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Abstract. We consider 2mth-order (m ≥ 2) semilinear parabolic equations

ut = −(−1)mu± |u|p−1u in RN × R+ (p > 1),

with Dirac’s massδ(x) as the initial function. We show that forp < p0 = 1 + 2m/N , the Cauchy
problem admits a solutionu(x, t) which is bounded and smooth for smallt > 0, while forp ≥

p0 such a local in time solution does not exist. This leads to a boundary layer phenomenon in
constructing a proper solution via regular approximations.
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1. Introduction: Brezis–Friedman results and higher-order equations

1.1. Semilinear second-order heat equation

In 1983, H. Brezis and A. Friedman [3] studied the semilinear heat equation with a mea-
sure in the initial condition

ut = 1u− |u|p−1u in Q = RN × R+, (1.1)

u(x,0) = δ(x) in RN , (1.2)

wherep > 0 is a fixed exponent andδ(x) is the Dirac mass at 0 (the Dirichlet problem in
a bounded domain� containing 0 was included). It was established that there exists the
critical exponent (same asFujita’s exponentfor reaction-diffusion equations)

p0 = 1 + 2/N (1.3)

such that the following results hold.
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(I) Existence([3, Theorem 3]): in the subcritical rangep < p0, there exists a unique
solutionu ∈ C2,1(Q)∩Lp(Q) satisfying (1.1) in the sense of distributions and the initial
condition (1.2) in the weak topology of measures,

ess lim
t→0

∫
u(x, t)ϕ(x) dx = ϕ(0) for anyϕ ∈ Cc(RN ), (1.4)

whereCc(RN ) is the space of all continuous compactly supported functions inRN .

(II) Nonexistence([3, Theorem 1]): forp ≥ p0, the Cauchy problemdoes not havea
solutionu(x, t) ∈ L

p

loc(Q) satisfying equation (1.1) and (1.4). Moreover, any suitable
regular approximation{uj (x, t)} via classical bounded solutions of (1.1) with bounded
initial datau0j converging toδ gives the trivial limit ([3, Theorem 4]):

uj (x, t) → 0 asj → ∞ uniformly onRN × [ε, T ] for any smallε > 0. (1.5)

The paper [3] was the first to treat remarkable properties of nonlinear parabolic equa-
tions with measures as initial functions (earlier references on elliptic problems for−1u+

|u|p−1u = f , a measure, are presented therein) and established the crucial fact that for
a class of “supercritical” nonlinearities, parabolic equations cannot admit measures as
initial functions.

Convergence (1.5) forp ≥ p0 means that aboundary layeroccurs att = 0 [3], and
thatū(x, t) ≡ 0 for t > 0 can be treated as a unique (proper) solution of the Cauchy prob-
lem (1.1), (1.2). This was a remarkable example showing that the “extended” semigroup
constructed by regular approximations is essentiallydiscontinuousat t = 0 for initial
bounded measures fromM(RN ). Later on, it was understood in the theory of blow-up and
extinction phenomena that semigroups induced by various nonlinear parabolic equations
of reaction-diffusion-absorption kind cannot be continuous in general, and singularities
occurring at finitet = T > 0 (T = 0 implies initial singularity as above) can create
unavoidable discontinuities in any weak topology; see [2], [11] and references therein.

1.2. Extension to higher-order semilinear parabolic equations

As a key example, we consider the Cauchy problems for the 2mth-order semilinear para-
bolic equation

ut = −(−1)mu+ g(u) in Q, u(x,0) = δ(x) in RN , (1.6)

where the nonlinear termg(u) has algebraic homogeneityp > 1,

g(u) = ±|u|p−1u or g(u) = ±|u|p. (1.7)

Our main goal is to show that the local existence (Section 3) and nonexistence results
(Section 4) of type (I) and (II) remain true for higher-order equations with the critical
exponent depending onm,

p0 = 1 + 2m/N. (1.8)

In Section 5, forp ≥ p0, we discuss the structure of the boundary layer att = 0 giving a
natural proper solution in this nonexistence range.
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It is important that (1.8) is a crucial exponent in other problems for higher-order semi-
linear parabolic equations. For instance, it is Fujita’s one for

ut = −(−1)mu+ |u|p in Q, p > 1. (1.9)

Namely, ifp ≤ p0, then for arbitrarily small initial data with nonnegative first Fourier
coefficient,

∫
u0 ≥ 0, the solutionu(x, t) 6≡ 0 blows up in finite time, while forp > p0

all small solutions are global; see [5], [6], [9] and references therein.
Similar critical exponents occur in local-in-time existence theory. We refer to F. B.

Weissler’s results [14], [15] who first showed existence of critical exponents for solv-
ability of higher-order semilinear equations inLq . For instance, for anym ≥ 1, local
existence and uniqueness of anLq -solution with initial data inLq (q > 1) for equations
(1.9) was proved to hold ifp < pq = 1 + 2mq/N (observe thatpq = p0 for q = 1).

There exists a principal difference between local solvability for data inL1(RN ) and
measures inM(RN ). Namely, problem (1.6) does not have a local solution for any non-
linearity in (1.7) withp ≥ p0, while foru0 ∈ L1 there exists a local (and global) solution
in the monotone caseg(u) = −|u|p−1u with anyp > 0 (cf. [3, p. 83] form = 1). Con-
cerning global existence, in the supercritical rangep > p0, solutions of (1.9) are global
for any sufficiently small initial data; see various approaches in [1], [4], [6] and [9].

2. Preliminaries

2.1. Fundamental solution

For anym ≥ 1, the fundamental solutionb(x, t) of the linear parabolic equation

ut = −(−1)mu in Q (2.1)

has the self-similar form

b(x, t) = t−N/2mf (y), y = x/t1/2m, (2.2)

wheref is a unique radial solution of the elliptic equation

Bf ≡ − (−1)mf +
1

2m
∇f · y +

N

2m
f = 0 in RN ,

∫
RN
f = 1, (2.3)

f (y) = (2π)−N/2
∫

∞

0
e−s

2m
(s|y|)N/2J(N−2)/2(s|y|) ds, (2.4)

whereJν denotes Bessel’s function. The rescaled kernelf satisfies the estimate [7]

|f (y)| < DF(y) ≡ Dω1e
−d|y|α in RN , α = 2m/(2m− 1) ∈ (1,2), (2.5)

whereD > 1 andd > 0 are constants depending onm andN andω1 > 0 is a normaliza-
tion factor such that

∫
F = 1. Note that

b̄(x, t) = t−N/2mF(x/t1/2m) > 0 inQ (2.6)
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is the majorizing kernel of the majorizing order-preserving integral equation. The constant
D > 1 form > 1 is the order deficiency of the linear operator (D = 1 if and only if the
linear semigroup is order-preserving, which occurs form = 1 only) [9].

As a standard practice, given initial datau0 ∈ Lq(RN ) with someq ≥ 1, the Cauchy
problem can be studied via the corresponding integral equation

u(t) = b(t) ∗ u0 +

∫ t

0
b(t − s) ∗ g(u(s)) ds for t > 0, (2.7)

where a solution can be understood as a curveu ∈ C([0, T ];Lq)∩C1((0, T ];Lq) or as a
weaker mild solution (see [15], [4] and [1]). Local solvability of such equations is proved
by contraction mapping arguments (see e.g. [15] and references to Chapter 15 in [13]). In
view of blowing up solutions for (1.9) or forg(u) = |u|p−1u (see [5] and [9]), in these
cases the solutions can be essentially local in time. Global existence forg(u) = −|u|p−1u

is associated witha priori bounds via the monotonicity and coercivity of the operator on
the right-hand side of (1.1).

2.2. Eidel’man’s estimate on iterated kernels

We formulate a useful estimate on iterated majorizing kernels (2.6) from S. D. Eidel’-
man’s book [7, Lemma 5.1 on pp. 35–36]. See details in [6] where such estimates are
used for proving global existence results for higher-order semilinear parabolic equations.

Proposition 2.1. For the integral

I1 =

∫
RN

[(t − β)(β − τ)]−N/2m exp

{
−d

[
|x − y|α

(t − β)α/2m
+

|y − ξ |α

(β − τ)α/2m

]}
dy, (2.8)

whereτ < β < t , the following estimate holds:

I1 ≤ M(ε)(t − τ)−N/2m exp

{
−(d − ε)

|x − ξ |α

(t − τ)α/2m

}
, (2.9)

ε ∈ (0, d) being arbitrary,M(ε) = M1ε
−N/α andM1 > 0 is independent ofε.

3. Existence forp < p0

We mention again that local existence for initial datau0 ∈ Lq with q > 1 is known for a
long period; see Theorem 2 in [15] (the restrictionp < 1+2mq/N serves the noncoercive
case of equations like (1.9)). Various extensions (includingL1-data) can be found in [4]
and [1]. In the second-order casem = 1, a solution of (1.1), (1.2) was known to exist for
all p > 0 [3].
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3.1. Existence theorem

For m > 1 and measures as initial data, we apply a contraction mapping argument to
ensure existence of a bounded classical (i.e., smooth as the regularity of|u|p−1u or |u|p

dictates) solution fort > 0 of the integral equation (2.7) withu0 = δ, so thatb(t) ∗ δ =

b(t),

u(t) = M(u)(t) ≡ b(t)+

∫ t

0
b(t − s) ∗ g(u(s)) ds for t > 0. (3.1)

We will study (3.1) in a weighted space of continuous functions. Fix aν > 0 and define
Qν = RN × (0, ν]. The weight function is associated with the majorizing rescaled kernel
F in (2.5),

ρ(x, t) = t−N/2m exp{−k|x|α/tα/2m} > 0 for t > 0, wherek = d/p. (3.2)

In the Banach spaceCρ(Qν) of functionsu such thatv =
1
ρ
u ∈ C(Qν)with the sup-norm

‖u‖ρ = sup
Qν

|v(x, t)|, (3.3)

we consider a closed subset

YA = {u ∈ Cρ(Qν) : ‖u‖ρ ≤ A} with a positive constantA. (3.4)

Theorem 3.1. Letp ∈ (1, p0). Then for anyA > Dω1, there exists a sufficiently small
ν > 0 such that equation(3.1) has a unique solutionu ∈ YA which is classical inQν and
satisfies(1.4).

The theorem establishes existence and uniqueness of the solution in an arbitrarily large
“neighbourhood” of the fundamental solution fort ≈ 0, with neighbourhoods defined
via the positive majorizing kernel (2.6). Thenu(x, t) is classical fort ∈ (0, ν], and its
further continuation depends on the nonlinearityg(u). For instance, in the monotone case
g(u) = −|u|p−1u the solution is supposed to be bounded and global (at least forp <

pSob = (N + 2m)/(N − 2m)), while for g(u) = +|u|p−1u it may blow up in finite time.

Proof. We apply Banach’s Contraction Principle (see [13]).
(i) Let us show thatM : YA → YA if ν � 1. Given au ∈ YA, from (3.1) we have

|M(u)| ≤ |b(t)| +

∣∣∣∣∫ t

0
(·) ds

∣∣∣∣ ≡ J1 + J2. (3.5)

It follows from (2.5) that sinced = pk > k,

J1 ≤ Dω1ρ(x, t). (3.6)

Estimating the second termJ2 for u ∈ YA, from (3.4), (2.5) andd = kp we have

J2 ≤ C0

∫ t

0
s−N(p−1)/2m[(t − s)s]−N/2m

∫
exp

{
−d

[
|x − y|α

(t − s)α/2m
+

|y|α

sα/2m

]}
dy ds,

(3.7)
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whereC0 = Dω1A
p. We putξ = 0,β = s, τ = 0 and

d − ε = d/p = k, so that ε = d(p − 1)/p, (3.8)

in Proposition 2.1 to get

J2 ≤ C0M(ε)

(∫ t

0
s−N(p−1)/2m ds

)
ρ(x, t) ≤ C0M(ε)µ

−1νµρ(x, t), (3.9)

whereµ = N(p0 − p)/2m > 0. By estimates (3.6) and (3.7), for anyu ∈ YA we obtain

|M(u)| ≤ Dω1(1 +M(ε)Apµ−1νµ)ρ(x, t), (3.10)

so thatM(u) ∈ YA provided that

Dω1(1 +M(ε)Apµ−1νµ) ≤ A, (3.11)

i.e., for any fixedA > Dω1 if ν > 0 is sufficiently small.
(ii) We now show thatM is a contraction inYA provided thatν � 1. Taking any

u1, u2 ∈ YA and estimating the difference|u1|
p−1u1 − |u2|

p−1u2 by using Lagrange’s
formula of finite increments yields

‖M(u1)− M(u2)‖ρ = sup
1

ρ(t)

∣∣∣∣∫ t

0
b(t − s) ∗ (|u1|

p−1u1 − |u2|
p−1u2)(s) ds

∣∣∣∣
≤ sup

1

ρ(t)

∫ t

0
|b(t − s)| ∗ ρ(s)

1

ρ(s)
|u1(s)− u2(s)|p

∫ 1

0
(z|u1| + (1− z)|u2|)

p−1 dz ds.

Therefore, since|u1,2| ≤ Aρ we obtain

‖M(u1)− M(u2)‖ρ ≤ J3‖u1 − u2‖ρ,

where

J3 = C1 sup
1

ρ(t)

∫ t

0
|b(t − s)| ∗ ρp(s) ds, C1 = pDω1A

p−1. (3.12)

By Proposition 2.1,

J3 ≤ C1 sup
1

ρ(t)

∫ t

0
s−N(p−1)/2m[(t − s)s]−N/2m

∫
exp

{
−d

|x − y|α

(t − s)α/2m

}
× exp

{
−d

|y|α

sα/2m

}
dy ds

≤ C1M(ε) sup
1

ρ(t)

(∫ t

0
s−N(p−1)/2mds

)
ρ(t),

with ε from (3.8), so thatJ3 ≤ C1M(ε)µ
−1νµ < 1 for any smallν > 0.

Thus, there exists a unique fixed point of the operatorM in YA. Sinceu(x, t) is
bounded for anyt > 0, it is a classical solution of the parabolic PDE. Using estimate
(3.9) in passing to the limitt → 0+ in equation (3.1), we obtain (1.4). ut



Higher-order semilinear parabolic equations 199

Corollary 3.2. The solution constructed in Theorem3.1 satisfies the initial condition
(1.2) in the following rescaled sense: ast → 0,

tN/2mu(yt1/2m, t) → f (y) uniformly iny ∈ RN . (3.13)

This follows from estimate (3.9). As another straightforward consequence, it follows that
this unique solution can be constructed by regular approximations.

Corollary 3.3. Letu0j → δ in the topology of bounded measures be a sequence of initial
functions fromL∞(RN ) ∩ L1(RN ) such that the corresponding sequence{uj (x, t)} of
classical solutions of(1.1) in Qν is contained inYA. Then

uj → u uniformly on compact subsets ofQν, (3.14)

whereu is the unique solution of(3.1).

Proof. Compactness of the subset{uj } in C on compact subsets ofQν follows from
uniform estimates quite similar to (3.10) on classical solutions of the PDE fort > 0
[7], passage to the limitj → ∞ in the integral equations foruj is straightforward, and
then convergence (3.14) along the whole sequence is guaranteed by the uniqueness of the
solutionu ∈ YA. ut

3.2. More general nonlinearities

By Theorem 3.1, the existence of a classical solution is associated with the convergence
of the integral in (3.9), andp = p0 is the minimal critical exponent where the integral
diverges. We can improve this existence result for equation (1.6) by including a more
general nonlinearityg : R → R, which is a continuous, increasing, odd function. In view
of the existence theorem, it is important to studyg(u) close foru � 1 to the critical
behaviour with the exponentp = 1 + 2m/N by setting

g(u) = ±κ(u)|u|2m/Nu, (3.15)

with a positive, slowly varying asu → ∞ (e.g., logarithmically, see below), even, con-
tinuous and monotone functionκ : R → R+. We first present a typical existence result
for a particular logarithmic factor.

Theorem 3.4. Let
κ(u) = lnβ(e + |u|) (β < 0). (3.16)

Then for anyβ < −1, equation(3.1), (3.15) has a bounded solutionu(x, t) for small
t > 0 satisfying(1.4).

Proof. We need a slight modification of the proof of Theorem 3.1. Namely, we fix a
sufficiently small constantµ > 0 and setk = (d + µ)/p in (3.2). Then in both estimates
(3.9) and (3.12) we establish an upper bound of the termκ(Aρ(y, s)), which is done as
follows: for the givenµ > 0, there exists a constantCµ > 0 such that

|κ(As−N/2m exp{−k|y|α/sα/2m})| ≤ κ(s−N/2m)Cµ exp{µ|y|α/sα/2m}. (3.17)
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This is easy to check for the nonlinearity (3.16) for anyβ < 0. Then we arrive at estimate
(3.9), ε = (d(p − 1) − µ)/p, with the integral replaced by

∫ t
0 κ(s

−N/2m) ds/s, which
converges iffβ < −1. The same converging integral occurs in (3.12). ut

Similarly, we prove that a bounded solution exists for

κ(u) = lnβ(ln u)/ln u for u � 1, (3.18)

provided thatβ < −1. For a general decreasing positive perturbation factorκ(u) ≤ 1
in (3.15), the existence analysis leads to the following Osgood-like criterion (cf. the cor-
responding nonexistence result in the next section):∫

∞

κ(eNz/2m) dz < ∞. (3.19)

In order to obtain an estimate like (3.17) we need an extra technical assumption. Namely,
fixing an arbitrarily smallµ > 0, settinga = s−N/2m → ∞ ass → 0 (dependence onA
is not essential) andz = k|y|α/sα/2m, we find that for decreasingκ, for a fixeda > 0,

κ(ae−z) ≤ Cµ(a)e
µz for all z ≥ 0, (3.20)

whereCµ(a) comes from the conditionsCµ(a) ≥ 2κ(a) andCµ(a)eµza ≥ 1 with za
determined from the equationκ(ae−z) = 2κ(a), i.e.,Cµ(a) = max{2κ(a), e−µza }. Then
the boundedness ofCµ(a),

Cµ(a) ≤ const asa → ∞ (i.e.,s → 0), (3.21)

guarantees that estimate (3.20) holds for all sufficiently largea = s−N/2m. Using the
same proof, we arrive at the criterion (3.19). The functional inequality (3.21) (which is
obviously true for factors (3.16) and (3.18)) holds for most of the typical nonlinearities of
interest.

4. Nonexistence forp ≥ p0

Looking for a solution of (3.1) withp ≥ p0 satisfyingu ∈ L
p

loc(Q), we have

‖u(t)− b(t)‖1 ≤

∫ t

0

∫
|u|p(s)ds → 0 for a.e.t → 0, i.e., (4.1)

u(t) = b(t)+ o(1) in L1(RN ) for a.e.t ≈ 0+. (4.2)

This asymptotic behaviour ast → 0 is not sufficient to guarantee nonexistence of such
a solution. Bearing in mind the existence theorem in Section 4 dealing with sufficiently
regular local solutions, we formulate a straightforward version of the nonexistence re-
sult in terms of the asymptotic behaviour typically exhibited by the classical solutions.
Nevertheless, in our opinion, it correctly reflects the “essence” of nonexistence.

Theorem 4.1. For p ≥ p0, (3.1) does not have a solutionu ∈ L
p

loc(Q) satisfying(3.13)
uniformly on any arbitrarily small compact subset iny.
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Actually, assumption like (3.13) means that the first term on the right-hand side of (2.7)
(or the PDE (1.6)) determines the asymptotic behaviour ast → 0 in the pointwise rescaled
sense, and the nonlinear term is negligible there, as happens for anyp < p0. We easily
show that this is not the case forp ≥ p0.

Proof. Fixing a small subset iny, say, a ball{|y| ≤ r} in (3.13), we find that for allt ≈ 0,∫ t

0

∫
|u(s)|p ds ≥ C1

∫ t

0
sN(1−p)/2m ds,

whereC1 =
1
2

∫
{|y|≤r}

|f (y)|pdy > 0. The integral on the right-hand side diverges iff
N(1 − p)/2N ≤ −1, i.e., forp ≥ p0. ut

Using the triangle inequality inLp(Q), one can obtain nonexistence under the assumption
u(t) = b(t) + o(1) in Lp(RN ) for a.e.t ≈ 0+. It is interesting to establish nonexistence
under weaker assumptions as in [3] form = 1. Note that such generalizations tom ≥ 2
are expected to be very hard, as usually happens in translating delicate asymptotic results
to nonlinear higher-order equations. Some of the key techniques of [3] apply only to the
second-order equations admitting a number of order-preserving, comparison and contrac-
tivity properties related to the Maximum Principle. For instance, multiplying the equation
by approximation of sign(u) (or of sign(u − v) for the difference of two solutionsu and
v) and integrating by parts giving crucial estimates for theL1-theory do not apply to
2mth-order parabolic operators. The same happens to Kato’s inequalities and some other
techniques.

Remark (on general nonlinearities).For equations (1.6) or (3.1) with a general nonlin-
earity g(u), for initial measure (1.2), a solution (in the same sense as above) such that
g(u) ∈ L1

loc(Qν) does not exist if

g(b) 6∈ L1
loc(Qν). (4.3)

Consider the nonlinear term (3.15) with the same assumptions onκ. Then (4.3) leads to
the following nonexistence Osgood criterion onκ (cf. the existence criterion (3.19)):∫

∞

κ(eNz/2m) dz = ∞. (4.4)

In both logarithmic cases (3.16) and (3.18) the nonexistence occurs in the rangeβ ≥ −1,
which is complementary to the existence rangeβ < −1 in Theorem 3.4. For the general
scaling invariant nonlinearity

g(u) = |u|p0−1u|Du|p1|D2u|p2 · · · |D2m−1u|p2m−1,

where|Dku| denotes the length of the vector{Dβu : |β| = k} andpk ≥ 1 are given
exponents, the nonexistence condition (4.3) holds if

∑
pk(N + k) ≥ 2m + N. Local

existence results inLp for some nonlinearities like that can be found in [4].
Main local existence/nonexistence results apply to more general semilinear higher-

order parabolic equations with linear operators
∑

|β|≤2m aβ(x)D
βu having real bounded

coefficientsaβ provided that suitable estimates like (2.5) on the rescaled kernel are avail-
able (see [7], [12]).
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5. On formation of boundary layers at t = 0 for p ≥ p0

In view of nonexistence of a solution continuous att = 0, it was pointed out in [3, Sec-
tion 4] that this leads to a boundary layer phenomenon. We now describe some common
aspects of formation of boundary layers which apply for anym ≥ 1. Dealing with the
Cauchy problem (1.6), we choose a natural regular approximation

b(ε) → δ asε → 0+ (5.1)

of Dirac’s mass. By{uε(t)} we denote the corresponding family of local in time classical
solutions of (1.6) with initial datab(ε). Next we will study the behaviour ofuε(t) as
ε → 0+ which is expected to determine a suitable proper solutionū(t) in this case of the
corresponding extended semigroup being discontinuous att = 0.

5.1. Boundary layer and proper solution in the absorption case

Let g(u) = −|u|p−1u in the PDE (1.6). We perform the scaling

uε = (t + ε)−N/2mvε, y = x/(t + ε)1/2m (5.2)

leading to the following equation for the rescaled functionv = vε(y, t):

(t + ε)vt = Bv − (t + ε)−γ |v|p−1v for t > 0, v(y,0) = f (y), (5.3)

where the initial functionf is the rescaled kernel in (2.2) andB is the corresponding linear
operator (2.3). Note thatBf = 0. The exponentγ in the nonautonomous perturbation in
(5.3) is given by

γ = N(p − 1)/2m− 1> 0 for p > p0 and γ = 0 for p = p0. (5.4)

Supercritical casep > p0. Thenγ > 0 in (5.3) so that the perturbation term is un-
bounded asε → 0 andt → 0, i.e., it is dominant in the limit. Actually, this is the reason
for nonexistence of a continuous solution in this range. A correct prediction of the struc-
ture of the boundary layer formed fort ≈ 0 asε → 0 is described by the ODE obtained
by neglecting the linear elliptic operatorB in (5.3),

(t + ε)Vt = −(t + ε)−γ |V |
p−1V for t > 0, V (y,0) = f (y). (5.5)

Integrating (5.5) yields the explicit expression

Vε(y, t) = signf (y)[|f (y)|1−p
+ (p − 1)γ−1(ε−γ − (t + ε)−γ )]−1/(p−1). (5.6)

Therefore, for a fixed smallt0 > 0 and anyy such thatf (y) 6= 0, we have

Vε(y, t0) = signf (y)c0ε
γ /(p−1)(1 + o(1)) asε → 0,

wherec0 = [(p − 1)/γ ]−1/(p−1), and then (5.2) applies describing the boundary layer.
For the parabolic problem (5.3), introducing the new time variable

s = γ−1[ε−γ − (t + ε)−γ ] : [0, t0] → [0, s0], (5.7)
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we obtain a singular perturbed equation

vs = ψε(s)Bv−|v|p−1v for s ∈ (0, s0], v(y,0) = f (y), (5.8)

ψε(s) = εγ (1 − γ εγ s)−1, (5.9)

whereψε(s) = O(εγ ) for sufficiently smalls andψε(s0) = O(t
γ

0 ), i.e., the coefficient
of the higher-order derivative is uniformly small on [0, s0] provided thatt0, ε � 1. The
passage to the limitε → 0 in the singular perturbed equation (5.8) is a hard open problem
which we do not study here. We derive a boundary layer estimate under the following
assumption:

|v(y, s)| ≤ C0s
−1/(p−1) in (0, s0] × RN , (5.10)

where the constantC0 > 0 is independent oft0 andε. Form = 1 it is straightforward
and follows by comparison with the ODE solutionv′

= −|v|p−1v. For anym > 1, the
Maximum Principle is not true and estimates like (5.10) are still not known, representing
a challenging open problem. Then the scaling transformation (5.2) yields the following
behaviour of the approximating classical solution for smallt0 > 0 asε → 0:

|uε(x, t0)| = (t0 + ε)−N/2m|v(y, s0)| ≤ (t0 + ε)−N/2mC0s
−1/(p−1)
0

= t
−N/2m
0 O(εβ) → 0, (5.11)

whereβ = N/2m− 1/(p − 1) > 0. This gives the rate of convergence asε → 0 of {uε}
to the trivial proper solution in the supercritical rangep > p0,

ū(t) ≡ lim
ε→0

uε(t) = 0 for anyt > 0. (5.12)

Critical casep = p0. Thenγ = 0 in (5.3) and we do not expect such a fast convergence
to zero as in (5.11). We now use the fact that the PDE is invariant under a group of scaling
transformations. Namely, ifu(x, t) is a solution of (1.6), then for anyλ > 0,

uλ(x, t) = Tλu ≡ λ−1/(p−1)u(x/λ1/2m, t/λ) (5.13)

is a solution. Forp = p0, we have 1/(p − 1) = N/2m, so that for anyε > 0,

uε(x, t) = TεU ≡ ε−N/2mU(x/ε1/2m, t/ε), (5.14)

whereU = U(y, τ) is a unique classical solution of the Cauchy problem

Uτ = −(−1)mU − |U |
p−1U for τ > 0, U(y,0) = f (y). (5.15)

It was shown in [8] that in the critical casep = p0, for initial data in a weightedL2-space,
equation (5.15) admits global solutions with logarithmically perturbed asymptotics of the
fundamental solution (2.2),

U(y, τ) = C∗(τ ln τ)−N/2m[f (y/τ1/2m)+ o(1)], τ → ∞, (5.16)
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whereC∗ is a bounded constant (possibly zero). If the solution of the Cauchy problem
(5.15) satisfies (5.16) withC∗ 6= 0, it then follows from (5.14) that the approximating
sequence{uε} has the following behaviour for a fixed smallt0 > 0:

uε(x, t0) = t
−N/2m
0 O(|ln ε|−N/2m) → 0 asε → 0. (5.17)

Form = 1 this is proved in [10, Sect. 6] for the porous medium equation with critical
absorption. Thus we obtain a (slower than in (5.11)) logarithmic convergence of{uε} to
the trivial proper solution so that (5.12) also holds forp = p0.

5.2. Blow-up boundary layer in the reaction case

We now consider equation (1.9) admitting blow-up solutions and identify proper solu-
tions.

Supercritical range. For p > p0, performing the same scaling (5.2), (5.7), we obtain
the Cauchy problem for{vε}

vs = ψε(s)Bv + |v|p for s > 0, v(y,0) = f (y). (5.18)

It follows from (5.9) thatψε(s) → 0 asε → 0 uniformly on any bounded interval ins.
One can expect that the behaviour ofv(s) for ε ≈ 0 is described by the ODE

Vs = |V |
p for s > 0, V (y,0) = f (y). (5.19)

Obviously,V blows up. For instance, sincef (0) > 0 by (2.4), at the origin this happens
at s∗ = f 1−p(0)/(p − 1), and hence (5.7) implies thatuε(t) blows up at

tε∗ = O(εγ+1) → 0 asε → 0. (5.20)

Thus, the approximating solutions{uε} blow up at smalltε∗ for any ε � 1 so that the
proper solution via the limit as in (5.12) is not well defined. On the other hand, for second-
order equations, such a situation typically means that the proper solution and the extended
limit semigroup can be defined in such a way andū(t) = ∞ for anyt > 0 corresponding
to complete blow-upat t = 0 (see [11]). For higher-order equations, the problem on
complete or incomplete finite-time singularities remains open (i.e., we do not know what
happens touε(t) for t > tε∗). Nevertheless, we expect that in the present situationū(t) =

±∞ (infinite oscillations are possible) is a “right” proper solution of the Cauchy problem.

Critical case.Forp = p0 we define the approximating sequence{uε} according to (5.14),
and this leads to the following problem forU :

Uτ = −(−1)mU + |U |
p for τ > 0, U(y,0) = f (y). (5.21)

Since the initial function satisfies
∫
f = 1> 0, the solutionU(y, τ) blows up in theL∞-

norm at a finite timeτ∗ (see different proofs in [5] and [9]). Hence, eachuε(x, t) blows
up attε∗ = τ∗ε (cf. (5.20) forγ = 0). As above, we expect that in this caseū(t) ≡ ±∞

is a proper solution created by this singularity formation phenomenon att = 0.
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