Charles Pugh · Michael Shub · Alexander Starkov

Corrigendum to "Stable ergodicity and julienne quasi-conformality"

(J. Eur. Math. Soc. 2, 1–52)

Received May 26, 2003

Theorem B of [PS] is correct but its proof is not complete. The following result supplies the missing ingredient, which we tacitly assumed in the proof of Proposition 10.6. We recall the context.

G is a connected Lie group, $A : G \to G$ is an automorphism, *B* is a closed subgroup of *G* with A(B) = B, $g \in G$ is given, and the *affine diffeomorphism*

$$f: G/B \to G/B$$

is defined as f(xB) = gA(x)B. It is covered by the diffeomorphism

$$\bar{f} = L_g \circ A : G \to G,$$

where $L_g: G \to G$ is left multiplication by g.

 \overline{f} induces an automorphism of the Lie algebra $\mathfrak{g} = T_e G$, $\mathfrak{a}(\overline{f}) = ad(g) \circ T_e A$, where ad(g) is the adjoint action of g, and g splits into generalized eigenspaces,

$$\mathfrak{g}=\mathfrak{g}^u\oplus\mathfrak{g}^c\oplus\mathfrak{g}^s,$$

such that the eigenvalues of $\mathfrak{a}(\bar{f})$ are respectively outside, on, or inside the unit circle. The eigenspaces and the direct sums $\mathfrak{g}^{cu} = \mathfrak{g}^u \oplus \mathfrak{g}^c$, $\mathfrak{g}^{cs} = \mathfrak{g}^c \oplus \mathfrak{g}^s$ are Lie subalgebras and hence tangent to connected subgroups G^u , G^c , G^s , G^{cu} , G^{cs} .

Theorem 1. Let $f : G/B \to G/B$ be an affine diffeomorphism as above such that G/B is compact and supports a smooth G-invariant volume. Let H be any of the groups $G^u, G^c, G^s, G^{cu}, G^{cs}$. Then the orbits of the H-action on G/B foliate G/B. Moreover, f exponentially expands the G^u -leaves, exponentially contracts the G^s -leaves, and affects the G^c -leaves subexponentially.

The second author was supported in part by NSF Grant #DMS9988809.

The third author was supported by the Leading Scientific School Grant, No 457.2003.1.

C. Pugh: Department of Mathematics, University of California, Berkeley, CA 94720; e-mail: pugh@math.berkeley.edu

M. Shub: Department of Mathematics, University of Toronto, 100 St. George Street, Toronto, Ontario M5S 3G3, Canada and IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA; e-mail: shub@math.toronto.edu

A. Starkov: All-Russian Institute of Electrotechnics, Istra, Moscow region, Russia, 143500; e-mail: RDIEalex@istra.ru

Proof. Since $gA(H)g^{-1} = H$, and since H acts by left multiplication, it follows that the H-orbit partition of G is \overline{f} -invariant:

$$\bar{f}(Hx) = gA(Hx) = gA(H)A(x) = gA(H)g^{-1}gA(x) = H\bar{f}(x)$$

Since the orbits are right cosets, they are leaves of a foliation of *G*. Likewise, the orbit partition of G/B is *f*-invariant. Its orbits are sets of the form HxB, but it is not a priori clear that they foliate G/B. We distinguish two cases.

Case 1: The automorphism A is the identity map, i.e. f(xB) = gxB. Then under the assumption that G/B supports a smooth G-invariant volume, it is proved in [S] that for two of the subgroups H, namely G^u and G^s , the H-orbits do foliate G/B.

The orbits of a Lie group action are nonoverlapping smooth manifolds. Let E^u , ..., E^{cs} and J^u , ..., J^{cs} be the tangent bundles to the *H*-orbit partitions of *G* and *G/B* with respect to the *H*-actions, $H = G^u$, ..., G^{cs} . Continuity of the tangent bundle is equivalent to the orbit partition being a foliation. Thus E^u , ..., E^{cs} , J^u , and J^s are continuous. The other three bundles are continuous except for dimension discontinuity. We claim that

$$J^{u} + J^{cs} = T(G/M)$$
 and $J^{u} \cap J^{cs} = 0,$ (0.1)

from which it follows that J^{cs} is continuous. The first assertion is clear from the facts that $TG = E^u \oplus E^{cs}$, $T\pi(TG) = T(G/B)$, $T\pi(E^u) = J^u$, and $T\pi(E^{cs}) = J^{cs}$, where $\pi : G \to G/B$ is the natural projection.

There is a sixth $T\bar{f}$ -invariant subbundle of TG, the tangent bundle of the foliation of G by left B-cosets xB, which we call F. It is the kernel of $T\pi$. Since E^u and J^u are tangent to foliations, and π takes the leaves of the E^u -foliation to those of the J^u foliation, the rank of the restriction of $T\pi$ to E^u is constant. Hence $F \cap E^u$ is continuous.

Choose an inner product on $T_e G = \mathfrak{g}$ so that ad(g) expands \mathfrak{g}^u , contracts \mathfrak{g}^s , and is neutral on \mathfrak{g}^c . Extend the inner product to a right invariant Riemann metric on G, and let E_1^u be the orthogonal complement of $F \cap E^u$ in E^u . Fix any Riemann metric on G/B. From the compactness of G/B it follows that there exist a, b > 0 such that each vector $w \in J^u$ lifts to $v_1 \in E_1^u$, $T\pi(v_1) = w$, with $a||w|| \le ||v_1|| \le b||w||$. The derivative $T \bar{f}^n : TG \to TG$ exponentially stretches the E_1^u component of v_1 for n > 0, so the same is true of w—it is exponentially stretched by positive iterates of Tf.

On the other hand, any $w \in J^{cs}$ lifts to a vector in E^{cs} which is not exponentially stretched by positive iterates of $T\bar{f}$, so the same is true of w—it is not exponentially stretched by positive iterates of Tf. Thus, $J^u \cap J^{cs} = 0$, which completes the proof of (0.1), and hence of continuity of J^{cs} .

Symmetrically, J^{cu} is continuous. Then, working inside J^{cu} , the same reasoning shows that continuity of J^{u} leads to continuity of J^{c} . The *H*-orbits foliate G/B.

Case 2: The automorphism A is not the identity. Here we use a standard trick similar to the suspension of a diffeomorphism. With no loss of generality we assume that G is simply connected (replacing if needed B by its inverse image in the universal cover). Then the automorphism group $\operatorname{Aut}(G)$ is algebraic, and therefore the Zariski closure of the cyclic subgroup $A^{\mathbb{Z}} \subset \operatorname{Aut}(G)$ is an abelian group with finitely many connected components. In particular, there exist a one-parameter subgroup $C \subset \operatorname{Aut}(G)$ and a nonzero $k \in \mathbb{Z}$ such that $A^k \in C$. Let G_1 be the semidirect product of G and C, and B_1 the semidirect

product of *B* and $A^{k\mathbb{Z}}$. Then G_1/B_1 fibres over the circle $C/A^{k\mathbb{Z}}$ with fibres isomorphic to G/B, and hence has a smooth G_1 -invariant volume [R]. Clearly, G_1 is a connected Lie group and $f^k = L_h \circ A^k \in G_1$ for some $h = h(g, A, k) \in G$. Apply Case 1 to the left translation of G_1 by f^k . The resulting stable and unstable leaves are contained in the G/B-fibres while the center leaves are transverse to the fibres. Thus the *H*-orbits foliate G/B.

References

- [PS] Pugh, C., Shub, M.: Stable ergodicity and julienne quasiconformality. J. Eur. Math. Soc. 2, 1–52 (2000) Zbl 0964.37017 MR 2003j:37046
- [R] Raghunathan, M. S.: Discrete Subgroups of Lie Groups. Springer, Berlin (1972) Zbl 0254.22005 MR 58 #22394a
- [S] Starkov, A. N.: Horospherical flows on homogeneous spaces of finite volumes. Math. USSR Sbornik 73, 161–170 (1992) Zbl 0782.58042 MR 92f:58131