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1. Introduction

Forn > 3, consider
n+2
—Au:n(n—Z)un%Z onRR". Q)

It was proved by Gidas, Ni and Nirenbefg[21] that any positifesolution of ﬂ) satis-
fying

liminf [x|"~%u(x) < oo, 2)

|x]—00

a (n—2)/2
"= (1+a2|x —f|2> ’

wherea > 0 is some constant ande R”.

Hypothesis[(R) was removed by Caffarelli, Gidas and Sprucklin [8]; this is important
for applications. Such Liouville type theorems have been extended to general conformally
invariant fully nonlinear equations by Li and Li([R4]-[27]); see also related works of
Viaclovsky ([40]-{41]) and Chang, Gursky and YanQg ([13]={14]). The method used in
[21], as well as in much of the above cited work, is the method of moving planes. The
method of moving planes has become a very powerful tool in the study of nonlinear
elliptic equations; see Aleksandrav [1], Serfin][38], Gidas, Ni and Nirenberg [21]-[22],
Berestycki and Nirenberg|[2], and others.

In [3Q], Li and Zhu gave a proof of the above mentioned theorem of Caffarelli, Gi-
das and Spruck using the method of moving spheres (i.e. the method of moving planes
together with the conformal invariance), which fully exploits the conformal invariance
of the problem and, as a result, captures the solutions directly rather than going through
the usual procedure of proving radial symmetry of solutions and then classifying radial
solutions. Significant simplifications to the proofiin [30] have been made in Li and Zhang
[29]. The method of moving spheres has been used in [24]-[27].

Liouville type theorems for various conformally invariant equations have received
much attention; see, in addition to the above cited papers, [23], [17], [15], [33], [42]
and [43].
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In this paper we study some conformally invariant integral equations. Lieb proved
in [31], among other things, that there exist maximizing functiofsfor the Hardy—
Littlewood—Sobolev inequality oR”:

f»
d
/R” |- —yl*

with N, ; , being the sharp constant angpl+ 1/n = 14+ 1/9,1 < p,q,n/A < oo,
n>1Whenp =¢q =q/(g—1Dorp=20rq = 2,N,,, and the maximizing
f's are explicitly evaluated. Whep = ¢, i.e.,p = 2n/(2n — A1) andg = 2n/2, the
Euler-Lagrange equation for a maximizigigs, modulo a positive constant multiple,

.ﬂﬂ“4=ﬁé ASINpN 3)

nlx =y

< Np sl fllLr@wny,

L4 (R")

Writing A = n — « andu = 7=, we have O< o < n, and equatior[dB) becomes
n+o

u(x) = / —u(y)n:_a dy, VxeR". (4)
R X — ¥l

As mentioned above, maximizing solutiogisof (3) are classified i [31] and they
are, in terms ofz, of the form

4 (n—a)/2
=) X

wherea, d > 0 andx € R". Of courseq is a fixed constant depending only srand«,
while d andx are free.

Equation[(%), of[(B), is conformally invariant in the following sense.iLie a positive
function onR”. Forx € R" andi > 0, we define

)\’ n—o
vx,k(é) = (—> v(sx’)h)a E € Rl’l, (6)
& — x|
where 2
A A5(E —x)
T e )

Then, ifu is a solution of@), soig, , foranyx € R" andx > 0. The conformal invari-

ance of [(4) was used in [B1]. More studies on issues concerning the Hardy-Littlewood-
Sobolev inequality, among other things, were made by Carlen and Lass in[9]-[12], where
the conformal invariance of the problem was further exploited.

After classifying all maximizing solutions of [3), Lieb raised the beautiful question
(page 361 of [31]) on the (essential) uniqueness of solutiorig of (3), or equivalenly, of (4).
He produced (page 363 of [31]) a nontrivial-parameter family of solutions of equation
@3, or [4), which are not as regular as the maximizers. For instance, modulo a positive
constant|x|@~"/2 is a solution of[(k).

In arecent paper, Chen, Li and Ou established the following result which answers the

question of Lieb in the class dfi5 (R").
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Theorem 1.1 ([18]). Letu e L{5 (R") be a positive function satisfyin). Thenu is

given by(5) for some constantsﬁ > 0and somer € R”.
In an earlier version of the present paper ([28, version one]), we gave a simpler proof of
Theoren] 1.]l. The proof, in the spirit 6f [30] arid [29] and following Section 2 of [29],
fully exploits the conformal invariance of the integral equation. It is different from the one
in [18]. In particular, we do not follow the usual procedure of proving radial symmetry of
solutions and then classifying radial solutions, and we do not need to distinguish
andn = 1. For the method of moving spheres or moving planes, there are, roughly
speaking, three steps: one is to get started with the procedure, second is to prove that the
function and the reflected one coincide if the procedure stops, and the third is to handle
the case when the procedure never stops. Our arguments are also different for handling
these steps. This proof is presented in Section 2.

Lieb pointed out to us that his question also concerns functions which are not in
Lisc(R™). In particular, it is not known a priori that maximizers arefiff,(R"). This has
led us to study the question further and to establish

Theorem1.2. Forn > 1and0 < « < n, letu € lec:’c/(”_“)(R”) be a positive solution
of @). Thenu € C*®(R").

An answer to the question of Lieb is therefore known in the clqgé("“")(]l%”). The

above mentioned solutidn|© /2 does not belong tﬂﬁj”c/(”_“)(R"), though it belongs
to Lj,.(R") for anys < 2n/(n — a). The question remains unanswered for the class
Li,(R") fort < 2n/(n — ). Seel[34] and the references therein for related results.

In the process of proving Theor¢gm 1.2, we have established the following result which
should be of independent interest.

Forn > 1and O< « < n, letV e L"/%(B3) be a nonnegative function, and set

(V) ==V prse(py)- (8)

Theorem13.Forn > 1,0 < @ < nandv > r > n/(n — @), there exist positive
constantsy < 1andC > 1, depending only on, «, r andv, such that foranp < V €
L"%(B3) with§(V) < 8, h € LY (B>), and0 < u € L" (Bs) satisfying
u(x) < / Mdy +h(x), x € By, ©)
By X —y["¢
we have
Nl (B2 < CUlullLrsg) + IAllLy(By)- (10)

Corollary 1.1. Forn > 1,0 <« < n,v > r > n/(n —a) andRz; > Ry > 0, let
0<V eL"%Bg,),h € L"(Bg,) and0 < u € L"(Bg,) satisfy

Vv
u(x) < / ngy_ldy +h(x), x € Bg,.
BR2 |)C - )’|

Then, for some > 0, u € L"(B¢).

Remark 1.1. After we proved Theorenis 1.2 afpd 1.3 in [28, version two], a revision of
[18] was made which included another proof of Theofenh 1.2.
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Fora = 2 andn > 3, Theorenj 1]3 is essentially equivalent to a result of Brezis and
Kato (Theorem 2.3 i [6]), so it can be viewed as an integral equation analogue of their
theorem. When informed of Theordm [1.3. Brezis kindly pointed out that it is similar to,
though not the same as, Lemma A.1[in [7]. Indeed, our proof of the theorem makes use
of special properties of the potential*~", and it is not clear to us at this point whether
the conclusion of the theorem still holds if we replaeg =" by anyY € L% "~ the
weak L/~ space, as in Lemma A.1 dfl[7]. Theor¢m|1.2, Theoferh 1.3 and Corollary
[L.7 are established in Section 2.

We also study some equations similar[tp (4), though they do not have the same kind
of conformal invariance property. Far> 1,0 < « < n andu > 0, letu be a positive
Lebesgue measurable functionRfi satisfying

u(x) =/ Mdy, Vx € R". (11)
R

n|x =yt
Theorem 1.4. Letn > 1and0 < « < n.

(i) For0 < u < n/(n—a), equation(Id]) does not have any positive Lebesgue measur-
able solutioru, unlesst = oo.
(i) Forn/(n —a) < p < (n+ a)/(n — a), equation(1d) does not have any positive

solutionu e Lfcfé‘_l)/“ (R™).

Foru > (n + «)/(n — «), we know from Lemma 4]2 that if is a positive solution in
L?O(é‘_l)/“ (R™), thenu must be inC>®(R"). Theore is proved in Section 4.

In [24]-[27], all conformally invariant second order fully nonlinear equations are clas-
sified and Liouville type theorems are established for the elliptic ones. It would be inter-
esting to identify as many as possible conformally invariant integral equations for which
(essential) uniqueness of solutions can be obtained. One class of such equations, similar

to (4), is
u(x) = [ Ix — y|Pu(y)~@*tP/P gy vx e R",
R»
wheren > 1 andp > 0. We study more general equations, similar[tg (11), including
those which are not conformally invariant.

Forn > 1 andp, g > 0, letu be a nonnegative Lebesgue measurable functid®fin
satisfying

u(x) = / lx — ylPu(y)"?dy, Vx eR" (12)
Rn

Theorem 1.5. Forn > 1, p > 0and0 < g < 1+ 2n/p, letu be a nonnegative Lebesgue
measurable function k" satisfying(Id). Theng = 1+ 2n/p and, for some constants

a,d > 0and some: € R”,
d+ |x —x2\"/?
ulx) = (T . (13)

Remark 1.2. For somez = a(n, p) > 0, (13) indeed solve$ (112) with = 1+ 2n/p.
This is proved in Appendix A. The argument also shows that, modulo a con§fant, (5) is a
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solution of [4), a known fact whose proofs can be foundin [39, page 131], [31], and, for
n > 2,in [36]. Our proof is different.

The proof of Theorerfi 1|5, similar to our proof of Theorlem 1.1, is given in Section 5. It
turns out that fon = 3, p = 1 andg = 7, integral equatiorj (12) is associated with some
fourth order conformal covariant operator on 3-dimensional compact Riemannian man-
ifolds, arising from the study of conformal geometry. See, e.g., Paneitz [37], Fefferman
and Graham [19], Bransohli[3] and Chang and Yang [16].

Question 1. Is equation(12), in the casep > 0andg = 1+ 2n/p, associated with
some kind of pseudo-differential conformal covariant operatorg-glimensional com-
pact Riemannian manifolds, the same way the @ease3, p = 1andg = 7 is associated
with the above mentioned fourth order conformal covariant operator?

After posting [28, version one] on the Archive and essentially completing the proof of
Theorenj 1.6, we became aware of some recent work of Xu [44] where he proved Theo-
rem[1.% in the special cage= 3, p = 1 andu € C*(R®). He also proved in the same
paper that fom = 3, p = 1 andg > 7 (= 1+ 2n/p), equation[(IR) does not admit
any nonnegative solutiomin C*(R3). Radial solutions of the biharmonic equations cor-
responding to[ (112) with = 3 andp = 1 were studied by McKenna and Reichel[in|[35].

Question 2. Is it true that for alln > 1, p > 0andq > 1+ 2n/p equation(12) does
not admit any positive solutions?

We point out that if we consider the integral equations of the form

u(x) = / G(x—yl,u(y)dy, u>0, VxeR" (14)
Rn

and consider the transformation of the form

2 2n
Uy (6) = h((—) )u(é”),
& — x|

where&** is given by[(7), and wish that

A 2n
h(( ) )/ GOEX’A—yI,u(y))dyEf G(§ —zl,ux5(2))dz  (15)
& — x| R» -

for all x,& € R", A > 0 and all positive functions, then we are only led to equation
(@) and equatior] (32) with = 1+ 2n/p together with the transformations we use in the
paper. Note that conditiop ([L5) guarantees that wheneigea solution of[(I§) so i8 »
for all x € R” andi > 0. The quantity(x/|§ — x|)%" is the Jacobian of the conformal
transformatiorf — £%*.

It looks worthwhile to study equatiofi ([L2) on a bounded domain (existence of solu-
tions, etc.). In this connection, we draw the reader’s attention to some works of Brezis
and Cabre[[4] and Brezis, Dupaigne and Telski [5].
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2. Proof of Theorem[ 1.3, Corollary[1.1 and Theoren 1]2

In this section we prove Theordm[L.3. Let

E(x) :=/ Mdy—l—h(x) —u(x) >0, x € Bo.
B3

X =y
Then
u(x) = (Lu)(x) + f(x) + h(x) —&(x), x € By, (16)
where
o = [ T dy. xe s
By X =y
and

1%
F) = /2 Mu(y) dy

<ly|<3 |x — )’|"7°‘

Let p be determined by r = 1/p — a/n. Thenp > 1 and therefore, by the property of
the Riesz potential (see, e.g., Theorem 1 on page 119 bf [39]),

ILullzr By < ClVullLr(sy = C(IIV”M”IILl(BZ))l/”
= C(IIV’”IILr/v—p)(Bz)IIM”IILr/p(BZ))l/” < CliVligweppyllullLr sy,  (17)
whereC depends ow, n andr. Similarly
I fllr By < CIV Il prse(py el Lr (Bs)- (18)
It follows, using also the faat, £ > 0, that
1§ LBy < CUIVIpnsa(pglullr sy + CllhllLr (By)- (19)

Fori=1,2,...,let

Gi(z) = min( z) u;i(z) = min(u(z), i),

|Z|n—a

&(x) =minx), i), filx)= / Gi(x = y)V(yu(y)dy.
2<|y|<3
We now give some preliminary estimates {gfy}:
Lemma 2.1. There exists some constant depending only on ande, such that
I fillLesy < Cllullrsgy, N fillLry < CllullLr(ss)- (20)

Moreover, for anyp < r,
l'l[go Ifi — fliLesy = 0. (21)
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Proof. The first inequality in[(20) follows easily:

| fillLosy < I fllLesy < Cn, @) , 3V(y)u()’) dy < C(n, a)||ullLr(By)-
<lyl<

Note that we have used the hypotheis| 1/« (g, < § < 1. The second inequality in

(20) follows from [I8).
By the Fubini theorem,

1

| . |n7a

lim |l fi = fllpas, < lim H Gi() — / V(yu(y)dy =0.
i—00 i—00 LY(Bs) v 2<|y|<3

We deducd (1) from this and the second inequality i (20) usitigét’s inequality. O
Consider the following integral equation an
w(x) = (Liw)(x) + fi(x) + h(x) —§i(x), x € By, (22)

where

(Liw)(x) := / Gilx = y)V»w(y)dy.

lyl<2

Lemma 2.2. For r < g < v, there exist som@ < § < landC > 1, depending only on
a, n, r andg, such thatif0 < §(V) < §, then, for alli, there exista; € L9(B2) solving
(22) with w = w;, satisfying

lwillLr (8 + Wi | La By < ClullLr s + IAllLr8): (23)
wherew;" (x) = max(w; (x), 0).
Proof. Define, forw € LY(By),

(Tiw)(x) = (Liw)(x) + fi(x) + h(x) —&(x), x € Ba.

Clearly,L;, T; : L1(B2) — L9(B>).
Let p be determined by y = 1/p — «/n. Then, using the property of the Riesz
potential as in[(1]7), we obtain

ILiwllLasy < IL(wDlLaBy < CIV I prappyllwllzey < C8llwllLacsy)-
Here and below (various) constarits> 1 depend only om, ¢, « andn. Thus

ITiwllzasy < CSllwllLacsy) + I fillLaBy) + Il ey + IEillLa By (24)

and
ITi(w —v)|lLaBy < ILi(w —v)llLaBy < Collw — vllLa(By)-

Fix some positivé with C5 < 1/2 and set

Ei ={w e LY(B2) | lwllray < 2(l fillLasy) + I1hllLacy + I&illLa(sy))} C LI (Bo).
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ThenT; mapskE; to itself and is a contraction map. So there exists sajme E; such
thatTl-(wl-) = wj, ie.,

wi(X)=/| zGi(x_Y)V()’)wi(Y)dy+ﬁ(x)+h(x)_‘fi(x)s x € By (25)
yl<

Takingg = r in (24), we deduce fronj (25) and (20) that
lwillLr By < %”wi”L’(Bg) + 1 fillLr By + N1l Lr By + ENlLr (By)-

The estimate ofjw;| .5, in (23) follows from this, in view of[(IP) and the second

inequality in [20).
Next we establish the second inequality[in|(23). Fer @ < s < 1, we have, by[(25),

w(x) < L)+ T1;(x) + fi(x) +h(x),

where

+ +
I; (x) :/ Mdy7 11;(x) :/ V(yw; () dy
! s

yl<s |X - Y|”_°‘ <|y|<2 |)C - )’|”_“
By the property of the Riesz potential,
IIillLacs) < CIVWlLesy) < CIV i pusapy lwitllacs,)
< C8llwi llLaa,) < 31w llLacs,).

Using the estimate dfw; || .7 (s,) in (23) yields

MLl < Cls — D" / Vwt () dy
s<|y|<2

< Cls =" "willLr sy < Cls —O* " (lullLrBg) + IhllLr(8y)-
With (20) and the above estimates, we have, forall < s < 1,
lw e, < %||wj_||L‘l(BS) +C(s —D*"(lullpr s + 1111 (By))-

By a calculus lemma (see, e.g., page 32 of [20]), we have, for a possibly @rggtill
depending only om, ¢, @ andn,

lw e,y < Cls — O " (lullLr By + IhllLr8y), YO<t <s <1
The estimate offw;" || L4(,,) i ) follows from the above. Lem@.z is proved D

Proof of Theore3For anyr < g < v, lets > 0and{w;} € LY(B,) be given by
LemmdZ.2. Since

/ Vwi(y)dy < CIVIipwepyllwillr s,y < C
lyl<2
for someC independent of, we have
lim sup||(L;w;)(- +z) — (Liw;)) ()1, = O
|z]l-0 ;

Therefore{L;w;} is precompact irL(B,).



Conformally invariant integral equations 161

We know from Lemm@ 2|1 thdf;} converges tgf in L(By). So{w;} is precompact
in L1(By). After passing to a subsequenee, — w in L1(By). In view of ),w €
L"(B2), w; —> win L?(By) forall p < r,w" € LY(B1/2), and

lw ™Il za By < ClullLrBs) + MhllLysy)- (26)

It follows that L; w; — Lw in L(B). Thus,

w(x) =/ Mdy + f(x) +h(x) —E(x), aexe By
ly|<2 |)C - Y|" ¢

Taking the difference of this and ([16), we obtain

(u —w)(x) = / Mdy, ae x € By.
yj<2 |lx =y«

By the usual estimates and using<® (V) < § andCé < 1/2, we infer that

lu = wllLr sy < C8llu — wllLr sy < 3lu — wlLr(sy-
It follows thatu = w a.e. inB. Theorenj 1.3 follows fron{ (26). O
Proof of Corollary{1.1. Fore > 0 small, let

ue(x) = €92y (ex), Ve(x) =€*V(ex), x € Ba,
and v
he(x) = e(n—a)/zf M dy + e(n_a)/zh(ex).
3e<|y|<R2 lex — Y|n “«
Then

Ue(x) E/ Mdy—i—he(x), x € Bo.
B

s e —yle

Clearly,u. € L"(B3) andh. € L"(By). Lets > 0 be the number in Theorgm 1.3, and fix
some smalk > 0 so that

”VE“L”/‘Y(BS) = ||V||Ln/zx(33€) < (§
Applying Theoren 113 ta,, we haveu. € L"(By2), i.€.u € L"(Bey). o
Proof of TheoreZSinceu € LIZO"/("“”) (R"), we have, b), for somg| < 1,

C

n+oa n+a n+o
u(y)n—« u(y)n— u(y)n—« .
/ e d}’SC/ _—n_adyf _—n_adyzu(x)<oo.
ly|>2 |}’| ly|>2 |x — )’| R |X — y|
(27)

For anyR > 0, we write

u(x) = Ig(x) + I1r(x) 3=(/ +/ )Md% (28)
yl<2R  Jiyis2r/ |x = y["7¢
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Take .
V(x) = u(x)=s, h@):/’ LU
ly|>2Rr |X — y|*™*
Sinceu € Lf;'c/”_“(R"), we haveV e Ll';/g‘(IR{"). By ),h e L*°(Bg). For anyv >

n/(n — a), we have, by Corollarlu € LV(Be)) for somee(v) > 0. Since any
point can be taken as the origin, we have proved #hatL (R") forall 1 < v < oc.
By the Holder inequality/r € L*°(Bg). By (27), we can differentiaté/s (x) under the
integral sign forlx| < R, sollg € C*(R"). SinceR is arbitrary,u € L (R"). Back
to (28), Ix is at least Klder continuous inBg. SinceR > 0 is arbitrary,u is Holder
continuous inR”. Now »+®)/(n=®) is Hilder continuous inBog, the regularity ofl

further improves and, by bootstrap, we eventually haeeC > (R"). O

3. Proof of Theorem[ 1.1

In this section we prove Theorgm [L.1. As shown in the last paragraph of Sectioa 2,
C*°(R"). By (4) and the Fatou lemma,

n+o

L _ .. x| %u n—a

B = Iliminf [x|""%u(x) = liminf R uly)
|x]—o00 |x|=>o0 Jrn  |x — y|*«

dyz/ u(y)iE dy > 0. (29)
]Rn

Forx € R", A > 0, and a positive function onR", let v, ; be given by[(p). Making a
change of variables

12z — x)
= 7" = —_—
Y 2 —xP?
we have
) 2n
dy = ( ) dz.
|z — x|
Thus

n+a n+a n
v(y)n—u dv — U(Zx’)‘)"’c’ A d
|§-x,k _ |n—ot y= |%-x,k _ x,kln—a | _ | z
ly—x|=2 y lz—x|<a z =X

n+o _
/ Ve ()T ( 2 ) "
= Z,
je—xl=a [E0F = 207 \ |z — x|

Since | e |
=X — Xl xa X, A
S — ’ — ’ = —_ y 30
. T 1§ M =15 —z| (30)
we have
A\ = ata
( ) / —4&—?®=/ Ler @ 4 @)
|§ — x| [y—x|>=x |E%A — Y|" ¢ |z—x|<A |§ —z|"7@
Similarly,

O\ LG vea ) -
_ XA _ y|n—a y= [T —— z. ( )
1§ — x| ly—x|<xr 1§ vl lz—x|=x 1§ — 2|
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For a positive solution of (4), applying [(31) and (32) with = x andv = u, ;, and
using the fact thatz**)** = £ and(vy_;)x.,. = v, we obtain

nta
Un (€)= / Up @7 ) v e R, (33)
i JE — 2"
and
M(E)—Mx,x(é‘):/l ‘AK(X,ME,Z)[M(Z)%—ux,/\(z)%]dz’ (34)
where )
K(x ki £.2) 1 ( A )"“" 1
X, A 6,2) = — .
E—zre \JE—x|) |g5F—@

It is elementary to check that

K(x,»€,2)>0, VE—x|,|z—x]|>A>0.
Formula[38) is the conformal invariance of the integral equafipn (4) (sée [31] and [32]).
Lemma 3.1. For x € R", there exists.o(x) > 0 such that

ux () =u(y), VO<i <io(x), [y—x[=A. (35)

Proof. The proof is essentially the same as that of Lemma 2.[L ih [29]. For the reader’s
convenience, we include the details. Without loss of generality we may assumé,
and we use the notatian, = ug ;.

Sincea < n andu is a positiveC? function, there existsy > 0 such that

Vy(Iy|"=2u(y)) -y > 0, YO < |y| < ro.

Consequently,
u,(y) <u(y), VO<x<|yl <ro. (36)

By (29) and the positivity and continuity af,

u(z) > W Y|z| > ro. (37)

For smallrg € (0, rg) and for 0< A < Ag,

A n—o Azy )LO n—o
u(y) =\ — ul — ) =\ — supu < u(y), V|y|>ro.
[yl [yl |yl B

"o
Estimate[(3p), withx = 0 andrg(x) = A, follows from (36) and the above. O
Define, forx € R",
Ax) =supp > 0w, (y) Su(y) VO < i < p, |y —x| = A
Lemma 3.2. If A(x) < oo for somex € R”, then

Uz i =u  OnR™ (38)
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Proof. Without loss of generality, we may assuie= 0, and we use notations =
A(0), u). = ug,,.. By the definition ofx,

up(y) <u(y), Viyl =i (39)

By ), withx = 0 andx = %, and the positivity of the kernel, eithag (y) = u(y)
for all |y| > A—then we are done—ar;(y) < u(y) for all |y| > A, which we assume
below. By the Fatou lemma,

fmin |y["~(u —u;) () = liminf | 1y KO, iy, u(@) e — us(2)na]dz
y|—o00

YI=0o0 Jz|=a

z / _<1— (i) i )[M(Z)FZ —u;(z)%]dz > 0.
[z]=A |z]

Consequently, there exists € (0, 1) such that
Viy| > A+ 1.

€1
(u—up)(y) =
* |y
By the above and the explicit formula foy,, there exists < €2 < €1 such that

Yyl = A4+1, 2 <A < A+ez (40)

€1 €1
(=) () 2 s+ =) () 2 i

Now, for € € (0, e2) which we choose below, we have, far< 1 < 1 + € and for
A<lyl<=Ar+1,

nta nta
@ —u)(y) = / KO, 1y, D[uz) = —uy(z)r—~«]dz
|z|=A
nta nta
2/ KOy, )[u@) e —up(z)n]dz
A<lzl=a+1
nta nta
+ﬁ KO, Ay, [u@) e —up(z)me]dz
A+2<|z|<h+3
2/ KO Ay, DUz (@) — uy(z)ne]dz
A<lzl=a+1

n+o n+a
+ﬁ KO, y, Du@) = —uy(z)n=e]dz.
At2<|z|<A+3

Because 0f (40), there exisis > 0 such that
U@ —us(R)ie =81, A+2<|z<A+3
Since
K@©O,x;y,2) =0, V]|y|=2,
VyKO 4y, 2)y] 0y = (i—a)ly—z*"2(zP=[yP) > 0, VA+2< 2] < A+3,

and the function is smooth in the relevant region, we have, using also the positivity of the
kernel,

KO,4;y,2) > 8(y —A), VA<A<|y|<Ai+Li+2<z|<r+3,
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wheres; > 0 is some constant independenteolt is easy to see that for some constant
C > 0independent of, we have, folL <1 < A +¢,

U5 ()% —un (@) | < COi—R) <Ce, VA<i<lzl<i+l,

1 1
— ~ T — | dz
a<lzl<i+i\ly —z|"7% |y* —z|"7¢

)\' n—oa 1
+./ <_) - l’—dz
rsla =i+t I\ 1Y Iyh — z|n—@

< Cly* =yl +C(yl = 1) < C(lyl — »).

It follows from the above that for smadl > 0 we have, fon. < A < A + € andx < |y| <
A+ 1,

and (recall thak < |y| < A + 1)

/ K@©O,2;y,2)dz <
A<lzl=A+1

-0z ~Ce [ KQuyadzrssal-n [
A=lzl=A+1 A+2<(z|<A+3
> <5182ﬁ ) dz—Ce)(|y|—A)zO.
A2<|z|<A+3
This and[(4D) violate the definition af Lemmg 3.D is established. O

By the definition ofx (x),
e (y) u(y), Y0 <i<i(x),ly—x|>Ai
Multiplying the above by y|*~ and sendingy| to infinity yields
B = |||)f‘n_12£ VU (y) = A" u(x), V0 < A < Ax). (41)
On the other hand, (%) < oo, we use Lemmf 3|2 and multiply (38) by”~* and then
send|y| to infinity to obtain
B = |y|‘iLnoo V" u(y) = ME)" " u(x) < oo. (42)
Proof of Theorerh 1]1(j) If there exists som@& € R” such that.(¥) < oo, then, by[(4R)
and ),)_\(x) < oo forall x € R". Applying Lemm, we have
Uy ) = U onR”, Vx e R".

By a calculus lemma (Lemma 11.1 in [29], see also Lemma 2.5 in [3Q} fer 2), any
ct positive functioru satisfying the above must be of the for[r—_T]l (5).
(i) If A(x) = oo forall x € R", then

ux () <u(y), V]y—x|>1>0xeR".

By another calculus lemma (Lemma 11.2(in|[29], see also Lemma 2.2]in [3@]$o2),
u = const, violating[(#). Theoren 1.1 is established. o
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4. Proof of Theorem[1.4

In this section we establish Theoréml1.4.

Lemma4.1l. Forn > 1,0 <a <nrnandu > 0, letu be a Lebesgue measurable positive
solution of (7)) which is not identically equal teo. Then, for any < n/(n — ) and
u € Lis (R") N LI (R"),

B = liminf |x|""“u(x) > / u(y)*dy > 0, (43)
|X|—>OO R~
and "
/ “ON 4 < oo (44)
|y|>2 |}’|” ¢

Proof. Multiplying by |x|"~%, we obtain[(4B) by applying the Fatou lemma. Since
is not identically equal teo, we see from[(1]1) that is finite almost everywhere. So, for
somexy, x2 € By, x1 ;é x2, we have

/ MO gy < e + () < oo,
n|x;p — y|"e
It follows thatu € Lloc(R”) and @) holds. FoR > 0, we write
m
u(x) = Ig(x) + g (x) = ( ) L0y (45)
|v\<2R |y|>2R [x —

|n0t

Sinceu € Lo (R") and [44) holds/ Iz € L*°(Bg). On the other hand, for any 4 ¢ <
n/(n — «), we have, by the Cauchy—Schwarz inequality,

el < [ w21 gy dy
|y|<2R

o R /MR u ()" dy < oo.

SinceR > Qs arbitraryu € L,OC(R”). O

Lemma 4.2. Assume: > 1and0 < o < n.

(i) For0 < u < n/(n — @), letu be a positive Lebesgue measurable solutiogdd}
which is not identically infinity. Them € C*°(R").

(i) Foru > n/(n —a), letu e Lf()(é“l)/”‘(R") be a positive solution ). Then
u € C*([R").

Proof. (i) For 0 < u < n/(n — 2). We know from Lemm.l that € LlOC(R") for all
t <n/(n—a). ForanyR > 0, writeu as in [4%). As usual[ Iz € C*°(Bg). For any
l<p<n/un—a)letl/g=1/p—a/n. Theng > n/(n —a). By the property of the
Riesz potential,

IR llLaBr) < Clu L Bog) = ClUll Y piu ey < OO
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Sou e L{L (R"). Lety’ = max(L, n). Sinceu” < C + Cu*', we have

\%4
u(x)ng Mdy+h(x), X € Bg,
Iy|<2R |x — "7«
where (¥
Vo =ue L b= [ MO
ly|>2R 1X — ¥l

By (44),h € L®(Bg). Sincen(u' — /o < n/(n — ), we obtainV e L% (R"). Since
ue LI‘{)C(R”) with ¢ > n/(n — «), we have, by applying Corolla.&,e LY (Bev)) for
anyv > 0, wheres (v) > 0. Now, back to[(4B)/r is C*° near the origin by bootstrapping.
By the translation invariance of the probleimg C°°(R").

(i) For w > n/(n — a), let V(y) = u(y)*~1. We know from Lemml that e
Ll (R forallt < n/(n —a). Sinceu € L{g(é‘_l)/"‘(R”) by assumption, we also have
V e L*(R"). Now, for anyR, > R1 > 0, let

loc
u(y)”
h( )=/ —d
Y Iy|>Rp |X — y|I"™H Y
Thenu € L"(Bg,) With r = n(u — 1)/, V € L"*(Bg,), h € L™(Bg,) C L"(Bg,) for
anyv > r, and
\%
u(x) :/ Mdy + h(x), x € Bp,.
Iy|=Ry |X — y["™*

By Corollary,u € L"(Bg,). SinceRy > O is arbitraryu € L (R") forall r > 1.

loc
Bootstrap as usual to gete C*°(R"). O

Forx € R", A > 0, and a positive function onR", letv, , be as in@).

Lemma4.3. Forn > 1,0 <« <nandu > 0, letu be a positive solution dff]). Then

m n+a—pu(n—o)
Uy (E) = / tx1(2) ( * ) dz. VEER',  (46)
R

n [ —zI"7¢ \ |z — x|
and
A n+a—pu(n—a)
u(€) — ux (%) =/ K(x,X;é,z)[u(z)“ —( ) ux ()" | dz,
lz—x|>A |z — x|
(47)
where
K h£.2) 1 ( A )"‘“ 1
X, A86,2) = - .
§—zlm \lg—xl)  |gnh —gne
Moreover,

K(x,2&62 >0, VE—x|,]z—x|>1>0.

Proof. Foru = (n+a)/(n — ) the assertion is established in Section 3. The proof works
for all © > 0 with minor modifications. O
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Lemma4.4. Forn >1,0<a <nandu > 0, letu € CL(R") be a positive solution of
(17)). Then for anyx € R", there exists.o(x) > 0 such that

Uy () <u(y), VO <k <iro(x), |y —x|=> 4. (48)
Proof. This has been proved in Section 3 fer= (n + «)/(n — «). The same proof
applies for allu > O. O

Define, forx € R”",
Ax) =suplp’ > 0] uxa(y) <u(y), VO< i < p, |y —x| > A}

Lemma4.5. Forn > 1,0<a <n and0 < u < (n+a)/(n — ), letu € CL(R") be a
positive solution of11). Theni (x) = oo for all x € R”.

Proof. We argue by contradiction. Suppose thaf) < oo for somex e R”". Without
loss of generality, we may assunie= 0, and we writex = A(0), u; = ug,. By the
definition of ,

up(y) =u(y), Viyl =2 (49)

Sincen +a — w(n —a) > 0, (A/|z])"F*~#"=® < 1 for |z| > i. So, by [49) and (47)
with x = 0 andA = A, and the positivity of the kernel, we have, fo1 > A,

n+a—pun—o)
(W —us)(y) = / KO y,z)[um“ - <i> u;(z)“]dz

[HES |zl
_ A n+o—p(n—a)
> / K(@©,x;y,2) |:1 - (—) }u;\(z)“ dz > 0.
[HES |z
Thus, by the Fatou lemma and the above,

Ilirpinf "% (u —u)(y) > I|iminf/ YT (O, A5y, )[u(@) — uz(2) ] dz
y|—o00 |

Y=o Jizj=1

2/ _<1— (i) i >[M(Z)“—M;(Z)"] dz > 0.
FIE |z]

Consequently, there exists € (0, 1) such that

T =T >r+1
By the above and the explicit formula foy,, there exists < €2 < €1 such that
€ € - - —
(u—u)(y) = M%+(u;—ux)()0 > 2|y|i,a Viyl = A+1, A <A < A+ez. (50)

Now, using [(49) and (30) as in Section 3, fore (0, €) which we choose below, we
have, forh <A <A +eandforr <|y|<A+1,

(M—MA)(Y)Z/ KO 23, D50 — us ()] dz
A<lzl<A+1

+[ KO, Ay, D[u@ — un(z)#]dz.
A2<|z|<A+3
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Because of (50), there exisis > 0 such that
u@* —up (@ =81, A+2<lzl<r+3.
It was shown in Section 3 that
KO,1;y,2) >8(yl —1), VA<A<|y|<A+L A+2<|z]<A+3

wheres; > 0 is some constant independenteolt is easy to see that for some constant
C > 0independent of, we have, fol. <1 < A + ¢,

luz; " —up(@"| <C(h—2) <Ce, VASAZ|zZ|<A+1
and (recall thak < |y| < A + 1), as in Section 3,

/ KOy, 2)dz < C(lyl = 1)
A<|z|<A+1

It follows from the above that for smadl > 0 we have, foi < A < A + € andx < |y| <
41,

-0z ~Ce [ KQuyadz+ssal-n [
A=|zl=a+1 A+2<|z|<A+3
> <5182ﬁ . dz—C6>(|y|—A)20.
A+2<|z|<i+3
This and[(64) violate the definition af Lemmg 4.5 is established. u]

Proof of Theorerh 1|4According to Lemm@ 4]5,(x) = oo for all x € R, i.e.,
uxp(y) <u(y),  Vly—x[=21>0xeR"

By a calculus lemma (Lemma 11.2 in_]29], see also Lemma 2.2_inh [30kfes 2),
u = const, violating[(I]L). Theorem 1.4 is established. o

5. Proof of Theorem[ L%

In this section we establish Theoréml1.5.

Lemmab5.1. Forn > landp,q > O, letu be a nonnegative Lebesgue measurable
function inR” satisfying(1). Then

/Rn(1+ IyIPu(y)™dy < oo, (51)
y = | I‘im |x|"Pu(x)
= lim I~ y|pu(y)7‘1 dy u(y) ?dy € (0, 00), (52)
|x]—00 n |x|1’ Re

and, for some constaidt > 1,
1+ |x|?

<u(x) <C@A+|x?), VxeR. (53)
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Proof. We see from[(T2) that must be positive everywhere and
{y e R" u(y) < oo}| > 0,

where| - | denotes the Lebesgue measure of the set. So thererexistl and some
measurable sdft such that

EC{ylu(y) <R)NBz, |E|>1/R.
By (12),
u(x) =/ |x—y|f’u(y>—qayz/ = y17u(y) " dy
Rn E
> Ri”/ lx —y|Pdy, VxeR"
E

The first inequality in[(5B) follows from the above.
For some I< |x| < 2,

/ X = ylPu(y) ™ dy = u(x) < oo.
Rn

We deduce[(51) from the first inequality [n {53) and the above.

For|x| > 1,
x — y|P
B4 < @ o
|x[?
so, in view of [51),[(5R) follows from the Lebesgue dominated convergence theorem. The
second inequality irf (53) follows frorh (12), (51) afd](52). O

Lemmab5.2. Forn > 1and p,q > 0, letu be a nonnegative Lebesgue measurable
function inR” satisfying(1d). Thenu € C*®°R").

Proof. For R > 0, write (12) as

u(x) = Ir(x) + Ig(x) = (/ +/ )Ix—yl”u(y)qdy~
lyl<2R  J|y|>2R

Because of[(51), we can differentiakér (x) under the integral sign forr| < R, and
thereforel I € C°°(Bg). On the other hand, sinae? € L°°(Bgg), clearly I is at
least Hilder continuous imBg. SinceR > 0 is arbitrary,u is Holder continuous ifR”".
Now u~7 is Holder continuous inBag, the regularity oflg further improves and, by
bootstrap, we eventually hawee C*°(R"). O

Let v be a positive function of®”. Forx € R" andx > 0, consider

— xI\?
v (§) = (|§)L_x|) v(E), EeR,

where
22— x)
& —x|2°
Note that the notation, , in this section is different from that in Sections 1-4.

SX,)L:x_'_
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Making a change of variables

y= XA Az(z—x)
lz— x|’
we have
5 2n
dy—( ) dz
|z — x|
Thus

2n
A
/ E54 — ylPo(y) 1 dy = / |E5h — 2 Py (gt dz
ly—x|>A lz—x|<A |z — x|

N . A 2n—pq
Z/ LA lp(lz xI) P& dz-
7—x|<A -
Using [30), we have

A —-P
( ) / 7% — y1Pu(y) 7 dy
|§ —XI [y—x|>A

A 2n—pq+p
= / & — ZI”( ) vy (2)"1dz. (54
lz—x|<A |z — x|
Similarly,

A —P
( ) / £~ yPu(y) 4 dy
1§ — x| [y—x| <A

A 2n—pq+p
=[ | 13 _le(lz x|> vy (2)"1dz. (59
Z—X|>A -

Lemma 5.3. Letu be a positive solution ofI2). Then

A 2n—pq+p
ux (&) =/ |E — zl”( ) uy(z)"9dz, VEeR", (56)
Rr |z — x|
and
A
uy (&) —u@) = / k(x,2; €, 2) [u(z)q — (m)znpq“’ux,x(z)q] dz,
[z—x[=A -
(57)
where )
k(x,76,2) = (@) |E5% — 2P — | — z|”.
Moreover

k(x,A;€,2) >0, V|E—x|, |z—x|>Ar>0.
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Proof. Since(&**)** = £ and (vy,1)x,1» = v, identity (56) follows from [(1R) and (54)
and [5%) withv = u. Similarly, using alsq(56), we obtain

u(®) / & = 2Pu(z) dz+/ & — y1Pu(y) ™ dy
|z—x|>A [y—x|<a

f 1€ — z|Pu(z)"1 dz
[z=x|=A

— x|\? A 2n—pq+p
+('é ') / g — z|P< ) 1 (2) 7 dz.
A lz—x|=A |z — x|
A 2n—pq+p
uy (&) = / & —ZI”( > uy 3 (2)"1dz
R |z — x|
A 2n—pq+p
= f & — zl”( ) uy 3 (2)"1dz
lz—x|=A lz — x|

_ P
+(|‘§ x') f 1E5% — 2|Pu(z) " dz.
A lz—x|>A

Identity (57) follows from the above. The positivity of the keriés elementary. O

Lemma5.4. Forn > 1andp, g > O, letu be a solution of{I9). Then for anyx € R”,
there exists.g(x) > 0 such that

ue () > u(y), VO<x<2nro(x), |y—x|>A. (58)

Proof. The proof is similar to that of Lemma 2.1 in [29] and Lemfma] 3.1 in Section 3.
Without loss of generality we may assume= 0, and we writas, = ug,.
Sincep > Oandu is a positiveC1 function, there existgy > 0 such that

Vy(IyI7"2u(y)) -y <0, VO < |yl <ro.

Consequently,
up(y) > u(y), Y0<i<lyl<ro. (59)

By (53),

u(z) < C@ro)lz|?  Viz| = ro. (60)
For smallig € (0, o) and for 0< 1 < Ao, we have, usind (33) anf (59),

[\" (A% NN
fu v .
u (y) (A) ") = Ui Ir:o >u(y), Viyl=ro

Estimate[(5B), withc = 0 andig(x) = 2o, follows from (59) and the above. O

Define, forx € R",

Ax) =suplp > 0 uy (y) > u(y), YO< A <, |y — x| > Ab.
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Lemmab5.5. Forn > 1, p > 0and0 < ¢ < 1+ 2n/p, letu be a solution of(12). Then
A(x) <00, VxeR",

and
Ux a(x) = U Oan, Vx € R". (61)

Consequentlyy = 1+ 2n/p.
Proof. By the definition ofi(x),
up i (y) = u(y), YO<A<i(x),ly—x|=hr
Multiplying the above by y|~? and sendingdy| to infinity yields, using),
O<y= lim yI7Pu(y) <A7Pu@), V¥O<i<ix). (62)
Thusi(x) < oo for all x € R”.

Now we prove[(6]L). Without loss of generality, we may assume 0, and we write
A = A(0), u;, = ug;, andy* = y%*, By the definition ofx,

up(y) = u(y), Viy| =i (63)

Since 22 — pg + p > 0, we have(r/|z)2*P4+P < 1for |z| > 4. So, by [(6B),[(5]7), with
x = 0 andx = %, and the positivity of the kernel, eithet (y) = u(y) for all |y| > r—
then we are done (usinp (57) to see that2 pg + p = 0)—oru;(y) > u(y) for all
ly| > A, which we assume below.

By ( .), withx = 0 andx = %, and the Fatou lemma,

liminf [y 77 (uz — u)(y)
|y|—>o00

)Zn—pq+p

= liminf ly|"Pk(0, A; y, z)|:u(z) q— ( M;(Z)_q] dz

lyl=00 Jiz|>1

= / ((|Z|>p 1) B 1@
- A=) —1)u@ 7 —uz(z)"dz > 0.
[z|=2 A

Consequently, using also the positivity:of — u, there existg; € (0, 1) such that
u; —w)(y) = elyl”, Viyl=i+1l

By the above and the explicit formula of, there exists < €2 < €1 such that

€1 _ _ _
(up—u)(y) = exlyl” + up—up)(y) = Elyl”, Viy| > 2+1 A <A <i+e. (64)
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Recallthat2 — pg+p > 0and therejorek/|z|_)2”—P4+P < 1for|z] > A. Fore € (0, €2)
which we choose below, we have, for< A <1 +eandfori < |y| <A +1,

W — () = / KO, 1 v, D) — up(2) ] dz

[z]=A

> / kO, Ay, D[u) T —up(z)" ] dz
A<lzl<A+1
+ﬁ kO, 2y, D)) —up(z) 1] dz
A+2<|z|<A+3
> / KOy, Dl ()7 — ()] dz
A<zl<h+1

+ f ROk D[ — un(2) ] dz.
AF2<|z|<A+3

Because of (64), there exisis > 0 such that
w(@ T —up(x)1 =81, A+2=<|z <A+3

Since
k(O,A;v,2) =0, V]|y|=A4,

Vyk(0, 4,2 - ¥y = Py — 2P 22 = 1y > 0, VA+2<z <A+3,

and the function is smooth in the relevant region, we have, using also the positivity of the
kernel,

kO, x;y,2) = 8(ly| —A), VYA<A<|yl<Ai+1 A4+2<]zl<r+3

wheres; > 0 is some constant independenteolt is easy to see that for some constant
C > Oindependent of, we have, fol. <A < A + ¢,

lus(2) ™ —u; (2)79 < C(h—21) <Ce, VA<A<|Z<A+1,

and (recall thah < |y| <1 + 1)

/ kO, 2y, 2)dz < C(lyl = A) +/ W =z2P =y —zP)dz
A<|z|<A+1 A<|z|=A+1
<C(yl=M+Ch* =yl = Clyl = 1.

It follows that for smalle > 0 we have, folh <A <A +eandir < |y| <A +1,

(un — u)(y) = —Ce / RO, 2y, 2) dz + 8182(1y] — 1) dz
A<|z]<A+1

A+2<(z|<A+3
(5132/ dz—Ce)(lyl—k) > 0.
A+2<|z]<i+3

This and[(6}4) violate the definition af Lemmd 5.5 is established. o

v
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Proof of Theorerp T|5According to Lemm@5]% = 1+ 2n/p and
Uy G0y = U onR”, Vx e R".

By a calculus lemma (Lemma 11.1 in [29], see also Lemma 2.5 in [30} fer 2), any
¢ positive functioru satisfying the above must be of the fo(13). O

Appendix A

In this appendix, we show, as pointed out in Renjark 1.2, that for some:(n, p) > 0,
(13) solves[(IR) witly = 1 + 2n/p. Our proof works equally well for equatioh](4).
Forn > 1 andp € (—n, 0) U (0, co0), we consider the integral equation

u(x) = / Ix — y|Pu(y)~@*P/P gy vx e R". (65)
Rn

Lemma5.6. Forn > 1landp € (—n, 0)U (0, c0), there exists a unique = a(n, p) > 0
such that for anyt € R" andd > 0,

_ 712\ P/2
4y = (d+lx_xl>

a

satisfieq[65).

Proof. Letq = 1+ 2n/p. For a positive functiow, and forx € R" andx > 0, we set

1§ — x|
A

where&*+* is given by ). By conformal invariance, we only need to prove that modulo
a positive constant multiple,

p
vx 2 (§) = ( ) v(EYY), EeR",

u(x) 1= (L4 |x[»?/?
satisfies[(6p). Set
i = [ e yiu) Ty, x e
We only need to show thatis zi\Rnconstant multiple af.
For anyx € R”, letA(x) := /1 + |x|2. Observe that
Uy ax) =u, ONR", Vx eR" (66)
Making a change of variables

2
XA oy K(ch) (z |—ZX)
—X

we have, using[(§6) and the conformal invariance of the equatjony ((54), (5%), (31)
and [32)),

y=z

)

_ P
Uy ) () = (Ii(;l) /Rn |E520) — y1Pu(y) 1 dy

= /Rn 1€ — zlPux 0 (@) 1dz = u(§).
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Multiplying this by |£|~7 and sendingé| to oo leads to
lim |&]7PiaE) = A(x) " Pi(x) = A+ |x[DP2(x) = u(x) " i(x), VxeR".

[§]—>00

Soua is a constant multiple af, and we are done. O

Appendix B

In this appendix, we present some calculus lemmas obtained jointly with L. Nirenberg.
These lemmas under the stronger assumpfioa C1(R") have been used repeatedly

in some works on Liouville type theorems for conformally invariant equations (see, e.g.,
[29], [30], [24]-[27] and the present paper).

Lemmab5.7. Forn > 1andv € R, let f be a function defined oR" with values in
[—o0, 00] satisfying

v 2 _

< - )f<x+L);)>§f(y), Vix —yl>A>0. (67)
|y — x| ly — x|

Thenf = constor +co.

Remark 5.1. If the firstinequality in[(6F) is reversed, the conclusion still holds, since we
can replacef by — f.

Proof. For allb > 1 andy, z € R" with y # z, let

x=xb)=y+blz—y), r=ib)=lz—x|ly—x|

Then
2y —x)
ly —x[2’
and, by [(6}),
)\' v
( ) f@) = f(y).
ly — x|
Since
lim - ezl
b—oo |y —x| booo\ |y — x|
we havef(z) < f(y). Lemmg5.} follows since # z are arbitrary. o

Lemma5.8. Letn > 1,v € Rand f € CO(R"). Suppose that for eveny € R”", there
existsi(x) > 0 such that

A Y Ax)2(y —

( () ) f(x + M) = f(). Yy eR"\ {x}. (68)
ly — x| ly —x

Then, for some > 0,d > 0 andx € R”,

1 l)/2
ro=soli)
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Proof. By (68) and the continuity of,
o= | lim |y]"f(y) =A2(x)"f(x), VxeR" (69)

y|—o00
If v =0, thenf = «, and we are done. On the other hand, the case0 can easily be
reduced to the case of> 0 if we letz = x + A(x)2(y — x)/|y — x|2in (68). So we will
assume that > 0.

If « = 0, thenf = 0, and we are done. Otherwise, replacihgy a nonzero multiple
of f, we may assume that = 1. Sincef(y) — 0 as|y| tends tooco, and sincef
is continuous and positivef has a maximum point, and we may assume thdtas a
maximum point at the origin.

For anyx € R", we have, for largey|,

v )\’ 2 .
Iyl"f(y) = )»(x)”(L) f(x + M)

ly — x| ly — x|?
x(x)%y—x))
ly — x|?

Vv

- A(x)”|:1+ |xy|'2y + 0(|y|2)i|f<x +

and, by[(69) and: = 1,

A(x)2(y —
Iy F () — 1] = Iylk(x)”[f<x + %ﬂzw - f(x)}

ly
N 20y _
+ [—Mx) ey +0(|y|‘1)]f<x+—)”(x) Sl zx)). (70)
[yl ly — x|

Takingx = 0 in the above and using the fact thahas a maximum point at the origin,
we obtain
limsuplyl[lyl" f(y) — 1] < 0. (71)
[yl—>o00
Claim. For anye > 0, there existd/, such that for anyy| > M., there exist& = x(y)
satisfying
. MDAy - F)

X+ =0 and |x|<e. (72)

ly — %

Indeed, we know from[ (§9) and = 1 thati(x) = f(x)~Y/* for all x € R”. For any
€ € (0, 1), pick M. > 1 so that

(M, — &)L maxf(x) 2" < <.

|x|<e 2

Then, for all|y| > M.,

A(X)%(y — x)

max
ly — x|?

[x|<e

= maxly — x|t f ()2 < (M — o) L max f(x) 2" < g
<€

|x|<e lx|<

Thus, by a degree argument using the continuity pfhere exists = x(y) satisfying

2.
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With x = X(y) in (70), we obtain

fiminf Iy[[Iy["f (v) = 1] = —evf (O maxf @) ~"".

Sendinge to 0, we have
ﬂgﬁﬂ_lg): IyIlyl" () —1] > 0.

Thus, in view of [71),
lim |y|[Iy["f(») —1] =0. (73)
|y]—>00
Lete; = (1,0,...,0),...,e, = (0,...,0,1). Foranyx e R", 1 <i < n, andr € R,
lety = y(x,t,i) € R" be defined by

AP (y = x)

e = —————>—
ly — x|

Taking thisy in (70) and sendingto O, we obtain, in view of (73),

af Jxtre)— fx) _ vx-eif(x)

g O =1m, P A(x)2

= —vx; f (x) 2,
3)6,‘

By the continuity of f, we know thatf is in Cl(R"), and we complete the proof of
Lemm by writing the above system of PDEsfa$ f (x)~%" — |x|?] = 0 and solving
it. O
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