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Abstract. We show that ifΩ ⊂ RN , N ≥ 2, is a bounded Lipschitz domain and(ρn) ⊂ L1(RN )
is a sequence of nonnegative radial functions weakly converging toδ0, then∫

Ω
|f − fΩ |

p
≤ C

∫
Ω

∫
Ω

|f (x) − f (y)|p

|x − y|p
ρn(|x − y|) dx dy

for all f ∈ Lp(Ω) andn ≥ n0, wherefΩ denotes the average off on Ω. The above estimate
was suggested by some recent work of Bourgain, Brezis and Mironescu [2]. Asn → ∞ we recover
Poincaŕe’s inequality. The caseN = 1 requires an additional assumption on(ρn). We also extend a
compactness result of Bourgain, Brezis and Mironescu.

Keywords. Poincaŕe’s inequality, compactness in Sobolev spaces

1. Introduction and main results

AssumeΩ ⊂ RN , N ≥ 1, is a bounded domain with Lipschitz boundary and let 1≤ p <

∞. It is a well-known fact that there exists a constantA0 = A0(p, Ω) > 0 such that the
following form of Poincaŕe’s inequality holds:∫

Ω

|f − fΩ |
p

≤ A0

∫
Ω

|Df |
p

∀f ∈ W1,p(Ω), (1)

wherefΩ := (1/|Ω|)
∫
Ω

f .
On the other hand, let(ρn) ⊂ L1(RN ) be a sequence ofradial functions satisfying

ρn ≥ 0 a.e. inRN ,∫
RN ρn = 1 ∀n ≥ 1,

limn→∞

∫
|h|>δ

ρn(h) dh = 0 ∀δ > 0.

(2)
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In this case, we have the following pointwise limit (see [2], and also [6] for a simpler
proof)

lim
n→∞

∫
Ω

∫
Ω

|f (x) − f (y)|p

|x − y|p
ρn (|x − y|) dx dy = Kp,N

∫
Ω

|Df |
p (3)

for everyf ∈ W1,p(Ω), whereKp,N = −
∫
SN−1 |e1 · σ |

p dHN−1.
Motivated by this, we show the following estimate related to (1):

Theorem 1.1. AssumeN ≥ 2. Let (ρn) ⊂ L1(RN ) be a sequence of radial functions
satisfying(2). Givenδ > 0, there existsn0 ≥ 1 sufficiently large such that∫

Ω

|f − fΩ |
p

≤

(
A0

Kp,N
+ δ

) ∫
Ω

∫
Ω

|f (x) − f (y)|p

|x − y|p
ρn (|x − y|) dx dy (4)

for everyf ∈ Lp(Ω) andn ≥ n0.

The choice ofn0 ≥ 1 depends not only onδ > 0, but also onp, Ω and on the sequence
(ρn)n≥1. Special cases of this inequality have been used in the study of the Ginzburg–
Landau model (see [3, 4]; see also Corollaries 2.1–2.4 below).

We first point out that (4) is stronger than (1), in the sense that the right-hand side of
(4) can always be estimated by

∫
Ω

|Df |
p. In fact, givenf ∈ W1,p(Ω), we first extendf

to RN so thatf ∈ W1,p(RN ). It is then easy to see that (see e.g. [2, Theorem 1])∫
Ω

∫
Ω

|f (x) − f (y)|p

|x − y|p
ρn(|x − y|) dx dy ≤

∫
RN

|Df |
p

≤ C

∫
Ω

|Df |
p. (5)

If N = 1, then one can construct examples of sequences(ρn) ⊂ L1(R) for which (4)
fails (see [2, Counterexample 1]). In this case, we need to impose an additional condition
on (ρn); see Theorem 1.3 below.

Theorem 1.1 will be deduced from the following compactness result:

Theorem 1.2. AssumeN ≥ 2. Let (ρn) ⊂ L1(RN ) be a sequence of radial functions
satisfying(2). If (fn) ⊂ Lp(Ω) is a bounded sequence such that∫

Ω

∫
Ω

|fn(x) − fn(y)|p

|x − y|p
ρn (|x − y|) dx dy ≤ B ∀n ≥ 1, (6)

then(fn) is relatively compact inLp(Ω).
Assume thatfnj

→ f in Lp(Ω). Then

(a) f ∈ W1,p(Ω) if 1 < p < ∞;
(b) f ∈ BV (Ω) if p = 1.

In both cases, we have
∫
Ω

|Df |
p

≤ B/Kp,N , whereB is given by(6).

This result was already known under the additional assumption thatρn is radially nonde-
creasing for everyn ≥ 1 (see [2, Theorem 4]).

We now consider the caseN = 1.
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Givenρn ∈ L1(R), we shall assume thatρn is defined for everyx ∈ R in the following
way:

ρn(x) =

{
limr→0

1
2r

∫ x+r

x−r
ρn if x is a Lebesgue point ofρn,

+∞ otherwise.

Givenθ0 ∈ (0, 1) we define

ρn,θ0(x) := inf
θ0≤θ≤1

ρn(θx) ∀x ∈ R.

By construction,
ρn,θ0(x) ≤ ρn(θx) ∀x ∈ R ∀θ ∈ [θ0, 1]. (7)

We then have the following result:

Theorem 1.3. Let (ρn) ⊂ L1(R) be a sequence of functions satisfying(2). Assume there
existθ0 ∈ (0, 1) andα0 > 0 such that∫

R
ρn,θ0 ≥ α0 > 0 ∀n ≥ 1. (8)

If (fn) ⊂ Lp(0, 1) is a bounded sequence such that∫ 1

0

∫ 1

0

|fn(x) − fn(y)|p

|x − y|p
ρn (x − y) dx dy ≤ B ∀n ≥ 1, (9)

then(fn) is relatively compact inLp(0, 1). Moreover, all the other statements of Theo-
rems1.1and1.2are also valid. In particular, inequality(4) holds withΩ = (0, 1).

Most of the results in this paper were announced in [9].

2. Some examples

We now state some inequalities coming from Theorems 1.1 and 1.3. We denote byQ =

(0, 1)N theN -dimensional unit cube. In all cases, condition (2) is satisfied forN ≥ 1; it
is also easy to see that (8) holds whenN = 1.

For everyN ≥ 1 we then have the following corollaries:

Corollary 2.1 (Bourgain–Brezis–Mironescu [3]).∫
Q

|f − fQ|
p

≤ Cs0(1 − s)p

∫
Q

∫
Q

|f (x) − f (y)|p

|x − y|N+sp
dx dy ∀f ∈ Lp(Q),

for every0 < s0 < s < 1.

This inequality takes into account the correction factor(1 − s)1/p we should put in front
of the Gagliardo seminorm|f |W s,p ass ↑ 1. In [3], the authors study related estimates
arising from the Sobolev imbeddingLq ↪→ W s,p for the critical exponent 1/q = 1/p −

s/N ; see also [7] for a more elementary approach.
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Corollary 2.2 (Bourgain–Brezis–Mironescu [4]).∫
Q

|f − fQ|
p

≤ Cε0

1

|logε|

∫
Q

∫
Q

|f (x) − f (y)|p

|x − y|p

dx dy

(|x − y| + ε)N

for everyf ∈ Lp(Q) and0 < ε < ε0.

A stronger form of this inequality is the following

Corollary 2.3.∫
Q

|f − fQ|
p

≤ Cε0

1

|logε|

∫
Q

∫
Q

|x−y|>ε

|f (x) − f (y)|p

|x − y|N+p
dx dy ∀f ∈ Lp(Q),

for every0 < ε < ε0 � 1.

We have been informed by H. Brezis that Bourgain and Brezis [1] have proved that∫
Q

|f − fQ|
p

≤ Cε0

1

|logε|

∫
Q

∫
Q

|f (x) − f (y)|p

(|x − y| + ε)N+p
dx dy ∀f ∈ Lp(Q),

for every 0 < ε < ε0, using a Paley–Littlewood decomposition off . Note that this
estimate can be deduced instead from the corollary above.

Here is another example:

Corollary 2.4.∫
Q

|f − fQ|
p

≤ Cε0

N + p

εN+p

∫
Q

∫
Q

|x−y|<ε

|f (x) − f (y)|p dx dy ∀f ∈ Lp(Q),

for every0 < ε < ε0.

Concerning the behavior of the constants in these inequalities, letA0 denote the best
constant in (1). Then in Corollary 2.1 the constantCs0 can be chosen so that

Cs0 →
A0

Kp,N |SN−1|
ass0 ↑ 1.

Similarly, in Corollaries 2.2–2.4 we haveCε0 converging to the same limit asε0 ↓ 0.
Applying Theorem 1.1 top = 1 andf = χE , whereE ⊂ Q is any measurable set,

we get (see also [3] for related results):

Corollary 2.5. LetN ≥ 2. Given a sequence of radial functions(ρn) ⊂ L1(RN ) satisfy-
ing (2), then for anyC > A0/K1,N there existsn0 ≥ 1 such that

|E| |Q\E| ≤ C

∫
E

∫
Q\E

ρn(|x − y|)

|x − y|
dx dy ∀E ⊂ Q measurable ∀n ≥ n0.
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3. Estimates in dimensionN = 1

Given anyg ∈ Lp(R), let Gp : [0, ∞) → [0, ∞) be the (continuous) function defined
by

Gp(t) =

∫
R

|g(x + t) − g(x)|p dx ∀t ≥ 0. (10)

We start with the following

Lemma 3.1. Given0 < s < t , let k ∈ N andθ ∈ [0, 1) be such thatt/s = k + θ . Then
there existsCp > 0 such that for everyg ∈ Lp(R) we have

Gp(t)

tp
≤ Cp

{
Gp(s)

sp
+

Gp(θs)

tp

}
. (11)

Proof. Note that

|g(x + t) − g(x)|p = |g(x + ks + θs) − g(x)|p

≤ 2p−1
{|g(x + ks) − g(x)|p

+ |g(x + ks + θs) − g(x + ks)|p}

≤ 2p−1kp−1
k−1∑
j=0

|g(x + js + s) − g(x + js)|p

+ 2p−1
|g(x + ks + θs) − g(x + ks)|p.

Integrating with respect tox ∈ R and changing variables we get

Gp(t) ≤ 2p−1kpGp(s) + 2p−1Gp(θs).

Recall thatk ≤ t/s. We then conclude that (11) holds withCp = 2p−1.

Another estimate we shall need is given by the lemma below:

Lemma 3.2. Let r > 0. There exists a constantCp > 0 so that the following holds: for
everyg ∈ Lp(0, 2r) such thatg = 0 a.e. in(r, 2r) we have∫ r

0
|g|

p
≤ Cprp

∫ r

0

|g(x + t) − g(x)|p

tp
dx ∀t ∈ (0, r). (12)

Proof. By a scaling argument, it suffices to prove the lemma forr = 1. We now extend
g ∈ Lp(0, 2) to the entire half-line so thatg = 0 a.e. in(1, ∞).

Given 0 < t < 1, let k ≥ 1 be the first integer satisfyingkt ≥ 1. In particular, for
x ∈ (0, 1) we havex + kt > 1, thus

|g(x)|p = |g(x + kt) − g(x)|p ≤ kp−1
k−1∑
j=0

|g(x + j t + t) − g(x + j t)|p.
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Integrating this inequality with respect tox we get∫ 1

0
|g|

p
≤ kp−1

k−1∑
j=0

∫
∞

0
|g(x + j t + t) − g(x + j t)|p dx

≤ kp

∫
∞

0
|g(x + t) − g(x)|p dx = kp

∫ 1

0
|g(x + t) − g(x)|p dx.

Note however thatk ≤ 2/t . The lemma now follows by takingCp = 2p.

4. Compactness inLp

loc(R
N ) for N ≥ 2

Givenf ∈ Lp(RN ), we considerFp : RN
→ [0, ∞) defined by

Fp(h) =

∫
RN

|f (x + h) − f (x)|p dx ∀h ∈ RN .

This function is continuous and satisfies

Fp(h1 + h2) ≤ 2p−1[Fp(h1) + Fp(h2)
]

∀h1, h2 ∈ RN .

We have the following

Lemma 4.1. AssumeN ≥ 2. Then there existsCp > 0 such that∫
SN−1

Fp(tv)

tp
dσ(v) ≤ Cp

∫
SN−1

Fp(sv)

sp
dσ(v) for every0 < s < t . (13)

Proof. Let 0 < s < t < ∞. Given v ∈ SN−1 andw ∈ (Rv)⊥, we apply the one-
dimensional estimate in Lemma 3.1 to the function

g(τ) = f (w + τv) for a.e.τ ≥ 0.

If we integrate the resulting expression with respect tow ∈ (Rv)⊥, it follows that for
everyv ∈ SN−1 we have

Fp(tv)

tp
≤ Cp

{
Fp(sv)

sp
+

Fp(θsv)

tp

}
(14)

for someθ ∈ [0, 1) (depending ons andt). We now split the proof into two cases:

Case 1:N is even.
Let O ∈ O(N) be an orthogonal transformation such that〈Ow, w〉 = 0 for every

w ∈ RN (this is possible sinceN is even). We then consider

O1w :=
θ

2
w +

√
1 −

θ2

4
Ow,

O2w :=
θ

2
w −

√
1 −

θ2

4
Ow.
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Note thatO1, O2 ∈ O(N) and

θw = O1w + O2w ∀w ∈ RN ,

thus
Fp(θsv) ≤ 2p−1

{Fp(s O1v) + Fp(s O2v)}.

Inserting this inequality into (14) we get

Fp(tv)

tp
≤ Cp

Fp(sv) + Fp(s O1v) + Fp(s O2v)

sp
.

Integrating with respect tov ∈ SN−1 we obtain (13).

Case 2:N is odd.
Let v ∈ SN−1. We denote bySN−2

v the(N − 2)-sphere orthogonal tov:

SN−2
v := SN−1

∩ (Rv)⊥.

Reasoning as in the previous case, we see that∫
SN−2

v

Fp(tw)

tp
dHN−2

≤ Cp

∫
SN−2

v

Fp(sw)

sp
dHN−2. (15)

OnSN−1 we consider the measureµ defined as

µ(A) =

∫
SN−1

HN−2(A ∩ SN−2
v ) dσ (v) for every Borel setA ⊂ SN−1.

Note thatµ is invariant under orthogonal transformations, i.e.µ(OA) = µ(A) for every
O ∈ O(N), andµ(SN−1) = |SN−2

| |SN−1
|. It then follows that

µ = |SN−2
|HN−1

bSN−1.

We now integrate (15) with respect tov ∈ SN−1. Using the observation above we get
(13).

The lemma above implies the following compactness result:

Proposition 4.2. AssumeN ≥ 2. Let (fn) ⊂ Lp(RN ) be a bounded sequence of func-
tions such that∫

RN

∫
RN

|fn(x) − fn(y)|p

|x − y|p
ρn (|x − y|) dx dy ≤ B ∀n ≥ 1. (16)

Then(fn) is relatively compact inLp

loc(R
N ).

Proof. Fix t0 > 0. Letn0 ≥ 1 be such that∫
Bt0

ρn ≥
1

2
∀n ≥ n0.

We first prove the following
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Claim. There exists a constantC = C(p, N,B) > 0 such that∫
SN−1

Fn,p(tv) dσ (v) ≤ Ct
p

0 (17)

for every 0< t < t0 and everyn ≥ n0. (Fn,p denotes the functionFp associated tofn).

In fact, lets, τ > 0 be such that 0< s < t0 ≤ τ . It follows from the previous lemma
that ∫

SN−1

Fn,p(τv)

τp
dσ(v) ≤ Cp

∫
SN−1

Fn,p(sv)

sp
dσ(v).

We now multiply both sides bysN−1ρn(s) and then integrate the resulting expression
with respect tos from 0 tot0. We get

1

2|SN−1|

∫
SN−1

Fn,p(τv)

τp
dσ(v) ≤

∫
SN−1

Fn,p(τv)

τp
dσ(v)

∫ t0

0
ρn(s)s

N−1 ds

≤ C

∫ t0

0

∫
SN−1

Fn,p(sv)

sp
ρn(s)s

N−1 dσ(v) ds

≤ C

∫
RN

Fn,p(h)

|h|p
ρn(|h|) dh.

Note that the last term is precisely the double integral on the left-hand side of (16). We
then conclude that∫

SN−1
Fn,p(τv) dσ(v) ≤ Cτp

∀τ ≥ t0 ∀n ≥ n0.

We now let 0< t < t0. Using the above estimate withτ = t0 andτ = t + t0 we get∫
SN−1

Fn,p(tv) dσ (v) ≤ ≤ 2p−1
{∫

SN−1
Fn,p(t0v) dσ +

∫
SN−1

Fn,p((t + t0)v) dσ

}
≤ 2p−1C

[
t
p

0 + (t + t0)
p
]

≤ Ct
p

0

for everyn ≥ n0. This proves the claim.

Once we reach this point, we can proceed as in [2]. We first setΦδ := (1/|Bδ|)χBδ .
For any 0< δ < t0, it follows from the previous estimate that∫

RN

|Φδ ∗ fn(x) − fn(x)|p dx =

∫
RN

∣∣∣∣ −∫
Bδ

[
fn(x + h) − fn(x)

]
dh

∣∣∣∣p dx

≤

∫
RN

−

∫
Bδ

|fn(x + h) − fn(x)|p dh dx

=
1

|Bδ|

∫ δ

0

∫
SN−1

Fn,p(tv) dσ (v) tN−1 dt

≤
Ct

p

0

|Bδ|

∫ δ

0
tN−1 dt ≤ Ct

p

0 .
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Thus, ∫
RN

|Φδ ∗ fn(x) − fn(x)|p dx ≤ Ct
p

0 ∀n ≥ n0 ∀δ ∈ (0, t0). (18)

We now conclude the proof by applying a variant of the Fréchet–Kolmogorov Theorem.
In fact, since(fn) is bounded inLp(RN ), for every fixedδ > 0 the sequence(Φδ ∗ fn) is
relatively compact inLp

loc(R
N ) (see [5, Corollary IV.27]), hence it is totally bounded in

L
p

loc(R
N ). By (18), it follows that(fn) is also totally bounded inLp

loc(R
N ), which implies

that(fn) is relatively compact inLp

loc(R
N ).

5. An Lp-estimate near the boundary ofΩ

In this section we shall prove the following

Lemma 5.1. AssumeN ≥ 2. Then there exist constantsr0 > 0 (depending onΩ and on
the sequence(ρn)n≥1) andC1, C2 > 0 (depending onp, Ω andN ) so that the following
holds: given0 < r < r0 we can findn0 ≥ 1 such that∫

Ω

|f |
p

≤ C1

∫
Ωr

|f |
p

+ C2r
p

∫
Ω

∫
Ω

|f (x) − f (y)|p

|x − y|p
ρn (|x − y|) dx dy (19)

for everyf ∈ Lp(Ω) andn ≥ n0.

Here,
Ωr := {x ∈ Ω : d(x, ∂Ω) > r}.

Proof. Let x0 ∈ ∂Ω. Without loss of generality, we may assume thatx0 = 0. Taker0 > 0
sufficiently small such that (up to a rotation of∂Ω) the set∂Ω ∩ B4r0 is the graph of a
Lipschitz functionγ . For simplicity, we can also assume thatγ has Lipschitz constant at
most 1/2.

Given 0< r < r0, we consider the graph ofγ :

Γr := {x = (x′, γ (x′)) ∈ RN : x′
∈ B ′

r}.

Let Λ be the upper half cone

Λ := {x = (x′, xN ) ∈ RN : |x′
| ≤ xN }.

Becauseγ has Lipschitz constant at most 1/2, we have

Ω ∩ Br/2 ⊂ Γr + (Λ ∩ Br) ⊂ Ω ∩ B3r (20)

for every 0< r < r0. We first prove the following

Claim. There existsn0 ≥ 1 depending onr ∈ (0, r0) such that iff ∈ Lp(Ω) andf = 0
a.e. inΩr , then∫

Ω∩Br/2

|f |
p

≤ Crp

∫
Ω∩B4r

∫
Ω∩B4r

|f (x) − f (y)|p

|x − y|p
ρn (|x − y|) dx dy (21)

for everyn ≥ n0.
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In fact, givenξ ∈ Γr andv ∈ Λ ∩ SN−1, we consider the function

g(t) = f (ξ + tv) for a.e.t ∈ (0, 2r).

Applying Lemma 3.2 tog, we get∫ r

0
|f (ξ + sv)|p ds ≤ Crp

∫ r

0

|f (ξ + sv + tv) − f (ξ + sv)|p

tp
ds

for every 0< t < r. Recall thatξ = (x′, γ (x′)) for somex′
∈ B ′

r ⊂ RN−1. We first
integrate the above estimate with respect tox′

∈ B ′
r and then we perform the change of

coordinates
y = (x′, γ (x′)) + sv

with respect to the variablesx′ ands. Using (20) we then find∫
Ω∩Br/2

|f |
p

≤ Crp

∫
Γr+(Λ∩Br )

|f (y + tv) − f (y)|p

tp
dy

≤ Crp

∫
Ω∩B3r

|f (y + tv) − f (y)|p

tp
dy. (22)

Taken0 ≥ 1 sufficiently large so that∫
Br

ρn ≥
1

2
∀n ≥ n0.

Since eachρn is a radial function, there existsc > 0 such that∫
Λ∩Br

ρn ≥ c ∀n ≥ n0.

We now multiply (22) byρn(t)t
N−1. Integrating the resulting expression with respect to

t ∈ (0, r) andv ∈ Λ ∩ SN−1, we get

c

∫
Ω∩Br/2

|f |
p

≤ Crp

∫
Ω∩B3r

∫
Λ∩Br

|f (y + h) − f (y)|p

|h|p
ρn(|h|) dh dy

≤ Crp

∫
Ω∩B4r

∫
Ω∩B4r

|f (x) − f (y)|p

|x − y|p
ρn (|x − y|) dx dy.

This completes the proof of the claim.

By a standard covering argument, it follows from the claim above that there exists
n0 ≥ 1 depending onr ∈ (0, r0) such that iff ∈ Lp(Ω) andf = 0 a.e. inΩr , then∫

Ω\Ωr/4

|f |
p

≤ Crp

∫
Ω

∫
Ω

|f (x) − f (y)|p

|x − y|p
ρn (|x − y|) dx dy (23)

for everyn ≥ n0, where the constantC > 0 is independent off , r andn.
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We now takef ∈ Lp(Ω) arbitrary. In other words, we do not impose any restriction
on the set suppf . Let ζ ∈ C∞(Ω) be such thatζ ≡ 0 on Ωr , ζ ≡ 1 on Ω\Ωr/2,
0 ≤ ζ ≤ 1 onΩ and|∇ζ | ≤ C/r onΩ. Applying (23) to the functionζf we get∫

Ω\Ωr/4

|f |
p

≤ Crp

∫
Ω

∫
Ω

|ζ(x)f (x) − ζ(y)f (y)|p

|x − y|p
ρn (|x − y|) dx dy

≤ 2p−1Crp

{ ∫
Ω

∫
Ω

|f (x) − f (y)|p

|x − y|p
ρn (|x − y|) dx dy

+

∫
Ω

∫
Ω

|f (x)|p
|ζ(x) − ζ(y)|p

|x − y|p
ρn (|x − y|) dx dy

}
.

We now estimate the second double integral on the right-hand side. Sinceζ(x)=ζ(y)=1
for everyx, y ∈ Ω\Ωr/2, we have∫

Ω

∫
Ω

|f (x)|p
|ζ(x) − ζ(y)|p

|x − y|p
ρn (|x − y|) dx dy =

∫∫
x∈Ω\Ωr/4

y∈Ωr/2

+

∫∫
x∈Ωr/4

y∈Ω

.

Note thatd
(
Ω\Ωr/4, Ωr/2

)
= r/4, thus∫∫

x∈Ω\Ωr/4

y∈Ωr/2

≤
C

rp

∫
|h|>r/4

ρn ·

∫
Ω

|f |
p and

∫∫
x∈Ωr/4

y∈Ω

≤
C

rp

∫
Ωr/4

|f |
p.

We then conclude that∫
Ω

|f |
p

=

∫
Ωr/4

|f |
p

+

∫
Ω\Ωr/4

|f |
p

≤ C

∫
Ωr/4

|f |
p

+ Crp

∫
Ω

∫
Ω

|f (x) − f (y)|p

|x − y|p
ρn (|x − y|) dx dy

+ C

∫
|h|>r/4

ρn ·

∫
Ω

|f |
p.

Takingn0 ≥ 1 large enough so that∫
|h|>r/4

ρn ≤
1

2C
∀n ≥ n0,

we see that (19) holds.

6. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.2.Given l ≥ 1, we fix ϕl ∈ C∞

0 (Ω) such thatϕl ≡ 1 onΩ1/l . It
is easy to see that the sequence(ϕlfn)n≥1 satisfies the assumptions of Proposition 4.2.
In particular,(fn) is relatively compact inLp(Ωl). Applying a standard diagonalization
argument, we can extract a subsequence(fnj

) such thatfnj
→ f in L

p

loc(Ω). Since the
original sequence is bounded inLp(Ω), f ∈ Lp(Ω).
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Claim. f ∈ BV (Ω) if p = 1 andf ∈ W1,p(Ω) if 1 < p < ∞; moreover,∫
Ω

|Df |
p

≤
B

Kp,N

. (24)

Let ϕ ∈ C∞

0 (B1) be such thatϕ ≥ 0 and
∫

ϕ = 1. Givenδ > 0, we define

ϕδ(x) :=
1

δN
ϕ

(x

δ

)
∀x ∈ RN .

It follows from Jensen’s inequality and estimate (6) that∫
Ωδ

∫
Ωδ

|ϕδ ∗ fn(x) − ϕδ ∗ fn(y)|p

|x − y|p
ρn (|x − y|) dx dy ≤ B ∀n ≥ 1. (25)

We now observe that for eachδ > 0 fixed, the subsequence(ϕδ ∗ fnj
)j≥1 converges to

ϕδ ∗ f in C2(Ωδ). Takingnj → ∞ in (25) we get (see e.g. [8, Remark 7])

Kp,N

∫
Ωδ

∣∣D(ϕδ ∗ f )
∣∣p ≤ B ∀δ > 0.

The claim now follows by takingδ → 0.

We are left to prove thatfnj
→ f in Lp(Ω). In order to show this, we apply (19)

with f replaced byfnj
− f . Using (5) and (6) we get∫

Ω

|fnj
− f |

p
≤ C1

∫
Ωr

|fnj
− f |

p
+ C2r

p2p−1
(

B + C

∫
Ω

|Df |
p

)
for everynj ≥ n0(r). Forr > 0 fixed we letj → ∞. It follows that

lim sup
j→∞

∫
Ω

|fnj
− f |

p
≤ C2r

p2p−1
(

B + C

∫
Ω

|Df |
p

)
.

Takingr → 0, we conclude thatfnj
→ f in Lp(Ω).

As a corollary of Theorem 1.2 we have

Proof of Theorem 1.1.Let A0 > 0 be the best constant of the inequality (1). Assume by
contradiction that there existsC > A0/Kp,N for which (4) fails for everyn ≥ n0. This
means there exists a sequence(fn) in Lp(Ω) with the following properties:∫

Ω

|fn|
p

= 1 and
∫

Ω

fn = 0, (26)∫
Ω

∫
Ω

|fn(x) − fn(y)|p

|x − y|p
ρn (|x − y|) dx dy <

1

C
. (27)

Note that(fn) satisfies the assumptions of Theorem 1.2. We can then extract a convergent
subsequencefnj

→ f in Lp(Ω). In particular, it follows from (26) that∫
Ω

|f |
p

= 1 and
∫

Ω

f = 0.

On the other hand, from (27) we have∫
Ω

|Df |
p

≤
1

Kp,NC
.

These two facts imply that 1≤ A0/(Kp,NC), a contradiction.
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7. Proof of Theorem 1.3

We first observe that after replacing the sequenceρn by (ρn(t) + ρn(−t))/2, we can
always assume that eachρn is an even function. Note that (9) still holds with the same
constantB.

To prove the theorem we shall follow the same steps as before. We start with a com-
pactness lemma:

Lemma 7.1. Assume there existθ0 ∈ (0, 1) andα0 > 0 such that(8) holds. If (fn) ⊂

Lp(R) is a bounded sequence of functions such that∫
R

∫
R

|fn(x) − fn(y)|p

|x − y|p
ρn (x − y) dx dy ≤ B ∀n ≥ 1, (28)

then(fn) is relatively compact inLp

loc(R).

Proof. Let `0 ≥ 1 be a fixed integer. We first prove the following

Claim. Estimate (11) still holds withθ replaced by

θ̃ := 1 −
θ

`0
= 1 −

1

`0

(
t

s
− k

)
(with the constantCp also depending oǹ0).

Indeed, it suffices to notice that

Gp(θs) ≤ `
p

0 Gp

(
θs

`0

)
≤ 2p−1`0

{
Gp(s) + Gp

(
s −

θs

`0

)}
.

Inserting this inequality into (11) yields the claim.

Givenθ0 ∈ (0, 1), we takè 0 ≥ 2 sufficiently large so that 1/`0 < 1−θ0; in particular,
we haveθ0 < θ̃ ≤ 1. We now fixt0 > 0. Taken0 ≥ 1 sufficiently large so that∫ t0

0
ρn,θ0 ≥

α0

4
∀n ≥ n0.

We know from our claim that

Fn,p(τ )

τp
≤ C

{
Fn,p(s)

sp
+

Fn,p(θ̃s)

τp

}
for every 0< s < t0 ≤ τ . We multiply both sides of this inequality byρn,θ0. Using (7)
and integrating the resulting expression from 0 tot0 we get

α0

4

Fn,p(τ )

τp
≤ C

{∫
∞

0

Fn,p(s)

sp
ρn(s) ds +

1

τp

∫ t0

0
Fn,p(θ̃s)ρn(θ̃s) ds

}
(29)

for everyτ ≥ t0 andn ≥ n0. We now estimate the second integral on the right-hand side
of this inequality. We first observe that

1

τp

∫ t0

0
Fn,p(θ̃s)ρn(θ̃s) ds ≤

∫ τ

0

Fn,p(θ̃s)

(θ̃s)p
ρn(θ̃s) ds =: I.
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We then make the change of variablesh = θ̃ s (note thatθ̃ is a function ofs for fixed τ ).
Recall that, by definition,

θ̃ s =

(
k

`0
+ 1

)
s −

τ

`0
for k ≤

τ

s
< k + 1.

Thus,

I =

∞∑
k=1

∫ τ/k

τ/(k+1)

Fn,p(θ̃s)

(θ̃s)p
ρn(θ̃s) ds

=

∞∑
k=1

∫ τ/k

(1−1/`0)τ/(k+1)

Fn,p(h)

hp
ρn(h)

dh

k/`0 + 1
≤ C

∫
∞

0

Fn,p(h)

hp
ρn(h) dh. (30)

This last inequality comes from the fact that 1/k0 belongs to at mostCk0 intervals of the
form ((

1 −
1

`0

)
1

k + 1
;

1

k

)
for k ≥ 1.

Inserting (30) into (29) and using (28) we conclude that

Fn,p(τ )

τp
≤

C

α0

∫
∞

0

Fn,p(s)

sp
ρn(s) ds ≤

C

α0
B

for everyτ ≥ t0 andn ≥ n0. Proceeding as in the proof of (17) shows that∫
R

|fn(x + t) − fn(x)|p dx ≤ Ct
p

0 ∀t ∈ (0, t0) ∀n ≥ n0.

In other words, the sequence(fn) is relatively compact inLp

loc(R) (see [5, Theorem IV.25]).

The analogue of Lemma 5.1 is the following

Lemma 7.2. There existr0 > 0 (depending on(ρn)n≥1) and constantsC1, C2 > 0
(depending onp) so that the following holds: given0 < r < r0 we can findn0 ≥ 1 such
that∫ 1

0
|f |

p
≤ C1

∫ 1−r

r

|f |
p

+ C2r
p

∫ 1

0

∫ 1

0

|f (x) − f (y)|p

|x − y|p
ρn (x − y) dx dy (31)

for everyf ∈ Lp(0, 1) andn ≥ n0.

Proof. We proceed exactly as in the proof of Lemma 5.1. Actually, this case is even
simpler since the claim is essentially contained in Lemma 3.2. Note in particular that
condition (8) is not needed here.

Theorem 1.3 can now be proved as in the previous section.
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