

Mariano Giaquinta · Domenico Mucci

Weak and strong density results for the Dirichlet energy

Received May 26, 2003

Abstract. Let Y be a smooth oriented Riemannian manifold which is compact, connected, without boundary and with second homology group without torsion. In this paper we characterize the sequential weak closure of smooth graphs in $B^n \times Y$ with equibounded Dirichlet energies, B^n being the unit ball in \mathbb{R}^n . More precisely, weak limits of graphs of smooth maps $u_k : B^n \to Y$ with equibounded Dirichlet integral give rise to elements of the space $cart^{2,1}(B^n \times \mathcal{Y})$ (cf. [\[4\]](#page-21-0), [\[5\]](#page-21-1), [\[6\]](#page-22-1)). In this paper we prove that every element T in cart^{2,1} ($Bⁿ \times Y$) is the weak limit of a sequence { u_k } of smooth graphs with equibounded Dirichlet energies. Moreover, in dimension $n = 2$, we show that the sequence $\{u_k\}$ can be chosen in such a way that the energy of u_k converges to the energy of T .

1. Notation and preliminary results

In this section we recall some facts from the theory of Cartesian currents with finite Dirichlet energy. We refer to [\[6\]](#page-22-1) and [\[4\]](#page-21-0) for proofs and details.

Let B^n be the unit ball in \mathbb{R}^n and let $\mathcal Y$ be a smooth oriented Riemannian manifold of dimension $M \ge 2$. By the Nash theorem we can suppose that $\mathcal Y$ is isometrically embedded in \mathbb{R}^N for some $N \geq 3$. We shall assume that $\mathcal Y$ is compact, connected, without boundary and that its integral 2-homology group $H_2(\mathcal{Y}, \mathbb{Z})$ has no torsion, so that $H_2(\mathcal{Y}, X) =$ $H_2(\mathcal{Y}, \mathbb{Z}) \otimes X$ for $X = \mathbb{R}, \mathbb{Q}$. Note that the last condition automatically holds if $M = 2$.

 $\mathcal{D}_{n,2}$ **-currents.** Every differential *n*-form $\omega \in \mathcal{D}^n(B^n \times \mathcal{Y})$ splits as a sum $\omega = \sum_{k=0}^n \omega^{(k)}$, $n := min(n, M)$, where the $\omega^{(k)}$'s are *n*-forms that contain exactly k differentials in the vertical Y variables. We denote by $\mathcal{D}^{n,2}(B^n \times Y)$ the subspace of $\mathcal{D}^n(B^n \times Y)$ of *n*-forms of the type $\omega = \sum_{k=0}^{2} \omega^{(k)}$, and by $\mathcal{D}_{n,2}(B^n \times \mathcal{Y})$ the dual space of $\mathcal{D}^{n,2}(B^n \times \mathcal{Y})$. Every $(n, 2)$ -current $T \in \mathcal{D}_n$, $2(B^n \times \mathcal{Y})$ splits as $T = \sum_{k=0}^2 T(k)$, where $T(k)(\omega) = T(\omega^{(k)})$. For example, if $u \in W^{1,2}(B^n, \mathcal{Y})$, i.e., $u \in W^{1,2}(\overline{B^n}, \mathbb{R}^N)$ with $u(x) \in \mathcal{Y}$ for a.e. $x \in B^n$, then $G_u \in \mathcal{D}_{n,2}(B^n \times \mathcal{Y})$, where in an approximate sense $G_u := (\text{Id} \bowtie u)_{\#} [B^n]$, $(\text{Id} \Join u)(x) := (x, u(x))$ (cf. [\[6\]](#page-22-1)).

M. Giaquinta: Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56100 Pisa; e-mail: giaquinta@sns.it

D. Mucci: Dipartimento di Matematica dell'Universita di Parma, Via D'Azeglio 85/A, ` I-43100 Parma; e-mail: domenico.mucci@unipr.it

D-norm. For $\omega \in \mathcal{D}^{n,2}(B^n \times \mathcal{Y})$ we set

$$
\|\omega\|_{\mathbf{D}} := \max \bigg\{ \sup_{x,y} \frac{|\omega^{(0)}(x,y)|}{1+|y|^2}, \int_{B^n} \sup_y |\omega^{(1)}(x,y)|^2 dx, \int_{B^n} \sup_y |\omega^{(2)}(x,y)| dx \bigg\},
$$

$$
\|T\|_{\mathbf{D}} := \sup\{T(\omega) \mid \omega \in \mathcal{D}^{n,2}(B^n \times \mathcal{Y}), \ \|\omega\|_{\mathbf{D}} \le 1\}.
$$

It is not difficult to show that $||T||_{\mathbf{D}}$ is a norm on $\{T \in \mathcal{D}_{n,2}(B^n \times \mathcal{Y}) \mid ||T||_{\mathbf{D}} < \infty\}.$

Weak $\mathcal{D}_{n,2}$ **-convergence.** If $\{T_k\} \in \mathcal{D}_{n,2}(B^n \times \mathcal{Y})$, we say that $\{T_k\}$ converges weakly in $\mathcal{D}_{n,2}(B^n \times \mathcal{Y}), T_k \to T$, if $T_k(\omega) \to T(\omega)$ for every $\omega \in \mathcal{D}^{n,2}(B^n \times \mathcal{Y})$. Now, the class $\mathcal{D}_{n,2}(B^n \times \mathcal{Y})$ is closed under weak convergence and $\|\cdot\|_D$ is weakly lower semicontinuous. Moreover, if $\sup_k ||T_k||_{\mathbf{D}} < \infty$, then there is a subsequence which weakly converges to some $T \in \mathcal{D}_n$ $_2(B^n \times \mathcal{Y})$ with $||T||_{\mathbf{D}} < \infty$.

Boundaries. The exterior differential, d splits into a horizontal and a vertical differential, $d = d_x + d_y$. Clearly $\partial_x T(\omega) := T(d_x \omega)$ defines a boundary operator $\partial_x : D_{n,2}(B^n \times \mathcal{Y})$ $\to \mathcal{D}_{n-1,2}(B^n \times \mathcal{Y})$. Now, for any $\omega \in \mathcal{D}^{n-1,2}(B^n \times \mathcal{Y})$, $d_y\omega$ belongs to $\mathcal{D}^{n,2}(B^n \times \mathcal{Y})$ if and only if $d_y \omega^{(2)} = 0$. Then $\partial_y T$ makes sense only as an element of the dual space of

$$
\mathcal{Z}^{n-1,2}(B^n \times \mathcal{Y}) := \{ \omega \in \mathcal{D}^{n-1,2}(B^n \times \mathcal{Y}) \mid d_{\mathcal{Y}}\omega^{(2)} = 0 \}.
$$

D-graphs. The study of weak limits of sequences of maps with equibounded Dirichlet energy, minimization problems and concentration phenomena (see [\[6\]](#page-22-1)) drew the au-thors of [\[5\]](#page-21-1) to introduce the subclass **D**-graph($Bⁿ \times Y$) given by the $(n, 2)$ -currents $T \in \mathcal{D}_{n,2}(B^n \times \mathcal{Y})$ with $||T||_{\mathbf{D}} < \infty$ and such that

$$
T = G_{u_T} + S_T \tag{1.1}
$$

for some function $u_T \in W^{1,2}(B^n, Y)$ and some $S_T \in \mathcal{D}_{n,2}(B^n \times Y)$ with $S_{T(0)} = S_{T(1)}$ $= 0$, i.e. S_T is completely vertical, so that

$$
\partial_x T = 0
$$
 on $\mathcal{D}^{n-1,2}(B^n \times \mathcal{Y})$, $\partial_y T = 0$ on $\mathcal{Z}^{n-1,2}(B^n \times \mathcal{Y})$.

They also showed that:

- (i) the decomposition (1.1) is unique;
- (ii) weak limits in $\mathcal{D}_{n,2}$ of sequences of graphs of smooth maps $u_k : B^n \to \mathcal{Y}$, with equibounded Dirichlet energy, belong to **D**-graph $(B^n \times Y)$;
- (iii) if $T \in \mathbf{D}$ -graph($B^n \times \mathcal{Y}$), then in general $\partial G_{u_T} \neq 0$, but

$$
\partial G_{u_T} = 0 \text{ on } \mathcal{D}^{n-1,1}(B^n \times \mathcal{Y}), \quad \partial G_{u_T}(\omega^{(2)}) = 0 \text{ if } \omega^{(2)} = d\eta \text{ and } \text{ spt } \eta \subset B^n \times \mathcal{Y}
$$

and

$$
\partial_y G_{u_T} = 0
$$
 on $\mathcal{Z}^{n-1,1}(B^n \times \mathcal{Y}), \quad \partial G_{u_T} = \partial_x G_{u_T}$ on $\mathcal{Z}^{n-1,2}(B^n \times \mathcal{Y});$

in particular

$$
\partial_y S_T(\omega^{(2)}) = 0
$$
 if $\omega^{(2)} = d\eta$ and $\text{spt } \eta \subset B^n \times \mathcal{Y}$, $\partial_x S_T = 0$ on $\mathcal{D}^{n-1,2}(B^n \times \mathcal{Y})$;

(iv) $||G_{u_T}||_{\mathbf{D}} = ||u_T||_{W^{1,2}} \le ||T||_{\mathbf{D}}$, and consequently $||S_T||_{\mathbf{D}} \le 2 ||T||_{\mathbf{D}}$;

(v) **D**-graph($B^n \times Y$) is closed under weak convergence in $\mathcal{D}_{n,2}$ with equibounded **D**norm.

The 2-dimensional case. If $n = 2$, obviously $\mathcal{D}_{n,2}(B^n \times \mathcal{Y}) = \mathcal{D}_2(B^2 \times \mathcal{Y})$ and ∂T is the usual boundary of currents, whereas $M(T) \le c \|T\|_D$ for some absolute constant. Consequently, weak limits of smooth graphs with equibounded Dirichlet energy are integer multiplicity (briefly i.m.) rectifiable currents in $\mathcal{R}_2(B^2 \times \mathcal{Y})$, and **D**-graph $(B^2 \times \mathcal{Y}) \cap$ $\mathcal{R}_2(B^2 \times \mathcal{Y})$ is closed under weak convergence with equibounded **D**-norm.

It was proved in [\[5\]](#page-21-1) and [\[6\]](#page-22-1) that every T in **D**-graph($B^2 \times Y$) ∩ $\mathcal{R}_2(B^2 \times Y)$ decomposes as

$$
T = G_{u_T} + S_T, \quad S_T = \sum_{i=1}^{I} \delta_{x_i} \times C_i + S_{T, \text{sing}},
$$
 (1.2)

where δ_x is the Dirac mass at $x, x_i \in B^2$, $C_i \in \mathcal{Z}_2(\mathcal{Y})$ are integral cycles with nontrivial homology and $S_{T,\text{sing}}$ is a completely vertical, homologically trivial, i.m. rectifiable current supported on a set not containing $\{x_i\} \times \mathcal{Y}$, $i = 1, ..., I$. More precisely, for every Borel set $A \subset B^2$ we have $\partial(S_T \cup A \times \mathbb{R}^N) = 0$. Moreover, if $\pi : \mathbb{R}^2 \times \mathbb{R}^N \to \mathbb{R}^2$ and $\hat{\pi} : \mathbb{R}^2 \times \mathbb{R}^N \to \mathbb{R}^N$ denote the orthogonal projections onto the first and the second factor respectively than for any bounded Borel function $\hat{\mu}$ in R^2 we have factor, respectively, then for any bounded Borel function φ in B^2 we have

$$
S_{T,\text{sing}}(\pi^{\#}\varphi \wedge \widehat{\pi}^{\#}\sigma) = 0
$$

for every element [σ] in the second de Rham cohomology group $H_{\text{dR}}^2(\mathcal{Y})$. Finally,

$$
||S_{T,\text{sing}}||(x_1,\ldots,x_I]\times \mathcal{Y})=0,
$$

 $\| \cdot \|$ denoting the total variation. As a consequence, we have $S_{T, \text{sing}}(\omega) \neq 0$ only on forms $\omega \in \mathcal{D}^2(B^2 \times \mathcal{Y})$ such that $d_{\mathcal{Y}}\omega^{(2)} \neq 0$. In particular, if \mathcal{Y} has dimension 2, then $S_{T,\text{sing}} = 0$, whereas if $\mathcal{Y} = S^2$, the unit 2-sphere in \mathbb{R}^3 , then $C_i = z_i \mathbb{I} S^2 \mathbb{I}$ for some integer z_i .

Definition 1.1. *We say that an integral* 2*-cycle* $C \in \mathcal{Z}_2(\mathcal{Y})$ *is* of spherical type *if its homology class contains a Lipschitz image of the* 2*-sphere* S 2 *; more precisely, if there exist* $Z \in \mathcal{Z}_2(\mathcal{Y})$, $R \in \mathcal{R}_3(\mathcal{Y})$ and a Lipschitz function $\phi : S^2 \to \mathcal{Y}$ such that

$$
C - Z = \partial R \quad and \quad \phi_*[[S^2]] = Z.
$$

Spherical cycles come into play since, as proved in [\[5\]](#page-21-1), [\[6\]](#page-22-1), if T is in the sequential weak closure of smooth graphs with equibounded Dirichlet energies, then every C_i is of spherical type. This fact leads to the following

Definition 1.2. If $n = 2$, we denote by cart^{2,1}($B^2 \times Y$) the class of i.m. rectifiable currents T in **D**-graph($B^2 \times Y$) *which decompose as in* ([1](#page-2-0).2)*, where the* C_i *'s are of spherical type.*

It turns out (see [\[4\]](#page-21-0), [\[5\]](#page-21-1)) that cart^{2,1}($B^2 \times Y$) is closed under weak convergence, with equibounded **D**-norm, and contains the weak limits of sequences of smooth graphs with equibounded **D**-norm.

The *n*-dimensional case. As before, let π : $\mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}^n$ denote the orthogonal projection onto the first factor. Let P be an oriented 2-plane in \mathbb{R}^n , and $P_t :=$

 $P + \sum_{i=1}^{n-2} t_i v_i$ the family of oriented 2-planes parallel to $P, t = (t_1, \ldots, t_{n-2}) \in \mathbb{R}^{n-2}$, span(v_1, \ldots, v_{n-2}) being the orthogonal subspace to P. Similarly to the case of normal currents, for every $T \in \mathcal{D}_{n,2}(B^n \times \mathcal{Y})$ with $||T||_{\mathbf{D}} < \infty$, for \mathcal{H}^{n-2} -a.e. t the *slice* $T \perp \pi^{-1}(P_t)$ of T over $\pi^{-1}(P_t)$ is a well defined current in $\mathcal{D}_2((B^n \cap P_t) \times \mathcal{Y})$ with finite **D**-norm. Moreover, if $T_k \rightharpoonup T$ with equibounded **D**-norm, for \mathcal{H}^{n-2} -a.e. t, passing to a subsequence we have $T_k \subset \pi^{-1}(P_t) \to T \subset \pi^{-1}(P_t)$ with equibounded **D**-norm. Finally, if $T \in \mathbf{D}$ -graph $(B^n \times \mathcal{Y})$, for \mathcal{H}^{n-2} -a.e. t we have $T \subset \pi^{-1}(P_t) \in \mathbf{D}$ -graph $((B^n \cap P_t) \times \mathcal{Y})$. Therefore in any dimension n the following definition was introduced in [\[4\]](#page-21-0):

Definition 1.3. We say that T is in cart^{2,1}($Bⁿ \times Y$) if $T \in D$ -graph($Bⁿ \times Y$) and for *any* 2-plane P and for \mathcal{H}^{n-2} -a.e. t the 2-dimensional current $T \sqcup \pi^{-1}(P_t)$ belongs to cart^{2,1} $((Bⁿ \cap P_t) \times Y)$ *.*

It turns out that the class cart^{2,1}($Bⁿ \times Y$) is closed under weak convergence with equibounded **D**-norm and, in case $\mathcal{Y} = S^2$, that the class cart^{2,1}($B^n \times S^2$) coincides with **D**-graph $(B^n \times S^2)$, $S_{T,\text{sing}} = 0$ and

$$
T = G_{u_T} + L_T \times \llbracket S^2 \rrbracket, \tag{1.3}
$$

where $L_T \in \mathcal{R}_{n-2}(B^n)$ is an i.m. rectifiable current.

Definition 1.4. We say that a Sobolev map $u \in W^{1,2}(B^n, \mathcal{Y})$ is in cart^{2,1}(B^n , \mathcal{Y}) if the *current* G_u *associated to its graph is in* cart^{2,1}($B^n \times Y$).

Therefore, a $W^{1,2}$ map u is in cart^{2,1}(B^n , \mathcal{Y}) if its graph has no inner boundary, i.e.,

$$
\partial_x G_u = 0
$$
 on $\mathcal{D}^{n-1,2}(B^n \times \mathcal{Y})$, $\partial_y G_u = 0$ on $\mathcal{Z}^{n-1,2}(B^n \times \mathcal{Y})$.

Remark 1.5. If $u : B^n \to Y$ is a continuous map in $W^{1,2}(B^n, Y)$, by a standard convolution and projection argument it can be approximated in $W^{1,2}$ -strong sense by a smooth sequence in $C^{\infty}(B^n, Y)$. This implies in particular that $u \in \text{cart}^{2,1}(B^n, Y)$.

The Dirichlet energy in cart^{2,1}. Denote by $\bigwedge_n \mathbb{R}^{n+M}$ the space of *n*-vectors in \mathbb{R}^{n+M} . Moreover, if $G : \mathbb{R}^n \to \mathbb{R}^M$ is a linear transformation, and with the same notation $G := (G_i^j)_{i,j=1}^{n,M}$ is the associated $(M \times n)$ -matrix, we let

$$
M(G) := (e_1 + Ge_1) \wedge \cdots \wedge (e_n + Ge_n) \in \bigwedge_n \mathbb{R}^{n+M},
$$

 $(e_i)_{i=1}^n$ being the canonical basis in \mathbb{R}^n . Then $M(G)$ determines the plane graph of G in \mathbb{R}^{n+M} , and in fact orients such an *n*-plane. If $T \in \mathbf{D}$ -graph $(B^n \times \mathcal{Y})$, we define the Dirichlet density as the function of $y \in \mathcal{Y}, \xi \in \bigwedge_n \mathbb{R}^{n+M}$ given by

$$
F(y,\xi) := \sup \{ \phi(\xi) \mid \phi : \bigwedge_n \mathbb{R}^{n+M} \to \mathbb{R} \text{ linear}, \phi(M(G)) \le \frac{1}{2} |G|^2 \text{ for all linear maps } G : \mathbb{R}^n \to T_y \mathcal{Y} \},
$$

 T_y being the tangent M-space to Y at y. The Dirichlet integral then extends to **D**-graphs T (cf. [\[6\]](#page-22-1)) as

$$
\mathbf{D}(T) := \int F(y, \vec{T}) d\|T\|_{\mathbf{D}},
$$

 \vec{T} being the Radon–Nikodym derivative $dT/d||T||_{\textbf{D}}$, and if [\(1.1\)](#page-1-0) holds, one has

$$
\mathbf{D}(T) = \frac{1}{2} \int_{B^n} |Du_T|^2 \, dx + \int_{B^n \times \mathcal{Y}} F(y, \vec{S}_T) \, d\|S_T\|_{\mathbf{D}}.
$$
 (1.4)

In particular we have

$$
||T||_{\mathbf{D}} \le c \, \mathbf{D}(T) \tag{1.5}
$$

for some absolute constant $c = c(n)$. Finally, if $A \subset B^n$ is a Borel set we define

$$
\mathbf{D}(T, A \times \mathcal{Y}) := \mathbf{D}(T \sqcup A \times \mathcal{Y})
$$

and, if $u \in W^{1,2}(B^n, \mathcal{Y}),$

$$
\mathbf{D}(u, A) := \frac{1}{2} \int_A |Du|^2 dx = \mathbf{D}(G_u, A \times \mathcal{Y}).
$$

Apart from the case of energy minimizing currents (see [\[4\]](#page-21-0)), if $n > 3$ we do not have an explicit formula for the second term on the right hand side of [\(1.4\)](#page-4-0). However, if $n = 2$ and [\(1.2\)](#page-2-0) holds, we have

$$
\mathbf{D}(T) = \frac{1}{2} \int_{B^2} |Du_T|^2 dx + \sum_{i=1}^I \mathbf{M}(C_i) + \mathbf{M}(S_{T,\text{sing}}).
$$
 (1.6)

Finally, if $\mathcal{Y} = S^2$ and [\(1.3\)](#page-3-0) holds, we have in any dimension

$$
\mathbf{D}(T) = \frac{1}{2} \int_{B^n} |Du_T|^2 \, dx + 4\pi \, \mathbf{M}(L_T). \tag{1.7}
$$

2. Mappings into the sphere

In this section we show that if $\mathcal Y$ is the standard unit sphere S^2 in $\mathbb R^3$, then every T in cart^{2,1}($B^n \times S^2$) can be approximated weakly as currents by smooth graphs with equibounded Dirichlet energy.

Theorem 2.1. Let $T \in \text{cart}^{2,1}(B^n \times S^2)$, $n \geq 2$. Then there exists a sequence of smooth maps $u_k : B^n \to S^2$ such that $G_{u_k} \to T$ weakly in $\mathcal{D}_n(B^n \times S^2)$ and

$$
\sup_{k} \mathbf{D}(u_k, B^n) \le c_n \mathbf{D}(T, B^n \times S^2) < \infty,
$$

where $c_n > 0$ *is an absolute constant.*

Proof. By Remark [1.5](#page-3-1) it suffices to construct the sequence $\{u_k\}$ in $W^{1,2}(B^n,\mathbb{R}^3)$ $C^0(B^n, S^2)$. Since B^n is bilipschitz homeomorphic to the unit open cube

$$
\mathcal{C}^n :=]0,1[^n,
$$

we will prove the assertion for $T \in \text{cart}^{2,1}(\mathcal{C}^n \times S^2)$. Note that the assertion of Theorem [2.1](#page-4-1) is true for $n = 2$ (see Sec. 4.1.2 of [\[6,](#page-22-1) vol. II]). Moreover, using the same argument as in Corollary [4.2](#page-12-0) below, with $\mathcal{Y} = S^2$, we have the following

Proposition 2.2. Let $n = 2$ and $T \in \text{cart}^{2,1}(\mathcal{C}^2 \times S^2)$ be such that $\partial T = G_{\varphi}$ for some function $\varphi \in W^{1,2}(\partial \mathcal{C}^2, \mathcal{Y})$. Then there exists a sequence of continuous maps $u_k: \overline{\mathcal{C}}^2 \to$ S^2 , with {u_k} ⊂ cart^{2,1}(C^2 , S^2) and $\partial G_{u_k} = \partial T$, hence $u_{k|\partial C^2} = \varphi$, such that G_{u_k} → T *weakly in* $\mathcal{D}_2(\mathcal{C}^2 \times S^2)$ and

$$
\lim_{k} \mathbf{D}(u_k, \mathcal{C}^2) = \mathbf{D}(T, \mathcal{C}^2 \times S^2).
$$

Let us fix some notation. If Q is a closed *n*-cube of \mathbb{R}^n with sides parallel to the coordinate axes, we will denote by $Q(i)$ its j-dimensional skeleton. If Q is contained in the unit open cube \mathcal{C}^n , and F is a j-face of $Q_{(j)}$, we will denote by

$$
T_Q := T \sqcup Q \times \mathbb{R}^3
$$
 and $T_F := T \sqcup F \times \mathbb{R}^3$

the restrictions of $T \in \text{cart}^{2,1}(\mathcal{C}^n \times S^2)$ to $Q \times \mathbb{R}^3$ and $F \times \mathbb{R}^3$, respectively. Also, we set

$$
T_{\partial Q} := \sum_{F \in Q_{(n-1)}} \sigma_F T \sqcup F \times \mathbb{R}^3,
$$

where $\sigma_F = \pm 1$ according to the induced orientation of Q onto its boundary. Finally, if $u \in W^{1,2}(Q, S^2)$ is such that $u_{\vert \partial Q} \in W^{1,2}(\partial Q, S^2)$, and F is a j-face of $Q_{(j)}$, we define

$$
G_{u|{\partial Q}} := (\mathrm{Id} \bowtie u_{|{\partial Q}})_\#\mathbb{I} \partial Q \mathbb{I}, \quad G_{u|F} := (\mathrm{Id} \bowtie u_{|F})_\#\mathbb{I} F \mathbb{I}.
$$

Definition 2.3. We say that Q is in generic position with respect to T if for every $j =$ 1, ..., $n-1$ and every *j*-face F in $Q(i)$ the restriction T_F is a *j*-dimensional current in cart^{2,1}($F \times S^2$) and moreover for every 1-face F in $Q_{(1)}$ the restriction T_F is the graph G_{φ} *of a Hölder continuous map* $\varphi \in W^{1,2}(F, S^2)$ *.*

We remark that by definition of the class cart^{2,1}($\mathcal{C}^n \times S^2$), by the structure of 2-dimensional currents in cart^{2,1} and by a slicing argument, it follows that for a.e. choice of the vector $a \in \mathbb{R}^n$ so that $a + Q \subset \mathcal{C}^n$, the *n*-cube $a + Q$ is in generic position with respect to T . In this case we also have

$$
T_{\partial Q} = \partial T_Q. \tag{2.1}
$$

We will work by induction on the dimension n , making use of the following result, Propo-sition [2.4,](#page-5-0) which holds true if $n = 2$ by Proposition [2.2.](#page-4-2) It will be used in dimension $n-1$ to prove Theorem [2.1](#page-4-1) and will be finally proved in dimension n by an adaptation of Theorem [2.1.](#page-4-1)

Proposition 2.4. Let $T \in \text{cart}^{2,1}(\mathbb{C}^n \times S^2)$ and Q be a closed n-cube of \mathbb{C}^n in generic position with respect to T . Then there exists a sequence $u_k:Q\to S^2$ of continuous maps in cart^{2,1}(Q , S^2) for which the following properties hold:

- (i) *for every k the boundary* ∂G_{u_k} *coincides with the* $(n-1)$ -dimensional graph $G_{u_k|\partial Q}$, *where* $u_{k|\partial Q}$ *is a continuous map in* cart^{2,1}(∂Q , S^2);
- (ii) *for every* k and every $(n 1)$ -face F of the boundary of Q, the restriction $G_{u_{k|F}}$ of $G_{u_{k|\partial Q}}$ to $F \times \mathbb{R}^3$ *only depends on the restriction* T_F *of* T to $F \times \mathbb{R}^3$;

(iii) $G_{u_k} \rightharpoonup T_Q$ weakly in $\mathcal{D}_n(Q \times S^2)$ as $k \to \infty$ and

$$
\sup_{k} \mathbf{D}(u_k, Q) \leq \widetilde{c}_n \, \mathbf{D}(T_Q, Q \times S^2) < \infty,
$$

where $\widetilde{c}_n := 2c_n > 0$ *is an absolute constant.*

Let now $T \in \text{cart}^{2,1}(\mathcal{C}^n \times S^2), n \geq 3$, and let (e_1, \ldots, e_n) be the canonical basis of \mathbb{R}^n . For $i = 1, \ldots, n$ and $t \in [0, 1]$, we denote by $P(t, i)$ the restriction to \mathcal{C}^n of the hyperplane containing the point te_i and orthogonal to e_i , i.e.,

$$
P(t, i) := \{x \in C^n \mid (x - te_i \mid e_i)_{\mathbb{R}^n} = 0\}.
$$

By slicing theory

$$
T \mathrel{\sqcup} P(t, i) \times \mathbb{R}^3 = \langle T, d_i, t \rangle \in \text{cart}^{2,1}(P(t, i) \times S^2)
$$
 (2.2)

for a.e. $t \in [0, 1]$, where

$$
d_i(x, y) := x_i, \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n, \quad y \in \mathbb{R}^3.
$$

For $m \in \mathbb{N}^*$ and $a = (a_1, ..., a_n) \in [1/4m, 3/4m]^n$ we denote by $C_{m,a}^{(n-1)}$ the $(n-1)$ skeleton of the grid of \mathcal{C}^n given by

$$
C_{m,a}^{(n-1)} := \bigcup_{i=1}^n \bigcup_{j=0}^{m-1} P(a_i + j/m, i).
$$

By (1.3) and (1.7) , for every *i* we have

$$
\int_{1/4m}^{3/4m} \sum_{j=0}^{m-1} \mathbf{D}(\langle T, d_i, t+j/m \rangle, P(t+j/m, i) \times S^2) dt
$$

$$
\leq \sum_{j=0}^{m-1} \mathbf{D}(T, \{j/m \leq d_i \leq (j+1)/m\}) = \mathbf{D}(T, C^n \times S^2).
$$

Set

$$
T_{m,a}^{(n-1)} := \sum_{i=1}^n \sum_{j=0}^{m-1} \langle T, d_i, a_i + j/m \rangle.
$$

Then there exists a vector $a = a(m) \in [1/4m, 3/4m]^n$ such that $\langle T, d_i, a_i + j/m \rangle \in$ cart^{2,1} ($P(a_i + j/m, i) \times S^2$) for every $i \in \{1, ..., n\}$ and $j \in \{0, ..., m - 1\}$ and

$$
\mathbf{D}(T_{m,a}^{(n-1)}, C_{m,a}^{(n-1)} \times S^2) \le \tilde{c}(n)m \, \mathbf{D}(T, C^n \times S^2),\tag{2.3}
$$

where $\tilde{c}(n) = n$. Let now $\mathcal{Q}_{m,a}$ denote the family of all *n*-cubes Q of side $1/m$ with boundary contained in the $(n-1)$ -grid $C_{m,a}^{(n-1)}$, i.e. $\partial Q \subset C_{m,a}^{(n-1)}$, so that

$$
\bigcup \mathcal{Q}_{m,a} = a(m) + [0, (m-1)/m]^n.
$$
 (2.4)

By Definition [2.3](#page-5-1) and the remark following it, taking e.g. $\tilde{c}(n) = 2n$ in [\(2.3\)](#page-6-0), we may and do choose $a(m)$ so that each *n*-cube Q of $\mathcal{Q}_{m,a}$ is in generic position with respect to T.

For every Q in $Q_{m,a}$ and every $(n - 1)$ -face F of the boundary of Q, we apply Proposition [2.4,](#page-5-0) which is supposed to hold true in dimension $n-1$, to the restriction T_F of T to F. Then there exists a sequence $u_k^F : F \to S^2$ of continuous maps in cart^{2,1}(F, S²) for which the following properties hold:

- (i) for every k the boundary $\partial G_{u_k^F}$ coincides with the $(n-2)$ -dimensional graph $G_{u_{k|\partial F}^F}$, where $u_{k|\partial F}^F$ is a continuous map in cart^{2,1}(∂F , S^2);
- (ii) for every k and every $(n-2)$ -face I of the boundary of F, the restriction $G_{u_{k|I}^F}$ of $G_{u_{k|\partial F}^F}$ to $I \times \mathbb{R}^3$ only depends on the restriction T_I of T to $I \times \mathbb{R}^3$;
- (iii) $G_{u_k^F} \rightharpoonup T_F$ weakly in $\mathcal{D}_{n-1}(F \times S^2)$ as $k \to \infty$ and

$$
\sup_{k} \mathbf{D}(u_k^F, F) \le \widetilde{c}_{n-1} \mathbf{D}(T_F, F \times S^2) < \infty,\tag{2.5}
$$

where $\widetilde{c}_{n-1} := 2 c_{n-1} > 0$ is an absolute constant.

If $\mathcal{Q}_{m,a}^{(n-1)}$ denotes the $(n-1)$ -skeleton of $\bigcup \mathcal{Q}_{m,a}$, we now define $v_k : \bigcup \mathcal{Q}_{m,a}^{(n-1)} \to S^2$ by setting

$$
v_k(x) := u_k^F(x) \quad \text{if } x \in F \tag{2.6}
$$

for every $(n - 1)$ -face F of side $1/m$ of some n-cube of $Q_{m,a}$. Note that if F_1 and F_2 are two $(n - 1)$ -faces which intersect in a common $(n - 2)$ -face I, by (i) and (ii) for every k we have $\partial G_{v_k^{F_1}} \sqcup I \times \mathbb{R}^3 = -\partial G_{v_k^{F_1}} \sqcup I \times \mathbb{R}^3$. Then $\{v_k\}$ is a well defined continuous sequence such that $\partial G_{v_{k|\partial Q}} = 0$ for every Q in $Q_{m,a}$ and

$$
G_{v_{k|\partial Q}} \rightharpoonup T_{\partial Q} \quad \text{in } \mathcal{D}_{n-1}(\partial Q \times S^2) \tag{2.7}
$$

as $k \to \infty$. In particular the graph of G_{v_k} has no boundary, $\partial G_{v_k} = 0$, and from [\(2.3\)](#page-6-0) and (2.5) ,

$$
\sup_{k} \mathbf{D}(v_k, \bigcup \mathcal{Q}_{m,a}^{(n-1)}) \le 2\widetilde{c}_{n-1}mn\mathbf{D}(T, \mathcal{C}^n \times S^2). \tag{2.8}
$$

We now wish to extend v_k to a map U_k defined in a homogeneous way in the interior of each *n*-cube Q of $Q_{m,a}$ minus a small sphere about the center where we wish to remove the singularity (see [\(2.10\)](#page-8-0)). To remove the point singularities of the homogeneous extension at the center of each cube, we make use of the following

Proposition 2.5. *For k sufficiently large and for every n*-*cube* $Q \in \mathcal{Q}_{m,a}$ *, we have*

$$
\{v \in W^{1,2}(Q,\mathbb{R}^3) \cap C^0(Q,S^2) \mid v_{|\partial Q} = v_{k|\partial Q}\} \neq \emptyset.
$$

Proof. It suffices to prove that $v_{k|\partial Q}$ is homotopic to a constant map in S^2 . Arguing as in [\[2\]](#page-21-2), we recall that the Hurewicz homomorphism $\rho : \pi_2(S^2) \to H_2(S^2, \mathbb{Q})$ is an isomorphism, $\pi_2(S^2)$ and $H_2(S^2, \mathbb{Q})$ being respectively the homotopy group and the rational homology group of order 2 of S^2 . As a consequence, it suffices to show that for k sufficiently large the pull-back via $v_{k|\partial Q}$ of the volume 2-form ω_{S^2} of S^2 is a closed form, i.e.,

$$
d(v_{k|\partial Q}^{\#}\omega_{S^2}) = 0, \qquad (2.9)
$$

which means zero degree if $n = 3$. To this end, by [\(2.7\)](#page-7-1) and [\(2.1\)](#page-5-2) we infer that $G_{v_{k|\partial Q}}$ weakly converges to the boundary of the Cartesian current $T_Q \in \text{cart}^{2,1}(Q \times S^2)$. If $n \geq 4$, for every $(n-4)$ -form $\eta \in \mathcal{D}^{n-4}(\partial \mathcal{Q})$ we have

$$
\partial T_Q(\pi^{\#} d\eta \wedge \widehat{\pi}^{\#}\omega_{S^2}) = 0
$$

(whereas $\partial T_Q(\hat{\pi}^{\#}\omega_{S^2}) = 0$, i.e., zero degree if $n = 3$), where $\pi : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}^n$ and $\hat{\pi} : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}^n$ and $\hat{\pi} : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}^n$ and $\hat{\pi} : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb$ $\hat{\pi} : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}^N$ denote the orthogonal projections onto the first and the second fector respectively. Hence, by weak convergence factor, respectively. Hence, by weak convergence,

$$
\int_{\partial Q} d\eta \wedge v_k^{\#} \omega_{S^2} = G_{v_{k|\partial Q}}(\pi^{\#} d\eta \wedge \widehat{\pi}^{\#} \omega_{S^2}) \rightarrow \partial T_Q(\pi^{\#} d\eta \wedge \widehat{\pi}^{\#} \omega_{S^2}) = 0
$$

 $(\int_{\partial Q} v_k^{\#} \omega_{S^2} \to 0 \text{ if } n = 3) \text{ as } k \to \infty.$ This clearly yields [\(2.9\)](#page-7-2).

Let now $Q \in \mathcal{Q}_{m,a}$. If $\varphi_k \in W^{1,2}(Q,S^2)$ is a continuous extension of $v_{k|\partial Q}$, the existence of which is provided by Proposition [2.5,](#page-7-3) we fix $\delta \in (0, 1/2m)$ and extend $v_{k|\partial O}$ to the interior of Q by

$$
U_k^{(Q)}(x) := \begin{cases} v_k \left(p + \frac{1}{2m} \frac{x - p}{\|x - p\|} \right) & \text{if } \delta \le \|x - p\| \le \frac{1}{2m}, \\ \varphi_k \left(p + \frac{1}{2m\delta} \left(x - p \right) \right) & \text{if } \|x - p\| \le \delta, \end{cases}
$$
(2.10)

where p is the center of Q and $||x|| := \max_{1 \le i \le n} |x_i|$, so that $||x - p|| = 1/2m$ if $x \in \partial Q$.

Trivially $U_k^{(Q)}$ $k_k^{(Q)}$ is a continuous function in $W^{1,2}(Q, S^2)$. Moreover, since for $\delta \leq$ $||x - p|| \le 1/2m$,

$$
|D_x U_k^{(Q)}(x)| \le \frac{1}{2m} \cdot \frac{|x-p|}{\|x-p\|^2} \cdot |D_y v_k(y)|, \quad y := p + \frac{1}{2m} \frac{x-p}{\|x-p\|},
$$

$$
|x| := \sqrt{x_1^2 + \dots + x_n^2},
$$

by the area formula [\[3\]](#page-21-3) we estimate

$$
\int_{\delta \le \|x - p\| \le 1/2m} |DU_k^{(Q)}|^2 \, dx \le \frac{n}{n-2} \cdot \frac{1}{2m} \cdot \int_{\partial Q} |Dv_k|^2 \, d\mathcal{H}^{n-1} \tag{2.11}
$$

and by changing variable

Z

$$
\int_{\|x-p\| \le \delta} |DU_k^{(Q)}|^2 \, dx = (2m\delta(m, v_k))^{n-2} \int_Q |D\varphi_k|^2 \, dx \le \frac{1}{km^3},\tag{2.12}
$$

if we choose $\delta = \delta(m, v_k) > 0$ suitably with $\lim_{k \to \infty} \delta(m, v_k) = 0$ for every m.

We now define $U_k^{(m)}$ $\mathcal{L}_k^{(m)}$: $\bigcup \mathcal{Q}_{m,a} \to S^2$ by $U_k^{(m)}$ $u_k^{(m)}(x) := U_k^{(Q)}$ $\chi_k^{(Q)}(x)$ if $x \in Q$ for some $Q \in \mathcal{Q}_{m,a}$. Then, by [\(2.11\)](#page-8-1) and [\(2.12\)](#page-8-2),

$$
\int_{\bigcup Q_{m,a}} |DU_k^{(m)}|^2 dx \leq \frac{n}{(n-2)m} \cdot \mathbf{D}(v_k, \bigcup Q_{m,a}^{(n-1)}) + \frac{1}{km}.
$$

Therefore $\{U_k^{(m)}\}$ $(k \choose k)$ k is a continuous sequence in cart^{2,1} ($\bigcup Q_{m,a}$, S^2) such that by [\(2.8\)](#page-7-4),

$$
\sup_{k} \mathbf{D}(U_k^{(m)}, \bigcup \mathcal{Q}_{m,a}) \le c(n) \mathbf{D}(T, \mathcal{C}^n \times S^2) + \frac{1}{m}
$$
 (2.13)

for each m, with $c(n) := 2\tilde{c}_{n-1} n^2/(n-2)$. Moreover by [\(2.4\)](#page-6-1) there exists an affine bijective function u_{n-1} (\tilde{c}_{n-1}) (\tilde{c}_{n-1}) (m and u_{n-1}) and \tilde{c}_{n-1} tive function $\psi_{m,a}: \mathcal{C}^n \to \bigcup \mathcal{Q}_{m,a}$ such that Lip $\psi_{m,a} = (m-1)/m$ and $\psi_{m,a} \to \text{Id}_{\mathcal{C}^n}$

uniformly as $m \to \infty$. Set $V_k^{(m)}$ $u_k^{(m)}(x) := U_k^{(m)}$ $k_k^{(m)}(\psi_{m,a}(x))$. Then, for *m* fixed, $\{V_k^{(m)}\}$ $\binom{m}{k}$ is a continuous sequence in cart^{2,1}(\mathcal{C}^n , S^2) such that, by [\(2.13\)](#page-8-3),

$$
\sup_{k} \mathbf{D}(V_k^{(m)}, \mathcal{C}^n) \le \left(\frac{m}{m-1}\right)^{n-2} c(n) \mathbf{D}(T, \mathcal{C}^n \times S^2) + \frac{2}{m}.
$$

Then, by closure-compactness we have both

$$
G_{U_k^{(m)}} \rightharpoonup T_m \quad \text{and} \quad G_{V_k^{(m)}} \rightharpoonup \widetilde{T}_m
$$

as $k \to \infty$ weakly in $\mathcal{D}_{n,2}(\bigcup \mathcal{Q}_{m,a} \times S^2)$ and $\mathcal{D}_{n,2}(\mathcal{C}^n \times S^2)$, respectively, for some $T_m \in \text{cart}^{2,1}(\bigcup \mathcal{Q}_{m,a} \times S^2)$ and $\widetilde{T}_m \in \text{cart}^{2,1}(\mathcal{C}^n \times S^2)$. Moreover $T_m = \Psi_{m,a,\#} \widetilde{T}_m$, where $\Psi_{m,a}$: $\mathcal{C}^n \times \mathcal{S}^2 \to \bigcup \mathcal{Q}_{m,a} \times \mathcal{S}^2$ is given by $\Psi_{m,a}(x, y) := (\psi_{m,a}(x), y)$. As a consequence, if we take $c_n := 2c(n) = 8c_{n-1} n^2/(n-2)$, the assertion follows by a diagonal procedure as soon as we prove the following

Proposition 2.6. *Under the previous hypotheses,* $\widetilde{T}_m \rightharpoonup T$ *weakly in* $\mathcal{D}_n(\mathcal{C}^n \times S^2)$ *as* $m \to \infty$.

Proof. As before, we fix an *n*-cube $Q \in \mathcal{Q}_{m,a}$ and let p be its center. Also, denote by $\psi : Q \times S^2 \to \{p\} \times S^2$ the map $\psi(x, y) := (p, y)$. Finally, let $h : [0, 1] \times (Q \times S^2) \to$ $Q \times S^2$ be the affine homotopy

$$
h(t, x, y) := t\psi(x, y) + (1 - t) \operatorname{Id}_{Q \times S^2}(x, y) = (tp + (1 - t)x, y).
$$

By [\(2.1\)](#page-5-2), [\(2.7\)](#page-7-1) and [\(2.10\)](#page-8-0),

$$
\partial (T_m \sqcup Q \times \mathbb{R}^3) = T_m \sqcup \partial Q \times \mathbb{R}^3 = \partial T_Q, \quad T_Q := T \sqcup Q \times \mathbb{R}^3, \tag{2.14}
$$

whereas, since by [\(2.12\)](#page-8-2), $\mathbf{M}(G_{U_k^{(Q)}} \sqcup \{\|x - p\| < \delta\}) \to 0$ as $k \to \infty$, we infer that

 $h_{\#}(\llbracket 0, 1 \rrbracket \times \partial T_Q) = -T_m \sqcup Q \times \mathbb{R}^3.$

As a consequence, setting

$$
R_Q^m := h_{\#}(\llbracket 0, 1 \rrbracket \times T_Q),
$$

by the homotopy formula [\[10,](#page-22-2) 26.22] we find that

$$
\partial R_Q^m = \psi_{\#} T_Q - T_Q + T_m \mathop{\sqcup} Q \times \mathbb{R}^3.
$$

Since $\psi_* T_Q$ is an *n*-dimensional i.m. rectifiable current, $n \geq 3$, supported in the 2dimensional set $\{p\} \times S^2$, we deduce that

$$
T_m \mathbin{\perp} Q \times \mathbb{R}^3 - T_Q = \partial R_Q^m.
$$

Moreover, since by [\[10,](#page-22-2) 26.23],

$$
\mathbf{M}(R_Q^m) \le \frac{c}{m} \mathbf{M}(T_Q),
$$

setting

$$
R_m := \sum_{Q \in \mathcal{Q}_{m,a}} R_Q^m \in \mathcal{R}_{n+1}(\bigcup \mathcal{Q}_{m,a} \times S^2),
$$

by [\(2.14\)](#page-9-0) we obtain

$$
T_m - T \sqcup \bigcup \mathcal{Q}_{m,a} \times \mathbb{R}^3 = \partial R_m, \qquad (2.15)
$$

where

 $\mathbf{M}(R_m) \leq \frac{c}{m}$ $\frac{C}{m}$ **M**(T) \rightarrow 0

as $m \to \infty$. This yields $T_m - T \sqcup \bigcup \mathcal{Q}_{m,a} \times \mathbb{R}^3 \to 0$ as $m \to \infty$ in $\mathcal{D}_n(\mathcal{C}^n \times S^2)$ (cf. [\[10,](#page-22-2) 31.2]). Finally the assertion follows since $\Psi_{m,a}^{-1}T_m = \widetilde{T}_m$ whereas, by uniform convergence $\psi_{m,a} \to \mathrm{Id}_{\mathcal{C}^n}$,

$$
\Psi_{m,a}^{-1}T \sqcup \bigcup \mathcal{Q}_{m,a} \times \mathbb{R}^3 \rightharpoonup T
$$

as $m \to \infty$.

Proof of Proposition [2.4](#page-5-0). Without loss of generality we may suppose $Q = \overline{C}^n := [0, 1]^n$. We then modify the proof of Theorem [2.1](#page-4-1) as follows.

Let $\mathcal{Q}_{m,a}$ denote the partition of $\mathcal{\overline{C}}^n$ given by the family of all *n*-rectangles and *n*cubes Q with boundary contained in the $(n-1)$ -grid $C_{m,a}^{(n-1)}$ or in the boundary of C^n , i.e. $\partial Q \subset C_{m,a}^{(n-1)} \cup \partial C_{n}^{n}$. More precisely, $\mathcal{Q}_{m,a}$ contains all the *n*-cubes of $\mathcal{Q}_{m,a}$ plus a family of *n*-rectangles Q, with sides parallel to the coordinate axes, which are contained in \overline{C}^n and intersect the boundary of C^n . We may and do choose $a(m)$ so that [\(2.3\)](#page-6-0) holds, with $\tilde{c}(n) = 2n$, and each *n*-rectangle of $\tilde{Q}_{m,a}$ is in generic position with respect to T. For every *n*-rectangle Q in $Q_{m,a}$ and every $(n - 1)$ -face F of the boundary of Q, we apply Proposition [2.4,](#page-5-0) in dimension $n-1$, and define the sequence $u_k^F : F \to S^2$ so that in particular [\(2.5\)](#page-7-0) holds. If $\tilde{Q}_{m,a}^{(n-1)}$ denotes the $(n-1)$ -skeleton of $\tilde{Q}_{m,a}$, we then define the continuous sequence $v_k : \bigcup \tilde{\mathcal{Q}}_{m,a}^{(n-1)} \to S^2$ as in [\(2.6\)](#page-7-5), so that [\(2.7\)](#page-7-1) holds for every *n*-rectangle Q of $\mathcal{Q}_{m,a}$, the graph G_{v_k} has no boundary, $\partial G_{v_k} = 0$, and from [\(2.3\)](#page-6-0) and $(2.5),$ $(2.5),$

$$
\sup_{k} \mathbf{D}(v_k, \bigcup \widetilde{\mathcal{Q}}_{m,a}^{(n-1)}) \le 2\widetilde{c}_{n-1}mn \,\mathbf{D}(T, \mathcal{C}^n \times S^2) + \mathbf{D}(\partial T, \partial \mathcal{C}^n \times S^2). \tag{2.16}
$$

As a consequence, the assertion of Proposition [2.5](#page-7-3) holds true for every *n*-rectangle $Q \in$ $\widetilde{Q}_{m,a}$. Then, similarly to Theorem [2.1](#page-4-1) we extend v_k to a map $U_k^{(Q)}$ in the interior of each k element Q of $Q_{m,a}$. More precisely, if Q is an *n*-rectangle of $Q_{m,a}$ which intersects the boundary of \mathcal{C}^n , since the vector $a(m)$ is chosen in $[1/4m, 3/4m]^n$, then Q has sides of length $1/m$ or between $1/4m$ and $3/4m$. As a consequence, Q is bilipschitz homeomorphic to the *n*-cube $Q_m := [0, 1/m]^n$ for some affine bijective function $\psi_Q : Q \to Q_m$ with Lip $\psi_Q \leq 4$ and Lip $\psi_Q^{-1} \leq 3/4$. Therefore, if $\widetilde{U}_k^{(Q)}$: $Q_m \to S^2$ is defined as in [\(2.10\)](#page-8-0) with $\tilde{v}_k(x) := v_k(\psi_Q^{-1}(x))$ for $x \in \partial Q_m$, where $\varphi_k \in W^{1,2}(Q_m, S^2)$ is a continuous extension of $\widetilde{v}_{k|\partial Q_m}$, we set $U_k^{(Q)}$ $\widetilde{U}_{k}^{(Q)}(x) := \widetilde{U}_{k}^{(Q)}(\psi_Q(x))$. Since $\bigcup \widetilde{Q}_{m,a} = \overline{C}^n$, we now define $U_k^{(m)}$ $g_k^{(m)} : \overline{\mathcal{C}}^n \to S^2$ by $U_k^{(m)}$ $u_k^{(m)}(x) := U_k^{(Q)}$ $k_k^{(Q)}(x)$ if $x \in Q$ for some $Q \in \mathcal{Q}_{m,a}$. If we take $\delta = \delta(m, v_k) > 0$ suitably small in [\(2.10\)](#page-8-0), with $\lim_{k \to \infty} \delta(m, v_k) = 0$ for every m, it is not difficult to show that every $U_k^{(m)}$ $k_k^{(m)}$: $\overline{C}^n \rightarrow S^2$ is a continuous map in cart^{2,1} (\overline{C}^n , S^2) with

$$
\sup_{k} \mathbf{D}(U_k^{(m)}, \overline{C}^n) \le 2c(n) \mathbf{D}(T, C^n \times S^2) + \frac{1}{m} + \widehat{c}(n) \frac{1}{m} \mathbf{D}(\partial T, \partial C^n \times S^2)
$$

for each *m*, where again $c(n) := 2\tilde{c}_{n-1} n^2/(n-2)$ and $\hat{c}(n)$ is an absolute constant. Then for *m* sufficiently large for m sufficiently large

$$
\sup_{k} \mathbf{D}(U_k^{(m)}, \overline{C}^n) \le 4c(n) \mathbf{D}(T, C^n \times S^2)
$$

and by closure-compactness $G_{U_k^{(m)}} \to T_m$ as $k \to \infty$ weakly in $\mathcal{D}_{n,2}(\overline{\mathcal{C}}^n \times S^2)$ for some $T_m \in \text{cart}^{2,1}(\overline{\mathcal{C}}^n \times S^2)$. Finally, similarly to Proposition [2.6](#page-9-1) we show that $T_m \to T$ weakly in $\mathcal{D}_n(\overline{C}^n \times S^2)$ as $m \to \infty$, so that by a diagonal procedure we obtain the assertion with $\widetilde{c}_n := 4c(n) = 2c_n.$

3. Mappings into manifolds

In this section we extend Theorem [2.1](#page-4-1) to a wide class of target manifolds $\mathcal V$ of dimension larger than or equal to 2.

We will consider any smooth oriented Riemannian manifold $\mathcal V$ of dimension $M \geq 2$, isometrically embedded in \mathbb{R}^N for some $N \geq 3$. As in Sec. 1, we assume that $\mathcal Y$ is compact, connected, without boundary and that its integral 2-homology group $H_2(\mathcal{Y}, \mathbb{Z})$ has no torsion. Moreover, we shall also assume that the Hurewicz homomorphism $\pi_2(Y) \rightarrow$ $H_2(\mathcal{Y}, \mathbb{Q})$ is injective. We observe that, by the Hurewicz theorem [\[7\]](#page-22-3), if in particular $\mathcal Y$ is 1-connected, i.e., $\pi_1(\mathcal{Y}) = 0$, then the last condition actually follows from the others.

Theorem 3.1. Let $T \in \text{cart}^{2,1}(B^n \times \mathcal{Y})$, $n \geq 2$. Then there exists a sequence of smooth *maps* $u_k : B^n \to Y$ *such that* $G_{u_k} \to T$ *weakly in* $\mathcal{D}_{n,2}(B^n \times Y)$ *and*

$$
\sup_{k} \mathbf{D}(u_k, B^n) \le c_n \mathbf{D}(T, B^n \times \mathcal{Y}) < \infty,
$$

where $c_n > 0$ *is an absolute constant.*

We notice that our result does not answer the problem, raised in [\[1\]](#page-21-4), whether every $u \in W^{1,2}(B^n, \mathcal{Y})$ is the weak limit in $W^{1,2}(B^n, \mathcal{Y})$ of a sequence of smooth maps $u_k: B^n \to \mathcal{Y}.$

Proof of Theorem [3.1.](#page-11-0) Since the result is true for $n = 2$ by Theorem [4.1,](#page-12-1) it suffices to adapt Theorem [2.1,](#page-4-1) and therefore the inductive argument based on Proposition [2.4,](#page-5-0) with $\mathcal{Y}, \mathbb{R}^N$, weak convergence and boundary in $\mathcal{D}_{n,2}$ instead of S^2 , \mathbb{R}^3 , weak convergence and boundary in \mathcal{D}_n , respectively, taking account of the following facts. Proposition [2.4](#page-5-0) holds for $n = 2$ by Corollary [4.2.](#page-12-0) Similarly to the case of normal currents, the slice [\(2.2\)](#page-6-2) is well defined in cart^{2,1} ($P(t, i) \times Y$). Moreover, by definition of the class cart^{2,1} (\mathcal{C}^n , \mathcal{Y}), by the structure of 2-dimensional currents in cart^{2,1} and by a slicing argument, we may again choose $a(m)$ so that each *n*-cube Q of $Q_{m,a}$ is in generic position with respect to T. Then $T_{m,a}^{(n-1)}$ is well defined and [\(2.3\)](#page-6-0) holds. In Proposition [2.5,](#page-7-3) to prove that $v_{k|\partial Q}$ is homotopic to a constant map in \mathcal{Y} , since by assumption the Hurewicz homomorphism $\pi_2(\mathcal{Y}) \to H_2(\mathcal{Y}, \mathbb{Q})$ is injective, it suffices to show that for every closed 2-form ω in \mathcal{Y} , or in a basis of $\mathcal{Z}^2(\mathcal{Y})$, we have $d(v_{k|\partial \mathcal{Q}}^{\#}\omega) = 0$. This follows from the same computation. In fact, [\(2.7\)](#page-7-1) holds again, where ∂T_Q is by [\(2.1\)](#page-5-2) the boundary, in $\mathcal{D}_{n,2}$ sense, of the Cartesian current $T_Q \in \text{cart}^{2,1}(Q \times \mathcal{Y})$. Since for every $(n-4)$ -form $\eta \in \mathcal{D}^{n-4}(\partial Q)$ the

form $\pi^* d\eta \wedge \hat{\pi}^* \omega$ is both d_x -closed and d_y -closed, we obtain $\partial T_Q(\pi^* d\eta \wedge \hat{\pi}^* \omega) = 0$ and that by weak convergence in $\mathcal{D}_{n,2}$ the assertion. As to Proposition [2.6,](#page-9-1) by [\(2.12\)](#page-8-2) we find that $\mathbf{D}(G_{U_k^{(Q)}}, \{||x-p|| < \delta\}) \to 0$. Since the map h does not move the vertical directions, the homotopy formula holds again. Moreover, $\psi_{#}T_Q = 0$ in $\mathcal{D}_{n-2}(\mathcal{C}^n \times \mathcal{Y})$ for $n \geq 3$, since it can take nonzero values only on forms with more than two differentials in the vertical direction, hence [\(2.15\)](#page-10-0) holds in $\mathcal{D}_{n,2}$, where

$$
\|R_m\|_{\mathbf{D}} \leq \frac{c}{m} \mathbf{D}(T, C^n \times S^2) \to 0
$$

by [\(1.5\)](#page-4-4). This yields again $T_m - T \sqcup \bigcup \mathcal{Q}_{m,a} \times \mathbb{R}^N \to 0$ in $\mathcal{D}_{n,2}(\mathcal{C}^n \times \mathcal{Y})$ and hence Theorem [3.1.](#page-11-0) Finally, Proposition [2.4](#page-5-0) follows from an adaptation of Theorem [3.1](#page-11-0) similar to the one in Sec. 2. \Box

4. A strong density result

In this section we prove the following strong density result for the Dirichlet energy of maps from 2-dimensional domains into general target manifolds. Compare Sec. 4.1.2 in [\[6,](#page-22-1) vol. II] for the case $\mathcal{Y} = S^2$. As before, $\mathcal{C}^2 :=]0, 1[^2$, the unit open square in \mathbb{R}^2 .

Theorem 4.1. *Let* $n = 2$ *. Let* \mathcal{Y} *be a smooth, compact, connected, oriented Riemannian manifold of dimension* $M \geq 2$, isometrically embedded in \mathbb{R}^N , $N \geq 3$. Assume that the *integral* 2-homology group $H_2(\mathcal{Y}, \mathbb{Z})$ has no torsion. Then for every $T \in \text{cart}^{2,1}(\mathcal{C}^2 \times \mathcal{Y})$ *there exists a sequence of smooth maps* $u_k : C^2 \to Y$ *such that* $G_{u_k} \rightharpoonup T$ *weakly in* $\mathcal{D}_2(\mathcal{C}^2\times \mathcal{Y})$ and

$$
\lim_{k \to \infty} \mathbf{D}(u_k, \mathcal{C}^2) = \mathbf{D}(T, \mathcal{C}^2 \times \mathcal{Y}).
$$
\n(4.1)

As a consequence, if the boundary of T coincides with the graph of a $W^{1,2}$ map, we obtain the following

Corollary [4](#page-12-1).2. *Under the hypotheses of Theorem 4.1, if* $\partial T = G_{\varphi}$ *for some function* $\varphi \in W^{1,2}(\partial \mathcal{C}^2, \mathcal{Y})$, then there exists a sequence of continuous maps $u_k : \overline{\mathcal{C}}^2 \to \mathcal{Y}$, with ${u_k}$ ⊂ cart^{2,1}(C^2 , Y) and ∂ $G_{u_k} = ∂T$, hence $u_{k|∂C^2} = ∞$, such that G_{u_k} → T weakly in $\mathcal{D}_2(\mathcal{C}^2 \times \mathcal{Y})$ and ([4](#page-12-1).1) holds.

We recall by Sec. 1 that every $T \in \text{cart}^{2,1}(\mathcal{C}^2 \times \mathcal{Y})$ has the form

$$
T = G_{u_T} + \sum_{i=1}^{I} \delta_{x_i} \times C_i + S_{T, \text{sing}}
$$
\n(4.2)

for some $x_i \in C^2$, where the nontrivial 2-cycles C_i are of spherical type (cf. Definition [1.1\)](#page-2-1), and $S_{T,\text{sing}}$ is a completely vertical, homologically trivial, i.m. rectifiable current supported on a set not containing $\{x_i\} \times \mathcal{Y}, i = 1, \ldots, I$; moreover

$$
\mathbf{D}(T) = \frac{1}{2} \int_{C^2} |Du_T|^2 \, dx + \sum_{i=1}^I \mathbf{M}(C_i) + \mathbf{M}(S_{T,\text{sing}}).
$$

Proposition 4.3 (Approximation of spherical cycles). *Let* u *be a smooth map from* B 2 *into* Y *. Let* $C \in \mathcal{Z}_2(Y)$ *be a* 2*-cycle of spherical type. Then there exist a sequence* $\{u_k\}$ *of smooth maps from* B^2 *into* Y *and a sequence of radii* $\delta_k \searrow 0$ *such that* $u_k = u$ *outside* $B_{\delta_k}^2$ and $G_{u_k} \rightharpoonup G_u + \delta_0 \times C$ weakly in $\mathcal{D}_2(B^2 \times \mathcal{Y})$ with

$$
\lim_{k \to \infty} \mathbf{D}(u_k, B^2) = \mathbf{D}(u, B^2) + \mathbf{M}(C).
$$

Proposition 4.4 (Approximation of the singular vertical part). *Under the hypotheses of Theorem* 4.[1](#page-12-1)*, if* ([4](#page-12-2).2) *holds, then for every smooth map* u *from* C 2 *into* Y *there exists a sequence* $\{u_h\}$ *of smooth maps from* C^2 *into* Y *such that* $G_{u_h} \rightharpoonup G_u + S_{T, sing}$ *weakly in* $\mathcal{D}_2(\mathcal{C}^2\times \mathcal{Y})$ and

$$
\lim_{h\to\infty} \mathbf{D}(u_h, \mathcal{C}^2) = \mathbf{D}(u, \mathcal{C}^2) + \mathbf{M}(S_{T,\text{sing}}).
$$

We postpone the proof of these results and first prove Theorem [4.1](#page-12-1) and Corollary [4.2.](#page-12-0)

Proof of Theorem [4.1.](#page-12-1) Since $n = 2$, by Schoen–Uhlenbeck's density theorem [\[9\]](#page-22-4) we can find a sequence u_k : $\mathcal{C}^2 \to \mathcal{Y}$ of smooth maps such that $u_k \to u_T$ strongly in $W^{1,2}(\mathcal{C}^2, \mathcal{Y})$. On small disks around each x_i and contained in \mathcal{C}^2 , we first apply Propo-sition [4.3](#page-12-3) to each u_k and find a sequence of smooth maps $\{u_{k,h}\}_h$ from \mathcal{C}^2 into $\mathcal Y$ and a sequence of radii $\delta_{k,h} \searrow 0$ as $h \to \infty$ such that $u_{k,h} = u_k$ outside $B_{\delta_{k,h}}^2(x_i)$,

$$
G_{u_{k,h}} \rightharpoonup G_{u_k} + \sum_{i=1}^I \delta_{x_i} \times C_i
$$

weakly in $\mathcal{D}_2(\mathcal{C}^2 \times \mathcal{Y})$ and

$$
\lim_{h\to\infty}\mathbf{D}(u_{k,h},\mathcal{C}^2)=\mathbf{D}(u_k,\mathcal{C}^2)+\sum_{i=1}^I\mathbf{M}(C_i).
$$

Secondly, we apply Proposition [4.4](#page-13-0) to each $u_{k,h}$ and find a sequence $\{u_{k,h,l}\}\$ of smooth maps from C^2 into $\mathcal Y$ such that $G_{u_{k,h,l}} \to G_{u_{k,h}} + S_{T,\text{sing}}$ weakly in $\mathcal D_2(C^2\times \mathcal Y)$ as $l\to\infty$ and

$$
\lim_{l\to\infty}\mathbf{D}(u_{k,h,l},\mathcal{C}^2)=\mathbf{D}(u_{k,h},\mathcal{C}^2)+\mathbf{M}(S_{T,\text{sing}}).
$$

The claim follows by a diagonal procedure. \Box

Proof of Corollary [4.2.](#page-12-0) Since φ is Hölder continuous in ∂C^2 , it suffices to apply Schoen– Uhlenbeck's density theorem requiring in particular that $\partial G_{u_k} = G_{\varphi}$. Moreover, since the points x_i in [\(4.2\)](#page-12-2) are distant from the boundary of C^2 , we apply Proposition [4.3](#page-12-3) requiring that $B^2_{\delta_{k,h}}(x_i) \subset\subset \mathcal{C}^2$, so that in particular $u_{k,h}$ coincides with u_k in a small neighborhood of ∂C^2 . Finally, since in the proof of Proposition [4.4](#page-13-0) we modify the functions $u_{k,h}$ near points which have positive distance from the boundary of C^2 , the functions $u_{k,h,l}$ coincide with $u_{k,h}$ in a small neighborhood of ∂C^2 , whence $\partial G_{u_{k,h,l}} = G_{\varphi}$, as required.

To prove Proposition [4.3](#page-12-3) we make use of the following result.

Proposition 4.5. *Let* $C \in \mathcal{Z}_2(\mathcal{Y})$ *be a* 2*-cycle of spherical type and* $P \in \mathcal{Y}$ *be a given* $point.$ *Then there exists a sequence of Lipschitz functions* $f_k:B^2\to \mathcal{Y}$ *such that* $f_{k|\partial B^2}$ $\equiv P$, $f_{k\#}[[B^2]] \rightarrow C$ *weakly in* $\mathcal{D}_2(\mathcal{Y})$ *and*

$$
\lim_{k \to \infty} \mathbf{D}(f_k, B^2) = \mathbf{M}(C).
$$

We postpone its proof and give

Proof of Proposition [4.3](#page-12-3). If $P := u(0)$, we denote by (U, φ) a local chart centered at P. More precisely, let U be a relatively open and connected subset of Y , containing P , and let $\varphi: U \to V$ be a bilipschitz homeomorphism of U onto an open subset V of \mathbb{R}^M with $\varphi(P) = 0$; finally let $r > 0$ be such that $u(B_r^2) \subset U$. We define, for $k \in \mathbb{N}$ and $\delta \in (0, r)$,

$$
u_{k,\delta}(x) := \begin{cases} u(x) & \text{if } \delta < |x| < 1, \\ v_{\delta}(x) & \text{if } \delta/2 \le |x| \le \delta, \\ f_k(2x/\delta) & \text{if } |x| < \delta/2, \end{cases}
$$

where f_k is given by Proposition [4.5,](#page-13-1) with $P = u(0)$, and

$$
v_{\delta}(x) := \varphi^{-1}\bigg(\bigg(\frac{2}{\delta}|x| - 1\bigg) \cdot \varphi \circ u\bigg(\delta \frac{x}{|x|}\bigg)\bigg).
$$

Now, since $v_\delta(x) = u(x)$ for $|x| = \delta$ and $v_\delta(x) \equiv \varphi^{-1}(0) = P$ for $|x| = \delta/2$, it follows that u_k is Lipschitz continuous. Moreover by Proposition [4.5](#page-13-1) and a change of variables

$$
\mathbf{D}(u_{k,\delta}, B_{\delta/2}^2) = \mathbf{D}(f_k, B^2) \to \mathbf{M}(C)
$$

as $k \to \infty$, so that the claim holds if we show that

$$
\liminf_{\delta \to 0^+} \mathbf{D}(v_\delta, B_\delta^2 \setminus B_{\delta/2}^2) = 0, \tag{4.3}
$$

by taking $u_k := u_{k,\delta_k}$ for a suitable sequence $\delta_k \searrow 0$. Now we estimate

$$
\mathbf{D}(v_\delta, B_\delta^2 \setminus B_{\delta/2}^2) \leq c \|D\varphi^{-1}\|_\infty^2 \bigg(\|\varphi \circ u\|_{\infty, \partial B_\delta^2}^2 + \|D\varphi\|_\infty^2 \cdot \delta \int_{\partial B_\delta^2} |D_\tau u|^2 d\mathcal{H}^1 \bigg),
$$

where $c > 0$ is an absolute constant and τ is the tangential direction to ∂B_{δ}^2 . By continuity we find $\|\varphi \circ u\|_{\infty, \partial B_\delta^2} \to 0$ as $\delta \to 0^+$. Moreover, if $F(\delta) := \int_{\partial B_\delta^2} |D_\tau u|^2 d\mathcal{H}^1$, then by the coarea formula $\left[\stackrel{3}{\stackrel{3}{\sim}}\right]$,

$$
\int_0^r F(\delta) d\delta \le \int_{B_r^2} |Du|^2 dx < \infty,
$$

so that F is a nonnegative function in $L^1(0, r)$. As a consequence, $\liminf_{\delta \to 0^+} \delta F(\delta) = 0$ and then (4.3) holds, as required. \square *Remark 4.6.* For future use, we set

$$
\mathcal{Y}_{\varepsilon} := \overline{U_{\varepsilon}(\mathcal{Y})},
$$

where $U_{\varepsilon}(A) := \{ y \in \mathbb{R}^N \mid \text{dist}(y, A) < \varepsilon \}$ is the ε -neighborhood of $A \subset \mathbb{R}^N$, and we observe that since Y is smooth, there exists $\varepsilon_0 > 0$ such that for $0 < \varepsilon < \varepsilon_0$ the nearest point projection of \mathcal{Y}_ε onto \mathcal{Y} is a well defined Lipschitz map with Lipschitz constant $L_{\varepsilon} \to 1^+$ as $\varepsilon \to 0^+$.

Proof of Proposition [4.5](#page-13-1). We divide the proof into four steps. According to Definition [1.1,](#page-2-1) $C - Z = \partial R$ and $Z = \varphi_{\#} [S^2]$. First, we approximate C, Z and R with polyhedral chains C_{ε} , Z_{ε} and R_{ε} so that [\(4.5\)](#page-15-0) holds for some Lipschitz function ϕ_{ε} of S^2 ; secondly, we find a Lipschitz map f_{ε} with f_{ε} #[[S^2]] = C_{ε} ; then we show that we can choose f_{ε} so that in particular its mapping area is equal to the mass of C_{ϵ} ; finally, we project f_{ϵ} onto Y and prove the assertion by means of Morrey's ε -conformality theorem.

Step 1. We first apply Federer's strong approximation theorem [\[3,](#page-21-3) 4.2.20] to C and find, for every $\varepsilon > 0$, an integral polyhedral cycle C_{ε} in \mathbb{R}^{N} and a C^{1} -diffeomorphism ψ_{ε} : $\mathbb{R}^N \to \mathbb{R}^N$ such that

$$
\mathbf{M}(C_{\varepsilon}-\psi_{\varepsilon\#}C)\leq\varepsilon.
$$

Moreover, Lip ψ_{ε} , Lip $\psi_{\varepsilon}^{-1} \leq 1 + \varepsilon$ and spt $C_{\varepsilon} \subset \mathcal{Y}_{\varepsilon}$, so that in particular

$$
C_{\varepsilon} \rightharpoonup C \quad \text{and} \quad \mathbf{M}(C_{\varepsilon}) \rightharpoonup \mathbf{M}(C) \tag{4.4}
$$

as $\varepsilon \to 0^+$. Now, since $C_{\varepsilon} - \psi_{\varepsilon\#}C$ strongly converges to zero, for ε small C_{ε} is of spherical type in $\mathcal{Y}_{\varepsilon}$. Then there exist $\widetilde{Z}_{\varepsilon} \in \mathcal{Z}_2(\mathcal{Y}_{\varepsilon})$ and $\widetilde{R}_{\varepsilon} \in \mathcal{R}_3(\mathcal{Y}_{\varepsilon})$ such that

$$
C_{\varepsilon} - \widetilde{Z}_{\varepsilon} = \partial \widetilde{R}_{\varepsilon} \quad \text{and} \quad \widetilde{\phi}_{\varepsilon} \# \llbracket S^2 \rrbracket = \widetilde{Z}_{\varepsilon}
$$

for some Lipschitz function $\widetilde{\phi}_{\varepsilon}: S^2 \to \mathcal{Y}_{\varepsilon}.$

As in [\[11\]](#page-22-5), regarding \mathbb{R}^N as the subspace $\mathbb{R}^N \times \{0_{\mathbb{R}^3}\}\$ of \mathbb{R}^{N+3} , we now define a Lipschitz homotopy $h_{\varepsilon} : [0, 1] \times S^2 \to \mathbb{R}^{N+3}$, with $h_{\varepsilon}(0, \cdot) \equiv \widetilde{\phi}_{\varepsilon}$, such that if $\phi_{\varepsilon} := h_{\varepsilon}(1, \cdot)$, then ϕ_{ε} is a Lipschitz embedding and $Z_{\varepsilon} := \phi_{\varepsilon} \# \llbracket S^2 \rrbracket$ is polyhedral (and $h_{\varepsilon\#}(\llbracket 0, 1 \rrbracket \times \llbracket S^2 \rrbracket)$ has arbitrarily small mass). Moreover, we may and do define h_{ε} so that $h_{\varepsilon}([0, 1] \times S^2) \subset \widetilde{\mathcal{Y}}_{\varepsilon}$, where $\widetilde{\mathcal{Y}}_{\varepsilon} := \mathcal{Y}_{2\varepsilon} \times \mathbb{R}^3$, and spt $Z_{\varepsilon} \cap \text{spt } C_{\varepsilon} = \emptyset$.

Set now $T_{\varepsilon} := \widetilde{R}_{\varepsilon} - h_{\varepsilon\#}(\llbracket 0, 1 \rrbracket \times \llbracket S^2 \rrbracket)$. Since $\partial h_{\varepsilon\#}(\llbracket 0, 1 \rrbracket \times \llbracket S^2 \rrbracket) = Z_{\varepsilon} - \widetilde{Z}_{\varepsilon}$, we find that T_{ε} is an i.m. rectifiable current with compact support in $\mathcal{Y}_{\varepsilon}$ and polyhedral boundary

$$
\partial T_{\varepsilon}=C_{\varepsilon}-Z_{\varepsilon}.
$$

As a consequence of [\[3,](#page-21-3) 4.2.19], we find an integral current $S_{\varepsilon} \in \mathcal{R}_4(\mathbb{R}^{N+3})$, with compact support, and a C¹-diffeomorphism $g_{\varepsilon}: \mathbb{R}^{N+3} \to \mathbb{R}^{N+3}$ such that

$$
R_\varepsilon:=g_{\varepsilon\#}T_\varepsilon-\partial S_\varepsilon
$$

is polyhedral, $\mathbf{M}(S_{\varepsilon}) + \mathbf{M}(\partial S_{\varepsilon}) \leq \varepsilon$, spt $S_{\varepsilon} \subset \overline{U_{\varepsilon}(\text{spt }T_{\varepsilon})}$, Lip g_{ε} , Lip $g_{\varepsilon}^{-1} \leq 1 + \varepsilon$ and $g_{\varepsilon}(x) = x$ if $x \in \text{spt } \partial T_{\varepsilon}$. Then, since $\text{spt } \partial T_{\varepsilon} = \text{spt } C_{\varepsilon} \cup \text{spt } Z_{\varepsilon}$ and $\text{spt } C_{\varepsilon} \cap \text{spt } Z_{\varepsilon} = \emptyset$, we finally infer that

$$
\partial R_{\varepsilon} = g_{\varepsilon\#} \partial T_{\varepsilon} = C_{\varepsilon} - Z_{\varepsilon} \quad \text{and} \quad \phi_{\varepsilon\#} [S^2] \equiv Z_{\varepsilon}.
$$
 (4.5)

Step 2. By adapting the argument in [\[11\]](#page-22-5), we construct a suitable Lipschitz homotopy $H_{\varepsilon} : [0, 1] \times S^2 \to \tilde{\mathcal{Y}}_{\varepsilon}$ (see [\(4.7\)](#page-16-0)), with $H_{\varepsilon}(0, \cdot) \equiv \phi_{\varepsilon}$, such that if $\varphi_{\varepsilon} := H_{\varepsilon}(1, \cdot)$, then

$$
\varphi_{\varepsilon\#}[\![S^2]\!]=C_{\varepsilon}.
$$

To this end, let $\sum_{i=1}^r S_i$ be a simplicial decomposition of R_{ε} , that is, a triangulation of R_{ε} into oriented 3-simplices S_i such that any two S_i 's that do not coincide either are disjoint or intersect along a common lower-dimensional edge. Since ϕ_{ε} is a Lipschitz embedding, it satisfies:

There is some simplicial decomposition Δ of S^2 such that ϕ_{ε} maps each curvilinear 2-simplex D of Δ bijectively onto a 2-face of one of the S_i 's. (4.6)

Now, choose a 3-simplex, say S_1 , one of whose faces is $\phi_{\varepsilon\#}$ $D \parallel$ for some D of Δ . Then clearly there is a Lipschitz homotopy $h_{\varepsilon}^{(1)} : [0, 1] \times S^2 \to \widetilde{\mathcal{Y}}_{\varepsilon}$, with $h_{\varepsilon}^{(1)}(0, \cdot) \equiv \phi_{\varepsilon}$, for which $h_{\varepsilon}^{(1)}(t, x) = \phi_{\varepsilon}(x)$ for every $t \in [0, 1]$ if $x \notin D$, and such that if $\varphi_{\varepsilon}^{(1)} := h_{\varepsilon}^{(1)}(1, \cdot)$, then $h_{\varepsilon}^{(1)}$ sweeps out S_1 once, with the right orientation, so that $h_{\varepsilon\#}^{(1)}$ $S_{\varepsilon\#}^{(1)}([0, 1]\times [[S^2]]) = S_1$ and hence by [\(4.5\)](#page-15-0),

$$
\varphi_{\varepsilon\#}^{(1)}[\llbracket S^2 \rrbracket = -\partial \sum_{i=2}^r S_i + C_{\varepsilon}.
$$

Moreover, by taking the barycentric subdivision of D we define $h_{\varepsilon}^{(1)}$ so that $\varphi_{\varepsilon}^{(1)}$ satisfies [\(4.6\)](#page-16-1). Finally, iterating the process r times, and gluing together the homotopies $h_{\varepsilon}^{(i)}$ for $i = 1, \ldots r$, we define H_{ε} as required. In particular, in view of [\(4.6\)](#page-16-1),

There is a simplicial decomposition of S^2 , say $\tilde{\Delta}$, such that φ_{ε} maps each curvilinear 2-simplex D of $\tilde{\Delta}$ bijectively onto a 2-face of the 2-skeleton of T_s . (4.7)

Step 3. We construct a Lipschitz map $g_{\varepsilon}: S^2 \to \tilde{\mathcal{Y}}_{\varepsilon}$ such that g_{ε} takes the given value P and maps S^2 into C_{ε} with mapping area equal to the mass of C_{ε} , i.e.,

$$
g_{\varepsilon} \mathsf{H}[S^2] = C_{\varepsilon} \quad \text{and} \quad A(g_{\varepsilon}, S^2) = \mathbf{M}(C_{\varepsilon}). \tag{4.8}
$$

By [\(4.7\)](#page-16-0) let $\{\widetilde{D}_i\}$ be a subfamily of the simplices of $\widetilde{\Delta}$ such that φ_{ε} maps each \widetilde{D}_i bijectively onto a 2-face of C_{ε} (with multiplicity and orientation), so that if $\widetilde{W} := \bigcup \widetilde{D}_i$, then

$$
g_{\varepsilon\#}[\![\ \tilde{W}\!]\!]=C_{\varepsilon}
$$
 and $A(g_{\varepsilon},\tilde{W})=\mathbf{M}(C_{\varepsilon}).$

For every *i*, let D_i be the 2-simplex obtained by contracting \widetilde{D}_i from its barycenter with homothetic factor 1/2, so that $dist(D_{i_1}, D_{i_2}) > 0$ if $i_1 \neq i_2$. Finally, let $W := \bigcup D_i$. We first define g_{ε} on each D_i by contracting $\varphi_{\varepsilon}|\tilde{D}_i$ from the barycenter of D_i . Then, since the morning area is invariant under representations of the demoin (4.8) electric halds if mapping area is invariant under reparametrizations of the domain, [\(4.8\)](#page-16-2) clearly holds if we are able to find a Lipschitz extension of g_{ε} to the whole 2-sphere so that the image of $g_{\varepsilon|S^2 \setminus W}$ is 1-dimensional.

To do this, we first make a list of the 1-simplices of the 1-skeleton of C_{ε} , each one with a fixed orientation. Then, for every i, we label each 1-face I of the boundary of D_i with $\pm j$, according to the property that g_{ε} maps I, with the orientation induced by D_i , onto the j^{th} 1-simplex of C_{ε} with orientation \pm .

Let now C_{ε}^k , $k = 1, ..., l$, be the connected components of C_{ε} , so that $C_{\varepsilon} = \sum_{k=1}^l C_{\varepsilon}^k$, $\partial C_{\varepsilon}^{k} = 0$, $\mathbf{M}(C_{\varepsilon}) = \sum_{k=1}^{l} \mathbf{M}(C_{\varepsilon}^{k})$ and spt C_{ε}^{k} is connected. At the first step, we consider the simplices D_i corresponding to the faces of C_{ε}^1 , say D_1, \ldots, D_m . Possibly reordering the D_i 's, for every $i = 1, \ldots, m-1$ we connect D_i with D_{i+1} by a rectifiable arc γ_i with suitably chosen initial and final points IP_i and FP_i in the 0-skeleton of D_i and D_{i+1} , respectively, so that $g_{\varepsilon}(IP_i) = g_{\varepsilon}(FP_i)$, the interior of γ_i lies in $S^2 \setminus W$, and γ_i does not intersect γ_i for $j = 1, \ldots, i - 1$. Also, we slightly modify g_{ε} on the D_i 's so that it is constant near the end points of γ_i . Then, by taking a small tubular neighborhood Γ_i of γ_i in S^2 , we extend g_{ε} on Γ_i as the constant map equal to $g_{\varepsilon}(IP_i) = g_{\varepsilon}(FP_i)$.

As a consequence, if $O_1 := \bigcup_{i=1}^m (D_i \cup \Gamma_i)$, with $\Gamma_m = \emptyset$, then

- (i) O_1 has positive distance from each of the remaining simplices D_i ;
- (ii) $g_{\varepsilon\#}[[Q_1]] = C_{\varepsilon}^1$ and $A(g_{\varepsilon}, Q_1) = M(C_{\varepsilon}^1)$.

Actually, since $\partial C_{\varepsilon}^1 = 0$, and O_1 is a topological disk in S^2 , by using the labels $\pm j$ of the 1-faces of the D_i 's, everything can be done in such a way that

(iii) $g_{\varepsilon|\partial O_1}$ is contractible.

By induction on the connected components of C_{ε} , for $k = 2, ..., l$, at the k^{th} step we repeat the previous argument for C_{ε}^{k} , defining g_{ε} on O_{k} so that (i), (ii) and (iii) hold, with k instead of 1. Moreover, we define the arcs γ_i so that in particular the Γ_i 's do not intersect any of the O_i 's for $j = 1, ..., k - 1$. Then we can also require that

(iv) O_k has positive distance from O_i , for every $j = 1, ..., k - 1$.

As a consequence, by (iii) and (iv) we can find for every k a small neighborhood \tilde{O}_k of O_k in S^2 , with dist $(\widetilde{O}_{k_1}, \widetilde{O}_{k_2}) > 0$ if $k_1 \neq k_2$, and a Lipschitz extension of $g_{\varepsilon|O_k}$ to \widetilde{O}_k , so that the image of $\overline{O_k} \setminus O_k$ is a 1-dimensional subset of $\mathcal{Y}_{\varepsilon}$ and g_{ε} takes a constant value, say P_k , in the boundary of \widetilde{O}_k .

Now, for every $k = 1, \ldots, l-1$, we connect one point of the boundary of \widetilde{O}_k with one point of the boundary of \tilde{O}_{k+1} by a rectifiable arc $\tilde{\gamma}_k$ such that the interior of $\tilde{\gamma}_k$ lies inside $S^2 \setminus \bigcup_{k=1}^l \widetilde{O}_k$ and $\widetilde{\gamma}_k$ does not intersect any of the $\widetilde{\gamma}_j$ for $j = 1, \ldots, k-1$. Then define g_{ε} on each $\widetilde{\gamma}_k$ by parametrizing a Lipschitz continuous arc connecting the points P_k and P_{k+1} , so that $g_{\varepsilon}(\widetilde{\gamma}_k) \subset \widetilde{\mathcal{Y}}_{\varepsilon}$. As before, we take in S^2 small neighborhoods \widehat{O}_k of the \widetilde{O}_k 's, \widetilde{O}_k of the \widetilde{O}_k 's, \widetilde{O}_k of the \widetilde{O}_k 's, \widetilde{O}_k of the \widet and $\tilde{\Gamma}_k$ of the $\tilde{\gamma}_k$'s (with $\tilde{\Gamma}_l = \emptyset$), so that dist($\tilde{O}_{k_1}, \tilde{O}_{k_2} > 0$ and dist($\tilde{\Gamma}_{k_1}, \tilde{\Gamma}_{k_2} > 0$ if $k_1 \neq k_2$. Since the arc connecting P_1 with P_l via the $\widetilde{\gamma}_k$'s is contractible, we find a Lipschitz extension of g_{ε} to $O := \bigcup_{k=1}^{l} (\widehat{O}_k \cup \widetilde{\Gamma}_k)$ such that the image of $O \setminus \bigcup_{k=1}^{l} ((\widehat{O}_k \cup \widetilde{\Gamma}_k))$ $\langle \widetilde{O}_k \rangle$ is a 1-dimensional subset of $\widetilde{Y}_\varepsilon$ and g_ε takes the given constant value P in the boundary of O. Finally set $g_{\varepsilon} \equiv P$ on $S^2 \setminus O$.

Step 4. By Step 3, fix $Q_{\varepsilon} \in S^2$ such that $g_{\varepsilon}(Q_{\varepsilon}) = P$. Let $\varphi_{\varepsilon}: B^2 \to S^2$ be a Lipschitz function between the unit disk and the 2-sphere such that $\varphi_{\varepsilon|\partial B^2} \equiv Q_{\varepsilon}$ and φ_{ε} maps the interior of B^2 bijectively onto $S^2 \setminus \{Q_{\varepsilon}\}\)$, so that $\varphi_{\varepsilon\#}[\![B^2]\!] = [\![S^2]\!]$. Of course, it can be obtained by first asking $\varphi_{\varepsilon|\partial B^2} \equiv$ South Pole, and then by rotating S^2 . Moreover, let $\Pi : \mathbb{R}^{N+3} \to \mathbb{R}^N$ be the orthogonal projection onto the first N coordinates and $\Pi_{\varepsilon}: \mathcal{Y}_{2\varepsilon} \to \mathcal{Y}$ be the nearest point projection (see Remark [4.6\)](#page-14-1).

Set $f_{\varepsilon} := \Pi_{\varepsilon} \circ \Pi \circ g_{\varepsilon} \circ \varphi_{\varepsilon} : B^2 \to \mathcal{Y}$; for $\varepsilon > 0$ small f_{ε} is a Lipschitz continuous function, with $f_{\varepsilon|\partial B^2} \equiv P$, and by [\(4.8\)](#page-16-2) and [\(4.4\)](#page-15-1), since $(\Pi_{\varepsilon} \circ \Pi)_{\#}C = C$,

$$
f_{\varepsilon} \# \llbracket B^2 \rrbracket = (\Pi_{\varepsilon} \circ \Pi \circ g_{\varepsilon}) \# \llbracket S^2 \rrbracket = (\Pi_{\varepsilon} \circ \Pi) \# C_{\varepsilon} \to C
$$

weakly in $\mathcal{D}_2(\mathcal{Y})$, as $\varepsilon \to 0^+$. Moreover, since Lip $\Pi = 1$, we also have

$$
A(f_{\varepsilon}, B^2) = A(\Pi_{\varepsilon} \circ \Pi \circ g_{\varepsilon}, S^2) \le (\text{Lip}\,\Pi_{\varepsilon})^2 A(g_{\varepsilon}, S^2). \tag{4.9}
$$

Finally, we apply Morrey's ε -conformality theorem [\[8,](#page-22-6) Thm. 2.1] and define an orientation preserving diffeomorphism $\phi_{\varepsilon}: B^2 \to B^2$ such that

$$
\mathbf{D}(f_{\varepsilon} \circ \phi_{\varepsilon}, B^2) \le (1+\varepsilon)A(f_{\varepsilon} \circ \phi_{\varepsilon}, B^2) = (1+\varepsilon)A(f_{\varepsilon}, B^2).
$$

Then, by [\(4.9\)](#page-18-0), [\(4.8\)](#page-16-2) and [\(4.4\)](#page-15-1), since Lip $\Pi_{\varepsilon} \to 1^+$ as $\varepsilon \to 0^+$ (see Remark [4.6\)](#page-14-1), we obtain $\lim_{\varepsilon \to 0} \mathbf{D}(f_{\varepsilon} \circ \phi_{\varepsilon}, B^2) = \mathbf{M}(C)$ and then the assertion.

Proof of Proposition [4.4](#page-13-0). We divide it in four steps.

Step 1. We first show that there exists a sequence $\{S_j\}$ of i.m. rectifiable cycles in $\mathcal{C}^2 \times \mathcal{Y}$ such that $S_i \rightharpoonup S_{T,\text{sing}}$ weakly as currents, $\mathbf{M}(S_i) \rightharpoonup \mathbf{M}(S_{T,\text{sing}})$ and each S_i has the following structure:

$$
S_j := \sum_{k=1}^{I_j} \delta_{p_k^j} \times \partial R_k^j
$$

for some distinct points p_k^j $k \in \mathcal{C}^2$ and for some i.m. rectifiable currents R_k^{j} $k \in \mathcal{R}_3(\mathcal{Y})$, with $\partial R_k^j \in \mathcal{R}_2(\mathcal{Y}).$

To this end, fix $0 < \rho \ll 1$ and let $0 = t_0 < t_1 < \cdots < t_m < t_{m+1} = 1$ be such that $|t_k - t_{k-1}| < \rho$ for every $k = 1, ..., m + 1$. Also, let $d_i(x, y) := x^i, x = (x^1, x^2)$, $y \in \mathbb{R}^N$. We recall from Sec. 1 that $S_{T,\text{sing}}(\omega) \neq 0$ only on forms $\omega \in \mathcal{D}^2(\mathcal{C}^2 \times \mathcal{Y})$ such that $d_y \omega^{(2)} \neq 0$. Then by slicing theory we infer that $\langle S_{T, \text{sing}}, d_i, t \rangle = 0$, and hence $\partial(S_{T,\text{sing}} \cup \{d_i \lt t\}) = 0$ for a.e. t and for $i = 1, 2$. As a consequence, we may and do choose the t_k 's so that $\langle S_{T, \text{sing}}, d_1, t_k \rangle = 0$ and hence $\partial (S_{T, \text{sing}} \cup \{d_1 < t_k\}) = 0$ for every k. If $p_\rho: C^2 \times \mathbb{R}^N \to C^2 \times \mathbb{R}^N$ is the map given by $p_\rho(x, y) := (q_\rho(x_1), x_2, y)$, where

$$
q_{\rho}(t) := \begin{cases} \min\{t_k \mid t_k > t\} & \text{if } t < t_m, \\ t_m & \text{if } t \ge t_m, \end{cases}
$$

we define

$$
p_{\rho} \# S_{T, \text{sing}}
$$

 := $\lim_{j \to \infty} p_{\rho} \# (S_{T, \text{sing}} \sqcup \{x \in C^2 \mid |x^1 - t_k| > r_j \ \forall \, k = 1, ..., m\} \times \mathbb{R}^N),$ (4.10)

where $r_j \searrow 0$ is such that $\partial (S_{T,\text{sing}} \sqcup \{x \in C^2 \mid |x^1 - t_k| < r_j\} \times \mathbb{R}^N) = 0$ for all k and j. Then, since $|Dp_{\rho}| \leq 1$ a.e., by Federer–Fleming's closure-compactness theorem the limit in [\(4.10\)](#page-18-1) exists and is an i.m. rectifiable current in $\mathcal{R}_2(\mathcal{C}^2 \times \mathcal{Y})$ with $\mathbf{M}(p_{\rho\#}S_{T,\text{sing}}) \leq$ $\mathbf{M}(S_{T,\text{sing}})$. Moreover, set $h_{\rho}(t, x, y) := tp_{\rho}(x, y) + (1 - t)(x, y), t \in [0, 1]$, and define $h_{\rho\#}(\llbracket 0, 1 \rrbracket \times S_{T, sing})$ in a way similar to [\(4.10\)](#page-18-1). Since $\mathbf{M}(h_{\rho\#}(\llbracket 0, 1 \rrbracket \times S_{T, sing}))$ ρ **M**(S_{T,sing}), we infer that $p_{\rho#}S_{T,\text{sing}} \to S_{T,\text{sing}}$ as $\rho \to 0^+$. By slicing a second time

 $p_{\rho#}S_{T,\text{sing}}$ with respect to d_2 , and arguing in a similar way, by a diagonal procedure we define a sequence S_j converging to $S_{T, sing}$ weakly with the mass, such that

$$
\operatorname{spt} S_j \subset \Bigl(\bigcup_{k=1}^{I_j} \{p_k^j\}\Bigr) \times \mathcal{Y}.
$$

Finally, due to the trivial homology of $S_{T,\text{sing}}$, by weak convergence, for j sufficiently large $S_j(\omega)$ is nonzero only on forms $\omega \in \mathcal{D}^2(\mathbb{C}^2 \times \mathcal{Y})$ such that $d_y\omega^{(2)} \neq 0$. We then infer that each component $S_j \sqcup \{p_k^j\}$ \mathcal{L}_k^j \times \mathbb{R}^N of S_j has the form $\delta_{p_k^j}$ \times ∂R_k^j for some R_k^j $R_k^J \in \mathcal{R}_3(\mathcal{Y})$ with $\partial R_k^j \in \mathcal{R}_2(\mathcal{Y})$, as required.

Step 2. Fix a 3-dimensional integral current R in \mathcal{Y} , i.e., an i.m. rectifiable current R \in $\mathcal{R}_3(\mathcal{Y})$ with $\partial R \in \mathcal{R}_2(\mathcal{Y})$, and a point $P \in \mathcal{Y}$. We show the existence of a sequence of Lipschitz functions $f_h: B^2 \to \mathcal{Y}$ such that $f_{h|\partial B^2} \equiv P$, $f_{h#[} [B^2] \to \partial R$ weakly in $\mathcal{D}_2(\mathcal{Y})$ and

$$
\lim_{h \to \infty} \mathbf{D}(f_h, B^2) = \mathbf{M}(\partial R). \tag{4.11}
$$

To this end, as in Step 1 of Proposition [4.5,](#page-13-1) we first apply Federer's strong approximation theorem and find, for every $\varepsilon > 0$, a 3-dimensional i.m. polyhedral chain R_{ε} in \mathbb{R}^{N} and a C¹-diffeomorphism $\psi_{\varepsilon} : \mathbb{R}^N \to \mathbb{R}^N$ such that

$$
\mathbf{M}(R_{\varepsilon}-\psi_{\varepsilon\#}R)+\mathbf{M}(\partial R_{\varepsilon}-\partial \psi_{\varepsilon\#}R)\leq \varepsilon.
$$

Moreover, Lip ψ_{ε} , Lip $\psi_{\varepsilon}^{-1} \leq 1 + \varepsilon$ and spt $R_{\varepsilon} \subset \mathcal{Y}_{\varepsilon}$, where $\mathcal{Y}_{\varepsilon}$ is defined in Remark [4.6,](#page-14-1) so that in particular

$$
R_{\varepsilon} \rightharpoonup R
$$
, $M(R_{\varepsilon}) \rightharpoonup M(R)$ and $M(\partial R_{\varepsilon}) \rightharpoonup M(\partial R)$ (4.12)

as $\varepsilon \to 0^+$. Let now R_{ε}^1 be the first connected component of R_{ε} and let $\{D_i\}$ be the 3-simplices of a triangulation of R_{ε}^1 . By an argument similar to Step 2 of Proposition [4.5,](#page-13-1) starting from the constant map $\varphi : S^2 \to \mathcal{Y}_\varepsilon$, $\varphi \equiv Q$ for some vertex Q in the 0-skeleton of R_{ε}^1 , and covering with multiplicity and orientation each one of the D_i 's, we can define a Lipschitz function $\varphi_1 : S^2 \to \mathcal{Y}_\varepsilon$ such that $\varphi_{1\#}[\![S^2]\!] = \partial R_\varepsilon^1$ and $\varphi_1(S^2)$ is 2-dimensional. Moreover, as in Step 3 of Proposition [4.5,](#page-13-1) we can define φ_1 so that the mapping area $A(\varphi_1, S^2)$ equals $\mathbf{M}(\partial R^1_\varepsilon)$. Connecting R^1_ε , by means of a loop in \mathcal{Y}_ε , with the second component R_{ε}^2 of R_{ε} , repeating the previous argument for each component of R_{ε} , and finally connecting the last component of R_{ε} with the given point P, we define a Lipschitz function $\phi_{\varepsilon}: S^2 \to \mathcal{Y}_{\varepsilon}$ such that

$$
\phi_{\varepsilon\#}[\![S^2]\!]=\partial R_{\varepsilon},\tag{4.13}
$$

 $\phi_{\varepsilon}(S^2)$ is 2-dimensional, $\phi_{\varepsilon}(Q_{\varepsilon}) = P$ for some point $Q_{\varepsilon} \in S^2$, and the mapping area satisfies

$$
A(\phi_{\varepsilon}, S^2) = \mathbf{M}(\partial R_{\varepsilon}).
$$
\n(4.14)

We then proceed as in Step 4 of Proposition [4.5.](#page-13-1) More precisely, let $\varphi_{\varepsilon}: B^2 \to S^2$ be a Lipschitz function from the unit disk to the 2-sphere such that $\varphi_{\varepsilon|\partial B^2} \equiv Q_{\varepsilon}$ and φ_{ε} maps the interior of B^2 bijectively onto $S^2 \setminus \{Q_{\varepsilon}\}\)$, so that $\varphi_{\varepsilon\#} [I\!\!I\!I \,B^2] I\!\!I = [I\!I\!I \,S^2]$. Moreover, let $\Pi_{\varepsilon}: \mathcal{Y}_{\varepsilon} \to \mathcal{Y}$ be the nearest point projection.

Set $f_{\varepsilon} := \Pi_{\varepsilon} \circ \phi_{\varepsilon} \circ \varphi_{\varepsilon} : B^2 \to \mathcal{Y}$. For $\varepsilon > 0$ small f_{ε} is a Lipschitz continuous function, with $f_{\varepsilon|\partial B^2} \equiv P$, for which by [\(4.13\)](#page-19-0) and [\(4.12\)](#page-19-1), since $\Pi_{\varepsilon} \partial R = \partial R$,

$$
f_{\varepsilon} \# \llbracket B^2 \rrbracket = (\Pi_{\varepsilon} \circ \phi_{\varepsilon}) \# \llbracket S^2 \rrbracket = \Pi_{\varepsilon} \# \partial R_{\varepsilon} \rightharpoonup \partial R
$$

weakly in $\mathcal{D}_2(\mathcal{Y})$ as $\varepsilon \to 0^+$. Moreover

$$
A(f_{\varepsilon}, B^2) = A(\Pi_{\varepsilon} \circ \phi_{\varepsilon}, S^2) \le (\text{Lip}\,\Pi_{\varepsilon})^2 A(\phi_{\varepsilon}, S^2)
$$

and hence, by [\(4.14\)](#page-19-2) and by Morrey's ε -conformality theorem, modulo composing with an orientation preserving diffeomorphism of $B²$ onto itself, we obtain

$$
\mathbf{D}(\widetilde{f}_{\varepsilon}, B^2) \le (1+\varepsilon)A(f_{\varepsilon}, B^2) \le (1+\varepsilon)(\text{Lip}\,\Pi_{\varepsilon})^2 \mathbf{M}(\partial R_{\varepsilon})
$$

and finally [\(4.11\)](#page-19-3), since Lip $\Pi_{\varepsilon} \to 1^+$ as $\varepsilon \to 0^+$ (cf. Remark [4.6\)](#page-14-1).

Step 3. For every $p \in C^2$ and every 3-dimensional integral current R in Y, we prove the existence of a sequence $\{u_h\}$ of smooth maps from C^2 into $\mathcal Y$ such that $G_{u_h} \rightharpoonup G_u$ + $\delta_p \times \partial R$ weakly in $\mathcal{D}_2(\mathcal{C}^2 \times \mathcal{Y})$ and

$$
\lim_{h\to\infty}\mathbf{D}(u_h,\mathcal{C}^2)=\mathbf{D}(u,\mathcal{C}^2)+\mathbf{M}(\partial R).
$$

Moreover, we show that u_h can be chosen so that $u_h = u$ outside $B_{\delta_h}^2(p)$, for a sequence of radii $\delta_h \searrow 0$.

Let $P := u(p)$, (U, φ) be a local chart centered at P, so that $\varphi(P) = 0$, and $r > 0$ be such that $B_r^2(p)$ and $u(B_r^2(p)) \subset U$ (cf. Proposition [4.3\)](#page-12-3). We define, for $h \in \mathbb{N}$ and $\delta \in (0, r),$

$$
u_{h,\delta}(x) := \begin{cases} u(x) & \text{if } |x - p| > \delta, \\ v_{\delta}(x) & \text{if } \delta/2 \le |x - p| \le \delta, \\ f_h(2(x - p)/\delta) & \text{if } |x - p| < \delta/2, \end{cases}
$$

where f_h is given by Step 2 and

$$
v_{\delta}(x) := \varphi^{-1}\bigg(\bigg(\frac{2}{\delta}|x-p|-1\bigg)\cdot\varphi\circ u\bigg(p+\delta\,\frac{x-p}{|x-p|}\bigg)\bigg).
$$

Similarly to Proposition [4.3,](#page-12-3) it is not difficult to show that $u_{h,\delta}$ is Lipschitz continuous, by [\(4.11\)](#page-19-3) and a change of variables

$$
\mathbf{D}(u_{h,\delta}, B^2_{\delta/2}(p)) = \mathbf{D}(f_h, B^2) \to \mathbf{M}(\partial R)
$$

as $h \to \infty$ and

$$
\liminf_{\delta \to 0^+} \mathbf{D}(v_\delta, B_\delta^2(p) \setminus B_{\delta/2}^2(p)) = 0,
$$

which yields the assertion, by a diagonal procedure.

Step 4. We fix j and prove Proposition [4.4](#page-13-0) with S_j in place of $S_{T,\text{sing}}$, where the S_j 's are as in Step 1.

To this end, we iterate the argument of Step 3 working by induction on $k = 1, \ldots, I_j$. More precisely, we first apply Step 3 with $p = p_1^j$ I_1^j and $R = R_1^j$ $\frac{1}{1}$, obtaining a sequence

 $\{u_{h}^{(1)}\}$ (1) of smooth maps from C^2 into $\mathcal Y$ such that $G_{u_h^{(1)}} \rightharpoonup G_u + \delta_{p_1^j} \times \partial R_1^j$ weakly in $\mathcal{D}_2(\mathcal{C}^2 \times \mathcal{Y})$ as $h \to \infty$ and

$$
\lim_{h \to \infty} \mathbf{D}(u_h^{(1)}, \mathcal{C}^2) = \mathbf{D}(u, \mathcal{C}^2) + \mathbf{M}(\partial R_1^j).
$$

Recall that $u_h^{(1)} = u$ outside B_λ^2 $\delta_h^{(1)}(\mathbf{p}_1^j)$ for some sequence $\delta_h^{(1)} \searrow 0$. For h large enough so that p_k^j $\frac{j}{k} \notin B_{\hat{\delta}}^2$ $\lambda_{\delta_h^{(1)}}^2$ (p_1^j) for $k = 2, \ldots, I_j$, we then repeat the argument with $u = u_h^{(1)}$ $p = p_2^j$ and $R =$ $\frac{1}{h}$, i_2^j and $R = R_2^j$ \mathbf{z}^{j}_{2} , to obtain a sequence $\{u_{l}^{(2,h)}\}$ $\binom{2}{l}$ of smooth maps from C^2 into $\mathcal Y$ such that $G_{u_l^{(2,h)}} \to G_{u_h^{(1)}} + \delta_{p_2^j} \times \partial R_2^j$ weakly in $\mathcal{D}_2(\mathcal{C}^2 \times \mathcal{Y})$ as $l \to \infty$ and

$$
\lim_{l \to \infty} \mathbf{D}(u_l^{(2,h)}, \mathcal{C}^2) = \mathbf{D}(u_h^{(1)}, \mathcal{C}^2) + \mathbf{M}(\partial R_2^j).
$$

Moreover, since $u_l^{(2,h)} = u_h^{(1)}$ $h^{(1)}$ outside B^2_{λ} $\delta_l^{(2,h)}(p_2^j)$ for some sequence $\delta_l^{(2,h)} \searrow 0$ as $l \to$

 ∞ , by a diagonal procedure we define a sequence $\{u_h^{(2)}\}$ $\binom{2}{h}$ of smooth maps from \mathcal{C}^2 into \mathcal{Y} such that

$$
G_{u_h^{(2)}} \rightharpoonup G_u + \delta_{p_1^j} \times \partial R_1^j + \delta_{p_2^j} \times \partial R_2^j
$$

weakly in $\mathcal{D}_2(\mathcal{C}^2 \times \mathcal{Y})$ and

$$
\lim_{h\to\infty} \mathbf{D}(u_h^{(2)}, \mathcal{C}^2) = \mathbf{D}(u, \mathcal{C}^2) + \mathbf{M}(\partial R_1^j) + \mathbf{M}(\partial R_2^j).
$$

Iterating in a similar way the argument on $k = 3, \ldots, I_j$, and by a diagonal procedure, due to the strong convergence in energy we construct for every j a smooth sequence $\{u_h\}: \mathcal{C}^2 \to \mathcal{Y}$ such that $G_{u_h} \to G_u + S_j$ weakly in $\mathcal{D}_2(\mathcal{C}^2 \times \mathcal{Y})$ and

$$
\lim_{h\to\infty}\mathbf{D}(u_h,\mathcal{C}^2)=\mathbf{D}(u,\mathcal{C}^2)+\mathbf{M}(S_j).
$$

Finally, since by Step 1 we have $S_i \to S_{T, sing}$ weakly as currents and $\mathbf{M}(S_i) \to \mathbf{M}(S_{T, sing})$, again by a diagonal procedure we obtain the claim.

References

- [1] Bethuel, F.: The approximation problem for Sobolev maps between manifolds. Acta Math. **167**, 153–206 (1992) [Zbl 0756.46017](http://www.emis.de/MATH-item?0756.46017) [MR 92f:58023](http://www.ams.org/mathscinet-getitem?mr=92f%3A58023)
- [2] Bethuel, F., Coron, J. M., Demengel, F., Helein, F.: A cohomological criterium for density of smooth maps in Sobolev spaces between two manifolds. In: Nematics, Mathematical and Physical Aspects, Coron, J. M., Ghidaglia, J. M., Helein, F. (eds.), NATO ASI Ser. C 332, Kluwer, Dordrecht, 15–23 (1991) [Zbl 0722.00043](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=3&type=html&an=0722.00043&format=complete) [MR 93g:58020](http://www.ams.org/mathscinet-getitem?mr=93g%3A58020)
- [3] Federer, H.: Geometric Measure Theory. Grundlehren Math. Wiss. 153, Springer, Berlin (1969) [Zbl 0176.00801](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=3&type=html&an=0176.00801&format=complete) [MR 41 #1976](http://www.ams.org/mathscinet-getitem?mr=41%20%231976)
- [4] Giaquinta, M., Modica, G.: On sequences of maps with equibounded energies. Calc. Var. **12**, 213–222 (2001) [Zbl 1013.49030](http://www.emis.de/MATH-item?1013.49030) [MR 2002k:49084](http://www.ams.org/mathscinet-getitem?mr=2002k%3A49084)
- [5] Giaquinta, M., Modica, G., Souček, J.: The Dirichlet integral for mappings between manifolds: Cartesian currents and homology. Math. Ann. **294**, 325–386 (1992) [Zbl 0762.49018](http://www.emis.de/MATH-item?0762.49018) [MR 94c:49046](http://www.ams.org/mathscinet-getitem?mr=94c%3A49046)
- [6] Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations, I, II. Ergeb. Math. Grenzgeb. 37, 38, Springer, Berlin (1998) [Zbl 0914.49001](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=3&type=html&an=0914.49001&format=complete) [Zbl 0914.49002](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=3&type=html&an=0914.49002&format=complete) [MR 2000b:49001a](http://www.ams.org/mathscinet-getitem?mr=2000b%3A49001a) [MR 2000b:49001b](http://www.ams.org/mathscinet-getitem?mr=2000b%3A49001b)
- [7] Hu, S. T.: Homotopy Theory. Academic Press, New York (1959) [Zbl 0088.38803](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=3&type=html&an=0088.38803&format=complete) [MR 21 #5186](http://www.ams.org/mathscinet-getitem?mr=21%20%235186)
- [8] Morrey, C. B.: The problem of Plateau on a Riemannian manifold. Ann. of Math. **49**, 807–851 (1948) [Zbl 0033.39601](http://www.emis.de/MATH-item?0033.39601) [MR 10,259f](http://www.ams.org/mathscinet-getitem?mr=10%2C259f)
- [9] Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff. Geom. **18**, 253–268 (1983) [Zbl 0547.58020](http://www.emis.de/MATH-item?0547.58020) [MR 85b:58037](http://www.ams.org/mathscinet-getitem?mr=85b%3A58037)
- [10] Simon, L.: Lectures on Geometric Measure Theory. Proc. C.M.A. 3, Australian Natl. Univ. (1983) [Zbl 0546.49019](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=3&type=html&an=0546.49019&format=complete) [MR 87a:49001](http://www.ams.org/mathscinet-getitem?mr=87a%3A49001)
- [11] White, B.: Existence of least-area mappings of N-dimensional domains. Ann. of Math. (2) **118**, 179–185 (1983) [Zbl 0526.49029](http://www.emis.de/MATH-item?0526.49029) [MR 85e:49063](http://www.ams.org/mathscinet-getitem?mr=85e%3A49063)