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Abstract. Let) be a smooth oriented Riemannian manifold which is compact, connected, without
boundary and with second homology group without torsion. In this paper we characterize the se-
quential weak closure of smooth graphsafi x ) with equibounded Dirichlet energieB!" being

the unit ball inR”. More precisely, weak limits of graphs of smooth mags: B" — ) with
equibounded Dirichlet integral give rise to elements of the spacé b@t x ) (cf. [4], [B], [6]).

In this paper we prove that every eleméhin car-1(B" x ) is the weak limit of a sequende}

of smooth graphs with equibounded Dirichlet energies. Moreover, in dimensier?, we show

that the sequencéu;} can be chosen in such a way that the energyo€onverges to the energy

of T.

1. Notation and preliminary results

In this section we recall some facts from the theory of Cartesian currents with finite
Dirichlet energy. We refer ta_[6] andl[4] for proofs and details.

Let B" be the unit ball inrR” and let) be a smooth oriented Riemannian manifold of
dimensionM > 2. By the Nash theorem we can suppose Jhetisometrically embedded
in RN for someN > 3. We shall assume thatis compact, connected, without boundary
and that its integral 2-homology grouf2(), Z) has no torsion, so that>(Y, X) =
Hx(Y,Z) ® X for X = R, Q. Note that the last condition automatically holdg4f= 2.

D, p-currents. Every differentiak-formw e D" (B" xY) splits as a sum ="7_, 0®,
n = min(n, M), where then®’s aren-forms that contain exactly differentials in the
vertical) variables. We denote b"-2(B" x ) the subspace d" (B" x )) of n-forms
of the typew = Y"2_,w®, and byD, 2(B" x V) the dual space dP"2(B" x )). Every
(n, 2)-currentT € D, 2(B" x V) splits asT = Y"2_, T, whereT (w) = T (o™®). For
example, ifu € WH2(B", ), i.e.,u € WH2(B", RN) with u(x) € ) for a.e.x € B",
thenG, € D, 2(B" x )), where in an approximate senég, := (Id > u)z[ B"],
(Id < u)(x) := (x, u(x)) (cf. [6]).
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D-norm. Forw € D™2(B" x ) we set

(]
lollo = max{supw, / suplo® (x, y)[dx. / suplo@(x, y)| dx},
xy 141yl Bn y By
ITlp :=supT (@) | @ € D*2(B" x Y)), llwlp < 1}.
It is not difficult to show that|T ||p is a norm onT € D, 2(B" x V) | |T|lp < oo}.
Weak D, »-convergence.If {T;} € D, 2(B" x )), we say tha{T;} converges weakly in
Dp2(B" x V), Ty — T, if Ti(w) — T (w) for everyw € D2(B" x ). Now, the class
D,.2(B" x Y) is closed under weak convergence &nd|p is weakly lower semicontin-

uous. Moreover, if syp|| Tx lp < oo, then there is a subsequence which weakly converges
to someT € D, 2(B" x V) with ||T|p < oo.

Boundaries. The exterior differentiald splits into a horizontal and a vertical differential,

d =d, +d,. Clearlyd, T (w) := T (drw) defines a boundary opera@y : D, »(B" x Y)

— Dy—1,2(B" x ). Now, for anyw € D"~12(B" x Y), dyw belongs taD™2(B" x ))

if and only if dya)(z) = 0. Thend, T makes sense only as an element of the dual space of

2B x V) = {w e DT3B x V) | dyo® =0},

D-graphs. The study of weak limits of sequences of maps with equibounded Dirich-
let energy, minimization problems and concentration phenomenal (see [6]) drew the au-
thors of [5] to introduce the subclag¥graph(B” x )) given by the(n, 2)-currents

T € D, 2(B" x Y) with ||T||p < oo and such that

T =Gy, + St (1.1)

for some functionir € WL2(B", ) and someSy € D, 2(B" x V) with S7) = St(1)
= 0, i.e. St is completely vertical, so that

»T=0 onD"L2(B"xY), 8,T=0 onzZ" L2(B"x ).
They also showed that:

(i) the decompositior] (1}1) is unique;
(ii) weak limits in D, » of sequences of graphs of smooth maps: B* — ), with
equibounded Dirichlet energy, belongbegrapi(B"” x ));
(i) if T € D-grapi(B" x ), then in generadG,,, # 0, but

3G, =00nD" LB xY), 3G, (@?) =0if ©® =dn and spy C B"xY
and
39,Guy =00NZ"YY(B" x V), 9G,, = 3,G,, 0N Z"12(B" x Y);
in particular
3y ST(@?) = 0if 0@ = dn and spy C B"xY, 9,Sr =0onD""L2(B" x Y);

(V) IGuslp = llurllwrz = [T]lp, and consequentlySzlio < 2| T'|p;
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(v) D-graph(B" x ) is closed under weak convergenceli » with equibounded-
norm.

The 2-dimensional caself n = 2, obviouslyD, 2(B" x V) = Do(B2 x V) andaT
is the usual boundary of currents, wherd&6l') < ¢||T||p for some absolute constant.
Consequently, weak limits of smooth graphs with equibounded Dirichlet energy are inte-
ger multiplicity (briefly i.m.) rectifiable currents iR2(B? x ))), andD-graph(B? x ))) N
R2(B? x ) is closed under weak convergence with equibouridietrm.

It was proved in[[5] and [6] that ever§ in D-graph(B? x V) N'R2(B? x ))) decom-
poses as

1
T=Gu+Sr. Sr=)Y 8;xCi+Srsng (1.2)
i=1

wheres, is the Dirac mass at, x; € B2, C; € Z»()) are integral cycles with nontrivial
homology andSt sing is @ completely vertical, homologically trivial, i.m. rectifiable cur-
rent supported on a set not containiag} x V,i = 1, ..., I. More precisely, for every
Borel setA ¢ B2 we haved(SyL A x RV) = 0. Moreover, ifr : RZ2 x RN — R?
and7 : RZ x R¥Y — R" denote the orthogonal projections onto the first and the second
factor, respectively, then for any bounded Borel funcgion B2 we have

ST,sing(Tf#‘P A 7?#0) =0
for every elementd] in the second de Rham cohomology grcﬂﬁq()}). Finally,
17 singll ({x1, - .., x1} x V) =0,

| - II denoting the total variation. As a consequence, we fgvgng(w) # 0 only on
formsw € D?(B2 x V) such thatd,w® # 0. In particular, ify has dimension 2, then
Sr.sing = 0, whereas ify = $2, the unit 2-sphere i3, thenC; = z; [ $?] for some
integerz;.

Definition 1.1. We say that an integra2-cycle C € Z»())) is of spherical typsf its
homology class contains a Lipschitz image of Zhgpheres?; more precisely, if there
existZ € 2>()), R € R3(Y) and a Lipschitz functiog : 2 — ) such that

C—Z=0R and ¢4 §?] = 2.

Spherical cycles come into play since, as proved_In [5], [6] ifs in the sequential
weak closure of smooth graphs with equibounded Dirichlet energies, then@vesrpf
spherical type. This fact leads to the following

Definition 1.2. If n = 2, we denote bgarf-1(B?x ) the class of i.m. rectifiable currents
T in D-graph(B2 x ) which decompose as @ where theC;’s are of spherical type.

It turns out (see[[4],[5]) that c&t(B? x ) is closed under weak convergence, with
equibounded-norm, and contains the weak limits of sequences of smooth graphs with
equiboundedd-norm.

The n-dimensional case.As before, letr : R* x RY — R” denote the orthogo-
nal projection onto the first factor. Le® be an oriented 2-plane iR", and P, =
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P+ 27;12 t;v; the family of oriented 2-planes parallel &t = (11, ..., tp_2) € R" 72,
spanfvy, ..., v,—2) being the orthogonal subspace ko Similarly to the case of nor-
mal currents, for every" € D, 2(B" x ) with |T||p < oo, for H"2-a.e.t theslice
T Lz~ 1(P,) of T overz—1(P,) is a well defined current ifP>((B" N P;) x V) with finite
D-norm. Moreover, iff; — T with equibounded-norm, forH"~2-a.e.t, passing to a
subsequence we ha¥e L 7~1(P,) — T L ~1(P,) with equibounded-norm. Finally,
if T e D-graph(B" x)), for H"~2-a.e.r we havel L 7 ~1(P,) € D-grapi(B"NP,) x)).
Therefore in any dimensionthe following definition was introduced inl[4]:

Definition 1.3. We say thafl" is in car1(B" x )) if T e D-graphB” x ) and for
any 2-plane P and for H"~2-a.e.r the 2-dimensional current” Lz ~1(P,) belongs to
cartl((B" N P) x ).

It turns out that the class c&f(B” x )) is closed under weak convergence with equi-
boundedD-norm and, in cas@’ = $2, that the class cat(B" x $2) coincides with
D-graph(B" x $2), St.sing= 0 and

T =Gy, + L x [ $2]. (1.3)
whereLr € R,_»(B") is an i.m. rectifiable current.

Definition 1.4. We say that a Sobolev mape WL2(B", ) is in car1(B", ) if the
currentG,, associated to its graph is icar1(B" x ).

Therefore, @12 mapu is in car®1(B”, V) if its graph has no inner boundary, i.e.,
9,.G, =0 onD" 12(B"x ),  8,G,=0 onZ"L2(B" x ).

Remark 1.5.If u : B" — Y is a continuous map iW1-2(B", V), by a standard convo-
lution and projection argument it can be approximatet/ih-strong sense by a smooth
sequence i (B", V). This implies in particular that € car®1(B", ).

The Dirichlet energy in car'l. Denote by/, R"*¥ the space of-vectors inR"+™
Moreover, if G : R* — RM is a linear transformation, and with the same notation
G .= (G{)"’M is the associate@ x n)-matrix, we let

ij=1
M(G) = (e1+ Ge1) A -+ A (en + Gey) € N\, RMTM,
(e;)?_, being the canonical basis IR". Then M (G) determines the plane graph Gf

in R"*M and in fact orients such anplane. IfT € D-grapiB" x ))), we define the
Dirichlet density as the function of € J, & € A, R**™ given by

F(y.§) :=supg(®) | ¢ : \, R"M — Rlinear(M(G)) < 3G
for all linear mapsG : R" — T,)},

T,Y being the tangen¥-space tq) aty. The Dirichlet integral then extendsgraphs
T (cf. [6]) as

DGMz/ﬂ%ﬂMﬂm
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T being the Radon—Nikodym derivativil'/d || T ||p, and if {1.1) holds, one has
1 >
D(T) = 5/ |Dur|*dx +/ F(y, St)d|lSrllp. (1.4)
n Bn ><)i

In particular we have
Tl < eD(T) (1.5)
for some absolute constant= c¢(n). Finally, if A ¢ B" is a Borel set we define
D(T,AxY):=D(TLAxDY)

and, ifu € WL2(B",)),
D(u, A) = %f |Dul?dx = D(G,, A x )).
A

Apart from the case of energy minimizing currents ($ée [4]), # 3 we do not have an
explicit formula for the second term on the right hand sidg of| (1.4). However=f 2
and [1.2) holds, we have

1 1
D(T) =5 [ 1DurPdx + Y MC) -+ M(Srsng. (L6)
i=1

Finally, if Y = $2 and ) holds, we have in any dimension

D(T) = %/ |Dur|?dx + 4w M(L7). (1.7)

2. Mappings into the sphere

In this section we show that [y’ is the standard unit sphe in R3, then everyr in
carf1(B" x $?) can be approximated weakly as currents by smooth graphs with equi-
bounded Dirichlet energy.

Theorem 2.1. LetT e car®1(B" x §2), n > 2. Then there exists a sequence of smooth
mapsuy : B" — $? such thatG,, — T weakly inD, (B" x §2) and

supD(uy, B") < ¢, D(T, B" x §%) < oo,
k

wherec, > 0is an absolute constant.

Proof. By Remark[ 1.5 it suffices to construct the sequeficg in W2(B", R3) N
CO(B", $2). SinceB" is bilipschitz homeomorphic to the unit open cube
c" =10, 17,

we will prove the assertion faf € car1(C" x $2). Note that the assertion of Theorem
[27is true fom = 2 (see Sec. 4.1.2 f][6, vol. ll]). Moreover, using the same argument as
in Corollary[4.2 below, withy = 52, we have the following
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Proposition 2.2. Letn = 2and T e car®1(C? x §?) be such thabT = G, for some
functiong € W12(3C2, ). Then there exists a sequence of continuous mapg?2 —

§2, with {uz} C car1(C?, %) anddG,, = 9T, henceu; ;c2 = ¢, such thaG,, —~ T

weakly inD»(C2 x $2) and

Ii]r(n D(ug, C%) = D(T, C? x S?).

Let us fix some notation. I is a closedi-cube ofR” with sides parallel to the coordinate
axes, we will denote by ;) its j-dimensional skeleton. i) is contained in the unit open
cubeC”, andF is a j-face of Q(;), we will denote by

To:=TLQxR® and Tr:=TLF xR3
the restrictions of” € car1(C" x §2) to Q x R3 andF x R3, respectively. Also, we set

T;)Q = Z O‘FTLFXRs,
FGQ(n—l)

whereor = +1 according to the induced orientation @fonto its boundary. Finally, if
u € Wh2(Q, §?) is such thatyp € W2(3Q, $?), andF is a j-face of Q;), we define

G“Ié)Q = (|dl><1u‘3Q)#|[3Q]|, GM|F = (|dl><1u|F)#|[F]|.

Definition 2.3. We say thatQ is in generic positiorwith respect tor if for everyj =
1,...,n—1and everyj-faceF in Qj the restrictionTr is a j-dimensional current in
carP1(F x $2) and moreover for ever§-face F in Q1) the restrictionTr is the graph
G, of a Holder continuous map € WL2(F, §2).

We remark that by definition of the class &C" x $2), by the structure of 2-dimen-
sional currents in caftt and by a slicing argument, it follows that for a.e. choice of the
vectora € R" so thate + Q C C", then-cubea + Q is in generic position with respect
to T. In this case we also have

Tyg = 0Tp. (2.1)

We will work by induction on the dimension making use of the following result, Propo-
sition[2.4, which holds true if = 2 by Propositiofi 2]2. It will be used in dimensior- 1

to prove Theorerp 2|1 and will be finally proved in dimensioby an adaptation of The-
orem2.1.

Proposition 2.4. Let T e carf1(C" x $2) and Q be a closed:-cube ofC” in generic
position with respect t@'. Then there exists a sequenge: Q — 52 of continuous maps
in carf1(Q, §2) for which the following properties hold:

(i) foreveryk the boundaryG,, coincides with thén — 1)-dimensional graplG ., ,, ,
whereuy o is a continuous map inarf1(3 Q, $2);

(ii) for everyk and every(n — 1)-face F' of the boundary oD, the restrictionG,,,. of
G to F x R3 only depends on the restrictidf- of 7 to F x R3;

Uk|dQ
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(i) Gy, — To weakly inD,(Q x §?) ask — oo and
supD(ux. Q) <& D(Tp. Q x §%) < oo,
k

wherec, := 2c, > 0is an absolute constant.

LetnowT e car1(C"x S%),n > 3, and let(ey, . . ., e,) be the canonical basis Bf*. For
i =1,...,nandr € [0, 1], we denote byP (z, i) the restriction taC” of the hyperplane
containing the pointe; and orthogonal te;, i.e.,

P(t,i) ={xeC"|(x—te | ej))gn = 0}.
By slicing theory
TLP(t,i) x R = (T, d;, 1) € cartX(P(z,i) x §%) (2.2)
for a.e.r € [0, 1], where
di(x,y)i=x;, x=(x1,....,x) €eR", ye RS,

Form € N* anda = (a1, ..., a,) € [1/4m, 3/4m]" we denote b)C,S{';D the (n — 1)-
skeleton of the grid of” given by

n m—1
ci = P+ j/m.i.
i=1;=0

By (1.3) and[(L.]J), for everywe have

3/4m m—=1
/ > DT, di,t + j/m), P(t + j/m.i) x §?)dt
1

/4m - j=0
m—1
< Y D(T.{j/m <d; < (j+1/m}) =D(T,C" x §?).
j=0
Set
n m-—1
T =" N (T diai + j/m).
i=1 j=0

Then there exists a vecter = a(m) € [1/4m, 3/4m]" such thatT, d;,a; + j/m) €
carBl(P(a; + j/m, i) x §?) foreveryi € {1,...,n}andj € {0, ...,m — 1} and

D" D, Co Y x §%) < E(m)ym D(T, C" x §?), (2.3)

wherec¢(n) = n. Let now Q,, , denote the family of alk-cubesQ of side I/m with
boundary contained in th@ — 1)-grid C,(,’,f;l), i.e.0Q C c,&,’f;”, so that

U Qm,a =a(m) + [0, (m — 1)/m]n' (2-4)

By Definition[2.3 and the remark following it, taking edn) = 2» in (2.3), we may and
do choose:(m) so that eaclh-cubeQ of Q,, , is in generic position with respect fo.

For everyQ in Q,,, and every(n — 1)-face F of the boundary ofQ, we apply
Proposition 2.4, which is supposed to hold true in dimensieri, to the restrictio of
T to F. Then there exists a sequenge: F — $2 of continuous maps in c&rt(F, $2)
for which the following properties hold:
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(i) foreveryk the boundary’?Gukp coincides with thén — 2)-dimensional graph;ukpw,

whereu[ , - is a continuous map in c&rt(d F, $%);
(i) for every k and every(n — 2)-facel of the boundary ofF’, the restrictionGu[” of

Gyf,, 101 X IR3 only depends on the restrictidn of 7 to I x R3;
(ii) G,r — Tr weakly inD,_1(F x $2) ask — oo and

supD(ul’, F) < €,_1D(Tr, F x §?) < o0, (2.5)
k

wherec,_1 := 2¢,—1 > 0is an absolute constant.

If 9", denotes then — 1)-skeleton ofJ O, we now definey : | J QWY — 52

by setting
() =uf (x) if xeF (2.6)

for every(n — 1)-faceF of side I/m of somen-cube ofQ,, ,. Note that if F; and F» are
two (n — 1)-faces which intersect in a commaen — 2)-face !, by (i) and (ii) for every
k we havedG r, L1 x RS = —3G L1 x R3. Then{v;} is a well defined continuous

sequence suckh thanklaQ = 0 for ekveryQ in 9, , and
Gupe = Tro  IN Dy_1(30 x §?) (2.7)

ask — oo. In particular the graph of,, has no boundaryG,, = 0, and from[(2.8) and

23) .
supD(vi, U QW) < 26,_1mnD(T, C" x §2). (2.8)
k

We now wish to extendy to a mapU, defined in a homogeneous way in the interior

of eachn-cube Q of Q,, , minus a small sphere about the center where we wish to re-
move the singularity (se (2]10)). To remove the point singularities of the homogeneous
extension at the center of each cube, we make use of the following

Proposition 2.5. For & sufficiently large and for every-cubeQ € 9Q,, ,, we have
v e Wh2(Q, R% N C%Q, 52 | vjag = vjao) # 0.

Proof. It suffices to prove thaty ;o is homotopic to a constant map ¥f. Arguing as
in [2], we recall that the Hurewicz homomorphise: 72(52) — H>(S52, Q) is an iso-
morphism;72(52) and Ho(S2, Q) being respectively the homotopy group and the rational
homology group of order 2 af2. As a consequence, it suffices to show thatifauf-
ficiently large the pull-back viay ;o of the volume 2-formwge of 52 is a closed form,
ie.,

d(vkpo”wg2) =0, (2.9)

which means zero degreerif= 3. To this end, by@?) an@.l) we infer th@t, ,,
weakly converges to the boundary of the Cartesian cuffgrd car:X(Q x $2). If n > 4,
for every(n — 4)-formn € D"*~4(3 Q) we have

dTo(dn AT wg2) =0
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(whereasaTQ(’z?#a)Sz) =0, i.e., zero degree if = 3), wherer : R” x RN — R” and
7 : R* x RY — RY denote the orthogonal projections onto the first and the second
factor, respectively. Hence, by weak convergence,

/ dn A vfa)sz = Gyypo (wdn A T wg) — 8TQ(n#dn ATFwg) =0

Y

(fyo viwsz — Oif n = 3) ask — oo. This clearly yields9). O
LetnowQ € Q4. If g € WL2(Q, 5?) is a continuous extension of|s0, the existence

of which is provided by Propositign 2.5, we fixe (0, 1/2m) and extendyso to the
interior of Q by

1 x—p) 1
vl p+ o= ifs <llx—pl <5,
( 2m |x — pl 2m

U@ (x) = (2.10)

1
@k(P"‘M(x—P)) if lx — pll <6,

wherep is the center ofD and||x || := maxi<;<, |x;|, so thatjx — p|| = 1/2mif x € 3 Q.
Trivially U,fQ) is a continuous function iW12(Q, $2). Moreover, since fob <
lx — pll < 1/2m,

|x — pl 1 x-
Z—W [Dyvi(W)|, y'=p+— b

Q)
ID U ()| < ,
Tk 2m ||x — pll

x| := Vx12 4+ ... 4+ x,2,

by the area formula [3] we estimate
DU Pdx < —— / |Dvg|2dH" L 2.11
fs<||x—p|<1/2m 2 2m @)
and by changing variable
1
/ DU 2dx = @mb(m. u))" 2 / DplPdy < . (212)
lx—pll<é 0 km
if we choose = §(m, vg) > 0 suitably with lim,— » 8(m, vy) = O for everym.
We now defineU,f’”) U Qma — S%by U,E’")(x) = U,fQ)(x) if x € Q for some
0 € Quq. Then, by[2.111) and (2.12),
1
DU(m) 2d < n .D (n—1) e
/ugma DU dx = 5 P Una D 7
Therefore{U("‘)}k is a continuous sequence in &t Om.as $2) such that by| (2/8),
k

supD(U(m) UQm.a) < c(n)D(T,C" x §?) + 1 (2.13)
m

for eachn, with ¢(n) := 2¢,_1 n%/(n —2). Moreover by) there exists an affine bijec-
tive functiony,, , : C" — |J Q.. such that Lipy,, , = (m — 1)/m andy, , — ldea



104 Mariano Giaquinta, Domenico Mucci

uniformly asm — oo. Seth(m)(x) = U,f”‘)(wm,a(x)). Then, form fixed, {Vk('")}k is a
continuous sequence in caHC”, $?) such that, by{(2.13),

n—2
2
supD(V™, ¢") < <L> c(n)D(T, C" x §2) + =.
k m—1 m
Then, by closure-compactness we have both

ask — oo weakly inD, 2(J Qum.« x %) andD, »(C" x §?), respectively, for some
T € cart(J Qn.q x S?) andT,, € cartl(C" x $?). MoreoverT,, = Wy 4T,
whereWw,, , : C" x 82 — |J Qu.a x S?is given byW,, ,(x,y) = (Ym.a(x),y). As

a consequence, if we take := 2c(n) = 8c,_1n2/(n — 2), the assertion follows by a
diagonal procedure as soon as we prove the following

Proposition 2.6. Under the previous hypotheséén — T weakly inD,(C" x §%) as
m — Q.

Proof. As before, we fix am-cubeQ € Q,,, and letp be its center. Also, denote by
V0 x 8% {p} x S2the mapy (x, y) := (p, y). Finally, leth : [0, 1] x (Q x §2) —
0 x 52 be the affine homotopy

ht,x,y):=t¥(x,y)+ 1L —1) IdQst(x, y)=(p+ (1—1t)x,y).
By 2.1). (2.7) and[(2.10),
AT QxR =T, L00 xR3=08Typ, Tp:=TL QxRS (2.14)
whereas, since b@N(GU]iQ) L{llx — pll < 8}) — 0ask — oo, we infer that

h#([0,1] x 8Tp) = =T, L O x R3,

As a consequence, setting
Rg ‘= hx([O, 1] x Tp),

by the homotopy formula [10, 26.22] we find that
IRY =yuTo —To + T Q x R,

Since YTy is ann-dimensional i.m. rectifiable current, > 3, supported in the 2-
dimensional setp} x $2, we deduce that

TnL Q xR3— Ty =0Rp.
Moreover, since by [10, 26.23],
c
M(Rp) < . M(Tp),

setting
Rm = Z ng € Rn+l(U Qm,a X S2)7
0€Qm.a
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by (2.14) we obtain
Ty —TLJQma x R®=0R,,, (2.15)

where c
M(R,,) < —M(T) —- 0

asm — oo. This yieldsT,, — TL |J Qu.a x R® = 0 asm — oo in D,(C" x §?)
(cf. [10, 31.2]). Finally the assertion follows smdg,, T,, = T,, whereas, by uniform
convergencey,, , — lden,

Wt TeUQna xRE—T

asm — oQ. [m}

Proof of Propositior-A Without loss of generality we may suppo@e= C" := [0, 1]".
We then modify the proof of Theorgm 2.1 as follows.
Let Qm « denote the partition of” given by the family of alln-rectangles ana-

cubesQ with boundary contained in th@z — D-grid C(” Y or in the boundary o€”,
i.e.90 C C,S{'al) U ac". More premselme « contains all the:-cubes ofQ,, , plus a
family of n- rectangle@ with sides parallel to the coordinate axes, which are contained
in C" and intersect the boundary 6f. We 2 may and do choosgim) so that .) holds,
with ¢(n) = 2n, and eachi-rectangle onm « IS in generic position with respect .
For everyn-rectangleQ in Q,, , and every(n — 1)-face F of the boundary ofQ, we
apply Proposmo.4 in dimension— 1, and define the sequemg F — §?so that
in particular |(2 ) holds. I@f,’,’;l) denotes th&n — 1)-skeleton of@m 4, We then define
the continuous sequenog : U ol o 1) — S?asin E) SO tha (2.7) holds for every
n-rectangleQ of Qm a, the grathvk has no boundaryyG,, = 0, and from .) and
23

supD(vg, [ JOUY) < 28,_1mn D(T, C" x %) + DT, 3C" x §). (2.16)
k

As a consequence, the assertion of Propositioh 2.5 holds true foreventangleQ €
@m,a. Then, similarly to Theore@.l we extepgdto a mapU,fQ) in the interior of each
elementQ of @m,a. More precisely, ifQ is ann-rectangle of@m,a which intersects the
boundary ofC", since the vectoa (m) is chosen in [14m, 3/4m]", thenQ has sides of
length Ym or between 14m and J4m. As a consequencg) is bilipschitz homeomor-
phic to then-cubeQ,, := [0, 1/m]" for some affine bijective functiogp : Q — Q
with Lip ¥o < 4 and Lipl//él < 3/4. Therefore, |fU(Q) Q. — S?is defined as in
) With oy (x) 1= Uk(l/fél(x)) for x € 90,,, whereg; € W12(0,,, $?) is a continu-
ous extension o5, , We setU,fQ) (x) = ﬁ,fQ)(z/fQ(x)). SinceU@m,a = C", we now
definey™ : C* — $2by U™ (x) := U (x) if x € Q for someQ € O, . If we take
§ = 8(m, vr) > 0 suitably small in[(2.7]0), with lim, o 8(m, vr) = O for everym, it is
not difficult to show that every/"™ : C" — $2 s a continuous map in c&rt(C", 5?)
with

_ 1 1
supD(U™, C") < 2¢(n) D(T, C" x §2) + = 4 ¢(n) = DT, IC" x §?)
k m m
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for eachm, where agair (n) := 2¢,_1n%/(n —2) and ¢(n) is an absolute constant. Then
for m sufficiently large

supD(U™, C") < 4c(n) D(T, C" x §?)
k

and by closure—compactneé%(m) — T,, ask — oo weakly inDn,Z(E” x §2) for some
k

T, € carB1(C" x $2). Finally, similarly to Propositioh 2|6 we show tHgg — T weakly
in D, (C" x §2) asm — oo, so that by a diagonal procedure we obtain the assertion with
Cn i=4c(n) = 2c,. O

3. Mappings into manifolds

In this section we extend Theor¢m[2.1 to a wide class of target manjfotdslimension
larger than or equal to 2.

We will consider any smooth oriented Riemannian manifgldf dimensionM > 2,
isometrically embedded iR for someN > 3. As in Sec. 1, we assume thtis com-
pact, connected, without boundary and that its integral 2-homology gioyp, Z) has
no torsion. Moreover, we shall also assume that the Hurewicz homomorph($m —
H>(), Q) is injective. We observe that, by the Hurewicz theorem [7], if in particiés
1-connected, i.eq1(Y) = 0, then the last condition actually follows from the others.

Theorem 3.1. Let T e car1(B" x )), n > 2. Then there exists a sequence of smooth
mapsuy : B" — Y such thaiG,, — T weakly inD, »(B" x )) and

supD(ug, B") < ¢, D(T, B" x Y) < o0,
k

wherec, > 0is an absolute constant.

We notice that our result does not answer the problem, raised in [1], whether every
u € WL2(B" Y) is the weak limit inW12(B",)) of a sequence of smooth maps
up . B" — Y.

Proof of Theorem 3]1Since the result is true for = 2 by Theorenj 411, it suffices to
adapt Theorern 2.1, and therefore the inductive argument based on Progosjtion 2.4, with
Y, RV, weak convergence and boundaryI » instead ofs?, R3, weak convergence
and boundary irD,, respectively, taking account of the following facts. Proposition 2.4
holds forn = 2 by Corollary[4.2. Similarly to the case of normal currents, the gicé (2.2)
is well defined in caft!(P(z, i) x V). Moreover, by definition of the class ca(C”, V),

by the structure of 2-dimensional currents in &arand by a slicing argument, we may
again choose (m) so that each-cube O of Q,, , is in generic position with respect
toT. ThenT,,Sf’;l) is well defined an3) holds. In Proposit2.5, to prove thap

is homotopic to a constant map i since by assumption the Hurewicz homomorphism
m2()) — Ho(Y, Q) is injective, it suffices to show that for every closed 2-favrim ), or

in a basis of22()), we havexi(vk|3Q#w) = 0. This follows from the same computation.
In fact, [2.7) holds again, wheréT is by (2.1) the boundary, i, > sense, of the
Cartesian currerify € care'}(Q x ))). Since for everyn — 4)-form n € D43 Q) the
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form 7#dn A 7#w is bothd, -closed andl,-closed, we obtaid Ty (7#dn A 7#w) = 0 and

by weak convergence iR, » the assertion. As to Propositipn P.6, by (2.12) we find that

D(GU(Q), {llx — pll < &} — 0. Since the map does not move the vertical directions,
k

the homotopy formula holds again. MoreovéwTo = 0 in D,_2(C" x Y) forn > 3,

since it can take nonzero values only on forms with more than two differentials in the
vertical direction, henc¢ (2.115) holds ™), 2, where

IRullp < %D(r, C" x §2) > 0

by (1.8). This yields agaifl,, — 7 |J Qu.a x RN — 01in D, 2(C" x ¥) and hence
Theorenj 3/]L. Finally, Propositi¢n 2.4 follows from an adaptation of Theprem 3.1 similar
to the one in Sec. 2. o

4. A strong density result

In this section we prove the following strong density result for the Dirichlet energy of
maps from 2-dimensional domains into general target manifolds. Compare Sec. 4.1.2 in
[6, vol. I1] for the casey = $2. As before 2 := 10, 1[2, the unit open square iR2.

Theorem 4.1. Letn = 2. Let) be a smooth, compact, connected, oriented Riemannian
manifold of dimension/ > 2, isometrically embedded iRV, N > 3. Assume that the
integral 2-homology groupH2 (), Z) has no torsion. Then for evefy € cart-1(C? x ))
there exists a sequence of smooth maps C2 — ) such thatG,, — T weakly in
D> (C? x ) and

lim D(ui, C?) = D(T,C? x )). (4.1)

k— 00

As a consequence, if the boundary Bfcoincides with the graph of #12 map, we
obtain the following

Corollary 4.2. Under the hypotheses of Theor@id] if 37 = G, for some function
¢ € WL2(3C?,)), then there exists a sequence of continuous mapsC? — Y, with

{ur} C carf1(C?,Y) anddG,, = T, henceu c2 = ¢, such thatG,, — T weakly in
D>(C? x ) and (4.1) holds.

We recall by Sec. 1 that evefly € car®1(C? x ))) has the form

1
T =Gur + Y 8q x Ci + Sr.sing (4.2)
i=1

for somex; € C2, where the nontrivial 2-cycle§; are of spherical type (cf. Definition
@), andSr sing is a completely vertical, homologically trivial, i.m. rectifiable current
supported on a set not containifig} x V,i = 1, ..., I, moreover

1 1
D(T) = 5 [ IDur s+ Y- MC)+M(Sr.sng).
i=1
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Proposition 4.3 (Approximation of spherical cycles). Letu be a smooth map frorg?
into Y. LetC € Z5(Y) be a2-cycle of spherical type. Then there exist a sequénggof
smooth maps fronB2 into ) and a sequence of radii, \, 0 such thatu; = u outside
BZ andG,, — G, + 8o x C weakly inD2(B? x V) with

JNim D B?) = D(u, B%) + M(C).
— 00

Proposition 4.4 (Approximation of the singular vertical part). Under the hypotheses
of Theoren. 1] if holds, then for every smooth magrom C? into ) there exists a
sequencéuy,} of smooth maps frord? into )V such thatG,, — G, + St ,sing Weakly in
D> (C? x V) and
Jim Dy, C?) = D(u, C?) + M(S7.sing)-
—00

We postpone the proof of these results and first prove Thelorgm 4.1 and Cdrollary 4.2.

Proof of Theorenj 4]1Sincen = 2, by Schoen-Uhlenbeck’s density theorém [9] we
can find a sequence; : C2 — Y of smooth maps such that — up strongly in
w12(C2, ). On small disks around eaah and contained i€?, we first apply Propo-
sition to eachy and find a sequence of smooth mdps ,}, from C%into) and a
sequence of radly , ~\, 0 ash — oo such thawy , = ux outsideBBZk'h (xi),

!
Guk,h - Guk + ng,- X Ci
i=1
weakly inD2(C2 x ) and

1
. 2y 2 ,
h'Lmoo D(u,n, C%) = D(ug, C*) + iE=l M(C)).

Secondly, we apply Propositipn 4.4 to eagly, and find a sequendey . }; of smooth
maps fromC? into Y such thaG,, ,, = G, , + St.singWeakly inD2(C? x V) asl — oo
and

Jim DGtk ni, C%) = Dlatk . C2) + M (ST sing)-

The claim follows by a diagonal procedure. O

Proof of CoroIIar. Sincey is Holder continuous iC2, it suffices to apply Schoen—
Uhlenbeck’s density theorem requiring in particular #hé&@f,, = G,,. Moreover, since the
pointsx; in ) are distant from the boundary@t, we apply Propositi03 requiring
thatBSZk i (x;) cC C?, sothatin particulawy , coincides withuy in a small neighborhood

of 9C2. Finally, since in the proof of Propositi¢n 4.4 we modify the functiopg near
points which have positive distance from the boundarg%the functions ;, ; coincide
with u j, in a small neighborhood afc?, whencedG,, ,, = G, as required. ]

To prove Propositiop 4]3 we make use of the following resuilt.
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Proposition 4.5. Let C € Z3()) be a2-cycle of spherical type an# € ) be a given
point. Then there exists a sequence of Lipschitz functfpnsB? — ) such thatf s 52

= P, fuz] B2] — C weakly inD»()) and
lim D(fi, B%) = M(C).
k—o00
We postpone its proof and give
Proof of Propositio 413 If P := u(0), we denote byU, ¢) a local chart centered .
More precisely, leU be a relatively open and connected subsey o€ontainingP, and

lety : U — V be a bilipschitz homeomorphism bf onto an open subsét of RM with
@(P) = 0; finally letr > 0 be such that(Brz) C U. We define, fok € Nands € (0, r),

u(x) if 8§ < x| <1,
ups(x) == 1 vs(x) if §/2 < |x| <8,

Jie(2x/8) if x| < 8/2,

where f; is given by Propositiop 4]5, wit? = «(0), and

s {(B) o))

Now, sincevs(x) = u(x) for |x| = § andvs(x) = ¢~1(0) = P for |x| = §/2, it follows
thatu, s is Lipschitz continuous. Moreover by Proposit[on|4.5 and a change of variables

D(ur.s. BY) = D(fx. B?) — M(C)
ask — oo, so that the claim holds if we show that
liminf D(vs, B2\ B2,) =0, 4.3
iminf D(vs, B5'\ Bj)) (4.3)
by takinguy := uy s, for a suitable sequendg N\, 0. Now we estimate

D(vs, B \ B < c||D<o—1||§o<||<p oull?, yp2 + IDPIZ - afa i |Dfu|2dH1>,
, 253

wherec > 0 is an absolute constant ands the tangential direction ‘@352- By continuity
we find|lg o |, 552 — O ass — 0*. Moreover, if F(8) := f‘f’B,sZ |D.ul?dH2, then by
the coarea formula [3],

,
/ F(8)ds 5/ |Dul?dx < oo,
0 B2

so thatF is a nonnegative function in(0, r). As a consequence, limipf o+ § F(8) =0
and then[(4]3) holds, as required. O
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Remark 4.6.For future use, we set
ys = Us(y),

whereU,(A) := {y € RN | dist(y, A) < ¢} is thee-neighborhood oA ¢ R", and we
observe that sinc® is smooth, there existsy > 0 such that for O< ¢ < ¢ the nearest
point projection of), onto ) is a well defined Lipschitz map with Lipschitz constant
L, — 1T ase — OT.

Proof of Propositiorf 4)56 We divide the proof into four steps. According to Definition
,C — Z =9dR andZ = gg] S?]. First, we approximate, Z and R with polyhedral
chainsC,, Z. andR, so that) holds for some Lipschitz functigp of $2; secondly,
we find a Lipschitz magf, with f.x[ 52] = C,; then we show that we can choogeso
that in particular its mapping area is equal to the mass¢finally, we projectf, onto

Y and prove the assertion by means of Morreytsonformality theorem.

Step 1 We first apply Federer’s strong approximation theorem [3, 4.2.2Q] &md find,
for everye > 0, an integral polyhedral cycl€, in RY and aC!-diffeomorphismy, :
RN — RV such that

M(Ce — YeC) < &.

Moreover, Lipy,, Lip .1 < 1+ ¢ and spC, C Y., so that in particular
C.— C and M(C,) — M(O) (4.4)

ase — 0T. Now, sinceC, — ¥.xC _strongly converges to zero, fersmall C; is of
spherical type i),. Then there exist, € Z2();) anng € R3(),) such that

Ce_ZszaRs and (bs#l[s ]I:Z6‘

for some Lipschitz functioﬁos 1852 5 Y.

As in [11], regardingR" as the subspacB" x {Ogs} of R¥*3, we now define
a Lipschitz homotopy, : [0,1] x §2 — RN+3 with h (0,) = ¢, such that if
ée = ho(1,-), theng, is a Lipschitz embedding and, := ¢.4[ S2] is polyhedral
(andhe#([0,1] x [ $2]) has arbltrarlly small mass) Moreover we may and do define
h, so thath, ([0, 1] x $2) C yg, Whereys := Yo, x R3, and sptZ, N sptC, =

Smnmm}_J?—hﬁq01]x[§])&mﬁ%ﬁq01]x[5q)_z —Ze,
we find thatT is an i.m. rectifiable current with compact support)}?p and polyhedral
boundary

T, =C, — Z,.

As a consequence df|[3, 4.2.19], we find an integral cursert R4(RV*3), with com-
pact support, and @-diffeomorphismg, : R¥N+3 — RN+3 such that

Ry = geuT, — 0S;

is polyhedralM (S.) + M (3S,) < &, sptS. C U.(sptT:), Lip g., Lip g;l <14 ¢and
g:(x) = x if x € sptaT,. Then, since s@iT, = sptC, U sptZ, and spC, NsptZ, = ¢,
we finally infer that

R, = getdT, = Co — Z, and ¢4 S?] = Z.. (4.5)
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Step 2.By adapting the argument in [11], we construct a suitable Lipschitz homotopy
H, :[0,1] x §2 — Y, (see|(4.)), withH, (0, -) = ¢,, such that ifp, := H,(1, -), then

oet] $?] = Cs.

Tothisend, le§";_, S; be a simplicial decomposition d;, that is, a triangulation ok,
into oriented 3-simplices; such that any twa;’s that do not coincide either are disjoint
or intersect along a common lower-dimensional edge. Shadg a Lipschitz embedding,
it satisfies:

There is some simplicial decompositianof §2 such thatp, maps each
curvilinear 2-simplexD of A bijectively onto a 2-face of one of thg’s. (4.6)

Now, choose a 3-simplex, say, one of whose faces 4] D] for someD of A. Then
clearly there is a Lipschitz homoto;tgél) [0, 1] x $2 > 375, with hél) O, ) = ¢,, for
which h,gl)(t, x) = ¢ (x) for everyr € [0, 1] if x ¢ D, and such that iq‘oél) = hél)(l, 9,
thenhgl) sweeps ouf, once, with the right orientation, so tH@@(l[ 0,1]x[ $%D = 1
and hence by (4]5),

oL 8?1 = aZS + C,.

Moreover, by taking the barycentric subdivision@fwe defmeh(l) o) thanp(l) satisfies

.). Finally, iterating the processtimes, and gluing together the homotop’téié for
i =1,...r, we defineH; as required. In particular, in view df (4.6),

There is a simplicial decomposition of, sayZ, such thatp, maps
each curvilinear 2-simplex> of A bijectively onto a 2-face of the
2-skeleton ofT,. 4.7)

Step 3We construct a Lipschitz map : 2 — Y. such thatg. takes the given valu@
and mapss? into C, with mapping area equal to the mass®f i.e.,

e[ 21 =C. and A(ge, S?) = M(Ce). (4.8)

By ( .) let{D;} be a subfamily of the simplices daf such thaty, maps eachD; bi-
jectively onto a 2-face o€, (with multiplicity and orientation), so that i UD,,
then

g#l W] =C: and A(g., W) =M(Co).

For everyi, let D; be the 2-simplex obtained by contractiiﬁg from its barycenter with
homothetic factor A2, so that distD;,, D;,) > 0if i1 # i. Finally, letW := U Di. We
first defineg. on eachD; by contractingp, \B; from the barycenteroD Then, since the
mapping area is invariant under reparametrizations of the doraif, (4.8) clearly holds if
we are able to find a Lipschitz extensiongfto the whole 2-sphere so that the image of
8es2\w 1S 1-dimensional.

To do this, we first make a list of the 1-simplices of the 1-skeletod' gfeach one
with a fixed orientation. Then, for every we label each 1-face of the boundary oD,
with £, according to the property thgt maps/, with the orientation induced b#;,
onto thej " 1-simplex ofC, with orientation.
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LetnowC¥, k=1,...,, be the connected components®f so thatC, =Y+ _, C,
aCk = 0,M(C,) = Yt _, M(CF) and sptCk is connected. At the first step, we consider
the simplicesD; corresponding to the faces O‘E sayDs, ..., D,,. Possibly reordering
theD;’s, foreveryi =1, ..., m — 1 we connecD; with D;, by a rectifiable arg; with
suitably chosen initial and final pointsP; and F P; in the 0-skeleton of); and D; 1,
respectively, so that, (I P;) = g.(F P;), the interior ofy; lies in $2\ W, andy; does not
intersecty; for j = 1,...,i — 1. Also, we slightly modifyg, on theD;’s so that it is
constant near the end points)gf Then, by taking a small tubular neighborhdodof y;
in $2, we extendg, onT; as the constant map equaldo(l P;) = g.(F P;).

As a consequence, @1 := | J/_;(D; UT}), with T, = ¢, then

(i) 01 has positive distance from each of the remaining simplizgs
(i) ge#[ 011 = C} andA(g:, O1) = M(C)).

Actually, sincedC! = 0, andO; is a topological disk irs2, by using the labels: j of the
1-faces of theD;’s, everything can be done in such a way that

(i) ge¢ja0, Is contractible.

By induction on the connected components(ef for k = 2, ..., 1, at thek!" step we
repeat the previous argument f6f, definingg. on O so that (i), (i) and (iii) hold,
with k instead of 1. Moreover, we define the aggsso that in particular th&';’s do not
intersect any of th&@;’s for j = 1,..., k — 1. Then we can also require that

(iv) Oy has positive distance fro@;, foreveryj =1,...,k — 1.

As a consequence, by (i) and (iv) we can find for everg small ne|ghborhood)k of
Oy in S2, with d|st(0kl, Ok,) > Qif k1 # ko, and a Lipschitz extension gf o, to Oy, so
that the image o0 \ Oy is a 1-dimensional subset o{g andg, takes a constant value,
say Py, in the boundary oDx.

Now, for everyk = 1, ..., -1, we connect one point of the boundaryCN«l)JWith one
point of the boundary o1 by a rectifiable argj such that the interior of; lies inside
52\ Ui 1 Or andy; does not intersect any of the for j = 1,...,k — 1. Then define
ge on eachy; by parametrlzmg a Lipschitz continuous arc connectmg the p(ﬂmmd
Pp+1, SO thatg, (Yx) C yg As before, we take |SZ small nelghborhoonk of the Ok S,
and Fk of the p;’s (with F, = ), so that dlS(tOkl, Okz) > 0 and dIS(Fkl, l"kz) > 0if
k1 # ko. Since the arc connectln@l with \ Py via they;'s is contractible, we f|nd a L|p-
schitz extension of, to O = Uk 1(OkUFk) such that the image aﬂ)\Uk 1((OkUFk)

\ Ok) is a 1-dimensional subset OJfg and g, takes the given constant valuein the
boundary of0. Finally setg. = P on§2\ O.

Step 4By Step 3, fixQ, € $2 such thaig.(Q,) = P. Lety, : B> — §? be a Lipschitz

function between the unit disk and the 2-sphere suchghgt. = Q. andp. maps

the interior of B2 bijectively onto$? \ {Q.}, so thatp.x[ B2] = [ S2]. Of course, it

can be obtained by first asking ;52 = South Pole, and then by rotatisg. Moreover,

let IT : RV*3 — RN be the orthogonal projection onto the fitst coordinates and
I, : V2. — Y be the nearest point projection (see Renark 4.6).
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Setf, :==T,o0llog, op,: B2 — Y;fore > 0smallf, is a Lipschitz continuous
function, with f,, 52 = P, and by@) anq_(_1}4), sin€é@l, o IxC = C,

ferl B?] = (Tlg 0 T 0 go)4[ $%] = (Mg 0 M)4Ce — C
weakly inD»())), ase — 0T. Moreover, since Ligl = 1, we also have
A(fe. B®) = A(Tl; 0 T 0 g¢, $%) < (Lip Te)? A(ge. $7). (4.9)

Finally, we apply Morrey’ss-conformality theorem [8, Thm. 2.1] and define an orienta-
tion preserving diffeomorphism, : B2 — B2 such that

D(f: o ¢e, B2 < (L+ &) A(fe 0 ¢e, B?) = (L + &) A(f:, B?).

Then, by [(4.D),[(4]8) an@A), since lip — 1t ase — 0* (see Remark 4]6), we
obtain lim_.o D(f¢ o ¢., B4) = M(C) and then the assertion. ]

Proof of Propositio 44 We divide it in four steps.

Step 1We first show that there exists a sequefi€g of i.m. rectifiable cycles i€? x
such thatS; — St sing Weakly as currentsM (S;) — M (St sing) and eachs; has the
following structure:

I

. ) J
S; = ;817; x OR]

for some distinct point$,{ € C? and for some i.m. rectifiable curren@ € R3()), with
IR] € Ro(Y).

Tothisend, fix0< p <« 1andletO=1 <t < -+ < t, < typ+1 = 1 be such
that|fy — t_1| < p foreveryk = 1,...,m + 1. Also, letd; (x, y) := x, x = (x1, x?),
y € RY. We recall from Sec. 1 thafr sing(@) # 0 only on formsw € D?(C? x Y)
such thatiya)(z) # 0. Then by slicing theory we infer tha§r sing, d;, t) = 0, and hence
0(St,singl {d; < t}) = O for a.e.r and fori = 1,2. As a consequence, we may and
do choose the’s so that(S7 sing, d1, &x) = 0 and henc® (St singL {d1 < #}) = 0O for
everyk. If p, : C2 x RN — €2 x RV is the map given by, (x, y) == (g,(x1), x2, y),
where

min{s; |t >t} ift < t,

t) = _
90 (1) tm if 1 > 1,

we define

Po#ST sing
‘= lim pou(Stsing {x € C2| |xt —n| >r;Vk=1,....m} xRY), (410
j—o0

wherer; \ 0is such thad (St sing {x € C? | [x* — 1| < r;} x RY) = Ofor allk and;.
Then, sinceéDp,| < 1 a.e., by Federer—Fleming’s closure-compactness theorem the limit
in (4.19) exists and is an i.m. rectifiable currentRa(C2 x ¥) with M (p,#St.sing <

M (S7.sing). Moreover, set, (t, x, y) :=tp,(x,y) + (1 —1) (x, ), t € [0, 1], and define
hp#([0,1] x Srsing) in @ way similar to [(4.10). Sinc# (h,4([0,1] x Sr.sing) <

© M(S7.sing), We infer thatp #St sing — St,sing@sp — 0. By slicing a second time
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PoST,sing With respect talp, and arguing in a similar way, by a diagonal procedure we
define a sequencg converging taSt sing Weakly with the mass, such that

spts; C (O{p,{}) x ).
k=1

Finally, due to the trivial homology o7 sing, by weak convergence, fgr sufficiently
largeS; (») is nonzero only on forme € D?(C2 x ) such thatlyo® # 0. We then infer

that each componess L {p,{} x RY of S; has the formSp, X BR,{ for someR,{ € R3())
; X k
with 9R] € R2()), as required.

Step 2.Fix a 3-dimensional integral curre® in ), i.e., an i.m. rectifiable curremt €
R3(Y) with aR € R2()), and a pointP € ). We show the existence of a sequence of
Lipschitz functionsf, : B2 — Y such thatf, ;52 = P, fuzl B2] — 3R weakly in
D>()) and
hlim D(f», B> = M(3R). (4.11)
—> 00

To this end, as in Step 1 of Propositfon|4.5, we first apply Federer’s strong approximation
theorem and find, for every > 0, a 3-dimensional i.m. polyhedral chafy in RY and a
cl-diffeomorphismy, : R¥ — R¥ such that

M(Rg — Ye#tR) + M(ORe — 0YetR) < e.

Moreover, Lipy,, Lip .1 < 1+ ¢ and spR. C Y., where)), is defined in Remark
[4.6, so that in particular

R. — R, M(R.) — M(R) and M(3R.) — M(3R) (4.12)

ase — 0. Let now R} be the first connected component Bf and let{D;} be the
3-simplices of a triangulation oRgl. By an argument similar to Step 2 of Proposition
, starting from the constant map: S — )., ¢ = Q for some vertexQ in the
0-skeleton ofR}, and covering with multiplicity and orientation each one of fhés, we

can define a Lipschitz functiopy : §2 — Y, such thaipis[ S?] = R} andg1(5?) is
2-dimensional. Moreover, as in Step 3 of Proposi 4.5, we can defise that the
mapping area (1, S2) equalsv (aR;}). Connectingk;, by means of a loop i}V,, with

the second componeﬁﬁ of R,, repeating the previous argument for each component of
R., and finally connecting the last component®fwith the given pointP, we define a
Lipschitz functiong, : S — ), such that

¢esl S°1 = 3R, (4.13)

$:(82) is 2-dimensionalg, (Q,) = P for some pointQ, € $2, and the mapping area
satisfies

A(pe, §%) = M(3R,). (4.14)
We then proceed as in Step 4 of Proposifior) 4.5. More preciseky; let3? — 52 be a
Lipschitz function from the unit disk to the 2-sphere such thats> = 0. andy. maps

the interior of B2 bijectively onto$2 \ {Q,}, so thatp.x] B2] = [ $2]. Moreover, let
I, : Y. — Y be the nearest point projection.
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Setf, := I, o ¢, o, : B2 — Y. Fore > 0 small f, is a Lipschitz continuous
function, with f; ;52 = P, for which by [4.13) and (4.12), sind&;,dR = oR,

fesl B?] = (T¢ 0 ¢e)s[ $?] = Me40R:. — OR
weakly inD,()) ass — 0*. Moreover
A(fe, BY) = A(T1; 0 ¢, $?) < (Lip T:)? Age, S2)

and hence, by (4.14) and by Morrey'sconformality theorem, modulo composing with
an orientation preserving diffeomorphismB# onto itself, we obtain

D(f:, B?) < (1+ &) A(fe, B%) < (14 ¢&)(Lip M:)°M (3R;)

and finally [4.11), since Lipl, — 1* ase — 0T (cf. Remark 4.p).

Step 3For everyp € C2 and every 3-dimensional integral currein ), we prove the
existence of a sequenég;,} of smooth maps fron€? into )V such thatG,, — G, +
8p x AR weakly inD,(C? x Y) and

lim D(up, C? = D(u,C?) + M(3R).
h— o0

Moreover, we show that; can be chosen so that = u outsideBazh (p), for a sequence
of radii §, N\, O.

Let P := u(p), (U, ¢) be a local chart centered &t so thatp(P) = 0, andr > 0
be such thaB?2(p)3 andu(B?(p)) C U (cf. Propositio). We define, far e N and
§e€(0,r),

u(x) if |[x — p| >34,
up,s(x) = q vs(x) if /2 <|x—p| <4,
fn(x — p)/8) if |x — p| <§/2,

where fj, is given by Step 2 and

2 _
vs(x) 1= go_l((g |x — pl —1) -(pou<p+8 |i _;)).

Similarly to Proposition 4]3, it is not difficult to show tha, s is Lipschitz continuous,
by (4.11) and a change of variables

D(un.s. BE2(p) = D(fin. B?) - M(3R)

ash — oo and
iminf D(vs. Bf(p) \ BZ5(p) =0,

which yields the assertion, by a diagonal procedure.

Step 4We fix j and prove Propositign 4.4 withy in place ofSr sing, Where theS;’s are
asin Step 1.

To this end, we iterate the argument of Step 3 working by inductiohen, .. ., ;.
More precisely, we first apply Step 3 wiih = p{ andR = R{, obtaining a sequence



116

Mariano Giaquinta, Domenico Mucci

{u”} of smooth maps frong? into I such thatG o — G, + 8,1 % dR{ weakly in
h 1
D>(C2 x V) ash — oo and

Jlim D(u;”. €% = D(u.C?) +M@RY).
—00

Recall thatuﬁll) =u outsideB;(l) (p{) for some sequenoﬁl) \\ 0. For#k large enough

SO thatp,{ ¢ 3(32(1) (p{) fork = 2,...,I;, we then repeat the argument with= u;}),
h

p= pé andR = Ré, to obtain a sequem{al(z’h)} of smooth maps frong? into ) such
thatG en — G, +6 ; x d R} weakly inD»(C? x V) asl — oo and
1 h 2

Moreover, since:,

Jim D(*", €%) =Dy’ %) + M(@R)).
—00

@n — M outsideBZ (p}) for some sequenc¥®” \ 0 asl —
1

o0, by a diagonal procedure we define a seque{nﬁfé} of smooth maps frong? into
such that

N ) J ) J
Guéz) Gy, —|—8Pi x IRy +8Pé x OR;

weakly inD2(C2 x )) and

Jlim D(u;?.,€%) = D(u, C?) +M@R]) +M(@R)).
—00

Iterating in a similar way the argument éan= 3, ..., I;, and by a diagonal procedure,
due to the strong convergence in energy we construct for everysmooth sequence
{up} : C?> — Y such thaiG,, — G, + S; weakly inD»(C? x ) and

lim D(up, C?) = D(u, C?) + M (S)).
—00

Finally, since by Step 1 we hae — St singweakly as currents and (S;) — M (St sing),
again by a diagonal procedure we obtain the claim. O
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