the result. O

Proof of Lemm@}4 (Monotonicity at small scaleg)gain we can assume thag = 0. In
view of the previous lemma, we need to estimate the last two terrs i (A-8). For the first
one, notice that

IJwx)| < CIVwx)> and [&)| <Cr forallxe B,

where|| - || refers e.g. to the Euclidean norm on 2-forms. Hence,

[ oo Xijcmx)&(x))‘

1 N
< Ccoo“Ogglﬁ/ [Vw|? < Ceoolloge| E(r),  (A-9)
r B,

N-1
WHOQH

whereC depends only owv. For the second term we have

1
WHOQSF

C » 2\ 2 (@s(x) — [w2)2\ /2
= rzv—28||098| (fB |Vd| ) : /Br T 42

2328 172
< CAor(Z_N)/28||098|2</ (as(x)4€2|w| ) )

< CAoellogel?E: (r)Y/? < Ec(r) + C2A3e?|loge|*. (A-10)

SetA := C(c + Dloge|. Then by Lemma AJ3[(A]9) andl (A-10),

/B (x - Vd(x))(ag (x) — [w|?)

B,
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%(eXp(Ar)Eg (r) = Aexp(Ar)Eq(r) + exp(Ar)%Eg(r)
> Aexp(Ar)Ee(r) — eXp(Ar)(Cesolloge| Ee(r) 4 Ec(r) + C2A3¢?|loge|*)

2
> —exp(Ar)C?A%e?|logel?) = —di (% eXp(Ar)>. (A-11)
r

This finishes the proof. O

As already mentioned, the pointwise estimate on the Jacobian used in the previous proof
is far from being optimal. In order to obtain a monotonicity formula valid on larger balls,
we will use the following estimate due to Jerrard and Soher [29] (s€e [29] for a more
guantitative version).

LemmaA.4 (Jerrard & Soner). Letw € HL.(2,0), ¢ € €31 (2, A’RY) and set
K := suppg. Then there exist constants > 0 (depending only oV) and0 < o < 1

such that
/ (Jw, @)
2

The big advantage of (A-12) with respect to estimpte [A-9) is the fagtibods| which
appears in front of the energy. However, sirfice (A-12) contains a second term involving a
derivative ofp, we need to adapt temporarily the definitionff.

We define a cut-off functiorf onR, x R by

C
< toom ||<p||Loo/Ke5<w>

+c£“||d«>||m(1+ f e8<w>)<1+|1<|2>. (A-12)
K

1 if b <a,
fla,b)y=32—-b/a ifa<b<2a,
0 if b > 2a.

Forxp € £2 andr > 0 such thatBy, (xg) C 2, we will consider the quantity

- 1
Ec(xo, 1) = —~— / es(w) f(r, |x — xol) dx. (A-13)
r BZV(XO)

Lemma A.5. Letw satisfy(I24)on Bg(xo) C §2. Then for0 < r < R/2,

dE'( )
drsxo’r

1 2
= N2 f d f
r 1 0By (x0)

N-1
— oillogel /BZ e et -0 70 - o)

Jw
on

2 22
1 (@ (x) = [w]?)
+ 1 /B . 52—/ 1x = xoD)

1 2 2
— 5, n-1/109¢] / ((x = x0) - Vd(0))(ae(x) — [w|*) f(r, [x — x0l).  (A-14)
r Bar (x0)
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Proof. Forxp = 0 we have

d N—2 1
d_Ea(”) NT / ecw) f(r. |xDdx + 7= / ec(w)o, f(r, |x|) dx

2r
—N- 1// e.(w)dxdt + e 2/ / eg(w) dx dt
i 1// e.(w)dxdt + e 2/ / e.(w)dxdt
Btr

d
_ N-1 )
_/1 t _d( )E <(tr) dt. (A-15)

It then suffices to use Lemrha A.3 and to integrate ifihe caserg # 0 is reduced to the
first one by a change of variable. O

Lemma A.6 (Monotonicity at large scales).There exists a constaiit > 0 such that
for anyw satisfying(I24)andxo € 2, r > 0 such thatBa,. (xo) C £2,

_ _ e%lloge| 2 4
ES(Q r, .XO) < CeXmCAOI") Es(r, XO) =+ W =+ A08 ||Og€|
r

forevery0 <6 < 1.

Proof. The proof bears some resemblance to the one of Lgmima 4. Once more we restrict
ourselves to the casg = 0; we first need to estimate the last two termgin (A-14). The
second one is treated as before:

1 2 2
—ZrN_1I|098I /B (x - Vd(x))(ae(x) — [w]?) f(r, |x])
2r
1/2 . 2.2 1/2
Nzelloge|2</Bz |Vd|2) (/32 g )

C2y2y 172
< CAgr @M/ 2loge 2 / (ag(x) — w9
B 482

< CAoellogel?E:(2r)Y/? < E.(2r) + C2A3e?|loge|*. (A-16)

2r

Concerning the first term, notice that the 2-form

p(x) =Y ci(x)&E ) f(r, |x])

satisfies the bounds

lellzoB,) < Ceoor,  lld@llLo(B,) < CAo.
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Hence, using Lemnia A.4, we obtain
N-1
Sv-ilogel /32, (v, Dk 1xD)
< CcooEe(2r) + C Age® ||og£|< 1 +E (2r))
— Ap
< CAoE:(2r) + %s"‘“ogﬂ. (A-17)
r

From [A-14), [A-16) and (A-1]7) we thus infer that

c%|loge| + A552|Ioge|4>. (A-18)

d - 5 (2 Ag
d_rEs(r) > —CAoE:(2r) - C N-1
The conclusion then follows from a discrete version of Gronwall’'s lemma given hereafter.
|

Lemma A.7 (Discrete Gronwall inequality). Lets : (0,1] — Ry be continuously
differentiable and such that

h(s) < ON=2p(0s) forall 6 € [1, 2],
W (s) > —Ch(2s) — D foralls <1/2,

whereC and D are positive constants. Then
h(s) < oN=2 exp(Ct)(h(t)+ D/C) forall0O<s <t <1 (A-19)
Proof. Let g(s) := h(s) + D/C. We have

_ D N—2 N—2D _ N2
[g(s)—h(s)—f-cié‘ h(@s) + 6N 25 =0V "%g(6s) forallg e [1.2], (A-20)

g'(s) =h'(s) > —Ch(2s) — D = —Cg(2s) foralls < 1/2,

so that we just need to consider the cd3e= 0. Let 0 < s < ¢ < 1 be given. If

s € [t/2, 1], then by [A-20),
g(s) <2V 72g(1).

By induction, assume that for sorme= N,,

N-2 g Ct t ot
g(s) =2 g(t)l_£ 1+7 Vs € ZT,F .
1=

Then, fors e [r/2k+1 172K,

12k
2(s) < g(zk) + c/ g2 dr
< 2V=2¢() ]_[<1+ 2) e 2]‘[<1+ —)
- s 2i 2k+1

Voo k+1 Ct
=2 g(t)H(l—i— > ) (A-21)
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The conclusion then follows by using the fact that

m

H<1+ %) <exp(Ct) forallm e N,.

i=1
Coming back tag:, we obtain

h(s) < g(s) < 2V 2exp(C)g(1) = 2" 2 exp(Cr)(h(1) + D/ C),
and the proof is complete. O

Notice that whereas Lemri 4 was appropriate for balls of radius of the ordgjiad 4/,
Lemm4d A.§ is only appropriate for balls of radius larger tiia@®/ (N =), This is caused
by the oscillation term of order® /rV—1. Fortunately, these two conditions complement
perfectly to obtain Propositidr 2.

Proof of Propositiorj P.We first consider the case
0r < p = (Jlogel(cos + 1) < r/2,
the other ones being easier to treat. Using Lernjna 4, we deduce that
Ec(0r) < C(Ec(p) + Aolloge *e?). (A-22)
Next, by Lemma A.p and the definition pf

- _ - e%|loge
E.(p) < Ec(p) < C<Ea("/2) + % + A0||Og€|482)

< C@"?E,(r) + *l0ge|N (coo + DN L + Ag|loge|*s?). (A-23)

It then suffices to tak@ = «/2 and combine[ (A-22) andl (A-23) to get the desired esti-
mate [ZB). In the cast > p (respr < p), it suffices to use Lemnja A.6 (resp. Lemma 4)
to obtain [23) directly. This finishes the proof. |

Proof of Theoreri|2Through a scaling, we first show that we can assume without loss of
generality thattg = 0, » = 1 andAp < 1. Indeed, let

u(x) .= we(r(x — xg)).

Thenu satisfies the equation
1 ~
Au+ Zu(l— |ul?) = ié - Vullogé| + d|logé|u (A-24)
&

on B(0,2), whereé = e/r, &x) := c(r(x — xo))r|loge|/|/logé|, andd(x) :=
d(r(x —xq))r?|loge|?/|log&|%. Sincer > /e, we haveloge| < 2|logé| so thatAg(é, d)
< 1. We conclude by noticing tha, (w;, xo, r) = Ez(u, 0, 1).

From now on, we thus assume that = 0, »r = 1 andAg < 1. For the ease of
presentation, we follow closely the lines 6f [10]. Let<05 < 1/32 be a constant to be
determined later (and depending only&ih In what follows we will denote by generic
constants not depending on the choicé.of
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Part A: Choosing a “good” radius

Lemma A.8. Assume thad < ¢ < §2W—D/¢ Then there exists some constght- 0
and a radiusg € (¢%/N=2 1) such that

1 (a: — |w|?)?
H/ P = Callogs| + ¢,
rO Bro €

Ec(ro) — 2V 72E, (8r0) < C(nllogs| + ).

Proof. We will essentially make use df (A-[L4) together with a covering argument. First
notice that

o

&
@/(2N-2) — < e forr > ro.

ro > € implies

Hence, from[(A-I§#) and following the lines of Lemina A.6 we obtain

‘%Eg(r) —A(r)| < CE.(2r) 4+ CéP, (A-25)

where

A(r) —1 /21/
r) .=
rN=2 1 9B,

From [A-25) and the monotonicity formula of Proposit[dn 2 we thus infer that

2
ow
I + S, 1x = xol).

rN-1 262

1 / (as(x) — |w[?)2
Bo,

1/4 _
/ (A(r) + CEq(2r) + CeP)dr < C(ylloge| + &P). (A-26)

o/(2N—-2)
Letk be the greatest integer such th&t2¥ =2 (5/4)~* < 1/4, and define the intervals
I = (Sa/(ZN—Z)(5/4)—j+1’ ga/(ZN—Z)(5/4)—j), 1<j<k.
Clearly, these intervals are disjoint atlgzl Ij C (e%/N=2)1/4). Since

_1||098|
llogé|

we deduce fron] (A-26) that there exists soype {1, ..., k} such that

/ (A(r) + CE.(2r) 4+ CeP)dr < C(n|logs| + 7). (A-27)
I

J

In particular, by the mean-value formula there exists some
ro € (3e%/ N (5/4)7T e/ CN=D(5/4)7T)

such that

_ 2N\2
! / @) = WD _ - liogs| + 68,
B,

N-2 2e2

To 0
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which establishes the first claim. Notice tl‘gab € Ip, hence
. o _ _ (6
E¢(ro) — 2V 72E,(8r0) < Ee(ro) — E <§ro>

5[ A(r) + CE¢(2r) + CeP dr
I/o

< C(nllogs| + &”). (A-28)
The lemma is proved. O

Part B: 5-Energy decay

In this second part, we present an estimate valid for any solut@fi(124) with Ag < 1.
We will apply it later in Part C to an appropriate dilationwf Let0 < y < 1/8 be a
constant to be determined later.

Lemma A.9. There exist constantsy > 0 (depending only oy and N) andC > 0
such that for any0 < ¢ < ey and any solution: of (I24) on B(0, 2) for somec andd
satisfyingAop(c, d) < 1 we have

11242
E.(6) < C<(y2 +oN 4y M)Ee(n
B &

2\2
g — (U
+)/_4< —( 2 :lz ) —i—eﬁ)).
By &

Proof. The starting point is the identity
Au|?|Vu|? = Alu x Vu|? + |V|u|??, (A-29)

which holds for any map fro" to R¥: in the special case wheke= 2 and|u(xg)| # O,
nearxp we may write

u(x) = pexplie),
and then

ux Vu = ,oZVgo,
i.e.u x Vu plays the role of the gradient of the phase. The advantage of the[form| (A-29)
is thatu x Vu is always globally well defined, while the phase need not be well defined
whenu vanishes somewhere.

Sinceu is a solution onB(0, 2), we infer from Lemma@[3 that there existg depend-

ing only onN andy andC > 0 such that if O< ¢ < ey then

lulloo =14+y/2, |IVullw =C/e inB(@0,1). (A-30)

By the mean-value inequality, we may find some= [1—16, %] such that

/ wvu? <32 [ vl
9By, B

/ (ae—|u|2)2532f (as — U2,
3By, By

We divide the estimate into several steps.

(A-31)
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Step 1: Hodge—de Rham decomposition of x Vu. Observe that since is a solution

of (£23),

d*(u x du) = u x Au = (u, c- Vu)|loge|

=a"((u = Y cixdxllogel ). (A-32)
Let & be the solution of the auxiliary Neumann problem
AE =0 in By,
d d
% s 2 uP = 1c-nlloge| oNdB,,.
on on

Notice that¢ exists since diw x Vu — (Ju|? — 1)clloge|) = O implies by integration
faBrl(” x Vu — (lu|? — 1)c|loge|) - n = 0. Moreover, we have

|u|?

f VE2 < C |Vu|2+C82|Iogs|2f s < C(E.(D)+¢eP).
B B1

1 B1

Sinceé¢ is harmonic onB,,, we have by standard elliptic estimates, foe@ < rg,

IVE|? < caN/ IVE2 < CSN(Ec(D) + £P). (A-33)

Bs B"l

By construction we verify that
d*[(u xdu — (u? =1y ci(x)dx;lloge| - d5)13,1] —0 inD'®RY),

where 14 denotes the characteristic function of the 4eBy classical Hodge theory (see
[10, Proposition A.7]) there exists some 2-fognon RV such thaty € Hléc(RN) and

d*o = (u xdu — (u? =13 ¢;(x)dx;lloge| — ds)lB,l inD'(RY), (A-34)

dp =0 inD'[RY), (A-35)
IVellL2myy = C(E:(r) + V&l 12(p, ) (A-36)
lo(x)| - 1x|]N~!  tends to zero at infinity. (A-37)
We therefore have
ux du=d*e+dé + (ul*— 1)) ci(x)dx;lloge| in By,. (A-38)

In order to bound thé&2-norm ofu x du on Bs, we next turn to estimates fa“¢.

Step 2: Improved estimates forVp on Bs. Let f : RT™ — (1, 1/(1—y)) be any smooth
function such that

f@) =1/t ift>1-y,

f)=1 ift <1-—2y,

| f'(t)] <4 foranyr e RT.
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Define onR” the functionz by

F2(lu(x)l) in By,
1

T = outside

so that, taking[(A-30) into account,
0O<t—1<4y inRV. (A-39)

Notice that
F2ubu x du = f(lulu x d(f(u)uw),
hence

d(tu x du) = d(f*(lu)u x du) = d(f (ulu x d(f(|u)u)) in By,

d(tu x du) = ZZ(f(|u|)u)xi X (f(|u|)u)xjdxi Adx;.

i<j
Now we turn top. We have
—Ap =dd*p = d(1p, tu x du) — d(1p, d§) — d(13,1(|u|2 —1 Zcidx,'|log£|>
+d(1p, (1—T)u x du) inD'RY)
= w1+ w2 + w3 + w4 + ws,

where

w1 =1p, d(tu x du) = 1p, ZZ(f(Iul)u)x,- X (f(luu)y;dxi A dxj,
i<j
w2 =0y, f(luhu x du Adr (r = |x]),
w3 = —d(1p, d§) = ogp, dr N d§,
wg = —51(113,1(|u|2 _1 Zcidxi|log£|),
w5 = d(lB,1(1 — Tu X du).
Herecra,grl stands for the surface measuredB),. Sety; = G * w;, whereG(x) =

cnlx|?~N is the fundamental solution 6fA in RY. Sincey tends to zero at infinity by
(A-37) and eacty; tends to zero at infinity (because eashhas compact support), we

conclude that 5
p=> .
i=1
We now proceed to estimate separately egch

Estimate forps. We have

Aw |Vgs|? < Cy? ’ |Vul%. (A-40)
1
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Indeed, we have
—Ags = ws = d(1p, (1 — Du x du).

Multiplying by ¢s and integrating we obtain
/RN IVes)? < |11 — Tllzeopy lullLoo sy VUl p2g IVesli 2,

and thus
[, 90l = CrITul 2, IV0sl e

by (A-30) and[(A-39), which yields the result.

Estimate forps. We have

1— 1ul?)2 11232
/ Va2 <c [ ETO7 c( @~ )" eﬂ). (A-41)
RN B1 & B1 &

Indeed, we have
—Ags = wg = _d(13,1(|u|2 —1 Zcidxi|logs|).

Multiplying by ¢4 and integrating we obtain

’ (1— w2\ Y2
IVeal? < ellogel - ey ( | ——5——)  1Veal 2.
RN By &

which yields the result sincgg < 1.

Estimate forps. We have
[ 1veal? < eV + o) (A-42)
B;

Indeed, we have
—Ap3 = w3 = —d(lg,ldé)-

Multiplying by ¢3 and integrating we obtain

f IVes|® < IVEll 25, | Vesll 2.
RN 1
Sincegs is harmonic onB,, (r1 > 1/16), we also have

IV@3llLoo(By/zp) < CIIV<P3||L2(B,1),
sothat § < 1/32)

/ Vgal* < CONIIVEITzp, | < C8V(Ec(D) + ).
Bs

Estimate forp,. We have

Vo2 < C8N | |Vul?. (A-43)
Bs B1
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Indeed, we have
—Apr = wp = Uagrlf(|u|)u x du A dr.

By standard elliptic estimates for harmonic functions with measure data,

1/2
||w2||Loc<B(1/3z»scnwznsC( / |w|2> ,

3B,

so that using[ (A-31) we finally obtain

IVgal? < C8N | |Vul?.
Bs B1

Estimate forp;. We start with the crucial observation that
_o(ae — |ul?)?

in By.
g2

lw1] < Cy

Indeed, we have to distinguish the two regions

Vy={xeBr:lux)|>=1-y}, W,={xeBi:|lux)=<1-y}

Recall that

w1 =1, d(vu x du) = 1p,, Y 2(f (uDu)s, x (f (uDu)ydxi A dx;.

i<j
OnV, we havef (lu(x)|]) = 1/|u(x)| and therefore
(f(uDu)x; x (f(lulu)y; =0 fori # j.

On W,, we have, by[(A-3),
|(f (uDu)x;| < C/e,

so that

c C _ c _ (= u?)?
1] < — = -y 2y? < 5y 2A—up? < Cy 2.
& &€ & &

Decreasingy if necessary, we have
A~ [u»? < 2(a. — u[>?  onW,,

which yields [A-44).

The final crucial estimate is
¢ 8
o1l oo mry < yZ(ES(O’ D +¢P).

Indeed,

CN CN
p1(x) = /RN mwl()’) dy =f mwl()’) dy,

Bry

(A-44)

(A-45)
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so that -
C a. — |u
|m(x>|sﬁ/ (@ ",

By, e?|x — y|N=2

Assumelx| < r; < 1/8. SinceB,; C By/a(x) we have

c (as — lu(y)|?)?
lp1(x)] < — f ——dy.
y2 By/a(x) 82|X - y|N_2

Next, we observe that

(@ —luy®»? (¥ 1 (a; — |ul?)?
2 vz 4y = N_2 2 dr
Bya(x) € lx — yl o r 3B, £

1/4
Al (@ — |u[?)? 1 [ (ae—[u)?
:(N—Z)/O er</B, o )dr+ ~z ), i . (A-46)

0

Using the monotonicity formulag¢ (Al8) whene (0, 1/|loge|), and [A-14) when- €
(1/|logel, 1/4), together with the estimates in Lemnjas 4 A.6, we thus infer that

/ (as — lu(y)|)?
B

5 5 dy < C(Ec(x,1/2) + &#) < C(E.(0, 1) +&F),  (A-47)
yatx) &1 =yl
sinceB(x, 1/2) C B(0, 1). Hence for every € B,
lp1(x)| < Cy 2(Ec(0.1) + &F).
Recall thatAg; = 0 outsideB,,, so that by the maximum principle
loall oy = l@ales,) < Cy2(Ee(0, 1) + &),

which is [A-45).

Going back to the equation
—Ap1 =w1 In RN,

we conclude that
|V</>1|2 < ”‘Pl“LDC(RN)/ |w1],
RN

1
so that

2 —4 (as — |14|2)2 B
IVoi|” < Cy ——(E:(0,1) + ). (A-48)
RN B1 2
We now gather the different estimates {ar, . . ., ¢5 to obtain
112)2
[T c<<y2+aN +y M)ES(D
RN B1 &

N2
+y‘4< (@ — )" +eﬂ>>. (A-49)
B

g2
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Step 3: Improved estimates forV(|ju|2) on B;. The equation fofu|? reads
112V (012
A(ul?) +2M = 2|Vul? + 2lloge|(ic- Vu, u).
&
Multiplying by a, — |«|? and integrating orB,, we obtain
112\2)5 12
/ <|V|u|2|2+2—(a8 |u2|) ] >
B, €
2 2 2 8|M|2
=2 (az — |ul)Vul® + (ag — u|®)——
By 3B,
+/ V|u|2 -Va, +/ 2lloge|(ic- Vu, u)(as — |u|2). (A-50)
By, By,
From [A-31) we deduce
232N 1/2 1/2
f (ag — |u |2) Cs( w> (f |Vu|2) . (A-B))
3By, By € By
We also have
112)2
(s — Iul c [ vivupecyr[ e
By V,2 W2 &
1122
< C)/Z/ |Vu|2+c;f2/ (e — Jul)” '2’” U (A-52)
B1 B €
On the other hand,
/ 2|loge|(ic- Vu, u)(a, —
By
232\ 1/2 1/2
< C5|Iogs|(f M) (/ |Vu|2) . (A-53)
B
and
1
/ V|ul?- Va, 5-/ |V|u|2|2+254||ogs|4/ IVd|?. (A-54)
Bry 2 Bry Bry
Inserting [[A-51)-{(A-5%) in[(A-5D) we finally obtain the estimate
2)2
/ IV|ul?)? < c( / |Vul? + ‘2/ M+8ﬂ>. (A-55)
B

Lt

Step 4: Proof of Lemma A.9 completed.Recall that

Hul?|Vul? = Hu x Vul? + |V]ul??,
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and thus
B+ ao)|Vul® = 8lu x Vul? + |V|ul?)? + Kas — [ul®)|Vul?

2
< 8(IVg 2+ V&2 + (1 — [u?2|Y ci(x)dx; | lloge ?)
+ | VIul?? + 4ae — |u?)|Vul?,
by (A-38). Combining[(A-4D),[(A-313)[ (A-55)[ (A-§2) and the easy estimate

2 14122
/(1—|u|2>212ci(x>dx,~ |Ioge|zgc(sz|logs|2/ M“ﬁ)v
Bs B1 €
we finally obtain

_ 22
E.(8) < c(<y2 +oV 4yt W)Esm
By &

_1y12)2
([ = )
By €

which is the desired estimate. This ends the proof. O

Part C: Proof of Theorerfn]2 completed

Remember that we are concerned with a solutiaf (124) with Ag < 1 on By satisfying
the estimate

Recall also that in Part A we have exhibited some (¢%/@N—2 1) such that
1 232
. / e~ WO _ Cllogs + &), (A7)
o Brg 2
E¢(ro) — 2V 72E,(8r0) < C(n]logs| + &), (A-58)

where$ is fixed but to be determined later. The functiofx) := w(rgx) defined onB;
satisfies the equation

1 2 R TP
Au + —Zu(l— |ul ) =ic¢ - Vul|logé| + d|logé|“u,
g

where? := ¢/rg and Ag(¢, d) < 1. Sincerg > ¢*/V-2 we haves < ¢/2. By scaling
we also have the identities

Ez(u,0,1) = E;(w,0, ro),
1 -
E;(u,0,8) = ——Ec(w,0,8r0) = 6* " Ec(w, 0, 6r0),
T
0
and

(az —u?? 1 [ (as — [wl*)?
g2 N-2 |, &2 )

By & o 10
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We now apply Lemmp A]9 te, and using the previous identities we find

1 1 a. — |[wl??\ -
—— E.(6r0) sc<<y2+aN+y—4 N_zf (@ '2 o >Es(ro)
T r B €

0 0 o

1 as — |lw|?)?
(o [ R )
o Brg €

Using [A-57) and[(A-5B) we obtain
Ec(ro) < 2VN72E,(8r0) + C(nllogs| + &)
< C8V2(y? + y 4 (nllog 8| + &) E (ro) + C82E, (ro)
+ Cy~*(nllogs| + ).

We now fix the values of andy. First, choosé small enough so that
Cs? < 1/4.
Next, chooses small enough so that
csV2y2 < 1/4.
There also existy andny such thatife < ey andn < ny then
csV2y~4(yllogs| + £#) < 1/4.

Hence,
Eg(ro) =< C)/_4(77|Iog(3| +8ﬁ) fore <en, n < nn. (A-59)

Using the monotonicity formula of Propositiph 2, we thus obtain

1 1 -
[ -l < C<8_N (as — |u?)? + A%eﬁ> < C(Ec(e) + AGe)
B

Be
< C(E:(ro) + A3eP) < Cy~*(nllogs| + A3eP).

The conclusion then follows from the next lemma taken from [10]. O

Lemma A.10. Letw be a solution 0fI24)on B;. Then

1 - 1/(N+2)
1—|w(0)|SC(8—N (1wl ))
B.

Proof. Setk = |w(0)| and assume that < 1 (otherwise there is nothing to be proved).
By we have

W) — w0 < S <1- X,
£ 2

provided|x| < e(1—k)/(2C) = 1. Therefordw(x)| < (1+ k)/2 on B,,.. We distinguish
two cases.
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Case 1:. < ¢. Then
f(1—|w|2>25f (1— w2
B, B,

On the other hand,

1-k\?
(1—|w|2>zz/ 1-wh?= (—) 1Byl = CeN (1 — k)N T2,
B;, B;, 2
by definition ofA. Consequently,

C
Q-2 < — [ a-wd?
& Be
and the conclusion follows.

Case 2:1 > ¢. Then

1+k .
|w(x)|§% in B,

and )
1—k%
(1—w?? > (T) | Be|.

Be
Therefore
a-oV?za-w?= o [ a- i
e B,
and the lemma is proved. O

Corollary A.1. LetO < o < 1, and lety > O andeg > 0 be given by Theoref@ Let
x0 € 2 andr > 0be such thaB(xg, 2r) C 22 and4/e < r < 4/(1+ Ao). Then for all

e < &, if w is a solution offI24)in 2 and
E:(x0.r) < 4% "nlloge|, (A-60)

then
11— |wx)|| <o forall x € B(xo, 3r/4). (A-61)

Proof. If x € B(xg, 3r/4), thenB(x, r/4) C B(xo, r) so that
- 1 ~
Eo(x,r/8) =42 —SE.(x,r/4) < 4V 2E,(xo.r) < nlloge,
r

and the conclusion follows by Theorér 2. o

Concerning the asymptotics of the potential part in the energy, namely

/ (as(x) — [w|?)?
2 &? ’

it is tempting to believe that it remains boundedtas- 0 (at least away from the bound-
ary). We have no proof of that fact; however, the following proposition holds.



Vortex rings 73

Proposition A.1. Let K C £2 be a compact subset anda solution of(A.1) satisfying
(24). Then

1n12)2
/ (@0 — W _ cre)liogel, (A-62)
K &
wherer(¢) — 0ase — 0andC depends only oM.
Proof. Let p := |w|. If w satisfies[(124) thep satisfies
2
—Ap? + 2\Vw|? = S p?(a; — p?) — (w.ic- Vw)|loge|. (A-63)
&
Let0 < o < 1/2. DefineA ;= {x € K : p(x) > 1—o0c}andp := maxp,1 — o),
so thatp = pon A. Let also¢ € D(£2) be suchthatO< ¢ < 1onf2,¢ = 1onk,

and|V¢| < C, whereC depends only oK . Multiplying equation |(A-68) byt (52 — 1)
(which is compactly supported if2) and integrating ovef2 we obtain

2p(1— p?)(1— p?
[ vorvire s [ FEZLEED0 - [ a- vl [ vevea- i
2 2 & 2 2

n / 2pllogel?d(x)(1 — p2)¢
2

+f (w, ic- Vw)(p® — 1)¢|loge].
2

It follows that
/ 20(1— p?)(1—p?)
2

g2

P2V p?
520/ |Vw|2+C0/ IVpllae — p?| + C AgMoe|loge|?
2 2

2 2 (as — ,02)2 2
<20 | |Vw|*+Co IVol*+ | ——=— |+ CAoMoe|loge|”.
2 Q o 4

Hence, sincg > 1/2 and¢; = 1 on A, we obtain

(ae — :02)2 <C 2
— Q2 = o E.(w) + CAgMpel|loge|”. (A-64)
A
Define alsoB := K \ A. We claim that
_ 232
/ % <cC. (A-65)
B &

whereC depends only om, Mg andK. This follows from Theorer]2, the monotonicity
formula in Lemm4 }4 and the Besicovitch covering theorem, along the same lines as the
proof of Proposition 1 in([10]. [Indeed, only the aforementioned ingredients are used and
hence the proof there applies also to our equation.] In particular, we infer from](A-65)
that there exists, > 0 such that

232
/B(aag—zp) < olloge| (A-66)



74 F. Bethuel et al.

forall 0 < ¢ < ¢, wheree, depends only ow, Mo and K. Combining [[A-64) and
we finally obtain

1122
fwgcfyuogﬂ for0<e < é5.
K &

Clearly we can assume that the mapping o > ¢, is strictly increasing. The function
r 1=t~ L fulfills the statement of the proposition, so that the proof is complete. O

Appendix B: Properties of the concentration set¥,

Recall that
X, ={x € 2:0(us, x) > 0}.

The purpose of this section is to describe and prove the propertiEg stated in Theo-
rem3. We first have

Lemma B.11. There existsjp > O such thatifxg € X,,, then

Oy (s, X0) = Mo.

Proof. Leto > 0, to be determined later, and ket- 0 andeg > 0 be the corresponding
constants provided by Theorérh 2. Set

no = 4"V

Assume by contradiction that
Os(x0) < 47y, (B-1)

Then for eachrg > O there exists O< r < rg such thatB(xg, 2r) C £, andg; <
min(sg, r2/16) such that

22 Nplloge| Ve < ex. (B-2)

Ee(xo.7) <
From Corollary A.1 we thus infer that
[1—jw@)I| <o Vx € B(xo, 3r/4).

We write
w(x) = p(x)expie(x)) in B(xg, 3r/4).

The phase satisfies the equation
—Ap = —div((1 - pH) V) + 3|logelc- V(p? — 1) in B(xo, 3r/4. (B-3)

Let ¢ be the harmonic function defined d@xg, 3r/4) such thaty = ¢ on the boundary
of B(xg, 3r/4). In particular, we have

/ Vol < / V2
B(x0,3r/4) B(x0,3r/4)
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and for all§ > 0,

/ Vol? < csN/ Vol < CSN/ V. (B-4)
B(x0,83r/4) B(x0,3r/4) B(x0,3r/4)

Multiplying equation [(B-B) byy — ¢ and integrating oveB(xo, 3r/4) we obtain, as in
the proof of Theorerp|2,

/ V(g — @) < Clo + Aoellogel) Ex (xo, 3r/4). (8-5)
B(x0,63r/4)
Combining [B-4) and (B{5) we finally obtain
f [Vo|? < C(8N + o + Agelloge]) E (xo, 3r/4). (B-6)
B(x0,83r/4)

Concerning the modulus, Iet e D(B(xg, 3r/4), [0, 1]) be such tha¢ =1 on B(xg, 3r/8)
and|Vé&,| < C/r. Multiplying the equation

1
—4p + pIVel® = Splac — p?) + llogelpc- Vg
by &.(1 — p) and integrating oveB(xo, 3r/4) we obtain

22

a. —

[ werr S cco [ vl
B(x0,3r/8) & B(x0,3r/4)

+ CEE.(x0,3r/4) + CAgelloge>.  (B-7)
r

Hence, since > 4./, from (B-§) and[(B-j) we have

Aoelloge|?

E¢(x0, 83r/4) < C(6°+ 8%V (0 + Aoe|loge| + Y2 Ep(xo, 1)+ C GrF 2

(B-8)
Now choose$ such thailCs? < 1/4 and thers such thatCs>~Vo < 1/4. Letting ¢ tend
to zero in the previous inequality keepindixed yields

U (B(xg, §3r/4) - }u*(B(xo, r))
(83r/HN-2 T2  pN-2 7

Sincer < rg, andrg was arbitrarily small, we infer taking a sequenge— 0 that

(B-9)

Ou(x0) < 304(x0), 1€, Ou(x0) =0.
This contradicts the definition af,, and the proof is complete. O
LemmaB.12. ¥, is closed ins2.
Proof. This follows directly from the upper semicontinuity 6%, the lower density. O

Lemma B.13 (Uniform convergence away from¥,). LetK C £\ X, be any com-
pact subset. For any > O, there existg > 0 depending only olK ando such that if
0< ¢ < é&, then

|1-|w|| <o onk.
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Proof. Leto > 0 and let the corresponding> 0 andeg > 0 be given by Theoreifn 2.
For eachx € K, we deduce from Lemnja B]L1 that there exist) > 0 ande(x) > 0
such that

Eq(x,r(x)) <4 Nylloge] Ve < e(x).

Letxy, ..., x; be such that
K c U B, r(x)/2)
and leté := min(eo, &(x1), ..., e(xx)). From Corollanf A.1, it follows that foe < &,
1—|w|| <o onB(xir(x)/2) Vi=1... k.

This proves the lemma. O
Lemma B.14 (Structure ofu,). We have

Py = g(x)HN + h(x)HN_2 L2,
whereg and# are locally bounded o2 and# satisfies

px (B(x, 1))

no < Ox(x) < h(x) < O*(x) =limsup ]
.

r—0
Proof. SinceX, is closed inf2 and hence measurable, we have
Mo = o Lo Xy + pa L (82\ X)),
As in [10, Theorem VII1.1], we infer from Corollafy A1 th&t¥=2(2,) < CMo. Italso
follows from the monotonicity formula of Propositiph 2 that for alE 2,

wx(B(x, 1))

< c(x)Mpo.

O*(x) ;= limsup

r—0

Using the Radon—Nikodym theorem, we thus obtain
e X, =hx)-HV 23, (B-10)
for some®, < h < ®*. We will prove that in facH, = ©*.
Now, letxo € 2\ X, andr > 0 be such thaB(xo, 2r) C £\ Z,,. By Lemmd B.13,
o:=|1- |w|“L°°(m)
The same computation as in Lemma B.11 (§ee|(B-8)) shows that for each9 1/2,
Ee(x0,83r/4) < C(8" + o + Aoelloge| + /%) Ec(xo0, ) + C Agelloge|?,  (B-11)

=0(1) ase—0.

but now we know that = o(¢) = o(1). Hence, dividing both sides bjfjogs| and
sendinge to zero we obtain

1+ (B(x0, 83r/4) < C8" 1y (B(xo, 7).

This implies thatu, L_(£2 \ X,) is absolutely continuous with respect to the Lebesgue
measure, and using the Radon—Nikodym theorem once more we finally deduce that

y = g(x) - HY +hx) HN 2L 3, (B-12)

for some locally bounded function O
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Lemma B.15. We have
g(x) = |Vhy(x)?> ae.ing,
whereh,, is some harmonic function.

Proof. The argument is similar to the one carried outlinl [12] for Theorem A(iv). Since
the proof is rather lengthy we briefly sketch the main steps.

First, one has to prove that|if.| > 1 — og on some balB(xp, R) (whereog is some
suitable constant), then

|Vw,|? >~ |Vé:|> onB(xo, 3R/4),

whereg, is harmonic and satisfies

Ve |> < C/Mo|loge|.

Then
Oe

Vlloge|
which is thus harmonic oB(xg, 3R /4).

A second important step is to prove that is globally well defined and harmonic
on £2. Here the argument is the same a< in [12]. O

—

Proof of the curvature equation and the rectifiability bf,. Let X € D(£2, RY) be a
smooth vector field and

1
ee(w) = 5|Vw|2+ — w2

1
22"

We have

/eg(w)diVX=—/ Veg(w) - X
Q 2

=—/<%V(|V B+ ot - |w|2)(_2ww+w8>>-x, (B-13)
2

and
[y [ > Pu_bw  w Y
Q57 ox; dx; 0x; 8x,8xl BxJ 8xl ax
Vw - XAw —
/ v v f Zaxl

z_f Vw~XAw—/ ZV(IVw]?) - X. (B-14)
Q 22

i

ax,
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Sincew is a solution of[(T24), we deduce from (B}13) apd (B-14) that

1 dw dw '\ X!
ro— ee(W)dij — ———— | ——
lloge| Jo dx; 9x; ) 9x;

1
[log e

1
=/ (Vw~X,iC-Vw)+/ ~(a, — |w?)|loge|Vd - X
Q 2?2

1 1
/ (Vw - X)(Aw + Swlae — |w|2)> + Z(ae — |lw|?)|loge|?Vd - X
0 & 2

= —/ (x (cAxJw), X) +[ 1-(ag — |w|2)||098|Vd-X. (B-15)
2 22

Set
L 1 ow ow
o~ 5 — LI
% = lloge| (ee(w) U ox 8xj>

Notice thataéj is a symmetric matrix with trace larger thaN — 2) ..., and a little linear
algebra shows that its eigenvalues are less than or equal tdoreover,

| < Npe. (B-16)
Going if necessary to a subsequence, we may thus assume that
o — ¢ inthe sense of measures
In view of ) we haveozij| < Nus, therefore we may write
(xij(x) = AV (x)uy for u,a.ex € 2,
where the matrixA’”/ (x) is symmetric, with tracequalto N — 2 and eigenvalues less
than or equal to one [the fact that the trace is equal te 2 and not just less thaN — 2
follows from Propositiofi AJl]. Fron] (B-16) we also have
AV > —N§  for p,-a.ex € 2. (B-17)

Notice that

< CApelloge] - 0 ase — 0,

1 2
/ L e — wPlloge|Vd - X
o2

so that passing to the limit ifi (B-L5) we obtain

¢
/ AY () —dp«(x) = —f (x(C(x) A xd J(x)), X)
2 ax;j o)

]
=—/ <*<cA*dJ*>,X>du*<x>. (B-18)
Q2 d s
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We decompose the r.h.s. pf (B}18) as

X! D¢
/A”(x)—du*(x)= / AV () —dps(x) X,
2 an I?) axj'

Vh,|? Ol Ohy\ 0X!
+f Qai,-——* =) —dx. (B-19)
0 2 8x,~ ax]' ij

Sinceh, is harmonic, the last term ifi (B-[L9) vanishes. Hence, the suppoft bking
included in¥,,, using [B-12) we obtain

). dJ.
/ AV () —du(x) X, = —f <*<C/\ e ) X>du*(x) LX,. (B-20)
Q dx; Q d iy
Since X was arbitrary, the previous equality means in particular that the generalized
(N — 2)-varifold (seel[5]) y
V.= 5Aij(x)l'l“* LE,LL(-X)

has a first variation. From Step 1 afd [5, Theorem 3.8(c)] we thus infe¥timindeed a
real rectifiable(N — 2)-varifold. In particular, the geometrical suppdsf, of u.. L X, is
rectifiable. From the rectifiability o', we deduce that

O.(x) = O*(x) for p,-a.exin Xy,
so that
e = g(x) - HY + 0.(x) - HN 2L %,

and }
V(Zu,0,0=V.

Equation [(B-20) then precisely states that>,,, ©.) satisfies the mean curvature equa-
tion

H(x) = * <C(x) A % ;“*

o

) for p-a.e.x in X,.

The proof of Theorerf|3 is now complete. O

Appendix C: Compactness

If some additional conditions are imposed on the boundary data, we may obtain compact-
ness properties fap,. In this part, we will assume

/ ee(w) < Mo, ||w||Hl/2(3Q) < Mo. (C-1)
052

[There are however many variants of conditipn (C-1), 5ée [7, 11].]

Proposition C.2. Letl < p < N/(N — 1). There exists a constagt > 0 depending on
p, Mo, Ag and$2 but independent af such that ifw is a solution of{I124) satisfying(24)

and(C-T) then
/ IVw|? < C.
2
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Proof. We follow the lines of[[7| 111]. Lep := |w|. From the identity
p?Vw|? = p?|Vpl? + w x Vw|?,
and the inequalityVw| > |Vp|, we deduce that
IVw|? = |Vp|? + lw x Vwl? + (1 — [w>)(Vw|? - |Vp|?)
< |VolP +|w x Vwl? +|a; — [w[?| [Vw|® + Age?[loge| [Vw|*  (C-2)
< |Vpl2+ |lw x Vw|? + (V2 + Aoe?|loge|)es (w).
Hence, sincg(24) is satisfied,

[ wurr<c [f Vol + [ 1w Vw|"+1}, (c-3)
2 2 2
whereC depends only op, Ag, Mg and$2.

Step 1: Estimates for the modulus. Notice thatp satisfies the equation
2
—Ap? +2IVul? = S p%(a. — p?) — (w,ic- Vw)|logel. (C-49)
&
Let us introduce the set
A={xeR:pkx)>1-—e"?3

and the function
p = maxp, 1—e"?},

sothatp = ponAand 0< 1—p < ¢¥2in 2.

Next let, be a function inD(£2) suchthat 0< ¢, < 1onf,¢ = 1ong2, =
{x € £2 : dist(x,982) > 2}, and|V¢| < Ce Y2, whereC depends only om2.
By multiplying equation[(C4) by (5% — 1) (which is compactly supported if?), and
integrating over?2 we obtain

20(1— p?)(1 - p2
/ V/OZV,52§5+/ o( P)( 14 )Cg
2 2

g2

=/(1—52>|Vw|2+/ Vo2V (1 - p2)
2 2
+f 2p||098|2d(x)(1—52)4“s+/ (w, ic- Vw)(52 - De.llogel.
2 2

It follows that on the sefi, = 2, N A we have
| ot = [ vorvp
1/2 2 c 2 2
<2 [Vw| +8m IVpllae — p°| + C AgMoe|loge|
2 22

1/2 2 1/2 2 (as — p?)? >
< 2 / [Vw|* + Ce / Vol +/ — + C AgMopelloge|-.
2 2 2 4
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Hence, since > 1 — /2 on A,, we have, foe < 1/4,
/ IVpl> <4 / IVp?2 < CeY?E.(w) + C AoMoelloge|? < C. (C-5)
A A,
SetW, = 2\ 2., B= 2\ A, sothat

£2=BUA;,UW,.

From [24) we deducg, (1 — p?)2 < 4Mos2loge| and hence, since % p > /2 on B,
it follows that|B| < 4Moe|loge|. Thus

p/2
f|Vﬂ|”S (/ IVpIZ) |BI1P/2 < Clloge|P/?(e|loge|)t—P/2,
B Q

/ IVpl? < Ce'~P/?|logze|. (C-6)
B

Finally, we turn tow,. Clearly, by constructiofi,| < Ce1/2. Hence

p/2
/ IVol” < ( / |Vp|2) Wel1P/2 < CeV/2 P tlloge| /2. (C-T)
W, 2
Combining [[C-5)4(C-7) we get the estimate for the modulus:

/Q Vol? < C. (C-8)

whereC does not depend an

Step 2: Estimates for the pre-Jacobian.Consider the Hodge—de Rham decomposition
of w x Vw:

w x Vw =do +d*y, (C-9)

where the functiorp satisfiesp = 0 ond£2 and the 2-formy satisfiesdy = 0 on £2
andyT = 0 onds2. Applying respectively the operato#$ andd to (C-9) we obtain the
equation forpy (resp.y):

— . 2 _ i
Ap =c- V(lw| Diloge| in 2, (C-10)
=0 onas2,
and
Ay =2Jw in 2, (C-11)
Y1 =0, @d*¥)T =(w xdw)T 0Nnds.

From [23), [(C-1),[(C-T]1) and Proposition I11.1 in [11] we infer that

/ Vyl? < C. (C-12)
2
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Indeed, the estimatg (CJ12) is valid even without assuminguhiata solution of [(T2}4)
(see[11]). Notice, however, that the consténinay depend o2; in the proof of The-
orem[4 we will see how to use the extra information thasatisfies[(124) to obtain
estimates independent of the domain.

Concerningp, multiplying equation[(C-10) by and integrating ovef2 we get

/|V<p|2=|logs|/ div((lw|? — Dc)e
2 2

= |Iogs|f (lw> - 1)c- Vg
2

(L— [wBH?\"?2 2\
CAgell _— \%
< 08|098|(/Q 762 ) (/QI <0|>

1/2

< CAo(Mo + 1)£||Ogs|3/2(/ |V(p|2) , (C-13)

2
so that
p/2

/ Vol? < (/ |V¢|2> 22 <c (C-14)

2 2
whereC does not depend an Combining [[C-8),[(C-1R2) and (C-14) we get the desired
conclusion from[(CP). o

Proof of Theoreri]4 Recall thatw, is a solution of [(I]l) o7, such that[(Z4) and (31)
are satisfied. For simplicity, we omit the subscriptselow, i.e. we sety = w,.

Step 1: Extracting the “bad” balls. From Theoren |2, we infer that there exigts- 0
andRg > 0 such that for each € S;,

E¢(x, Ro) = nlloge]. (C-15)

It follows from Vitali's covering theorem that there exist an at most countable family
(yi.e)ier Of points inS, such that

Se C Uie[ B(yi,sv 5Ro)

and
We deduce fron{ (24)[ (C-15) and the previous equality that

#1<1:= Mo/n.

We claim that there exists a constant 20« < C(g 1) (whereC (g I) depends only on
gI)andg pointsxy, ..., x4 ¢ € 1T, (¢ <) such that, withR := « Ro,

Se C UL B(xie, B) and distx; ., xj,) > 10R if i # j.

Indeed, seR; := 10Ro. If dist(y; ., y;..) = 10R; there is nothing to prove. If not, con-
sider the equivalence relation

Yiie ™ Yj,e if diSt(yi,Sv Yj,s) < 10R;,
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and denote’;, j € J the different equivalence classes. We deflie;, R>,;) for each
J € J as the smallest ball such that

Uy.ec, BOie. R1) C B(zj, R2,j),

and we seR; := max Ry ;. Ifdist(z; ¢, zx,.) = 10R> for eachj # k we are done, other-
wise we repeat inductively the previous growing argument. Since at each step, the number
of equivalence classes decreases at least by one, the process finishes aftef Astepst

Step 2: Choosing a good unfolding of the torus.Since [[2#) and (31) are satisfied, we
infer from Lemmad Z.]1 that there exists a good unfolding of the téfusuch that

2V=1p0)l0
/ e (w) < 2 Mollogel _ (C-16)
982, n

whereC does not depend onor ¢. In particular,|wll g1, is uniformly bounded.

Step 3: Uniform W,i’c” estimates. Letxg € £2, and 1< p < N/(N — 1) be given. As
in the proof of Proposition C]2 (C}-3) we obtain

/ [Vw|? < C|:/ [Vpl|? —i—/ lw x Vw|? + 1], (C-17)
B(x0,1) B(x0,1) B(x0,1)

wherep = |w| andC depends only op, Ag and Mg. The estimate for the modulus is
also obtained as in Propositipn €.2 by replaciady B(xo, 1); we have

/ Vpl? < C, (C-18)
B(x0,1)

whereC does not depend onor «.
Consider the Hodge—de Rham decompositiowof Vw in £2,:

w x Vw =do +d*y, (C-19)

where the functiorp satisfiesp = 0 ona£2, and the 2-form/ satisfiesdyy = 0 on £2,
andyt = 0 ond$2,. Applying respectively the operatoi& andd to (C-193) we obtain
the equation fop (resp.y) :

0 .
—Ag = c(e) — (lw|? = Dloge| in £2,,
0x1

(C-20)
0=0 onog,,
and
—AY =2Jw in $2,, (C-21)
YT =0, @Y%) =wxdw)T 0NIR,.
Again the estimate fap follows as in Propositiop C]2, and we obtain
[ wer=c (c-22)
B(x0.1)

whereC does not depend onor ¢ (andC — 0 ase — 0).
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The estimate fofy is more delicate since the embedding constants used in the proof
of Propositior] C.p heavily depend an We will overcome this difficulty by taking ad-
vantage of the confinement dfv described in Step 1. Let be defined by

o ew if [w(x)| < 1/2,
w(x) = )
w)/|w)| i fw(x)| > 1/2.

Notice thatE,(w) < 4Mp|loge| and thatJw is supported inS.. We also define, for
1<i <gq,the2-forms
w; =2Jw LB(.xi,g, R).

Let yg; be the solution of the problem

—AYo; = w; IN 2y, (C-23)
Yo; =0 onas,
(note the different kind of boundary conditions here). {gtbe the solution of
—Ay1 =2 —Jw in $2,,
Y1 Jw ) Jw) in (C-24)
YT =0, (@Y2)7=0 0nog,,
andr, the solution of
—AYp =0 in £2,,
2 C-25
YT =0, (@Y7 = (W xdw)T — Y _(d*Y0,)T ONI2;. (¢-25)
i=1
Clearly,
q
¥ = Yoi+v1+ 2
i=1
We also set
U = B(x0, 1) N (2, \ B(xi, 2R)), Ub:= B(x;, 2R).
Estimate foryg ;. From the Green formula
Vo,i(x) =f (wi(x), G, (x, y))dy (C-26)
Supp(®;)
we deduce that
”wo,i”ck(ui) < C(b)||w; ”[CO*”(Ui)]* < C(k). (C'27)

Indeed, for any in Ui' andy € supfw;) one has
min(dist(x, £2,), dist(y, 3£2,), dist(x, y)) > R,

so that [[C-2J7) follows from standard estimates on the Green functions (which is even
explicit in the case of the cub@,,).
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For Ué, consider the solutiogrg; of

—A J i = Wi [ B 1,65 R )
~AYo; = @i In B(xie, 3R) (C-28)
1,00,,' =0 onaB(xi,g,SR).
Following the lines of Propositidn J.2 we obtain
/ IVi0.1” < C(R)|willcoats < C(R, Mo). (C-29)
B(xi¢.3R)

On the other hand, for € Ué we have

Y0, (x) — Yo, (x) = / (0i (¥), [RB(x;..3r) (X, ¥) — Re, (x, y)]) dy,
SUpHw;)

where R, stands for the regular part of the Green functiGg, and similarly for
B(x; e, 3R). Note that for allx € U; and for ally € suppw;),

mln(d(xs 89}’1)! d()’» 891‘1)7 d(-xv aB(xi,e» 3R))7 d(% aB(-xi,&‘v 3R))) Z Rv
so that again using standard estimates
10 = Yol gy < CEloiljcoate < C(R, Mo). (C-30)

Combining [C-2),[(C-29) an@l (C-B0) we obtain

/ |Vipo,il? < C,
B(x0,1)

whereC does not depend onor «.

Estimate fory1. From standard elliptic estimates we have

W1y g, < CITw = Tbllrr o o (C-31)

whereC does not depend on(indeed the previous inequality is invariant under scaling
of the domain and of the corresponding equation). On the other hand,

IJw— Jol. 1, - sup / (Jw — Ji, h),
WP (@]
0 he WL (2,, AZRN), [1h]=1" 20

and

/(Jw—Ju?,h):/ (wx dw —w x dw, d*h)
2, £2

1/q 1/p
§C</ |Vh|q> (/ |wxdw—u”1xdu”)|1’> . (C-32)
n -Qn

lw x dw — W x dw| < Clw| - |[Vw]|

onsS,,
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so that sincesS, | < Ce?|loge,

1/p 1/2 1/s
< |w><dw—1I)><d1D|p) 5c</ |Vw|2) </ |w|s>
Se & 53

< Clloge|Y2(¢?|loge ),

wheres := 2p/(2 — p) > 2. OutsideS,, we have

o w2 -1
lw x dw —w x dw| = —wadw
lwl

< 4jw|? - 1| |Vw

so that

1/p 1/2 1/s
(/ |wxdw—ﬁ1xdﬁ)|p> §C</ |Vw|2> </ (|w|2—1)s>
2:\5 20\ 20\

2 _ )2\ Vs
< Cez“llogell/2</ M)
20\ Se €

< Ce?*lloge|M?|loge|Y* < C. (C-33)

Combining these two estimates wifh (C}-31) we thus obtain

/ IVyal? < C,
B(xo.1)

whereC does not depend onor «.
Estimate fory,. We deduce from Step 2 that
[(w x dw)Tl 200, < C-
On the other hand, since dig%2,, supgw;)) > R we have
IVYo.illL=ose,) < C

(this again follows from standard estimates on the Green function for thes2gb&ince
Yo is harmonic org2,,, we thus obtain

IV2llck(B(x,1) = Cs

whereC depends or but not onn or ¢.
Combining the estimates fairo ;, /1 andyr> with (C-17) and[(C-18) we conclude that

/ |IVw|? < C. (C-34)
B(xo.1)

This establishes claim (i) of the Theorem.

Next, we prove estimate (ii) of the Theorem, i.e. provide uniform energy bounds away
from the bad balls. Here, we will work directly off,, (as a manifold). Therefore, the
Hodge—de Rham decomposition will involve also harmonic forms. The next step will be
useful to control these forms.
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Step 4: Degree estimate Since|w|>1/2 off S,, we may writew (x) = p (x) expi ¢ (x))
off S., wherep(x) € St. Moreover, since

2, =2, \U_; B(xie. R)

is simply connected, the phagéx) can be lifted as a function from2, to R. If the
coordinategyo, ..., yy) are such that

[_nv n] X (J’Z, seey )’N) m U:'I:]_B(-xi,é" R) == @
then the degree of the map—> ¢(s, y2, ..., yu), i.e.

d :=deds — ¢(s,y2,...,yn)

is well defined. Clearly it follows from the invariance of the degree under homotopy that
d does not depend on the particular choice of an admisgible. ., yy).

We claim thatd = 0 (an elementary way to rephrase this is that the lifted phase
takes the same values on opposite faceQdf Indeed, from Step 1 we infer that the set
of admissiblg(yy, ..., yn) € [—n, n]V~1 has measure larger thaf —1 for n sufficiently
large (and thus sufficiently small).

On the other hand, # £ 0 we obtain for each admissibley, .. ., yy),

" 1/ 2 1/27\% 72
Vu(s, y2, ..., yn)I%ds > = ds>2n>(=) ==,
/_n| W(S, Y25« -s )] S—4/_n 5> n4<2n> s

dg
0x1

(Svy27-~'vyN)

so that by Fubini’s theorem,

2 N 17T2 72 N-2
/ [Vw|*>n"" E=7n ¢ >2(Mp+ Dloge].

n

This contradicts hypothesis (24) and proves the claim. Obviously the corresponding de-
gree computed with respect to the other coordinates is also zero.

Step 5: Local uniform energy estimates.Letx € £2,, andr > 0 be such thaB(x,r) C
£2, \ Se. As in the previous step, we write(x) = p(x) expi(x)) in B(x, r), and we
have

. d
div(p?Ve) = c|logs|a—(p2 — 1.
X1

Let ¢ be the solution of

div(p?V§) = cllogel (s>~ 1) in Blx. ). 35
=0 ondB(x,r).
Multiplying (C-35) by ¢ and integrating by parts leads to
/ V@)% < Ce?|logel| < C. (C-36)
B(x,r)

On the other hand; := ¢ — ¢ satisfies
div(p®°V@) =0  onB(x,r). (C-37)
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Sinceg is defined up to a constant multiple of 2we may assume without loss of gen-

erality that
1

|B(x, )| JBx.n

Combining ) With) and tﬁé’é’cp estimates in Step 4 we obtain, using standard
elliptic regularity theory,

@ < [0, 2m). (C-38)

f Vg2 < C, (C-39)
B(x,r/2)

so that finally by[(C-36),
/ IVel? < C. (C-40)
B(x,r/2)

Next, leté € D(B(x,r/2)), 0 < & < 1, be such tha = 1 on B(x, r/4). Multiplying
the equation

1 0
4Ap = pIVg2+ S5p(1 - p?) = —clloge|p—* (C-41)
P ox1
by (1 — p2)£2 and integrating by parts we obtain

(1-p??
/ <2p|Vp|2$2+p—2
B(x,r/2) &

d
+ / (p(l— p?)E%| V|2 — c|logs|pa—‘p(1— pz)éz)- (C-42)
B(x,r/2) X1

_ / 26(1— p?)Vp - VE
B(x,r/2)

On the other hand, we have

1
/ 26(1— p?)Vp - VE < —/ |Vpl262 + 10 (1—p??VE?,
B(x.r/2) 10 JB(x,r/2) B(x.r/2)

and from [C-4D),

p(1— p?E?|Vgl|? < C
B(x,r/2)

and

dp
f cllogelp—(1 — p?)&?
B(x,r/2) dx1

1/2 1 p2)2
< c(/ |V¢|2> (/ %)suogﬂ <C.
B(x,r/2) B(x,r/2) &

Hence, from[(C-4R) and singe> 1/2 on B(x, r),
1— 2\2
/ <|Vp|2 + %) =c, (C-43)
B(x,r/%) 4e
which, combined with[{C-40) leads to

/ e.(w) < C. (C-44)
B(x,r/4)
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Step 6: Proof of estimate (ii). In order to conclude the proof of Theor¢in 4 it remains to
show that

e:(w) < C.

/Qn\u?l B(xie,R)
As in Propositiof C]2, we have

/ |Vw|? < c(1+f (Vpl? + |w x dw|2)). (C-45)
nn\U?:l B(xi,ayR) nn\U?:]_ B(xi,a,R)

Here we consider the Hodge—de Rham decompositian»fVw in 7, (as a manifold):

N
wx Vw =do +d*y + Zaidxi, (C-46)

i=1
where the 2-form) satisfiesdy» = 0 onI1,, eachy; is a real number and théx; repre-

sent the canonical harmonic 1-forms Ap. Applying respectively the operato#§ and
d to (C-48) we obtain the equation for(resp.y):

3 .
—Ag = c(e)— (p% — D)loge| in I, (C-47)
0x1
and

—AYy =2Jw in,. (C-48)
Again the estimate fap follows as in Propositiop C}Z (C-13), and we obtain

/ IVg|? < C, (C-49)
I,

whereC does not depend onor ¢ (andC — 0 ase — 0).
The estimate fot) has to be slightly adapted with respect to Step 3..ée defined

by
w(x) if x e U, B(xie, R/2),
4s/R —2w(x) + B —4s/Ryw(x)/|w(x)|
if s 1= dist(x, | {xi¢}) € (R/2,3R/4),
wx)/|w(x)| otherwise.

w(x) =

Notice thatE, (w) < CMpl|loge| and that/w is supported in the seyle B(xi s, 3R/4%).
We also have
wxdw=wxdw on U?:l B(xj ¢, R/2). (C-50)

We also define, for k i < ¢, the 2-forms
wi :=2JW_B(xi¢, 3R/4),

and denote by ; the Newtonian potential @b; on 1T, (i.e.yo; := G, *w;, whereG, is
the Green function of/,,.) Similarly, vr1 denotes the Newtonian potential af/2v — J w)

onIT,. Clearly,
q

Yx) =Y 0 (x) + Yi(x).

i=1
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We claim that
Vo, (x)| < C(diSt(x,xz',s))l*N Vx € Il \ B(xj¢, R), (C-51)

whereC does not depend anor ¢. Indeed, this is a direct consequence of the formula

G
—(x, y)w;i (y) dy,

Vo (x) = / -

n

of the [%¢]* uniform bound onw;, and of classical estimates 6i . Hence, since&V > 3,
we obtain

/ Vo, % < / Clx|*?Ndx < C. (C-52)
AU B(xie.R) RN\B(O,R)

We next turn tahe estimate fory1. We have
IV¥1ll 2, <€ sup {/ (Jw— Jib, h) / VA = 1}.
heC (I, A2RN) L/ 1T, IT,

On the other hand, takinf (CJ50) into account, we obtain

/(Jw—.hb,h):/ (wxdw—@xdﬁ;,d*h):/ (wxdw—w x dw, d*h)
Hn Hn ﬁn

wherelT, = IT, \ | J!_; B(xi s, R/2). Notice thatjw| > 1/2 in IT,, hence

1/2 1/2
/ (w x dw — b x d, d*h) §C||,02—1||Loc(ﬁ)</ |Vw|2) (/ |Vh|2) )
ﬁ)l " ﬁ}’l ﬁﬂ

From Theorem 3 we know thaiv| uniformly converges to 1 o/, (and actually uni-
formly with respect ta: as can be seen by examining Step 2 of the proof of Theorem 3).
Hence, we obtain

IVl 207, < C<1+r(8)/ﬁ |Vw|2), (C-53)

wherer(g) — 0 ase — 0, uniformly inn.
Finally, we turn to the components of the harmonic forms. We claim that

;| < .
11,12

Indeed, since
1

o = —— (w x dw, dx;), (C-54)
AL /n ’

it suffices to prove that

<C.

‘/ (w x dw, dx;)
I,
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LetR € [R/2, Rland [T} := IT,\|J’_, B(x; ., R"). The phase of w is well defined in
I1); we extend it as a continuous functighon IT,, by considering its harmonic extension
inside each balB(x; ¢, R"). We have
d¢
2
+ _
'/';l P ax1

'/ (w x dw, dx;) / (w x dw, dx;)
11, ;—7:1 B(xi.SvR/)
< c/ IVl +c}/~ (p? - 1>|w|‘
1 B(xi . R') i

8§0/ /
+c|| =+ V']
m, 9x1 U’ B(x;c.R)

=

From Step 3 we infer that

/ [Vw| < C.
! 1 B(xie.R')

An averaging argument shows that there existg [R/2, R] such that

1/2 1/2
f V') < c(/ |w’|2) < c(/ ~ |Vw|2>
UL, B(xie.R) UL, B(xie.R) UL, B(xie. RN,

so that by Step 5,

/ IVe'| < C.
;1=1 B(x¢,R)

We also have

< Ce¢lloge| < C

/~ (p? — Vgl
11,

a /
fn a0
m, 9x1
This proves the claim. Coming back @ x dw, combining [[C-4]),[(C-52)[ (C-%3) and
the previous claim, we obtain

and by Step 4,

f lw x dw|? < C<l+r(8) / |Vw|2>, (C-55)
AU B(xi e, R) ,

wherer(¢) — 0 whens — 0, uniformly inn.

We still needthe estimate for the moduluset ¢ € D(I1,), 0 < & < 1, be such that
£ =1lonll, \ U, B(xi., R). Multiplying the equation

1 1%
Ap — pIVel> + Sp(1— p?) = —clloge|p—
e dx1
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by (1 — p?)£2 and integrating by parts we obtain

242 1-p?? 2
_2p|VplEtp——=— = 2601 —p)Vp-V§
11, € 1,

ad
+/~ (p(l—pz)szwwz—c|logs|p8—‘p(1—p2>sz). (C-56)
11, X1

Arguing as in Step 5, we deduce fron (C-56) that

2 (1 _ ,02)2 ,
IVpl®+ —F = Cll+r(e) IVw|? ), (C-57)
n”\U;'I:l B(xi¢,R) 4e a,

wherer(¢) — 0 whene — 0, uniformly inn.
We can now complete the proof. Addirig (C}55)[to (G-57) we obtain, uging {C-45) and
Step 5,

/ ea(w)SC(1+r(8)f |Vw|2>
mA\U_y B(xie, R) 1,

SC(l—i—r(s) |Vw|2).
Hn\U?:;L B(xi ¢, R)

Fore < gg sufficiently small,Cr(e) < 1/2, which yields the desired estimate

/ es(w) <C.
AU B(xie.R)

Fore > g the previous inequality is clearly also satisfied, and the proof is complate.
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