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Abstract. In this work we study the problem
ut − div(|x|−2γ

∇u) = λ
uα

|x|2(γ+1)
+ f in Ω × (0, T ),

u ≥ 0 inΩ × (0, T ), u = 0 on∂Ω × (0, T ),
u(x,0) = u0(x) in Ω,

(1)

Ω ⊂ RN (N ≥ 2) is a bounded regular domain such that 0∈ Ω, λ > 0, α > 0, −∞ < γ <

(N − 2)/2, f andu0 are positive functions such thatf ∈ L1(Ω × (0, T )) andu0 ∈ L1(Ω).
The main points under analysis are: (i)spectral instantaneous and complete blow-uprelated to the
Harnack inequality in the caseα = 1, 1 + γ > 0; (ii) the nonexistence of solutions ifα > 1,
1+γ > 0; (iii) a uniqueness result forweaksolutions (in the distribution sense); (iv) further results
on existence of weak solutions in the case 0< α ≤ 1.

1. Introduction

We take as starting point the results by Baras and Goldstein [BG]. In [PV] and [BC]
those results are related to a Hardy inequality. With this perspective we can see the results
by Baras–Goldstein as a kind ofspectral instantaneous and complete blow-up: roughly
speaking, if we consider the heat equation with a singular perturbation,ut − ∆u =

λ|x|−2u, then the initial-boundary value problem has a global solution for some large
class of initial data ifλ < λN,0 := (N−2)2/4, and has no positive solution forλ ≥ λN,0.
In factλN,0 is the optimal constant in the Hardy inequality (19) below, in the caseγ = 0.
It is well known thatλN,0 is not attained. In [AgP], [DGP] and [GP], for some class of
parabolic equations related to generalized Hardy–Sobolev inequalities, it was shown that
the spectral instantaneous blow-up is not true, in the sense that even if the parameterλ
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is larger than the optimal constant in the corresponding Hardy–Sobolev inequality, there
exists a solution. In this paper we study the following problem:

ut − div(|x|−2γ
∇u) = λ

uα

|x|2(γ+1)
+ f in Ω × (0, T ),

u ≥ 0 inΩ × (0, T ), u = 0 on∂Ω × (0, T ),
u(x,0) = u0(x) in Ω,

(2)

whereΩ ⊂ RN (N ≥ 2) is a bounded regular domain such that 0∈ Ω, λ > 0, α > 0,
−∞ < γ < (N−2)/2,f andu0 are positive functions such thatf ∈ L1(Ω×(0, T )) and
u0 ∈ L1(Ω). Notice that the caseγ = 0 andα = 1 is just the problem solved by Baras
and Goldstein in [BG]. In the opposite direction, in [DGP] it is proved, in particular, that
if 1 + γ ≤ 0, problem (2) withα = 1 has a global weak solution for allλ ∈ R, that is, the
spectral instantaneous and complete blow-up does not occur. However, the corresponding
Hardy–Sobolev inequality holds.

We will mainly discuss the case 1+ γ > 0 related to the spectral instantaneous
and complete blow-up. The fundamental difference with the case 1+ γ ≤ 0 is that if
1+γ > 0, the associated homogeneous linear differential equation satisfies the parabolic
Harnack inequality (10), proved by Chiarenza and Serapioni in [ChS] and by Gutiérrez
and Wheeden in [GW] for more general cases of degenerate equations. Moreover the
interval ofγ is optimal. More precisely, if 1+ γ ≤ 0 we consideru(x, t) = t |x|ρ where
ρ > 0. A direct computation shows that

ut − div(|x|−2γ
∇u) = |x|ρ − ρt |x|ρ−2(γ+1)(ρ +N − 2(γ + 1)).

As ρ > 0 andγ + 1 ≤ 0, for r0, t0 > 0 small enough,u is a supersolution to problem
(9) in the cylinderBr0(0)× (0, t0). Sinceu(0, t) = 0, even the weak Harnack inequality,
given by (12), is not satisfied. Then we discover that the Harnack inequality together
with the Hardy–Sobolev inequality (19) yield the spectral instantaneous and complete
blow-up. The case ofγ = 0 andα > 1, that is, the heat equation with a perturbation
uα|x|−2, was studied in [BC], where it was shown that the complete and instantaneous
blow-up is independent ofλ > 0, namely, problem (2) has no positive solutions even in
the distribution sense apart from the trivial one.

The Sobolev spaceD1,2
0,γ (Ω) is defined as the completion ofC∞

0 (Ω) under the norm

‖φ‖
2
γ =

∫
Ω

|x|−2γ
|∇φ|

2 dx.

It is clear thatD1,2
0,γ (Ω) is a Hilbert space. Notice thatD1,2

0,γ (Ω) ⊂ W
1,2
0 (Ω) for γ > 0

andW1,2
0 (Ω) ⊂ D1,2

0,γ (Ω) if γ ≤ 0. This is the natural space to work in with the elliptic
part and to look for solutions in the classicalenergy senseor, more precisely, solutions in
a variational framework.

Next we specify in what more general sense we will consider solutions when the data
of the problemare not variational.

First, following [BM] and [Pr], we define an entropy solution. As usual we will con-
sider the truncationTk(u) = u− sign(u)(|u| − k)+.
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Definition 1.1. We say that

u ∈ T 1,2
0,γ (Ω × (0, T )) if Tk(u) ∈ L2((0, T );D1,2

0,γ (Ω)) for all k > 0.

Definition 1.2. Assume thatf and u0 are positive functions such thatf ∈ L1(Ω ×

(0, T )) andu0 ∈ L1(Ω). A functionu ∈ C([0, T ];L1(Ω)) is anentropy solutionto the
problem  ut − div(|x|−2γ

∇u) = f in Ω × (0, T ),
u = 0 on ∂Ω × (0, T ),
u(x,0) = u0(x) in Ω,

(3)

if u ∈ T 1,2
0,γ (Ω × (0, T )) and

∫
Ω

Θk(u− v)(T )dx +

∫ T

0

∫
Ω

vtTk(u− v) dx dt

+

∫ T

0

∫
Ω

∇u∇(Tk(u− v))|x|−2γ dx dt

=

∫
Ω

Θk(u0 − v(0))dx +

∫ T

0

∫
Ω

f Tk(u− v) dx dt (4)

for all v ∈ L2((0, T );D1,2
0,γ (Ω))∩L

∞(Ω× [0, T ])∩C([0, T ];L1(Ω)) and for allk > 0,
where

Θk(s) =

∫ s

0
Tk(t) dt. (5)

Notice that asu ∈ C([0, T ];L1(Ω)),∫
Ω

utTk(u) dx =
d

dt

(∫
Ω

Θk(u) dx

)
,

or ∫
Ω

Θk(u(t)) dx −

∫
Ω

Θk(u(0)) dx =

∫ t

0

∫
Ω

usTk(u) dx ds.

Using the same arguments as in [BM] and [Pr] it is easy to prove the following result.

Theorem 1.3. LetΩ be a bounded regular domain, and assume thatu0 ∈ L1(Ω) and
f ∈ L1(Ω × (0, T )) are positive functions. Then problem(3) has a unique positive
entropy solution.

As a consequence we have the following comparison principle that we will use systemat-
ically.

Lemma 1.4. Let u, v be entropy solutions of(3) with dataf, u0 andg, v0 respectively.
Suppose that0 ≤ g ≤ f and0 ≤ v0 ≤ u0. Then0 ≤ v ≤ u.

On the other hand, we have the following definition of weak solution.
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Definition 1.5. Letf (x, t) be a function inL1(Ω × (0, T )) and letu0 ∈ L1(Ω). A func-
tion u ∈ C([0, T );L1((1 + |x|−2γ−1) dx)) is aweak solutionto ut − div(|x|−2γ

∇u) = f (x, t),

u = 0 on ∂Ω × (0, T ),
u(x,0) = u0(x) in L1(Ω),

(6)

if for all 0< s < T we have∫ s

0

∫
Ω

u(−ψt − div(|x|−2γ
∇ψ))−

∫
Ω

u0ψ(0) =

∫ s

0

∫
Ω

fψ dx dt (7)

for all ξ ∈ C2(Ω × [0, s]) with ξ(x, s) = 0 onΩ andξ = 0 on ∂Ω × [0, s].

We writeu(x,0) = u0 meaning that limt→0
∫
Ω

|u(x, t)− u0(x)| dx = 0.
In Section 3 we will prove the following result on uniqueness.

Theorem 1.6. Let −∞ < γ < (N − 2)/2. Assume thatu is a weak solution to the
problem  ut − div(|x|−2γ

∇u) = 0,
u = 0 on ∂Ω × (0, T ),
u(x,0) = 0 in L1(Ω).

(8)

Thenu ≡ 0.

To prove the uniqueness Theorem 1.6 we require a Weyl type result for the associated
elliptic equation proved in [AP3]. For the reader’s convenience, we sketch the proof in
the Appendix. In consequence of this uniqueness result all the arguments will be done by
approximation, understood in a convenient way.

The paper is organized as follows. In Section 2 we state the Harnack inequality (see
[ChS]) and we give the weak version which we use in the paper. We also state the Hardy–
Sobolev inequality for weights, as a particular case of the Cafarelli–Kohn–Nirenberg in-
equalities. Finally, we formulate a consequence of a Picone identity (see [P]), that will
be an important tool in the proofs of blow-up. Section 3 deals with the proof of Theorem
1.6. Section 4 is devoted to proving the main results about blow-up for 1+ γ > 0. In the
first subsection we study the spectral complete and instantaneous blow-up in the linear
case (Theorems 4.1 and 4.6). The second subsection deals with the superlinear case; here
without any restriction onλ, we are able to prove the nonexistence result (Theorem 4.7),
and the complete blow-up for any positive data (Theorem 4.10). In Section 5 we study
the sublinear case: we prove the existence of a global solution if the initial data belongs
to L2(Ω) (Theorem 5.1) and for more general initial data (Theorem 5.5). Moreover, we
obtain the asymptotic behavior of the solutions ast → ∞, if the initial data is less than
or equal to the stationary solution. In Section 6 we state the existence results proved in
[DGP] for the case 1+ γ ≤ 0 to compare them with the case 1+ γ > 0. Finally, in
the Appendix we prove a result of regularity (and then uniqueness) of Weyl type for the
associated elliptic equation.
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2. Preliminaries

The Harnack inequality for parabolic equations will be an important tool in our discus-
sion. LetR = Bρ(x0)×(t0−β, t0+β) ⊂ Ω×(0, T ), 0< β < t0. Consider the equation

ut − div(|x|−2γ
∇u) = 0 inR, (9)

where 1+ γ > 0. We say thatu ∈ L2((0, T );D1,2
0,γ (Ω))∩C([0, T ];L1(Ω)) is anenergy

solutionto (9) if ∫ T

0

∫
Ω

vtu+

∫ T

0

∫
Ω

|x|−2γ
∇u∇v = 0

for all v ∈ L2((0, T );D1,2
0,γ (Ω)) ∩ C([0, T ];L1(Ω)). Below, sup and inf will denote the

essential supremum and essential infimum respectively. The concrete result that we use is
the following.

Theorem 2.1 (Harnack Inequality). Let u be a positive energy solution to(9) with
1 + γ > 0. Then there existsC = C(N, γ, ρ, t0, β) such that

sup
R−

u ≤ C inf
R+
u, (10)

whereR−
= Bρ/2(x0)× (t0 −

3
4β, t0 −

1
4β), R

+
= Bρ/2(x0)× (t0 +

1
4β, t0 + β).

For a proof, we refer to [ChS] and also [GW] for some extensions. We will use the fol-
lowing weak Harnack inequality for positive supersolutions.

Theorem 2.2. Let u ∈ L2((0, T );D1,2
0,γ (Ω)) ∩ C([0, T ];L1(Ω)) be a positive super-

solution to problem(9) with 1 + γ > 0. Then there exists a positive constantC =

C(N, γ, ρ, t0, β) such that∫
Bρ/2(x0)

u(x, t) dx ≤ C inf
R+
u for all t ∈ (t0 −

3
4β, t0 −

1
4β). (11)

Moreover ∫ ∫
R−

u(x, t) dx dt ≤ C inf
R+
u. (12)

Proof. Sinceu ∈ C([0, T ];L1(Ω)), there existst ∈ [t0 −
3
4β, t0 −

1
4β] such that

sup
t∈(t0−

3
4β,t0−

1
4β)

∫
Bρ/2(x0)

u(x, t) dx =

∫
Bρ/2(x0)

u(x, t) dx. (13)

Let v be the solution to the problem{
vt − div(|x|−2γ

∇v) = 0 inΩ × (t, t0 + β),

v(x, t) = u(x, t), x ∈ Ω.
(14)

By comparison,u ≥ v. Let ξ be the positive solution to the adjoint problem{
−ξt − div(|x|−2γ

∇ξ) = h in Ω × (t, t0 + β),

ξ(x, t0 + β) = 0, x ∈ Ω,
(15)
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whereh is a bounded positive function that will be chosen later. By the maximum prin-
ciple,ξ ≥ 0. Usingξ as a test function in(14), we obtain

−

∫
Ω

ξ(x, t)v(x, t) dx +

∫ t0+β

t

∫
Ω

v(−ξt − div(|x|−2γ
∇ξ)) dx dt = 0,

therefore ∫ t0+β

t

∫
Ω

v(x, t)h(x, t) dx dt =

∫
Ω

u(x, t)ξ(x, t) dx

≥ min
Bρ/2(x0)

ξ(x, t)

∫
Bρ/2(x0)

u(x, t) dx.

By choosingh = χBρ/2(x0)χ(t0+ 1
4β,t0+β)

, we conclude that

∫ ∫
R+

v(x, t) dx dt ≥ min
Bρ/2(x0)

ξ(x, t)

∫
Bρ/2(x0)

u(x, t) dx. (16)

Finally, by Theorem 2.1 applied tov and Lemma 1.4, we obtain

sup
R−

v ≤ c inf
R+
v ≤ c inf

R+
u. (17)

From (13), (16) and (17), we conclude that∫ ∫
R−

u(x, t) ≤ c1

∫
Bρ/2(x0)

u(x, t) dx ≤ c2 inf
R+
u,

wherec1, c2 are independent onu. ut

This last result is an important fact to analyze the blow-up behavior. Notice that the ho-
mogeneous parabolic equation associated to problem (2) satisfies the weak Harnack in-
equality (12) if and only if 1+ γ > 0, according to the counterexample explained in the
introduction, i.e., the functionu(x, t) = t |x|ρ whereρ > 0.

If f ≥ 0, then we can prove the following extension of the Harnack inequality to
entropy solutions.

Corollary 2.3. Letf ∈ L1(Ω × (0, T )) be such thatf ≥ 0. Assume thatu is a positive
entropy solution to problem(3) with 1 + γ > 0. Then there exists a positive constant
C = C(N, γ, ρ, t0, β) such that

sup
t∈(t0−

3
4β,t0−

1
4β)

∫
Bρ/2(x0)

u(x, t) dx ≤ C inf
R+
u. (18)

Notice that as a consequence we get the strong maximum principle for positive entropy
solutions iff ≥ 0.
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Remark 2.4.In the interval 0< 1+ γ < N/2, for which we have the parabolic Harnack
inequality, we are able to calculate with an elementary argument of homogeneity the
gaussian-likeselfsimilar solution,

E(x, t) = C
H(t)

tN/2(γ+1)
e

(
−

|x|2(γ+1)

4(γ + 1)2t

)
,

whereH is the Heaviside function. Normalizing the constantC we realize that

Et − div(|x|−2γ
∇E) = δ(0,0).

Foru ∈ D1,2
0,γ (Ω) we have the following Caffarelli–Kohn–Nirenberg inequalities (see

[CKN]).

Proposition 2.5 (Caffarelli–Kohn–Nirenberg). Letp, q, r, α, β, σ anda be real con-
stants such thatp, q ≥ 1, r > 0, 0 ≤ a ≤ 1, and

1

p
+
α

N
,

1

q
+
β

N
,

1

r
+
m

N
> 0,

wherem = aσ + (1 − a)β. Then there exists a positive constantC such that∥∥|x|mu
∥∥
Lr (RN ) ≤ C

∥∥|x|α|∇u|
∥∥a
Lp(RN )

∥∥|x|βu
∥∥1−a

Lq (RN )

for all u ∈ C∞

0 (R
N ) if and only if the following relations hold:

1

r
+
m

N
= a

(
1

p
+
α − 1

N

)
+ (1 − a)

(
1

q
+
β

N

)
.

α − σ ≥ 0 if a > 0,
α − σ ≤ 1 if a > 0 and 1

r
+

m
N

=
1
p

+
α−1
N
.

In particular we get the following extension of the Hardy–Sobolev inequality (see also
[CW])

Lemma 2.6. LetN ≥ 2 and−∞ < γ < (N − 2)/2. Then for allu ∈ D1,2
0,γ (Ω),

λN,γ

∫
RN

|u|2

|x|2(γ+1)
dx ≤

∫
RN

|∇u|2

|x|2γ
dx, λN,γ =

(
N − 2(γ + 1)

2

)2

. (19)

MoreoverλN,γ is optimal and it is not attained.

The following Sobolev inequality will be used in the last section to prove the behavior of
solutions.

Theorem 2.7 (Sobolev Inequality).There exists a positive constantC = C(N, γ ) such
that for all u ∈ D1,2

0,γ (Ω),(∫
Ω

|u|2
∗

|x|−2∗γ dx

)1/2∗

≤ C

(∫
Ω

|∇u|2|x|−2γ dx

)1/2

, (20)

where2∗
=

2N
N−2.
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Finally, an important tool to prove the nonexistence is the following theorem whose proof
can be found in [AP3].

Theorem 2.8 (Picone Inequality). Letu, v ∈ D1,2
0,γ (Ω) with v > 0 in Ω, and suppose

that−div(|x|−2γ
∇v) is a positive bounded Radon measure. Then∫

Ω

|x|−2γ
|∇u|2 dx ≥

∫
Ω

−div(|x|−2γ
∇v)

v
u2 dx.

3. A result on uniqueness

The main result of this part is the following uniqueness theorem which is true for all
γ ∈ (−∞, (N − 2)/2). The proof is deeply inspired by the papers by Benilan–Brezis–
Crandall [BBC], Brezis–Crandall [BCr] and Pierre [Pi]. An important tool in the proof
is a regularity result for the associated elliptic equation obtained in [AP3], with the same
flavor as the classical result by Weyl for the Laplace operator. (See the Appendix at the
end of this work.)

Theorem 3.1. Assume thatu is a weak solution (in the sense of Definition1.5) to the
problem  ut − div(|x|−2γ

∇u) = 0,
u = 0 on ∂Ω × (0, T ),
u(x,0) = 0 in L1(Ω).

(21)

Thenu ≡ 0.

Proof. To simplify the notation we setLγ v = div(|x|−2γ
∇v). Let u be a weak solution

to (21) . We claim that

u(t)− u(s) = Lγ

∫ t

s

u(σ) dσ in D′(Ω).

To prove the claim we setX(t) =
∫
Ω
u(x, t)φ(x) dx, wheret ∈ (0, T ) andφ ∈ C∞

0 (Ω).
Notice thatX ∈ L1(0, T ). Letα ∈ C∞

0 (0, T ). Then

〈X′, α〉 ≡ −〈X,α′
〉

= −

∫ T

0

∫
Ω

u(x, t)φ(x)α′(t) dx dt =

∫ T

0

∫
Ω

u(x, t)α(t)Lγ (φ(x)) dx dt.

Hence

X′(t) =

∫
Ω

u(x, t)Lγ (φ(x)) dx in D′(0, T ). (22)

Since
∫
Ω
u(x, t)Lγ (φ(x)) dx ∈ L1(0, T ), integrating (22) we obtain the claim.

As
∫
Ω

|u(x, s)| dx → 0 ass → 0 we deduce that

u(t) = Lγ

∫ t

0
u(σ) dσ in D′(Ω). (23)
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Let v(t) be the weak solution to the elliptic problem

−Lγ v(t) = u(t), v(t)
∣∣
∂Ω

= 0. (24)

By the uniqueness result (Corollary 7.4 in the Appendix), sinceu(t) ∈ L1(Ω), it follows
thatv coincides with the entropy solution to the elliptic problem (24). (See [AP3] for the
definition and properties of entropy solutions in this concrete case of elliptic equations.)
Hence we conclude thatv(t) = −

∫ t
0 u(σ) dσ . Thusv is a differentiable function in(0, T )

and

∂v

∂t
(t) = u(t) ∈ L1

dµ(Ω × (0, T )), dµ = (|x|−2γ−1
+ 1) dx dt.

Thereforev is a solution to the problem

−Lγ v(t) = u(t) = −
∂v

∂t
, v(t)|∂Ω = 0. (25)

We can useTk(v) as a test function in (25). Hence we get

∫
Ω

|∇Tk(v)|
2
|x|−2γ dx = −

∫
Ω

∂v

∂t
Tk(v) dx = −

d

dt

(∫
Ω

Θk(v) dx

)
,

whereΘk is defined in (5). By integration we obtain

∫ T

0

∫
Ω

|∇Tk(v)|
2
|x|−2γ dx +

∫ T

0

∫
Ω

Θk(v(T )) dx = 0.

SinceΘk(s) ≥ 0 we conclude that|∇Tk(v)| ≡ 0 for all k > 0 and thenv ≡ 0, which
impliesu ≡ 0. ut

Remark 3.2.

1) Notice that Theorem 3.1 and the linearity of the problem provide the uniqueness for
problem (6).

2) By using the Caffarelli–Kohn–Nirenberg inequalities a direct calculation proves that
the entropy solutions are weak solutions in the sense of Definition 1.5. See the details
in [AP3].

4. Nonexistence results: Blow-up in the case1 + γ > 0

Since we have the uniqueness Theorem 3.1, it is sufficient to work withentropy solu-
tions, which means that we will have in mind the techniques and results for this kind of
solutions.
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4.1. The linear case,α = 1, 1 + γ > 0 andλ > λN,γ , spectral instantaneous and
complete blow-up

This subsection deals with the following problem:ut − div(|x|−2γ
∇u) = λ

u

|x|2(γ+1)
, u ≥ 0 inΩ × (0, T ),

u = 0 on∂Ω × (0, T ), u(x,0) = u0(x) in Ω,
(26)

whereu0 is a positive function such thatu0 ∈ L∞(Ω), andλ > λN,γ . The main result
about problem (26) is the following theorem.

Theorem 4.1. Let u0 ∈ L∞(Ω) be a positive function and assume thatλ > λN,γ . If
u0 6= 0, then problem(26)with 1 + γ > 0 has no positive weak solution.

Proof. Let u ≥ 0 be a positive weak solution to (26). By Corollary 2.3 we obtainu > 0.
We set

an(x) =
1

|x|2(γ+1) + 1/n
, (27)

gn(s) = min{n, s}. (28)

Let un be the unique solution to the problem{
(un)t − div(|x|−2γ

∇un) = λan(x)gn(u) in Ω × (0, T ),
un = 0 on∂Ω × (0, T ), un(x,0) = u0(x) in Ω.

(29)

Notice that by the estimates in [ChF],un ∈ L∞(Ω × (0, T )). (See also [AP4] for de-
tails and more general results.) Sinceu0 6= 0, using the Harnack inequality we find that
un > 0 inΩ × (0, T ) andun converges tou in C([0, T ];L1(Ω)). Since{an(x)gn(u)} is
increasing with respect ton, it follows that{un} is also increasing.

Using the Harnack inequality again we get

u1 ≥ ε a.e. inBη(0)× (τ, T )

for some 0< τ < T . Sinceu ≥ u1, we haveu ≥ ε a.e. inBη(0)× (τ, T ). For ε̄ > 0 we
can choose a constantc = c(η, p, ε̄) such thatv(x) = c(log(1/|x|)− log(1/|η|)) satisfies vt − div(|x|−2γ

∇v) =
ε̄

|x|2(γ+1)
in Bη(0)× (τ, T ),

v|∂Bη(0) = 0.
(30)

We definew(x, t) = (t − τ)v(x) for t ∈ (τ, T ), which satisfieswt − div(|x|−2γ
∇w) = v(x)+ (t − τ)

ε̄

|x|2(γ+1)
in Bη(0)× (τ, T ),

w|∂Bη(0) = 0,
(31)

and limt→τ

∫
Bη(0)

w(x, t)φ(x) dx = 0 for all φ ∈ C∞

0 (Bη(0)). Hencew(x, t) is an en-
ergy solution and thus a weak solution to (31).
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Sincewt − div(|x|−2γ
∇w) ≤ v(x) + T ε̄/|x|2(γ+1) and lim|x|→0 |x|2(γ+1)v(x) = 0,

one can choosēε andη such thatwt − div(|x|−2γ
∇w) ≤ ε/|x|2(γ+1) in Bη(0)× (τ, T ).

Letwn be the unique positive solution to the problem{
(wn)t − div(|x|−2γ

∇wn) = εan(x) in Br(0)× (τ, T ),

wn|∂Br (0) = 0.
(32)

Then by comparison,

w(x, t) ≤ w1(x, t) = lim
n→∞

wn(x, t).

Sinceun(x, t) ≥ u1(x, t) ≥ ε, as above by the weak comparison principle,un(x, t) ≥

wn(x, t) for all (x, t) ∈ Br(0) × (τ, T ). Taking into account that lim|x|→0w(x, t) = ∞

uniformly in t ∈ [τ1, T1] ⊂ (τ, T ), we obtain

lim
|x|→0

u(x, t) = lim
|x|→0

lim
n→∞

un(x, t) = ∞ ∀t ∈ [τ1, T1].

Then for allc � 1 there existn0 ∈ N andη1 > 0 such that for alln ≥ n0, un(x, t) ≥ c

in Bη1(0) and uniformly int ∈ [τ1, T1].
LetBη̄(0) ⊂⊂ Bη1(0) and considerψ ∈ C∞

0 (Bη̄(0)). By using Theorem 2.8, we get∫
Bη̄(0)

|∇ψ |
2
|x|−2γ dx ≥

∫
Bη̄(0)

|ψ |
2−div(|x|−2γ

∇un)

un
dx for all t ∈ [τ1, T1].

Hence∫
Bη̄(0)

|∇ψ |
2
|x|−2γ dx ≥ λ

∫
Bη̄(0)

|ψ |
2an(x)

gn(u)

un
dx −

∫
Bη̄(0)

|ψ |
2 (un)t

un
dx (33)

and by integration we get∫ T1

τ1

∫
Bη̄(0)

|∇ψ |
2
|x|−2γ dx dt

≥ λ

∫ T1

τ1

∫
Bη̄(0)

|ψ |
2an(x)

gn(u)

un
dx dt −

∫ T1

τ1

∫
Bη̄(0)

|ψ |
2 (un)t

un
dx dt.

We estimate directly the last integral on(τ1, T1) as follows:

(T1 − τ1)

∫
Bη̄(0)

|∇ψ |
2
|x|−2γ dx dt

≥ λ

∫ T1

τ1

∫
Bη̄(0)

|ψ |
2an(x)

gn(u)

u
dx dt −

∫
Bη̄(0)

|ψ |
2 log(un(x, T1)) dx, (34)

because ifx∈Bη̄(0) thenun(x, T1) � 1. Asgn(u)an(x) ↗ u/|x|2(γ+1)
∈L1(Bη̄(0)) and

|ψ |
2/u ∈ L∞(Bη̄(0)), using the monotone convergence theorem we conclude that

λ

∫ T1

τ1

∫
Bη̄(0)

|ψ |
2an(x)

gn(u)

u
dx dt → λ(T1 − τ1)

∫
Bη̄(0)

|ψ |
2

|x|2(γ+1)
dx.
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We setζ(x)= 1
T1−τ1

log(u(x, T1)). Sinceu(·, T1)∈L
1(Bη̄(0)) we see thatζ ∈Lp(Bη̄(0))

for all p ≥ 1. In particularζ ∈ Lp(Bη̄(0)), wherep > (N − 2γ )/2. We set

λ(η̄) = inf
{φ∈C∞

0 (Bη̄(0)) :φ 6=0}

∫
Bη̄(0)

|∇φ|
2 dx∫

Bη̄(0)
ζφ2 dx

.

Thenλ(η̄) → ∞ as η̄ → 0. Hence for allε > 0 we get the existence ofηε such that
λ(ηε) ≥ 1/ε. Let ε be such thatλ/(1 + ε) > λN,γ . We setη̄ = ηε. Then from (34) we
obtain ∫

Bη̄(0)
|∇ψ |

2
|x|−2γ dx ≥

λ

1 + ε

∫
Bη̄(0)

|ψ |
2

|x|2(γ+1)
dx.

Sinceλ/(1 + ε) > λN,γ , this contradicts the optimality ofλN,γ . ut

Remark 4.2.It is clear that Theorem 4.1 holds even if the initial datau0 belongs toL1. By
contradiction, assume that there exists a positive solutionu to problem (26) with initial
datau0 ∈ L1(Ω); thenu is a supersolution to problem (26) with bounded initial data
u0,n(x) = min{n, u0(x)} and this contradicts Theorem 4.1 for bounded data.

As a consequence we get the following corollaries.

Corollary 4.3. If u0 ≡ 0 then the unique nonnegative weak solution to problem(26)with
1 + γ > 0 is u ≡ 0.

Corollary 4.4. Supposef ∈ L1(Ω × (0, T )) and u0 ∈ L1(Ω) are positive functions
such that(f, u0) 6= (0,0), and1 + γ > 0. Then forλ > λN,γ the problem

ut − div(|x|−2γ
∇u) = λ

u

|x|2(γ+1)
+ f, u ≥ 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u(x,0) = u0(x) in Ω,

(35)

has no weak positive solution.

Notice that in the proof of Theorem 4.1 no explicit representation formula is needed, and
so it is an alternative proof to the one given by Baras–Goldstein [BG] in the caseγ = 0.
See also Cabré–Martel [CM].

Moreover we prove the following blow-up result.

Lemma 4.5. Assume that1 + γ > 0. Letun be the solution to the problem
∂un

∂t
− div(|x|−2γ

∇un) = λan(x)gn(un) in Ω × (0, T ),

un ≥ 0 in Ω,
un|∂Ω = 0, un(x,0) = u0(x) in Ω,

(36)

wherean(x), gn(s) are defined in(27), (28)andu0 ∈ L∞(Ω), u0 ≥ 0 andu0 6≡ 0. Then
for all r > 0 such thatB4r(0) ⊂ Ω and all t ∈ (0, T ) we have∫

Br (0)
un(x, t) dx → ∞ asn → ∞. (37)
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Proof. We argue by contradiction. Letτ, r0 > 0 be such that∫
Br0(0)

un(x, τ ) dx ≤ C0 for all n.

Notice that{un} is a nondecreasing sequence. Thus there existsu(x, τ ) ∈ L1(Br0(0))
such thatun(x, τ ) ↗ u(x, τ ) for all x ∈ Br0(0). Without loss of generality we can
assume thatB4r0(0) ⊂ Ω. Then by the weak Harnack inequality forun, there exists
C1 ≡ C1(τ,N, γ, r0) such that for allt ∈ (τ/4, τ/3) we have∫

Br0(0)
un(x, t) dx ≤ C1 inf{un(x, t) | x ∈ Br0(0)× (τ/2,3τ/2)}

≤ C1
1

|Br0(0)|

∫
Br0(0)

un(x, τ ) dx ≤ C2 (38)

for all n ∈ N. Fix τ such that(τ/5, τ/4) ⊂ (τ/4, τ/3). Then we can defineu(x, t) for all
(x, t) ∈ Br0(0) × (τ/5, τ/4) and

∫
Br0(0)

u(x, t) dx < ∞, uniformly in t ∈ (τ/5, τ/4).

Moreover, using Theorem 2.2, we get the existence ofε1 > 0 such thatun ≥ u1 > ε1 in
Br0(0)× (τ/5, τ/4) ⊂ (0, T ). Let

µ = λ inf
Br0(0)×(τ/5,τ/4)

g1(u1(x, t)), ε = min{ε1, µ}.

Sinceun(x, t) ≥ wn(x, t), wherewn is the solution to the problem{
(wn)t − div(|x|−2γ

∇wn) = εan(x) in Br0(0)× (τ/5, τ/4),
wn|∂Br0(0)

= 0, wn(x, τ/5) = ε in Br0(0),
(39)

using the facts thatwn ↑ w and lim|x|→0w(x, t) = ∞ uniformly in (τ2, τ3), where
τ/5< τ2 < τ3 < τ/4 (see the proof of Theorem 4.1), we conclude that

lim
n→∞

lim
|x|→0

un(x, t) = ∞ uniformly in (τ2, τ3).

Let Bη̄(0) ⊂⊂ Ω be such thatun(x, t) � 1 for all x ∈ Bη̄(0) × (t1, t2) with τ2 < t1 <

t2 < τ3, andψ ∈ C∞

0 (Bη̄(0)). Using Theorem 2.8 we obtain∫
Bη̄(0)

|∇ψ |
2
|x|−2γ dx ≥ λ

∫
Bη̄(0)

|ψ |
2an(x)

gn(un)

un
dx −

∫
Bη̄(0)

|ψ |
2 (un)t

un
dx. (40)

By integration we get∫ t2

t1

∫
Bη̄(0)

|∇ψ |
2
|x|−2γ dx dt

≥ λ

∫ t2

t1

∫
Bη̄(0)

|ψ |
2an(x)

gn(un)

un
dx dt −

∫ t2

t1

∫
Bη̄(0)

|ψ |
2 (un)t

un
dx dt.

Sinceun ↑ u in L1(Bη̄(0)× (t1, t2)), using the same argument as in the proof of Theorem
4.1 we get∫

Bη̄(0)
|∇ψ |

2
|x|−2γ dx ≥

λ

1 + ε

∫
Bη̄(0)

|ψ |
2

|x|2(γ+1)
dx, ∀ψ ∈ C∞

0 (Bη̄(0)),
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whereε can be chosen such thatλ/(1 + ε) > λN,γ . This contradicts the optimality
of λN,γ . ut

We are now able to formulate the main blow-up result.

Theorem 4.6. Letun be the positive solution to problem(36) with 1 + γ > 0. Then for
all (x0, t0) ∈ Ω × (0, T ) we havelimn→∞ un(x0, t0) = ∞.

Proof. Let (x0, t0) ∈ Ω× (0, T ). If x0 ∈ Br(0) andB4r(0) ⊂ Ω, then using the Harnack
inequality we get

un(x0, t0) ≥ c

∫
Br (0)

un(x, t0 − ε) dx,

wherec = c(N, γ, r) andε > 0 is such thatt0 − ε > 0. By Lemma 4.5 we find that∫
Br (0)

un(x, t0 − ε) dx → ∞, hence

lim
n→∞

un(x0, t0) = ∞.

If x0 /∈ Br(0), we first suppose thatBr(0) ∩ Br(x0) 6= ∅. Then there existsy ∈ Ω such
thatBη(y) ⊂ Br(0) ∩ Br(x0). Therefore using again the Harnack inequality and Lemma
4.5 we obtain

un(x0, t0) ≥ c

∫
Br (x0)

un(x, t0 − ε) dx ≥ c

∫
B̄η(y)

un(x, t0 − ε) dx

≥ c inf
x∈B̄η(y)

un(x, t0 − ε) ≥ cun(x1, t0 − ε),

wherec is a positive constant independent ofun. Sincex1 ∈ Br(0), we haveun(x1, t0−ε)

→ ∞, and we find thatun(x0, t0) → ∞ for n → ∞. In the general case, ifx0 ∈ Ω is
arbitrary, then sinced(x, Br(0)) < ∞, using an iteration argument, we conclude in a
finite number of steps. ut

4.2. The superlinear case:α > 1 with 1 + γ > 0

In this subsection we deal with the following problem:
ut − div(|x|−2γ

∇u) =
uα

|x|2(γ+1)
in Ω × (0, T ),

u = 0 on∂Ω × (0, T ),
u(x,0) = u0(x) in Ω,

(41)

whereα > 1 and 1+ γ > 0. Here the behavior of the problem is quite different in
comparison to the linear case, in particular it is independent ofλ. So we formulate the
result withλ = 1.

Theorem 4.7. Let u0 be a positive function such thatu0 ∈ L∞(Ω) andu0 6≡ 0. Then
problem(41) with 1 + γ > 0 has no weak positive solution. Ifu0 ≡ 0 then the unique
nonnegative solution isu ≡ 0.
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Proof. Assume that (41) has a positive weak solutionu. Let an be defined in (27).
Definegn(s) = min{n, sα} andfn(x, t) = an(x)gn(u(x, t)); thenfn ∈ L∞(Ω × (0, T ))
and fn(x, t) ↗ f (x, t) = u(x, t)α/|x|2(γ+1) in L1(Ω × (0, T )). Since |x|2γ fn ∈

Lr(Ω, |x|−2γ dx) with r > (N − 2γ )/2, we have the required integrability to obtain
L∞ estimates. (See [ChF] and [AP4].) Consider the unique positive global solutionun to
the problem  (un)t − div(|x|−2γ

∇un) = fn(x, t) in Ω × (0, T ),
un = 0 on∂Ω × (0, T ),
un(x,0) = u0(x) in Ω.

(42)

Thenun ∈ L∞(Ω × (0, T )), and sinceu0 6≡ 0, the weak Harnack inequality implies that
un > 0 inΩ × (0, T ). Since{fn} is increasing,{un} is also increasing and converges to
u in C([0, T ];L1(Ω)). Again the Harnack inequality gives

u ≥ u1 ≥ ε a.e. inBη(0)× (τ, T )

for some 0< τ < T andBη(0) ⊂⊂ Ω. By the same arguments as in the proof of
Theorem 4.1 we find that

lim
|x|→0

u(x, t) = lim
|x|→0

lim
n→∞

un(x, t) = ∞ uniformly in t ∈ (τ, T ).

Then for allc > 0 there existn0 ∈ N andη1 > 0 such thatun(x, t) ≥ c for all x ∈ Bη1(0)
and allt ∈ (τ, T ). We choosec > sup{1, α − 1} such that

(α − 1)cα−1
− 4(α − 1)

log(c)

T − τ
> λN,γ , (43)

whereλN,γ is the optimal constant in the Hardy inequality given in Proposition 2.5.
Moreover there existη, 0 < η � 1, andn0 ∈ N such that ifn ≥ n0 thenun ≥ 2c
in Bη(0)× (τ, T ).

Next we use arguments as in [BC]. Define

φ(s) =


1

α − 1

(
1

cα−1
−

1

sα−1

)
if s > c,

1

cα
(s − c) if s ≤ c.

(44)

Notice thatφ ∈ C1(R) is a concave function andφ′(s) = 1/sα for all s > c, in particular
0 < φ′(s) < 1/cα. Sinceφ(s) is a regular function fors > c, andun > c for all n ≥ n0,
it follows that

−div(|x|−2γ
∇φ(un)) = φ′(un)(−div(|x|−2γ

∇un))− φ′′(un)|x|
−2γ

|∇un|
2.

It is clear thatφ(un) ≤
1
α−1

1
cα−1 . Sinceφ′′ < 0 andun(x) > c > 1 inBη(0), we obtain

(φ(un))t − div(|x|−2γ
∇φ(un)) ≥ φ′(un)((un)t − div(|x|−2γ

∇un)) = φ′(un)fn.

Considerψ ∈ C∞

0 (Bη(0)). Using Theorem 2.8, we get∫
Bη(0)

|∇ψ |
2
|x|−2γ dx ≥

∫
Bη(0)

|ψ |
2−div(|x|−2γ

∇φ(un))

φ(un)
dx,
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hence∫
Bη(0)

|∇ψ |
2
|x|−2γ dx

≥

∫
Bη(0)

|ψ |
2fn

φ′(un)

φ(un)
dx −

∫
Bη(0)

|ψ |
2 (un)tφ

′(un)

φ(un)
dx. (45)

By integration over(τ, T ) we obtain∫ T

τ

∫
Bη(0)

|∇ψ |
2
|x|−2γ dx dt

≥

∫ T

τ

∫
Bη(0)

|ψ |
2fn

φ′(un)

φ(un)
dx dt −

∫ T

τ

∫
Bη(0)

|ψ |
2 (un)tφ

′(un)

φ(un)
dx dt. (46)

Sincex ∈ Bη(0), we haveun(x, t) > 2c. Therefore

1

φ(un)
≥ (α − 1)cα−1.

On the other hand,φ′(un)fn → φ′(u)uα/|x|2(γ+1) a.e. inΩ. Sinceφ′(un) ≤ a for all
n ≥ n0 andx ∈ Bη(0), we obtainφ′(un)fn ≤ af . Hence by the dominated convergence
theorem we conclude that

φ′(un)fn → φ′(u)
uα

|x|2(γ+1)
=

1

|x|2(γ+1)
in L1(Bη(0)× (τ, T )).

Therefore∫ T

τ

∫
Bη̄(0)

|ψ |
2fn

φ′(un)

φ(un)
dx dt ≥ (T − τ)(α − 1)cα−1

∫
Bη̄(0)

|ψ |
2

|x|2(γ+1)
dx + o(1).

To estimate the term involving thet derivative, we proceed as follows. Let

I =

∣∣∣∣ ∫
Bη̄(0)

|ψ |
2
∫ T

τ

(un)tφ
′(un)

φ(un)
dt dx

∣∣∣∣ =

∣∣∣∣ ∫
Bη̄(0)

|ψ |
2 log

(
φ(un(T ))

φ(un(τ ))

)
dx

∣∣∣∣.
Sinceφ(un) ≤ φ(u) we get

I ≤ 2
∫
Bη̄(0)

|ψ |
2
|logφ(u(T ))| dx ≤ 4(α − 1) log(c)

∫
Bη̄(0)

|ψ |
2 dx.

Hence, by substitution in (46) and integrating in time, we obtain∫
Bη̄(0)

|∇ψ |
2
|x|−2γ dx ≥

(
(α − 1)cα−1

− 4(α − 1)
log(c)

T − τ

) ∫
Bη̄(0)

|ψ |
p

|x|2(γ+1)
dx

= Λ

∫
Bη̄(0)

|ψ |
2

|x|2(γ+1)
dx,

where

Λ := (α − 1)cα−1
− 4(α − 1)

log(c)

T − τ
> λN,γ

by (43), which contradicts the optimality ofλN,γ . ut
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Corollary 4.8. Supposef ∈ L1(Ω × (0, T )) and u0 ∈ L1(Ω) are positive functions
such that(f, u0) 6= (0,0) and1 + γ > 0. Then the problem

ut − div(|x|−2γ
∇u) =

uα

|x|2(γ+1)
+ f, u ≥ 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u(x,0) = u0(x) in Ω,

(47)

has no positive weak solution.

As a consequence we have the following blow-up result.

Lemma 4.9. Letun be the solution to the problem
∂un

∂t
− div(|x|−2γ

∇un) = an(x)gn(un) in Ω × (0, T ),

un ≥ 0 in Ω, un|∂Ω = 0,
un(0, x) = u0(x) in Ω.

(48)

Then for allr > 0 such thatB4r(0) ⊂ Ω, and for all t ∈ (0, T ),∫
Br (0)

un(x, t) dx → ∞ asn → ∞. (49)

Proof. We proceed as in the proof of Lemma 4.5. Assume the existence ofτ, r0 > 0 such
that ∫

Br0(0)
un(x, τ ) dx ≤ C for all n.

Sinceun are increasing, there existsu(x, τ ) ∈ L1(Br0(0)) such that

un(x, τ ) ↗ u(x, τ ) for all x ∈ Br0(0).

Without loss of generality we can assume thatB4r0(0) ⊂ Ω. Then using the weak Har-
nack inequality as in the proof of Lemma 4.5 we get the existence ofτ > 0 such that∫
Br0(0)

un(x, t) dx ≤ C(r0, τ ) for all 0 < τ/2 ≤ t < τ . Then we obtainu(·, t) ∈

L1(Br0(0)) for all t ∈ (τ1/4, τ1) ⊂ (τ/2, τ ) and
∫
Br0(0)

u(x, t) dx < C, whereC is

independent oft . Moreover as in Lemma 4.5 one can prove that

lim
|x|→0

lim
n→∞

un(x, t) = ∞ uniformly for all t ∈ (τ2, τ3),

whereτ1/4 < τ2 < τ3 < τ1. Fix Br0(0) ⊂⊂ Ω such thatun � c in Br0(0) × (τ2, τ3).
Letψ ∈ C∞

0 (Br0(0)). By Theorem 2.8 we get∫
Br0(0)

|∇ψ |
2
|x|−2γ dx ≥

∫
Br0(0)

−div(|x|−2γ
∇un)

un
ψ2 dx.

Therefore as in the proof of Theorem 4.7 we obtain∫
Bη̄(0)

|∇ψ |
2
|x|−2γ dx ≥

(
(α − 1)cα−1

− 4(α − 1)
log(c)

τ3 − τ2

) ∫
Bη̄(0)

|ψ |
p

|x|2(γ+1)
dx



136 B. Abdellaoui et al.

for allψ ∈ C∞

0 (Bη̄(0)). Since we can choosec with (α−1)cα−1
−4(α−1) log(c)

τ3−τ2
> λN,γ ,

we reach a contradiction with the optimality ofλN,γ . ut

As a consequence of the weak Harnack inequality we obtain the main blow-up result.

Theorem 4.10. Assume thatun is the positive solution to problem(48) with 1 + γ > 0.
Then for all(x0, t0) ∈ Ω × (0, T ) we havelimn→∞ un(x0, t0) = ∞.

Remark 4.11.Notice that if we consider the problem
ut − div(|x|−2γ

∇u) = λ
u

|x|2(γ+1)
+ f in Ω × (0, T ),

u ≥ 0 inΩ × (0, T ), u = 0 on∂Ω × (0, T ),
u(x,0) = u0(x) in Ω,

(50)

with a nonnegative functionf such thatf (x, t) > c > 0 in a neighborhood of{0}×(0, T )
and under the general hypothesis onΩ, λ > λN,γ , u0 ≥ 0, then we can repeat the proof
of the nonexistence and blow-up results without the restriction−∞ < γ < (N − 2)/2.
The relevant property is that in this case the equation

ut − div(|x|−2γ
∇u) = f

satisfies the strong maximum principle.

5. Existence and nonuniqueness results for the sublinear case:0< α < 1

In this section we study the sublinear case, 0< α < 1.

Theorem 5.1. Letu0 ∈ L2(Ω) be a positive function. Assume that0 < α < 1. Then the
problem 

ut − div(|x|−2γ
∇u) =

uα

|x|2(γ+1)
, u ≥ 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u(x,0) = u0(x) in Ω,

(51)

has a global solutionu ∈ L2((0, T );D1,2
0,γ (Ω)) ∩ C([0, T ];L2(Ω)).

Proof. The existence of solution fort small can be easily proved. Moreover usingu as a
test function in (51) we obtain∫
Ω

u(x, T )2 dx +

∫ T

0

∫
Ω

|∇u|2|x|−2γ dx dt =

∫
Ω

u2
0 dx +

∫ T

0

∫
Ω

uα+1

|x|2(γ+1)
dx dt.

By the Hölder and Young inequalities we get∫
Ω

un(x, T )
2 dx +

∫ T

0

∫
Ω

|∇un|
2
|x|−2γ dx dt

≤

∫
Ω

u2
0 dx +

∫ T

0

(∫
Ω

dx

|x|2(γ+1)

)(1−α)/2(∫
Ω

u2 dx

|x|2(γ+1)

)(α+1)/2

dt

≤

∫
Ω

u2
0 dx +

α + 1

2
ε(α+1)/2

∫ T

0

∫
Ω

u2

|x|2(γ+1)
dx dt + cε−(1−α)/2T .
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By Proposition 2.5 we obtain∫
Ω

un(x, T )
2 dx +

(
1 − λ−1

N,γ

α + 1

2
ε(α+1)/2

) ∫ T

0

∫
Ω

|∇un|
2
|x|−2γ dx dt

≤ cε−(1−α)/2T +

∫
Ω

u2
0 dx

and choosingε small enough we conclude that the solution is defined in [0, T ] for arbi-
traryT . ut

Consider now the stationary problem

−div(|x|−2γ
∇w) =

wα

|x|2(γ+1)
, w|∂Ω = 0. (52)

An elementary modification of the arguments in [AP2] allows us to prove that there exists
a unique solutionw ≥ 0 to (52), which is the stationary solution to problem (51) with
u0 ≡ w.

Sinceα < 1, using a construction by H. Fujita in [F] for the heat equation, we obtain
the following nonuniqueness result.

Theorem 5.2. Letw be the unique positive solution to problem(52). Then the problem
ut − div(|x|−2γ

∇u) =
uα

|x|2(γ+1)
, u ≥ 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u(x,0) = 0 in Ω,

(53)

has a positive maximal solutionu 6≡ 0, and moreoveru ↗ w in D1,2
0,γ (Ω) ast → ∞.

To prove the above theorem we will use the following result.

Lemma 5.3. Letv ∈ L2((0, T );D1,2
0,γ (Ω))∩C([0, T ];L1(Ω)) be a positive subsolution

to problem(53). Then d
dt

∫
Ω
(v − w)2+ dx ≤ 0, that is,∫

Ω

(v − w)2+ dx ≤

∫
Ω

(v(0)− w)2+ dx for all t ≥ 0.

Proof. Sincev is a subsolution we get

(vt − wt )− div(|x|−2γ
∇(v − w)) ≤

vα − wα

|x|2(γ+1)
.

Using(v − w)+ as a test function we obtain

d

dt

∫
Ω

(v − w)2+ dx +

∫
Ω

|∇(v − w)+|
2
|x|−2γ dx ≤

∫
Ω

(vα − wα)(v − w)+

|x|2(γ+1)
dx

≤ α

∫
Ω

wα−1 (v − w)2+

|x|2(γ+1)
dx.
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By Theorem 2.8 we get∫
Ω

|∇(v − w)+|
2
|x|−2γ dx ≥

∫
Ω

−div(|x|−2γ
∇w)

w
(v − w)2+ dx

≥

∫
Ω

wα−1

|x|2(γ+1)
(v − w)2+ dx.

Hence we conclude thatd
dt

∫
Ω
(v − w)2+ dx ≤ 0. ut

Proof of Theorem 5.2.Let w be the unique positive solution to problem (52). Since
u0 ≡ 0, it follows thatw is a supersolution to problem (53). We setu(0) = w and
we defineun+1 as the unique solution to the problem

∂un+1

∂t
− div(|x|−2γ

∇un+1) =
uαn

|x|2(γ+1)
, un+1 ≥ 0 inΩ × (0, t0),

un+1 = 0 on∂Ω × (0, t0),
un+1(x,0) = 0 inΩ.

(54)

Since{un} is a decreasing sequence andun ≤ u0 for all n, we get the existence of a
solutionu to problem (53). We just have to prove thatu 6= 0. We definewε(x, t) =

ε1−α((1 − α)t)1−αφ, whereε > 0 will be chosen later andφ is the first eigenfunction of
the problem

−div(|x|−2γ
∇φ) = λ1

φ

|x|2γ
, φ|∂Ω = 0,

such that‖φ‖L∞ = 1. Then we get
∂wε

∂t
− div(|x|−2γ

∇wε) = (εα+1t + ε1−α((1 − α)t)1−α)φ,

wε ≥ 0 inΩ × (0, t0), wε = 0 on∂Ω × (0, t0), wε(x,0) = 0 inΩ.

Choosingε such thatwε ≤ w, we can prove by induction thatun ≥ wε for all n. Thus we
conclude thatu ≥ wε > 0.

Let v be another solution to (53). Then using Lemma 5.3 we conclude thatv ≤ w =

u(0), and using an iteration argument one can prove thatun ≥ v for all n. Henceu ≥ v

and the maximality ofu follows.
Let s > 0. Then one can prove thatu(x, t + s) ≥ u(x, t) for all (x, t) ∈ Ω × (0, T ),

henceu is increasing with respect tot for all x ∈ Ω. Takingu as a test function in (53)
and using the increasing property, we get∫

Ω

|∇u(x, t)|2|x|−2γ dx ≤

∫
Ω

uα

|x|2(γ+1)
dx.

By the Hölder and Hardy–Sobolev inequalities (see (19)), we deduce that for allt > 0,∫
Ω

|∇u(x, t)|2|x|−2γ dx ≤ C(N, γ ).

Hence we get the existence of a subsequencetk ↑ ∞ andw ∈ D1,2
0,γ (Ω) such that

u(·, tk) ⇀ w as tk → ∞ andu(·, tk) → w a.e. inΩ and inLr(|x|−2γ dx,Ω) for all
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1 ≤ r < 2∗
γ . Sinceu is increasing int , we get the convergence for all subsequences. Then

one can prove easily thatw is a weak solution to problem (52), and as a consequence
w = w. ut

In the case 0≤ u(x,0) = u0 ≤ w, we can prove the following result.

Lemma 5.4. Letu be a solution to problem(51)with 0 ≤ u(x,0) ≤ w. Then

lim
t→∞

u(x, t) = w(x) a.e.

Proof. By Lemma 5.3,u(x, t) ≤ w(x) for all (x, t) ∈ Ω × (0,∞). Usingw(x) as a test
function in problem (51) and taking into account that 0< α < 1,uαw ≥ uwα, we obtain

d

dt

∫
Ω

u(x, t)w(x) dx +

∫
Ω

uwα

|x|2(γ+1)
dx =

∫
Ω

uαw

|x|2(γ+1)
w dx ≥

∫
Ω

uwα

|x|2(γ+1)
dx.

Then ∫
Ω

u(x, t)w(x) dx ≥

∫
Ω

u(x,0)w(x) dx > 0.

As a consequenceu(x, t) 6→ 0 ast → ∞. Since 0≤ u(x, t) ≤ w(x), it follows that
u(x, t) → w1(x), a solution to the stationary problem ast → ∞. Then by uniqueness,
w1 ≡ w. ut

Letψ(x) ≡ |x|−κc , whereλ < c < λN,γ and

κc =
N − 2(γ + 1)−

√
(N − 2(γ + 1))2 − 4c

2
.

If Ω ≡ B1(0), thenψ is a solution to the problem

−div(|x|−2γ
∇ψ) = c

ψ

|x|2(γ+1)
, ψ ≥ 0, ψ |∂Ω = 1.

Therefore we have the following theorem.

Theorem 5.5. Letu0 ∈ L1(Ω) be a nonnegative function such thatu0 6= 0. Suppose that
one of the following conditions holds:

(1) α = 1, λ < λN,γ and
∫
Ω
u0(x)|x|

−κc dx < ∞,

(2) 1 + γ > 0, 0< α < α1 = 1 −
γ+1

N−(γ+1) andλ > 0,
(3) 1 + γ ≤ 0, 0< α < 1 andλ > 0.

Then the problem
ut − div(|x|−2γ

∇u) = λ
uα

|x|2(γ+1)
, u ≥ 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u(x,0) = u1(x) in Ω,

(55)

has a weak positive minimal solution.
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Proof. The first case follows by using a similar argument to that in [BG]. For the reader’s
convenience we sketch the proof here. Letun be the minimal solution to the truncated
problem

∂un

∂t
− div(|x|−2γ

∇un) = λ
un

|x|2(γ+1) + 1/n
, un ≥ 0 inΩ × (0, T ),

un = 0 on∂Ω × (0, T ), un(x,0) = Tn(u0(x)) in Ω.
(56)

Let p ∈ C2(R) be a convex function satisfyingp(0) = p′(0) = 0 which approximates
| · |. Takingp′(un)ψ as a test function in (56) we obtain∫

Ω

un(x, t)ψ(x) dx + (c − λ)

∫ T

0

∫
Ω

unψ

|x|2(γ+1) + 1/n
dx dt

≤

∫
Ω

Tn(u0)ψ dx ≤

∫
Ω

u0(x)ψ(x) dx. (57)

Since{un} is an increasing sequence, using the fact thatψ > 1, we get the existence of
u(x, t) such that ∫

Ω

un(x, t)ψ dx ↗

∫
Ω

u(x, t)ψ dx < ∞

and ∫ T

0

∫
Ω

un

|x|2(γ+1) + 1/n
dx dt ↗

∫ T

0

∫
Ω

u(x, t)

|x|2(γ+1)
dx dt < ∞.

By settingf (x, t) = u/|x|2(γ+1)
∈ L1(Ω × (0, T )) and then using the approximation

procedure we get the desired result.
To prove the other cases we setu0

n(x) = Tn(u0(x)) and we assume thatλ = 1. Letun
be the minimal positive solution to the problem

∂un

∂t
− div(|x|−2γ

∇un) =
uαn

|x|2(γ+1)
, un ≥ 0 inΩ × (0, T ),

un = 0 on∂Ω × (0, T ),
un(x,0) = u0

n(x) in Ω.

(58)

Assume thatγ + 1> 0. Sinceα < α1 we get the existence ofβ > 0 such that

0< β < 2(γ + 1), 2(γ + 1)−
αβ

2
< N(1 − α).

Let φ be the positive solution to the problem

−div(|x|−2γ
∇φ) =

1

|x|β
, φ|∂Ω = 0;

notice thatφ ∈ L∞(Ω). Usingφ as a test function in (58) we obtain

d

dt

∫
Ω

unφ dx +

∫
Ω

un

|x|β
dx =

∫
Ω

uαnφ

|x|2(γ+1)
. (59)
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Using the Hardy–Sobolev, Ḧolder and Young inequalities we get

d

dt

∫
Ω

unφ dx +

∫
Ω

un

|x|β
dx ≤ ε

∫
Ω

unφ dx + ε

∫
Ω

un

|x|β
dx + C(N, γ, ε),

whereε can be chosen small. Therefore we conclude that

d

dt

∫
Ω

unφ dx ≤ ε

∫
Ω

unφ dx + C.

Using the Gronwall lemma we find that∫
Ω

un(x, t)φ(x) dx ≤ c1t + c2,

∫
Ω

un

|x|β
dx < c2 < ∞,

wherec1 andc2 depend only onn, γ and
∫
Ω
u0(x) dx. Therefore we get the existence of

a measurable functionu ≥ 0 such thatun(x, t) ↑ u(x, t) for all (x, t) ∈ Ω × (0, T ),∫
Ω

u(x, t)φ(x) dx < ∞.

∫ T

0

∫
Ω

u(x, t)

|x|β
dx dt < ∞.

We setfn(x, t) = uαn(x, t)/|x|
2(γ+1). By the Ḧolder and Young inequalities we obtain

∫ T

0

∫
Ω

fn(x, t) dx dt ≤ C(N, γ )T +

∫ T

0

∫
Ω

un(x, t)

|x|β
dx dt

≤ C(N, γ )T +

∫ T

0

∫
Ω

u(x, t)

|x|β
dx dt < ∞.

Then using the dominated convergence theorem we conclude thatfn(x, t) ↑ f (x, t) =

uα/|x|2(γ+1)
∈ L1(Ω × (0, T )). The result now follows by applying the same arguments

as in [BM] and [Pr].
If 1 + γ ≤ 0, then usingTk(un) as a test function in (55) we get

d

dt

∫
Ω

Θk(un) dx +

∫
Ω

|∇Tk(un)|
2
|x|−2γ dx =

∫
Ω

Tk(un)u
α
n

|x|2(γ+1)
dx

≤

∫
Ω

Tk(un)u
α
n dx ≤ k1−α

|Ω|
1−α

( ∫
Ω

Tk(un)un dx

)α
.

SinceΘk(s) ≥
1
2Tk(s)s, we obtain

d

dt

∫
Ω

Θk(un) dx +

∫
Ω

|∇Tk(un)|
2
|x|−2γ dx ≤ 2αk1−α

|Ω|
1−α

( ∫
Ω

Θk(un) dx

)α
.

We conclude by following the argument above. ut
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6. Some remarks on existence of solutions in the case1 + γ ≤ 0

Consider the problem
ut − div(|x|−2γ

∇u) = λ
u

|x|2(γ+1)
in Ω × (0, T ),

u ≥ 0 inΩ × (0, T ), u = 0 on∂Ω × (0, T ),
u(x,0) = u0(x) in Ω, u0 ∈ L2(Ω),

(60)

where we assume that 1+ γ ≤ 0 andλ > 0. In this case we have the following energy
estimate:∫
Ω

u(x, t)2 dx+

∫ t

0

∫
Ω

|∇u|2|x|−2γ dx dτ = λ

∫ t

0

∫
Ω

u2

|x|2(γ+1)
dx dτ+

∫
Ω

u0(x)
2 dx.

Since 1+ γ ≤ 0 we have

λ

∫ t

0

∫
Ω

u2

|x|2(γ+1)
dx dτ ≤ c(Ω)λ

∫ t

0

∫
Ω

u2 dx dτ.

Using the Gronwall inequality and classical arguments to pass to the limit we are able to
obtain the following result.

Theorem 6.1. If 1 + γ ≤ 0, λ > 0 andu0 ∈ L2(Ω), then problem(60) has a unique
solutionu ∈ L2((0, T );D1,2

0,γ (Ω)) ∩ C([0, T ];L2(Ω)).

This is a particular case of the existence results in [DGP]. The details can be found there.

Remark 6.2.Notice that the result is independent of the relation betweenλ andλN,γ and
this is the deep difference with respect to the behavior of problem (60) if 1+ γ > 0, ana-
lyzed above. In this last case the existence is obtained only ifλ ≤ λN,γ . We have proved
the nonexistence result in the previous section. The existence result forλ ≤ λN,γ is ob-
tained by using the corresponding Hardy–Sobolev inequality which provides an energy
estimate. We refer to [DGP] for details and extensions to the quasilinear framework.

7. Appendix: Uniqueness result for the elliptic case

We give a sketch of the proof of the uniqueness result for the elliptic case. We refer to
[AP3] for more details.

The results which extend the classical regularity result by Weyl for the Laplace equa-
tion have been obtained by several authors, in particular, F. E. Browder [Bro] and
L. Nirenberg [N] in the case of strongly elliptic equations with regular coefficients. On
the other hand, there are results by J. Serrin [S] on nonuniqueness for discontinuous coef-
ficients. In our problems the differential operator is either degenerate or with coefficients
singular at 0. Thus we can view the uniqueness result as an extension to these cases of the
results quoted above about uniqueness (regularity). One of the main tools in the proof is
the following result of Fourier analysis (we refer to [Gr, p. 127, Proposition 3.6.2] for a
proof). We writeHn = {ψi | the spherical harmonics of degreen}. For the definition and
properties of the spherical harmonics we refer to the book by E. M. Stein [St], pp. 68–77.
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Lemma 7.1. Assume thatφ is a 2k-times continuously differentiable function inB with
k ≥ [N/4] + 1, where[·] is the integer part function. Let

ci(r) =

∫
SN−1

φ(r, σ )ψi(σ ) dσ, Qn(r, σ ) =

∑
χ(ψi )=n

ci(r)ψi(σ ),

whereχ(ψi) = n means that the degree ofψi is n. Then

|Qn(r, σ )|
2

≤ µ(N)‖∆k0φ‖
2nN−4k−2

≤ C(N, k, φ)nN−4k−2,

where ∆k0 denotes thek-times iterated Laplace–Beltrami operator,‖∆k0φ‖
2

=∫
SN−1 |(∆k0φ)(r, σ )|

2 dσ | andµ(N) is a positive constant depending onN . Moreover

φ(r, σ ) =

∞∑
n=0

Qn(r, σ ) =

∞∑
n=0

∑
χ(ψi )=n

ci(r)ψi(σ ) =

∞∑
i=0

ci(r)ψi(σ )

and the convergence is uniform inB.

LetΩ be a bounded domain such that 0∈ Ω. We begin by the following definition.

Definition 7.2. Let f ∈ L1(Ω) andu ∈ L1(|x|−2γ−1 dx,Ω). We say thatu is a weak
solutionto the problem

−Lγ (u) ≡ −div(|x|−2γ
∇u) = f (61)

if for all φ ∈ C∞

0 (Ω) we have∫
Ω

u(−Lγ (φ)) dx =

∫
Ω

f φ dx. (62)

The main result in this appendix is the following theorem.

Theorem 7.3. Let −∞ < γ < (N − 2)/2. Assume thatu ∈ L1(|x|−2γ−1 dx,Ω) is a
weak solution to

−div(|x|−2γ
∇u) = 0 (63)

in the sense of Definition7.2. Thenu ∈ Cε(Ω) ∩ D1,2
γ,loc, whereε depends onN andγ

and

D1,2
γ,loc =

{
u :

∫
K

|∇u|2|x|−2γ dx +

∫
K

|u|2|x|−2γ dx < ∞, ∀K ⊂⊂ �, K compact

}
.

Proof. Since|x|−2γ
∈ C∞(Ω \{0}), it follows thatu ∈ C∞(Ω \{0}) by the Weyl lemma

for regular coefficients. See [Bro] and [N]. Hence we just have to prove the regularity ofu

at 0. Without loss of generality we can assume thatB1(0) ⊂ Ω. The idea of the proof is to
consider a convenient Fourier expansion of the solution and to show that the coefficients
corresponding to the singular radial part are zero. We divide the proof into several steps.

Step 1. Fourier expansion.Sinceu is regular forr > 0, expanding it in terms of{ψi}, the
eigenfunctions of the Laplace–Beltrami operator−∆σ in SN−1, we obtain

u(r, σ ) =

∑
i≥0

fi(r)ψi(σ ), where fi(r) =

∫
SN−1

u|∂Br (r, σ )ψi(σ ) dσ.
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Sinceu is a classical solution of (63) forr ∈ [ε,1], we get

∑
i≥0

{
f ′′

i (r)+
N − 1 − 2γ

r
f ′

i (r)−
ci

r2
fi

}
ψi(σ ) = 0.

Hence

f ′′

i (r)+
N − 1 − 2γ

r
f ′

1(r)−
ci

r2
fi = 0 for all i.

Therefore

f0(r) = A0r
2(γ+1)−N

+ B0, fi(r) = Air
αi + Bir

βi ,

where

αi =
−

[
N − 2(γ + 1)+

√
(N − 2(γ + 1))2 + 4ci

]
2

,

βi =

√
N − 2(γ + 1))2 + 4ci − (N − 2(γ + 1))

2
,

ci = i(N + i − 2) for i ≥ 0,

and 
A0(ε) =

εN−2(γ+1)(f0(ε)− f0(1))

1 − εN−2(γ+1)
,

B0(ε) =
f0(1)− εN−2(γ+1)f0(ε)

1 − εN−2(γ+1)
,

and 
Ai(ε) =

ε−αifi(ε)− εβi−αifi(1)

1 − εβi−αi
,

Bi(ε) =
fi(1)− ε−αifi(ε)

1 − εβi−αi
,

for i ≥ 1, where for allε > 0 we write

fi(ε) =

∫
SN−1

u|∂Bε (ε, σ )ψi(σ ) dσ.

Notice thatβi > 0 if i > 0. We conclude that forr ∈ (ε,1) we have

u(r, σ ) =
f0(1)− εN−2(γ+1)f0(ε)

1 − εN−2(γ+1)
+
εN−2(γ+1)(f0(ε)− f0(1))

1 − εN−2(γ+1)
r2(γ+1)−N

+

∑
i≥1

{
ε−αifi(ε)− εβi−αifi(1)

1 − εβi−αi
rαi +

fi(1)− ε−αifi(ε)

1 − εβi−αi
rβi

}
ψi(σ ).

Step 2. Decay of the coefficients.We claim that|εN−2(γ+1)fi(ε)| → 0. Notice that, as a
consequence,|ε−αifi(ε)| → 0 asε → 0 for all i ≥ 0. We first assume thati ≥ 1. Let
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φ ∈ C∞

0 (B). Sinceu is a solution to (63) and a classical solution for|x| > 0, we obtain

0 =

∫
u(Lγ (φ)) dx = lim

ε→0

∫
|x|>ε

uLγ (φ) dx

= lim
ε→0

{ ∫
|x|>ε

φLγ (u)−

∫
|x|=ε

|x|−2γ u〈∇φ, x/|x|〉 dσ

+

∫
|x|=ε

|x|−2γφ〈∇u, x/|x|〉 dσ

}
.

SinceLγ u(x) = 0 for |x| ≥ ε, by settingφ(x) = g(r)ψi0(σ ), whereg ∈ C∞([0, a)),
a < 1, g(0) = 1, with suppg ⊂ [0, a), and using the fact that forx = rσ we have
x ∇v = r∂v/∂r, and by the orthogonality of the spherical harmonics, we obtain

0 = lim
ε→0

{
−εN−1−2γ

∫
SN−1

(Ai0(ε)ε
αi0 + Bi0(ε)ε

βi0 )g′(ε)ψ2
i0
dσ

+ εN−2(γ+1)
∫
SN−1

(αi0Ai0(ε)ε
αi0 + βi0Bi0(ε)ε

βi0 )g(ε)ψ2
i0
dσ

}
.

Hence we conclude that

lim
ε→0

{εN−1−2γ (Ai0(ε)ε
αi0 + Bi0(ε)ε

βi0 )g′(ε)

− εN−2(γ+1)(αi0Ai0(ε)ε
αi0 + βi0Bi0(ε)ε

βi0 )g(ε)} = 0.

Therefore

0 = lim
ε→0

{εN−1−2γ ([fi0(ε)− εβi0fi0(1)] + [fi0(1)− ε−αi0fi0(ε)]ε
βi0 )g′(ε)

− εN−2(γ+1)(αi0[fi0(ε)− εβi0fi0(1)] + βi0[fi0(1)− ε−αi0fi0(ε)]ε
βi0 )g(ε)}.

Hence

lim
ε→0

{εN−1−2γ (fi0(ε)− εβi0−αi0fi0(ε))g
′(ε)

− εN−2(γ+1)(αi0fi0(ε)− βi0ε
βi0−αi0fi0(ε))g(ε)} = 0.

Finally, we obtain

lim
ε→0

{εN−2(γ+1)fi0(ε)[(ε − εβi0−αi0+1)g′(ε)− (αi0 − βi0ε
βi0−αi0 )g(ε)]} = 0. (64)

Since

(ε − εβi0−αi0+1)g′(ε)− (αi0 − βi0ε
βi0−αi0 )g(ε) → −αi0 asε → 0,

we obtain the claim in the casei ≥ 1.
If i = 0, then by settingφ(x) = g(r) and using the same argument as above we obtain

lim
ε→0

{εN−2(γ+1)f0(ε)[(ε − εN−2(γ+1)+1)g′(ε)+ (N − 2(γ + 1))g(ε)]} = 0. (65)

Then we conclude that limε→0 |εN−2(γ+1)f0(ε)| = 0 and the claim is proved.
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Step 3. Density argument and conclusion of the proof.We set

v(r, σ ) =

∑
i≥0

fi(1)r
βiψi(σ ),

which is the unique solution in the spaceCε(Ω) ∩ D1,2
γ,loc to the Dirichlet problem with

boundary datav = u on the unit sphere. We will prove thatu = v a.e. inB. Let φ ∈

C∞

0 (Ω) be such thatφ(r, σ ) = gi0(r)ψi0(σ ), wheregi0 ∈ C∞

0 ([0,1)) andi0 ≥ 1. Then∫
B

v(x)φ(x)|x|−2γ−1 dx = fi0(1)
∫ 1

0
gi0(r)r

N−2(γ+1)+βi0 dr.

On the other hand, by orthogonality we have

Ii0 ≡

∫
B

u(x)φ(x)|x|−2γ−1 dx = lim
ε→0

∫
|x|>2ε

u(x)φ(x)|x|−2γ−1 dx

= lim
ε→0

∫ 1

2ε

∫
SN−1

∞∑
i=0

(Ai(ε)r
αi + Bi(ε)r

bi )ψi(σ )φ(r, σ ) dσ

= lim
ε→0

∫ 1

2ε
(Ai(ε)r

αi + Bi(ε)r
bi )gi0(r)r

N−2(γ+1) dr

= lim
ε→0

∫ 1

2ε

{
ε−αi0fi0(ε)− εβi0−αi0fi0(1)

1 − εβi0−αi0
rαi0

}
gi0(r)r

N−2(γ+1) dr

+ lim
ε→0

∫ 1

2ε

{
fi0(1)− ε−αi0fi0(ε)

1 − εβi0−αi0
rβi0

}
gi0(r)r

N−2(γ+1) dr.

Since by step 2,|εN−2(γ+1)fi0(ε)| → 0 asε → 0, we conclude that

Ii0 = fi0(1)
∫ 1

0
gi0(r)r

N−2(γ+1)+βi0 dr.

If i0 = 0, then choosingφ(x) = g0(r) ∈ C∞

0 ([0,1)), by the same argument as above, we
obtain

I0 = f0(1)
∫ 1

0
g0(r)r

N−2(γ+1) dr.

Therefore we conclude that for allφ ∈ C∞

0 (B1(0)) of the formφ(x) = gi(r)ψi(σ ) we
have ∫

B

u(x)φ(x)|x|−2γ−1 dx =

∫
B

vφ(x)|x|−2γ−1 dx. (66)

Notice that (66) holds for allφ ∈ C(B) such thatφ(r, σ ) = g(r)ψi(σ ), whereg ∈

C([0,1]). We set

F =

{ n∑
k=0

gk(r)ψk(σ )

∣∣∣ n ∈ N andgk ∈ C∞([0,1]) for 0 ≤ k ≤ n
}
.

Then for allφ ∈ F we have∫
B

u(x)φ(x)|x|−2γ−1 dx =

∫
B

vφ(x)|x|−2γ−1 dx.
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Therefore using Lemma 7.1 we get the density ofF in C∞

0 (B1(0)) with respect to the
uniform convergence, hence∫

B

u(x)φ(x)|x|−2γ−1 dx =

∫
B

vφ(x)|x|−2γ−1 dx

for all φ ∈ C∞

0 (B1(0)). Sinceu(x)|x|−2γ−1, v(x)|x|−2γ−1
∈ L1(B1(0)) we obtain

u(x) = v(x) for a.e.x ∈ B1(0). ut

As a consequence (settingdµ = |x|−2γ−1dx) we get the next result.

Corollary 7.4. Letf ∈ L1(Ω). Then the problem

−Lγ (u) = f, u|∂Ω = 0, (67)

has a unique weak solutionu ∈ L1(dµ,Ω) such that

‖u‖L1(dµ,Ω) ≤ C‖f ‖L1(Ω), (68)

whereC depends onN, γ andΩ. Moreover, ifγ + 1> 0 we have

‖u‖L1(Ω) ≤ C‖f ‖L1(Ω).
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[AP4] Abdellaoui, B., Peral, I.: Ḧolder continuity and Harnack inequality for quasilinear parabolic
equations with weight. Preprint

[AgP] Aguilar, J. A., Peral, I.: Global behaviour of the Cauchy problem for some critical nonlinear
parabolic equations. SIAM J. Math. Anal.31, 1270–1294 (2000)

[BG] Baras, P., Goldstein, J.: The heat equation with a singular potential. Trans. Amer. Math.
Soc.284, 121–139 (1984) Zbl 0556.35063 MR 85f:35099

[BBC] Benilan, P., Brezis, H., Crandall, M.: A semilinear equation inL1(RN ). Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4)2, 523–555 (1975) Zbl 0314.35077 MR 52 #11299

[BM] Blanchard, D., Murat, F.: Renormalised solutions of nonlinear parabolic problems withL1

data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A127, 1137–1152 (1997)
Zbl 0895.35050 MR 98i:35096

[BCr] Brezis, H., Crandall, M.: Uniqueness of solutions of the initial-value problem for
ut − ∆ϕ(u) = 0. J. Math. Pures Appl. (9)58, 153–163 (1979) Zbl 0408.35054
MR 80e:35029

http://www.emis.de/MATH-item?1014.35023
http://www.ams.org/mathscinet-getitem?mr=2002k%3A35106
http://www.emis.de/MATH-item?0556.35063
http://www.ams.org/mathscinet-getitem?mr=85f%3A35099
http://www.emis.de/MATH-item?0314.35077
http://www.ams.org/mathscinet-getitem?mr=52%20%2311299
http://www.emis.de/MATH-item?0895.35050
http://www.ams.org/mathscinet-getitem?mr=98i%3A35096
http://www.emis.de/MATH-item?0408.35054
http://www.ams.org/mathscinet-getitem?mr=80e%3A35029


148 B. Abdellaoui et al.
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