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A three-dimensional probability distribution in
the metrical theory of continued fractions
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Abstract. Leta,,n > 1, denote the incomplete quotients of the continued fraction expansion of an
arbitrary irrational number in the unit interval= [0, 1]. Foranya € I putsf:Jrl =1/(ap41+s3),
up 1 = s, +1/t",n = 0, withsg = a, wherer is the continued fraction transformation, and let
yq be the probability measure on the Borel subsets @éfined by its distribution function
ra0,5) = S22,
We study the joint distribution function of}, ", andu;‘H, n > 0, undery,, a € I. We derive
the asymptotic distribution function, lower and upper bounds for the error as well as its optimal

convergence rate to 0 as— co. The same problems are taken up for the distributions of the pairs
(", ”Z+1) and(sg, uz+1) undery,, a € 1.

x el

1. Introduction and statement of the problem

Let 2 c I = [0, 1] be the set of irrationals in the unit interval. Consider the contin-
ued fraction transformation : 2 — 2 defined byr(w) = 1/w mod 1 (that is, the
fractionary part of lw). PutN;, = {1,2,...} andN = N, U {0}. Definea,+1(w) =
a1(t"(w)),n € N, w € 2, wheret” denotes the composition efwith itselfn € N
times, 7% = identity map, a:andzl(w) = integer part of 1w, w € 2. Then

T a@ @

= , n=2,
a1(w) +

1

ax(w) + -+ @ 1@
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and we have
w = lim Pn(@) = [a1(w), az2(w),...], w e 2,

n—o00 qn(w
where

pn(w) - 1

= 1 ,
Qn(a)) (ll((,()) +
az(w)+ -+

ap(w)
with g.c.d.(p, (@), gn(@)) = 1,0 € 2,n € N;.
Thea,, n € Ny, are clearlyN,-valued random variables aii, B;), whereB; is
the collection of Borel subsets @f which are defined almost surely with respect to any
probability measure o#8; assigning measure 0 to the det 2 of rationals in/. An
example of such a probability measure is Lebesgue measine a more important one
in our context is the Gauss measyréefined by

1 dx
y(A) = ——

—, Ae€eB.
log2J4 x+1 !

We havey = yt~1, thatis,y(A) = y(r~1(A)), A € B;. Therefore, by its very defini-
tion, the sequencer,),cn . is strictly stationary ori/, By, y).

There is also a whole familyy,),<; of probability measures of; defined by their
distribution functions

1
)/a([()?x]):%a XEIaaela
which plays an important part. In particulas, = A. For anya € I andn € N, we have
(s 4+ Dx
ya(t"<x|a1,...,an)zw, EI, (1)

(see Proposition 1.3.8 in [IK]), where tig are defined recursively by = a and

1

————, ael,nelN
anp+1 + 8,

a —
Sp+1 =

Noting thatt” (@) = [a,+1(®), apt2(w), ...], n € N, w € £2, it follows that
st 41
(54 +i)(sg +i+1)

Va1 =1lay, ..., a,) = = Pi(S,?)
for anya € I andi,n € N.. Hence for any: € I the sequencés?),n on (I, By, va)
is an I-valued Markov chain which starts 8§ = a and has the following transition
mechanism: from state € I the possible transitions are to any staj&sl+ i) with
corresponding transition probabilit (s), i € N;.

Finally, let us define the [loo)-valued random variables

1
”Z+l=sz+r_n’ neN, ael. (2)
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In particular, we can write
-1

-2 , wef, neN,

Pn(®)
ud (@) = g, 2w — ———

qn(w)
with po(w) = 0, go(w) = 1, w € 2 (cf. [IK] p. 15]). Therefore, the quantitie®, :=
1/u2+1, n € N, yield some information about the quality of the approximations
Pn(@)/qn(w), n € N, for w. Consider the distribution functiod on [1, co) defined by

-1
—<|ng—z—> if1<z<2
Z

1
— | - = if 2.
Ing<ogz z) ifz>
The following results hold (cfL[IK, pp. 117-119, 154, and 98]).

(i) For anya, x € I andn € N4 we have
log(x + 1) n2log2 (1 |1 log(x+1)
W (7" — —1 -2 - =),
va(th <) = =002 ’5( 6 o \27127 Tlog2

whereio = 0.303663 007 898.. (Wirsing’s constant). For any € I, a # ao, With ag
very close to 04, the exact convergence rate to ias> oo of

log(x + 1)
supy, (t" -

is O(Ag). Fora = agp the rate iSO(13), with A3 = 0.100 884 509 293. . . Note that these
results needed pretty nearly 162 years to be reached[ See [IK, Ch. 2].
(i) For anya € I, (x, y) € I%, andn € N we have

w

1 lo 1
a+ < sup Va(sz < x, " < y) _ M
2(F, + aF,_1)(Fyy1+aFy,) x,yel IOg 2
K0
< . 3
B FnFn—i-l ( )

Here the |5, n € N, are the Fibonacci numbers defined recursively by £ 0, iy = 1,
F.+1 = F, + F,—1, n € N, andkg is a constant not exceeding 14.8. Hence, setting
Gi(x) = yu(s? < x),a,x € I,n € N, and lettingy = 1, we obtain the same lower and
upper bounds as above for

lo 1
SU#GZ(X) _ logx+ D )
xel IOg 2
These facts imply that for anty € I the exact convergence rates to Oias> oo of both
log(xy + 1)
Sup|ya(s, <x, " <y) — ————
x,yee 4 Y log 2
and | !
o]
sud(;ﬁ(x) _ g(x——i—)’
xel |Og 2

areO(g?), with g = ¥5=1 42— 3-¥5 _ 038196....
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(iii) For any z > 1 andn € N we have

k1l 1, (Z)
SUply,(u’, 4 < 2) — H(z)| < —— 2050
ael 7

wherek is a constant not exceeding 6.5 ahd., stands for the indicator function of
the infinite interval(1, co).
The exact convergence rate to Gnias> oo of

suplya(uy 4 < z) — H(2)|

zel
isOMY) foranya € I\ E,with E = {a € I : [; y(dx) [ ¥ (y)dy = 0}, wherey is
a certain real-valued continuous function bnSee [[IK, pp. 91 and 99]. Far € E the
convergence rate to 0 as— oo of the above quantity i® («") for somex < Ag. Neither
0 nor 1 belongs t&.

In this paper we study the joint distribution &f, =", andu; ,, n € N, undery,,

a € I. Even if there is a deterministic relationship connecting these variables, the picture
emerging is an interesting one. We derive the asymptotic distribution function, lower and
upper bounds for the error as well as its optimal convergence rate to 8-aso, which
is O(g?"). The same optimal convergence ratenas> oo also holds for the marginal
joint distribution undery, of s; anduy_ ,. Instead, and this is a notable exception, the
optimal convergence rate as— oo for the marginal joint distribution under, of "

andu;jJrl isO(Ag) foranya e I'\ E.

2. Main result

On 12 x [1, oo) consider the distribution functioh defined by

i<|09(xy +1) - g) if y>1/(z—x),

log 2
L()C,y’z): 1 .

— I — -1 fl 1/(z —

|ng<09ﬂ+yz ) ifl/z <y =<1/(z—x),

0 ify <1/z,

for (x, y) € I2andz > 1. Put
| 1
Hf(x)=GZ(X)—M, a,xel,neN.

log 2

We can now state our main result as follows.
Theorem 1. For anya € I, (x, y) € 1%, andz > 1 the quantity
[Va(sp, < x, T8 <y, up, 1 <2) — L(x,y,2)]

is dominated by

() (y—;—L) sup [HOGo| if v > 1/(z — x) andz(y — y2) < 1

O<u<x
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0 (—(W _124 y—g> sup | B2 )|

O<u<x

if y>1/(z—x)andl < z(y —y?) < (xy + 1?3

1 1
(i) {2(x + 1)( ) —y+ Z) sup |Hf (u)]

+1 Z O<u<x
if y>1/(z—x)andz(y —y%) > (xy + 1%

O<u<z—1/y
2

y

v)

!\l

(iv) (y——) sup [Héw)| if 1/z <y <1/(z—x)andz(y —y?) < 1;

Wz —yd) - D%+ y——)o sup, |HE ()]
<u<z—1/y

if 1/z <y <1/(z—x)andz(y —y?) > 1,
(vi) 0 ify<1/z
Consequently, for every € I the quantity

SUp  |ya(sy <x, " <y, up,y <2)—L(x,y,2)| (4)
x,yel, z>1

is dominated byxo/F,Fy41 < 29.6/F,F,41, n € N, and is thus?(g?") asn — oo. For
anya € I andn € N it exceeds

a+1
2(F, + aFn—l)(FrH—l +aFy,) '

which is also®(g%") asn — oo. Therefore, the exact convergence ratedtof @) as
n — 00 is O(g?h).

Proof. Write

Va(szfxa Tn 5}’» ug+]_§z)=P;lJ(xayaZ)
and 1
A(x,y,z)z{(u,v)elziosuix,osvfy,u+—§z}
v

fora,x,y e I,z > 1, andn € N. By (2) we clearly have

a l a
Pl(x,y,2) = Inzglu+—1dG,(u,v),
[0,x]x[0,y] v

where I[1 ;] stands for the indicator function of the segmentz]land G4 (u, v) =
P{(u, v, 00). Since by[(l) we have
(u+1)dv

dGS(u,v) = — >
n(u U) (MU+1)2

dGiw), u,vel,

it follows that
Pl(x,y,2) =1+ I, (5)



186

where

M. losifescu, C. Kraaikamp

dudv (u+1)dv a
I = — —7 dH; (u).
|09 2 )) Ay, W +1) AGx,y,z) (v +1)
Itis clearthatA(x, y, z) = @ if y < 1/z. We shall then consider two cases (cf. Figures
y=1Yz—x),(x,yel?z>1;
Yz<y<lY@-x),(x,y)el?z>1

Mand2):
|
1]

o

=
|4

zil :ic

z

< =

Fig. 1. A(x, y,z) for 1 < z < 2. Left: Case I; Right: Case Il. (Hete= 5/3.)

\u—|—%:z

N

0 i U 0 P _i 1 m{’ u
Yy
Fig. 2. A(x, y, z) for z > 2. Left: Case I; Right: Case Il. (Here= 5/2.)
In Case | we have
1 * Y dv 1 by
Ih=—— du = log(xy + 1 ——) 6
! Iongo /1/(zu) wv+12  log 2( 9ecy + 1) z ©)
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while in Case Il

1 Wy J y dv 1 | 1 1 ;
I =+— u = ogyz+——1).
' log Zfo /]./(Z—u) (uv+1)2 log 2( 97z vz ) ()

Next, in Case | we have

! /x< FvaEtw [ dv
2= u u —_—
0 " 1/(—uy (v +1)2

X y 1
= 1 _— a
/o (u+ )<uy+1 Z)a’Hn(u)

y 1\ oo | /x <y—y2 1)
=u+1 - \H - | Hw|—=5-=)d
(u )<uy+l Z> ”(u) o 0 () (uy+1)2 z u
y 1 * y=y* 1
=@x+1 —-2)H* @) - | How) —2= - =) du. 8
o+ )<xy—|—1 Z) n () /(; (”)((uy+1)2 Z) ! ®
Putting
2(y—y3) -1
up=—"—"—"—-.—"—",
y
we then have
/xy—_yz_}
o |wy+1? 2
X 2
y—y 1 - 2
-+ =)d if z(y —y%) <1,
/0( (uy+1>2+z> ‘ ==
ug 2
f (ui)du
_JJo \wy+D? -
(1 y=y? i 2 2
-———\d fl — 1)<,
+/uo<z (uy+1)2> u Fl<szy—y)=Gy+1
* y_yZ 1 . 2 2
A a——— fz(y— 1)2,
/0<(uy+1)2 2 )du fz(y —y9) = @y+1D
1 y 1 .
-=— 1 — = fzy—y?) <1
Y3 (x + )(nyrl Z) fzly —y9) =1
2 . 2 1
v Vi —y9-1) +y--
- Y 1 2 2
—(x+1 ——) ifl<z(y—y < (xy+D*
xy+1 =z
Y 1 1 ; 2 2
(x+1) —=)-y+- if z(y —y9) > (xy + D%,
xy+1 z Z

and the bounds (i) through (iii) follow fron [(5],](6).](8), and the last equation.
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Finally, in Case Il we have

Y dv
1(z—uy (v +1)2

z=1/y y 1 .
= 1 —2)dH
/0 u+ )(WH Z) “w)
1 u=z—1/y z—1/y 2 1
:(u-l—l)( J ——)H,,(u) —/ H;(u)(y—yz—->du
uy+1 z =0 0 (uy+1* =z

z—1/y 2 1
- /O Hn (u) ( (uy + 1)2 Z) du (9)

In the present case

z—=1/y
12=/ (u+DdH )
0

/z—l/y y_yz 1d
7
0 (wy +1) z
z—1/y 2 1
y—=y . 2
-+ > )du if z(y — <1,
B J ( wy + 2 z) R
- ug 2 1 z—1/y 1 2
y—=y y—=y . 2
= = du—i—/ <———)du if z(y — y2) > 1,
/0 ((uy+1>2 z) w  \z wy+17? A=y
1 .
y—z if z(y — y%) <1,
]2 2 2 1. 2
;(w(y—y -1 +y—z if z(y —y9) > 1,

and the bounds (iv) and (v) follow frorfi(5),](7) ] (9), and the last equation.
The lower bound for (4) follows from the simple remark that

sup |Py§l(x1yvz)_L(xsyiz)| > Suplprlzl(-xvyvoo)_l‘(xvyvooﬂ

x,yel, z>1 x,yel
log(xy + 1)
= SUP|yulsy <x, 7" S y) — ————|,
x,yel o |092

in conjunction with ). Hence, as stated, the optimal convergence}at&) to 0 as
n — oo for SUR yer, z>1 |PY(x,y,z) — L(x,y,z)| follows. O

Remark 1. The conditionz(y — y%) < 1 always holds when < 4,y € I. Forz > 4 it
holds if and only if either

_1-VI—4f _ 2 (>}>
Y= 2 T 1+ J1=4p) \"
or
y>1+«/71—4/z_ 2

= (=£1).
2 z(1—J1-4/7)
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The conditionz(y — y2) > 1 does not hold when < 4, y € I. Forz > 4 it holds if and
only if
2 2
————F——— <YV o ——-
z(1++/1-4/z2) z(1-1-4/2)

The conditiorz(y — y2) < (xy + 1)2 always holds whep < 4, (x, y) € I2. It also holds
when4<z<8,z/4—-1<x<1,yel.For4<z<8and0<ux <z/4—1,orfor
z > 8 andx arbitrary in/, it holds if and only if either

y < 2 (2 2 - 1 )
(1-2x/z+/1-4x +1)/2) zA+V/1-4/z) z-1

or

2 2
> < .
Y= 71—2x/z—/1-4(x+1)/z) (_ z(1—1- 4/z)>
Finally, the conditiorz(y — y?) > (xy + 1)2 does not hold when < 4, (x, y) € I?, and
whend4<z<8,z/4—1<x<1,yel.For4<z<8,0<x<z/4—1,orforz>8
andx arbitrary in/, it holds if and only if
2 2

<y= )
z21—2x/z —J/1—-4(x+1)/z) z(1—2x/z4+J/1—-4(x+1)/z)

3. Two special cases

Our main result allows us to derive the joint asymptotic distribution functioms-asoo
of the pairs(z”, u;, , 1) and(s, “Z+1)-

3.1. The pain(z", u;_ ;)

Letting x = 1 we obtain the asymptotic distribution function as— oo of the pair
(t", uy_ 1) undery,, a € I. Denoting it byM, we have

i<|09(y+1) - %) ifl/z—1) <y=<1,

log 2

My.o=LLya=11 (0 1 4) i1<y<10-1).
log 2 yz
0 ify<1/z,

for (y, z) € I x[1, 00). Clearly, the upper bounds (i) through (vi) in our theorem hold with
obvious alterations, yielding again for anye I a convergence rai®(g2") asn — 0o
for

sup |ya(t" <y, up g <2) — M, 2)l.
yvel, z>1
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Since the distribution functions undegy of bothz”" anduj  , converge as — oo to
their limits at an optimal rate different froi®?(g2*), we should naturally ask ourselves
whether a similar result also holds for their joint distribution function.

We will show that this is a correct guess indeed. In the present instaneel(), in
Casel (J(z — 1) <y < 1) [cf. equation[(B)] we have

1
_ y L1\
12_/0 (u+1)(uerl Z)dHn(u)

=U"fy(a)=U"fy,, neN ael,

with

_ y 1
fy,z(“)—(”+1)<uy+l Z>’ uel.

HereU stands for the transition operator of all Markov chaisf9), <, a € I, defined by
Urw =Y P<<u>f(—1 ) wel
- iEN+ 1 X +l ) ’

for any bounded complex-valued measurable functiodefined on/ while U* f =
f; fdy (ct. [IK] pp. 65 and 136]). Further, in Case llfd < y < 1/(z — 1)) we similarly

have
I /z_l/y( +1)< Y 1>dH“( )
= u - — u
2 0 uy+1 z "
=U"gy.(a)—U>gy., neN acl, (10)
with

y 1
8y.z(u) =10, z—1/y] (W) (u + 1)<uy T1 Z)’ uel.

As both f, . and g, . are Lipschitz functions orf, with maximal slopes uniformly
bounded in the corresponding domains of variatio(yot), Theorem 2.2.8 ir [IK] allows
us to assert that in both Cases | and Il for any I \ E we have

|12] = O (k)

asn — oo, with an absolute constant implied @, and this convergence rate to 0 kf
is optimal. By [$) we can then state the following result.

Proposition 1. For anya € I \ E we have

sSup [ya(t" <y, up 4 <2) — M(y,2)| = O(rgp)
yvel,z>1

asn — oo, with an absolute constant implied @ and optimal convergence rate.
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Remark 2. We might try to estimate the constant implied@habove as follows. Using
Corollary 1.3.11 in[[IK] it is easy to check that

n log(y + 1) dH(s)
n <y - et == —y)/ e
Hi(s)ds

=y(l- y)/ Gy 112 a,yel, neN.

Now, the result stated under (i) in Sect[dn 1 implies that

log(y + 1) 72 1 Lm 1-y

n _ 9V T < - )\n
va(th =) log2 |~ \ 6 log2 y’y—i—l
for anya, y € I andn € N,. It then follows that for any:, y € I andn € N4 we have
/uﬁmm <zhﬁzf_ 1\,
o sy+D2| = 2 6 log2)0 -
-y 2+/2
1- 1.

+1>_ 5 YA-y.yel)

Turning now to equation§5) ar{d (8) with= 1 (note that;/ (1) = 0,a € I,n € N),
it is easy to see that in Case | we have

1 n—1
|12|§<y y2+ )(24—\/_)(?—@))»0

for anyn € N;. The problem is that in Case Il we cannot draw a similar conclusion since
the integral in[() is not over the whole intervdINote that by the same Corollary 1.3.11
and Theorem 2.2.11 in [IK] we can only assert that

t
/ H!(u)du
0

1
(We used the fact that m(ry,
y

< K1ag

foranya,t € I andn € Ny.
3.2. The pair(s?, n+l)

Letting y = 1 we obtain the asymptotic distribution function ms— oo of the pair
(syi, uy_ 1) undery,, a € 1. Denoting it byN, we have

1
|0g(x+l)—— if z>x+1,
Iog2 z
Nx,z)=L(x,1,2) = 1 1
Iogz<|ogz+——1> ifl<z<x+1,
for (x, z) € I x [1, 00). In the present case the upper bounds of

|Va(5 =X, Mn+1_Z) N(x,2)]

corresponding to (i)—(iv) in our theorem reduce to
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)] <1— }) sup |H (w)|if z > x +1;
b4

O<u<x

{])] <1—:Z—L) sup |Hf(w)|ifl<z<x+1lxel.

O<u<z-1
Clearly, since

Sup |ya(sy <x, uy 1 <2)— N(x,2)| = suplya(s, <x)— N(x,o0)]

xel, z>1 xel
log(x + 1)
=su T <x)— —————=|, 11
xeﬁya(sn <x) |ng (11)

the optimal convergence rate to Oras> oo of ) isO(g?") for anya € 1.
At the same time we can state the following result.

Proposition 2. LetD = {(x,z) e R?:1<z<x+1 x e I}. Foranya € I \ E we
have

sup [ya(s, < x,upq <2) = N(x,2)| = O00g)
(x,2)eD

asn — oo, with an absolute constant implied ¢ and optimal convergence rate.

For theproof it is sufficient to note that fop = 1 equation|(P) yields

z—1 1
12=/ (1—”+ )dH,f(u),
0 z

which by [10) is equal t&/" g1 . (a) — U> g1 foranyn € N,a € I, and(x, z) € D.
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