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Abstract. In this work we study the problem

o

— div(lx-2¥ oy * i
ur — div(jx| =2 Vu) AIXIZ(V+1)+f in 2 x (0, T),

u>0 in2x0,7T), u=0 ond2 x (0, 7), @
u(x,0) = ug(x) ins2,

2 c RYN (N > 2) is a bounded regular domain such that@2, » > 0, > 0, —c0 < y <

(N — 2)/2, f andug are positive functions such that € L1(22 x (0, 7)) andug € L1(2).
The main points under analysis are:gpectral instantaneous and complete blowrelated to the
Harnack inequality in the case = 1, 1+ y > 0; (ii) the nonexistence of solutions df > 1,
1+ y > 0; (iii) a uniqueness result faveaksolutions (in the distribution sense); (iv) further results
on existence of weak solutions in the case @ < 1.

1. Introduction

We take as starting point the results by Baras and Goldstein [BGI._Ih [PV][and [BC]
those results are related to a Hardy inequality. With this perspective we can see the results
by Baras—Goldstein as a kind spectral instantaneous and complete blow-tqughly
speaking, if we consider the heat equation with a singular perturbatjor, Au =
Alx|~2u, then the initial-boundary value problem has a global solution for some large
class of initial data ih. < Ay 0:= (N — 2)2/4, and has no positive solution for> AN.O-

In factAy o is the optimal constant in the Hardy inequal[ty|(19) below, in the gase0.

It is well known thatiy o is not attained. In [AgP],IDGP] and [GP], for some class of
parabolic equations related to generalized Hardy—Sobolev inequalities, it was shown that
the spectral instantaneous blow-up is not true, in the sense that even if the parameter
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is larger than the optimal constant in the corresponding Hardy—Sobolev inequality, there
exists a solution. In this paper we study the following problem:

o

—di —2y — i
uy, — div(jx| =%’ Vu) = )“|x|2(y+1) +f in2x(@O,71),

u>0 IN2x(@O0,7T), u=0 ona2 x (0, 7), @)
u(x,0) =ug(x) ing2,

where2 ¢ RN (N > 2) is a bounded regular domain such that @2, » > 0, > 0,
—o00 < y < (N—2)/2, f andug are positive functions such thite L1(£2 x (0, T)) and
ug € L1(£2). Notice that the casg = 0 anda = 1 is just the problem solved by Baras
and Goldstein in[BG]. In the opposite direction, in [DIGP] it is proved, in particular, that
if 1 +y < 0, problem[(R) withx = 1 has a global weak solution for alle R, that is, the
spectral instantaneous and complete blow-up does not occur. However, the corresponding
Hardy—Sobolev inequality holds.

We will mainly discuss the caset y > O related to the spectral instantaneous
and complete blow-up. The fundamental difference with the caseyl< 0 is that if
1+ y > 0, the associated homogeneous linear differential equation satisfies the parabolic
Harnack inequality[ (J]0), proved by Chiarenza and Serapioni in/[ChS] and bgr@Gazi
and Wheeden in_[GW] for more general cases of degenerate equations. Moreover the
interval of y is optimal. More precisely, if & y < 0 we consider(x, ) = t|x|° where
o > 0. A direct computation shows that

uy — div(|x| 72 V) = |x]P — ptlx|P 727D (0 + N — 2(y + 1)).

Asp > 0andy +1 < 0, forrg, tp > 0 small enoughy is a supersolution to problem

@) in the cylinderB,,(0) x (0, 7). Sincex (0, ) = 0, even the weak Harnack inequality,
given by [I2), is not satisfied. Then we discover that the Harnack inequality together
with the Hardy—Sobolev inequality ([L9) yield the spectral instantaneous and complete
blow-up. The case of = 0 ande > 1, that is, the heat equation with a perturbation
u®|x|~2, was studied in[BC], where it was shown that the complete and instantaneous
blow-up is independent of > 0, namely, problen{ {2) has no positive solutions even in
the distribution sense apart from the trivial one.

The Sobolev spac@éﬁ(.(z) is defined as the completion 6§°($2) under the norm

lpl2 =[Q|x|—2V|V¢|2dx.

It is clear thatDcl,’}z,(_Q) is a Hilbert space. Notice th@é’i(!)) c Wy%(2)fory >0

and Wol’z(.Q) C Dé:z(.Q) if y < 0. This is the natural space to work in with the elliptic
part and to look for solutions in the classieslergy senser, more precisely, solutions in
a variational framework.

Next we specify in what more general sense we will consider solutions when the data
of the problemare not variational

First, following [BM] and [Pt], we define an entropy solution. As usual we will con-
sider the truncatioffy (1) = u — sign(u) (|u| — k).
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Definition 1.1. We say that

ueTg 2 (2 x(0.1) if Tiw) e L3((0,T); Dy (82)) forall k > 0.
Definition 1.2. Assume thatf and ug are positive functions such that € L1(£2 x
(0, 7)) andug € L1(£2). A functionu € C([0, T]; L1(£2)) is anentropy solutiorto the

problem

u=0 ond2 x (O,T), 3)

u; —div(x|~%Vu) = £ in2 x (0, T),
u(x,0) =ug(x) ins2,

if u € To:2(2 x (0, 7)) and

T
/ Or(u —v)(T)dx +/ / v T (u —v)dxdt
2 0 2

T
+/ / VuV (Ti(u — v))|x|~% dx dt
0 2

T
= / O (ug — v(0))dx —l—/ / fTiy(u —v)dxdt (4)
Q o Je

forall v e L2((0, T): ngﬁ(.o))mLOO(sz %[0, TN C ([0, T]; L1(£2)) and for allk > 0,
where

Or(s) = /0 (o) dr. (5)

Notice that as € C ([0, T]; L1(£2)),

/ u; Ty (u) dx = i(/ @k(u)dx>,
Q dt\Jg

t
/(H)k(u(t))dx—/ @k(u(O))dxzf / usTyp(u)dxds.
Q Q 0J2

Using the same arguments aslin [BM] ahd [Pr] it is easy to prove the following result.

or

Theorem 1.3. Let £2 be a bounded regular domain, and assume that L(£2) and
f € LY x (0, T)) are positive functions. Then proble{d) has a unique positive
entropy solution.

As a consequence we have the following comparison principle that we will use systemat-
ically.

Lemma 1.4. Letu, v be entropy solutions ) with data f, uo and g, vo respectively.
Suppose thdd < g < f and0 < vg < ug. Then0 < v < u.

On the other hand, we have the following definition of weak solution.
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Definition 1.5. Let f(x, ) be a function inL1(£2 x (0, 7)) and letug € L1(£2). A func-
tionu € C([0, T); LY((1 + |x|~?~1) dx)) is aweak solutiorto

uy — div(lx| =% Vu) = f(x,1),
u=0 onaf2 x (0, T), (6)
u(x,0) = ug(x) in L1(£2),

if forall 0 < s < T we have

/O‘V/Qu(_%_div(|x|—2va>>—[(zuow<0> :/O“/wadm 0

forall £ € C2(2 x [0, s]) with&(x, s) = 0on 2 andé =00onds2 x [0, s].

We writeu(x, 0) = uo meaning that lim_,o [, |u(x, 1) — ug(x)|dx = 0.
In Sectior] B we will prove the following result on uniqueness.

Theorem 1.6. Let —oco < y < (N — 2)/2. Assume that is a weak solution to the
problem

u; — div(jx|~% Vu) = 0,
u=0 ondf2 x (O, T), (8)
u(x,0)=0 inLY().

Thenu = 0.

To prove the uniqueness Theorm|1.6 we require a Weyl type result for the associated
elliptic equation proved in_[AR3]. For the reader’s convenience, we sketch the proof in
the Appendix. In consequence of this uniqueness result all the arguments will be done by
approximation, understood in a convenient way.

The paper is organized as follows. In Section 2 we state the Harnack inequality (see
[ChS]) and we give the weak version which we use in the paper. We also state the Hardy—
Sobolev inequality for weights, as a particular case of the Cafarelli-Kohn—Nirenberg in-
equalities. Finally, we formulate a consequence of a Picone identity[(see [P]), that will
be an important tool in the proofs of blow-up. Secfign 3 deals with the proof of Theorem
[1.8. Sectiof 4 is devoted to proving the main results about blow-upfoy 1> 0. In the
first subsection we study the spectral complete and instantaneous blow-up in the linear
case (Theorenjs 4.1 ahd |4.6). The second subsection deals with the superlinear case; here
without any restriction on., we are able to prove the nonexistence result (Theprem 4.7),
and the complete blow-up for any positive data (Thegrem|4.10). In S¢dtion 5 we study
the sublinear case: we prove the existence of a global solution if the initial data belongs
to L2(£2) (Theorenj 5]1) and for more general initial data (Thedrerh 5.5). Moreover, we
obtain the asymptotic behavior of the solutiong as- oo, if the initial data is less than
or equal to the stationary solution. In Sectjgn 6 we state the existence results proved in
[DGP] for the case & y < 0 to compare them with the casetly > 0. Finally, in
the Appendix we prove a result of regularity (and then uniqueness) of Weyl type for the
associated elliptic equation.
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2. Preliminaries

The Harnack inequality for parabolic equations will be an important tool in our discus-
sion. LetR = B, (xo) x (fo— B, to+B) C 2 x(0,T), 0 < B < to. Consider the equation

up —div(x| "% Vu) =0 inR, 9)
where 1+y > 0. We say that: € L2((0, T); Dé:i([z)) NC ([0, T]; LY(£2)) is anenergy

solutionto (9) if
T T
f f VU +/ / Ix|~2VuVv =0
o Je o Je

forall v € L2((0, T); Dé’)z,(.Q)) N C([0, T]; L1(£2)). Below, sup and inf will denote the
essential supremum and essential infimum respectively. The concrete result that we use is
the following.

Theorem 2.1 (Harnack Inequality). Let u be a positive energy solution () with
1+ y > 0. Then there exist§ = C(N, v, p, to, B) such that

supu < Cinfu, (20)
R- R*

whereR™ = B, 2(x0) x (to — 38,10 — 38), Rt = B,/2(x0) x (to + 3B, 10+ B).

For a proof, we refer td_[ChS] and also [GW] for some extensions. We will use the fol-
lowing weak Harnack inequality for positive supersolutions.

Theorem 2.2. Letu € L?((0, T); D(l)ﬁ(.Q)) N C([0, T]; L1(£2)) be a positive super-
solution to problem(@) with 1 + y > 0. Then there exists a positive constaht=
C(N, vy, p, tg, B) such that

/ u(x,n)dx < Cinfu forallt € (1o — 3,10 — 3p). (11)
B, /2(x0) Rt

Moreover

/f u(x,t)dxdr <C IIIQIM (12)

Proof. Sinceu € C([0, T]; L1(£2)), there exist$ € [to — 3, 10 — 18] such that

sup / ulx,t)dx = / u(x,t)dx. (13)
1p) J Boja(x0) Bp/2(x0)

3
te(to— 38,10~

Let v be the solution to the problem

v — div(jx| 72 Vo) =0 iIn2 x 7,10+ B), (14)
v(x, 1) =u(x,1), xe€.
By comparisony > v. Let& be the positive solution to the adjoint problem
—& —div(x|"Z'VE) =h InQ2 x ([, 10+ p), (15)
E(x, 0+ p) =0, xe,
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whereh is a bounded positive function that will be chosen later. By the maximum prin-
ciple,& > 0. Usingé as a test function ifI4), we obtain

fo+p
—/ S(x,f)v(x,f)dx+f / v(—=§& —div(|x|_2yV§))dxdt =0,
2 t 2

therefore

fo+p
/ /v(x,t)h(x,t)dxdt:/ u(x,NE(x, 1) dx
T 2 2

> min é(x,f)/ u(x,t)dx.
Bp/2(x0) By2(x0)

By choosing: = XBy20) X142 .10y WE conclude that

// v(x,t)dxdt > min S(x,?)f u(x,1)dx. (16)
Rt B, /2(x0)

Bp2(x0)
Finally, by Theorer 2]1 applied toand Lemma 1]4, we obtain

supv < ¢ infv < ¢ infu. a7
R- Rt Rt

From [I3), [(I6) and (17), we conclude that

// ulx,t) < 01/ u(x,f)dx <cpinfu,
- Bp/2(x0) R

whereci, ¢, are independent ain O

This last result is an important fact to analyze the blow-up behavior. Notice that the ho-
mogeneous parabolic equation associated to profjlem (2) satisfies the weak Harnack in-
equality [I2) if and only if 4+ > 0, according to the counterexample explained in the
introduction, i.e., the function(x, ) = t|x|” wherep > 0.

If £ > 0, then we can prove the following extension of the Harnack inequality to
entropy solutions.

Corollary 2.3. Let f € L1(£2 x (0, T)) be such thatf > 0. Assume thai is a positive
entropy solution to problen3) with 1 + y > 0. Then there exists a positive constant
C=C(N,vy,p,t, B) such that

sup / u(x,t)dx < Cinfu. (18)
B, 2(x0) R*

re(to—3B.10—38)

Notice that as a consequence we get the strong maximum principle for positive entropy
solutions if f > 0.
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Remark 2.4.In the interval O< 1+ y < N/2, for which we have the parabolic Harnack
inequality, we are able to calculate with an elementary argument of homogeneity the
gaussian-likeselfsimilar solution,

Ex,t)=C H(@) el — |x|2(y+1)
T T N2y +D) 4y + 12 )’

whereH is the Heaviside function. Normalizing the consténive realize that

E, — div(]x|"? VE) = 8(0,0).

Foru e D(l):z((z) we have the following Caffarelli-Kohn—Nirenberg inequalities (see
[CKND).

Proposition 2.5 (Caffarelli-Kohn—Nirenberg). Let p, ¢, r, @, 8, o anda be real con-
stants such thap,g > 1, r >0,0<a <1, and
1 o1 B8 1 m

+—, —+—=, -+-=>0,
p N g N r N

wherem = ao + (1 — a)B. Then there exists a positive constahsuch that

< C1xtVal [ oy 121

|||x|m” LrRN) = L‘lfRN)

forall u € CSO(RN) if and only if the following relations hold:

1 m 1 a-1 1 1 8

a—o>0 ifa>0,
a—o<1 ifa>0and%+%=%+“7*l,

In particular we get the following extension of the Hardy—Sobolev inequality (see also
[CW])

Lemma 2.6. LetN > 2and—oco <y < (N — 2)/2. Then for allu € Dé;i(:z),

|u|? / |Vu|? N =2y +1\?
A Ul _dx < dx, Iy, =[—22T7) 19
N’V/RN 2ot S Loy e P My 2 (19)

Moreoveriy ,, is optimal and it is not attained.

The following Sobolev inequality will be used in the last section to prove the behavior of
solutions.

Theorem 2.7 (Sobolev Inequality).There exists a positive constafit= C(N, y) such
that forallu € D(l)”i(fz),

) . 1/2¢ 172
(/ 2 szdx) sC(/ |Vu|2|x|2de) , (20)
22 22

%« __ 2N
where2* = +=.
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Finally, an important tool to prove the nonexistence is the following theorem whose proof
can be found inJAP3].

Theorem 2.8 (Picone Inequality). Letu, v € Déj(sz) withv > 0in £2, and suppose
that —div(jx| 2 Vv) is a positive bounded Radon measure. Then

—div(jx|~%'V
f|x|_2V|Vu|2de/ —AVATTVV) 2
2 Q v

3. Aresult on uniqueness

The main result of this part is the following uniqueness theorem which is true for all
y € (—oo, (N — 2)/2). The proof is deeply inspired by the papers by Benilan—Brezis—
Crandall [BBC], Brezis—Crandall [BCr] and Pierie [[Pi]. An important tool in the proof

is a regularity result for the associated elliptic equation obtained in/[AP3], with the same
flavor as the classical result by Weyl for the Laplace operator. (See the Appendix at the
end of this work.)

Theorem 3.1. Assume that is a weak solution (in the sense of Definitfdry) to the
problem

u=0 ondf2 x (0, T), (22)

uy — div(jx|=2 Vu) = 0,
u(x,00=0 inLY().

Thenu = 0.

Proof. To simplify the notation we sdt, v = div(|x|~%’ Vv). Letu be a weak solution
to (27) . We claim that

t
u(t)—u(s):Ly/ u(@)do inD(R).

To prove the claim we sé (1) = fQ u(x, )¢ (x)dx, wheret € (0, T) and¢ € C3°(£2).
Notice thatX e L1(0, 7). Leta € C(0, T). Then

(X' 0) = (X, )

T T
= —/ / u(x, e ()’ (t) dx dt :/ / u(x, )o(t)Ly, (¢ (x)) dx dt.
0 2 0 2

Hence
X/(t)=/ u(x,HL, (¢(x))dx inD'(O,T). (22)
2

Since [y, u(x, 1)Ly ((x)) dx € LX(0, T), integrating|(2R) we obtain the claim.
As [, lu(x,s)|dx — 0 ass — 0 we deduce that

t
u(t):L,,/o u(@)ds inD(). (23)
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Let v(r) be the weak solution to the elliptic problem
—Lyv(t) = u(), v(1)],o = 0. (24)

By the uniqueness result (Coroll.4 in the Appendix), singg € L1(£2), it follows

thatv coincides with the entropy solution to the elliptic problém]|(24). (See [AP3] for the
definition and properties of entropy solutions in this concrete case of elliptic equations.)
Hence we conclude thatr) = — f(; u(o)do. Thusv is a differentiable function ii0, 7')

and

3
8—';0) =u() e LY, (2 x (0,T)),  du=(xI"?"1+1dxdr.

Thereforev is a solution to the problem
av
—Lyv(r) = u(t) = 5 v(®)lpe = 0. (25)

We can usd (v) as a test function if (25). Hence we get

0 d
/Q VT (v)|?)x| "% dx = —/Q a—':mv) dx = ‘E(/Q O (v) dx>,

where® is defined in[(p). By integration we obtain

T T
/ / VT (v)|%]x| "% dx +/ f Or(v(T))dx = 0.
0 2 0 2

Since®;(s) > 0 we conclude thatvT;(v)| = 0 for all k > 0 and therw = 0, which
impliesu = 0. O

Remark 3.2.

1) Notice that Theorer 3|1 and the linearity of the problem provide the uniqueness for
problem [(6).

2) By using the Caffarelli-Kohn—Nirenberg inequalities a direct calculation proves that
the entropy solutions are weak solutions in the sense of Defifiitipn 1.5. See the details
in [AP3].

4. Nonexistence results: Blow-up in the cask+ y > 0

Since we have the uniqueness Theofen 3.1, it is sufficient to workenitltopy solu-
tions, which means that we will have in mind the techniques and results for this kind of
solutions.
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4.1. Thelinear casey = 1,14y > Oandi > Ay ,, spectral instantaneous and
complete blow-up

This subsection deals with the following problem:

uy — div(|x|=% Vu) = A u>0 in2x(0,7T),

lx|2r+D7 = (26)
u=0 ond2 x(O0,T), ulx,0 =uog(x) ing2,

whereug is a positive function such thap € L*>(£2), andi > Ay ,. The main result
about problem[(26) is the following theorem.

Theorem 4.1. Letug € L*°(£2) be a positive function and assume that- iy . If
ug # 0, then problen{26) with 1 + y > 0 has no positive weak solution.

Proof. Letu > 0 be a positive weak solution o (26). By Coroll@ry]2.3 we obtain 0.
We set

1
ap(x) = m: (27)
gn(s) = min{n, s}. (28)
Let u, be the unique solution to the problem
(un)s = div(x| " Viay) = han(x)ga() in 2 x (0, 7), (29)
u, =0 ond2 x (0, T), u,(x,0 =ug(x) inS$.

Notice that by the estimates in [Chk], € L>*(£2 x (0, T)). (See also [AP4] for de-
tails and more general results.) Singe# 0, using the Harnack inequality we find that
u, > 01in 82 x (0, T) andu, converges ta in C([0, T]; L1(£2)). Since{a, (x)gn (1)} is
increasing with respect to, it follows that{u, } is also increasing.

Using the Harnack inequality again we get

up > ¢ a.e.inBy(0) x (r,T)

for some O< v < T. Sincex > u3, we havex > ¢ a.e. inB,(0) x (r, T). Fore > 0 we
can choose a constant ¢(n, p, £) such thab (x) = c(log(1/|x|) —log(1/|n|)) satisfies

. 5 .
v, — div(|x| =% Vv) = W in B,(0) x (z,T), (30)
vl = 0.
We definew(x, t) = (r — t)v(x) for ¢t € (z, T), which satisfies
—di -2y — _ L i
w; — div(lx|"YVw) = v(x) + (t — 1) 27D in B,;(0) x (z, T), (31)
wlaB,0 =0,

and lim_, ; an(o) w(x,t)¢(x)dx = O0forall¢ € C5°(B,(0)). Hencew(x, ) is an en-
ergy solution and thus a weak solution[to](31).
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Sincew, — div(|x|~% Vw) < v(x) + T&/|x[2¥+V and lim .o |x|??*Du(x) = 0,
one can chooseand such thatw, — div(|x|~? Vw) < &/|x[2¥+V in B, (0) x (r, T).
Let w, be the unique positive solution to the problem

{ (wp)r — div(|x|72van) = &ay (x) in B, (0) x (z, 1), (32)

WnlaB, 0 = 0.

Then by comparison,
w(x, ) <wi(x, ) = lim w,(x,1).

Sinceu,(x,t) > ui(x,t) > ¢, as above by the weak comparison principlg(x, t) >
wy(x, t) forall (x,¢) € B,(0) x (r, T). Taking into account that ligg—ow(x, ) = oo
uniformly inz € [11, T1] C (z, T), we obtain

im u(x,) = lim lim wu,(x,t) = o0 vt € 11, T1].
|x]—0 |x]—>0n—00
Then for allc > 1 there exiskig € N andn; > 0 such that for alh > ng, u,(x,1) > ¢
in By, (0) and uniformly int € 1, T1].
Let B;(0) CcC By, (0) and consideyy € C5°(B;(0)). By using Theore8, we get

—div(|x|~%*V
/ VY 2lx|~% dx > / [y (x| Un) dx foralls € [r1, Tu].
B;(0)

Bﬁ (0) Un

Hence

/' |vwﬂxr”dxzxjm |¢F%@0&“”dx—/q w28 gy (33
B;;(0) u Bj;(0) Up

B;(0) n

and by integration we get

T
/f IV |2 |x| ™% dx dt
71 JBj(0)
>A/H/ /H/ 2l
B,,(O) B(O) Un

We estimate directly the last integral on, Ty) as follows:

(Tl_Tl)/ IV 12|x| =% dx dt

T
>A/ 1[ V1% gn( )d dt — f W I210g(u, (v, To) dx.  (34)

B;(0)

because if € B;(0) thenu, (x, T1) > 1. Asg, (u)a,(x) 7 u/|x[2¥+V e L1(B;(0)) and
W2/ u € L*°(Bj;(0)), using the monotone convergence theorem we conclude that

[y |2

B; (0 1x|27 D

T
x[ f 0 Pan 05 dx dr — Ty — 1) dx.
B;(0) u
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We setz (x) = ﬁ log(u(x, T1)). Sinceu(-, T1) € L*(B;(0)) we see that € L?(B;(0))
for all p > 1. In particular; € L?(B;(0)), wherep > (N — 2y)/2. We set
[5.0 IVe 12 dx

(9eCE (B;(0):9£0) [5. o) (H*dx

Theni(i7) — oo asi — 0. Hence for alle > 0 we get the existence af such that
A(ne) = 1/e. Lete be such thak/(1+ &) > Ay, . We setq = n.. Then from [[34) we
obtain

_ » |y 2
IV 2)x| =% dx > —/ — _dx.
/;?,-,(0) 1+¢ Jpo [x[20+D

Sincer/(1+¢) > Ay, this contradicts the optimality ofy ., . O

Remark 4.2.1tis clear that Theore@.l holds even if the initial dagdbelongs ta.*. By
contradiction, assume that there exists a positive solutit;mproblem [(Zf) with initial
dataug € L(£2); thenu is a supersolution to probletﬂ%) with bounded initial data
uo,»(x) = min{n, uo(x)} and this contradicts Theorgm §.1 for bounded data.

As a consequence we get the following corollaries.

Corollary 4.3. If ug = 0then the unique nonnegative weak solution to prot@&with
1+y >0isu=0.

Corollary 4.4. Supposef € L1(£2 x (0,T)) andug € L1(£2) are positive functions
such that(f, ug) # (0, 0), and1+y > 0. Then fora > Ay, the problem

u —div(x| 2 Vi) =A———— 4+ f, u>0 in2x(OT),
|x|2(r+D) 3
u=0 ondfR x 0, 7), (35)
u(x,0) =ug(x) ins2,
has no weak positive solution.

Notice that in the proof of Theorem 4.1 no explicit representation formula is needed, and
so it is an alternative proof to the one given by Baras—Goldstein [BG] in theycasé.
See also Caé—-Martel [CM].

Moreover we prove the following blow-up result.

Lemma 4.5. Assume that + y > 0. Letu, be the solution to the problem

a;t” — div(jx|7% Vuy,) = Aan(x)gn(uy) 0 2 x (0,T),

u, >0 ing2, (36)
unlag =0, up(x,0) =ug(x) in$2,

wherea, (x), g,(s) are defined if27), (28) anduo € L>®(£2), uo > 0 andug # 0. Then
for all r > O such thatB4, (0) C £2 and allr € (0, T) we have

/ up(x,t)dx — o0 asn — oo. (37)
B-(0)
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Proof. We argue by contradiction. Let ro > 0 be such that

/ uy(x,t)dx < Co foralln.
By, (0)

Notice that{u,} is a nondecreasing sequence. Thus there existsr) € Ll(B,O(O))
such thatu,(x,t) / u(x,7) for all x € B,,(0). Without loss of generality we can
assume thaBs,,(0) C 2. Then by the weak Harnack inequality fay, there exists
C1 = Ci(z, N, y, ro) such that for alk € (z/4, 7/3) we have

/ up(x,t)dx < Crinf{u,(x,1) | x € Bry(0) x (t/2, 3t/2)}
Bro(0)

1
<Ci———
1Bro (O] JB,50
foralln € N. Fix T such thai(t/5, T/4) C (z/4, t/3). Then we can define(x, t) for all
(x,1) € By(0) x (T/5,T/4) anderO(O)”(x’t) dx < oo, uniformly int € (t/5,7/4).

Moreover, using Theorefn 2.2, we get the existence of 0 such thai, > u; > €1 in
B, (0) x (7/5,T/4) C (0, T). Let

up(x,7)dx < C» (38)

w=>x g1(u1(x, 1)), e = min{ey, u}.

inf
B, (0)x(T/5,7/4)
Sinceu, (x, t) > wy(x, t), wherew, is the solution to the problem

{ (wn)e — div(x| =2 Vw,) = ea,(x)  in B,y(0) x (T/5,7/4),

_ . 39
Walan,© =0 wa(x,T/5) =2 i By(0), 39

using the facts thaiv, 1+ w and limy—ow(x,t) = oo uniformly in (2, r3), where
T/5 < 12 < 13 < T/4 (see the proof of Theorgm 4.1), we conclude that

lim lim u,(x,t) =occ uniformlyin (t2, 73).

n—>0o0 |x|—0

Let B;(0) CC £2 be such that, (x, ) 3> 1forallx € B;(0) x (f1, ) with 12 < 11 <
12 < 13, andy € C°(B;(0)). Using Theore8 we obtain

/ |w|2|x|‘2dezA/ 1 2 () S0 dx—/ w2 g, (40)
Bj;(0) B;;(0)

B;(0) Un Un

By integration we get

2
/ / IV |?|x| ™% dx di
t1 JB7(0)

7] ty
> x/ f 1 a6 52 gt —/ / w28 g gy,
n JB;0) Un 1 JB;0) Un

Sinceu, 1 uin Ll(B,—, (0) x (11, 12)), using the same argument as in the proof of Theorem

[4.3 we get

/ IV 2x| ™% dx >
B;(0)

|W|2
———dx, Yy € C§°(B;(0)),
T 1+ /30(0) 2o+ & Co (5O
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wheree can be chosen such thaf(1 + ¢) > Ay,,. This contradicts the optimality
of Ay p. o

We are now able to formulate the main blow-up result.

Theorem 4.6. Letu, be the positive solution to proble@6) with 1+ y > 0. Then for
all (xo, 10) € £2 x (0, T) we havdim,,_, » u, (xo, fo) = oc.

Proof. Let(xg, 79) € £2 x (0, T). If xg € B,(0) andBy,(0) C £2, then using the Harnack
inequality we get

un(xo, f0) = C/ un(x, 10 — €) dx,
B, (0

wherec = ¢(N, y,r) ande > 0 is such thaty — ¢ > 0. By Lemmd 4.p we find that

fBr(O) un(x, to — €)dx — oo, hence

lim u, (xg, tg) = oo.
n—>0oo

If xo ¢ B,(0), we first suppose tha,(0) N B, (xp) # ¥. Then there exists € §2 such
that B, (y) C B,(0) N B,(xg). Therefore using again the Harnack inequality and Lemma
[4.3 we obtain

u, (xo, 10) > C/ up(x,t0—¢€)dx > C/_ up(x,to—¢€)dx

By (x0) By )

>c inf owu,(x,t0—€) > cuy(x1, 10— ¢),
XGBU(Y)

wherec is a positive constant independentgQf Sincex; € B, (0), we haveay, (x1, to—¢)
— 00, and we find that:, (xg, 1) — oo for n — o0. In the general case, ify € 2 is
arbitrary, then sincé/(x, B,(0)) < oo, using an iteration argument, we conclude in a
finite number of steps. O

4.2. The superlinear case: > 1withl1+y > 0

In this subsection we deal with the following problem:

o

. _ u .
uy — div(|x|"% Vi) = |x[2r+D in 2 x (0, T),

u=0 onof2 x (0, T),
u(x,0) =upg(x) ing2,

(41)

wherea > 1 and 14+ y > 0. Here the behavior of the problem is quite different in
comparison to the linear case, in particular it is independent & we formulate the
result witha = 1.

Theorem 4.7. Letug be a positive function such thap € L>°(£2) andug # 0. Then
problem(41)) with 1 + y > 0 has no weak positive solution.Jdf = 0 then the unique
nonnegative solution ig = 0.
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Proof. Assume that[(41) has a positive weak solutionLet a, be defined in[(Z7).
Defineg, (s) = min{n, s*} and f, (x, t) = a,(x)g,(u(x, 1)); then f, € L*°(£2 x (0, T))
and f,(x,t) /7 f(x,t) = u(x,n)®/|x]2¥+D in L2 x (0, T)). Since|x|¥ f, €
L"(£2, |x|7% dx) with r > (N — 2y)/2, we have the required integrability to obtain
L estimates. (See [ChF] and [AP4].) Consider the unique positive global solitim
the problem

(n)e — diV(Ix|72' Vuy) = fu(x, 1) in2 x (0, T),
u, =0 onoaf2 x (0, T), (42)
uy(x,0) =ug(x) ing2.

Thenu, € L*°(£2 x (0, T)), and since:g # 0, the weak Harnack inequality implies that
u, > 0in 2 x (0, T). Since{ f,} is increasing{u, } is also increasing and converges to
uin C([0, T]; L1(£2)). Again the Harnack inequality gives

u>ur>¢e ae.inB,(0) x (r,7)

for some O< v < T and B,(0) CcC £2. By the same arguments as in the proof of
Theoreni 4.1l we find that

|"\mou(x’ t) = |Iilmo’lliﬁm<>Q uy(x,t) =00 uniformlyint € (z, T).
X|— xX|—

Then for allc > 0 there existg € N andn, > 0 such that,(x, 1) > cforallx € B, (0)
and allr € (z, T). We choose > sufl, « — 1} such that

(@— D"t — 4@ -1 I;Qﬁ) > ANy (43)

wherey , is the optimal constant in the Hardy inequality given in Proposifioh 2.5.
Moreover there exist, 0 < n <« 1, andng € N such that ifn > ng thenu, > 2¢
in B,(0) x (zr,T).
Next we use arguments as In [BC]. Define
1 1 1 . _
R (e s if s >,
$(s) = ¢

(=0 if s <c.
c

(44)

Notice thatp € C1(R) is a concave function anpl (s) = 1/s* for all s > ¢, in particular
0 < ¢'(s) < 1/c*. Sinceg (s) is a regular function fos > ¢, andu,, > ¢ for all n > ny,
it follows that

—div(|x| % Ve (un)) = ¢/ (un) (—diV(|x| 72 Vi) — ¢ (un) x| [Vty|?.
Itis clear that (u,) < a_ilgx% Sinceg” < 0 andu,(x) > ¢ > 1in B,(0), we obtain
(@ Wn)): — div(|x|_2yv¢(un)) = ¢/(un)((un)t - div(|x|_2yvun)) = ¢/(un)fn-
Considery € C5°(B,(0)). Using TheoreS, we get

—div(ixl-2
[ [ e gy,
By(0) B,(0) & (uy)
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hence

/ IV |21x| % dx
B,(0)

(b (un) / z(un)l¢/(un)
" — ———dx. 4
= /19,,(0)“/[| I 5y & (u n) B,(0) ¥ & (un) * @9

By integration oveKz, T') we obtain

T
/f IV 12|x| 7% dx dt
t JBy(0)

T ’
2, @' (un) / / z(un)z¢ un)
n dxd dt. (46
Z/f /B,,(O) S ¢ (up) a B (0) ¢ (up) dwdt. (49

Sincex € B,(0), we haveu,(x, ) > 2c. Therefore

> (o — 1c*
@ (un)
On the other handp’(u,) f, — ¢’ (w)u®/|x|?Y*D a.e. in2. Sinced’ (u,) < a for all
n > ng andx € B,(0), we obtaing’(u,) f, < af.Hence by the dominated convergence
theorem we conclude that

o

1 .
B ) fo > 9 Wiy = ey LB x (@ 1),

Therefore

T ’ 5
2 @' (un) . e l/ v
/; /1;77(0) A & (un) dxdt z (I —7)@ =1 0) |x|2(y+l) dx +o(1).

Bj

To estimate the term involving thederivative, we proceed as follows. Let

T /
/ |1/,|2 Mdtdx‘ — / |w|2|og(w> dx‘.
B;(0) T B;(0) & (un (7))

6 Gin)
I < 2/ W 12llogé (T)] dx < 4@ — 1) Iog@/ (2 dx.
B;(0)

B;(0)

I =

Since¢ (u,) < ¢ (u) we get

Hence, by substitution ifi (#6) and integrating in time, we obtain

_ _ log(c) [y|P
IV P lx| ™% dx > ((oc—l)E"‘ L 4a -1 f —_dx
/B,,(O) T —1t) Jp0 1x[2r+D

[y
_ 4 / _WE
B; (0 X207 +D

e log(c)
= (¢ — ¢ 1_4(a_1)T—r > AN,y

where

by (43), which contradicts the optimality afy ,, . O
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Corollary 4.8. Supposef € L1(£2 x (0, T)) andug € L1(£2) are positive functions
such that( f, ug) # (0, 0) and1+ y > 0. Then the problem

o

_di -2y - i
u, — div(jx| Y Vu) = 20D +f, u=>0 In2x(@O,7),

u=0 ondR2 x (0, 7),
u(x,0) =upg(x) ins2,

(47)

has no positive weak solution.

As a consequence we have the following blow-up result.
Lemma 4.9. Letu, be the solution to the problem
Up

; — div(jx|7% Vi) = an(x)gn(uy) in 2 x (0, T),

Gl
up, >0 In2, uylge =0, (48)

1, (0, x) = ug(x) in 2.

Then for allr > 0 such thatBg, (0) C £2, and for allz € (O, T),
/ uy(x,t)ydx - oo asn — oo. (49)
By (0)

Proof. We proceed as in the proof of Leminaj4.5. Assume the existence®f 0 such
that

f u,(x,7)dx < C foralln.
Byy(©)

Sinceu,, are increasing, there exisigx, 7) € Ll(BrO(O)) such that
up(x,7) S u(x,7) forallx € B,(0).

Without loss of generality we can assume tBat,(0) C £2. Then using the weak Har-
nack inequality as in the proof of Lemrfia .5 we get the existenae sf 0 such that
fBro(0> u,(x,t)dx < C(ro,7) forall 0 < /2 <t < 1. Then we obtairu(-,t) €

Ll(B,O(O)) forall t € (tr1/4,11) C (t/2, 1) anderO(O)u(x,t)dx < C, whereC is
independent of. Moreover as in Lemma 4.5 one can prove that

lim lim wu,(x,7) = oco uniformly for all¢ € (12, t3),

|x|_>0n—>oo

wheret1/4 < 12 < 13 < 11. FiX B,j(0) CC £2 such that, > ¢ in B,,(0) x (12, 13).
Lety € C§°(B,,(0)). By Theore we get

—di “2vy
f IV Px] " dax z/B AV Vi) 2y

By (0) 100 Un

Therefore as in the proof of Theor¢m 4.7 we obtain

log(c 4
/ VY [Px] 72 dx = ((a T I ) f g
B;(0) B0 X207 +D

33— 12
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forally» € C3°(B;(0)). Since we can choogewith (o — D 4o — 1)';)397(2 > ANy,
we reach a contradiction with the optimality of; ,, . O

As a consequence of the weak Harnack inequality we obtain the main blow-up result.

Theorem 4.10. Assume thai, is the positive solution to proble@8) with 1+ y > 0.
Then for all(xg, tg) € 2 x (0, T) we havdim,,_, s u,, (xg, fg) = 00.

Remark 4.11.Notice that if we consider the problem

. _2 _ u .
Uy —le(|X| VVM) —)\,W“r‘f in 2 x (0, T),
u>0 N2 x@©O,T), u=0 ondw x (0,T), (50)
u(x,0) =ug(x) ing2,

with a nonnegative functiosi such thatf (x, r) > ¢ > 0in a neighborhood di0} x (0, T)
and under the general hypothesis@ni > Ay ,, uo > 0, then we can repeat the proof
of the nonexistence and blow-up results without the restriction < y < (N — 2)/2.
The relevant property is that in this case the equation

up — div(|x| " Vu) = f

satisfies the strong maximum principle.

5. Existence and nonuniqueness results for the sublinear case< o < 1

In this section we study the sublinear case; @ < 1.

Theorem 5.1. Letug € L%(£2) be a positive function. Assume tifak o < 1. Then the
problem

o

—di -2y v i
u; — div(jx|™ Vu) = D u>0 in2 x(0,71),

u=0 onof2 x (0, T),
u(x,0) = ug(x) in g2,

(51)

has a global solutiom € L2((0, T); Déj(g)) N C(0, T]; LA(R)).

Proof. The existence of solution farsmall can be easily proved. Moreover usings a
test function in|[(5]l) we obtain

) T ) 5 ) T ua+l
ulx,T) dx+/ / [Vu|%|x|~ ”dxdt:/ u dx+/ / ————dxdt.
/.Q 0o Je 2 ° 0 Jo x]2r+D

By the Holder and Young inequalities we get

T
/un(x,T)zdx+f f|Vun|2|x|_2dedt
2 0 2

<L [ )™ (i)™
< Ungax —_— —_—
o 0 o \Jo [x)20+D @ lx[2r+D)

T 2
2 a+1l i u —(1-a)/2
< /Quodx + > & A dxdt + ce T.
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By Propositiorj 2.6 we obtain

2 e+l i) 1 2,2
uy(x, TY*dx + 1—)»Ny—8 [Vu,|%lx|~ dx dt
Q o2 o Je

< ce~tw/2r +/ u%dx
2

and choosing small enough we conclude that the solution is defined jiT'[dfor arbi-
trary T. |

Consider now the stationary problem

o

—div(|x|”¥ Vw) = wlye = 0. (52)

|x |2(y+1) ’
An elementary modification of the arguments’in [AP2] allows us to prove that there exists
a unique solutionw > 0 to (53), which is the stationary solution to problgm](51) with
uog = w.

Sincea < 1, using a construction by H. Fujita inl[F] for the heat equation, we obtain
the following nonuniqueness result.

Theorem 5.2. Letw be the unique positive solution to problg&¥). Then the problem

o

. _ u .
Ur — d'V(|x| ZVVM) = W’ u > 0 inf x (O, T),

u=0 onaf2 x (0, T),
u(x,00 =0 in £,

(53)

has a positive maximal solutianz 0, and moreover ~ w in D(l):i(.Q) ast — oo.
To prove the above theorem we will use the following result.
Lemma 5.3. Letv € L2((0, T); Dé:i(ﬁ)) NC([0, T]; L1(£2)) be a positive subsolution
to problem). Thend [, (v — w)Z dx < 0, that s,
/ (v—w)ldx < / ((0) —w)3 dx forallt>0.
Q2 Q

Proof. Sincev is a subsolution we get

o @

. _2 v
(v —wy) — div(jx[" V(v —w)) < 2D

Using (v — w) 4 as a test function we obtain
d 2 2(.1—2y W —w*) (v —w)+
E[(z(v—w)+dx+/(2|V(v—w)+| |x| dxg/g 20D dx

2
a—1 (v — w)+
50{/Qw —|x|2(7’+1) dx.
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By Theorenj 2.8 we get
f V(v — w)4?|x| 72 dx > / M(v — w)3 dx
2 2 w1 w
> /Q |Xlr)z(w(v — w)f_ dx.
Hence we conclude that [, (v — w)2 dx < 0. O

Proof of Theorenj 5]2Let w be the unique positive solution to proble(52). Since
uo = 0, it follows thatw is a supersolution to problern (53). We sgt) = w and
we defineu, 1 as the unique solution to the problem

upt1 o

— div(|x|7% Vipg1) = unt1 =0 in 82 x (0, to),

___nr
|x|2(y+l) ’
Upi1=0 0nds2 x (0, 10), (54)

up+1(x,0 =0 ing.

Since{u,} is a decreasing sequence and < ug for all n, we get the existence of a
solutionu to problem [(5B). We just have to prove that# 0. We definew; (x, 1) =
1= ((1 — a)r)1~*¢, wheres > 0 will be chosen later ang is the first eigenfunction of
the problem

—div(|x| 7' V¢) = 11 plag =0,

NES
such that|¢|| .~ = 1. Then we get
dw,g

Jat
we >0 iN2 x(0,10), we=0 0nd2 x (0,79), we(x,00=0 ing2.

— div(lx] 72 Vw,) = (%Mt + 17 (L — a)1) ),

Choosings such thatw, < w, we can prove by induction that, > w, for all n. Thus we
conclude that > w, > 0.

Let v be another solution t§ ($3). Then using Lenimg 5.3 we conclude tkaty =
u(), and using an iteration argument one can proveihat v for all n. Henceu > v
and the maximality of; follows.

Lets > 0. Then one can prove thatx, ¢t +s) > u(x, t) forall (x,7) € £2 x (0, T),
henceu is increasing with respect tofor all x € §2. Takingu as a test function irfj ($3)
and using the increasing property, we get

2 1—2y u®
/Q [Vu(x, 1)|“]x| dx < /Q —|X|2(y+l) dx.
By the Holder and Hardy—Sobolev inequalities (de€ (19)), we deduce that for-l,

/ IVu(x, 1)21x|"% dx < C(N, y).
2

Hence we get the existence of a subsequepc¢ oo andw € Déf,(fz) such that
u(-, 1r) — wase — oo andu(-, ;) — w a.e.in2 and inL’(|x|~2" dx, §2) for all
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1 <r < 2j. Sinceu is increasing i, we get the convergence for all subsequences. Then
one can prove easily thai is a weak solution to problen (52), and as a consequence
w=uw. O

In the case G< u(x, 0) = ug < w, we can prove the following result.

Lemma 5.4. Letu be a solution to problerfed]) with 0 < u(x, 0) < w. Then
im u(x, ) =w(kx) a.e.
—00

Proof. By Lemmg5.Bu(x, 1) < w(x) forall (x,1) € £ x (0, 00). Usingw(x) as a test
function in problem[(5]1) and taking into account tha¢ @ < 1, u*w > uw®, we obtain

d . Nw(x)d uw® dx — u®w dx > uw® d
dt qu’ wx)dx + o |x]20+D r= Q|x|2(y+1)w r= o |x|2+D X

Then
/ ulx,Hwx)dx > / u(x,wx)dx > 0.
Q Q
As a consequence(x,t) /4 0ast — oo. Since 0< u(x,?7) < w(x), it follows that

u(x, t) — wi(x), a solution to the stationary problemas> oco. Then by unigueness,
w1 =w. O

Lety (x) = |x|™, wherer < ¢ < Ay, and

_N-20+) - VN -2y +1)2 -4

Ke 2
If 2 = B1(0), theny is a solution to the problem
. o . 14 _
—div(|x|” V) = Cma Y >0, Yl =1

Therefore we have the following theorem.

Theorem 5.5. Letug € L1(£2) be a nonnegative function such thats 0. Suppose that
one of the following conditions holds:

D a=1x< iy, and [, uo(x)|x| = dx < oo,
(2)l+y>O,O<a<a1=l—$yil)andk>0,
3 1+y<0,0<a<landir>0.

Then the problem

uOl

—_di -2y S
u, — div(lx| =Y Vu) = A 0D
u=0 ond2 x (0, 7),

u(x,0) =u1(x) ing2,

u>0 in2x(@O,7),
(55)

has a weak positive minimal solution.
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Proof. The first case follows by using a similar argument to that inl[BG]. For the reader’s
convenience we sketch the proof here. kgtbe the minimal solution to the truncated
problem

-2y — M i
o7 Vuy,) )lelz(ﬁl) T u, >0 in2 x (0, 7),

Up =0 0nd2 x (0,T), un(x,0) = T,(uo(x)) in £.

(56)

Let p € C?(R) be a convex function satisfying(0) = p’(0) = 0 which approximates
| - |. Taking p’(u,)¥ as a test function iff ($6) we obtain

d ! Unyy dxd
[t owdx+ e [ /Qm X

< / Ty o)y dx < f uo(W (x) dx.  (57)
22 2

Since{u,} is an increasing sequence, using the fact that 1, we get the existence of
u(x, t) such that

/ u,,(x,t)wdx// u(x, )y dx < oo
Q Q

u(x,t)
/ / |x|2(y+l) 1 dx dt /’/ / |x|2(y+l) dx dt < oo.

By setting f(x, ) = u/|x|2¥*D e L1(£2 x (0, T)) and then using the approximation
procedure we get the desired result.

To prove the other cases we sé(x) = T, (up(x)) and we assume that= 1. Letu,
be the minimal positive solution to the problem

and

ouy, ) _o uy .
a3 - d|V(|X| VVun) = m, Uy = 0 Inf2x (0, T),
u, =0 ona2 x (0, 7),

u,(x,0) = ug(x) in 2.

(58)

Assume thay + 1 > 0. Sincex < a1 we get the existence @ > 0 such that
of
O0<B<2y+1), 2(y+1)—7<N(1—a).
Let ¢ be the positive solution to the problem

. _ 1
—div(|x|"% Vo) = o fhe =0;

notice thatp € L*°(£2). Using¢ as a test function irj ($8) we obtain

us o
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Using the Hardy—Sobolev, dider and Young inequalities we get

d Mn Mn
— U dx + —dx <e¢ Uuppdx + ¢ dx +C(N,vy,e¢),
dt Jo o |x|8 0 2 |x|#

wheres can be chosen small. Therefore we conclude that

d

— un¢dx§8/ up,pdx + C.
dt Q Q

Using the Gronwall lemma we find that

/ up(x, ) (x)dx < c1t + co, / M—"ﬂdx < 2 < 00,
7, 2 |x]

wherec1 andc, depend only om, y andfg uo(x) dx. Therefore we get the existence of
a measurable function > 0 such thats, (x, t) 1 u(x, ) forall (x,7) € 2 x (0, T),

T
/ u(x, e (x)dx < oo. / / ulx, 1) dx dt < oo.
2 0o Jo x|

We setf, (x, 1) = u%(x, 1)/|x|?¥*+D. By the Holder and Young inequalities we obtain

T T
/ /fn(x,t)dxdth(N,y)T+/ /u"(x’t)dxdt
0 Je o Jo Ix|P

T
, 1
§C(N,y)T+/ fu(xﬁ)dxdt<oo.
0o Jo x|

Then using the dominated convergence theorem we concludgthatt) 4+ f(x,t) =
u®/|x|2v*tD e L1(2 x (0, T)). The result now follows by applying the same arguments
as in [BM] and [Pr].

If 1 +y <0, then using/x (u,) as a test function irf ($5) we get

d 2 —2y Tk(un)u(’):
E/Q@k(un)d)c-i-/g|VTk(un)| x| dx:/gmdx

o
5/ Tk(u,,)ugdxgkl—“|9|l—“(/ Tk(un)undx> )
2 2

Since®x (s) > 3Tx(s)s, we obtain

d [0
—/ @k<un>dx+/ |V T (un) x| =2 dx 52“k1“|9|1“</ @kwn)dx) :
dt Jo Q Q

We conclude by following the argument above. O
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6. Some remarks on existence of solutions in the cage+ y <0
Consider the problem

. u .
uy — div(|x|~% Vu) = xm in 2 x (0, 7),

u>0 N2 x©O,T), u=0 ondw x (0,T), (60)
u(x,0) = ug(x) in2, wuge L3N),

where we assume thatfy < 0 andx > 0. In this case we have the following energy
estimate:

t t 2
/ u(x,t)zdx—i—/ / [Vul?|x|~% dx dt :k/ / %dx dt—}—/ uo(x)? dx.
2 0Je 0 Jo |x[2r+D Q

Since 1+ y < 0 we have

t u2 t )
A ———dxdt < c(2)A dxdr.
/O/QIX|2(V+1) xdr =@ /of:zu *

Using the Gronwall inequality and classical arguments to pass to the limit we are able to
obtain the following result.

Theorem 6.1. 1f 1+ y < 0,2 > Oandug € L%(s2), then problem(6d) has a unique
solutionu € L2((0, T); Dy (£2)) N C([0, T]; L3(2)).

This is a particular case of the existence results in [DGP]. The details can be found there.

Remark 6.2.Notice that the result is independent of the relation betweandx v ,, and

this is the deep difference with respect to the behavior of proljlein (66} if > 0, ana-

lyzed above. In this last case the existence is obtained onlyifiy ,,. We have proved

the nonexistence result in the previous section. The existence resultfory ,, is ob-
tained by using the corresponding Hardy—Sobolev inequality which provides an energy
estimate. We refer to [DGP] for details and extensions to the quasilinear framework.

7. Appendix: Uniqueness result for the elliptic case

We give a sketch of the proof of the uniqueness result for the elliptic case. We refer to
[AP3] for more details.

The results which extend the classical regularity result by Weyl for the Laplace equa-
tion have been obtained by several authors, in particular, F. E. Browder [Bro] and
L. Nirenberg [N] in the case of strongly elliptic equations with regular coefficients. On
the other hand, there are results by J. Selriin [S] on nonuniqueness for discontinuous coef-
ficients. In our problems the differential operator is either degenerate or with coefficients
singular at 0. Thus we can view the uniqueness result as an extension to these cases of the
results quoted above about uniqueness (regularity). One of the main tools in the proof is
the following result of Fourier analysis (we refer to [Gr, p. 127, Propositi@®2Bfor a
proof). We write,, = {y; | the spherical harmonics of degrep For the definition and
properties of the spherical harmonics we refer to the book by E. M. $téin [St], pp. 68-77.
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Lemma 7.1. Assume thap is a 2k-times continuously differentiable function Bwith
k > [N /4] + 1, where[ ] is the integer part function. Let

ci(r) = / ¢ (r,o)Yi(0) do, On(r,o) = Z ci(r)yi(o),
SNfl
x(Wi)=n
wherey (1;) = n means that the degree ¢f isn. Then
|0 (r, 0) > < ()| AGIIPnN %72 < C(N, k, p)n™ ~%2,
where A’{) denotes thek-times iterated Laplace—Beltrami operaton,A’(‘)q'>||2 =
fsN—l |(A’5¢>)(r, 0)%do| andu(N) is a positive constant depending 6h Moreover

o0

¢r,o) =) Qu(r,o)=)_ > caWio)=) (i)
n=0 i=0

n=0 x (Y;)=n
and the convergence is uniform b

Let £2 be a bounded domain such that@2. We begin by the following definition.

Definition 7.2. Let f € L1(2) andu € LY(|x|7%*~1dx, £2). We say that is a weak
solutionto the problem

—Ly(u) = —div(|x|™? Vu) = f (61)

if for all ¢ € C3°($2) we have

f u(—Ly () dx = f fédx. (62)
2 2

The main result in this appendix is the following theorem.

Theorem 7.3. Let—o0 < y < (N — 2)/2. Assume thai € L(|x|"21dx, 2)is a
weak solution to

—div(jx|"% Vu) =0 (63)
in the sense of Definiti Thenu € C4(£2) N D;’,Izoc' wheree depends orV and y

and

pL2 {u :f |Vu|?|x]| =2 dx—i—f lul?|x|~% dx < oo, VK CC Q, Kcompaci.
K K

yloc =

Proof. Since|x|~2 € C*®(£2\{0}), it follows thatu € C*(2\ {0}) by the Weyl lemma

for regular coefficients. See [Bro] arid/[N]. Hence we just have to prove the regularity of

at 0. Without loss of generality we can assume #hg0) C £2. The idea of the proof is to
consider a convenient Fourier expansion of the solution and to show that the coefficients
corresponding to the singular radial part are zero. We divide the proof into several steps.

Step 1. Fourier expansiorSinceu is regular forr > 0, expanding it in terms dfi; }, the
eigenfunctions of the Laplace—Beltrami operatot, in SV 1, we obtain

u(r,0) =Y fi()i(o), where fi(r)= /SmlulaB,(h o)yi(o)do.

i>0
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Sinceu is a classical solution of (§3) for e [¢, 1], we get

N-1-2
Z{fi”(rH—yf( = 2f,}w,(cr)

i>0
Hence
N—-1-2 ;
Ao+ ——ZLgr-Sf=0 foralli
r r
Therefore
folr) = Aor?V DN - By, fi(r) = Air® + By
where
[N =20y + D)+ (N —2(y +1)2 + 4¢; |
Qi = ,
2
g — VN = 2(y + )2 +4¢; — (N — 2(y + 1))
r 2 ’
¢ =Ii(N+i—2) fori > 0,
and
Aoy = 2TV (fo®) — fo(1)
0(8) - 1 _ 8N—2(y+1) ’
By — J0D = V20D fo(e)
08) == F2n
and
e fie) bt g @
Ai(e) = Ry
D) =% fi(e)
Bi(e) = ———F

fori > 1, where for alle > 0 we write
fi(e) :f ulsp, (e, 0)yi(o) do.
SNfl

Notice thatg; > 0if i > 0. We conclude that for € (¢, 1) we have

_ fo) = "2t foe) | eNT20 D (fo(e) — foD) a41)-n

ulr,0) = 1— eN-2v+D 1— eN-2v+D
" ie) =TS o fiD = i) g,
+; { —S'B’ —o; 1_8131 —a; }d/l(o-)

Step 2. Decay of the coefficientéle claim thateV 2 +D £, (¢)| — 0. Notice that, as a
consequencdgs ¥ f;(¢)| — 0 ase — O foralli > 0. We first assume that> 1. Let
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¢ € C3°(B). Sinceu is a solution to@]S) and a classical solution fer > 0, we obtain

0= /u(Ly(qb)) dx = |im0/ uL, (¢)dx
eV |x|>e

e—0

= lim {/ ¢Ly(u)—f x|~ u(Ve, x/|x|) do
|x[>e |x|=¢

+/ |x|‘2V¢(Vu,x/|x|>da}.
|x|=¢e

SinceL,u(x) = 0 for x| > &, by settingg (x) = g(r)¥;,(c), whereg € C*([0, a)),
a < 1, g0 = 1, with suppeg C [0, a), and using the fact that for = ro we have
x Vv = rdv/dr, and by the orthogonality of the spherical harmonics, we obtain

0= lim {—sN -1 /S Nil(Aio(s)e“"o + Biy(e)ePi0) g/(e)wl% do

e—0
+ N2 4D /S (@igAig(e)e™0 + Big Big(e)e0)g (e) Y do }
Hence we conclude that
lim (Y12 (A7 (0160 + Big(e)eP0)g (o)
— eV 720D (g0 Ao (£)6%0 + Bio Bio(e)eP0)g ()} = 0.
Therefore
0= lim (e =172 ([ fig(e) — &7 fig (D] + [ fig(D) — £~ fig(&)]e™0)g (e)

— N2 ([ fio () — &0 fio (D] + Biol fio (1) — &~ %0 fig ()]ePi0) g ().

Hence
(N1 (fige) — P00 fio ()8 (¢)

— N2 (g, £ (e) — BiePio %0 £ (e))g(e)} = O.

lim
e—0

Finally, we obtain
8IiLT10{8N_2(7’+1) fio@®l(e — ghio=io Ty ol (g) — (i — Bipe™0%0)g()]} = 0.  (64)
Since
(e — ePo~0 ™) g'(6) — (aip — Bige"0~0)g(e) > —ai ase — 0,

we obtain the claim in the cage> 1.
If i = 0, then by setting (x) = g(r) and using the same argument as above we obtain

lim (V=20 fo(e)[ (e — eI g o) + (N — 2y + D)g@)]) = 0. (65)

Then we conclude that lim, g |¢¥ 27 *D fy(¢)| = 0 and the claim is proved.
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Step 3. Density argument and conclusion of the praé set

v(r.0) =) i),
i>0
which is the unigque solution in the spa€é(£2) N D)l;’lzoc to the Dirichlet problem with
boundary datas = u on the unit sphere. We will prove that= v a.e. inB. Let¢ €

C§°(£2) be such thad (r, o) = giy (1) ¥iy(0), Whereg;, € C5°([0, 1)) andip > 1. Then

1
/ V()P () x| dx = f,-o(l)/ gio (V2 Db gy
B 0

On the other hand, by orthogonality we have

I,

-0

/ w0 x| "2 "L dx = lim / w(0)p () |x|"2 L dx
B e=>0J|x|>2¢

e—0

1 o)
lim / f DA + Bie)r")yi(@)¢(r. o) do
2¢ JSN- i=0

1
im | (Ai(e)r® + Bi(e)r®) g (r)rV =200 gr

e—>0 Joo

1% £ _ gPig—ig £,
_ Iim[ g% fi(e) el *fio@D) iy gio (V20D g
e—>0Jog 1 — gPio—%o

1 . _ oW £
+ lim / { e }&o(r)rN “2rtbar,
2

e—0 Jo, 1 — gPio—o

Since by step 2e¥ 27+ £, ()| — 0 ase — 0, we conclude that

1
lig = fio(D / gio(r)rN 2o gy,
0

If io = 0, then choosing (x) = go(r) € C3°([0, 1)), by the same argument as above, we
obtain

1
Io = fo(1) / go(r)r" T2 dr.
0

Therefore we conclude that for @l € C3°(B1(0)) of the form¢ (x) = g;(r) ¢ (o) we
have

/ u(x)p(0)x| " Ldx = f v ()]x| "% "Ldx. (66)
B B

Notice that @) holds for ap € C(B) such thatp(r,0) = g(r)yi(o), whereg e
C ([0, 1]). We set

F= { 3 g(rvi(o) ‘ n e Nandg € C®([0,1]) for0 < k < n}
k=0

Then for allp € F we have

/ u ()Pl dx = / v () Ix| "2 L ax.
B B
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Therefore using Lemn@.l we get the densityfoin C3°(B1(0)) with respect to the
uniform convergence, hence

/ u () ()| dx = / v (1) x| 2L dx
B B

forall ¢ € C°(B1(0)). Sinceu(x)|x|7 7L, v(x)|x|~#~1 € L1(B1(0)) we obtain
u(x) = v(x) fora.e.x € B1(0). m}
As a consequence (settidg = |x|~2"~1dx) we get the next result.

Corollary 7.4. Let f € L1(2). Then the problem
—Ly(u) = f, ulpe =0, (67)

has a unique weak solutiane L1(du, £2) such that

el L1ap,2) < Clf g, (68)

whereC depends oV, y and $2. Moreover, ify + 1 > Owe have

lull 1) < CllflliLie)-
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