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Abstract. We consider &ith-order (n > 2) semilinear parabolic equations

up = —(=A)"u+ u? "ty inRY xRy (p > 1),
with Dirac’s mass(x) as the initial function. We show that for < pg = 1+ 2m/N, the Cauchy
problem admits a solution(x, ) which is bounded and smooth for small- 0, while for p >
po such a local in time solution does not exist. This leads to a boundary layer phenomenon in
constructing a proper solution via regular approximations.
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1. Introduction: Brezis—Friedman results and higher-order equations
1.1. Semilinear second-order heat equation

In 1983, H. Brezis and A. Friedmahi [3] studied the semilinear heat equation with a mea-
sure in the initial condition

wp=Au—uPlu inQ=RY xRy, (1.1)
u(x,0) = 8(x) inRY, (1.2)

wherep > 0 is a fixed exponent art{x) is the Dirac mass at O (the Dirichlet problem in
a bounded domaig containing O was included). It was established that there exists the
critical exponent (same daljita’s exponenfor reaction-diffusion equations)

po=1+2/N (1.3)

such that the following results hold.

Research supported by RTN network HPRN-CT-2002-00274.

V. A. Galaktionov: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
and Keldysh Institute of Applied Mathematics, Miusskaya Sq. 4, 125047 Moscow, Russia;
e-mail: vag@maths.bath.ac.uk

Mathematics Subject Classification (20085K55, 35K65



194 V. A. Galaktionov

(I) Existence([3l Theorem 3]): in the subcritical range < po, there exists a unique
solutionu € C21(Q) N L7 (Q) satisfying ) in the sense of distributions and the initial
condition [1.2) in the weak topology of measures,

ess Ioim/ u(x, ex)dx = ¢0) foranyp € Cc(RY), (1.4)
t—

whereC(R") is the space of all continuous compactly supported functiofi'in

(I Nonexistence([3, Theorem 1]): forp > po, the Cauchy problerdoes not have
solutionu(x, ) € Li (Q) satisfying equatior| (1}1) anfi (}.4). Moreover, any suitable
regular approximatioriu; (x, r)} via classical bounded solutions ¢f ([L.1) with bounded
initial dataug; converging tas gives the trivial limit ([3, Theorem 4]):

uj(x,t) - 0 asj — oo uniformly onRY x [e, T] for any smalls > 0. (1.5)

The paperi[3] was the first to treat remarkable properties of nonlinear parabolic equa-
tions with measures as initial functions (earlier references on elliptic problemsAar+
lu|’~lu = f, a measure, are presented therein) and established the crucial fact that for
a class of “supercritical” nonlinearities, parabolic equations cannot admit measures as
initial functions.

Convergence (115) fop > po means that doundary layemccurs at = 0 [3], and
thati(x, t) = Oforr > 0 can be treated as a unique (proper) solution of the Cauchy prob-
lem (I.3), (T.2). This was a remarkable example showing that the “extended” semigroup
constructed by regular approximations is essentidibcontinuousat r = 0 for initial
bounded measures from(R"). Later on, it was understood in the theory of blow-up and
extinction phenomena that semigroups induced by various nonlinear parabolic equations
of reaction-diffusion-absorption kind cannot be continuous in general, and singularities
occurring at finitert = T > 0 (T = 0 impliesinitial singularity as above) can create
unavoidable discontinuities in any weak topology; see [2], [11] and references therein.

1.2. Extension to higher-order semilinear parabolic equations

As a key example, we consider the Cauchy problems for tkth-®rder semilinear para-
bolic equation

Uy =—(—A)"u+gw) inQ, u(x,0=358x) inRY, (1.6)
where the nonlinear terg(u) has algebraic homogeneity> 1,
g@w) =xulPu or gu)==+ul’. (1.7)

Our main goal is to show that the local existence (Sedtjon 3) and nonexistence results
(Sectior 4) of type (1) and (Il) remain true for higher-order equations with the critical
exponent depending on,

po=1+2m/N. (1.8)
In Sectior] b, forp > po, we discuss the structure of the boundary layer=at0 giving a
natural proper solution in this nonexistence range.
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Itis important that[(1]8) is a crucial exponent in other problems for higher-order semi-
linear parabolic equations. For instance, it is Fujita’s one for

uy=—(=AN)"u+1u’ inQ, p>1L (1.9)

Namely, if p < po, then for arbitrarily small initial data with nonnegative first Fourier
coefficient, [ ug > 0, the solutionu(x, t) # 0 blows up in finite time, while fop > po
all small solutions are global; se€ [5]] [6]) [9] and references therein.

Similar critical exponents occur in local-in-time existence theory. We refer to F. B.
Weissler’s results [14]) [15] who first showed existence of critical exponents for solv-
ability of higher-order semilinear equations irf. For instance, for any: > 1, local
existence and uniqueness of Afrsolution with initial data inL.? (¢ > 1) for equations
(1.9) was proved to hold ip < p; = 1+ 2mq/N (observe thap, = po for ¢ = 1).

There exists a principal difference between local solvability for daalifR”") and
measures i/ (RY). Namely, problem6) does not have a local solution for any non-
linearity in ) withp > po, while forug € L there exists a local (and global) solution
in the monotone case(u) = —|u|?~1u with any p > 0 (cf. [3, p. 83] form = 1). Con-
cerning global existence, in the supercritical rapge po, solutions of [(1.p) are global
for any sufficiently small initial data; see various approacheslin([1],[[4], [6] @&nd [9].

2. Preliminaries
2.1. Fundamental solution
For anym > 1, the fundamental solutia(x, ¢) of the linear parabolic equation
ur =—(—A)"u inQ (2.1)
has the self-similar form
bx,0) =Ny, y = x /1P, (22)

where f is a unique radial solution of the elliptic equation
Bf=—(—A)"f+ 1Vf +Nf—0 in RY / f=1 (2.3)
- om Y T T ! T '
—-N/2 0 g N/2
700 = @02 [T 1) -2 2tslyh s 2.4)
whereJ, denotes Bessel’s function. The rescaled keyhehtisfies the estimatel[7]

()| < DF(y) = Dw1e” " inRY, a=2m/@m—1) € (1,2), (2.5)

whereD > 1 andd > 0 are constants depending@randN andw; > 0 is a normaliza-
tion factor such thaf' F = 1. Note that

bx,t) =t N2"F(x/iY?)y >0 inQ (2.6)
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is the majorizing kernel of the majorizing order-preserving integral equation. The constant
D > 1form > 1is the order deficiency of the linear operatdr £ 1 if and only if the
linear semigroup is order-preserving, which occurssos 1 only) [9].

As a standard practice, given initial datg e L7(R") with someg > 1, the Cauchy
problem can be studied via the corresponding integral equation

t

u(t) = b(t) * ug +/ b(t —s)*xg(u(s))ds fort >0, 2.7)
0

where a solution can be understood as a cureeC ([0, T]; L7)NCL((0, T]; L) oras a
weaker mild solution (see [15],][4] and [1]). Local solvability of such equations is proved
by contraction mapping arguments (see é.d. [15] and references to Chapter 15 in [13]). In
view of blowing up solutions f09) or fog(u) = |u|?~1u (see[5] and([9]), in these
cases the solutions can be essentially local in time. Global existengédor —|u|?~1u

is associated witl priori bounds via the monotonicity and coercivity of the operator on
the right-hand side of (1.1).

2.2. Eidel'man’s estimate on iterated kernels
We formulate a useful estimate on iterated majorizing keriiel$ (2.6) from S. D. Eidel’-

man'’s book[[7, Lemma 5.1 on pp. 35-36]. See details in [6] where such estimates are
used for proving global existence results for higher-order semilinear parabolic equations.

Proposition 2.1. For the integral

= 8B — N expl —a| ly —§1* ”
11—/RN[(t BB —1)] ex d[(t—ﬂ)“/zm_l_(ﬂ—r)“/zm dy, (2.8)

wheret < 8 < t, the following estimate holds:

_ lx — &%
I < M(s)(t —7) N/2n exp{—(d—e)m}, (2.9)

e € (0, d) being arbitrary,M (¢) = M1e~N/* and M; > Qis independent of.

3. Existence forp < po

We mention again that local existence for initial dagac LY with ¢ > 1 is known for a
long period; see Theorem 2 [n [15] (the restrictiprc 1+2mq /N serves the noncoercive
case of equations Iik.9)). Various extensions (includifglata) can be found in[4]
and [1]. In the second-order cage= 1, a solution of[(T11)[(I]2) was known to exist for
all p > 0[3].
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3.1. Existence theorem

Form > 1 and measures as initial data, we apply a contraction mapping argument to
ensure existence of a bounded classical (i.e., smooth as the regularity ofu or |u|?
dictates) solution for > 0 of the integral equatiof (3.7) withp = 8, so thatb(r) x § =

b(t)y

t

u@®) =M@u)@) = b(t) +/ b(t —s)xg(u(s))ds fort > 0. (3.1
0

We will study [3.]) in a weighted space of continuous functions. Fix-a 0 and define
0, = RV x (0, v]. The weight function is associated with the majorizing rescaled kernel

Fin@23),
p(x, 1) =t~ N2 expl—k|x|*/t%/?"} > 0 fort > 0, wherek = d/p. (3.2)

In the Banach spaag, (Q,) of functionsx such thav = %u € C(Q,) with the sup-norm

l[ullp = suplv(x, 7)], (3.3)

v

we consider a closed subset
Ya={ueCy(Qy):|ull, <A} witha positive constard. (3.4)

Theorem 3.1. Let p € (1, po). Then for anyA > Dw1, there exists a sufficiently small
v > Osuch that equatiof3.I) has a unique solution € Y, which is classical inQ, and

satisfies(I.4).

The theorem establishes existence and uniqueness of the solution in an arbitrarily large
“neighbourhood” of the fundamental solution for~ 0, with neighbourhoods defined

via the positive majorizing kernel (2.6). Therix, ¢) is classical for € (0, v], and its
further continuation depends on the nonlineagity). For instance, in the monotone case
g(u) = —|u|?~1u the solution is supposed to be bounded and global (at leagt for
Psob= (N + 2m)/(N — 2m)), while for g(u) = +|u|?~u it may blow up in finite time.

Proof. We apply Banach’s Contraction Principle (se€l[13]).
(i) Letus showthaM : Y4 — Y4 if v < 1. Given au € Y4, from (3.3) we have

t
IM@)| < |b(®)| + ’/0 (ds|=J1+ J2 (3.5)
It follows from (2.5) that since = pk > &,
J1 < Dwip(x,1). (3.6)

Estimating the second terth for u € Y4, from (3.4), [2.5) and = kp we have

I <C L N(p—1)/2m ; ~N/2n [ ool —a lx — y|* [y|* dvd
2=Co 0 s [ —s)s] exp — (t — s)/2m + §%/2m yas,
3.7)
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whereCo = Dw1AP. We puté =0,8 =5, =0and
d—e=d/p=k, sothat e=d(p—1)/p, (3.8)
in Propositiory 2.]L to get

t
J2 < CoM(e) ( / s~Np=D/2m ds)p(x, 1) < CoM(e)u Wl p(x, 1), (3.9)
0

whereu = N(po — p)/2m > 0. By estimateq (3]6) anfl (3.7), for amy= Y4 we obtain
IM@)| < Dot(1+ M(e)AP ™ *)p(x, 1), (3.10)

so thatM (u) € Y4 provided that
Do1(1+ M(e)AP =) < A, (3.11)

i.e., for any fixedA > Dw1 if v > 0 is sufficiently small.

(i) We now show thatM is a contraction in’4 provided thatv « 1. Taking any
ui, uz € Y4 and estimating the differendes|?1uy — |u2|?~1uz by using Lagrange’s
formula of finite increments yields

1 ! -1 -1
IM(u1) — Mu2)ll, = SUD—V b(t —s) * (lual” " ur — luz|P""u2)(s) ds
e |Jo

1
lug(s) — M2(5)|17/C; (zlu1| + (1 = 2)|u2)P L dz ds.

<su i t|b(t—s)|>x< (s) 1
=St Jo P®

Therefore, sincéu1 2| < Ap we obtain

IM@u1) —M@2)ll, < Jallur — uzll,,

where
1 4 —1
J3a=C Supm |b(t — s)| * pP(s)ds, C1= pDwiAP™". (3.12)
0
By Propositio 211,
1 [ |x — y|*
J3 < C1Sup— ~Np=D/2m i ‘N/z”’/ex —d
3=>01 pp(t) 0 s [( S)S] (l‘—S)a/zm

o
X exp{ —d ] } dyds
s

t
< C1M(¢) SU|0i (f s‘N(”‘l)/z’”ds> p(1),
p®) \Jo

with & from (3.8), so thatlz < C1M ()~ 2v* < 1 for any smalb > 0.

Thus, there exists a unique fixed point of the oper&oin Y4. Sinceu(x,t) is
bounded for any > 0, it is a classical solution of the parabolic PDE. Using estimate

(3.9) in passing to the limit — 0™ in equation[(3.]), we obtain (1.4). u]
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Corollary 3.2. The solution constructed in Theorgd] satisfies the initial condition
in the following rescaled sense: as~ 0,

N2y (yetPm 1y > f(y)  uniformlyiny € RV, (3.13)

This follows from estimatg (3]9). As another straightforward consequence, it follows that
this unique solution can be constructed by regular approximations.

Corollary 3.3. Letug; — & inthe topology of bounded measures be a sequence of initial
functions fromL>(RY) N L1(RN) such that the corresponding sequeriag(x, 1)} of
classical solutions Ol_' in Q, is contained in¥4. Then

uj — u uniformly on compact subsets ©f,, (3.14)
whereu is the unique solution af8.1).

Proof. Compactness of the subsgt;} in C on compact subsets @, follows from

uniform estimates quite similar tp (3]10) on classical solutions of the PDE fer0

[7], passage to the limif — oo in the integral equations far; is straightforward, and

then convergencg (3.]14) along the whole sequence is guaranteed by the uniqueness of the
solutionu € Y4. O

3.2. More general nonlinearities

By Theorenj 3.]1, the existence of a classical solution is associated with the convergence
of the integral in[(3.9), angh = po is the minimal critical exponent where the integral
diverges. We can improve this existence result for equafion (1.6) by including a more
general nonlinearity : R — R, which is a continuous, increasing, odd function. In view

of the existence theorem, it is important to stygdy) close foru > 1 to the critical
behaviour with the exponept= 1+ 2m /N by setting

g() = k@) |u®/Nu, (3.15)

with a positive, slowly varying as — oo (e.g., logarithmically, see below), even, con-
tinuous and monotone function: R — R.. We first present a typical existence result
for a particular logarithmic factor.

Theorem 3.4. Let

k) =InPe+u) (B <DO0). (3.16)
Then for anyg < —1, equation(3.1), (3.I5 has a bounded solutiom(x, r) for small
t > 0 satisfying(L.4).

Proof. We need a slight modification of the proof of Theorem]| 3.1. Namely, we fix a
sufficiently small constant > 0 and sek = (d + w)/p in (3.2). Then in both estimates
(3.9) and[(3.1R) we establish an upper bound of the tetap(y, s)), which is done as
follows: for the given > 0, there exists a consta@f, > 0 such that

lic (As~N/2m exp{—k|y|* /s*/2" )| < ,(s7N/2™M)C, expluly]® /s%/2m). (3.17)
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This is easy to check for the nonlinearity (3.16) for ghy: 0. Then we arrive at estimate
),5 = (d(p — 1) — w)/p, with the integral replaced by}, « (s~V/2") ds/s, which
converges iffs < —1. The same converging integral occurg/in (B.12). O

Similarly, we prove that a bounded solution exists for
k) =Infnu)/Inu  foru > 1, (3.18)

provided thatd < —1. For a general decreasing positive perturbation factey < 1
in (3.15), the existence analysis leads to the following Osgood-like criterion (cf. the cor-
responding nonexistence result in the next section):

/ k(N dz < 0. (3.19)

In order to obtain an estimate like (3]17) we need an extra technical assumption. Namely,
fixing an arbitrarily smal. > 0, settinga = s~V/?" — o0 ass — 0 (dependence oA
is not essential) and = k|y|*/s%/?", we find that for decreasing, for a fixeda > 0,

k(ae™®) < Cyla)e** forallz >0, (3.20)

whereC,, (a) comes from the condition€,,(a) > 2«(a) andC,(a)e’* > 1 with z,
determined from the equatianae %) = 2« (a), i.e.,Cy(a) = maxX{2«(a), e #%}. Then
the boundedness @f, (a),

Cu(a) <const ast— oo (i.e.,s — 0), (3.21)

guarantees that estima@.ZO) holds for all sufficiently large s—"/2". Using the
same proof, we arrive at the criteridn (3.19). The functional inequélity 3.21) (which is
obviously true for factorg (3.16) and (3]18)) holds for most of the typical nonlinearities of
interest.

4. Nonexistence forp > po

Looking for a solution of (3]1) withp > po satisfyingu e L{.(Q), we have

loc

t

lu@) — b@)||1 < / / lu|?(s)ds — 0 fora.er— 0, i.e., (4.2)
0

u®) =b@) +o(1) in LYRY)fora.e.r ~ 0%, (4.2)

This asymptotic behaviour as— 0 is not sufficient to guarantee nonexistence of such
a solution. Bearing in mind the existence theorem in Se¢fjon 4 dealing with sufficiently
regular local solutions, we formulate a straightforward version of the nonexistence re-
sult in terms of the asymptotic behaviour typically exhibited by the classical solutions.
Nevertheless, in our opinion, it correctly reflects the “essence” of nonexistence.

Theorem 4.1. For p > po, (3.1) does not have a solutiane L{ (Q) satisfying(3.13
uniformly on any arbitrarily small compact subsetyin
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Actually, assumption likg (3.13) means that the first term on the right-hand sifle pf (2.7)
(orthe PDE[(1.6)) determines the asymptotic behaviour-as0 in the pointwise rescaled
sense, and the nonlinear term is negligible there, as happens for anyg. We easily
show that this is not the case fpr> po.

Proof. Fixing a small subset i, say, abal{|y| < r} in (3.13), we find that for ali ~ 0,

t t
/ / lu(s)|P ds > C1/ sNA=p)/2m g
0 0

whereC1 = 3 [, |/ ()I?dy > 0. The integral on the right-hand side diverges iff
N@—p)/2N < =1, 1.e., forp > po. -

Using the triangle inequality in? (Q), one can obtain nonexistence under the assumption
u(t) = b(t) + o(1) in LP(RN) for a.e.r ~ 0*. It is interesting to establish nonexistence
under weaker assumptions aslin [3] fer= 1. Note that such generalizationsmo> 2

are expected to be very hard, as usually happens in translating delicate asymptotic results
to nonlinear higher-order equations. Some of the key techniqués of [3] apply only to the
second-order equations admitting a number of order-preserving, comparison and contrac-
tivity properties related to the Maximum Principle. For instance, multiplying the equation
by approximation of sigfx) (or of signu — v) for the difference of two solutions and

v) and integrating by parts giving crucial estimates for fhletheory do not apply to
2mth-order parabolic operators. The same happens to Kato's inequalities and some other
techniques.

Remark (on general nonlinearitiesf-or equations (1]6) of (3.1) with a general nonlin-

earity g(u), for initial measure[(1]2), a solution (in the same sense as above) such that
g() € L} .(0,) does not exist if

g(b) & Lis(0,). (4.3)

Consider the nonlinear ter (3]15) with the same assumptiors dhen [4.8) leads to
the following nonexistence Osgood criterionoicf. the existence criteriof (3.]19)):

/oo K(ENZ/Zm)dZ = 00. (44)

In both logarithmic case§ (3.]16) afd (3.18) the nonexistence occurs in thefangel,
which is complementary to the existence rapge: —1 in Theorenj 3J4. For the general
scaling invariant nonlinearity

g(u) = |u|Po~Yu| Du|Pt|D%u|P? . . . | D?" Ly P2n-1,

where|D*u| denotes the length of the vecttbfu : |8| = k} and p; > 1 are given
exponents, the nonexistence conditi@(4.3) holds ipx (N + k) > 2m + N. Local
existence results ih? for some nonlinearities like that can be found[in [4].

Main local existence/nonexistence results apply to more general semilinear higher-
order parabolic equations with linear opera'@% <om AB (x) DPu having real bounded
coefficientsag provided that suitable estimates Ii@Z.S) on the rescaled kernel are avail-
able (see]l7],112]).
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5. On formation of boundary layers att = Ofor p > po

In view of nonexistence of a solution continuous at 0, it was pointed out in |3, Sec-

tion 4] that this leads to a boundary layer phenomenon. We now describe some common
aspects of formation of boundary layers which apply for any- 1. Dealing with the
Cauchy problen (I]6), we choose a natural regular approximation

b(e) > 8 ase — 0" (5.2)

of Dirac’s mass. BYu. ()} we denote the corresponding family of local in time classical
solutions of [(I.p) with initial data(e). Next we will study the behaviour af,(¢) as

& — 0" which is expected to determine a suitable proper soluti@hin this case of the
corresponding extended semigroup being discontinuous-a.

5.1. Boundary layer and proper solution in the absorption case

Let g(u) = —|u|?~tu in the PDE). We perform the scaling
ug =t +&) Ny y=x/1t+e)/?" (5.2)
leading to the following equation for the rescaled functioa v, (y, ):
(t+e)y, =Bv—(+e) VP v forr>0, v(y,0 = f(y), (5.3)

where the initial functiory is the rescaled kernelip (2.2) aBds the corresponding linear
operator[(2B). Note thd f = 0. The exponeny in the nonautonomous perturbation in

(5.3) is given by
y=N(p—-1)/2n—-1>0 forp>pp and y =0 forp = po. (5.4)

Supercritical casep > po. Theny > 0 in (5.3) so that the perturbation term is un-
bounded as — 0 andr — O, i.e., it is dominant in the limit. Actually, this is the reason
for nonexistence of a continuous solution in this range. A correct prediction of the struc-
ture of the boundary layer formed forr 0 ase — 0 is described by the ODE obtained

by neglecting the linear elliptic operatBrin (5.3),

(t+e)V,=—@+e)V|VIPv fort >0, V(y,00=f(). (5.5)
Integrating[(5.p) yields the explicit expression
Ve(y, ) =signf I F WP +(p =Dy He” =+ VPV (5.6)
Therefore, for a fixed smaidy > 0 and anyy such thatf (y) # 0, we have
Ve(y, 10) = signf (y)cos”/ PP (1+0(1)) ass — 0,

whereco = [(p — 1)/y]~Y =D, and then|(5)2) applies describing the boundary layer.
For the parabolic probler (§.3), introducing the new time variable

s=y e —(t+¢&)77]:[0, 1] — [0, s, (5.7)
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we obtain a singular perturbed equation

vy = Ye()Bu—|v|P v fors e (0,50, w(»,0) = f(y), (5.8)
Ye(s) =" (L—ye’s) ™, (5.9)
wherey, (s) = 0 (") for sufficiently smalls and v (sg) = O(tg), i.e., the coefficient
of the higher-order derivative is uniformly small on [@] provided thatp, ¢ < 1. The
passage to the limit — 0 in the singular perturbed equati¢n (5.8) is a hard open problem
which we do not study here. We derive a boundary layer estimate under the following
assumption:
lu(y, s)| < Cos™ P~ in (0, s0] x RV, (5.10)

where the constarfy > 0 is independent ofy ande. Form = 1 it is straightforward

and follows by comparison with the ODE solutioh= —|v|?~1v. For anym > 1, the
Maximum Principle is not true and estimates like ($.10) are still not known, representing
a challenging open problem. Then the scaling transformdfiof (5.2) yields the following
behaviour of the approximating classical solution for sma# 0 ase — O:

lue (x, 10)| = (t0 + &) "N/ [u(y, s0)| < (10 + &)~ N/?" Cosy M PP
=iy V?" 0Py - 0, (5.11)

whereg = N/2m — 1/(p — 1) > 0. This gives the rate of convergencesas> 0 of {u,}
to the trivial proper solution in the supercritical range- po,

ut) = |im0ue(t) =0 foranyt > 0. (5.12)
E—>

Critical case p = po. Theny = 0in (5.3) and we do not expect such a fast convergence
to zero as in[(5.71). We now use the fact that the PDE is invariant under a group of scaling
transformations. Namely, if(x, 1) is a solution of[(1.6), then for any > 0,

w (x, 1) = Tou = A~V P Dy /a2 1/3) (5.13)

is a solution. Fop = pg, we have X(p — 1) = N/2m, so that for any > 0,
usg(x, 1) = LU = e N2y (x/e¥?" 1 /e), (5.14)

whereU = U(y, ) is a unique classical solution of the Cauchy problem
U= —(=A)"U —|UIP7'U fort >0, U(y,0) = f(y). (5.15)

It was shown in[[B] that in the critical cage= po, for initial data in a weighted.2-space,
equation[(5.15) admits global solutions with logarithmically perturbed asymptotics of the
fundamental solutiorj (2.2),

U(y, 1) = Co(zInt)™N/2"[ £(y/2Y2") £ 0(1)], T — o0, (5.16)
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whereC, is a bounded constant (possibly zero). If the solution of the Cauchy problem
(5.15) satisfieq (5.16) witld', # 0, it then follows from [(5.14) that the approximating
sequencéu.} has the following behaviour for a fixed smajl> 0:

ue(x, 1) = 15" 0(lIne| /2"y 5 0 ase — 0. (5.17)
Form = 1 this is proved in[[10, Sect. 6] for the porous medium equation with critical
absorption. Thus we obtain a (slower than[in (5.11)) logarithmic convergeniee joto
the trivial proper solution so thdt (5]12) also holds fo= po.

5.2. Blow-up boundary layer in the reaction case

We now consider equatiofi (1.9) admitting blow-up solutions and identify proper solu-
tions.

Supercritical range. For p > po, performing the same scaling (b.9), (5.7), we obtain
the Cauchy problem fofv, }

vs = Ye(s)Bv + [v|? fors >0, wv(y,0 = f(y). (5.18)

It follows from (5.9) thaty,(s) — 0 ase — 0 uniformly on any bounded interval in
One can expect that the behavioungf) for ¢ ~ 0 is described by the ODE

Vi =1|VI? fors >0, V(y,0 = f(). (5.19)

Obviously, V blows up. For instance, sing&0) > 0 by (2.4), at the origin this happens
ats, = f1=7(0)/(p — 1), and henc?) implies that (r) blows up at

tex = 0’ > 0 ase — 0. (5.20)

Thus, the approximating solutiods.} blow up at smalk,, for anye <« 1 so that the
proper solution via the limit as ifi (5.]12) is not well defined. On the other hand, for second-
order equations, such a situation typically means that the proper solution and the extended
limit semigroup can be defined in such a way arid = oo for any: > 0 corresponding

to complete blow-umt ¢ = 0 (see[[11]). For higher-order equations, the problem on
complete or incomplete finite-time singularities remains open (i.e., we do not know what
happens ta.(¢) for ¢ > t.,). Nevertheless, we expect that in the present situation=

+o0 (infinite oscillations are possible) is a “right” proper solution of the Cauchy problem.

Critical case.For p = po we define the approximating sequerieg} according to[(5.14),
and this leads to the following problem for:

U = —(=A)"U +|[UIP fort>0, U(y,0 = f(y). (5.21)

Since the initial function satisfie§ f = 1 > 0, the solutiorU/ (y, ) blows up in theL>°-
norm at a finite timer, (see different proofs iri[5] and][9]). Hence, eachix, ¢) blows
up atr., = e (cf. (5.20) fory = 0). As above, we expect that in this cage) = +oo
is a proper solution created by this singularity formation phenomenoga-a1.
AcknowledgementsThe author would like to thank H. Brezis for a stimulating discussion.
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