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1. Introduction

Forn ≥ 3, consider

− 1u = n(n − 2)u
n+2
n−2 onRn. (1)

It was proved by Gidas, Ni and Nirenberg [21] that any positiveC2 solution of (1) satis-
fying

lim inf
|x|→∞

|x|
n−2u(x) < ∞, (2)

must be of the form

u(x) ≡

(
a

1 + a2|x − x̄|2

)(n−2)/2

,

wherea > 0 is some constant and̄x ∈ Rn.
Hypothesis (2) was removed by Caffarelli, Gidas and Spruck in [8]; this is important

for applications. Such Liouville type theorems have been extended to general conformally
invariant fully nonlinear equations by Li and Li ([24]–[27]); see also related works of
Viaclovsky ([40]–[41]) and Chang, Gursky and Yang ([13]–[14]). The method used in
[21], as well as in much of the above cited work, is the method of moving planes. The
method of moving planes has become a very powerful tool in the study of nonlinear
elliptic equations; see Aleksandrov [1], Serrin [38], Gidas, Ni and Nirenberg [21]–[22],
Berestycki and Nirenberg [2], and others.

In [30], Li and Zhu gave a proof of the above mentioned theorem of Caffarelli, Gi-
das and Spruck using the method of moving spheres (i.e. the method of moving planes
together with the conformal invariance), which fully exploits the conformal invariance
of the problem and, as a result, captures the solutions directly rather than going through
the usual procedure of proving radial symmetry of solutions and then classifying radial
solutions. Significant simplifications to the proof in [30] have been made in Li and Zhang
[29]. The method of moving spheres has been used in [24]–[27].

Liouville type theorems for various conformally invariant equations have received
much attention; see, in addition to the above cited papers, [23], [17], [15], [33], [42]
and [43].
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In this paper we study some conformally invariant integral equations. Lieb proved
in [31], among other things, that there exist maximizing functions,f , for the Hardy–
Littlewood–Sobolev inequality onRn:∥∥∥∥∫

Rn

f (y)

| · −y|λ
dy

∥∥∥∥
Lq (Rn)

≤ Np,λ,n‖f ‖Lp(Rn),

with Np,λ,n being the sharp constant and 1/p + λ/n = 1 + 1/q, 1 < p, q, n/λ < ∞,
n ≥ 1. Whenp = q ′

= q/(q − 1) or p = 2 or q = 2, Np,λ,n and the maximizing
f ’s are explicitly evaluated. Whenp = q ′, i.e., p = 2n/(2n − λ) andq = 2n/λ, the
Euler–Lagrange equation for a maximizingf is, modulo a positive constant multiple,

f (x)p−1
=

∫
Rn

f (y)

|x − y|λ
dy. (3)

Writing λ = n − α andu = f p−1, we have 0< α < n, and equation (3) becomes

u(x) =

∫
Rn

u(y)
n+α
n−α

|x − y|n−α
dy, ∀x ∈ Rn. (4)

As mentioned above, maximizing solutionsf of (3) are classified in [31] and they
are, in terms ofu, of the form

u(x) ≡

(
a

d + |x − x̄|2

)(n−α)/2

, (5)

wherea, d > 0 andx̄ ∈ Rn. Of course,a is a fixed constant depending only onn andα,
while d andx̄ are free.

Equation (4), or (3), is conformally invariant in the following sense. Letv be a positive
function onRn. Forx ∈ Rn andλ > 0, we define

vx,λ(ξ) =

(
λ

|ξ − x|

)n−α

v(ξx,λ), ξ ∈ Rn, (6)

where

ξx,λ
= x +

λ2(ξ − x)

|ξ − x|2
. (7)

Then, ifu is a solution of (4), so isux,λ for anyx ∈ Rn andλ > 0. The conformal invari-
ance of (4) was used in [31]. More studies on issues concerning the Hardy–Littlewood–
Sobolev inequality, among other things, were made by Carlen and Loss in [9]–[12], where
the conformal invariance of the problem was further exploited.

After classifying all maximizing solutions of (3), Lieb raised the beautiful question
(page 361 of [31]) on the (essential) uniqueness of solutions of (3), or equivalently, of (4).
He produced (page 363 of [31]) a nontrivial 2n-parameter family of solutions of equation
(3), or (4), which are not as regular as the maximizers. For instance, modulo a positive
constant,|x|

(α−n)/2 is a solution of (4).
In a recent paper, Chen, Li and Ou established the following result which answers the

question of Lieb in the class ofL∞

loc(R
n).
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Theorem 1.1 ([18]). Let u ∈ L∞

loc(R
n) be a positive function satisfying(4). Thenu is

given by(5) for some constantsa, d > 0 and somēx ∈ Rn.

In an earlier version of the present paper ([28, version one]), we gave a simpler proof of
Theorem 1.1. The proof, in the spirit of [30] and [29] and following Section 2 of [29],
fully exploits the conformal invariance of the integral equation. It is different from the one
in [18]. In particular, we do not follow the usual procedure of proving radial symmetry of
solutions and then classifying radial solutions, and we do not need to distinguishn ≥ 2
and n = 1. For the method of moving spheres or moving planes, there are, roughly
speaking, three steps: one is to get started with the procedure, second is to prove that the
function and the reflected one coincide if the procedure stops, and the third is to handle
the case when the procedure never stops. Our arguments are also different for handling
these steps. This proof is presented in Section 2.

Lieb pointed out to us that his question also concerns functions which are not in
L∞

loc(R
n). In particular, it is not known a priori that maximizers are inL∞

loc(R
n). This has

led us to study the question further and to establish

Theorem 1.2. For n ≥ 1 and0 < α < n, let u ∈ L
2n/(n−α)

loc (Rn) be a positive solution
of (4). Thenu ∈ C∞(Rn).

An answer to the question of Lieb is therefore known in the classL
2n/(n−α)

loc (Rn). The

above mentioned solution|x|
(α−n)/2 does not belong toL2n/(n−α)

loc (Rn), though it belongs
to Lt

loc(R
n) for any t < 2n/(n − α). The question remains unanswered for the class

Lt
loc(R

n) for t < 2n/(n − α). See [34] and the references therein for related results.
In the process of proving Theorem 1.2, we have established the following result which

should be of independent interest.
Forn ≥ 1 and 0< α < n, let V ∈ Ln/α(B3) be a nonnegative function, and set

δ(V ) := ‖V ‖Ln/α(B3)
. (8)

Theorem 1.3. For n ≥ 1, 0 < α < n and ν > r > n/(n − α), there exist positive
constants̄δ < 1 andC ≥ 1, depending only onn, α, r andν, such that for any0 ≤ V ∈

Ln/α(B3) with δ(V ) ≤ δ̄, h ∈ Lν(B2), and0 ≤ u ∈ Lr(B3) satisfying

u(x) ≤

∫
B3

V (y)u(y)

|x − y|n−α
dy + h(x), x ∈ B2, (9)

we have
‖u‖Lν (B1/2) ≤ C(‖u‖Lr (B3) + ‖h‖Lν (B2)). (10)

Corollary 1.1. For n ≥ 1, 0 < α < n, ν > r > n/(n − α) and R2 > R1 > 0, let
0 ≤ V ∈ Ln/α(BR2), h ∈ Lν(BR1) and0 ≤ u ∈ Lr(BR2) satisfy

u(x) ≤

∫
BR2

V (y)u(y)

|x − y|n−α
dy + h(x), x ∈ BR1.

Then, for someε > 0, u ∈ Lν(Bε).

Remark 1.1. After we proved Theorems 1.2 and 1.3 in [28, version two], a revision of
[18] was made which included another proof of Theorem 1.2.
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For α = 2 andn ≥ 3, Theorem 1.3 is essentially equivalent to a result of Brezis and
Kato (Theorem 2.3 in [6]), so it can be viewed as an integral equation analogue of their
theorem. When informed of Theorem 1.3. Brezis kindly pointed out that it is similar to,
though not the same as, Lemma A.1 in [7]. Indeed, our proof of the theorem makes use
of special properties of the potential|x|

α−n, and it is not clear to us at this point whether
the conclusion of the theorem still holds if we replace|x|

α−n by anyY ∈ L
n/(n−α)
w , the

weakLn/(n−α) space, as in Lemma A.1 of [7]. Theorem 1.2, Theorem 1.3 and Corollary
1.1 are established in Section 2.

We also study some equations similar to (4), though they do not have the same kind
of conformal invariance property. Forn ≥ 1, 0 < α < n andµ > 0, letu be a positive
Lebesgue measurable function inRn satisfying

u(x) =

∫
Rn

u(y)µ

|x − y|n−α
dy, ∀x ∈ Rn. (11)

Theorem 1.4. Letn ≥ 1 and0 < α < n.

(i) For 0 < µ < n/(n − α), equation(11)does not have any positive Lebesgue measur-
able solutionu, unlessu ≡ ∞.

(ii) For n/(n − α) ≤ µ < (n + α)/(n − α), equation(11) does not have any positive
solutionu ∈ L

n(µ−1)/α

loc (Rn).

For µ > (n + α)/(n − α), we know from Lemma 4.2 that ifu is a positive solution in
L

n(µ−1)/α

loc (Rn), thenu must be inC∞(Rn). Theorem 1.4 is proved in Section 4.
In [24]–[27], all conformally invariant second order fully nonlinear equations are clas-

sified and Liouville type theorems are established for the elliptic ones. It would be inter-
esting to identify as many as possible conformally invariant integral equations for which
(essential) uniqueness of solutions can be obtained. One class of such equations, similar
to (4), is

u(x) =

∫
Rn

|x − y|
pu(y)−(2n+p)/p dy, ∀x ∈ Rn,

wheren ≥ 1 andp > 0. We study more general equations, similar to (11), including
those which are not conformally invariant.

For n ≥ 1 andp, q > 0, letu be a nonnegative Lebesgue measurable function inRn

satisfying

u(x) =

∫
Rn

|x − y|
pu(y)−q dy, ∀x ∈ Rn. (12)

Theorem 1.5. For n ≥ 1, p > 0 and0 < q ≤ 1+2n/p, letu be a nonnegative Lebesgue
measurable function inRn satisfying(12). Thenq = 1 + 2n/p and, for some constants
a, d > 0 and somēx ∈ Rn,

u(x) ≡

(
d + |x − x̄|

2

a

)p/2

. (13)

Remark 1.2. For somea = a(n, p) > 0, (13) indeed solves (12) withq = 1 + 2n/p.
This is proved in Appendix A. The argument also shows that, modulo a constant, (5) is a
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solution of (4), a known fact whose proofs can be found in [39, page 131], [31], and, for
n ≥ 2, in [36]. Our proof is different.

The proof of Theorem 1.5, similar to our proof of Theorem 1.1, is given in Section 5. It
turns out that forn = 3, p = 1 andq = 7, integral equation (12) is associated with some
fourth order conformal covariant operator on 3-dimensional compact Riemannian man-
ifolds, arising from the study of conformal geometry. See, e.g., Paneitz [37], Fefferman
and Graham [19], Branson [3] and Chang and Yang [16].

Question 1. Is equation(12), in the casep > 0 and q = 1 + 2n/p, associated with
some kind of pseudo-differential conformal covariant operators onn-dimensional com-
pact Riemannian manifolds, the same way the casen = 3, p = 1 andq = 7 is associated
with the above mentioned fourth order conformal covariant operator?

After posting [28, version one] on the Archive and essentially completing the proof of
Theorem 1.5, we became aware of some recent work of Xu [44] where he proved Theo-
rem 1.5 in the special casen = 3, p = 1 andu ∈ C4(R3). He also proved in the same
paper that forn = 3, p = 1 andq > 7 (= 1 + 2n/p), equation (12) does not admit
any nonnegative solutionu in C4(R3). Radial solutions of the biharmonic equations cor-
responding to (12) withn = 3 andp = 1 were studied by McKenna and Reichel in [35].

Question 2. Is it true that for alln ≥ 1, p > 0 andq > 1 + 2n/p equation(12) does
not admit any positive solutions?

We point out that if we consider the integral equations of the form

u(x) =

∫
Rn

G(|x − y|, u(y)) dy, u > 0, ∀x ∈ Rn, (14)

and consider the transformation of the form

ux,λ(ξ) = h

((
λ

|ξ − x|

)2n)
u(ξx,λ),

whereξx,λ is given by (7), and wish that

h

((
λ

|ξ − x|

)2n)∫
Rn

G(|ξx,λ
− y|, u(y)) dy ≡

∫
Rn

G(|ξ − z|, ux,λ(z)) dz (15)

for all x, ξ ∈ Rn, λ > 0 and all positive functionsu, then we are only led to equation
(4) and equation (12) withq = 1+ 2n/p together with the transformations we use in the
paper. Note that condition (15) guarantees that wheneveru is a solution of (14) so isux,λ

for all x ∈ Rn andλ > 0. The quantity(λ/|ξ − x|)2n is the Jacobian of the conformal
transformationξ 7→ ξx,λ.

It looks worthwhile to study equation (12) on a bounded domain (existence of solu-
tions, etc.). In this connection, we draw the reader’s attention to some works of Brezis
and Cabre [4] and Brezis, Dupaigne and Tesei [5].
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2. Proof of Theorem 1.3, Corollary 1.1 and Theorem 1.2

In this section we prove Theorem 1.3. Let

ξ(x) :=
∫

B3

V (y)u(y)

|x − y|n−α
dy + h(x) − u(x) ≥ 0, x ∈ B2.

Then
u(x) = (Lu)(x) + f (x) + h(x) − ξ(x), x ∈ B2, (16)

where

(Lu)(x) =

∫
B2

V (y)u(y)

|x − y|n−α
dy, x ∈ B2,

and

f (x) =

∫
2<|y|<3

V (y)u(y)

|x − y|n−α
dy.

Let p be determined by 1/r = 1/p − α/n. Thenp > 1 and therefore, by the property of
the Riesz potential (see, e.g., Theorem 1 on page 119 of [39]),

‖Lu‖Lr (B2) ≤ C‖V u‖Lp(B2) = C(‖V pup
‖L1(B2)

)1/p

≤ C(‖V p
‖Lr/(r−p)(B2)

‖up
‖Lr/p(B2)

)1/p
≤ C‖V ‖Ln/α(B2)

‖u‖Lr (B2), (17)

whereC depends onα, n andr. Similarly

‖f ‖Lr (B2) ≤ C‖V ‖Ln/α(B3)
‖u‖Lr (B3). (18)

It follows, using also the factu, ξ ≥ 0, that

‖ξ‖Lr (B2) ≤ C‖V ‖Ln/α(B3)
‖u‖Lr (B3) + C‖h‖Lr (B2). (19)

For i = 1, 2, . . . , let

Gi(z) = min

(
1

|z|n−α
, i

)
, ui(z) = min(u(z), i),

ξi(x) = min(ξ(x), i) , fi(x) =

∫
2<|y|<3

Gi(x − y)V (y)u(y) dy.

We now give some preliminary estimates on{fi}:

Lemma 2.1. There exists some constantC, depending only onn andα, such that

‖fi‖L∞(B1) ≤ C‖u‖Lr (B3), ‖fi‖Lr (B2) ≤ C‖u‖Lr (B3). (20)

Moreover, for anyp < r,
lim

i→∞
‖fi − f ‖Lp(B2) = 0. (21)
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Proof. The first inequality in (20) follows easily:

‖fi‖L∞(B1) ≤ ‖f ‖L∞(B1) ≤ C(n, α)

∫
2<|y|<3

V (y)u(y) dy ≤ C(n, α)‖u‖Lr (B3).

Note that we have used the hypothesis‖V ‖Ln/α(B3)
≤ δ̄ < 1. The second inequality in

(20) follows from (18).
By the Fubini theorem,

lim
i→∞

‖fi − f ‖L1(B2)
≤ lim

i→∞

∥∥∥∥Gi(·) −
1

| · |n−α

∥∥∥∥
L1(B5)

∫
2<|y|<3

V (y)u(y) dy = 0.

We deduce (21) from this and the second inequality in (20) using Hölder’s inequality. ut

Consider the following integral equation onw:

w(x) = (Liw)(x) + fi(x) + h(x) − ξi(x), x ∈ B2, (22)

where

(Liw)(x) :=
∫

|y|<2
Gi(x − y)V (y)w(y) dy.

Lemma 2.2. For r ≤ q ≤ ν, there exist some0 < δ̄ < 1 andC ≥ 1, depending only on
α, n, r andq, such that if0 < δ(V ) ≤ δ̄, then, for alli, there existswi ∈ Lq(B2) solving
(22)with w = wi , satisfying

‖wi‖Lr (B2) + ‖w+

i ‖Lq (B1/2) ≤ C(‖u‖Lr (B3) + ‖h‖Lr (B2)), (23)

wherew+

i (x) = max(wi(x), 0).

Proof. Define, forw ∈ Lq(B2),

(Tiw)(x) = (Liw)(x) + fi(x) + h(x) − ξi(x), x ∈ B2.

Clearly,Li, Ti : Lq(B2) → Lq(B2).
Let p be determined by 1/q = 1/p − α/n. Then, using the property of the Riesz

potential as in (17), we obtain

‖Liw‖Lq (B2) ≤ ‖L(|w|)‖Lq (B2) ≤ C‖V ‖Ln/α(B2)
‖w‖Lq (B2) ≤ Cδ̄‖w‖Lq (B2).

Here and below (various) constantsC ≥ 1 depend only onr, q, α andn. Thus

‖Tiw‖Lq (B2) ≤ Cδ̄‖w‖Lq (B2) + ‖fi‖Lq (B2) + ‖h‖Lq (B2) + ‖ξi‖Lq (B2), (24)

and
‖Ti(w − v)‖Lq (B2) ≤ ‖Li(w − v)‖Lq (B2) ≤ Cδ̄‖w − v‖Lq (B2).

Fix some positivēδ with Cδ̄ ≤ 1/2 and set

Ei = {w ∈ Lq(B2) | ‖w‖Lq (B2) ≤ 2(‖fi‖Lq (B2) + ‖h‖Lq (B2) + ‖ξi‖Lq (B2))} ⊂ Lq(B2).



160 YanYan Li

ThenTi mapsEi to itself and is a contraction map. So there exists somewi ∈ Ei such
thatTi(wi) = wi , i.e.,

wi(x) =

∫
|y|<2

Gi(x − y)V (y)wi(y) dy + fi(x) + h(x) − ξi(x), x ∈ B2. (25)

Takingq = r in (24), we deduce from (25) and (20) that

‖wi‖Lr (B2) ≤
1
2‖wi‖Lr (B2) + ‖fi‖Lr (B2) + ‖h‖Lr (B2) + ‖ξ‖Lr (B2).

The estimate of‖wi‖Lr (B2) in (23) follows from this, in view of (19) and the second
inequality in (20).

Next we establish the second inequality in (23). For 0< t < s < 1, we have, by (25),

w+

i (x) ≤ Ii(x) + IIi(x) + fi(x) + h(x),

where

Ii(x) =

∫
|y|<s

V (y)w+

i (y)

|x − y|n−α
dy, IIi(x) =

∫
s<|y|<2

V (y)w+

i (y)

|x − y|n−α
dy.

By the property of the Riesz potential,

‖Ii‖Lq (Bt ) ≤ C‖V w+

i ‖Lp(Bs ) ≤ C‖V ‖Ln/α(Bs )
‖w+

i ‖Lq (Bs )

≤ Cδ̄‖w+

i ‖Lq (Bs ) ≤
1
2‖w+

i ‖Lq (Bs ).

Using the estimate of‖wi‖Lr (B2) in (23) yields

‖IIi‖Lq (Bt ) ≤ C(s − t)α−n

∫
s<|y|<2

V (y)w+

i (y) dy

≤ C(s − t)α−n
‖wi‖Lr (B2) ≤ C(s − t)α−n(‖u‖Lr (B3) + ‖h‖Lr (B2)).

With (20) and the above estimates, we have, for all 0< t < s < 1,

‖w+

i ‖Lq (Bt ) ≤
1
2‖w+

i ‖Lq (Bs ) + C(s − t)α−n(‖u‖Lr (B3) + ‖h‖Lr (B2)).

By a calculus lemma (see, e.g., page 32 of [20]), we have, for a possibly largerC, still
depending only onr, q, α andn,

‖w+

i ‖Lq (Bt ) ≤ C(s − t)α−n(‖u‖Lr (B3) + ‖h‖Lr (B2)), ∀0 < t < s < 1.

The estimate of‖w+

i ‖Lq (B1/2) in (23) follows from the above. Lemma 2.2 is proved.ut

Proof of Theorem 1.3.For anyr < q ≤ ν, let δ̄ > 0 and{wi} ∈ Lq(B2) be given by
Lemma 2.2. Since∫

|y|<2
V (y)wi(y) dy ≤ C‖V ‖Ln/α(B2)

‖wi‖Lr (B2) ≤ C

for someC independent ofi, we have

lim
|z|→0

sup
i

‖(Liwi)(· + z) − (Liwi)(·)‖L1(B2)
= 0.

Therefore{Liwi} is precompact inL1(B2).
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We know from Lemma 2.1 that{fi} converges tof in L1(B2). So{wi} is precompact
in L1(B2). After passing to a subsequence,wi → w in L1(B2). In view of (23),w ∈

Lr(B2), wi → w in Lp(B2) for all p < r, w+
∈ Lq(B1/2), and

‖w+
‖Lq (B1/2) ≤ C(‖u‖Lr (B3) + ‖h‖Lν (B2)). (26)

It follows thatLiwi → Lw in L1(B2). Thus,

w(x) =

∫
|y|<2

V (y)w(y)

|x − y|n−α
dy + f (x) + h(x) − ξ(x), a.e. x ∈ B2.

Taking the difference of this and (16), we obtain

(u − w)(x) =

∫
|y|<2

V (y)(u − w)(y)

|x − y|n−α
dy, a.e. x ∈ B2.

By the usual estimates and using 0< δ(V ) ≤ δ̄ andCδ̄ ≤ 1/2, we infer that

‖u − w‖Lr (B2) ≤ Cδ̄‖u − w‖Lr (B2) ≤
1
2‖u − w‖Lr (B2).

It follows thatu = w a.e. inB2. Theorem 1.3 follows from (26). ut

Proof of Corollary 1.1. For ε > 0 small, let

uε(x) = ε(n−α)/2u(εx), Vε(x) = εαV (εx), x ∈ B3,

and

hε(x) = ε(n−α)/2
∫

3ε<|y|<R2

V (y)u(y)

|εx − y|n−α
dy + ε(n−α)/2h(εx).

Then

uε(x) ≤

∫
B3

Vε(y)uε(y)

|x − y|n−α
dy + hε(x), x ∈ B2.

Clearly,uε ∈ Lr(B3) andhε ∈ Lν(B2). Let δ̄ > 0 be the number in Theorem 1.3, and fix
some smallε > 0 so that

‖Vε‖Ln/α(B3)
= ‖V ‖Ln/α(B3ε)

< δ̄.

Applying Theorem 1.3 touε , we haveuε ∈ Lν(B1/2), i.e.u ∈ Lν(Bε/2). ut

Proof of Theorem 1.2.Sinceu ∈ L
2n/(n−α)

loc (Rn), we have, by (4), for some|x̄| < 1,∫
|y|>2

u(y)
n+α
n−α

|y|n−α
dy ≤ C

∫
|y|>2

u(y)
n+α
n−α

|x̄ − y|n−α
dy ≤

∫
Rn

u(y)
n+α
n−α

|x̄ − y|n−α
dy = u(x̄) < ∞.

(27)
For anyR > 0, we write

u(x) = IR(x) + IIR(x) :=

( ∫
|y|≤2R

+

∫
|y|>2R

)
u(y)

n+α
n−α

|x − y|n−α
dy. (28)
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Take

V (x) = u(x)
2α

n−α , h(x) =

∫
|y|>2R

u(y)
n+α
n−α

|x − y|n−α
dy.

Sinceu ∈ L
2n/n−α

loc (Rn), we haveV ∈ L
n/α

loc (Rn). By (27),h ∈ L∞(BR). For anyν >

n/(n − α), we have, by Corollary 1.1,u ∈ Lν(Bε(ν)) for someε(ν) > 0. Since any
point can be taken as the origin, we have proved thatu ∈ Lν

loc(R
n) for all 1 < ν < ∞.

By the Hölder inequality,IR ∈ L∞(BR). By (27), we can differentiateIIR(x) under the
integral sign for|x| < R, soIIR ∈ C∞(Rn). SinceR is arbitrary,u ∈ L∞

loc(R
n). Back

to (28), IR is at least Ḧolder continuous inBR. SinceR > 0 is arbitrary,u is Hölder
continuous inRn. Now u(n+α)/(n−α) is Hölder continuous inB2R, the regularity ofIR

further improves and, by bootstrap, we eventually haveu ∈ C∞(Rn). ut

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. As shown in the last paragraph of Section 2,u ∈

C∞(Rn). By (4) and the Fatou lemma,

β := lim inf
|x|→∞

|x|
n−αu(x) = lim inf

|x|→∞

∫
Rn

|x|
n−αu(y)

n+α
n−α

|x − y|n−α
dy ≥

∫
Rn

u(y)
n+α
n−α dy > 0. (29)

For x ∈ Rn, λ > 0, and a positive functionv on Rn, let vx,λ be given by (6). Making a
change of variables

y = zx,λ
= x +

λ2(z − x)

|z − x|2
,

we have

dy =

(
λ

|z − x|

)2n

dz.

Thus ∫
|y−x|≥λ

v(y)
n+α
n−α

|ξx,λ − y|n−α
dy =

∫
|z−x|≤λ

v(zx,λ)
n+α
n−α

|ξx,λ − zx,λ|n−α

(
λ

|z − x|

)2n

dz

=

∫
|z−x|≤λ

vx,λ(z)
n+α
n−α

|ξx,λ − zx,λ|n−α

(
λ

|z − x|

)n−α

dz.

Since
|z − x|

λ

|ξ − x|

λ
|ξx,λ

− zx,λ
| = |ξ − z|, (30)

we have (
λ

|ξ − x|

)n−α ∫
|y−x|≥λ

v(y)
n+α
n−α

|ξx,λ − y|n−α
dy =

∫
|z−x|≤λ

vx,λ(z)
n+α
n−α

|ξ − z|n−α
dz. (31)

Similarly,(
λ

|ξ − x|

)n−α ∫
|y−x|≤λ

v(y)
n+α
n−α

|ξx,λ − y|n−α
dy =

∫
|z−x|≥λ

vx,λ(z)
n+α
n−α

|ξ − z|n−α
dz. (32)
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For a positive solutionu of (4), applying (31) and (32) withv = u andv = ux,λ, and
using the fact that(ξx,λ)x,λ

= ξ and(vx,λ)x,λ ≡ v, we obtain

ux,λ(ξ) =

∫
Rn

ux,λ(z)
n+α
n−α

|ξ − z|n−α
dz, ∀ξ ∈ Rn, (33)

and

u(ξ) − ux,λ(ξ) =

∫
|z−x|≥λ

K(x, λ; ξ, z)[u(z)
n+α
n−α − ux,λ(z)

n+α
n−α ] dz, (34)

where

K(x, λ; ξ, z) =
1

|ξ − z|n−α
−

(
λ

|ξ − x|

)n−α 1

|ξx,λ − z|n−α
.

It is elementary to check that

K(x, λ; ξ, z) > 0, ∀|ξ − x|, |z − x| > λ > 0.

Formula (33) is the conformal invariance of the integral equation (4) (see [31] and [32]).

Lemma 3.1. For x ∈ Rn, there existsλ0(x) > 0 such that

ux,λ(y) ≤ u(y), ∀0 < λ < λ0(x), |y − x| ≥ λ. (35)

Proof. The proof is essentially the same as that of Lemma 2.1 in [29]. For the reader’s
convenience, we include the details. Without loss of generality we may assumex = 0,
and we use the notationuλ = u0,λ.

Sinceα < n andu is a positiveC1 function, there existsr0 > 0 such that

∇y(|y|
(n−α)/2u(y)) · y > 0, ∀0 < |y| < r0.

Consequently,
uλ(y) < u(y), ∀0 < λ < |y| < r0. (36)

By (29) and the positivity and continuity ofu,

u(z) ≥
1

C(r0)|z|n−α
∀|z| ≥ r0. (37)

For smallλ0 ∈ (0, r0) and for 0< λ < λ0,

uλ(y) =

(
λ

|y|

)n−α

u

(
λ2y

|y|2

)
≤

(
λ0

|y|

)n−α

sup
Br0

u ≤ u(y), ∀|y| ≥ r0.

Estimate (35), withx = 0 andλ0(x) = λ0, follows from (36) and the above. ut

Define, forx ∈ Rn,

λ̄(x) = sup{µ > 0 | ux,λ(y) ≤ u(y) ∀0 < λ < µ, |y − x| ≥ λ}.

Lemma 3.2. If λ̄(x̄) < ∞ for somex̄ ∈ Rn, then

ux̄,λ̄(x̄) ≡ u onRn. (38)
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Proof. Without loss of generality, we may assumex̄ = 0, and we use notations̄λ =

λ̄(0), uλ = u0,λ. By the definition ofλ̄,

uλ̄(y) ≤ u(y), ∀|y| ≥ λ̄. (39)

By (34), with x = 0 andλ = λ̄, and the positivity of the kernel, eitheruλ̄(y) = u(y)

for all |y| ≥ λ̄—then we are done—oruλ̄(y) < u(y) for all |y| > λ̄, which we assume
below. By the Fatou lemma,

lim inf
|y|→∞

|y|
n−α(u − uλ̄)(y) = lim inf

|y|→∞

∫
|z|≥λ̄

|y|
n−αK(0, λ̄; y, z)[u(z)

n+α
n−α − uλ̄(z)

n+α
n−α ] dz

≥

∫
|z|≥λ̄

(
1 −

(
λ̄

|z|

)n−α)
[u(z)

n+α
n−α − uλ̄(z)

n+α
n−α ] dz > 0.

Consequently, there existsε1 ∈ (0, 1) such that

(u − uλ̄)(y) ≥
ε1

|y|n−α
∀|y| ≥ λ̄ + 1.

By the above and the explicit formula foruλ, there exists 0< ε2 < ε1 such that

(u−uλ)(y) ≥
ε1

|y|n−α
+(uλ̄ −uλ)(y) ≥

ε1

2|y|n−α
∀|y| ≥ λ̄+1, λ̄ ≤ λ ≤ λ̄+ε2. (40)

Now, for ε ∈ (0, ε2) which we choose below, we have, forλ̄ ≤ λ ≤ λ̄ + ε and for
λ ≤ |y| ≤ λ̄ + 1,

(u − uλ)(y) =

∫
|z|≥λ

K(0, λ; y, z)[u(z)
n+α
n−α − uλ(z)

n+α
n−α ] dz

≥

∫
λ≤|z|≤λ̄+1

K(0, λ; y, z)[u(z)
n+α
n−α − uλ(z)

n+α
n−α ] dz

+

∫
λ̄+2≤|z|≤λ̄+3

K(0, λ; y, z)[u(z)
n+α
n−α − uλ(z)

n+α
n−α ] dz

≥

∫
λ≤|z|≤λ̄+1

K(0, λ; y, z)[uλ̄(z)
n+α
n−α − uλ(z)

n+α
n−α ] dz

+

∫
λ̄+2≤|z|≤λ̄+3

K(0, λ; y, z)[u(z)
n+α
n−α − uλ(z)

n+α
n−α ] dz.

Because of (40), there existsδ1 > 0 such that

u(z)
n+α
n−α − uλ(z)

n+α
n−α ≥ δ1, λ̄ + 2 ≤ |z| ≤ λ̄ + 3.

Since
K(0, λ; y, z) = 0, ∀|y| = λ,

∇yK(0, λ; y, z)·y
∣∣
|y|=λ

= (n−α)|y−z|α−n−2(|z|2−|y|
2) > 0, ∀λ̄+2 ≤ |z| ≤ λ̄+3,

and the function is smooth in the relevant region, we have, using also the positivity of the
kernel,

K(0, λ; y, z) ≥ δ2(|y| − λ), ∀λ̄ ≤ λ ≤ |y| ≤ λ̄ + 1, λ̄ + 2 ≤ |z| ≤ λ̄ + 3,
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whereδ2 > 0 is some constant independent ofε. It is easy to see that for some constant
C > 0 independent ofε, we have, for̄λ ≤ λ ≤ λ̄ + ε,

|uλ̄(z)
n+α
n−α − uλ(z)

n+α
n−α | ≤ C(λ − λ̄) ≤ Cε, ∀λ̄ ≤ λ ≤ |z| ≤ λ̄ + 1,

and (recall thatλ ≤ |y| ≤ λ̄ + 1)∫
λ≤|z|≤λ̄+1

K(0, λ; y, z) dz ≤

∣∣∣∣∫
λ≤|z|≤λ̄+1

(
1

|y − z|n−α
−

1

|yλ − z|n−α

)
dz

∣∣∣∣
+

∫
λ≤|z|≤λ̄+1

∣∣∣∣( λ

|y|

)n−α

− 1

∣∣∣∣ 1

|yλ − z|n−α
dz

≤ C|yλ
− y| + C(|y| − λ) ≤ C(|y| − λ).

It follows from the above that for smallε > 0 we have, for̄λ ≤ λ ≤ λ̄ + ε andλ ≤ |y| ≤

λ̄ + 1,

(u − uλ)(y) ≥ −Cε

∫
λ≤|z|≤λ̄+1

K(0, λ; y, z) dz + δ1δ2(|y| − λ)

∫
λ̄+2≤|z|≤λ̄+3

dz

≥

(
δ1δ2

∫
λ̄+2≤|z|≤λ̄+3

dz − Cε

)
(|y| − λ) ≥ 0.

This and (40) violate the definition ofλ̄. Lemma 3.2 is established. ut

By the definition ofλ̄(x),

ux,λ(y) ≤ u(y), ∀0 < λ < λ̄(x), |y − x| ≥ λ.

Multiplying the above by|y|
n−α and sending|y| to infinity yields

β = lim inf
|y|→∞

|y|
n−αu(y) ≥ λn−αu(x), ∀0 < λ < λ̄(x). (41)

On the other hand, if̄λ(x̄) < ∞, we use Lemma 3.2 and multiply (38) by|y|
n−α and then

send|y| to infinity to obtain

β = lim
|y|→∞

|y|
n−αu(y) = λ̄(x̄)n−αu(x̄) < ∞. (42)

Proof of Theorem 1.1.(i) If there exists somēx ∈ Rn such that̄λ(x̄) < ∞, then, by (42)
and (41),λ̄(x) < ∞ for all x ∈ Rn. Applying Lemma 3.2, we have

ux,λ̄(x) ≡ u onRn, ∀x ∈ Rn.

By a calculus lemma (Lemma 11.1 in [29], see also Lemma 2.5 in [30] forα = 2), any
C1 positive functionu satisfying the above must be of the form (5).

(ii) If λ̄(x) = ∞ for all x ∈ Rn, then

ux,λ(y) ≤ u(y), ∀|y − x| ≥ λ > 0, x ∈ Rn.

By another calculus lemma (Lemma 11.2 in [29], see also Lemma 2.2 in [30] forα = 2),
u ≡ const, violating (4). Theorem 1.1 is established. ut
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4. Proof of Theorem 1.4

In this section we establish Theorem 1.4.

Lemma 4.1. For n ≥ 1, 0 < α < n andµ > 0, let u be a Lebesgue measurable positive
solution of(11) which is not identically equal to∞. Then, for anyt < n/(n − α) and
u ∈ L

µ
loc(R

n) ∩ Lt
loc(R

n),

β := lim inf
|x|→∞

|x|
n−αu(x) ≥

∫
Rn

u(y)µ dy > 0, (43)

and ∫
|y|>2

u(y)µ

|y|n−α
dy < ∞ (44)

Proof. Multiplying (11) by |x|
n−α, we obtain (43) by applying the Fatou lemma. Sinceu

is not identically equal to∞, we see from (11) thatu is finite almost everywhere. So, for
somex1, x2 ∈ B1, x1 6= x2, we have

2∑
i=1

∫
Rn

u(y)µ

|xi − y|n−α
dy ≤ u(x1) + u(x2) < ∞.

It follows thatu ∈ L
µ
loc(R

n) and (44) holds. ForR > 0, we write

u(x) = IR(x) + IIR(x) :=

(∫
|y|<2R

+

∫
|y|>2R

)
u(y)µ

|x − y|n−α
dy. (45)

Sinceu ∈ L
µ
loc(R

n) and (44) holds,IIR ∈ L∞(BR). On the other hand, for any 1< t <

n/(n − α), we have, by the Cauchy–Schwarz inequality,

‖IR‖Lt (BR) ≤

∫
|y|<2R

u(y)µ
∥∥| · −y|

α−n
∥∥

Lt (BR)
dy

≤
∥∥| · −y|

α−n
∥∥

Lt (B3R)

∫
|y|<2R

u(y)µ dy < ∞.

SinceR > 0 is arbitrary,u ∈ Lt
loc(R

n). ut

Lemma 4.2. Assumen ≥ 1 and0 < α < n.

(i) For 0 < µ < n/(n − α), let u be a positive Lebesgue measurable solution of(11)
which is not identically infinity. Thenu ∈ C∞(Rn).

(ii) For µ ≥ n/(n − α), let u ∈ L
n(µ−1)/α

loc (Rn) be a positive solution of(11). Then
u ∈ C∞(Rn).

Proof. (i) For 0 < µ < n/(n − 2). We know from Lemma 4.1 thatu ∈ Lt
loc(R

n) for all
t < n/(n − α). For anyR > 0, write u as in (45). As usual,IIR ∈ C∞(BR). For any
1 < p < n/µ(n − α), let 1/q = 1/p − α/n. Thenq > n/(n − α). By the property of the
Riesz potential,

‖IR‖Lq (BR) ≤ C‖uµ
‖Lp(B2R) = C‖u‖

µ

Lpµ(B2R) < ∞.
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Sou ∈ L
q

loc(R
n). Let µ′

= max(1, µ). Sinceuµ
≤ C + Cuµ′

, we have

u(x) ≤ C

∫
|y|<2R

V (y)u(y)

|x − y|n−α
dy + h(x), x ∈ BR,

where

V (y) = u(y)µ
′
−1, h(x) = C +

∫
|y|>2R

u(y)µ

|x − y|n−α
dy.

By (44),h ∈ L∞(BR). Sincen(µ′
− 1)/α < n/(n − α), we obtainV ∈ L

n/α

loc (Rn). Since
u ∈ L

q

loc(R
n) with q > n/(n−α), we have, by applying Corollary 1.1,u ∈ Lν(Bε(ν)) for

anyν > 0, whereε(ν) > 0. Now, back to (45),IR isC∞ near the origin by bootstrapping.
By the translation invariance of the problem,u ∈ C∞(Rn).

(ii) For µ ≥ n/(n − α), let V (y) = u(y)µ−1. We know from Lemma 4.1 thatu ∈

Lt
loc(R

n) for all t < n/(n − α). Sinceu ∈ L
n(µ−1)/α

loc (Rn) by assumption, we also have

V ∈ L
n/α

loc (Rn). Now, for anyR2 > R1 > 0, let

h(y) =

∫
|y|>R2

u(y)µ

|x − y|n−µ
dy.

Thenu ∈ Lr(BR2) with r = n(µ − 1)/α, V ∈ Ln/α(BR2), h ∈ L∞(BR1) ⊂ Lν(BR1) for
anyν > r, and

u(x) =

∫
|y|>R2

V (y)u(y)

|x − y|n−α
dy + h(x), x ∈ BR1.

By Corollary 1.1,u ∈ Lr(BR1). SinceR1 > 0 is arbitrary,u ∈ Lr
loc(R

n) for all r > 1.
Bootstrap as usual to getu ∈ C∞(Rn). ut

Forx ∈ Rn, λ > 0, and a positive functionv onRn, let vx,λ be as in (6).

Lemma 4.3. For n ≥ 1, 0 < α < n andµ > 0, let u be a positive solution of(11). Then

ux,λ(ξ) =

∫
Rn

ux,λ(z)
µ

|ξ − z|n−α

(
λ

|z − x|

)n+α−µ(n−α)

dz, ∀ξ ∈ Rn, (46)

and

u(ξ) − ux,λ(ξ) =

∫
|z−x|≥λ

K(x, λ; ξ, z)

[
u(z)µ −

(
λ

|z − x|

)n+α−µ(n−α)

ux,λ(z)
µ

]
dz,

(47)
where

K(x, λ; ξ, z) =
1

|ξ − z|n−α
−

(
λ

|ξ − x|

)n−α 1

|ξx,λ − z|n−α
.

Moreover,
K(x, λ; ξ, z) > 0, ∀|ξ − x|, |z − x| > λ > 0.

Proof. Forµ = (n+α)/(n−α) the assertion is established in Section 3. The proof works
for all µ > 0 with minor modifications. ut
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Lemma 4.4. For n ≥ 1, 0 < α < n andµ > 0, let u ∈ C1(Rn) be a positive solution of
(11). Then for anyx ∈ Rn, there existsλ0(x) > 0 such that

ux,λ(y) ≤ u(y), ∀0 < λ < λ0(x), |y − x| ≥ λ. (48)

Proof. This has been proved in Section 3 forµ = (n + α)/(n − α). The same proof
applies for allµ > 0. ut

Define, forx ∈ Rn,

λ̄(x) = sup{µ′ > 0 | ux,λ(y) ≤ u(y), ∀0 < λ < µ′, |y − x| ≥ λ}.

Lemma 4.5. For n ≥ 1, 0 < α < n and0 < µ < (n + α)/(n − α), let u ∈ C1(Rn) be a
positive solution of(11). Thenλ̄(x) = ∞ for all x ∈ Rn.

Proof. We argue by contradiction. Suppose thatλ̄(x̄) < ∞ for somex̄ ∈ Rn. Without
loss of generality, we may assumex̄ = 0, and we writeλ̄ = λ̄(0), uλ = u0,λ. By the
definition ofλ̄,

uλ̄(y) ≤ u(y), ∀|y| ≥ λ̄. (49)

Sincen + α − µ(n − α) > 0, (λ̄/|z|)n+α−µ(n−α) < 1 for |z| > λ̄. So, by (49) and (47)
with x = 0 andλ = λ̄, and the positivity of the kernel, we have, for|y| > λ̄,

(u − uλ̄)(y) =

∫
|z|≥λ̄

K(0, λ̄; y, z)

[
u(z)µ −

(
λ

|z|

)n+α−µ(n−α)

uλ̄(z)
µ

]
dz

≥

∫
|z|≥λ̄

K(0, λ̄; y, z)

[
1 −

(
λ

|z|

)n+α−µ(n−α)]
uλ̄(z)

µ dz > 0.

Thus, by the Fatou lemma and the above,

lim inf
|y|→∞

|y|
n−α(u − uλ̄)(y) ≥ lim inf

|y|→∞

∫
|z|≥λ̄

|y|
n−αK(0, λ̄; y, z)[u(z)µ − uλ̄(z)

µ] dz

≥

∫
|z|≥λ̄

(
1 −

(
λ̄

|z|

)n−α)
[u(z)µ − uλ̄(z)

µ] dz > 0.

Consequently, there existsε1 ∈ (0, 1) such that

(u − uλ̄)(y) ≥
ε1

|y|n−α
, ∀|y| ≥ λ̄ + 1.

By the above and the explicit formula foruλ, there exists 0< ε2 < ε1 such that

(u−uλ)(y) ≥
ε1

|y|n−α
+(uλ̄ −uλ)(y) ≥

ε1

2|y|n−α
∀|y| ≥ λ̄+1, λ̄ ≤ λ ≤ λ̄+ε2. (50)

Now, using (49) and (50) as in Section 3, forε ∈ (0, ε2) which we choose below, we
have, forλ̄ ≤ λ ≤ λ̄ + ε and forλ ≤ |y| ≤ λ̄ + 1,

(u − uλ)(y) ≥

∫
λ≤|z|≤λ̄+1

K(0, λ; y, z)[uλ̄(z)
µ

− uλ(z)
µ] dz

+

∫
λ̄+2≤|z|≤λ̄+3

K(0, λ; y, z)[u(z)µ − uλ(z)
µ] dz.
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Because of (50), there existsδ1 > 0 such that

u(z)µ − uλ(z)
µ

≥ δ1, λ̄ + 2 ≤ |z| ≤ λ̄ + 3.

It was shown in Section 3 that

K(0, λ; y, z) ≥ δ2(|y| − λ), ∀λ̄ ≤ λ ≤ |y| ≤ λ̄ + 1, λ̄ + 2 ≤ |z| ≤ λ̄ + 3,

whereδ2 > 0 is some constant independent ofε. It is easy to see that for some constant
C > 0 independent ofε, we have, for̄λ ≤ λ ≤ λ̄ + ε,

|uλ̄(z)
µ

− uλ(z)
µ
| ≤ C(λ − λ̄) ≤ Cε, ∀λ̄ ≤ λ ≤ |z| ≤ λ̄ + 1,

and (recall thatλ ≤ |y| ≤ λ̄ + 1), as in Section 3,∫
λ≤|z|≤λ̄+1

K(0, λ; y, z) dz ≤ C(|y| − λ).

It follows from the above that for smallε > 0 we have, for̄λ ≤ λ ≤ λ̄ + ε andλ ≤ |y| ≤

λ̄ + 1,

(u − uλ)(y) ≥ −Cε

∫
λ≤|z|≤λ̄+1

K(0, λ; y, z) dz + δ1δ2(|y| − λ)

∫
λ̄+2≤|z|≤λ̄+3

dz

≥

(
δ1δ2

∫
λ̄+2≤|z|≤λ̄+3

dz − Cε

)
(|y| − λ) ≥ 0.

This and (64) violate the definition ofλ̄. Lemma 4.5 is established. ut

Proof of Theorem 1.4.According to Lemma 4.5,̄λ(x) = ∞ for all x ∈ Rn, i.e.,

ux,λ(y) ≤ u(y), ∀|y − x| ≥ λ > 0, x ∈ Rn.

By a calculus lemma (Lemma 11.2 in [29], see also Lemma 2.2 in [30] forα = 2),
u ≡ const, violating (11). Theorem 1.4 is established. ut

5. Proof of Theorem 1.5

In this section we establish Theorem 1.5.

Lemma 5.1. For n ≥ 1 and p, q > 0, let u be a nonnegative Lebesgue measurable
function inRn satisfying(12). Then∫

Rn

(1 + |y|
p)u(y)−q dy < ∞, (51)

γ := lim
|x|→∞

|x|
−pu(x)

= lim
|x|→∞

∫
Rn

|x − y|
p

|x|p
u(y)−q dy

∫
Rn

u(y)−q dy ∈ (0, ∞), (52)

and, for some constantC ≥ 1,

1 + |x|
p

C
≤ u(x) ≤ C(1 + |x|

p), ∀x ∈ Rn. (53)
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Proof. We see from (12) thatu must be positive everywhere and

|{y ∈ Rn
| u(y) < ∞}| > 0,

where | · | denotes the Lebesgue measure of the set. So there existR > 1 and some
measurable setE such that

E ⊂ {y | u(y) < R} ∩ BR, |E| ≥ 1/R.

By (12),

u(x) =

∫
Rn

|x − y|
pu(y)−q dy ≥

∫
E

|x − y|
pu(y)−q dy

≥ R−q

∫
E

|x − y|
p dy, ∀x ∈ Rn.

The first inequality in (53) follows from the above.
For some 1≤ |x̄| ≤ 2,∫

Rn

|x̄ − y|
pu(y)−q dy = u(x̄) < ∞.

We deduce (51) from the first inequality in (53) and the above.
For |x| ≥ 1, ∣∣∣∣ |x − y|

p

|x|p
u(y)−q

∣∣∣∣ ≤ (1 + |y|
p)u(y)−q ,

so, in view of (51), (52) follows from the Lebesgue dominated convergence theorem. The
second inequality in (53) follows from (12), (51) and (52). ut

Lemma 5.2. For n ≥ 1 and p, q > 0, let u be a nonnegative Lebesgue measurable
function inRn satisfying(12). Thenu ∈ C∞(Rn).

Proof. ForR > 0, write (12) as

u(x) = IR(x) + IIR(x) :=

(∫
|y|≤2R

+

∫
|y|>2R

)
|x − y|

pu(y)−q dy.

Because of (51), we can differentiateIIR(x) under the integral sign for|x| < R, and
thereforeIIR ∈ C∞(BR). On the other hand, sinceu−q

∈ L∞(B2R), clearly IR is at
least Ḧolder continuous inBR. SinceR > 0 is arbitrary,u is Hölder continuous inRn.
Now u−q is Hölder continuous inB2R, the regularity ofIR further improves and, by
bootstrap, we eventually haveu ∈ C∞(Rn). ut

Let v be a positive function onRn. Forx ∈ Rn andλ > 0, consider

vx,λ(ξ) =

(
|ξ − x|

λ

)p

v(ξx,λ), ξ ∈ Rn,

where

ξx,λ
= x +

λ2(ξ − x)

|ξ − x|2
.

Note that the notationvx,λ in this section is different from that in Sections 1–4.
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Making a change of variables

y = zx,λ
= x +

λ2(z − x)

|z − x|2
,

we have

dy =

(
λ

|z − x|

)2n

dz.

Thus∫
|y−x|≥λ

|ξx,λ
− y|

pv(y)−q dy =

∫
|z−x|≤λ

|ξx,λ
− zx,λ

|
pv(zx,λ)−q

(
λ

|z − x|

)2n

dz

=

∫
|z−x|≤λ

|ξx,λ
− zx,λ

|
p

(
λ

|z − x|

)2n−pq

vx,λ(z)
−q dz.

Using (30), we have(
λ

|ξ − x|

)−p ∫
|y−x|≥λ

|ξx,λ
− y|

pv(y)−q dy

=

∫
|z−x|≤λ

|ξ − z|p
(

λ

|z − x|

)2n−pq+p

vx,λ(z)
−q dz. (54)

Similarly,(
λ

|ξ − x|

)−p ∫
|y−x|≤λ

|ξx,λ
− y|

pv(y)−q dy

=

∫
|z−x|≥λ

|ξ − z|p
(

λ

|z − x|

)2n−pq+p

vx,λ(z)
−q dz. (55)

Lemma 5.3. Letu be a positive solution of(12). Then

ux,λ(ξ) =

∫
Rn

|ξ − z|p
(

λ

|z − x|

)2n−pq+p

ux,λ(z)
−q dz, ∀ξ ∈ Rn, (56)

and

ux,λ(ξ) − u(ξ) =

∫
|z−x|≥λ

k(x, λ; ξ, z)

[
u(z)−q

− (
λ

|z − x|
)2n−pq+pux,λ(z)

−q

]
dz,

(57)
where

k(x, λ; ξ, z) =

(
|ξ − x|

λ

)p

|ξx,λ
− z|p − |ξ − z|p.

Moreover
k(x, λ; ξ, z) > 0, ∀|ξ − x|, |z − x| > λ > 0.
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Proof. Since(ξx,λ)x,λ
= ξ and(vx,λ)x,λ ≡ v, identity (56) follows from (12) and (54)

and (55) withv = u. Similarly, using also (56), we obtain

u(ξ) =

∫
|z−x|≥λ

|ξ − z|pu(z)−q dz +

∫
|y−x|<λ

|ξ − y|
pu(y)−q dy

=

∫
|z−x|≥λ

|ξ − z|pu(z)−q dz

+

(
|ξ − x|

λ

)p ∫
|z−x|≥λ

|ξx,λ
− z|p

(
λ

|z − x|

)2n−pq+p

ux,λ(z)
−q dz,

ux,λ(ξ) =

∫
Rn

|ξ − z|p
(

λ

|z − x|

)2n−pq+p

ux,λ(z)
−q dz

=

∫
|z−x|≥λ

|ξ − z|p
(

λ

|z − x|

)2n−pq+p

ux,λ(z)
−q dz

+

(
|ξ − x|

λ

)p ∫
|z−x|≥λ

|ξx,λ
− z|pu(z)−q dz.

Identity (57) follows from the above. The positivity of the kernelk is elementary. ut

Lemma 5.4. For n ≥ 1 andp, q > 0, let u be a solution of(12). Then for anyx ∈ Rn,
there existsλ0(x) > 0 such that

ux,λ(y) ≥ u(y), ∀0 < λ < λ0(x), |y − x| ≥ λ. (58)

Proof. The proof is similar to that of Lemma 2.1 in [29] and Lemma 3.1 in Section 3.
Without loss of generality we may assumex = 0, and we writeuλ = u0,λ.

Sincep > 0 andu is a positiveC1 function, there existsr0 > 0 such that

∇y(|y|
−p/2u(y)) · y < 0, ∀0 < |y| < r0.

Consequently,
uλ(y) > u(y), ∀0 < λ < |y| < r0. (59)

By (53),
u(z) ≤ C(r0)|z|

p
∀|z| ≥ r0. (60)

For smallλ0 ∈ (0, r0) and for 0< λ < λ0, we have, using (53) and (59),

uλ(y) =

(
|y|

λ

)p

u

(
λ2y

|y|2

)
≥

(
|y|

λ0

)p

inf
Br0

u ≥ u(y), ∀|y| ≥ r0.

Estimate (58), withx = 0 andλ0(x) = λ0, follows from (59) and the above. ut

Define, forx ∈ Rn,

λ̄(x) = sup{µ > 0 | ux,λ(y) ≥ u(y), ∀0 < λ < µ, |y − x| ≥ λ}.
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Lemma 5.5. For n ≥ 1, p > 0 and0 < q ≤ 1 + 2n/p, let u be a solution of(12). Then

λ̄(x) < ∞, ∀x ∈ Rn,

and

ux,λ(x) ≡ u onRn, ∀x ∈ Rn. (61)

Consequently,q = 1 + 2n/p.

Proof. By the definition ofλ̄(x),

ux,λ(y) ≥ u(y), ∀0 < λ < λ̄(x), |y − x| ≥ λ.

Multiplying the above by|y|
−p and sending|y| to infinity yields, using (52),

0 < γ = lim
|y|→∞

|y|
−pu(y) ≤ λ−pu(x), ∀0 < λ < λ̄(x). (62)

Thusλ̄(x) < ∞ for all x ∈ Rn.
Now we prove (61). Without loss of generality, we may assumex = 0, and we write

λ̄ = λ̄(0), uλ = u0,λ, andyλ
= y0,λ. By the definition ofλ̄,

uλ̄(y) ≥ u(y), ∀|y| ≥ λ̄. (63)

Since 2n − pq + p ≥ 0, we have(λ̄/|z|)2n−pq+p
≤ 1 for |z| ≥ λ̄. So, by (63), (57), with

x = 0 andλ = λ̄, and the positivity of the kernel, eitheruλ̄(y) = u(y) for all |y| ≥ λ̄—
then we are done (using (57) to see that 2n − pq + p = 0)—or uλ̄(y) > u(y) for all
|y| > λ̄, which we assume below.

By (57), withx = 0 andλ = λ̄, and the Fatou lemma,

lim inf
|y|→∞

|y|
−p(uλ̄ − u)(y)

= lim inf
|y|→∞

∫
|z|≥λ̄

|y|
−pk(0, λ̄; y, z)

[
u(z)−q

−

(
λ̄

|z|

)2n−pq+p

uλ̄(z)
−q

]
dz

≥

∫
|z|≥λ̄

((
|z|

λ̄

)p

− 1

)
[u(z)−q

− uλ̄(z)
−q ] dz > 0.

Consequently, using also the positivity ofuλ̄ − u, there existsε1 ∈ (0, 1) such that

(uλ̄ − u)(y) ≥ ε1|y|
p, ∀|y| ≥ λ̄ + 1.

By the above and the explicit formula ofuλ, there exists 0< ε2 < ε1 such that

(uλ−u)(y) ≥ ε1|y|
p
+(uλ−uλ̄)(y) ≥

ε1

2
|y|

p, ∀|y| ≥ λ̄+1, λ̄ ≤ λ ≤ λ̄+ε2. (64)
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Recall that 2n−pq+p ≥ 0 and therefore(λ/|z|)2n−pq+p
≤ 1 for |z| ≥ λ. Forε ∈ (0, ε2)

which we choose below, we have, forλ̄ ≤ λ ≤ λ̄ + ε and forλ ≤ |y| ≤ λ̄ + 1,

(uλ − u)(y) ≥

∫
|z|≥λ

k(0, λ; y, z)[u(z)−q
− uλ(z)

−q ] dz

≥

∫
λ≤|z|≤λ̄+1

k(0, λ; y, z)[u(z)−q
− uλ(z)

−q ] dz

+

∫
λ̄+2≤|z|≤λ̄+3

k(0, λ; y, z)[u(z)−q
− uλ(z)

−q ] dz

≥

∫
λ≤|z|≤λ̄+1

k(0, λ; y, z)[uλ̄(z)
−q

− uλ(z)
−q ] dz

+

∫
λ̄+2≤|z|≤λ̄+3

k(0, λ; y, z)[u(z)−q
− uλ(z)

−q ] dz.

Because of (64), there existsδ1 > 0 such that

u(z)−q
− uλ(z)

−q
≥ δ1, λ̄ + 2 ≤ |z| ≤ λ̄ + 3.

Since
k(0, λ; y, z) = 0, ∀|y| = λ,

∇yk(0, λ; y, z) · y
∣∣
|y|=λ

= p|y − z|p−2(|z|2 − |y|
2) > 0, ∀λ̄ + 2 ≤ |z| ≤ λ̄ + 3,

and the function is smooth in the relevant region, we have, using also the positivity of the
kernel,

k(0, λ; y, z) ≥ δ2(|y| − λ), ∀λ̄ ≤ λ ≤ |y| ≤ λ̄ + 1, λ̄ + 2 ≤ |z| ≤ λ̄ + 3,

whereδ2 > 0 is some constant independent ofε. It is easy to see that for some constant
C > 0 independent ofε, we have, for̄λ ≤ λ ≤ λ̄ + ε,

|uλ̄(z)
−q

− uλ(z)
−q

| ≤ C(λ − λ̄) ≤ Cε, ∀λ̄ ≤ λ ≤ |z| ≤ λ̄ + 1,

and (recall thatλ ≤ |y| ≤ λ̄ + 1)∫
λ≤|z|≤λ̄+1

k(0, λ; y, z) dz ≤ C(|y| − λ) +

∫
λ≤|z|≤λ̄+1

(|yλ
− z|p − |y − z|p) dz

≤ C(|y| − λ) + C|yλ
− y| ≤ C(|y| − λ).

It follows that for smallε > 0 we have, for̄λ ≤ λ ≤ λ̄ + ε andλ ≤ |y| ≤ λ̄ + 1,

(uλ − u)(y) ≥ −Cε

∫
λ≤|z|≤λ̄+1

k(0, λ; y, z) dz + δ1δ2(|y| − λ)

∫
λ̄+2≤|z|≤λ̄+3

dz

≥

(
δ1δ2

∫
λ̄+2≤|z|≤λ̄+3

dz − Cε

)
(|y| − λ) ≥ 0.

This and (64) violate the definition ofλ̄. Lemma 5.5 is established. ut
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Proof of Theorem 1.5.According to Lemma 5.5,q = 1 + 2n/p and

ux,λ̄(x) ≡ u onRn, ∀x ∈ Rn.

By a calculus lemma (Lemma 11.1 in [29], see also Lemma 2.5 in [30] forα = 2), any
C1 positive functionu satisfying the above must be of the form (13). ut

Appendix A

In this appendix, we show, as pointed out in Remark 1.2, that for somea = a(n, p) > 0,
(13) solves (12) withq = 1 + 2n/p. Our proof works equally well for equation (4).

Forn ≥ 1 andp ∈ (−n, 0) ∪ (0, ∞), we consider the integral equation

u(x) =

∫
Rn

|x − y|
pu(y)−(2n+p)/p dy, ∀x ∈ Rn. (65)

Lemma 5.6. For n ≥ 1 andp ∈ (−n, 0)∪(0, ∞), there exists a uniquea = a(n, p) > 0
such that for anȳx ∈ Rn andd > 0,

u(x) =

(
d + |x − x̄|

2

a

)p/2

satisfies(65).

Proof. Let q = 1 + 2n/p. For a positive functionv, and forx ∈ Rn andλ > 0, we set

vx,λ(ξ) =

(
|ξ − x|

λ

)p

v(ξx,λ), ξ ∈ Rn,

whereξx,λ is given by (7). By conformal invariance, we only need to prove that modulo
a positive constant multiple,

u(x) := (1 + |x|
2)p/2

satisfies (65). Set

ũ(x) =

∫
Rn

|x − y|
pu(y)−q dy, x ∈ Rn.

We only need to show that̃u is a constant multiple ofu.
For anyx ∈ Rn, let λ(x) :=

√
1 + |x|2. Observe that

ux,λ(x) ≡ u, onRn, ∀x ∈ Rn. (66)

Making a change of variables

y = zx,λ(x)
= x +

λ(x)2(z − x)

|z − x|2
,

we have, using (66) and the conformal invariance of the equation ((54), (55), (31)
and (32)),

ũx,λ(x)(ξ) =

(
|ξ − x|

λ(x)

)p ∫
Rn

|ξx,λ(x)
− y|

pu(y)−q dy

=

∫
Rn

|ξ − z|pux,λ(x)(z)
−q dz = ũ(ξ).
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Multiplying this by |ξ |
−p and sending|ξ | to ∞ leads to

lim
|ξ |→∞

|ξ |
−pũ(ξ) = λ(x)−pũ(x) = (1 + |x|

2)−p/2ũ(x) = u(x)−1ũ(x), ∀x ∈ Rn.

Soũ is a constant multiple ofu, and we are done. ut

Appendix B

In this appendix, we present some calculus lemmas obtained jointly with L. Nirenberg.
These lemmas under the stronger assumptionf ∈ C1(Rn) have been used repeatedly
in some works on Liouville type theorems for conformally invariant equations (see, e.g.,
[29], [30], [24]–[27] and the present paper).

Lemma 5.7. For n ≥ 1 and ν ∈ R, let f be a function defined onRn with values in
[−∞, ∞] satisfying(

λ

|y − x|

)ν

f

(
x +

λ2(y − x)

|y − x|2

)
≤ f (y), ∀|x − y| > λ > 0. (67)

Thenf ≡ constor ±∞.

Remark 5.1. If the first inequality in (67) is reversed, the conclusion still holds, since we
can replacef by −f .

Proof. For allb > 1 andy, z ∈ Rn with y 6= z, let

x = x(b) = y + b(z − y), λ = λ(b) =
√

|z − x| |y − x|.

Then

z = x +
λ2(y − x)

|y − x|2
,

and, by (67), (
λ

|y − x|

)ν

f (z) ≤ f (y).

Since

lim
b→∞

λ

|y − x|
= lim

b→∞

√
|z − x|

|y − x|
= 1,

we havef (z) ≤ f (y). Lemma 5.7 follows sincey 6= z are arbitrary. ut

Lemma 5.8. Let n ≥ 1, ν ∈ R andf ∈ C0(Rn). Suppose that for everyx ∈ Rn, there
existsλ(x) > 0 such that(

λ(x)

|y − x|

)ν

f

(
x +

λ(x)2(y − x)

|y − x|2

)
= f (y), ∀y ∈ Rn

\ {x}. (68)

Then, for somea ≥ 0, d > 0 and x̄ ∈ Rn,

f (x) ≡ ±a

(
1

d + |x − x̄|2

)ν/2

.
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Proof. By (68) and the continuity off ,

α := lim
|y|→∞

|y|
νf (y) = λ(x)νf (x), ∀x ∈ Rn. (69)

If ν = 0, thenf ≡ α, and we are done. On the other hand, the caseν < 0 can easily be
reduced to the case ofν > 0 if we letz = x + λ(x)2(y − x)/|y − x|

2 in (68). So we will
assume thatν > 0.

If α = 0, thenf ≡ 0, and we are done. Otherwise, replacingf by a nonzero multiple
of f , we may assume thatα = 1. Sincef (y) → 0 as |y| tends to∞, and sincef
is continuous and positive,f has a maximum point, and we may assume thatf has a
maximum point at the origin.

For anyx ∈ Rn, we have, for large|y|,

|y|
νf (y) = λ(x)ν

(
|y|

|y − x|

)ν

f

(
x +

λ(x)2(y − x)

|y − x|2

)
= λ(x)ν

[
1 +

νx · y

|y|2
+ O(|y|

−2)

]
f

(
x +

λ(x)2(y − x)

|y − x|2

)
,

and, by (69) andα = 1,

|y|[|y|
νf (y) − 1] = |y|λ(x)ν

[
f

(
x +

λ(x)2(y − x)

|y − x|2

)
− f (x)

]
+

[
λ(x)ννx · y

|y|
+ O(|y|

−1)

]
f

(
x +

λ(x)2(y − x)

|y − x|2

)
. (70)

Takingx = 0 in the above and using the fact thatf has a maximum point at the origin,
we obtain

lim sup
|y|→∞

|y|[|y|
νf (y) − 1] ≤ 0. (71)

Claim. For anyε > 0, there existsMε such that for any|y| ≥ Mε , there exists̃x = x̃(y)

satisfying

x̃ +
λ(x̃)2(y − x̃)

|y − x̃|2
= 0 and |x̃| ≤ ε. (72)

Indeed, we know from (69) andα = 1 thatλ(x) = f (x)−1/ν for all x ∈ Rn. For any
ε ∈ (0, 1), pick Mε > 1 so that

(Mε − ε)−1 max
|x|≤ε

f (x)−2/ν <
ε

2
.

Then, for all|y| ≥ Mε ,

max
|x|≤ε

∣∣∣∣λ(x)2(y − x)

|y − x|2

∣∣∣∣ = max
|x|≤ε

|y − x|
−1f (x)−2/ν

≤ (Mε − ε)−1 max
|x|≤ε

f (x)−2/ν <
ε

2
.

Thus, by a degree argument using the continuity off , there exists̃x = x̃(y) satisfying
(72).
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With x = x̃(y) in (70), we obtain

lim inf
|y|→∞

|y|[|y|
νf (y) − 1] ≥ −ενf (0) max

|z|≤ε
f (z)−1/ν .

Sendingε to 0, we have
lim inf
|y|→∞

|y|[|y|
νf (y) − 1] ≥ 0.

Thus, in view of (71),
lim

|y|→∞
|y|[|y|

νf (y) − 1] = 0. (73)

Let e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). For anyx ∈ Rn, 1 ≤ i ≤ n, andt ∈ R,
let y = y(x, t, i) ∈ Rn be defined by

tei =
λ(x)2(y − x)

|y − x|2
.

Taking thisy in (70) and sendingt to 0, we obtain, in view of (73),

∂f

∂xi

(x) = lim
t→0

f (x + tei) − f (x)

t
= −

νx · eif (x)

λ(x)2
= −νxif (x)1+2/ν .

By the continuity off , we know thatf is in C1(Rn), and we complete the proof of
Lemma 5.8 by writing the above system of PDEs as∂

∂xi
[f (x)−2/ν

−|x|
2] = 0 and solving

it. ut
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