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Abstract. LetY be a smooth oriented Riemannian manifold which is compact, connected, without
boundary and with second homology group without torsion. In this paper we characterize the se-
quential weak closure of smooth graphs inBn×Y with equibounded Dirichlet energies,Bn being
the unit ball inRn. More precisely, weak limits of graphs of smooth mapsuk : Bn → Y with
equibounded Dirichlet integral give rise to elements of the space cart2,1(Bn×Y) (cf. [4], [5], [6]).
In this paper we prove that every elementT in cart2,1(Bn×Y) is the weak limit of a sequence{uk}
of smooth graphs with equibounded Dirichlet energies. Moreover, in dimensionn = 2, we show
that the sequence{uk} can be chosen in such a way that the energy ofuk converges to the energy
of T .

1. Notation and preliminary results

In this section we recall some facts from the theory of Cartesian currents with finite
Dirichlet energy. We refer to [6] and [4] for proofs and details.

LetBn be the unit ball inRn and letY be a smooth oriented Riemannian manifold of
dimensionM ≥ 2. By the Nash theorem we can suppose thatY is isometrically embedded
in RN for someN ≥ 3. We shall assume thatY is compact, connected, without boundary
and that its integral 2-homology groupH2(Y,Z) has no torsion, so thatH2(Y, X) =

H2(Y,Z)⊗X for X = R,Q. Note that the last condition automatically holds ifM = 2.

Dn,2-currents. Every differentialn-formω∈Dn(Bn×Y) splits as a sumω =
∑n

k=0ω
(k),

n := min(n,M), where theω(k)’s aren-forms that contain exactlyk differentials in the
verticalY variables. We denote byDn,2(Bn×Y) the subspace ofDn(Bn×Y) of n-forms
of the typeω =

∑2
k=0ω

(k), and byDn,2(Bn×Y) the dual space ofDn,2(Bn×Y). Every
(n,2)-currentT ∈ Dn,2(Bn×Y) splits asT =

∑2
k=0 T(k), whereT(k)(ω) = T (ω(k)). For

example, ifu ∈ W1,2(Bn,Y), i.e.,u ∈ W1,2(Bn,RN ) with u(x) ∈ Y for a.e.x ∈ Bn,
thenGu ∈ Dn,2(Bn × Y), where in an approximate senseGu := (Id FG u)#[[ Bn ]],
(Id FG u)(x) := (x, u(x)) (cf. [6]).
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D-norm. Forω ∈ Dn,2(Bn × Y) we set

‖ω‖D := max

{
sup
x,y

|ω(0)(x, y)|

1 + |y|2
,

∫
Bn

sup
y

|ω(1)(x, y)|2 dx,

∫
Bn

sup
y

|ω(2)(x, y)| dx

}
,

‖T ‖D := sup{T (ω) | ω ∈ Dn,2(Bn × Y), ‖ω‖D ≤ 1}.

It is not difficult to show that‖T ‖D is a norm on{T ∈ Dn,2(Bn × Y) | ‖T ‖D < ∞}.

WeakDn,2-convergence.If {Tk} ∈ Dn,2(Bn×Y), we say that{Tk} converges weakly in
Dn,2(Bn × Y), Tk ⇀ T , if Tk(ω) → T (ω) for everyω ∈ Dn,2(Bn × Y). Now, the class
Dn,2(Bn × Y) is closed under weak convergence and‖ · ‖D is weakly lower semicontin-
uous. Moreover, if supk ‖Tk‖D < ∞, then there is a subsequence which weakly converges
to someT ∈ Dn,2(Bn × Y) with ‖T ‖D < ∞.

Boundaries. The exterior differential,d splits into a horizontal and a vertical differential,
d = dx + dy . Clearly∂xT (ω) := T (dxω) defines a boundary operator∂x : Dn,2(Bn ×Y)
→ Dn−1,2(B

n
× Y). Now, for anyω ∈ Dn−1,2(Bn × Y), dyω belongs toDn,2(Bn × Y)

if and only if dyω(2) = 0. Then∂yT makes sense only as an element of the dual space of

Zn−1,2(Bn × Y) := {ω ∈ Dn−1,2(Bn × Y) | dyω
(2)

= 0}.

D-graphs. The study of weak limits of sequences of maps with equibounded Dirich-
let energy, minimization problems and concentration phenomena (see [6]) drew the au-
thors of [5] to introduce the subclassD-graph(Bn × Y) given by the(n,2)-currents
T ∈ Dn,2(Bn × Y) with ‖T ‖D < ∞ and such that

T = GuT + ST (1.1)

for some functionuT ∈ W1,2(Bn,Y) and someST ∈ Dn,2(Bn × Y) with ST (0) = ST (1)
= 0, i.e.ST is completely vertical, so that

∂xT = 0 onDn−1,2(Bn × Y), ∂yT = 0 onZn−1,2(Bn × Y).

They also showed that:

(i) the decomposition (1.1) is unique;
(ii) weak limits inDn,2 of sequences of graphs of smooth mapsuk : Bn → Y, with

equibounded Dirichlet energy, belong toD-graph(Bn × Y);
(iii) if T ∈ D-graph(Bn × Y), then in general∂GuT 6= 0, but

∂GuT = 0 onDn−1,1(Bn×Y), ∂GuT (ω
(2)) = 0 if ω(2) = dη and sptη ⊂ Bn×Y

and

∂yGuT = 0 onZn−1,1(Bn × Y), ∂GuT = ∂xGuT onZn−1,2(Bn × Y);

in particular

∂yST (ω
(2)) = 0 if ω(2) = dη and sptη ⊂ Bn×Y, ∂xST = 0 onDn−1,2(Bn×Y);

(iv) ‖GuT ‖D = ‖uT ‖W1,2 ≤ ‖T ‖D, and consequently‖ST ‖D ≤ 2‖T ‖D;
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(v) D-graph(Bn × Y) is closed under weak convergence inDn,2 with equiboundedD-
norm.

The 2-dimensional case.If n = 2, obviouslyDn,2(Bn × Y) = D2(B
2

× Y) and∂T
is the usual boundary of currents, whereasM(T ) ≤ c‖T ‖D for some absolute constant.
Consequently, weak limits of smooth graphs with equibounded Dirichlet energy are inte-
ger multiplicity (briefly i.m.) rectifiable currents inR2(B

2
×Y), andD-graph(B2

×Y)∩
R2(B

2
× Y) is closed under weak convergence with equiboundedD-norm.

It was proved in [5] and [6] that everyT in D-graph(B2
× Y) ∩R2(B

2
× Y) decom-

poses as

T = GuT + ST , ST =

I∑
i=1

δxi × Ci + ST ,sing, (1.2)

whereδx is the Dirac mass atx, xi ∈ B2, Ci ∈ Z2(Y) are integral cycles with nontrivial
homology andST ,sing is a completely vertical, homologically trivial, i.m. rectifiable cur-
rent supported on a set not containing{xi} × Y, i = 1, . . . , I . More precisely, for every
Borel setA ⊂ B2 we have∂(ST A × RN ) = 0. Moreover, ifπ : R2

× RN → R2

andπ̂ : R2
× RN → RN denote the orthogonal projections onto the first and the second

factor, respectively, then for any bounded Borel functionϕ in B2 we have

ST ,sing(π
#ϕ ∧ π̂#σ) = 0

for every element [σ ] in the second de Rham cohomology groupH 2
dR(Y). Finally,

‖ST ,sing‖({x1, . . . , xI } × Y) = 0,

‖ · ‖ denoting the total variation. As a consequence, we haveST ,sing(ω) 6= 0 only on
formsω ∈ D2(B2

× Y) such thatdyω(2) 6= 0. In particular, ifY has dimension 2, then
ST ,sing = 0, whereas ifY = S2, the unit 2-sphere inR3, thenCi = zi [[ S2 ]] for some
integerzi .

Definition 1.1. We say that an integral2-cycleC ∈ Z2(Y) is of spherical typeif its
homology class contains a Lipschitz image of the2-sphereS2; more precisely, if there
existZ ∈ Z2(Y), R ∈ R3(Y) and a Lipschitz functionφ : S2

→ Y such that

C − Z = ∂R and φ#[[ S2 ]] = Z.

Spherical cycles come into play since, as proved in [5], [6], ifT is in the sequential
weak closure of smooth graphs with equibounded Dirichlet energies, then everyCi is of
spherical type. This fact leads to the following

Definition 1.2. If n = 2, we denote bycart2,1(B2
×Y) the class of i.m. rectifiable currents

T in D-graph(B2
×Y) which decompose as in(1.2), where theCi ’s are of spherical type.

It turns out (see [4], [5]) that cart2,1(B2
× Y) is closed under weak convergence, with

equiboundedD-norm, and contains the weak limits of sequences of smooth graphs with
equiboundedD-norm.

The n-dimensional case.As before, letπ : Rn × RN → Rn denote the orthogo-
nal projection onto the first factor. LetP be an oriented 2-plane inRn, andPt :=



98 Mariano Giaquinta, Domenico Mucci

P +
∑n−2
i=1 tiνi the family of oriented 2-planes parallel toP , t = (t1, . . . , tn−2) ∈ Rn−2,

span(ν1, . . . , νn−2) being the orthogonal subspace toP . Similarly to the case of nor-
mal currents, for everyT ∈ Dn,2(Bn × Y) with ‖T ‖D < ∞, for Hn−2-a.e.t the slice
T π−1(Pt ) of T overπ−1(Pt ) is a well defined current inD2((B

n
∩Pt )×Y) with finite

D-norm. Moreover, ifTk ⇀ T with equiboundedD-norm, forHn−2-a.e.t , passing to a
subsequence we haveTk π−1(Pt ) ⇀ T π−1(Pt ) with equiboundedD-norm. Finally,
if T ∈ D-graph(Bn×Y), forHn−2-a.e.t we haveT π−1(Pt ) ∈ D-graph((Bn∩Pt )×Y).
Therefore in any dimensionn the following definition was introduced in [4]:

Definition 1.3. We say thatT is in cart2,1(Bn × Y) if T ∈ D-graph(Bn × Y) and for
any 2-planeP and forHn−2-a.e. t the 2-dimensional currentT π−1(Pt ) belongs to
cart2,1((Bn ∩ Pt )× Y).

It turns out that the class cart2,1(Bn × Y) is closed under weak convergence with equi-
boundedD-norm and, in caseY = S2, that the class cart2,1(Bn × S2) coincides with
D-graph(Bn × S2), ST ,sing = 0 and

T = GuT + LT × [[ S2 ]] , (1.3)

whereLT ∈ Rn−2(B
n) is an i.m. rectifiable current.

Definition 1.4. We say that a Sobolev mapu ∈ W1,2(Bn,Y) is in cart2,1(Bn,Y) if the
currentGu associated to its graph is incart2,1(Bn × Y).

Therefore, aW1,2 mapu is in cart2,1(Bn,Y) if its graph has no inner boundary, i.e.,

∂xGu = 0 onDn−1,2(Bn × Y), ∂yGu = 0 onZn−1,2(Bn × Y).

Remark 1.5.If u : Bn → Y is a continuous map inW1,2(Bn,Y), by a standard convo-
lution and projection argument it can be approximated inW1,2-strong sense by a smooth
sequence inC∞(Bn,Y). This implies in particular thatu ∈ cart2,1(Bn,Y).

The Dirichlet energy in cart2,1. Denote by
∧
n Rn+M the space ofn-vectors inRn+M .

Moreover, ifG : Rn → RM is a linear transformation, and with the same notation
G := (G

j
i )
n,M
i,j=1 is the associated(M × n)-matrix, we let

M(G) := (e1 +Ge1) ∧ · · · ∧ (en +Gen) ∈
∧
n Rn+M ,

(ei)
n
i=1 being the canonical basis inRn. ThenM(G) determines the plane graph ofG

in Rn+M , and in fact orients such ann-plane. IfT ∈ D-graph(Bn × Y), we define the
Dirichlet density as the function ofy ∈ Y, ξ ∈

∧
n Rn+M given by

F(y, ξ) := sup{φ(ξ) | φ :
∧
n Rn+M → R linear,φ(M(G)) ≤

1
2|G|

2

for all linear mapsG : Rn → TyY},

TyY being the tangentM-space toY aty. The Dirichlet integral then extends toD-graphs
T (cf. [6]) as

D(T ) :=
∫
F(y, ET ) d‖T ‖D,
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ET being the Radon–Nikodym derivativedT /d‖T ‖D, and if (1.1) holds, one has

D(T ) =
1

2

∫
Bn

|DuT |
2 dx +

∫
Bn×Y

F(y, EST ) d‖ST ‖D. (1.4)

In particular we have
‖T ‖D ≤ cD(T ) (1.5)

for some absolute constantc = c(n). Finally, if A ⊂ Bn is a Borel set we define

D(T ,A× Y) := D(T A× Y)

and, ifu ∈ W1,2(Bn,Y),

D(u,A) :=
1

2

∫
A

|Du|2 dx = D(Gu, A× Y).

Apart from the case of energy minimizing currents (see [4]), ifn ≥ 3 we do not have an
explicit formula for the second term on the right hand side of (1.4). However, ifn = 2
and (1.2) holds, we have

D(T ) =
1

2

∫
B2

|DuT |
2 dx +

I∑
i=1

M(Ci)+ M(ST ,sing). (1.6)

Finally, if Y = S2 and (1.3) holds, we have in any dimension

D(T ) =
1

2

∫
Bn

|DuT |
2 dx + 4π M(LT ). (1.7)

2. Mappings into the sphere

In this section we show that ifY is the standard unit sphereS2 in R3, then everyT in
cart2,1(Bn × S2) can be approximated weakly as currents by smooth graphs with equi-
bounded Dirichlet energy.

Theorem 2.1. LetT ∈ cart2,1(Bn × S2), n ≥ 2. Then there exists a sequence of smooth
mapsuk : Bn → S2 such thatGuk ⇀ T weakly inDn(Bn × S2) and

sup
k

D(uk, Bn) ≤ cn D(T , Bn × S2) < ∞,

wherecn > 0 is an absolute constant.

Proof. By Remark 1.5 it suffices to construct the sequence{uk} in W1,2(Bn,R3) ∩

C0(Bn, S2). SinceBn is bilipschitz homeomorphic to the unit open cube

Cn := ]0,1[n,

we will prove the assertion forT ∈ cart2,1(Cn × S2). Note that the assertion of Theorem
2.1 is true forn = 2 (see Sec. 4.1.2 of [6, vol. II]). Moreover, using the same argument as
in Corollary 4.2 below, withY = S2, we have the following
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Proposition 2.2. Let n = 2 andT ∈ cart2,1(C2
× S2) be such that∂T = Gϕ for some

functionϕ ∈ W1,2(∂C2,Y). Then there exists a sequence of continuous mapsuk : C2
→

S2, with {uk} ⊂ cart2,1(C2, S2) and∂Guk = ∂T , henceuk|∂C2 = ϕ, such thatGuk ⇀ T

weakly inD2(C2
× S2) and

lim
k

D(uk, C2) = D(T , C2
× S2).

Let us fix some notation. IfQ is a closedn-cube ofRn with sides parallel to the coordinate
axes, we will denote byQ(j) its j -dimensional skeleton. IfQ is contained in the unit open
cubeCn, andF is aj -face ofQ(j), we will denote by

TQ := T Q× R3 and TF := T F × R3

the restrictions ofT ∈ cart2,1(Cn× S2) toQ× R3 andF × R3, respectively. Also, we set

T∂Q :=
∑

F∈Q(n−1)

σF T F × R3,

whereσF = ±1 according to the induced orientation ofQ onto its boundary. Finally, if
u ∈ W1,2(Q, S2) is such thatu|∂Q ∈ W1,2(∂Q, S2), andF is aj -face ofQ(j), we define

Gu|∂Q
:= (Id FG u|∂Q)#[[ ∂Q ]] , Gu|F

:= (Id FG u|F )#[[ F ]] .

Definition 2.3. We say thatQ is in generic positionwith respect toT if for everyj =

1, . . . , n− 1 and everyj -faceF in Q(j) the restrictionTF is a j -dimensional current in
cart2,1(F × S2) and moreover for every1-faceF in Q(1) the restrictionTF is the graph
Gϕ of a Hölder continuous mapϕ ∈ W1,2(F, S2).

We remark that by definition of the class cart2,1(Cn × S2), by the structure of 2-dimen-
sional currents in cart2,1 and by a slicing argument, it follows that for a.e. choice of the
vectora ∈ Rn so thata +Q ⊂ Cn, then-cubea +Q is in generic position with respect
to T . In this case we also have

T∂Q = ∂TQ. (2.1)

We will work by induction on the dimensionn, making use of the following result, Propo-
sition 2.4, which holds true ifn = 2 by Proposition 2.2. It will be used in dimensionn−1
to prove Theorem 2.1 and will be finally proved in dimensionn by an adaptation of The-
orem 2.1.

Proposition 2.4. Let T ∈ cart2,1(Cn × S2) andQ be a closedn-cube ofCn in generic
position with respect toT . Then there exists a sequenceuk : Q → S2 of continuous maps
in cart2,1(Q, S2) for which the following properties hold:

(i) for everyk the boundary∂Guk coincides with the(n−1)-dimensional graphGuk|∂Q ,
whereuk|∂Q is a continuous map incart2,1(∂Q, S2);

(ii) for everyk and every(n − 1)-faceF of the boundary ofQ, the restrictionGuk|F of
Guk|∂Q to F × R3 only depends on the restrictionTF of T to F × R3;
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(iii) Guk ⇀ TQ weakly inDn(Q× S2) ask → ∞ and

sup
k

D(uk,Q) ≤ c̃n D(TQ,Q× S2) < ∞,

wherẽcn := 2cn > 0 is an absolute constant.

Let nowT ∈ cart2,1(Cn×S2), n ≥ 3, and let(e1, . . . , en) be the canonical basis ofRn. For
i = 1, . . . , n andt ∈ [0,1], we denote byP(t, i) the restriction toCn of the hyperplane
containing the pointtei and orthogonal toei , i.e.,

P(t, i) := {x ∈ Cn | (x − tei | ei)Rn = 0}.

By slicing theory

T P (t, i)× R3
= 〈T , di, t〉 ∈ cart2,1(P (t, i)× S2) (2.2)

for a.e.t ∈ [0,1], where

di(x, y) := xi, x = (x1, . . . , xn) ∈ Rn, y ∈ R3.

Form ∈ N∗ anda = (a1, . . . , an) ∈ [1/4m,3/4m]n we denote byC(n−1)
m,a the (n − 1)-

skeleton of the grid ofCn given by

C(n−1)
m,a :=

n⋃
i=1

m−1⋃
j=0

P(ai + j/m, i).

By (1.3) and (1.7), for everyi we have∫ 3/4m

1/4m

m−1∑
j=0

D(〈T , di, t + j/m〉, P (t + j/m, i)× S2) dt

≤

m−1∑
j=0

D(T , {j/m ≤ di ≤ (j + 1)/m}) = D(T , Cn × S2).

Set

T (n−1)
m,a :=

n∑
i=1

m−1∑
j=0

〈T , di, ai + j/m〉.

Then there exists a vectora = a(m) ∈ [1/4m,3/4m]n such that〈T , di, ai + j/m〉 ∈

cart2,1(P (ai + j/m, i)× S2) for everyi ∈ {1, . . . , n} andj ∈ {0, . . . , m− 1} and

D(T (n−1)
m,a , C(n−1)

m,a × S2) ≤ c̃(n)mD(T , Cn × S2), (2.3)

where c̃(n) = n. Let nowQm,a denote the family of alln-cubesQ of side 1/m with
boundary contained in the(n− 1)-gridC(n−1)

m,a , i.e.∂Q ⊂ C
(n−1)
m,a , so that⋃

Qm,a = a(m)+ [0, (m− 1)/m]n. (2.4)

By Definition 2.3 and the remark following it, taking e.g.c̃(n) = 2n in (2.3), we may and
do choosea(m) so that eachn-cubeQ of Qm,a is in generic position with respect toT .

For everyQ in Qm,a and every(n − 1)-faceF of the boundary ofQ, we apply
Proposition 2.4, which is supposed to hold true in dimensionn−1, to the restrictionTF of
T to F . Then there exists a sequenceuFk : F → S2 of continuous maps in cart2,1(F, S2)

for which the following properties hold:
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(i) for everyk the boundary∂GuFk
coincides with the(n−2)-dimensional graphGuFk|∂F

,

whereuFk|∂F is a continuous map in cart2,1(∂F, S2);
(ii) for every k and every(n − 2)-faceI of the boundary ofF , the restrictionGuFk|I

of

GuFk|∂F
to I × R3 only depends on the restrictionTI of T to I × R3;

(iii) GuFk
⇀ TF weakly inDn−1(F × S2) ask → ∞ and

sup
k

D(uFk , F ) ≤ c̃n−1 D(TF , F × S2) < ∞, (2.5)

wherẽcn−1 := 2cn−1 > 0 is an absolute constant.

If Q(n−1)
m,a denotes the(n − 1)-skeleton of

⋃
Qm,a , we now definevk :

⋃
Q(n−1)
m,a → S2

by setting
vk(x) := uFk (x) if x ∈ F (2.6)

for every(n− 1)-faceF of side 1/m of somen-cube ofQm,a . Note that ifF1 andF2 are
two (n − 1)-faces which intersect in a common(n − 2)-faceI , by (i) and (ii) for every
k we have∂G

v
F1
k

I × R3
= −∂G

v
F1
k

I × R3. Then{vk} is a well defined continuous

sequence such that∂Gvk|∂Q = 0 for everyQ in Qm,a and

Gvk|∂Q ⇀ T∂Q in Dn−1(∂Q× S2) (2.7)

ask → ∞. In particular the graph ofGvk has no boundary,∂Gvk = 0, and from (2.3) and
(2.5),

sup
k

D(vk,
⋃
Q(n−1)
m,a ) ≤ 2̃cn−1mnD(T , Cn × S2). (2.8)

We now wish to extendvk to a mapUk defined in a homogeneous way in the interior
of eachn-cubeQ of Qm,a minus a small sphere about the center where we wish to re-
move the singularity (see (2.10)). To remove the point singularities of the homogeneous
extension at the center of each cube, we make use of the following

Proposition 2.5. For k sufficiently large and for everyn-cubeQ ∈ Qm,a , we have

{v ∈ W1,2(Q,R3) ∩ C0(Q, S2) | v|∂Q = vk|∂Q} 6= ∅.

Proof. It suffices to prove thatvk|∂Q is homotopic to a constant map inS2. Arguing as
in [2], we recall that the Hurewicz homomorphismρ : π2(S

2) → H2(S
2,Q) is an iso-

morphism,π2(S
2) andH2(S

2,Q) being respectively the homotopy group and the rational
homology group of order 2 ofS2. As a consequence, it suffices to show that fork suf-
ficiently large the pull-back viavk|∂Q of the volume 2-formωS2 of S2 is a closed form,
i.e.,

d(vk|∂Q
#ωS2) = 0, (2.9)

which means zero degree ifn = 3. To this end, by (2.7) and (2.1) we infer thatGvk|∂Q
weakly converges to the boundary of the Cartesian currentTQ ∈ cart2,1(Q×S2). If n ≥ 4,
for every(n− 4)-form η ∈ Dn−4(∂Q) we have

∂TQ(π
#dη ∧ π̂#ωS2) = 0
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(whereas∂TQ(π̂#ωS2) = 0, i.e., zero degree ifn = 3), whereπ : Rn × RN → Rn and
π̂ : Rn × RN → RN denote the orthogonal projections onto the first and the second
factor, respectively. Hence, by weak convergence,∫

∂Q

dη ∧ v#
kωS2 = Gvk|∂Q(π

#dη ∧ π̂#ωS2) → ∂TQ(π
#dη ∧ π̂#ωS2) = 0

(
∫
∂Q
v#
kωS2 → 0 if n = 3) ask → ∞. This clearly yields (2.9). ut

Let nowQ ∈ Qm,a . If ϕk ∈ W1,2(Q, S2) is a continuous extension ofvk|∂Q, the existence
of which is provided by Proposition 2.5, we fixδ ∈ (0,1/2m) and extendvk|∂Q to the
interior ofQ by

U
(Q)
k (x) :=


vk

(
p +

1

2m

x − p

‖x − p‖

)
if δ ≤ ‖x − p‖ ≤

1

2m
,

ϕk

(
p +

1

2mδ
(x − p)

)
if ‖x − p‖ ≤ δ,

(2.10)

wherep is the center ofQ and‖x‖ := max1≤i≤n |xi |, so that‖x−p‖ = 1/2m if x ∈ ∂Q.
Trivially U

(Q)
k is a continuous function inW1,2(Q, S2). Moreover, since forδ ≤

‖x − p‖ ≤ 1/2m,

|DxU
(Q)
k (x)| ≤

1

2m
·

|x − p|

‖x − p‖2
· |Dyvk(y)|, y := p +

1

2m

x − p

‖x − p‖
,

|x| :=
√
x1

2 + . . .+ xn2,

by the area formula [3] we estimate∫
δ≤‖x−p‖≤1/2m

|DU
(Q)
k |

2 dx ≤
n

n− 2
·

1

2m
·

∫
∂Q

|Dvk|
2 dHn−1 (2.11)

and by changing variable∫
‖x−p‖≤δ

|DU
(Q)
k |

2 dx = (2mδ(m, vk))
n−2

∫
Q

|Dϕk|
2 dx ≤

1

km3
, (2.12)

if we chooseδ = δ(m, vk) > 0 suitably with limk→∞ δ(m, vk) = 0 for everym.
We now defineU (m)k :

⋃
Qm,a → S2 by U (m)k (x) := U

(Q)
k (x) if x ∈ Q for some

Q ∈ Qm,a . Then, by (2.11) and (2.12),∫
⋃
Qm,a

|DU
(m)
k |

2 dx ≤
n

(n− 2)m
· D(vk,

⋃
Q(n−1)
m,a )+

1

km
.

Therefore{U (m)k }k is a continuous sequence in cart2,1(
⋃
Qm,a, S2) such that by (2.8),

sup
k

D(U (m)k ,
⋃
Qm,a) ≤ c(n)D(T , Cn × S2)+

1

m
(2.13)

for eachm, with c(n) := 2 c̃n−1 n
2/(n−2). Moreover by (2.4) there exists an affine bijec-

tive functionψm,a : Cn →
⋃
Qm,a such that Lipψm,a = (m − 1)/m andψm,a → IdCn
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uniformly asm → ∞. SetV (m)k (x) := U
(m)
k (ψm,a(x)). Then, form fixed, {V (m)k }k is a

continuous sequence in cart2,1(Cn, S2) such that, by (2.13),

sup
k

D(V (m)k , Cn) ≤

(
m

m− 1

)n−2

c(n)D(T , Cn × S2)+
2

m
.

Then, by closure-compactness we have both

G
U
(m)
k

⇀ Tm and G
V
(m)
k

⇀ T̃m

ask → ∞ weakly inDn,2(
⋃
Qm,a × S2) andDn,2(Cn × S2), respectively, for some

Tm ∈ cart2,1(
⋃
Qm,a × S2) and T̃m ∈ cart2,1(Cn × S2). MoreoverTm = 9m,a#T̃m,

where9m,a : Cn × S2
→

⋃
Qm,a × S2 is given by9m,a(x, y) := (ψm,a(x), y). As

a consequence, if we takecn := 2c(n) = 8cn−1 n
2/(n − 2), the assertion follows by a

diagonal procedure as soon as we prove the following

Proposition 2.6. Under the previous hypotheses,T̃m ⇀ T weakly inDn(Cn × S2) as
m → ∞.

Proof. As before, we fix ann-cubeQ ∈ Qm,a and letp be its center. Also, denote by
ψ : Q× S2

→ {p} × S2 the mapψ(x, y) := (p, y). Finally, leth : [0,1] × (Q× S2) →

Q× S2 be the affine homotopy

h(t, x, y) := tψ(x, y)+ (1 − t) IdQ×S2(x, y) = (tp + (1 − t)x, y).

By (2.1), (2.7) and (2.10),

∂(Tm Q× R3) = Tm ∂Q× R3
= ∂TQ, TQ := T Q× R3, (2.14)

whereas, since by (2.12),M(G
U
(Q)
k

{‖x − p‖ < δ}) → 0 ask → ∞, we infer that

h#([[ 0,1 ]] × ∂TQ) = −Tm Q× R3.

As a consequence, setting
RmQ := h#([[ 0,1 ]] × TQ),

by the homotopy formula [10, 26.22] we find that

∂RmQ = ψ#TQ − TQ + Tm Q× R3.

Sinceψ#TQ is an n-dimensional i.m. rectifiable current,n ≥ 3, supported in the 2-
dimensional set{p} × S2, we deduce that

Tm Q× R3
− TQ = ∂RmQ.

Moreover, since by [10, 26.23],

M(RmQ) ≤
c

m
M(TQ),

setting
Rm :=

∑
Q∈Qm,a

RmQ ∈ Rn+1(
⋃
Qm,a × S2),
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by (2.14) we obtain
Tm − T

⋃
Qm,a × R3

= ∂Rm, (2.15)

where
M(Rm) ≤

c

m
M(T ) → 0

asm → ∞. This yieldsTm − T
⋃
Qm,a × R3 ⇀ 0 asm → ∞ in Dn(Cn × S2)

(cf. [10, 31.2]). Finally the assertion follows since9−1
m,a#Tm = T̃m whereas, by uniform

convergenceψm,a → IdCn ,

9−1
m,a#T

⋃
Qm,a × R3 ⇀ T

asm → ∞. ut

Proof of Proposition 2.4. Without loss of generality we may supposeQ = Cn := [0,1]n.
We then modify the proof of Theorem 2.1 as follows.

Let Q̃m,a denote the partition ofCn given by the family of alln-rectangles andn-
cubesQ with boundary contained in the(n − 1)-grid C(n−1)

m,a or in the boundary ofCn,
i.e. ∂Q ⊂ C

(n−1)
m,a ∪ ∂Cn. More precisely,̃Qm,a contains all then-cubes ofQm,a plus a

family of n-rectangles̃Q, with sides parallel to the coordinate axes, which are contained
in Cn and intersect the boundary ofCn. We may and do choosea(m) so that (2.3) holds,
with c̃(n) = 2n, and eachn-rectangle ofQ̃m,a is in generic position with respect toT .
For everyn-rectangleQ in Q̃m,a and every(n − 1)-faceF of the boundary ofQ, we
apply Proposition 2.4, in dimensionn− 1, and define the sequenceuFk : F → S2 so that

in particular (2.5) holds. If̃Q(n−1)
m,a denotes the(n − 1)-skeleton ofQ̃m,a , we then define

the continuous sequencevk :
⋃
Q̃(n−1)
m,a → S2 as in (2.6), so that (2.7) holds for every

n-rectangleQ of Q̃m,a , the graphGvk has no boundary,∂Gvk = 0, and from (2.3) and
(2.5),

sup
k

D(vk,
⋃
Q̃(n−1)
m,a ) ≤ 2̃cn−1mnD(T , Cn × S2)+ D(∂T , ∂Cn × S2). (2.16)

As a consequence, the assertion of Proposition 2.5 holds true for everyn-rectangleQ ∈

Q̃m,a . Then, similarly to Theorem 2.1 we extendvk to a mapU (Q)k in the interior of each

elementQ of Q̃m,a . More precisely, ifQ is ann-rectangle ofQ̃m,a which intersects the
boundary ofCn, since the vectora(m) is chosen in [1/4m,3/4m]n, thenQ has sides of
length 1/m or between 1/4m and 3/4m. As a consequence,Q is bilipschitz homeomor-
phic to then-cubeQm := [0,1/m]n for some affine bijective functionψQ : Q → Qm

with Lip ψQ ≤ 4 and Lipψ−1
Q ≤ 3/4. Therefore, ifŨ (Q)k : Qm → S2 is defined as in

(2.10) withṽk(x) := vk(ψ
−1
Q (x)) for x ∈ ∂Qm, whereϕk ∈ W1,2(Qm, S

2) is a continu-

ous extension of̃vk|∂Qm , we setU (Q)k (x) := Ũ
(Q)
k (ψQ(x)). Since

⋃
Q̃m,a = Cn, we now

defineU (m)k : Cn → S2 byU (m)k (x) := U
(Q)
k (x) if x ∈ Q for someQ ∈ Q̃m,a . If we take

δ = δ(m, vk) > 0 suitably small in (2.10), with limk→∞ δ(m, vk) = 0 for everym, it is
not difficult to show that everyU (m)k : Cn → S2 is a continuous map in cart2,1(Cn, S2)

with

sup
k

D(U (m)k , Cn) ≤ 2c(n)D(T , Cn × S2)+
1

m
+ ĉ(n)

1

m
D(∂T , ∂Cn × S2)
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for eachm, where againc(n) := 2 c̃n−1 n
2/(n−2) and ĉ(n) is an absolute constant. Then

for m sufficiently large

sup
k

D(U (m)k , Cn) ≤ 4c(n)D(T , Cn × S2)

and by closure-compactnessG
U
(m)
k

⇀ Tm ask → ∞ weakly inDn,2(Cn × S2) for some

Tm ∈ cart2,1(Cn×S2). Finally, similarly to Proposition 2.6 we show thatTm ⇀ T weakly
in Dn(Cn × S2) asm → ∞, so that by a diagonal procedure we obtain the assertion with
c̃n := 4c(n) = 2cn. ut

3. Mappings into manifolds

In this section we extend Theorem 2.1 to a wide class of target manifoldsY of dimension
larger than or equal to 2.

We will consider any smooth oriented Riemannian manifoldY of dimensionM ≥ 2,
isometrically embedded inRN for someN ≥ 3. As in Sec. 1, we assume thatY is com-
pact, connected, without boundary and that its integral 2-homology groupH2(Y,Z) has
no torsion. Moreover, we shall also assume that the Hurewicz homomorphismπ2(Y) →

H2(Y,Q) is injective. We observe that, by the Hurewicz theorem [7], if in particularY is
1-connected, i.e.,π1(Y) = 0, then the last condition actually follows from the others.

Theorem 3.1. Let T ∈ cart2,1(Bn × Y), n ≥ 2. Then there exists a sequence of smooth
mapsuk : Bn → Y such thatGuk ⇀ T weakly inDn,2(Bn × Y) and

sup
k

D(uk, Bn) ≤ cn D(T , Bn × Y) < ∞,

wherecn > 0 is an absolute constant.

We notice that our result does not answer the problem, raised in [1], whether every
u ∈ W1,2(Bn,Y) is the weak limit inW1,2(Bn,Y) of a sequence of smooth maps
uk : Bn → Y.

Proof of Theorem 3.1.Since the result is true forn = 2 by Theorem 4.1, it suffices to
adapt Theorem 2.1, and therefore the inductive argument based on Proposition 2.4, with
Y, RN , weak convergence and boundary inDn,2 instead ofS2, R3, weak convergence
and boundary inDn, respectively, taking account of the following facts. Proposition 2.4
holds forn = 2 by Corollary 4.2. Similarly to the case of normal currents, the slice (2.2)
is well defined in cart2,1(P (t, i)×Y). Moreover, by definition of the class cart2,1(Cn,Y),
by the structure of 2-dimensional currents in cart2,1 and by a slicing argument, we may
again choosea(m) so that eachn-cubeQ of Qm,a is in generic position with respect
to T . ThenT (n−1)

m,a is well defined and (2.3) holds. In Proposition 2.5, to prove thatvk|∂Q
is homotopic to a constant map inY, since by assumption the Hurewicz homomorphism
π2(Y) → H2(Y,Q) is injective, it suffices to show that for every closed 2-formω in Y, or
in a basis ofZ2(Y), we haved(vk|∂Q#ω) = 0. This follows from the same computation.
In fact, (2.7) holds again, where∂TQ is by (2.1) the boundary, inDn,2 sense, of the
Cartesian currentTQ ∈ cart2,1(Q× Y). Since for every(n− 4)-form η ∈ Dn−4(∂Q) the
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formπ#dη∧ π̂#ω is bothdx-closed anddy-closed, we obtain∂TQ(π#dη∧ π̂#ω) = 0 and
by weak convergence inDn,2 the assertion. As to Proposition 2.6, by (2.12) we find that
D(G

U
(Q)
k

, {‖x − p‖ < δ}) → 0. Since the maph does not move the vertical directions,

the homotopy formula holds again. Moreover,ψ#TQ = 0 in Dn−2(Cn × Y) for n ≥ 3,
since it can take nonzero values only on forms with more than two differentials in the
vertical direction, hence (2.15) holds inDn,2, where

‖Rm‖D ≤
c

m
D(T , Cn × S2) → 0

by (1.5). This yields againTm − T
⋃
Qm,a × RN ⇀ 0 in Dn,2(Cn × Y) and hence

Theorem 3.1. Finally, Proposition 2.4 follows from an adaptation of Theorem 3.1 similar
to the one in Sec. 2. ut

4. A strong density result

In this section we prove the following strong density result for the Dirichlet energy of
maps from 2-dimensional domains into general target manifolds. Compare Sec. 4.1.2 in
[6, vol. II] for the caseY = S2. As before,C2 := ]0,1[2, the unit open square inR2.

Theorem 4.1. Letn = 2. LetY be a smooth, compact, connected, oriented Riemannian
manifold of dimensionM ≥ 2, isometrically embedded inRN , N ≥ 3. Assume that the
integral2-homology groupH2(Y,Z) has no torsion. Then for everyT ∈ cart2,1(C2

× Y)
there exists a sequence of smooth mapsuk : C2

→ Y such thatGuk ⇀ T weakly in
D2(C2

× Y) and
lim
k→∞

D(uk, C2) = D(T , C2
× Y). (4.1)

As a consequence, if the boundary ofT coincides with the graph of aW1,2 map, we
obtain the following

Corollary 4.2. Under the hypotheses of Theorem4.1, if ∂T = Gϕ for some function
ϕ ∈ W1,2(∂C2,Y), then there exists a sequence of continuous mapsuk : C2

→ Y, with
{uk} ⊂ cart2,1(C2,Y) and∂Guk = ∂T , henceuk|∂C2 = ϕ, such thatGuk ⇀ T weakly in

D2(C2
× Y) and(4.1) holds.

We recall by Sec. 1 that everyT ∈ cart2,1(C2
× Y) has the form

T = GuT +

I∑
i=1

δxi × Ci + ST ,sing (4.2)

for somexi ∈ C2, where the nontrivial 2-cyclesCi are of spherical type (cf. Definition
1.1), andST ,sing is a completely vertical, homologically trivial, i.m. rectifiable current
supported on a set not containing{xi} × Y, i = 1, . . . , I ; moreover

D(T ) =
1

2

∫
C2

|DuT |
2 dx +

I∑
i=1

M(Ci)+ M(ST ,sing).
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Proposition 4.3 (Approximation of spherical cycles).Letu be a smooth map fromB2

intoY. LetC ∈ Z2(Y) be a2-cycle of spherical type. Then there exist a sequence{uk} of
smooth maps fromB2 into Y and a sequence of radiiδk ↘ 0 such thatuk = u outside
B2
δk

andGuk ⇀ Gu + δ0 × C weakly inD2(B
2
× Y) with

lim
k→∞

D(uk, B2) = D(u, B2)+ M(C).

Proposition 4.4 (Approximation of the singular vertical part). Under the hypotheses
of Theorem4.1, if (4.2) holds, then for every smooth mapu fromC2 intoY there exists a
sequence{uh} of smooth maps fromC2 into Y such thatGuh ⇀ Gu + ST ,sing weakly in
D2(C2

× Y) and

lim
h→∞

D(uh, C2) = D(u, C2)+ M(ST ,sing).

We postpone the proof of these results and first prove Theorem 4.1 and Corollary 4.2.

Proof of Theorem 4.1.Sincen = 2, by Schoen–Uhlenbeck’s density theorem [9] we
can find a sequenceuk : C2

→ Y of smooth maps such thatuk → uT strongly in
W1,2(C2,Y). On small disks around eachxi and contained inC2, we first apply Propo-
sition 4.3 to eachuk and find a sequence of smooth maps{uk,h}h from C2 into Y and a
sequence of radiiδk,h ↘ 0 ash → ∞ such thatuk,h = uk outsideB2

δk,h
(xi),

Guk,h ⇀ Guk +

I∑
i=1

δxi × Ci

weakly inD2(C2
× Y) and

lim
h→∞

D(uk,h, C2) = D(uk, C2)+

I∑
i=1

M(Ci).

Secondly, we apply Proposition 4.4 to eachuk,h and find a sequence{uk,h,l}l of smooth
maps fromC2 intoY such thatGuk,h,l ⇀ Guk,h +ST ,sing weakly inD2(C2

×Y) asl → ∞

and

lim
l→∞

D(uk,h,l, C2) = D(uk,h, C2)+ M(ST ,sing).

The claim follows by a diagonal procedure. ut

Proof of Corollary 4.2. Sinceϕ is Hölder continuous in∂C2, it suffices to apply Schoen–
Uhlenbeck’s density theorem requiring in particular that∂Guk = Gϕ . Moreover, since the
pointsxi in (4.2) are distant from the boundary ofC2, we apply Proposition 4.3 requiring
thatB2

δk,h
(xi) ⊂⊂ C2, so that in particularuk,h coincides withuk in a small neighborhood

of ∂C2. Finally, since in the proof of Proposition 4.4 we modify the functionsuk,h near
points which have positive distance from the boundary ofC2, the functionsuk,h,l coincide
with uk,h in a small neighborhood of∂C2, whence∂Guk,h,l = Gϕ , as required. ut

To prove Proposition 4.3 we make use of the following result.
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Proposition 4.5. LetC ∈ Z2(Y) be a2-cycle of spherical type andP ∈ Y be a given
point. Then there exists a sequence of Lipschitz functionsfk : B2

→ Y such thatfk|∂B2

≡ P , fk#[[ B2 ]] ⇀ C weakly inD2(Y) and

lim
k→∞

D(fk, B2) = M(C).

We postpone its proof and give

Proof of Proposition 4.3. If P := u(0), we denote by(U, ϕ) a local chart centered atP .
More precisely, letU be a relatively open and connected subset ofY, containingP , and
let ϕ : U → V be a bilipschitz homeomorphism ofU onto an open subsetV of RM with
ϕ(P ) = 0; finally let r > 0 be such thatu(B2

r ) ⊂ U . We define, fork ∈ N andδ ∈ (0, r),

uk,δ(x) :=


u(x) if δ < |x| < 1,

vδ(x) if δ/2 ≤ |x| ≤ δ,

fk(2x/δ) if |x| < δ/2,

wherefk is given by Proposition 4.5, withP = u(0), and

vδ(x) := ϕ−1
((

2

δ
|x| − 1

)
· ϕ ◦ u

(
δ
x

|x|

))
.

Now, sincevδ(x) = u(x) for |x| = δ andvδ(x) ≡ ϕ−1(0) = P for |x| = δ/2, it follows
thatuk,δ is Lipschitz continuous. Moreover by Proposition 4.5 and a change of variables

D(uk,δ, B2
δ/2) = D(fk, B2) → M(C)

ask → ∞, so that the claim holds if we show that

lim inf
δ→0+

D(vδ, B2
δ \ B2

δ/2) = 0, (4.3)

by takinguk := uk,δk for a suitable sequenceδk ↘ 0. Now we estimate

D(vδ, B2
δ \ B2

δ/2) ≤ c‖Dϕ−1
‖

2
∞

(
‖ϕ ◦ u‖2

∞,∂B2
δ

+ ‖Dϕ‖
2
∞ · δ

∫
∂B2

δ

|Dτu|
2 dH1

)
,

wherec > 0 is an absolute constant andτ is the tangential direction to∂B2
δ . By continuity

we find‖ϕ ◦ u‖
∞,∂B2

δ
→ 0 asδ → 0+. Moreover, ifF(δ) :=

∫
∂B2

δ
|Dτu|

2 dH1, then by
the coarea formula [3], ∫ r

0
F(δ) dδ ≤

∫
B2
r

|Du|2 dx < ∞,

so thatF is a nonnegative function inL1(0, r). As a consequence, lim infδ→0+ δF (δ) = 0
and then (4.3) holds, as required. ut
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Remark 4.6.For future use, we set

Yε := Uε(Y),

whereUε(A) := {y ∈ RN | dist(y,A) < ε} is theε-neighborhood ofA ⊂ RN , and we
observe that sinceY is smooth, there existsε0 > 0 such that for 0< ε < ε0 the nearest
point projection ofYε ontoY is a well defined Lipschitz map with Lipschitz constant
Lε → 1+ asε → 0+.

Proof of Proposition 4.5. We divide the proof into four steps. According to Definition
1.1,C − Z = ∂R andZ = ϕ#[[ S2 ]]. First, we approximateC, Z andR with polyhedral
chainsCε, Zε andRε so that (4.5) holds for some Lipschitz functionφε of S2; secondly,
we find a Lipschitz mapfε with fε#[[ S2 ]] = Cε; then we show that we can choosefε so
that in particular its mapping area is equal to the mass ofCε; finally, we projectfε onto
Y and prove the assertion by means of Morrey’sε-conformality theorem.

Step 1.We first apply Federer’s strong approximation theorem [3, 4.2.20] toC and find,
for everyε > 0, an integral polyhedral cycleCε in RN and aC1-diffeomorphismψε :
RN → RN such that

M(Cε − ψε#C) ≤ ε.

Moreover, Lipψε,Lip ψε−1
≤ 1 + ε and sptCε ⊂ Yε, so that in particular

Cε ⇀ C and M(Cε) → M(C) (4.4)

as ε → 0+. Now, sinceCε − ψε#C strongly converges to zero, forε small Cε is of
spherical type inYε. Then there exist̃Zε ∈ Z2(Yε) andR̃ε ∈ R3(Yε) such that

Cε − Z̃ε = ∂R̃ε and φ̃ε#[[ S2 ]] = Z̃ε

for some Lipschitz functioñφε : S2
→ Yε.

As in [11], regardingRN as the subspaceRN × {0R3} of RN+3, we now define
a Lipschitz homotopyhε : [0,1] × S2

→ RN+3, with hε(0, ·) ≡ φ̃ε, such that if
φε := hε(1, ·), thenφε is a Lipschitz embedding andZε := φε#[[ S2 ]] is polyhedral
(andhε#([[ 0,1 ]] × [[ S2 ]]) has arbitrarily small mass). Moreover, we may and do define
hε so thathε([0,1] × S2) ⊂ Ỹε, whereỸε := Y2ε × R3, and sptZε ∩ sptCε = ∅.

Set nowTε := R̃ε − hε#([[ 0,1 ]] × [[ S2 ]]). Since∂hε#([[ 0,1 ]] × [[ S2 ]]) = Zε − Z̃ε,
we find thatTε is an i.m. rectifiable current with compact support iñYε and polyhedral
boundary

∂Tε = Cε − Zε.

As a consequence of [3, 4.2.19], we find an integral currentSε ∈ R4(RN+3), with com-
pact support, and aC1-diffeomorphismgε : RN+3

→ RN+3 such that

Rε := gε#Tε − ∂Sε

is polyhedral,M(Sε) + M(∂Sε) ≤ ε, sptSε ⊂ Uε(sptTε), Lip gε,Lip g−1
ε ≤ 1 + ε and

gε(x) = x if x ∈ spt∂Tε. Then, since spt∂Tε = sptCε ∪ sptZε and sptCε ∩ sptZε = ∅,
we finally infer that

∂Rε = gε#∂Tε = Cε − Zε and φε#[[ S2 ]] = Zε. (4.5)



Density results for the Dirichlet energy 111

Step 2.By adapting the argument in [11], we construct a suitable Lipschitz homotopy
Hε : [0,1] × S2

→ Ỹε (see (4.7)), withHε(0, ·) ≡ φε, such that ifϕε := Hε(1, ·), then

ϕε#[[ S2 ]] = Cε.

To this end, let
∑r
i=1 Si be a simplicial decomposition ofRε, that is, a triangulation ofRε

into oriented 3-simplicesSi such that any twoSi ’s that do not coincide either are disjoint
or intersect along a common lower-dimensional edge. Sinceφε is a Lipschitz embedding,
it satisfies:

There is some simplicial decomposition1 of S2 such thatφε maps each
curvilinear 2-simplexD of1 bijectively onto a 2-face of one of theSi ’s. (4.6)

Now, choose a 3-simplex, sayS1, one of whose faces isφε#[[ D ]] for someD of 1. Then
clearly there is a Lipschitz homotopyh(1)ε : [0,1] × S2

→ Ỹε, with h(1)ε (0, ·) ≡ φε, for
whichh(1)ε (t, x) = φε(x) for everyt ∈ [0,1] if x /∈ D, and such that ifϕ(1)ε := h

(1)
ε (1, ·),

thenh(1)ε sweeps outS1 once, with the right orientation, so thath(1)ε# ([[ 0,1 ]]×[[ S2 ]]) = S1
and hence by (4.5),

ϕ
(1)
ε# [[ S2 ]] = −∂

r∑
i=2

Si + Cε.

Moreover, by taking the barycentric subdivision ofD we defineh(1)ε so thatϕ(1)ε satisfies
(4.6). Finally, iterating the processr times, and gluing together the homotopiesh

(i)
ε for

i = 1, . . . r, we defineHε as required. In particular, in view of (4.6),

There is a simplicial decomposition ofS2, say1̃, such thatϕε maps
each curvilinear 2-simplexD of 1̃ bijectively onto a 2-face of the
2-skeleton ofTε. (4.7)

Step 3.We construct a Lipschitz mapgε : S2
→ Ỹε such thatgε takes the given valueP

and mapsS2 intoCε with mapping area equal to the mass ofCε, i.e.,

gε#[[ S2 ]] = Cε and A(gε, S
2) = M(Cε). (4.8)

By (4.7) let {D̃i} be a subfamily of the simplices of̃1 such thatϕε maps each̃Di bi-
jectively onto a 2-face ofCε (with multiplicity and orientation), so that if̃W :=

⋃
D̃i ,

then
gε#[[ W̃ ]] = Cε and A(gε, W̃ ) = M(Cε).

For everyi, letDi be the 2-simplex obtained by contracting̃Di from its barycenter with
homothetic factor 1/2, so that dist(Di1,Di2) > 0 if i1 6= i2. Finally, letW :=

⋃
Di . We

first definegε on eachDi by contractingϕε|D̃i from the barycenter of̃Di . Then, since the
mapping area is invariant under reparametrizations of the domain, (4.8) clearly holds if
we are able to find a Lipschitz extension ofgε to the whole 2-sphere so that the image of
gε|S2\W is 1-dimensional.

To do this, we first make a list of the 1-simplices of the 1-skeleton ofCε, each one
with a fixed orientation. Then, for everyi, we label each 1-faceI of the boundary ofDi
with ±j , according to the property thatgε mapsI , with the orientation induced byDi ,
onto thej th 1-simplex ofCε with orientation±.
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Let nowCkε , k=1, . . . , l, be the connected components ofCε, so thatCε=
∑l
k=1C

k
ε ,

∂Ckε = 0, M(Cε) =
∑l
k=1 M(Ckε ) and sptCkε is connected. At the first step, we consider

the simplicesDi corresponding to the faces ofC1
ε , sayD1, . . . , Dm. Possibly reordering

theDi ’s, for everyi = 1, . . . , m−1 we connectDi withDi+1 by a rectifiable arcγi with
suitably chosen initial and final pointsIPi andFPi in the 0-skeleton ofDi andDi+1,
respectively, so thatgε(IPi) = gε(FPi), the interior ofγi lies inS2

\W , andγi does not
intersectγj for j = 1, . . . , i − 1. Also, we slightly modifygε on theDi ’s so that it is
constant near the end points ofγi . Then, by taking a small tubular neighborhood0i of γi
in S2, we extendgε on0i as the constant map equal togε(IPi) = gε(FPi).

As a consequence, ifO1 :=
⋃m
i=1(Di ∪ 0i), with 0m = ∅, then

(i) O1 has positive distance from each of the remaining simplicesDi ;
(ii) gε#[[ O1 ]] = C1

ε andA(gε,O1) = M(C1
ε ).

Actually, since∂C1
ε = 0, andO1 is a topological disk inS2, by using the labels±j of the

1-faces of theDi ’s, everything can be done in such a way that

(iii) gε|∂O1 is contractible.

By induction on the connected components ofCε, for k = 2, . . . , l, at thekth step we
repeat the previous argument forCkε , defininggε on Ok so that (i), (ii) and (iii) hold,
with k instead of 1. Moreover, we define the arcsγi so that in particular the0i ’s do not
intersect any of theOj ’s for j = 1, . . . , k − 1. Then we can also require that

(iv) Ok has positive distance fromOj , for everyj = 1, . . . , k − 1.

As a consequence, by (iii) and (iv) we can find for everyk a small neighborhood̃Ok of
Ok in S2, with dist(Õk1, Õk2) > 0 if k1 6= k2, and a Lipschitz extension ofgε|Ok to Õk, so
that the image of̃Ok \Ok is a 1-dimensional subset of̃Yε andgε takes a constant value,
sayPk, in the boundary of̃Ok.

Now, for everyk = 1, . . . , l−1, we connect one point of the boundary ofÕk with one
point of the boundary of̃Ok+1 by a rectifiable arc̃γk such that the interior of̃γk lies inside
S2

\
⋃l
k=1 Õk andγ̃k does not intersect any of thẽγj for j = 1, . . . , k − 1. Then define

gε on each̃γk by parametrizing a Lipschitz continuous arc connecting the pointsPk and
Pk+1, so thatgε(γ̃k) ⊂ Ỹε. As before, we take inS2 small neighborhoodŝOk of theÕk ’s,
and0̃k of the γ̃k ’s (with 0̃l = ∅), so that dist(Ôk1, Ôk2) > 0 and dist(0̃k1, 0̃k2) > 0 if
k1 6= k2. Since the arc connectingP1 with Pl via theγ̃k ’s is contractible, we find a Lip-
schitz extension ofgε toO :=

⋃l
k=1(Ôk∪0̃k) such that the image ofO\

⋃l
k=1((Ôk∪0̃k)

\ Õk) is a 1-dimensional subset of̃Yε andgε takes the given constant valueP in the
boundary ofO. Finally setgε ≡ P onS2

\O.

Step 4.By Step 3, fixQε ∈ S2 such thatgε(Qε) = P . Let ϕε : B2
→ S2 be a Lipschitz

function between the unit disk and the 2-sphere such thatϕε|∂B2 ≡ Qε andϕε maps
the interior ofB2 bijectively ontoS2

\ {Qε}, so thatϕε#[[ B2 ]] = [[ S2 ]]. Of course, it
can be obtained by first askingϕε|∂B2 ≡ South Pole, and then by rotatingS2. Moreover,
let 5 : RN+3

→ RN be the orthogonal projection onto the firstN coordinates and
5ε : Y2ε → Y be the nearest point projection (see Remark 4.6).
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Setfε := 5ε ◦5 ◦ gε ◦ ϕε : B2
→ Y; for ε > 0 smallfε is a Lipschitz continuous

function, withfε|∂B2 ≡ P , and by (4.8) and (4.4), since(5ε ◦5)#C = C,

fε#[[ B2 ]] = (5ε ◦5 ◦ gε)#[[ S2 ]] = (5ε ◦5)#Cε ⇀ C

weakly inD2(Y), asε → 0+. Moreover, since Lip5 = 1, we also have

A(fε, B
2) = A(5ε ◦5 ◦ gε, S

2) ≤ (Lip5ε)
2A(gε, S

2). (4.9)

Finally, we apply Morrey’sε-conformality theorem [8, Thm. 2.1] and define an orienta-
tion preserving diffeomorphismφε : B2

→ B2 such that

D(fε ◦ φε, B
2) ≤ (1 + ε)A(fε ◦ φε, B

2) = (1 + ε)A(fε, B
2).

Then, by (4.9), (4.8) and (4.4), since Lip5ε → 1+ asε → 0+ (see Remark 4.6), we
obtain limε→0 D(fε ◦ φε, B

2) = M(C) and then the assertion. ut

Proof of Proposition 4.4. We divide it in four steps.

Step 1.We first show that there exists a sequence{Sj } of i.m. rectifiable cycles inC2
× Y

such thatSj ⇀ ST ,sing weakly as currents,M(Sj ) → M(ST ,sing) and eachSj has the
following structure:

Sj :=
Ij∑
k=1

δ
p
j
k

× ∂R
j
k

for some distinct pointspjk ∈ C2 and for some i.m. rectifiable currentsRjk ∈ R3(Y), with

∂R
j
k ∈ R2(Y).
To this end, fix 0< ρ � 1 and let 0= t0 < t1 < · · · < tm < tm+1 = 1 be such

that |tk − tk−1| < ρ for everyk = 1, . . . , m + 1. Also, letdi(x, y) := xi , x = (x1, x2),
y ∈ RN . We recall from Sec. 1 thatST ,sing(ω) 6= 0 only on formsω ∈ D2(C2

× Y)
such thatdyω(2) 6= 0. Then by slicing theory we infer that〈ST ,sing, di, t〉 = 0, and hence
∂(ST ,sing {di < t}) = 0 for a.e.t and for i = 1,2. As a consequence, we may and
do choose thetk ’s so that〈ST ,sing, d1, tk〉 = 0 and hence∂(ST ,sing {d1 < tk}) = 0 for
everyk. If pρ : C2

× RN → C2
× RN is the map given bypρ(x, y) := (qρ(x1), x2, y),

where

qρ(t) :=

{
min{tk | tk > t} if t < tm,

tm if t ≥ tm,

we define

pρ#ST ,sing

:= lim
j→∞

pρ#(ST ,sing {x ∈ C2
| |x1

− tk| > rj ∀ k = 1, . . . , m} × RN ), (4.10)

whererj ↘ 0 is such that∂(ST ,sing {x ∈ C2
| |x1

− tk| < rj }×RN ) = 0 for all k andj .
Then, since|Dpρ | ≤ 1 a.e., by Federer–Fleming’s closure-compactness theorem the limit
in (4.10) exists and is an i.m. rectifiable current inR2(C2

× Y) with M(pρ#ST ,sing) ≤

M(ST ,sing). Moreover, sethρ(t, x, y) := tpρ(x, y)+ (1− t) (x, y), t ∈ [0,1], and define
hρ#([[ 0,1 ]] × ST ,sing) in a way similar to (4.10). SinceM(hρ#([[ 0,1 ]] × ST ,sing)) ≤

ρM(ST ,sing), we infer thatpρ#ST ,sing ⇀ ST ,sing asρ → 0+. By slicing a second time
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pρ#ST ,sing with respect tod2, and arguing in a similar way, by a diagonal procedure we
define a sequenceSj converging toST ,sing weakly with the mass, such that

sptSj ⊂

( Ij⋃
k=1

{p
j
k }

)
× Y .

Finally, due to the trivial homology ofST ,sing, by weak convergence, forj sufficiently
largeSj (ω) is nonzero only on formsω ∈ D2(C2

×Y) such thatdyω(2) 6= 0. We then infer

that each componentSj {p
j
k }×RN of Sj has the formδ

p
j
k

×∂R
j
k for someRjk ∈ R3(Y)

with ∂Rjk ∈ R2(Y), as required.

Step 2.Fix a 3-dimensional integral currentR in Y, i.e., an i.m. rectifiable currentR ∈

R3(Y) with ∂R ∈ R2(Y), and a pointP ∈ Y. We show the existence of a sequence of
Lipschitz functionsfh : B2

→ Y such thatfh|∂B2 ≡ P , fh#[[ B2 ]] ⇀ ∂R weakly in
D2(Y) and

lim
h→∞

D(fh, B2) = M(∂R). (4.11)

To this end, as in Step 1 of Proposition 4.5, we first apply Federer’s strong approximation
theorem and find, for everyε > 0, a 3-dimensional i.m. polyhedral chainRε in RN and a
C1-diffeomorphismψε : RN → RN such that

M(Rε − ψε#R)+ M(∂Rε − ∂ψε#R) ≤ ε.

Moreover, Lipψε,Lip ψε−1
≤ 1 + ε and sptRε ⊂ Yε, whereYε is defined in Remark

4.6, so that in particular

Rε ⇀ R, M(Rε) → M(R) and M(∂Rε) → M(∂R) (4.12)

as ε → 0+. Let nowR1
ε be the first connected component ofRε and let{Di} be the

3-simplices of a triangulation ofR1
ε . By an argument similar to Step 2 of Proposition

4.5, starting from the constant mapϕ : S2
→ Yε, ϕ ≡ Q for some vertexQ in the

0-skeleton ofR1
ε , and covering with multiplicity and orientation each one of theDi ’s, we

can define a Lipschitz functionϕ1 : S2
→ Yε such thatϕ1#[[ S2 ]] = ∂R1

ε andϕ1(S
2) is

2-dimensional. Moreover, as in Step 3 of Proposition 4.5, we can defineϕ1 so that the
mapping areaA(ϕ1, S

2) equalsM(∂R1
ε ). ConnectingR1

ε , by means of a loop inYε, with
the second componentR2

ε of Rε, repeating the previous argument for each component of
Rε, and finally connecting the last component ofRε with the given pointP , we define a
Lipschitz functionφε : S2

→ Yε such that

φε#[[ S2 ]] = ∂Rε, (4.13)

φε(S
2) is 2-dimensional,φε(Qε) = P for some pointQε ∈ S2, and the mapping area

satisfies
A(φε, S

2) = M(∂Rε). (4.14)

We then proceed as in Step 4 of Proposition 4.5. More precisely, letϕε : B2
→ S2 be a

Lipschitz function from the unit disk to the 2-sphere such thatϕε|∂B2 ≡ Qε andϕε maps
the interior ofB2 bijectively ontoS2

\ {Qε}, so thatϕε#[[ B2 ]] = [[ S2 ]]. Moreover, let
5ε : Yε → Y be the nearest point projection.
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Setfε := 5ε ◦ φε ◦ ϕε : B2
→ Y. For ε > 0 smallfε is a Lipschitz continuous

function, withfε|∂B2 ≡ P , for which by (4.13) and (4.12), since5ε#∂R = ∂R,

fε#[[ B2 ]] = (5ε ◦ φε)#[[ S2 ]] = 5ε#∂Rε ⇀ ∂R

weakly inD2(Y) asε → 0+. Moreover

A(fε, B
2) = A(5ε ◦ φε, S

2) ≤ (Lip5ε)
2A(φε, S

2)

and hence, by (4.14) and by Morrey’sε-conformality theorem, modulo composing with
an orientation preserving diffeomorphism ofB2 onto itself, we obtain

D(f̃ε, B2) ≤ (1 + ε)A(fε, B
2) ≤ (1 + ε)(Lip5ε)

2M(∂Rε)

and finally (4.11), since Lip5ε → 1+ asε → 0+ (cf. Remark 4.6).

Step 3.For everyp ∈ C2 and every 3-dimensional integral currentR in Y, we prove the
existence of a sequence{uh} of smooth maps fromC2 into Y such thatGuh ⇀ Gu +

δp × ∂R weakly inD2(C2
× Y) and

lim
h→∞

D(uh, C2) = D(u, C2)+ M(∂R).

Moreover, we show thatuh can be chosen so thatuh = u outsideB2
δh
(p), for a sequence

of radii δh ↘ 0.
Let P := u(p), (U, ϕ) be a local chart centered atP , so thatϕ(P ) = 0, andr > 0

be such thatB2
r (p)

2
C andu(B2

r (p)) ⊂ U (cf. Proposition 4.3). We define, forh ∈ N and
δ ∈ (0, r),

uh,δ(x) :=


u(x) if |x − p| > δ,

vδ(x) if δ/2 ≤ |x − p| ≤ δ,

fh(2(x − p)/δ) if |x − p| < δ/2,

wherefh is given by Step 2 and

vδ(x) := ϕ−1
((

2

δ
|x − p| − 1

)
· ϕ ◦ u

(
p + δ

x − p

|x − p|

))
.

Similarly to Proposition 4.3, it is not difficult to show thatuh,δ is Lipschitz continuous,
by (4.11) and a change of variables

D(uh,δ, B2
δ/2(p)) = D(fh, B2) → M(∂R)

ash → ∞ and
lim inf
δ→0+

D(vδ, B2
δ (p) \ B2

δ/2(p)) = 0,

which yields the assertion, by a diagonal procedure.

Step 4.We fix j and prove Proposition 4.4 withSj in place ofST ,sing, where theSj ’s are
as in Step 1.

To this end, we iterate the argument of Step 3 working by induction onk = 1, . . . , Ij .
More precisely, we first apply Step 3 withp = p

j

1 andR = R
j

1, obtaining a sequence
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{u
(1)
h } of smooth maps fromC2 into Y such thatG

u
(1)
h

⇀ Gu + δ
p
j

1
× ∂R

j

1 weakly in

D2(C2
× Y) ash → ∞ and

lim
h→∞

D(u(1)h , C
2) = D(u, C2)+ M(∂Rj1).

Recall thatu(1)h = u outsideB2
δ
(1)
h

(p
j

1) for some sequenceδ(1)h ↘ 0. Forh large enough

so thatpjk /∈ B2
δ
(1)
h

(p
j

1) for k = 2, . . . , Ij , we then repeat the argument withu = u
(1)
h ,

p = p
j

2 andR = R
j

2, to obtain a sequence{u(2,h)l } of smooth maps fromC2 into Y such

thatG
u
(2,h)
l

⇀ G
u
(1)
h

+ δ
p
j

2
× ∂R

j

2 weakly inD2(C2
× Y) asl → ∞ and

lim
l→∞

D(u(2,h)l , C2) = D(u(1)h , C
2)+ M(∂Rj2).

Moreover, sinceu(2,h)l = u
(1)
h outsideB2

δ
(2,h)
l

(p
j

2) for some sequenceδ(2,h)l ↘ 0 asl →

∞, by a diagonal procedure we define a sequence{u
(2)
h } of smooth maps fromC2 into Y

such that
G
u
(2)
h

⇀ Gu + δ
p
j

1
× ∂R

j

1 + δ
p
j

2
× ∂R

j

2

weakly inD2(C2
× Y) and

lim
h→∞

D(u(2)h , C
2) = D(u, C2)+ M(∂Rj1)+ M(∂Rj2).

Iterating in a similar way the argument onk = 3, . . . , Ij , and by a diagonal procedure,
due to the strong convergence in energy we construct for everyj a smooth sequence
{uh} : C2

→ Y such thatGuh ⇀ Gu + Sj weakly inD2(C2
× Y) and

lim
h→∞

D(uh, C2) = D(u, C2)+ M(Sj ).

Finally, since by Step 1 we haveSj⇀ST ,sing weakly as currents andM(Sj )→M(ST ,sing),
again by a diagonal procedure we obtain the claim. ut
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