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Abstract. We show that if2 ¢ RV, N > 2, is a bounded Lipschitz domain ate,) ¢ LLRY)
is a sequence of nonnegative radial functions weakly convergidg then

_ p
[ir=tar<c [ [ FO=LEE 0~ sparay

forall f € LP(£2) andn > ng, where f denotes the average ¢f on £2. The above estimate
was suggested by some recent work of Bourgain, Brezis and Mirori€scu [2]-Asc we recover
Poincaé’s inequality. The cas®¥ = 1 requires an additional assumption@n). We also extend a
compactness result of Bourgain, Brezis and Mironescu.

Keywords. Poincaé’s inequality, compactness in Sobolev spaces

1. Introduction and main results

Assume?2 C RV, N > 1, is a bounded domain with Lipschitz boundary and let p <
oo. Itis a well-known fact that there exists a constagt= Ag(p, £2) > 0 such that the
following form of Poincaé’s inequality holds:

f If — fol” < Ao/ IDFIP YfeWhr(), 1)
2 2

where fo == (1/|2]) [ f-
On the other hand, l&p,) ¢ LY(R") be a sequence oédial functions satisfying

on >0 ae.inRY,
[RN =1 VYn>1, (2)
lim,,_ o f|h|>8 pn(h)dh =0 V§ > 0.
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In this case, we have the following pointwise limit (séé [2], and &l$o [6] for a simpler
proof)

lim

n—o0

/ lf &) — fFWIP
2J82

|x — y[?

on (|x = y) dXd)’:Kp,N/Q|Df|p ®3)

for every f € WP(£2), whereK, y = fgv-1le1- ol dHN L.
Motivated by this, we show the following estimate related{o (1):

Theorem 1.1. AssumeN > 2. Let(p,) ¢ LY(RM) be a sequence of radial functions
satisfying(2). Givens > 0, there existag > 1 sufficiently large such that

/|f f:zl”<< +s)// PO = TN L sy dxdy (@)

lx — y|?
foreveryf € L?(£2) andn > ny.

The choice of,g > 1 depends not only o > 0, but also orp, £2 and on the sequence
(pn)n>1. Special cases of this inequality have been used in the study of the Ginzburg—
Landau model (see][B] 4]; see also Corollafie$[2.1-2.4 below).

We first point out thaf (4) is stronger thdr (1), in the sense that the right-hand side of
(@) can always be estimated _lfM |Df|P. Infact, givenf € WLP(£2), we first extendf
to RN sothatf € WL7(RV). Itis then easy to see that (see €.g. [2, Theorem 1])

— p
[ IO = ynaxay < [ prir<c [ opr. )
2Je lx—yf RV 2
If N = 1, then one can construct examples of sequegesc L1(R) for which @
fails (seel[2, Counterexample 1]). In this case, we need to impose an additional condition
on (p,); see Theorern 1.3 below.
Theorenj 1J1 will be deduced from the following compactness result:

Theorem 1.2. AssumeN > 2. Let(p,) c LY(RM) be a sequence of radial functions
satisfying(@). If (f,) € L?(£2) is a bounded sequence such that

// Wn@) = OISy dxdy < B n= 1, ®)

o —ylr

then( f,,) is relatively compact irl.” (£2).
Assume thaf,,j — fin LP(£2). Then

(@) feWwWlr(2)ifl< p < oc;
(b) feBV(RQ)ifp=1

In both cases, we havg, |Df|? < B/K, v, whereB is given by(g).
This result was already known under the additional assumptiompthatradially nonde-

creasing for every > 1 (seel[2, Theorem 4]).
We now consider the cageé = 1.
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Givenp, € L1(R), we shall assume tha}, is defined for every € R in the following
way:

lim, o= /27" p, if xis a Lebesgue point qf,
pn(x) = .
+00 otherwise.

Givenégp € (0, 1) we define
Pn.60(X) 1= eolirbfflpn(é’x) Vx € R.
By construction,
Pn,6o(X) < pp(Bx) Vx eR VO € [6, 1]. (7

We then have the following result:

Theorem 1.3. Let(p,) ¢ L1(R) be a sequence of functions satisfy{@y Assume there
existfp € (0, 1) andag > 0 such that

/ Pngy =00>0 Vn>1 (8)
R

If (f,) € LP(0,1)is a bounded sequence such that
1 P
// [fn () = fuOI? on(x—y) dxdy <B Vn> 1, )
=yl

then(f,) is relatively compact ir.” (0, 1). Moreover, all the other statements of Theo-
remdI.JandI.3are also valid. In particular, inequalitfd)) holds withs2 = (0, 1).

Most of the results in this paper were announcedin [9].

2. Some examples

We now state some inequalities coming from Theoremis 1.1 and 1.3. We dengte-by
(0, ) the N-dimensional unit cube. In all cases, conditiph (2) is satisfiedViar 1; it
is also easy to see thai (8) holds whénr= 1.

For everyN > 1 we then have the following corollaries:

Corollary 2.1 (Bourgain—Brezis—Mironescul[3])

)4
/|f fol? < Coy(L=5)p // WO =TV 4 gy vrerr (o),

x _ y|N+sp
for every0 < sp < s < 1.

This inequality takes into account the correction fagtor- s)1/? we should put in front
of the Gagliardo seminorryyf |ws.» ass 1 1. In [3], the authors study related estimates
arising from the Sobolev imbedding! — W*-? for the critical exponently = 1/p —
s/N; see alsa 7] for a more elementary approach.
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Corollary 2.2 (Bourgain—Brezis—Mironescul[4])

1 1f) = fOIP dxdy
— fol? < C,
/Q'f Jol” = °|Iogs|/Q/Q x—y7  (x—yl+e¥

foreveryf € LP(Q) and0 < ¢ < &q.

A stronger form of this inequality is the following
Corollary 2.3.

p
ol = Caees [ [ VP A Favay vre i)

[x—y|>e
forevery0 < e < go < 1.

We have been informed by H. Brezis that Bourgain and Brezis [1] have proved that

[|f—fQ|f’sceo L f/ QO =T gy vy err(o),
0 llogel JoJo

(Ix =yl +e)N+p

for every 0 < ¢ < &g, using a Paley—Littlewood decomposition 6f Note that this
estimate can be deduced instead from the corollary above.
Here is another example:

Corollary 2.4.

N +
/Qlf—fQIPSCao Ntp /f |f() = fODIPdxdy YfeLl(Q),

|x— V|<8
for every0 < ¢ < &g.

Concerning the behavior of the constants in these inequalitiegigletenote the best
constant in[(f). Then in Corollafy 2.1 the constakj can be chosen so that

Ag

Cyg > ——————
T Ky nISN-

asso 1 1.

Similarly, in Corollaries 2.J-2]4 we haw&,, converging to the same limit as |, 0.
Applying Theoreni 1J1 tp = 1 andf = xg, whereE C Q is any measurable set,
we get (see als@ [3] for related results):

Corollary 2.5. LetN > 2. Given a sequence of radial functiogs,) ¢ LY(R") satisfy-
ing (@), then for anyC > Ag/K1, n there existsip > 1 such that

|E||Q\E] <C// Pl =YD 44y VE ¢ 0 measurable Vn > no.
O\E |x—YI
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3. Estimates in dimensionN = 1

Given anyg € LP(R), let G, : [0, 00) — [0, co) be the (continuous) function defined
by

Gp(t) = / lg(x +1) —g(x)|Pdx Vt=>0. (20)
R
We start with the following

Lemma 3.1. Given0 < s < t, letk € Nandd € [0, 1) be such that/s = k + 6. Then
there exists”, > 0 such that for everg € L?(R) we have

Gy(t) <c, {Gp(s) i Gp(0s) } . (11)

tP sP tP
Proof. Note that

lg(x +1) — g(x)|? = [g(x + ks +0s) — g(x)|?
< 2P Y|g(x + ks) — g(x)|”
+ |g(x + ks +0s) — g(x + ks)|P}

k—1
<20 g(x 4 s +5) — g(x + js)IP
j=0

+ 2P g(x 4 ks + 05) — g(x + ks)|”.
Integrating with respect to € R and changing variables we get
Gp(t) < 2P7%P Gy (s) + 2P 1G, (69).
Recall thatt < ¢/s. We then conclude thdt (L1) holds with, = 2r—1,
Another estimate we shall need is given by the lemma below:

Lemma 3.2. Letr > 0. There exists a constaqt, > 0 so that the following holds: for
everyg € L?(0, 2r) such thatg = O a.e. in(r, 2r) we have

r r t _ p
f |g|P5c,,rP/ g + ip SO e vie©n. (12)
0 0

Proof. By a scaling argument, it suffices to prove the lemmarfer 1. We now extend
g € L?(0, 2) to the entire half-line so that = 0 a.e. in(1, o).

Given 0< r < 1, letk > 1 be the first integer satisfyidgg > 1. In particular, for
x € (0,1) we havex + kt > 1, thus

k—1
18G)IP = lg(x + ki) — g)IP <kP™1Y lg(x + jr +1) — g(x + jn)|P.
j=0
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Integrating this inequality with respect towe get
1 k=1 ro0
[t <kt Y [ gtk 40 - gtk o dx
0 /0

00 1
fk”/ |g<x+t>—g<x>|"dx=k"/ gCr + 1) — g(0)[P dox.
0 0

Note however that < 2/¢. The lemma now follows by taking,, = 27.

4. CompactnessinLl, (RV)for N > 2

Given f € L”(R"), we considerF, : R¥ — [0, co) defined by

Fy(h) = / |f(x+h)— f(x)|Pdx VheRN.
RN
This function is continuous and satisfies
Fp(h1+h2) < 2P7Y[Fy(h1) + Fp(h2)] Vh1,hy € RY.
We have the following

Lemma 4.1. AssumeV > 2. Then there exist§), > 0 such that

Fpl(t F
/ ) 4oy < c, / 220 4w foreveryo<s <i.  (13)
SN-1 tpP sN-1 sP

Proof. Let 0 < s < t < oo. Givenv € S¥ 1 andw € (Rv)*, we apply the one-
dimensional estimate in LemrhaB.1 to the function
g(t) = f(w+tv) fora.e.r >0.

If we integrate the resulting expression with respecttee (Rwv)+, it follows that for
everyv € SV~ we have

Fp(tv) -c {F,,(sv) N F[,(Gsv)}
P

(2 sP tP (14)

for somed € [0, 1) (depending or andr). We now split the proof into two cases:

Case 1:N is even.
Let O € O(N) be an orthogonal transformation such thétw, w) = 0 for every
w € RY (this is possible sinc& is even). We then consider

() w .= w + 1 4 ()w,
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Note thatO1, 0, € O(N) and
bw = Orw + Orw Vwe]RN,

thus
Fy(@sv) < 2P7YHF, (s O10) + F,(s Oav)}.

Inserting this inequality intd (14) we get

Fy(tv) <C Fy(sv) + Fj(s O1v) + Fy(s O2v)
o P sP '

Integrating with respect to € SV¥~1 we obtain[(IB).

Case 2:N is odd.
Letv € S¥~1. We denote bysN =2 the (N — 2)-sphere orthogonal to:

SN=2.— §N-1n (Ru)*.

Reasoning as in the previous case, we see that

F F
@) vz < ¢, [ IO gyyv-2, (15)
sN- -2 tpP sy 2 sP

on s¥~1 we consider the measuredefined as
w(A) = / HN"2(AN SY¥"2)do(v) for every Borel serd c sV 1,
SN—:L

Note thatu is invariant under orthogonal transformations, €0 A) = w(A) for every
0 € O(N), andu(S¥—1) = |S¥=2 |5V ~1. It then follows that

=SV 1N gna.

We now integrate[ (15) with respect toe S¥~1. Using the observation above we get

3.

The lemma above implies the following compactness result:

Proposition 4.2. AssumeVN > 2. Let(f,) c L”(R") be a bounded sequence of func-
tions such that

/ / |fn(x> SO e uh dxdy <B Vn= 1. (16)
RVJRY X —ylP
Then( f,,) is relatively compact i Ioc(IRN)

Proof. Fix #g > 0. Letng > 1 be such that

o} e
on > = VYn>no.
B 2

0

We first prove the following
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Claim. There exists a constatt= C(p, N, B) > 0 such that

/S  Fapv)do() < cty 17)

for every O< t < tg and every: > nq. (F,, , denotes the functiof, associated tg,).

In fact, lets, 7 > 0 be such that < s < 1 < 7. It follows from the previous lemma

that
F F
/ FapT) o) < c,,/ Fap(SV) 4o,
sN-1 TP sN-1 sP

We now multiply both sides by"~1p,(s) and then integrate the resulting expression
with respect ta from 0 tozg. We get

1 Fy,p(Tv)
2|SN71| SN-1 TP

F, o
do(v) < / EnpT) 40y / pu(s)sV 1 ds
SN-1 P 0

10 F
< C/ f FupGv) VLo (v ds
0 SN-1 sP

Fop ()
<C : h|)dh.
c [ =ro.dn

Note that the last term is precisely the double integral on the left-hand sife]of (16). We
then conclude that

/ Fp p(tv)do(v) < Ct? YVt >19 Vn > no.
SN—l

We now let O< ¢ < tg. Using the above estimate with= rg andt = ¢ + 7o we get

SN—
< 2P + (t +10)"] < C1f

/ Fop(t0)do(v) < < 2"—1{ / Fup(tov) do + / Fn,p<<z+ro>v>da}
gN-1 SN-1 1

for everyn > ng. This proves the claim.

Once we reach this point, we can proceed aslin [2]. We firspset= (1/|Bs) x5;-
For any O< § < 1o, it follows from the previous estimate that

P
/ |¢5*fn(X)—fn(x)|pdx=/ ‘][ [fulx + 1) = fu(x)]dh| dx
RN RN Bs

sf ][ falx 1) — fo(0)|? dhdx
RN JB;s

1 8
= m\/; \/;Nfl Fn,p(tv) do‘(v) tN_ld[

Ctp )
<0

< N rar < .
|Bs| Jo
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Thus,
|@s * fu(x) — fu(x)|Pdx <Ct§  VYn=no Ve (0 1). (18)
N

We now conclude the proof by applying a variant of thédfret—Kolmogorov Theorem.
In fact, since( f,) is bounded inL.” (RY), for every fixeds > 0 the sequenced; x f,) is
relatively compact |rL|0C(RN) (seell5, Corollary 1V.27]), hence it is totally bounded in

Ll (RN). By (18), it follows that( f,) is also totally bounded i, .(R"), which implies
that(f,) is relatively compact ||L|0C(]RN).

5. An LP?-estimate near the boundary ofs2

In this section we shall prove the following

Lemma 5.1. AssumeV > 2. Then there exist constants > 0 (depending orf2 and on
the sequencép,),>1) andCi, C2 > 0 (depending orp, £2 and N) so that the following
holds: giver0 < r < rg we can findig > 1 such that

_ )4
/Q|f|"501/9 |f|"+c2rf’f9/QMpn<|x—y|> dedy  (19)

lx — y|?
foreveryf € L?(£2) andn > no.

Here,
2, ={xe:dx,02)>r}.

Proof. Letxg € d£2. Without loss of generality, we may assume that= 0. Takerg > 0
sufficiently small such that (up to a rotation @f2) the setd$2 N By, is the graph of a
Lipschitz functiony. For simplicity, we can also assume thahas Lipschitz constant at
most 1/2.

Given O< r < rg, we consider the graph of:

Io={x=u,yx) eRY:x' e B).
Let A be the upper half cone
= {x = (/,xn) € RV 3] < xw).
Becauses has Lipschitz constant at most2, we have
Q2NB2C T+ (ANB,) C 2N By (20)
for every O< r < rg. We first prove the following

Claim. There exists:g > 1 depending om € (0, ro) such that iff € L”(£2) andf =0
a.e. ins2,, then

/ fIP < CrP f WO =T ) dedy  (21)
£20B, 2 2N By, J 2N Ba, |x_y|l7

for everyn > ny.
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In fact, givené € I, andv € A N S¥~1, we consider the function
gt) = f(E+tv) fora.et e (0,2r).

Applying Lemmd 3. tg, we get

/r|f(§+sv)|pdsfcrpfr | f (¢ +sv+1tv) — fE+sv)lf s
0

0 tp

for every 0< ¢ < r. Recall thatt = (x, y(x")) for somex’ € B, ¢ RV~1. We first
integrate the above estimate with respectt@ B, and then we perform the change of
coordinates

y =" y(x) +sv
with respect to the variables ands. Using [20) we then find

t — p
/ |f|,,§Cr,,/ G+ = fOIP
208y [+(ANBy) th

< CrP / SO+ = SO, 22)
2NBs, tp

Takeng > 1 sufficiently large so that

f on =% VYn=no

Since each, is a radial function, there exists> 0 such that

/ on>c ¥n>np.
ANB,

We now multiply [22) byp, (t):¥ 1. Integrating the resulting expression with respect to
t € (0,r)andv € AN SV1 we get

NIl -

hy — p
C/ P < CrP / lf(&y+h) = f(y) pu(h]) dh dy
20B,2 2nB3.J ANB, |h|P
P
<Cr1’/ / Lf(x) — fl V@ = FDF )y dxdy.
2N By, J 2N By, |X_Y|p

This completes the proof of the claim.

By a standard covering argument, it follows from the claim above that there exists
no > 1 depending om € (0, ro) such that iff € LP(£2) andf = 0 a.e. in£2,, then

fm T 5Crpfgfﬂ W= SO e 31y dxdy (23)
r/4

lx — y|?

for everyn > ng, where the constart > 0 is independent of , » andn.
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We now takef € L”(£2) arbitrary. In other words, we do not impose any restriction
on the set supp. Let; € C*>(£2) be such that = 0 on£2,, ¢ = 1 on 2\£2, 2,
0<¢ <lonfand|V¢| < C/rons2. Applying (23) to the functiors f we get

/M 1P < C’pfg [ L@@ LD ey
r/4

lx — yIP
Szp_lop{/ F@=FON" 0 ddy
2l lx—ylP

P
/f |f(x >|I’Mpn<|x—y|> dxdy}.

lx —yl?

We now estimate the second double integral on the right-hand side.&irce ¢ (y)=1
for everyx, y € 2\, 2, we have

p
[t e =y axay = [+ [[

XEQ\Q,/4 err/4
YES2)2 yER

Note thatd (£2\ 2,4, 52,/2) = r/4, thus

f/ Sl /|f|ﬂ and // p/ﬂr/4|f|p_

XER\$2y /4 X€82 /4
YERr )2 yeR

We then conclude that

/|f|p=/ |f|p+f |f17
2 $2r/4 £2\82;/4

— p
Q4 2Jo

lx —yl?
+Cf pn'/|f|p'
|h|>r/4 2

Takingng > 1 large enough so that

1
on < == Vn=>no,
/|h|>r/4 "T2c

we see tha{(79) holds.

6. Proof of Theoremd 1.1 and1]2

Proof of Theore2.Givenl > 1, we fixg; € C§°(£2) such thaip; = 1 on2y;. It

is easy to see that the sequerigef,),>1 satisfies the assumptions of Proposifion 4.2.
In particular,(f,,) is relatively compact ir.”(£2;). Applying a standard diagonalization
argument, we can extract a subsequeige) such thatf,, — f in LlOC(Q). Since the
original sequence is boundedir (£2), f € LP(£2).
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Claim. f € BV(R2)if p=1andf e Wh-P(2)if1 < p < oo; moreover,
B
[ (24)
Q N

Lety € C3°(B1) be such thap > 0 and/ ¢ = 1. Givens > 0, we define

@s(x) i= SiNgo (;—C) vx € RV.

It follows from Jensen’s inequality and estimdtg (6) that

— p
/ / lps * fn(x) — @5 % fu(y)l on (X — y) dxdy < B ¥n>1. (25)
2sJ 825 |X - }’|p

We now observe that for eac¢h> O fixed, the subsequence; * f,,;);>1 converges to
@s % fin C2(R2,). Takingn; — oo in (25) we get (see e.d.|[8, Remark 7])

Kp,zv/ |D(gs * f)|" <B ¥8>0.
25

The claim now follows by taking — O.

We are left to prove thaf,, — f in L?(£2). In order to show this, we apply ([19)
with f replaced byf,; — f. Usmg [3) and[(p) we get

/|fn,.—f|f’sc1/ |fnj—f|P+cer2P—1(B+Cf IDfI”>
Q 2 Q

for everyn; > no(r). Forr > 0 fixed we letj — oo. It follows that
limsup [ |fa, — fIP < CorP2rt (B + c/ |Df|P> .
j—oo J§2 2
Takingr — 0, we conclude that,, — fin L”(£2).
As a corollary of Theoretn 1.2 we have

Proof of Theorerfi I]1Let Ag > 0 be the best constant of the inequalfty (1). Assume by
contradiction that there exists > Ao/K ),y for which (4) fails for every: > no. This
means there exists a sequelige) in L7 (£2) with the following properties:

f|fn|f’=1 and /fn=o, (26)
[ I o ) dxay < @27)
Ix— C

Note that( f,,) satisfies the assumpt|ons of Theofen) 1.2. We can then extract a convergent
subsequencg,; — fin L?(£2). In particular, it follows from[(2b) that

/Q|f|1’=1 and /szo.

On the other hand, from (R7) we have

1
[ IDfIP < .
Q p.NC
These two facts imply that ¥ Ag/(K, ~C), a contradiction.
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7. Proof of Theorem[1.3

We first observe that after replacing the sequencdy (o, () + p,(—1))/2, we can
always assume that eagh is an even function. Note thdf](9) still holds with the same
constantB.

To prove the theorem we shall follow the same steps as before. We start with a com-
pactness lemma:

Lemma 7.1. Assume there exish € (0, 1) andag > 0 such that(8) holds. If (f,) C
L?(R) is a bounded sequence of functions such that

// [ fu(x) — fu(M)IP on(x —y)dxdy <B Vn>1, (28)

T
then( f,,) is relatively compact |rL|OC(R).
Proof. Let £o > 1 be a fixed integer. We first prove the following

Claim. Estimate[(T]L) still holds witld replaced by

- 1
9::1—£=1—— E—k
Lo Lo \'s

(with the constanC,, also depending ofy).

Indeed, it suffices to notice that

6 6
Gp(0s) < & G,,(ﬁ) < 2P1z0{Gp(s) +G, (s - ﬁ) }

Inserting this inequality intd (31) yields the claim.

Givenép € (0,1), we takefg > 2 sufficiently large so that/¥g < 1—6p; in particular,
we havedy < 6 < 1. We now fixzg > 0. Takeng > 1 sufficiently large so that

o) ag
/ Prbo Z Vn > no.
0
We know from our claim that
Fap(®) _ {Fn,,,<s) N Fn,p<és)}

TP sP TP

for every O< s < 19 < 7. We multiply both sides of this inequality by, ¢,. Using [7)
and integrating the resulting expression from @twe get

O(_O Fn,p(f)
4 tp

o 1
<C {/ Fn,p(S)pn(S) ds + i / ° Fn,p(és),o,,(és) ds} (29)
0 sP ™ Jo

for everyt > 19 andn > ng. We now estimate the second integral on the right-hand side
of this inequality. We first observe that

1 [fo . . t R (G
o Fy.p(0s)pn(0s) ds 5[ Fnp0s)
° 0

(és)l’ pn(és) ds =: 1.
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We then make the change of variables- ds (note tha® is a function ofs for fixed 7).
Recall that, by definition,

~ k
Os=|—+1 s—i fork§£<k+1.
Lo Lo s

Thus,

n p(es) ~
n(0s)d
//(k+1) @s)P Ty OVE

i Mg i Mg

p(h) dh < F, »(h)
f Fp®) gy 2 - C/ mP 7 (k) dh.  (30)
1-1er/k+D P k/to+1 o ke

This last inequality comes from the fact thatkg belongs to at mosT'kg intervals of the

form 1 1 1
1—— fork > 1.
k+1 k

Inserting [(3D) into[(2P) and usmﬂ]ZS) we conclude that

o
Lap®) 3/ L ”(S)pn(sws < 53
TP a0 Jo

for everytr > rg andn > ng. Proceeding as in the proof ¢f {17) shows that
[ 150 = o dx < i vie @0 vz
R

In other words, the sequencs,) is relatively compact mLIOC(]R) (seel[d, Theorem IV.25]).
The analogue of Lemnja 3.1 is the following
Lemma 7.2. There existo > 0 (depending onp,),>1) and constantsC1,C2 > 0

(depending orp) so that the following holds: gived < r < rg we can findhg > 1 such
that

1-r 1 X P
/ 117 < 61/ 1117+ C2 ”f/ 'f(pi _g(py)' pn(x = y) dxdy  (31)
foreveryf € LP(0, 1) andn > ng.
Proof. We proceed exactly as in the proof of Lemfna]5.1. Actually, this case is even

simpler since the claim is essentially contained in Lenimé 3.2. Note in particular that
condition [8) is not needed here.

Theorenj 1.8 can now be proved as in the previous section.
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