J. Eur. Math. Soc. ¢, 20[=276 © European Mathematical Society 2004

Nalini Anantharaman

On the zero-temperature or vanishing viscosity JEMS
limit for certain Markov processes arising from
Lagrangian dynamics

Received May 14, 2002 and in revised form July 22, 2003

Abstract. We study the zero-temperature limit for Gibbs measures associated to Frenkel-Kontoro-

va models or(Rd)Z/Zd. We prove that equilibrium states concentrate on configurations of mini-

mal energy, and, in addition, must satisfy a variational principle involving metric entropy and Lya-
punov exponents, a bit like in the Ruelle—Pesin inequality. Then we transpose the result to certain
continuous-time stationary stochastic processes associated to the viscous Hamilton—Jacobi equa-
tion. As the viscosity vanishes, the invariant measure of the process concentrates on the so-called
“Mather set” of classical mechanics, and must, in addition, minimize the gap in the Ruelle—Pesin
inequality.

In statistical mechanics, Gibbs measures are probability measures on the configuration
space, describing states of thermodynamical equilibrium. One of the major problems is
to study the dependence of equilibrium states on the temperature (or other parameters):
a lack of analyticity in this dependence is interpreted as the occurrence of a phase tran-
sition, and the existence of several Gibbs measures at a given temperature, as the coexis-
tence of several phases.

In Part | of this paper, we are interested in the behaviour of Gibbs measures as temper-
ature goes to zero, in the model where the particles of the system lie on the 1-dimensional
latticeZ. This is not the favourite situation in statistical mechanics: in this case, and if the
energy of interaction between particles satisfies reasonable assumptions, there is usually
no phase transition. But even then, there is, to my knowledge, no general result describ-
ing completely the behaviour of Gibbs measures at zero temperature: for instance, the
existence or not of a limit of the equilibrium state. It is intuitive to think, and possible to
prove, that such a limit must minimize the mean energy, but there are examples where itis
not enough to conclude, as there may be several states of minimal mean energy ([Si82]).

This paper deals with the case where the state of each particle is represented by an
element ofR?, so that a configuration of the system is described by a sequence
(vOrez € (RHZ, We work in the Markovian case: the potential of interaction is of the
form L(y) = L(yo, y1). Such models are sometimes called Frenkel-Kontorova models.

In the paper, the functioh : R? x R¢ — R will be of classC?3, and satisfy the following
assumptions:

(Periodicity) L(x + s,y +s) = L(x, y) forall s € Z¢.
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(‘Twist property’) Forallx € R?, y — 981L(x, y) is a diffeomorphism oR<.

Given the periodicity property of, the convenient configuration space to work with is
the quotient spac® = (R%)Z;74. We will denotes the shift transformation ofi¥,
acting on sequences by shifting them to the left.

For each paramete# > O (representing the inverse of the temperature), we will
construct in Section 2 a-invariant probability measurgg on W, called “the Gibbs
measure associated to the potenfiaht temperature/8”.

We will then prove the following theorem:

Theorem 0.0.1. Let g be the Gibbs measure associated to the potedtjadt temper-
ature 1/8. Let 1o be a limit point of the family(ug)s-0 as B tends to infinity. Then
oo Minimizes the mean energy, L du over the set of alb-invariant probability mea-
sures onW. Moreover, under suitable assumptiofsl), (A2), (A3), e Maximizes the
functional

1. 1 "= -
o oo = 5 lim [ logl, 4”7 du()
n—o Jw n
over all energy-minimizing measures.

In the theoremi,, (1) stands for the metric entropy of the measpreinder the action
of the shifto. This functional is one of the fundamental objects in ergodic theory; its
definition is given in Section 1.

We denote byd”(y) the Hessian matrix of the formal sum

A() =) Lk, ern)-

keZ

It is an infinite matrix, tridiagonal by blocks of size The notation, A” (y) stands for the
nd x nd submatrix corresponding to € [1, n] and, in Theorerh 0.0]1,A”(y)] stands
for the determinant of that matrix.

The assumptions (Al), (A2), (A3) are technical assumptions concerning the behaviour
of the energy near its minima. They will be stated in Section 1.

We note that our result does not necessarily imply the existence of a limit for the
family (ug) asp — oo, since the functional that., must maximize is affine.

Part | is organized as follows:

— In Section 1, we introduce notations, and give a more detailed statement of Theorem
[0.0. with its assumptions (A1), (A2), (A3).

— In Section 2, we define the Gibbs measugeand give some of its properties.

— In Section 3, we prove Theor¢m 0/0.1.

— Section 4 serves as a transition to Part Il. We explain briefly the connection between
Frenkel-Kontorova models and symplectic twist diffeomorphisniB?ok R. In this
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context, the quantity Iir,n% log[,,A” (¥)] has a nice interpretation in terms of Lyapunov
exponents. To draw an explicit link with Part I, we consider the example

L(v0. 1) = llya = y0l?/2 = V(y0) — (. y1 — y0).
wherew € R? andV is aZ?-periodic potential of clas€?.

In Part Il, we find that our result reads in an interesting way when transposed to
the field of Lagrangian mechanics. In that part, we replace the configuration Bpace
(R%)% /74 by the space of continuous bi-infinite paths ondh@rus,W = C(R, R?)/Z¢
= C(R, T¢), and the functiorL by a Lagrangian of the form

Lo(x,v) = |[v]|?/2 = V(x) — (o, ) (0.0.1)

onR? x R4, V being aZ“-periodic function of clas€3, w an element oR?, and| - |
the norm arising from the usual Euclidean structiire) onR¢.
For 8 > 0, we consider the “twisted” Scbdinger operators:

A
Hy =e P o (W + V(x)) 0Pl (0.0.2)
where A stands for the Laplace operator BA. (For 8 = i/h, h being the Planck con-
stant, the operatdr(‘g would be the quantization of the classical Hamiltonian

Hy(x, p) = |p + ol?/2+ V(x)

associated to the Lagrangidh,; but this is quite a different problem.)

Let v, 1//;,}‘ be the positiveZ¢-periodic eigenfunctions of, respectivelt¢ and its
adjointH;‘;*, associated to their common largest eigenvalue (this will be given a precise
meaning in Section 5). The focus of our attention is the measure

o Ys()Ypx)dx
M T eV dy’

which is the invariant measure for the Markov process generated by the twiste# Schr
dinger operators (Section 5). This process seems to be da{lgx -process in quantum
field theory ([Si79]).

We study the behaviour of the famity%) asp — oo; 1/8 will now play the role
of a viscosity coefficient, or of the diffusion coefficient of the stochastic process. We
first prove that every limit poinid, of the family (u,g) as 8 — oo can be lifted to

the tangent bundl&“¢ x R? to a probability measurg.,, invariant under the Euler—
Lagrange flow ofZ,, and which minimizes the integral of the Lagrangian. Such mea-
sures play a central role in J. Mather’s theory in Lagrangian dynamical systems: they
are called “action-minimizing measures” (see [Ma91], and the work diévtan the sub-

ject, [Mn92], [Mn96] and[[Mn97]). It is shown in the papér [Go02] (Section 8) how the
measuresug, for 8 > 0, may be seen as action-minimizing measures in the world of
stochastic dynamics.
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Since there may be several action-minimizing measures, we seek additional condi-
tions satisfied by the limits (Ifug) asg — oo.
One way to state the result is as follows:

Theorem 0.0.2. Let,3; be a limit point of the familyu3) asp — oo. Then there exists

a probability measure.,, onT? x R4, which is invariant under the Euler—Lagrange flow,
action-minimizing in the sense of J. Mather, and whose projectidif'ds Mgo. Moreover,
under suitable assumptioifal), (A2), (A3), ne Maximizes the functional

1 d
ho(w) = 5 /m (;x,*(x, v) dpu(x, v)

over the set of all action-minimizing measures.

The assumptions (A1), (A2), (A3) are technical assumptions concerning the behaviour of
the action near its global minima. They will be stated in Section 5.

Herehy (1) stands for the metric entropy of the invariant probability meaguom
T4 x R4, under the action of the Euler—Lagrange flgw= (¢,),cr; and ther; (x, v)
are the firstd (nonnegative) Lyapunov exponents @f v), under the action op. The
definition of Lyapunov exponents will be given in Section 4. Note that, for a smooth
transformationp of a compact manifold of dimensiain, the Ruelle inequality always
holds:

l n
ho() < é/;'*"m'd“(“’

where the sum runs ovell Lyapunov exponents (this is Theorem S.2.13 of [KH95], ap-
plied to bothp andg—1). In Theorem 0.0)2, if we knew thatwas supported on a smooth
invariant Lagrangian graph (hence, of dimensidnwe could interpret the result ag:*
minimizes the gap in Ruelle’s inequality”. As we shall explain in Section 5, the fact that
wu is action-minimizing in the sense of Mather is a weak form of the property of being
carried by a smooth invariant Lagrangian graph.

. . . logys .
There are alternative ways of formulating the result. For instanges —%wﬂ isa
solution of the viscous Hamilton—Jacobi equation

Au
——> + Hy(x,dyu) = ABs

2p
| . : . ,
whereasig = —%‘pﬁ is a solution of the same equation for the time-reversed system:
Av
—% + Hw(x, —dX'U) = )\,/3

The constank g is the eigenvalue oi% and’H$* associated to the eigenfunctiotg,
1//;5. We see thap8 appears here in the role of the inverse of a viscosity coefficient. The
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measurey (x) ¥} (x) dx may thus be written in the form Aus()+vs(0)) gy In dimen-
siond = 1, the problem may also be formulated in terms of the Burgers equation, which
is the equation satisfied g (or dvg), obtained by differentiating the Hamilton—Jacobi
equation; in the paper [Si91], the asymptotic behaviour of the viscous Burgers equation
(as time tends to infinity, for a fixed viscosity coefficient) was studied via the definition
of Gibbs measures on path spaces; our construction, in Section 5, of the Markov process
associated to the Sdbdinger equation, is similar.

Let us mention that in dimensiah = 1, the convergence of the functiong, vg
(B — o0) was proved in[[Bes02] for a time-dependent Lagrangian, and that the result
proved therein implies ours. However, the approach relies very much on low-dimensional
considerations and cannot be extended to higher dimensions in an obvious way. Moreover,
in low dimensions, the entropy does not come into play.

The application of Theorefn 0.0.2 in the case= 0 yields an already known result
about the tunnelling effect in semi-classical mechanics ([He88, Section 4.2]):

Corollary 0.0.3. LetHy, = h?A /2 + V, and letyy, be the uniquéZ?-periodic positive
eigenfunction, corresponding to the largest eigenvaluétgfin L2(T%). Then, in the
semi-classical limiti — 0, the probability measure

Y2(x)dx
Jpa VA dy

concentrates on the maxima vt

Assume furthermore that the system satigfd9. If we consider the expansion &f
in orthonormal coordinates near a maximuw in the form

1
Vo +y) = Vo) = 5D laio)lPy? + 0%,

then the measur¢§(x) dx concentrates on thosg's for which the quantityy  |a; (xo)|
is minimal.

Part Il is organized as follows:

— In Section 5, we give more details about Mather theory and the notion of viscosity so-
lutions of Hamilton—Jacobi equations. We explain the spectral properties of the twisted
Schibdinger operatof (0.0.2). We show how it generates a Markov process of the in-
variant distributiomg, and finally we state Assumptions (A1), (A2), (A3).

— In Section 6, we show how to adapt the proof of Thegrem P.0.1 to the new situation.
We also check that Assumptions (A2), (A3) are always satisfied in theucas8, that
is, we prove Corollary 0.0}3.
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Part 1. Statistical mechanics
1. Introduction and statement of results

In this part, we consider a model where particles lie on the “1-dimensional laficaid
the state of each particle is described by an elemef?ofThus, a configuration of the
whole system is described by an elemen¢®f)Z. A function

L:RHZ 5 R,

called thepotential of interactionis used to describe the energy of interaction between
particles. This is done the following way: given a configuratjor= (yi)iez € (RY)Z,
theenergy of interactiomssociated to a finite subsequelige,<k<» is by definition

n—1

AWma) = Y _ Lo*y)

k=m

whereo denotes the shift acting to the left:

OY)k = Yir1-

We will restrict our attention to potentials depending only on the first two coordi-
nates (nearest neighbour interactions): in other wargs = L(yo, y1), where nowL is
a function fromR? x R? to R.

Moreover,L will be of classC23, and have the following properties:

(Periodicity) L(x +s,y+s) = L(x, y) forall s € Z4.

(Superlinear growth) £

=1 -y =00
(‘Twist property’) Forallx € RY, y > 91L(x, y) is a diffeomorphism oR?.
A model which assigns an energy

n—1
AWma) = Y Lk ver)

k=m

to any finite segment: < k < n of a configuratiory = (y%) is usually called &renkel—
Kontorova modellts stationary configurationgre, by definition, the configurations
which, for allm < n, are critical points ofA with respect to variations of,, m < k < n.
In other words,

2L (Vk—1, yi) + 01L(yk, yks1) =0  forallk.

Given the periodicity property af, the convenient configuration space to work with
is the quotient spacw = (R¥)% /74, the action ofZ¢ on (R¥)Z being defined by

sy =wn+s forallsezd ye®)Z andk € Z.
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Notations. We shall denote by € W the equivalence class ¢f € (R?)Z under this
action. An element of¥ will always be denoted in the forga, meaning thereby that it is
the equivalence class of somes (R%)Z.

Similarly, for any subset ¢ Z, we shall introduce the quotient spaiée = (R%) /Z¢,
with the action ofZ¢ defined as above, and we shall denoteybg W; the equivalence
class ofy € (R9)!.

The shifto, defined previously ofiR4)%, can be defined on the quotient spaiethe
same holds for the potentiél. We keep the same notation for the shifand the poten-
tial L defined onW. More generally, when some functions or transformations originally
defined on(R%)Z pass to the quotient spat¥, we keep the same notation.

We also introduce the projections : (R?)Z — (R?)!, which pass to the quotient
spaces:

;- W —> Wj.

When! = [0, k], we shall write W, m; instead ofW;, =r;. In particular, Wo ~ T¢,
Wy~ T x RY,

The topology used ofiR?)” is the product topology, and the topology his the
guotient topology. It is defined by the distance

_ - 1 .
dw (7,8) = dya (70, Eo) + 3 5z min (1 viess = will = ess — &I, 1).

keZ

If I is an interval ofZ containing 0, we define similarly a distanég, on W;; the) " now
runs over alk’'s suchthak e I,k + 1€ I.

We can now introduce our Gibbs measungs As we shall prove in the next section,
for all B > 0, we can findZ?-periodic, positive continuous functionss, w;’;, and a real
numberig, such that

/R TPy dy = e yp () (1.0.1)

and
/R PO dy = ), (10.2)

for all x. Actually, the real numbekg and (up to a multiplicative factor) the functions
Vg, w; are characterized by these properties.

We normalize the functiongg, w; o] thatf[o’l)d Vg (x)wg(x) dx = 1.

The measurg/g (x)w;; (x) dx appears as the uniqé -periodic invariant measure for
the Markov process with transition probabilities

P(x,dy) = %em(mw dy.
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The stationary Markovian process @k’ YN with initial distributiong (x)l/f;;(x) dx
and transition probabilitie® (x, dy), is realized by the following measure; on (RHN:

gy i vo€ Ao, Y1 € A1, ..., ¥n € An))

n—1
=e_’”‘*/A — ViV (yn)e P Hiso LT dyodyy . dy,  (1.0.3)
OXALX X Ap

for all » > 0 and all Borel setg\g, A1, ..., A,. By invariance of the initial distribution,
the measure.g is invariant under the 1-sided shift aoi?)N, so that it can be extended
to ac-invariant measure ofR9)Z, which we still denote by.gs.

Actually, the periodicity properties ofg, WE and L imply that this measure is in-

variant under the action &< on (R¢)Z. Also, the measure of the fundamental domain
(RHE x [0, 1)¢ x (RY)%4 is 1, due to our normalization afy, ¥ 7. Identifying the quo-
tient spacé¥ to this fundamental domain, we obtain a probability measure (still denoted
ug) on W, which isc-invariant, and which we call th&ibbs measuréor the potential
L, at temperature/B.

Note that, if we replace the potentialx, y) by L(x, y) — u(y) + u(x) + ¢, whereu
is a continuoug?-periodic function and a constant, then the eigenfunctiopg(x) and
5 (x) are replaced respectively gy (x)e 7™ andy £ (x)e”*™), and is replaced by
g — Bc; the Gibbs measurgg is unchanged. According to the usual terminology, we
say that two potentials (x, y) andL (x, y) arecohomologousf there exists a continuous
Z4-periodic functioru such that (x, y) = L(x, y) — u(y) + u(x), and we writeL ~ L.

Remark 1.0.1. Forn > 0, we denote bylug (¥ |7[n+1,00) (), T(—c0,01(¥)) the condi-
tional law of y kKnowing m,11,00)(¥) andm . 0)(). What is usually called the “Gibbs
property” concerns the form of conditional measures (see for instancel[Ru78, Chap. 1.5]):

dpg (V17 n11,00 (V) T(—00,01(¥))

ez e BOZiZ0 Lk Vs D+L Y Vi 1+8) dyi...dy,

ZE (Mt1.00) () T(—00,0/(7))

To write this formula we have identifietV with the fundamental domaifR?)Z" x
[0, D)7 x (R?)%: the terme(n[,,H,oo)()?), T(—00,0](7)) is @ normalization factor.

It is not too hard to check that the measurg constructed above has this property.
Moreover, it is proved in[Ru78, Chap. 5.9] (however, in the simpler situation when the
configuration space is discrete) that this property actually characterizes the measure. We
will not go further into this problem here, as we are not going to use the Gibbs property
in this form.

Our aim is now to investigate the existence of a limit for the Gibbs measgyras
B — oo.
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We shall say that a sequen¢e,),cn Of probability measures o/ converges to
a measureu if, for every finite intervall C Z and every bounded continuous functign
onWwy,

/ F Py dpn(?) — / Fi?) du@).

We shall prove in Section 3 (Lemria 3]1.5) that, from every sequ@ngécw of Gibbs
measures, one can extract a subsequence which converges to a probability mgasure
We ask which measures,, can be obtained this way.

First, the measurg.., like thejg’s, has to be invariant under the action of the shift
Then intuition tells us that the measweg, has to be carried by configurations “minimiz-
ing the energy”:

Definition 1.0.2. A configurationy is called energy-minimizingif, for all m < n, all
sezd andall(y) q.....v,_4) € R

LY, Ym+1) + L(Yms1, Yms2) + -+ L(Vu=1, ¥n)
S LWms Vmy1) F LGyt Vma2) + -+ L1, ¥a + 9).

In Section 3 (Lemma 3.1.6), we shall prove that limits of Gibbs measures are carried
by energy-minimizing configurations. We shall also prove a theorem, due to Mather in
the context of Lagrangian dynamical systems ([Ma91]), which says thatnzariant
probability measur@. on W is carried by energy-minimizing configurations if and only

if it minimizes the mean energﬂi d . amongst alb -invariant probability measures.

Definition 1.0.3. A o-invariant probability measurg. on W, achieving the infimum of
the mean energy L du. over the set ob-invariant probability measures, is called an
energy-minimizing measure

We introduce the set
M =_Jsuppu c W,
n

(the union runs over energy-minimizing measures), and call Matner setreferring to
the work of J. Mather in the theory of Lagrangian dynamical systems (see Part II).

We will thus show that every limit point ofig (8 — oo) is an energy-minimizing
measure. This fact, known by many, already appears in a paper by Sinai ([Si82]). How-
ever, as Sinai's paper precisely shows, there may be several energy-minimizing measures.

Thus, we need a selection principle, telling us which energy-minimizing measures can
be obtained as limits of Gibbs measures. The main result of this paper, Theorem 0.0.1,
selects an affine subset (possibly not reduced to one point) in the set of energy-minimizing
measures.

We now give the assumptions of the theorem, and define the objects entering its state-
ment:

Assumptions. Letm < n andé,, &, € R¢; we introduce the notation

(Rd)[m,n],(ém,én) = {(Vk)mskfn € (Rd)[m,n] “Ym =&m, Yn = En}



216 Nalini Anantharaman

Recall that we have defined the energy of a sequépcr<i<, as A(Yjo,n]) =
ST Ly virn)-

Assumption (A1). For alln, and all endpointgo, £, € R?, the minima of the energg
in the set(R4)[0-]-é0-6» are nondegenerate (we mean thereby that the Hessian matrix of
A at each minimum is nondegenerate). Moreover, the number of minimizers is bounded,
independently of, &g, &,.

In order to simplify the writing of the proof, we will assume that there is only one
minimizer, for alln, &g, &,.

Assumption (A2). There existssp > 0 such that, for all 0< ¢ < &g, there exists
a sequenceér,) < [0, 1]V satisfying:

— lim, logen _

n

— foralln > 0 and allyg, y, € R? such that

o —&oll = cne,  llvn —&nll < cne

for some energy-minimizing configuratigne (R9)Z, there exists a minimizey of
A (RHOLv0v 5 R such that|y, — & < e forall0 < k < n.

Change of gage.We will prove in Section 3 (Propositidn 3.1.3) that there exis&’a
periodic, Lipschitz function: such that the potentidl (o, y1) = L(y0, y1) — u(y1) +
u(yo) + ¢ is nonnegative, and vanishes on the Mather set. As we already mentioned,
replacingL by a potentiall ~ L +c does not change the definition of the Gibbs measure.
In all the definitions given above, we can repldcby a new energy., without changing
the definition of energy-minimizing configurations, Mather set, etc. The facuttsanot
smooth is not really a problem, since we only need to differentiate the energy functional
A on the space@R?)[0-"]-é0-é that is, for fixed boundary conditioriBhus, by a change of
gage, we may and will assume in the rest of the paperittiainonnegative, and vanishes
on the Mather set.

After performing this change of gage, we introduce the function

h,(x,y) = inf A,
n(x,y) PN

defined oriR¢ x R4,

Assumption (A3). There exists a sequendg > 0 satisfying lim, 'OQTB” = 0, such that
for all n,

supp?/? e Pntrov) gy, < B,
Y0 Rd

Assumptions (A1) and (A2) seem merely technical, and it is probably possible to get
rid of the second part of (A1) (about the number of minimizers). As to (A3), it says some-
thing about the behaviour of the functiap near its minimauniformly inn. Although
these assumptions are not easy to interpret, we can at least check (A2) and (A3) in the
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case wherl is of the formL(yo, y1) = lly1 — y0ll?/2 — V (y0), whereV is Z4-periodic

and of clasgC® (Lemma 6.4.2). However, it would be nice to have another set of assump-
tions which, if not easier to check on examples, would be more conceptual and related
to familiar notions of the theory of dynamical systems. In Section 5, we will formulate
a conjecture about other possible assumptions.

Metric entropy. Let us now recall the definition of the metric entropy, which comes into
play in Theorenj 0.0]1. Consider a probability spa&eB, ), and a measurable trans-
formation7 : X — X preserving the probability measure(meaning thapu (T ~1A) =
w(A) for every A € B). One defines thenetric entropyof u with respect to the action
of T, denotediy (u), as follows:

For any partitionP of X into a finite number of measurable se¥s= | |'_, P;, one
first defines the entropy @f with respect tdl' and the partitionP, as

o1
(e Py=lm = 3 (P N TP 0 TR, )

n—oon
xlogu(Pe NT 1P, N--.nT P, ).
The existence of the limit can be proved by a subadditivity argumnent ([KH95, Chap. 4.3]).
Thenhy(w) is defined as

hr () = suphr (i, P);
P

the supremum is taken over the set of all finite measurable partitiokis of
In this part, we shall apply this definition ®% = W andT = o, andu will be g,
o, OF @anyo -invariant measure.

Hessian of the energy.The definition of an energy-minimizing configuration implies
in particular that ify is such a configuration, then, for all < n, (Y41, ..., Yu—1) IS
a global minimum of the function

AW Vgt - > Yae1s Vu) = LW V1) + LW 1s Via2) + -+ LW, o),

defined on(R%)l-"1 (m-va),
Let us consider the Hilbert spat¢&Z, RY) = {(yx) € RHZ 3, 7 lwll? < oo}
Consider the Hessian matri¥’ () € L(%(Z, R%)) of the formal sum

AW =) Lk, ern).
keZ

Itis an infinite symmetric matrix which can be decomposed ihtod blocks:
Al = 05L(i—1, v) + 1L Ui Vi), Afip1 = 91L (i, vign)

andA” . = 0for|j —i| > 1. This way, the:d x nd submatrix, A”(7), corresponding to
LJ

indices 1< i, j < n, is the Hessian matrix of the functiohon (R)[0-7+11-(0.va+1)
We can now rewrite Theorein 0.0.1:
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Theorem 1.0.4. Let o be a limit point of(ug) as B — oo. Thenus is an energy-
minimizing measure. Moreover, under assumpti@gkl), (A2) and(A3), we have

1 H 1 "= = 1 H 1 "= -
ha(u)—éf lim = log[, A" (7)] du(y) fho(ﬂoo)__/ lim —log[, A" ()] ditoo ()
W n n 2 W n n

for any energy-minimizing measuge

The proof includes a proof of the existence of the Iimit,Ji%ong[nA”(;?)] € R for

every energy-minimizing measupeandu-almost everyy. The metric entropyt, (1), by

definition, belongs to [O>c], but we shall see in Section 4 that it is finite in our situation.
Note that the functional

1.1 "= _
w— hg(p) — > /W lim - log[, A" ()] du(y)

is affine, so that our theorem still does not necessarily implyjilaatonverges.

2. Definition of Gibbs measures, and some of their properties

In this part, we prove the existence and uniquenesgfy; and2 characterized by
(1.0.3), [1.0.R), and we construct the Gibbs measures.

We identify functions ori'¥ andZ?-periodic functions. We also identify Radon mea-
sures orfT? andZ4-invariant Radon measures Bf.

We introduce an operatdt;, acting on the space @ -periodic continuous functions

as follows: if f is such a function, theﬁ’grf is defined by

P = [ D pdy
R4

forall x € R?. If the continuous functiorf is nonnegative and does not vanish identically,
thenP; f is positive.

By duality, Pg also acts on the set of Radon measures on the torus; we define the dual
action Plg“* on the set of measures by

[ rawiw=[ pfra

for every continuous functiogf on the torus and every measuyre
We also introduce the operat@ (the adjoint ofP;" in L2(T9)):

(Py f)x) = /R e PO f(y)dy;

we let it act on the space @f -periodic continuous functions. We denotebg* the dual
action on measures.
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It is immediate that, for alb, P[;*v has density

(Dv)(x):/ e PEEY) gy (y),
Rd

whereasP; v has density

(D*v)(x) =/ e PLO dy(y).
R4

(To define the integral oR?, one considers measures BhasZ-invariant Radon mea-
sures onR?.) The operatorsD, D* go from the space of measures on the torus to the
space of continuoug?-periodic functions. In particular, we note thavihas a density

with respect to Lebesgue measure, tlﬂg*ﬁ‘v has density

g(x) = / PO £(y) dy.
RA

In other wordspg*(f(x) dx) = (Pg f)(x)dx.
We now consider two transformationg™ and M~ (we forget the dependence @gn
in the notations), acting on the set of probability measures on the torus the following way:

P *u P 1
M= =B and M= B
fP/3 ldu fP}3 1du

They act continuously on the convex, compact set of probability measures on the torus,
endowed with the weak topology. The Schauder fixed point theorem impliegtat
and M~ both have fixed points. This exactly means that there exist probability measures
g, kg and real numbersg, A% such that

PE*MZ = e)‘zu}} and Pﬁ_*uﬁ =eMug.

The reader will readily check that we have the commutation relamjn@ = DPﬂ_* and
Py D* = D* Pg* on the space of measures. Thung‘f*ug = ' 15, thenD* i is an

eigenfunction ofPﬁ‘ for the eigenvaluexz; we definezp; = D*u/’g. Similarly, Dug is
an eigenfunction oP; for the eigenvalue™#; we denote it byyz. We can also write

Py*(Yp(x)dx) = e yp(x)dx  and PJ*(yj(x) dx) = "4y (x) dx.

Note thatys andy; are positive continuous functions, and that (respectivelyekz) is
a simple eigenvalue foP,;r (respectiverPf;) in the space of.?-periodic L2 functions.

To see this, first note thatZt -periodic L2 eigenfunction is necessarily continuous. Then
consider &-periodic continuous functiogr satisfying

Py =y
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Letx = supyr/yg. Then the functioyyg — is nonnegative, and by continuity vanishes
at one point at least. Moreover, it satisfies

(Mg — Y)(x) = e /ﬂ; D gy — ) () dy

for all x. Thus, if (A\yg — ¥)(x) = O for somex, then we must havéryrg — /)(y) =0
for all y; in other wordsyrg andy, are proportional.
We have proved the beginning of the following proposition:

Proposition 2.0.1. The eigenvalues (respectivel;e’xz) is a simple eigenvalue foP;
(respectivelyP; ) in L2(T¢). Moreovere’# is the spectral radius oPy i L2(T9).

To prove the last assertion, note that the operator

N fe P (FUp)
g
is stochastic: it fixes the constant function 1. We also say thanitimalized

The dual operatoN* on the space of measures fixes the meagyrer)y 5 (x) dx.
The Cauchy-Schwarz inequality shows that the normvVaf L2(T¢, t/f,g(x)wg(x) dx)
is 1, so that its spectral radius is also 1. This now implies that the spectral radhﬂ?fsinf
L2(T%) is e*5.

We know, by the definition of/ (x), thatuﬁ is proportional top (x) dx; and Propo-
smon- |mpI|es thats is, up to a multiplicative factor, the unlque measure such that
P;* jg =e /m . A similar property holds fopg.

It remains to check thatg = A;}. We prove thatjg is (up to a multiplicative constant)
the only nonnegativé.! eigenfunction ofP/j. Let ¢ be a nonnegative eigenfunction of

P}j : obviously,i» must be positive, continuous, and associated to a positive eiger¥alue
We write

¢ / Vduj = / Py () dujy = f V(P up) = e / ¥ duj

so that we must have = 1%, andy must be proportional tgg. In particular,ig = Aj.
Rephrasing what has just been done, we can say that the normalized opefiats
a uniqueZ?-invariant Radon measure (up to a multiplicative factor), which is positive,
and has densityg (x)w; (x). We normalize it so thaf[oﬁl)d Vg (x)l//g xX)dx =1
Thus, the measurgg (x)wg(x) dx appears as the uniqu -periodic invariant mea-
sure for the transition semigroup generated by the following transition density:

_ wﬂ()’) —BL(x.y)
P(X,d)—me ydy
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A stationary Markovian process aik¥)N, with initial distribution wﬁ(x)x/f;;(x)dx
7180

. e PLY) gy is realized by the measure
e"Byp(x)

and transition probabilitie® (x, dy) =

g on (RHN defined by

ng{y ivo € Ao, Y1 € A1, ..., vu € Ay})

n—1
=e’”“‘fA ) ViV (yn)e P Zico L) dyodyy L dy,  (2.0.1)
OXALX X Ap

for all » > 0 and all Borel setsAg, Ay, ..., A,. This defines a positive measupg

on (RN, as a consequence of Kolmogorov’s extension theorem. By the invariance of
the initial distribution, the measureg is invariant under the 1-sided shift aiR))N,

so that it can be extended tocainvariant measure ofiR?)Z, which we still denote

by ug. Actually, the periodicity properties afg, wg and L imply that this measure is

invariant under the action & on (R¢)Z; finally, the measure of the fundamental domain
(R x [0, D? x (R%)Z+ is 1, due to our normalization afg, v

Identifying the quotient spac# to the fundamental domaifR?)Z" x [0, 1)? x
(R?)Z% | we obtain a probability measure (that we still denoteuy on W, which is
o-invariant, and which we call th@ibbs measuréor the potentiall, at temperature/8.

Note that, if we replace the potentiblx, y) by L(x, y) — u(y) + u(x) + ¢, whereu
is a continuou&?-periodic function and a constant, then the eigenfunctiopg(x) and
W5 (x) are replaced respectively gy (x)e 7™ andy £ (x)e?*™), and is replaced by
Ag — Bc; the Gibbs measurgg is unchanged.

We now prove a property of “quasi-invariance” under spatial translations of the mea-
surepg on W. We denote by, the subset of¥ formed by elementg such that: there
existN € N andr, s € Z4 such thaty, = s fork > N andy, = r fork < —N. Note
that, ify, 7' € W, theirsumy + 7' = y + ¥’ € W is well defined.

Proposition 2.0.2. For all z € W, and all measurable nonnegative continuous functions
fonW,we have

/ fy+2) duﬂ = / f(y)e—ﬂ > kez (L Vk—2k Vir1—2a+1) — L (Vis V1) d,LL‘B.
w w

Note that the) .., on the right hand side is actually a sum of a finite number of terms,
sincez € W,.

The reader is invited to compare this property with the definition of Gibbs measures
given in [Ha90]; it is proved there (however, in a different situation) that this property
actually characterizes the measure. We do not examine this problem here.

Proof. It is sufficient to check the statement whgrdepends only on a finite number of
coordinates, by which we mean thais of the formg o 7; for some finite interval and
for some bounded measurable functioan W/. Moreover, by ther-invariance ofug, it

is enough to consider the case= [—n, 0]. Without loss of generality, we may assume
thatzy =0fork > 0andz; =r € Zfork < —n.
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To perform the calculation, it is simpler to identify with the fundamental domain
(R?)Z% x[0, 1) x (RY)Z% . Now g is a nonnegative measurable function@q )=~ x
[0, 1)¢ and

/ fr+2dug
W

-1
/ gy + Z)lﬁg (V-n)V¥p (yo)e_/’3 Y oie—n Lk i) dy
(R)=m—-11x[0,1)

-1
= / gV (V-n—2-)Wp(yo—z0)e P Thmon L2Vt =0040)
(Rd)[—n,—l] ><[0’]_)(1

— / SVE(r—n) Vs (vo)e P Y (L= Vi1 =2k D) —L (Vo Vi 1)
(Rd)[—m—l] %[0, 1)1/
x e P Zk_:l,n L(ykvk+1) dy

= / f()?)e_ﬂ > kez L=k, Vir1—2k+1) — L (V& Vi1)) dl/«ﬂ,
w

which proves the proposition. We have used the periodicity pandyz. O

To end this section, we prove that the Gibbs meagyreatisfies a variational principle
which looks like a thermodynamical variational principle. Once again we idefitify
with the fundamental domaifR?)%* x [0, 1) x (R?)%+. For a probability measure
on (RH)Z* x [0, )? x (R%)Z*, let us denote byl (y-1|¥0.0)) the conditional law of
Y—1 Knowing y[o,oc) -

Proposition 2.0.3. The measurg.g maximizes the functional

- _ARO-alVo.0).

(R9)= x[0,1)4 x (Rd) >+ e~ BLy-1.70) dy_q

. if diu(y—11¥]0,00)) is absolutely continuous w.r.tly_1,
—oo otherwise,

> du(y)

over the set of -invariant probability measures oW =~ (R?)Z" x [0, 1) x (R?)%%,

Proof. We use the following convexity inequality: i, v are probability measures on
some spacg, and if u is absolutely continuous with respectitpthen

—/ log (ﬂ) dpu <0,
X dv

Vi (r-a)
Eeee—
V5(0)

with equality foru = v.
Note that

dpg(y-117]0.00) = HPLY-170) gy
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Thus, for any -invariant probability measure on W such thatd i (y—1/¥]0,0)) iS abso-
lutely continuous with respect to the Lebesgue meagyre;, we have

dp(y-11y10,00)) >
— | du(y- lo <0
/ mly 1|V[0’°°)) g<w;(y_l)wz—l(yo)exﬁﬂL(VlJ/o)dy_l -

for u-almost everyy|o,«), With equality foru = pg. Integrating with respect tg[o, o),
we obtain

du(y-11¥10,00))
— | du(y) |09< - )
/ Vi)Y H(yo)e L1 gy

= —Ap +f(|091/f;§(y-1) —log¥5(v0) d

du(y-1l¥10,00))
— | dr(y) l09< — ) <0
f Vi-0v; () dy-1

with equality foru = pg.
If wis o-invariant then/ (log w;(y,l) —log w;;(yo)) du = 0. Thus, we get

—/Iog( dp(y-11y10,00)) >du()/) <3

e—BL(y-1,v0) dy_l
for all o-invariant measureg, with equality foru = pg. O

After multiplication by—1/8, it would be tempting to decompose the functional of Propo-
sition[2.0.3 in the form

_ 1
Ldu—=H
/ 2 5 (n)

whereH would be the functional defined by

dup(y- 00

Then we would callf L du the mean energy, and look &(u) as a kind of entropy,
sothat/ Ldu — %H(u) would be a free energy. However, this decomposition does not
always make sense, since both terms may be infinite.

It would be interesting to see if Theor¢gm 0]0.1 can be derived directly from Proposi-
tion[2.0.3 by lettingd — oo, and expanding the functional of Propositjon 2.0.3 in powers
of B8.

Remark 2.0.4. The situation is considerably simpler when the configuration space is of
the form BZ, whereB is afinite alphabetIn that situation, the Gibbs measuysg for

a potentialL, at temperature/J8, minimizes the free energfy L du — %h(, (n) ([Ruz8);

from the fact that:,, is a bounded, lower semi-continuous functional, one can deduce
directly that any limit of(u.g) asp — oo is an energy-minimizing measure, and maxi-
mizes the entropy amongst energy-minimizing measures. See, for instance, Theorem 29
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in [CLTO1]; in that reference, the action of the shift 8% arises as the coding of an ex-
pansive map of the circle, and the potenfialdepending on infinitely many coordinates)
is the logarithm of the Jacobian of the map; so that “energy-minimizing measures” are
measures of minimal Lyapunov exponent.

WhenB = R, difficulties arise from the fact tha (1) is not a bounded functional
and is not the metric entropy, (1); also, Lyapunov exponents appear when analyzing
the Gaussian fluctuations of the energy.

3. Proof of Theorem[0.0.1

To start with, we give the general idea of the proof, and explain the role of assumptions
(A1), (A2), (A3). These ideas are quite classical, their technical implementation is per-
formed in Section 3.2.

On a finite-dimensional configuration spa@¢)”, let A be an energy functional, and

J . e AW gy
the associated “Gibbs measure”. Assume thags only nondegenerate minirga); ..
Then, a8 — oo, ug concentrates on the minima af more precisely, it converges to

oo = (Z[A”(x»rl/z)_lZ[A”(x»]*l/z By,

wheres$,, is the Dirac mass at;, A”(x;) the Hessian oft atx;, and [A” (x;)] the deter-
minant of the Hessian.
In other words .~ is the measure maximizing

1 4
— Y ulx)logpix;) — §/|09[A (] dp(x),

amongst measures carried by the minitpaf A.

We want to apply exactly this idea when the configuration spa®€)%/Z<, is now
infinite-dimensional. The difficulty is that both notions of Gibbs measures and metric
entropy are defined, from the finite-dimensional model described above, by taking the
thermodynamical limitz — oo. We are in a situation wheregoes first toco (the ther-
modynamical limit), and thep (the low temperature limit). If we could first lgt tend
to oo, and them, we would be done.

Assumptions (A1), (A2), (A3) contain what we need to apply the heuristics described
above:

— nondegeneracy of the minimizers of the energy,
— technical possibility to reverse the orders of the two limits> oo andg — oo.

In the following, the spac®? is endowed with its canonical Euclidean structure, we
denote byj| - || the associated norm, by || the norm||x|lcc = Mmax=1,.._ 4 |x'|, and by

d .
I+ lla the normllxls = 37— |x'].
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3.1. Preliminary results

Lemma 3.1.1. Let (Bx)x>0 be a sequence such thét — oo. Then the families of func-
tions(—% log ¥/, )x and (—ﬂ—lk log v, )« are equicontinuous.

Proof. The functiony 4 satisfies

Yp(x) = e /R e Py (y) dy = 7 / (Z e—“““*”)x/fﬁ@)dy.

[0.1¢ sezd
The potentialL being superlinear, there exisié > 0 such that
e—ﬁL(H-X,y) < efﬁinfsezd L(s+x,y)
llsll>M

for all x, y € [0, 1). It follows that

Z e—ﬂL(x-i—x,y) < Z (e—ﬂL(s—i-x,y) + e—ﬂ infSL(s-i-x,y)) < (Md + 1)e—ﬂ infg L(s+x,y)

seZd Isi=M
so that 1

lim sup= Iog( > e‘ﬁL(”X’y)) < —infL(s + x, y).
N

p—o0 seZd
On the other hand, since
Z e—ﬁL(s+x,y) > e—ﬁ infSL(s+x,y)’
seZd

one has the lower bound

1
liminf = Iog( e—ﬂ“ﬁx’”) > —infL(s +x, ),
so that 1
lim = Iog( e—ﬂm“’”) — —infL(s +x, y). (3.1.1)
Moreover, the argument proves that the convergence is uniformyin
Forx, y € R?, we definel (x, y) = inf,_z4 L(s 4 x, y). This function isZ?-periodic
in both variables; we show that it is a Lipschitz functionBh x T¢. Becausel(x, y)
goes to infinity aglx — y|| — oo, there exists¥ > 0 such that

I(x,y)= inf L(s+x,

(x, ) o ( y)

for all x, y € (0, 1)¢. Let us considex, y, x’, y’ € (0,1/2)%. Assume thatl (x, y) =
L(so + x, y) with ||sg|| < M. Then

I1(x',y) < L(so+x".y") < L(so+x,y) + Cllx —x"|| + ly = ¥'I)
=10, y)+Cx—=x"II+ 1y =y,

whereC is a bound on the norm of the derivativelobn (—M — 1, M + 1)? x (0, 1/2)“.
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Since(x, y) and(x’, y") play symmetric roles, we have proved thas Lipschitz on
(0,1/2)? x (0,1/2)¢, for the Euclidean distance. Moreover,® 1/2)¢ x (0, 1/2)? the
distance|lx — x’|| + ||y — y’|| coincides with the distance of their images in the torus,
dya (X, %) + dpa (3, ). This way, we can covef? x T¢ by a finite number of charts in
which I is Lipschitz.

We now write

1 1 1 Joaya ez e PHETD) g (2) dz
— I _ — | = — | 2
3 0g¥p(x) 5 0g Vs (y) 5 og (f[o,l)d(zsezd e PLGY. D) ys(7) dz

1 —BL(s+x,z)
< E log (sup s

£ Lyenu € PEOT)

— sup (I(x,2) —I1(y,2)

B—00 z€[0,1)4

the last line being a consequence of (3.1.1). Moreover, the convergence is unifarm in
Sincel is Lipschitz, there exist€’ such that sug/(x, z) — I(y, 2)) < Cdypu (%, y).
Thus, for alle > 0, there existX such that, for alk > K,

1 1
Br Br
Sincex andy play symmetric roles, it follows tha(tﬁ—lk log x/fﬂk) is a uniformly equicon-

tinuous family ofZ?-periodic functions.
A similar argument yields the result f@ﬂik logy; ). o

logyp, (x) — ——log ¥, (y) < & + Cdpu (X, y).

We introduce the value
¢ =—inf { f Ldu :  ac-invariant probability measure ow}

Definition 3.1.2. (1) We say that ar-invariant probability measurg. on W is energy-
minimizingif [}, L du = —c.

(2) We say that a configuratiop is strongly minimizingif, forall m < n, allm’ < n/,
andally,,,...,y, suchthaty,, =y, andy,, = y, + s for somes € 74,

L(Yms Ym+1) + -+ + L(Yu—1, Yu) + c(m —n)
= L(Vy:1’7 yn/1’+l) +o 4+ L(Vn/fl’ V) + C(m/ - I’ll).
Obviously, a strongly minimizing configuration is minimizing (but the converse is not
necessarily true, see [Bet02] for a discussion of this issue in the context of Lagrangian
dynamical systems).

We say that a configuratiop is recurrentif, for all kK and everys > 0, there exist
infinitely many positive indiceg and infinitely many negative indicgssuch that

dwy (Vs Vi) (v, vj+1)) < €.

The Poincak recurrence theorem implies that a configuration lying in the support of a
o-invariant probability measure di is recurrent.
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Proposition 3.1.3. There exists a Lipschifz?-periodic functioru such that
u(x)+ Lx,y)—u(y)+¢c>0 forallx,ye RY,

andu(x)+L(x, y)—u(y)+c = Oif there exists a configuratiop € W which is recurrent
strongly minimizing, or which lies in the support of an energy-minimizing measure, such
thatyo = x, y1 = y.

Proof. By Lemmd 3.1.]L, we can find a sequerize— oo and a continuoug?-periodic
functionu such that 1
Br

uniformly. We may also assume thigg, /i converges iR U {—oo, oo}, say to a limit.
We use the following

log w/?;k kjo)o -

Lemma 3.1.4. Assume thatug)s-o is a family of functions off which converges uni-
formly to a continuous functiomas 8 — oo. Then

. 1
lim —Iog/ P8 dx = supu(x).
p—oo B T4 xeTd

The proof of the lemma goes as follows: the inequality< u + ¢ < supu + ¢, which
holds for every > 0 and forg large enough, yields the upper bound on the limsup. The
fact thatug > u — ¢ for everye > 0 and forg large enough, and that> supu — ¢ on
a set of positive Lebesgue measure, yields the lower bound on the liminf.

Now, taking the log of both sides of the equality

vico=e [ (X e ) na,

[0 seZd

dividing by 8, and passing to the limit for the subsequegg, we get

—u(x) =—1— iry1f{1(y, x)+u)}=—-r— il;!f{L(y, x) +u()}

oru(x) = A +infy{L(y, x) + u(y)}. Sinceu is continuous, this already implies thats
finite.

Imitating the notation of Fathi in_[Fa97-1], we introduce the transformafion :
C(T?,R) — C(T%, R):

T v(x) = irylf{L(y, x) +v(y)}.

If vis continuous, thef ~v is Lipschitz. We take this fact for granted,; its proof is similar
to the proof that’ is Lipschitz.

Thus we have = T~ u+2A. This implies that is Lipschitz; moreover, is necessarily
equal to the critical value;. This result is due to Fathi for a continuous time Lagrangian
system ([Fa9741]). Since the full proof is still unpublished, we give a general idea of it:
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— The equalityy = T~u + A implies thatu(yo) + L(yo, y1) — u(y1) + 2 > 0 for all
vo0. y1 € RY. Taking the integral with respect to an arbitraryinvariant probability
measurg: on W yields + fid,u > 0, so thatx > c.

— Next, Fathi proves that = 7~ u + A is equivalent to the following: for aljy € R?,
there exists a sequencg)«<o such that, for alk < 0,

-1
w(ye) + Y L. vj11) — u(vo) + k|x = 0.
j=k

Let us extend this sequence to a configuratign..z. Fathi shows that the sequence
of Birkhoff sums

1 0
S k-
k| +1Z oty

j=k

admits a convergent subsequence as- —oo, and that the limit is ao-invariant
probability measure satisfying L du = —. Thus,A = c.

Now, lety be a strongly minimizing recurrent configuration, and assume that there
existsj such that:(y;) —u(yj+1)+c+L(y;, vj+1) > 0, for instance that (y1) —u(y2) +
¢+ L(y1, y2) > 2¢ for somes > 0. Sincey is recurrent, we can find arbitrarily large
such thatyx, vr+1) comes arbitrarily close t, y1); this implies thatyo, yx+1) comes
arbitrarily close ta(yo, y1). Thus, for somé,

L(yo, yi+1) — u(yx+1) +u(yo) + ¢ < L(yo, y1) —u(y1) +u(yo) +c+e
k
<> ) — ulyj+1) + ¢+ L. vj4+1)
j=0
k
= > L(yj, vj+1) — u(yx+1) +u(yo) + (k + Dec.
j=0

To account for the second inequality, note that all the terms in the sum are nonnegative,
the first one i (yo, y1) — u(y1) + u(yo) + ¢, and the second one is greater than 2

But this contradicts the fact thatis strongly minimizing. So, we must haugy;) —
u(yj+1) + ¢+ L(yj, yj+1) = Oforall j if y is strongly minimizing and recurrent.

To prove the last assertion of the lemma, we know that, for eyesyW,

u(y1) — ulye) < ¢ + L)
and that
0= /W(um) () () = e+ /W LG du )

if w is an energy-minimizing measure (in particutasinvariant). So, we must have equal-
ity u(yo) — u(y1) = ¢ + L(y) if y lies in the support of an energy-minimizing mea-
sure. O
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We say that a sequen¢gg, )ren (B — 00) converges to a measue, if, for every k
and every bounded continuous functigron Wy,

/f(ﬂk);)dﬂﬂk();)k:;/f(ﬂkJ;)d,U«oo(J;)-

Lemma 3.1.5. Let (Bx) be a sequence such thét — oo. Then(ug, )rez has a subse-
guence which converges tasainvariant probability measure o .

Proof. We need to show that, for every finite intervabf Z and alle > 0, there exists

a compact subs&t c W, such thauLﬁjTl_l(W[ \ K) < ¢ for g large enough. Once this

is proved, we can apply Prohorov’s theorem and a diagonal extraction procedure to find
a subsequengeg, such thapug, n,‘l converges in the wedkopology, for alll:

-1 1
'uﬂknnl > Moo

Moreover, ifJ C I, thenul ;= pul sincepp, n;tn,* = up, 7,7t Kolmogorov's
extension theorem ensures that there exists a probability measum@n W such that
foorty t = pl for all 1. Finally, 1t is the limit of g, .

We now prove the first claim. Let be a finite interval ofZ; sincepu is o-invariant,
we can assume thdt = [0, n]. There existsk such that, iflx’ — y!| > K for some
i=1,...,d,thenL(x,y) > |lx — yl|1-

By Lemma 3.1.1, if we normalizé¢ g andt/f;; so thatyrg(0) = WE(O) =1, then there
existsM such thatys(x) < ¥, Yh(x) < ePM (for all x), and [, VMY dy =
e PM,

Thus, from the expression (2.0.6) defining, foralli =1,...,d,k=0,...,n,and
by theo -invariance ofug,

wer " Avies = vil > KD
3y const e FK

B

< e3ﬁM/ e Bl dy < e
v0€l0. DY, ly; —v§1>K

If we take K large enough, this term tends to zergdas> oo, thus showing tha&ﬂnl‘l

concentrates on the compact §6t..1 — koo < K forallk}. O

Lemma 3.1.6. Let (8;) be a sequence such thgt — oo and such that the sequence
(g, )kez CONVerges to a probability measuug, on W. Then each configuratiop in the
support ofuse iIs @ minimizing configuration.

Proof. Assume, on the contrary, that there exists a configurationthe support ofise
which is not minimizing. There existse W, such that

D (L = 2k Er1 — 2k4) — L& &11) < 0.

keZ
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By continuity of L, there exists a neighbourhoddof £ such that, for ally € B,
Y Lk = 2k vir1 — 24) — Lk, ves1)) < 0.
keZ

Propositiorf 2.0]2 implies that

/ XB(f)dl/vﬁ(J;) — / x8 (7 — Z)eiﬂ > ken L=z, Vir1—2k+1) — L (Vk vk+1)) dll«ﬁ 7).
w w

The right hand side term tends to 0, and.saB) — 0, which contradicts the fact that
is in the support ofi,. O

Lemma 3.1.7. The set of energy-minimizing configurations is relatively compaut.in

Proof. A subsetk C W is relatively compact if and only if there exist$ such that, for
all . € K, lyk+1 — vl < M (remember that the topology is defined by the distafige
introduced in Section 1).

Let A = sup|L(x, ¥)| : lx — ylleo < 1}. Becausd. grows superlinearly, there exists
M suchthat|x — y|| > M = L(x, y) > 2A. For allx, y € R¢, there exists € Z? such
that|lx — y — sllec < 1, thus,

lx —yll>M = @seZ? L(x —s,y) < L(x, ).
Lety € (RY)Z be such thallyes1 — yx|l > M for somek, sayk = 0. Lets € Z4 be such
thatL(yp — s, 1) < L(yp, y1). Then
L(yo—s,y1) + L(y1, v2) < L(y0, y1) + L(y1, y2)
soy is not energy-minimizing. Thus, we have foumtisuch that
y is energy-minimizing= |\yx+1 — vl < M for all k € Z. O

We can now prove a result, due to Mathér ([Ma91]) in the context of Lagrangian dynam-
ical systems:

Theorem 3.1.8. (a) Let u be ac-invariant probability measure ofV. The following
three assertions are equivalent:

(i) w is energy-minimizing,
(ii) the support ofx contains only strongly minimizing configurations,
(iii) the support ofx contains only minimizing configurations.

(b) Energy-minimizing measures do exist.

Proof. To prove the theorem, we note that the definition of an energy-minimizing measure
and of a (strongly) minimizing configuration is unchanged if we replatg L ~ L +c.
Thus, using Proposition 3.1.3, we may assume thista nonnegative function, that

inf{f Ldu :  ac-invariant p.m} =0,
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and thatL vanishes on strongly minimizing configurations and on the support of any
energy-minimizing measure. In this situation, it is clear that-mvariant measure:
is energy-minimizing if and only if. vanishes on its support, and a configuratjois
strongly minimizing if and only ifL (¢¥7) = 0 for all k. This proves that (&> (ii).

It remains to prove that (iig>(i). We note that Lemma 3.1.7 implies thatis com-
pactly supported. We show that the ergodic componentsare energy-minimizing. Let
y be a point in the support @f, such that the sequence of probability measures

converges weakly to a-invariant probability measurg; (this happens foy.-almost
every point, by Birkhoff's ergodic theorem).

Let v be an arbitrary -invariant probability measure, that we may assume to be er-
godic, without loss of generality. Lét be a point such that the sequence of probability
measuresnl ZZ;& d,k¢ converges weakly to. We choose representativesé such that

llvo — &oll < 1. For alln, there exists,, € Z¢ such that|y, + s, — &xllec < 1. Assertion
(i) tells us that

L(yo, yD) +L(y1,y2) + -+ L(Yn—-1, V)
< L(y0,61) + L(81,82) +-- -+ L(§n—1, Vn + sn)-

We now choose & > 0 suchthav({y : ly1 — yolloo < C}) > 0. Then|l&, — &1—-1llco <
C for infinitely many ofn € N; we may also assume, without loss of generality, that

€1 — &oll < C.
Now,

L(yo,&1) + L(§1,82) + -+ L(En—1, VYn + Su)
< L(&0,81) + L(51,862) + -+ + L(64-1, &) + 2M,

whereM is an upper bound dfd; L| and||92L || on the sef(x, y) : [lx — ylloo < C +1}.
Dividing both sides by:, and lettingn — oo, we get

/Zd,u);f/ Ldv.
w w

Thus, we have proved that all ergodic componentg afe energy-minimizing, implying
thatu itself is energy-minimizing.
Assertion (b) follows from Lemmas 3.1.5 and 3.1.61

We denote byM the closure of the union of the supports of energy-minimizing mea-
sures:
M= | ] suppucWw,
A en. min.
and call it theMather setfor reasons explained in Section 4. It is a compaseityvariant
subset of¥.
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Thanks to Propositign 3.7.3, we can operate a change of gage on the potential so that
it becomes nonnegative, and vanishes on the Mather set. Although the change of gage
is only Lipschitz, the functionglf’:‘g L(¥;, vi+1) remain of classC® with respect to the
variablesy1, ..., yu—1.

3.2. The proof of Theorem[0.0.]l. We begin by proving a subadditivity property for
the determinants,[A” ()], wheny is a minimizing configuration.

Recall thatA”(y) is the Hessian matrix gt € W of the (formal) sumA(y) =
> kez Lk, viv1). We view A”(y) as an infinite tridiagonal symmetric matrix, which
can be decomposed intlx d blocks(A” (i, j)); jez:

A", i) = 85,L(vi—1. vi) + L, vivr),  A'G i+ 1) = d1L (i, ¥is1),

andA”(i, j) = 0if |j —i| > 1. Thend x nd submatrix, A”(y), corresponding to indices
1<, j < n,is the Hessian matrix of the actiot(y|[0,,+1)) With respect to the variables

Y1s -5 Vn-

Notations. In what follows, we denote byM] the determinant of a square matrix of
any dimension.

Unless stated otherwise, we shall always represent matriegé®liock form; for in-
stance, ifM is annd x nd matrix, thenM;; or M (i, j) (1 < i, j < n) will be thed x d
block in position(, j).

If y0, v» € R?, we denote by A” (yo, y») the Hessian of the energy: (R¢)[0-71-(vo.va)

— R at its minimizer (which, for simplicity, has been assumed unique in Assump-
tion (A1)). If y is energy-minimizing, thepA” (yo, yu) = nA”(¥).

We recall thatz,, (yo, y,) denotes the value of the minimum of the action on the space
(R4H[0:11.(vo.7) (we have performed a change of gage so ihat 0). If 7 € W, we will
write i, () = hn (Y0, ¥n)-

Lemma 3.2.1. Let M be a symmetric matrix of the form

A 'C
v=(e5)
whereA and B are square symmetric matrices, adds a rectangular matrix of appro-
priate dimension. I is semi-positive definite, then
[M] < [A] - [B].

Proof. Assume first that is invertible. Since the determinant of a matrix is unchanged
when adding to one line a linear combination of the others, we see that the determinant
of M is equal to that of the matrix

A c
0 B—cAlic

Thus, [M] =[A]-[B—CcA~LC].
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We now use the fact that am x m matrix M is semi-positive definite if and only if,
forall J C {1,...,m}, the determinant of the square submaiy = (M; ;); jes is
nonnegative. In particular, ¥ is semi-positive definite, so areandB.

Denote byk the dimension ofd, and by! the dimension oB. LetJ C {k+1,...,
k+1}andl = J U{1,...,k}. As previously,

[M;] =[A]-[(B—CA™'C)y].

It follows that the determinants afB — CA~! C); are nonnegative for alf; thus,
B — CA~11C is semi-positive definite.
To conclude, note that 1 is a positive definite symmetric matrix, so that

B-cAl'c <B,

meaning that
'X.-B-CAYC)-X<'X-B-X

for all X. But, if B and B — CA~! C are positive semi-definite matrices such that
B —CA~1C < B, we musthave — CA~17C] < [B] (this can be checked by using
the fact that there exists a matri such that bothPBP and’P(B — CA~1 C)P are
diagonal).

This ends the proof of the lemma whdris invertible. If A is not invertible, we know
by the previous resultthad] +cI] <[A +¢el]-[B + el]forall ¢ > 0 (I stands for the
identity matrix of appropriate size), and we conclude by lettingnd to 0. O

Lemmd 3.2.]L implies a subadditivity property of lpg[’ (7)]:

Lemma 3.2.2. If y € W is an energy-minimizing configuration, then, for all< n,
[nAH();)] = [mA”();)] : [nfmA”(Um);)]-

According to the subbaditive ergodic theorerm ([Ki73]), this implies the existence of
lim %Iog[nA”(y)] in R U {—o0}, for u-almost everyy, if u is energy-minimizing. We
shall say more about this limit in Section 4; in particular, we will prove that it iR.in

We now turn to the proof of Theorem 0.D.1.

Proof of Theorerp 0.0] 1For simplicity, we write the proof in the cagle= 1.

Let uoo be alimit point ofug (8 — o0), and letu be an arbitrary energy-minimizing
measure oW ; without loss of generality, we assume thais ergodic.

Fore > 0 andM > 0, consider the following (countable) partition & = R?:

R*=| | Py,
ij

where the union runs ové(i, j) € Z?: |j —i| < M/e}U{(i, o0) : i € Z}, and theP;;’s
are defined as follows:

Pij = {(y0, y1) : yo € lie, (i + De), y1 € [je, (j + De)}
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for|j —i| < M/e, and

Pioo = {(y0. v1)  yo € [ie. (i + De), 3j. 1j — il = M/e, y1 € [je. (j + De)}.
If ¢ is the inverse of an integer, this gives a finite partition of the quotiént~ R?/Z,
and hence a finite partition 0% = | | P;;:

Pij={y e W:(yoy) € Py}

The numbe will be fixed later—sufficiently large, whereads doomed to tend to O.

We assume that andu.« do not charge the boundary of the elements of the partition
P—otherwise, we may translate the initial partition to a new partiiBn+x);;, x € R4,
so that this assumption is satisfied. Bos 0, we will denote by (8) the u-measure of
the §-neighbourhood of the boundary of the partitiBn The functionu (8) tends to zero
asé goes to zero.

The choice of the partitio® induces a symbolic dynamics over a subshift in the finite
alphabet P;;}:

WP = {(@kez C LN Pag Mo Py, # 0).

If uis ac-invariant measure oW we will denote byu” its image onw .
Recall the following convexity inequality:

—Y pilogpi + ) pilogg; <0 (3.2.1)
whenever(p;) and(g;) are probability weights. Hence, for all

= Py NN Py ) I0gu(Pag N+ N o TPy, )
o
+ ) WPy N NPy, ) 10gp(Pag N+ NP, 1) <0,
o

the sums running over all words of lengthin W*.
From now on, we will omit the in expressions of the typ,, N ---No"*1pP, .
We can rewrite the above as

— Y (Pay 0" Py, )10 (Pog - 0T Py, )

B n/2
+ Y i(Pag 0" Py,) log ( )

2
n—1 .,
x / Vi(r)e P o Oy () dyo - dy
P‘)‘OmainJrlPO’nfl
< =) up(Pay -0 Py )10Q g (Pay - 0P, )
B n/2
+ Z up(Py -+ a*”“Pan_l) log ( )

2n

n—1 s
» / 1//5()/0)6_/3 Y LYy (y,) dyo - - - dyn. (3.2.2)
P

.g—n+l Panfl
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We have denoted byyy . .. dy, the Lebesgue measure &,; we may regard it as the
Lebesgue measure on the fundamental domaih)[& R”~1 for the action ofZ onR”,
which we identify tow,,. In calculations, it will be convenient to keep this identification
in mind.

The rest of the proof is organized as follows: by the Laplace method, we first find an
upper bound for the right hand side of inequality (3.2.2), then state a couple of results
about tridiagonal matrices, and finally, find a lower bound for the left hand side of (3.2.2).

The conclusion of Theoren 0.0.1 is obtained by dividing the resulting inequality by
and first letting: tend tooo, thenp to oo, and finallye to 0.

Upper bound. We begin by finding an upper bound for the right hand side of inequality
(3.2.2), in terms of the determinantd’[]. An integerN is fixed and we take = kN in
the inequality above.

Lemma 3.2.3. (a) (Laplace method) Letyo, yny € R?. Then, assuming as i#1) that
the minimizer of the energy ifR¢)[0-¥1-(%0-7¥) js unique and nondegenerate, we have

(N-1)/2 .
(%) /RN_l e~ BriZo Livign) dyi...dyn_1

e Phn(vo.vN)

= 1 1 1 1
[nN—14" (0. VN)]l/Z( +/§)—(>o)o) = [nN—14" (0. VN)]l/z( +/30—(>o)o)

where, for fixedV, o(1) is uniform on each sdtyny — yo0| < K}.
(b) If the constantM, involved in the construction of the partitioR, is chosen large
enough, then, for aljp € R,

g\ N2
<E> /);EPao-uaN*lP

AN-1

N-1 N/2
e P Yico Lm’yiﬂ)d)/l.--dj/[v < (2_) oM <1
v

for B large enough, provided one of thg's is of the formicc.

Assertion (a) comes from the Laplace method for estimating integrals decaying expo-
nentially ([Di6§&, 1V.2] or [Co65]). Since the method is very classical, we do not provide
a proof; we shall provide one later, when we will need an estimate uniforiv. iAs-
sertion (a) requires the nondegeneracy of minima of the action, contained in Assumption
(Al). The remainder term(1) is bounded in terms of the second and third derivatives
with respect toys, ..., y,—1 of the energnyvz‘olL(y,-, ¥i+1), SO that it is uniform on
compact sets.

For (b), takeM such thaty; — yo| > M = L(y0, y1) > |y1 — yol; and use the fact
thatL > 0 elsewhere.

We define functiongy ande, on WF, depending oV coordinates, as follows:

Fy(ag,...,ay-1) =1
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if one of theq;’s is of the formioo, and

1
F ,...,aN_1) =SU Ty € Py, -
vl on-) p{[N—lA”(VOs yn)1M? V& teo

otherwise;

_O.*N+1P

aN—l}

Gh(ao, ... an_1) =1
if one of theq;’s is of the formioo, and

B\ Y2
G’ (ap, ..., an_1) = (—) sup/ e Pt gy,
21 o JR
otherwise.
Assumption (A3) ensures thﬂ,’i, is bounded, independently @f by By growing
subexponentially withv.

Lemma 3.2.4. If the constantV, involved in the construction of the partitiap, is cho-
sen large enough, then there exi€t§8) > 0 and, for all N € N*, areal 8(N) > 0 such
that forallk, and allag, . .., axy_1,

B \AN/2 .
(2_) / W;(Vo)e_ﬁzi=o Oy () dyo - - dyew
T PyyokNHLR,
k-1 i1
<C(p) 1_[ Fyn(ajN, ..., o(j+1)N-1) l_[ Gn(jn, ... a(j+pn—1D (A + /50(1) )
J=0 =0 —> 00

forall 8 > B(N), and with a uniformo(1).

Proof. We first note that there exis(8) > 0 such thaC(8)~Y2 < v < C(8)¥?, and
c(B) V2 < v < C(B)Y2, because they are continuous posififeperiodic functions.
Applying Fubini’s theorem, we first estimate the integral with respeg{to)y+1.
.., vin, While yo, ..., ye—1~ are fixed.
If one of thePaj’s (j =G(—DN,...,kN — 1) is of the formP;~,, we use Lem-

ma[3.2.3(b) to get

N/2
B BT Ly
(2— e P Risuyn LUriyie) dYk-DN+1---dVkN
7 V=N s VN € Pargy_gypy 0 N T Py 4
<1l=Fn(@g-n,.--> OlkN—l)Gﬁr(Ol(k—l)N» ey OEN—1).
Otherwise, we use Lemma 3.P.3(a) to write
NJ2
B _RYRN-1
(2_ e /321:(1(71)1\1 Vi vi+1) dy(k—l)N—HI. . d)/kN
7T V=N v VN € Pargy_gypy 0 N TPy

27
< Fy(@g-1ns - - aan-1) L+ 0(D)GE (@ v, - - axn—1). (3.2.3)

1/2
< FN(a<k_1>N,...,akN1)<1+o<1>>( A ) / e PN DU=DN-VN) o
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The latter bound does not dependjgp_1)n; hence,

kN/2 kN=-1
<ﬁ ) / e Plizo LUivied) gyo . dyw
Py ~"UﬁkN+lPakN—

o 1
(k=1)N/2
(k—1HN-1
< (Zﬁ) f e Brizo L(yi.vi+1) dyo. .. dvg—nn
T Pogrok=DNHLP,
XFn(@k—-1Ns - - - OlkN—l)Gﬁ/(a(k—l)N7 sy -1) A+ ;(1) )
—> 00

Lemma 3.2.4 can now be proved by inductionkon O

About tridiagonal matrices. Before going on estimating integrals, we need a few facts
about tridiagonal matrices. We call a mat(ix;;)1<;, j<, tridiagonalif

Aj#£0 = Ji—jl<1

The Hessian of the energy is a tridiagonal matrix.
The following lemma is essentially proved in [AMB92, p. 128]:

Lemma 3.2.5. For all @ > 0, there exists(«) > 0 such that ifA is an invertible sym-
metric tridiagonal matrix with A; ;11| < 1, then

IA™ 2 <o implies A} < r(a)
independently of the dimension.

Proof. For1 < j < n, let f/ = A~1e/, where(e/) is the canonical basis &”. Note
that

147 o = sup) || = sup_ ||
j Ik

sinceA~1 is symmetric.
Let us fix j, and writef = f/. Form > j, we define a vectdf f with coordinates

0 fork <m,
fix fork >m.

"=
Thenn = A(™f) has coordinates
Nm—-1 = Amfl,mfmv Nm = _Am,mflfmfl

andn; = 0 otherwise. Since, by assumptidifi:f |2 < a||nl|l2, we get, for alln > j,

P = Y 1 fil? < @P(1 fnl? + | fn-al®).

k>m
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As proved in[AMB92, p. 128] this inequality implies

202 (k—j—=2)/2 202 (k—j—2)/2
< D — T Ty <!
e (1+(1+4a4)1/2) 112 < <1+(1+4a4)1/2> Ja

for k > j. Remembering thaf stands forf/, we obtain

‘ ~ 22 (k—2)/2
A=y (i) o
Z‘k} kX:;) l+(1+40(4)1/2

k=j

We can use a similar trick far < j to get

S A =@,

1<k<n
independently ofi and of the dimension. O

We shall also need the following result, which is a part of the main result of [AMB92,
Theorem 2]:

Theorem 3.2.6 (JAMB92]). Let M be a symmetric tridiagondl x Z matrix such that
there existsk > 0 such that, for alli, K~1 < M i+1] < K and|M; ;| < K. Assume
that M defines a continuous, invertible endomorphisni?ef, R). Then the kernel of/
in RZ is 2-dimensional and admits a basisu € RZ such that

|sn+m| =< CQmH(Sn, s}’l-’rl)”v [Up—m| < C9m||(u,,, un+l)”
foralln € Z, m > 0, and some constants > 0,0 < 6 < 1.

Theorenj 3.2]6 implies the existence of a real nuniber 0 such that, for alf > 0, all
0 < n, and ally € RZ such thatMy =0,

lyvol <éandly,| <8 = |y;l <Léforallj=1,...,n -1
Indeed, fixj =0, ...,n — 1; there exisk, A2 € R such that

(Sk» Sk4-1) ) (uk, ugs1)
lCsj, sl l(uj, ujyn)ll

(V> Vi+1) = A1

forall k. If |yo| < & and|y,| < 8, we obtain
CIa077 = Claol0f <8 and Clrl0~ "D —Crq)0" 7 <8,
which implies
Clr](1—6%) <2567 and Clral(1—62") < 280" .

Hence,
1, virDIl < 1Aal + [A2] < 48/C.
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Lower bound. Let us turn to the left hand side of inequality (3.2.2), which we will try
to bound below before letting = kN tend toco. Sincep is a minimizing measure, we
note that the ternu(Py, - - - o‘"“Pan_l) is nonzero only if all theP,,’s are included in
{ly1 — yol < M} (if M is large enough); moreover, the cylindRy, - - -cr"”rlPD%l must
contain a trajectory, say, in the Mather set.

In the calculations below, the cylindef,,, - - ~0_"+1Pa,,,1 is fixed, as also i§ e
Py, ---o"1P, N M. We need to estimate from below the integral

n—1 o
/ V(o P im0 LUV Dy () dyo . dy.
PD‘OMO- 7n+lPan—l

As previously, we shall use the Laplace method. However, since we need a uniform esti-
mate with respect to the lengthof the path, we shall now give the details.
Before starting, recall Assumption (A2): there exisjs> 0 such that, for all O< §
< ¢o, there exists a sequengs,) < [0, 1]V satisfying:
— lim,, 9% — o,
— foralln > 0 and allyg, y, € R¢ such that
lvo —&oll < cnd,  llyvn —&nll < cnd
for some energy-minimizing configuratign there exists a minimizer of the energy

n—1

A @®HOAO SR (o, ) Y L YinD),s
i=0

suchthat|y, — &/ < dforall0 <k < n.
We denote by the minimizého, 1, ..., ¥u—1, ¥u). Its energy is, by definition of the
functionh,,,
n—2
hn(y0, ¥a) = L0, 71 + Y LGi, Pig1) + LPa-1. Ya)-
i=1

Applying the Taylor formula to the functioh(yo, y1) + Z?;lz Li, Vi+1) +LWn-1, ¥n)

at the minimizeny1, y2, ..., y»—1), We can write
_ n—1 )
fp +p Vg (ro)e Prico L1 ys () dyo . . . d
ag 0 " Pay,_y
_ _ " _5\2_ 5
:f . W;(Vo)e Bhn(v0,¥n)—(B/2)n-1A" (Yo, vn)-(y =7)*—BRu(y y)iﬁﬁ()/n)d)/o---dj/n,
Pogr-0 ™" P,y

where the remaindeR,, is given by the integral formula

N L@a-1?2 3/ N A8 3
Rn(y—y)=/0 TA Y +itly —v).((y —y)7dt
so that

|R.(y =PI < Clly =713 <Clly = Pllclly = 715 < Celly — P15,
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whereC is a bound on the third derivative @f on the sef(x, y) € R?: |x — y| < M},
ande is the diameter of the elements of the partitidn )
Moreover, if the cylindey, - - ~0_"+1Pa,,_1 contains a configuratiopin the Mather

set, then, foral € Py, ---0 P, |,

0 < hy(yo, vu) < L(y0,&1) + L(51,82) + -+ L(En—1, vu)
< L(o,861) +L(1,5) + -+ L(-1,8:) +Ce =Ce,

whereC is a Lipschitz constant fak on{(x, y) € R?: |x — y| < M}. Thus,

n—1 o
fP Y (vo)e P Zizo LY Dy (y) dyo . dyn

ao"'57n+lpan,1

ZC(,B)flefﬁcg/ e*ﬁ(% n—1A" (V0. ¥n)+Cely—1). (V1= D1 Va1~ Tn—1)? dyo...dyy.
Pogr0 Py
We have denoted by,_1 the identity matrix of dimensiom — 1 and, as previously,
C(B)~'/?is a lower bound for botkys andy;.

If we were sure thaP,, - - ~<7‘”+1PD,H contained a neighbourhood 6fo, 71, .. .,
Yu—1, Yn), fOr €Veryyo, vn, our job would be quite easier and we could go directly to
the estimate (3.2.10) a couple of pages ahead. However, this is not necessarily the case:
the problem occurs whe(;, £;,1) comes too close to the boundary of the partition. The
technical complications of the next few pages arise from the necessity of dealing with this
problem.

To begin with, we can write a very rough estimate:

:8 n/2
C<ﬂ>—1e—ﬁ“(2—) / dyodyn
JT Pao"‘07'l+lpotn,

1

1 5 5 2
% / e_ﬁ(é n—1A" (0, ¥)+Cely—1)- (Y1 =71, . Yu—1—Vn—-1) d)’l L. an—l

> C(B) L FCt <£)n/zs"e—”’<ﬂ82 (3.2.4)
> o : 2.

whereK is an upper bound on the norm %Jﬂ// + Cel inl%(Z, R).
Let us now try to give a more subtle estimate: we write

C(B)tehCe / dyody

Pao...gfnJrlPanil

1 ” ~ ~ 2
X/e*ﬂ(zn—lA (o) +Cely - —Treen1=Fn-2% gon e o

> C(B) e PCE / dyodyn
(@)

1 ' ~ ~ 2
X/.e—ﬂ(én—lA/ 0.y +Celn-1)- 1=V Va-1=V0-0" oy dy,_1,
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where the integral is over the set

(1) = Pyy---0 " Py 0 {110 — &0l < 8, lyn — &nl < a8},

for somes > 0. We choose
5% =Bp~",
whereB > 0 is arbitrary.
At this stage, it is useful to remember that (thanks to our definition of the par#tjon
the cylinderPy, - - - o_”+lPan71 C [0, 1) x R" is the product of its projectionBy, . . ., B,
on the successive coordinates:

Py, = Bo X -+ X By,

Pyy- -0
Moreover, theB;’s are segments of length B; = [a;, b;). We set

J(E) =1{i €[0,n]: & & (ai +25,b; — 20)}.
One has

C(ﬁ)*lefﬂcs /

dVO an
D

1 A s 2
x /‘e*ﬁ(z n—1A" (0, ¥u)+Cely—1). (V1 =71, Ya—1—Vn-1) dyr...dyn1

> C(p) e F / dyodyn
DN@
x /e—ﬂ(% n14" (0, y)+Ce L —1)- (V1= P10, Ya—1—F-1)? dyr...dy,—1, (3.2.5)

where
(@ ={y:vieBiforieJ),y; € Bjandly; —y;| <dforj ¢ J(&)}
By Assumption (A2), ify € (1), then, forj & J (&),
lyj —7i1 <8 = vy € B,
so that actually
@ ={y:vieBiforieJé),ly,—yj| <dforj ¢ J(&)}
We claim that
cpytere [ dnmdnx
DN@

_pcl ” 5 _5 2
x [ e PG 1A (o y)+Ce ) 1=V1 V1 =Vn-D gy | dy,_1

> C(B)~Le PCe((2n) V22K 1B (L +1)674K*18(L+1)2)|J(§)\
« [ dyody, / =BG 1A I HCe ) ATt =D gy

3
(3.2.6)

where:
- B =82,
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— K is an upper bound on the norms@fA” + Cel) and(3A” + Cel)~Lin I2(Z, R),
— L is a real number such that, for dl- 0, ally € RZ, and alln > 0,

1
(EA//-FCF,‘I).)/ =0, lyol <8, lyal <8=lyjl <Lésforall j=1,...,n—1.

The existence oL is ensured by the remarks following Theorem 3.2.6 (note thde-
pends ore). Finally, (3) is the set

Q) =1{r tlyvo—&ol < cud, lyn —&nl < cud, ly; — il < 8forj & J (&)}
To prove (3.2.6), write/ (¢§) as a disjoint union of intervals:
J (&) = [k, ] U k2, 2] U - - U [y, I,].
Integrate ove(l) N (2) with respect to the variableg,, . .., y;,, keeping the other vari-

ables fixed. Sincéyx,—1 — Px,—1] < 8 and|y,+1 — 7i,+1] < 8, we know that the critical
point of the function

1 . .
Viegs -+ -5 Vi) H> (5 n—1A"(v0, vn) + Caln_1>.(y1 — Pl Va1 — Puo1)?

is at uniform distancé.s from (y,, ..., 7). Hence, we deduce that

_g(L " — — 2
/ e PG n-1A"(ro.v)+Celn—1)-(Y1 =715 Ya-1—Vn-1) dyg, . ..dyy
ye(N(2)

> ((2r)" V2 [ok-1p (L + 1)6—4K‘1B(L+l)2)11—k1+1
x / e—ﬂ(% n—1A4" (0. ) +Cely—1).(y1— DL Va1~ Fn—1) dViy .. dyyy. (3.2.7)
€@

All we can say about the domain of integration [of (3}2.7) is thajz iE (1), then for
j € J(&) the domain of integration with respect p contains eithefy; — p; € [8, €]},
or{y; — y; € [—e, —4]}. Consider, for instance, the first situation.

Integrate 7) with respect fq. If, say, k1 = 2, then letM = % 3A” (yo, vn) +
CeI3. Now, estimate](3.2]7) goes as follows:

&
/ e—ﬁ(2M12V1V2+M22)/22+2M23)/2V3) dy»
y2=6

&
— e75(2M12y1y2(min)+M22y2(min)2+2M23y2(min)y3) / e*ﬁ/‘/122(1/2*)/2(171"\))2 dy»
y2=4

wherey>(min) is the point where the minimum ofA212y1y2 + M22y22 + 2Ma3y2y3 is
achieved. We know that,(min)| < L3, so that, if we perform the change of variable
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Y2 > /2BMaa(y> — yo(min)), and if K~ < M,y < K, we have

&
o~ B@M1zy1y2(min)+Mzzy2(min)?+2Mp3y2(Min)ys) / e~ PM22(v2—y2(mi)? gy )
y2=4
> e—ﬂ(2M12y1y2(min)+M22y2(max)2+2M23y2(max)y3) (2,3M22)_1/2
V2KB(s—L§)

x
28K 18(L+1)
— e—ﬂ(2M12V172(min)+M22V2(min)2+2M23V2(min)73) (28 M22) -1/2
/ﬁ/ZKﬁ(s—LzS)
X

V2K-1B(L+1)

6—1/22/2 dy»

V32 dy» (3.2.8)

if we remember thag ands are linked bygs? = B. Now, for 8 large enough, we can
bound the last integral from below by the integral on the interu@K—lB(L + 1),
2v2K-1B(L + 1)], which is itself larger than

¢ P@M12y1y2(Min)-+Mazy2(Min)2+2M23y2(MiY3) (28 01,0~ Y2,/ 2K —1 B (L + 1)K 'BL+D?
_ (27-[)—1/2/ o~ B@M12y1y2+Mazyi+2M2zy2y3) dys -V2K-1B(L + 1)6—4K’1B(L+1)2_

R
(3.2.9)

We have integratedl (3.2.7) with respectfg. We can iterate the procedure and inte-

grate successively with respectjtq .1, . . ., yi,, to prove [3.2.]7). Fronj (3.2.7], (3.2.6) is
obtained by combining similar estimates for all the intervajsi].
It remains to estimate the integrfl (cf. )). The integraJ 5 runs overy; € R,

forall j € J(&). Foranindex ¢ J (&), it still runs over the sefly; — y;| < 8}.
For a break, we prove the following corollary of Lemma 3.2.5:

Corollary 3.2.7. There exist® (¢) such that, for allz and ally € W,
" -1/2 1
“(nflA (V) + 2C<9]n71) ||oo =< .
o)

Proof. Obviously, the spectrum of_14”(y) + 2Cel,_1 is included in an interval
[2Ce, A] independent of the dimension Let C be a closed contour i€ \ R™, going
once around [2¢, A]. The matrix(,_1A4”(y) + 2Cel,_1)~Y/2 is given by holomorphic
functional calculus:

_ 1 _ _
(i_1A” (y) + 2Cel,_1) Y2 = > /C Y22 hy1 — (—1A" (y) + 2Cel,—1)) " Ydz.

Now, for allz € C,
12Tn-1-)n-1A"(¥) + 2Cel,—1)) 2
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is bounded, independently of by

a(z) = .
xe[2cen] 12 — x|

By Lemmd 32D,
(2 li—1=)n—14"(¥) 4+ 2CeL,-1)) oo < r(@(2))

independently of, and

1 1
IG—1A” () + 2Cely—1) Yoo < — / 1272  (a(2)) dz = —. O
2n Jeo p(e)

We resume the calculations from (312.6):

> / dyodyn
lvo—&ol=<cnd, lyn—Enl<cnd
> / e*ﬂ(% n—1A" (V0. ¥)+Cely_1).(Y1—PLoen Y1~ Pn—1)? dyr...dyn-1
Iy =7)lloo<8
> / dyodyn/
lvo—&ol=<cnd, lyn—&nl<cnd ”(n—lA”()/OvVn)/2+C8171)1/2'(V_17)”oofp(g)a
x ¢ =BG n=" 0.y +Cela0)-0n=T1va1=P-02 o dyn_q
B —(n-1)/2
= (2_> / d)/odJ/n
T [yvo—éol<cnd,|yn—Enl<cnd
1 1 / '
—(.»/2
X X e dyi...dy,—1
[1—1A" (v0, Yn) + 2Cel,_1]Y2 = (2m)"=D/2 [ 31 <VBo(e)s "
—(n—-1)/2
2o( BN 1 1 o—Br(e282/2yn—1
Z (Cn8) 7 1/2( e ) M
2r maXyEa[n—lA (y) + 2Cel,_4]

(3.2.10)

The max in the last line is to be read as the max over aljtlkeePy, - - - 0_"+1Pan_1-
To get the last inequality, we have used the following estimate on tails of the Gaussian

distribution onR:
1 e IY12/2

—[y2/2

—_— e dy <2 ,
(277)1/2 /yI>Y Y
which yields, in dimension — 1,

1
(271)("_1)/2

/| u O 2 gy dyyg > (L— e Y2yt (3.2.11)
V<Y
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for Y > 2. We apply it toY = /Bp(e)8 = p(e)+/B; we takeB large enough to ensure
thatY > 2.
The main point in estimate (3.2.10) is summarized in the following lemma:

Lemma 3.2.8. There exist® = p(e) such that, for ally, v,
/ e—ﬁ(% n—1A" (0. ¥ +Ce L) (V1= Lo Vne1—V—1)? dyr...dyn-1
Iy =P)lloo<8

—-1)/2
- (£ 1 (1— o~ Frto?/2n-1
T\ 27 [n—1A"(y) + 2Cel,-1] 12

And more generally,

Lemma 3.2.9. For all K > Oand alle > 0, there exists @ > 0 such that, for allz and
all nd x nd block-tridiagonal positive symmetric matricéssatisfying

— 1Qi,i+1ll < K for all i,
- Q > 8Iny

we have

B n/2
(—) / e P2 gt dx,
2 Ixlloo <8
(1— e*ﬁpéz/Z)n

-B 62/2 / "/ —B(Qx,x)/2
> — (4 n— xx d ...d =
_( e ) (2 ) /ne X1 Xn [Q]1/2

providedgs? is large enough.
To sum up, the calculations of the last pages lead to the following lower bound:

Lemma 3.2.10. Assume thaP,, - --o "*1P, | contains an element, denotedin the
Mather set. Then, ifyo — &l < ¢,8 and|y, — &,| < ¢,é,

B (n=1)/2 n—1
(2—) / exp(—B Y L visD) )i .dvn
i Pag 0P,y i=0

> efﬁCs((zn,)fl/Z /oK -1 B(L+1)674K713(L+1)2)|J($)|

1 2
1—e P B/2\n—1
LA (o, ) + 2C51n_1]1/2( ¢ )

for somep = p(¢) > 0 depending only oa.
Let us define
Bad(n) = {(c0, ..., an_1) : |J(E)| > 2uS)nforallE € M N Pyy---0 "R, ).

(The definition ofw (§) was given at the beginning of the proof; it is themeasure of a
8-neighbourhood of the boundary of the partitiBr)
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By Birkhoff’s ergodic theorem,

(Badn)) = M( U Puy-- .O'_’1+1PO(;171> — 0.

n— oo
(@0, ...,ap—1)€Bad(n)

To end the proof of Theorejn 0.0.1: take= kN in inequality (3.2.2). Bound the right
hand side from above using Lemma 3.2.4. Bound the left hand side from below, using the
rough estimate (3.2.4) for the cylindgis, . . ., @,—1) € Badn), and Lemma 3.2.10 for
the other cylinders, for which we know thigt(¢)| < 21 (28)n. This yields

D w(Pag o NP, )0 (Pay .o TV, )
1 _
=5 D H(Pag -0 TN Py ) logmain—A” () + 2Ce iy -1])
o

+ (kN — Dlog(L — e*5/2) _ log (C (B)(cen)%e ™ “%)

— kN(BKe® — loge)u(BadkN))
— 2N p(28) log((2m) Y2V 2K 1B (L + De~ K BUAD?)
— Z 118 (Pag - - .G—kN-&-lPakNA) log 18 (P - - ,G—kN-&-lPakNﬂ)
+logC(B) + klog(1 + o(1))
B—o00

IA

+kY pp(Pag -0 NPy ) l0gFy(ao, ... an-1) +klogBy  (3.2.12)

for 8 large enough. Remember thait= 852 is fixed (and arbitrary).

We notice that log max..[,—1A"(y) + 2Cel,_1], as a function of the sequence
(ag, ..., a,—1), has the following subadditivity property: (o, . . ., a,—1) intersects the
Mather set, then

log max{,, 14" (y) 4 2Cel,-1]
yea

<log mea){mAH(V) +2Cel,] + log mea){n—l—mA//(GmV) +2Celp-1-m]-
yeao Y€

This follows directly from Lemma 3.2 1.
As a consequence, jf is an (invariant) minimizing measure, then

1 _
N 2o Pag -0 N Py ) logmab{iy A" () + 2Ce -]
converges to its infimum, d&— oo. In particular, the limit is less than

1 _
N 2 Pag -0 Py ) logmay1A” () + 2Cely-a].
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Thus, if we divide both sides df (3.2]12) by and letk tend tooo (keepingg fixed), we
get the inequality

1 1
ho(u, P)— = | =logmaxy_1A"(y) +2Cely_1]dp” (@)
2 wP N Yea

“log(1 — e=*B/2) _ 2,,(28) log((27)~Y2y/2K 1B (L + 1)e 4K "BL+D*)1J®)

1 1 log By
<h P — log Fy(a)dub = o(1 .
< ho(up )+/WP ~ o9 N(a)dpg (o) + ng)_(m)oJr N

We used the fact (assumed in (A2)) thldgc,)/n — 0. The first termha, (u, P) is
the metric entropy of the invariant measure with respect to the partitio® and the
transformatiors on W; in other words, it is the metric entropy of the measufeon the
subshift of finite typew £

Now, let 8 — oo; or more precisely, take a sequengesuch thatug, converges
weakly to 1. Since we have assumed that, does not charge the boundary of the
elements of the partition, we get

1 1 )
ho (, P) — > /WP v logmax{y-14 "(y) +2Cely_1] dp” (o)

1 log By
~ 109 Fi (@) dul (@) + N

—log(L — e #*B2) < hy (o, P) + /
WP

The point in fixing N was to integrate only functions depending on a finite number of
coordinates, so as to be able to pass to the weak limit.

At this stage, we can lé8 — oo, so that logl — e—»°5/2) — 0.

Now, lettinge (the diameter of the partitioR®) tend to 0, and recalling the definition
of Fy, we obtain

11
ho (1) — E/NIOQ[N—lA”(V)] du(y)

log By

1 1
< hs(Moo) — E / N IOg[NflA”(V)] diteo(y) + T

and, finally, lettingv — oo (and using Assumption (A3)), we get the result

This ends the proof of Theorgm 0.D.1. It remains to prove that the functional
1. 1 "= -
w> o) — 5 lim [ —loglA™(7)] du(y)
n—oo fwn

is finite on energy-minimizing measures.
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4. Frenkel-Kontorova models and twist-maps

4.1. We now give (without proofs) a few links between Frenkel-Kontorova models
and symplectic twist diffeomorphisms & x R¢ (see [AMB92] for the details). This
section will allow us to prove that the teri (1) — 5 liM,—oc f3y 2 l0gL A" (7)1 dn(7)
is finite in Theorenj 0.0]1. It also provides a link with Part I, which is more focused on
the Lagrangian aspects of the problem.

If L satisfies the “twist property” (cf. Section 1), it is shown n [AMB92] how to
associate to the Frenkel-Kontorova model, discussed above, a symplectic “twist diffeo-
morphism” of R? x R to itself: this mapp* is defined by

', p)=¢*x,p) & 0L(x,x")=p',—9dLi(x,x") = p.

Recall the definition of atationary configuratiorfor the Frenkel-Kontorova model:
it is a sequencéy; )z such that

2L (Yi—1. vi) + 01L (Vk, vk+1) =0 (4.1.1)

for all k. There is a homeomorphism betweRh x R and the set of stationary configu-
rations of the Frenkel-Kontorova model, given by

(x, p) = (Vikez,

where, for allk, y; is the projection ofp**(x, p) on the first factoiR¢. Moreover, this
homeomorphism is a conjugacy betwegenand the shiftr restricted to the set of station-
ary configurations.

This way, one can associate to every Frenkel-Kontorova satisfying the “twist prop-
erty” a symplectic twist diffeomorphism; and conversely, to every symplectic twist map
of R? x R?, a Frenkel-Kontorova model with configuration spaeé)Z.

We can also introduce another diffeomorphigrof R? x R? to itself, defined by

¢(y-1, v0) = (vo, Y1),
wherey_1, yo, v1 are related by (4.1.1) with = 0; equivalently,

¢*(y-1, p-1) = (yo, p0).  ¢*(v0. po) = (y1. 1)

for somep_1, po, p1. The bijection

0. (Vidkez = (o, v1) (4.1.2)

between the set of stationary configurations R R? is a conjugacy between the shift

and¢. For this reason, we will sometimes call stationary configurations “trajectories of

¢”. The conjugacy) also allows us to identifg-invariant probability measures @&f x

R? ando-invariant probability measures carried by the set of stationary configurations.
If L is Z4-periodic, it is natural to take the quotient spate= (R¢)Z/Z? as configu-

ration space for the Frenkel-Kontorova model. A stationary configuratiéihismdefined

as the image of a stationary configuration®f)Z in the quotient. The diffeomorphism
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¢* can then be defined on the quoti@ft/Z¢ x RY = T¢ x R?, and the diffeomorphism
¢ on the quotient spad@®? x R?)/Z4, the action ofZ¢ in this last case is defined by

s.(x,y)=x+s,y+s)

foralls € Z¢ and allx, y € R4.

The conjugacies defined previously between the action of the sloft the set of
stationary configurations, anglor ¢*, are compatible with the actions @f, and thus
pass to the quotient spaces.

The description of energy-minimizing configurations (rather called action-minimizing
in this context) is precisely the heart of what is called “Mather theory” in the study of
symplectic exact diffeomorphisms @f x R<. In this context, what is classically called
“Mather set” is the subset 6 M) ¢ (R? x RY)/Z¢, whereM C W is the set defined at
the end of 3.1. The Mather set, as a subseRdf x R?)/Z¢, is compact (Lemma 3.1.7),
andg¢-invariant.

We will say more about Mather theory in Part Il, in the case of a continuous time
dynamical system. The functiah will be called a Lagrangianp will be the associated
Euler—Lagrange flow, ang* the corresponding Hamiltonian flow.

4.2. Determinants and Lyapunov exponents. Motivated by a paper by Thouless
([Th72]) in dimensiond = 1, we now give a relation between the Hessian of the en-
ergy and Lyapunov exponents. This relation is not new; in the case of a continuous time
Lagrangian systems, it is known as the Levit—Smilansky formula (Section 6.3).

Lyapunov exponents are defined by the Oseledets theorem (see for instancé [KH95,
Supplement]), which we use in the following form:

Oseledets theorem.Let ¢ : (R x R?)/Z¢ — (RY x R?)/7¢ be aC? diffeomor-
phism, and letv be a ¢-invariant probability measure, carried by a compact subset
of (RY x R?)/Z%. Then there exists a sét ¢ (R? x R?)/Z¢ such thatv(Y) = 1,
¢(Y) =Y, and such that:

Forall y € Y, there exist (y) € Nand real numberg1(y) < x2(y) < -+ < Xr(»n ()
such that the tangent spa@g((R? x R?)/R?) ~ R? x R¢ admits a decomposition

Ty(T? x RY) = E1) @ - - @ E;(») ()

satisfying

1
Ve B\ ~logld@)) vl —2 xi().

The decomposition ig-invariant, in the sense that(¢(y)) = r(y) and E;(¢(y)) =
dey.Ei(y).
The subspac&®(y) = @x,-(y)<0 E;(y) is called thestable subspacat y, E*(y) =

@x,-(y>>0 E;(y) the unstable subspac@and E%(y) = E;(y) for xi(y) = 0 theneutral
subspace
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In our situation, we adopt a slightly different convention for the Lyapunov exponents.
Sinceg is conjugate to the symplectic diffeomorphig, its Lyapunov exponents come
in pairs(x, —1). We let
A S Ay < =g () S0<AF0) < < AT)
be the Lyapunov exponents; they are now repeated with multiplicity, according to the
dimensions of the corresponding subspaEgs

Lemma4.2.1. Let y be a trajectory ofp, and letn € N. Consider the equatio@.1.)
linearized at(y;);ez:
012L (Yi-1, vi)-Yi—1 + (022L(yi-1, vi) + 011L(¥i, i+1)-Yi + 021L(¥i. Vi+1).Yi41 =0,

for all i € Z. Fix the initial conditionYy = 0. Then, for alln, the determinant of the
linear mapY; — Y, (fromR< to R?) is equal to the determinant

0 (TTiAL ) x Lo’
k=1

Proof. A vectorY = (Y1,...,Y,) (¥; € RY) satisfies,A”.Y = (0,0,...,0,x) if and
only if Y is the solution of the linearized equation with = 0. Equivalently,

(Yn—1, Yn) = d(@" V) o,y -(0, Y1).

The matrix,,_1A” is noninvertible if and only if there existg with Y1 # 0 andY,, = 0
such that,A”.Y = (0,0, ..., 0, %); that is, the magy; — Y, is not invertible. In this
case, Lemmp 4.7.1 is obvious. Thus, assume that thefinap Y, is invertible.
Also assume for the moment thad” (y) is invertible. We may then decompose the
matrixG = ,G = ,1A”(y)_l into d x d blocks(G;;j)1<i, j<n. The component¥y and
Y, are related by
Yy = GG i1

Let us evaluate the determinant@;,lG;ll in terms of the determinant of” (y). We first
define a sequendeo, a1, . . ., a,—1) of d x d matrices by,g = I; and

_ " ” ” -1
ap = —Apyq j (A T ar—144_14)

agreeing here thatj; = 0 (the sequence is well defined,il” has been assumed invert-
ible).
We also define and x nd matrix T decomposed intd x d blocks(7;;)1<;, j<n With

i
Ii=1s, T;= l_[ai—k
k=j

(this way,T is lower block-triangular). In fact, the matrik is constructed in such a way
thatD = T. ,A” is an upper block triangular matrix, with blocks on the diagonal

’ ’
Dy = Dy = A;<k + ak_lA;(_l’k.
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We haveG = D~1T, which yieldsG,, G, = D,T,;* D, * so that

[Gnn G;f-] = [Tnllil

n—1 ~ " 4 -1
= (L[llan—k]> g (—1)"‘1(,1:[1[AZ+1,/<]> ' X Q[Dk]

= (—1>"d(1"[[A’k’+1,k])_1 % [1-24"],
k=1

where the last equality comes from the observation that4”] = [,_1D].

Thus, the determinant df; > Y, is equal to(—1)" ([Ti_[A}, 1 D1 x [1-14"].
By continuity of both expressions with respect to the energy functional, Lemmg 4.2.1
remains valid even whepA” is not invertible. O

Proposition 4.2.2. If wx is an energy-minimizing measure oW, then the limit

lim 71, log[, A” ()] exists foru-almost everyy, and is equal to

d 1n71
1 (o, yp) +lim =3 T log|[0L (i, i)l

=1 i=0

1

where th@{“(yo, y1) are the firstd (nonnegative) Lyapunov exponents(gd, y1) under
the diffeomorphisrp.

!Droof. The existenc;e of the limit Iin’%r Z?;& log |[8122L()/i, )/.,'+1)]| for u-almost everyy
is guaranteed by Birkhoff’s theorem, applied to the function

W — R, 7> logl[d5L (0, yOll-

We denote by x n the image ofu under the conjugacy (4.1.2). It is a¢-invariant
probability measure. Let us denote i (R¢ x R?) thed-fold exterior product oR? x

R?. It is endowed with the Euclidean structure coming from the Euclidean structure on
R? x R?. The Oseledets theorem implies that, dor u-almost every € (R x R?) /74

and everyP € A4(RY x RY), the limit

N .
m -~ loglld(@™)y.- P

exists (moreover, it is of the for@les(i)/\;r(i), wheree(i) = +1,a(i) € {1,...,d},
the pairs(s(i), «(i)) all distinct). We denote this limit by p (y).

Let (eq, e, .. ., e27) be an orthonormal basis & x R such thatex, ..., eg) is an
orthonormal basis dR? x {0} and(eg41, . . ., e2q) is an orthonormal basis @0} x R<.
The Birkhoff and Oseledets theorems, combined with Lerfhma]4.2.1, imply that,-for

almost everyy,

. 1 "o ) 1 n—l
lim —log[, A" (y)] = Ap(y0, y1) +lim — E log [0%,L (v, vi+ V]I,
n ni=o
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whereP = eg11 Aegi2 A -+ - A ezg. Indeed ) p is precisely the exponential growth rate
of the determinant of; — Y, for the fixed initial conditionYy = 0. This relation also
shows thak p (yo, y1) = Ap(y1, y2) for u-almost everyy.

Let (yo, y1) be in the Mather set, and = 6 ~1(yq, y1) € M. We show thaf0} xR¢ ¢
Tm(Rd x R?)/74 is transverse to the stable subspacéyaty). Otherwise, there
would exist an element;);c7 in the kernel ofA”(y) such thatty = 0 andé — O
exponentially fast as — co. Define an element € (R?)Z by

[ = 0 forj <0,
77 lg forj=o.

Then¢ € 12(Z, R?), and sinceA” (y)& = 0 and the first coordinate gfvanishes,
(A"(7)¢,¢)=0.

But, sincey is in the Mather setd” () is a positive semi-definite operatorif(Z, R?).
Thus, the functionA”(y)-, -) achieves a minimum at. Its derivative at must vanish:
A"(y)¢ =0.

An element of Kerd” () is entirely determined by two successive coordinates. Since
¢—1 = ¢o = 0, we have; = 0. The same argument now shows that 0.

We have thus shown thgd} x R? C Ty, (R? x R?) is transverse to the stable
subspace fop.

Now, let (3o, ¥1) be a point satisfying the conclusions of the Oseledets theorem with
respect tou, andy = 0~ 1(y0, y1). Let E%(y0, y1) be the neutral subspace, adgl =
dim E%(y0, y1). Note thatdg is even. We have

d
rp(vo.y1) = Y M (vo. )
i=1

unless dindE%(yo, y1) N ({0} x RY)) > do/2.

Remember however thatp (1o, y1) = Ap(y1, y2). We cannot have simultaneously
dim(E%(y0, y1) N ({0} x RY)) > do/2 and dimME®(y1, y2) N ({0} x RY)) > do/2.
Otherwise,

071 (E% (o, y1) N (10} x RY)) @ 6720 "H(E(y1, y2) N ({0} x RY))

would be a subspace of Kdr'(y) of dimension> dp, composed of sequencés );cz,
such that

. 1
kll)rﬂoo T log || &k, &+ DIl = 0,

a contradiction with the definition efy. O
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An exampleConsider the example

L(yo, v0) = lly1 — »oll?/2 = V(y0) — (@, y1 — 10),

wherew is a vector inR?. ThendZ,L is —Id, so that log[3Z,L]| = O. In this situation,
we simply see that any limit point., of the ug’s maximizes the functional

1 d
w0 =3 [ Y3 on ),
i=1

The reason for the additional term Iih’mZ?:_ol log |[3122L(yi, vi+1)]| in the general sit-
uation is that, in the definition of Gibbs measures, we have chosen the flat Lebesgue
measure oR? as the reference measure, although there was no reason to favour this
choice amongst other smooth measures. In the special¢asey) = ||ly1 — yoll2/2 —
V(yo) — (o, y1 — y0), the functionL is defined with reference to a certain Euclidean
structure orR?, so that it is natural to take the associated Lebesgue measure as reference
measure.

In the special case = 0, we may assume that m&x= 0; then the Mather set is

M={7:3xeR V(x) =0,y = x forall i}.

The entropy of any energy-minimizing measure vanishes, sita@nsists of fixed points

of 0. So, in Theorerf 0.0}1, the functional reduces to the sum of nonnegative Lyapunov
exponents. Finally, in this situation, we will prove in Section 6.4 that assumptions (A2)
and (A3) are always satisfied.

Part 2. Lagrangian dynamics
5. Hamilton—Jacobi, Aubry—Mather and Schrodinger

Let R? be endowed with its usual Euclidean structure denated, and consider the
Lagrangian
L(x,v) = [[v]|?/2=V(x)

onR? x R?, vV being aZ?-periodic potential of clas€3, and| - || being the norm
associated to the scalar produgt). Forw € R?, perform the change of gage

Lo, v) = [0]?/2 = V(x) = (@, x),
in the definition of the Lagrangian. The corresponding Hamiltonian (energy) is then
Ho(x, p) = llp + ol?/2+ V(x)

onR? xR4. The Euler-Lagrange flow is the flow,) onR? x R¢ defined by, (xo, vo) =
(y (@), y (1)), wherey is the solution to the second order equation

7'/-1 = _V/(Vt),
with the initial conditiony (0) = xq, y (0) = vo.
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Trajectories of the Euler-Lagrange flow are characterized by a variational principle:
if y : [a,b] — RYis aC* curve, ther — (y;, y,) is trajectory of the Euler—Lagrange
flow if and only if y is a critical point of the action functional

b
AE) = / L&, &) dt,

restricted to the set af'! curvest : [a, b] — R? such tha&(a) = y (a), £(b) = y (D).
The dynamics is described in an equivalent way by the Hamiltonian flow, whose tra-
jectories are solutions to the system of Hamilton equations

{x = 3, Hy(x, p),
Ij = _awa(X, p)a

onR? x R?. Moreover, the energy is constant along the trajectories of the flow.

SinceV is periodic, both the Euler-Lagrange and Hamiltonian flows can be defined
on the quotient spack’ x R?.

When one tries to understand the action of the Hamiltonian flow on the phase space
T x R, it is natural to try to find invariant regions. Of particular interest are invariant
Lagrangian graphs, that is, invariant subsets of the form

{(x, o +du(x))} C T x R?

(w € R, u : T — R as smooth as possible). Such a subset, if it exists, projects
diffeomorphically to the basg“.

For this subset to be invariant, it is necessary and sufficient that there exist a constant
C such thau satisfies thetationary Hamilton—Jacobi equatidiiJ):

H,(x,du(x))=C

for all x. However, generally speaking, the Hamilton—Jacobi equation (HJ) may have no
smooth solution. There are two ways out: the theory of viscosity solutions, and Mather
theory. The connection between the two approaches has been made very clear by the
recent, still mostly unpublished, work of Fathi ([Fa]).

Viscosity solutions.Let us consider the equation
—eAu+ H,(x,dvu) =C

fore > 0. Whene = 0, it is equation (HJ); otherwise, it is called thiscous stationary
Hamilton—-Jacobi equatigr(HJV).

A continuousZ?-periodic functionu is called aviscosity solutiorof the equation if,
for everyC1-function (C?2 in the case of (HIV)),

— if u — ¢ attains a local maximum ab, then—eA¢ (yo) + H (x, dr¢ (y0)) < C,
— if u — ¢ attains a local minimum atp, then—sA¢ (yo) + H (x, dxp(y0)) > C.
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See, for instance| [CEL84], [CL83], [Ba94]. A justification of this definition is that it
coincides with the classical notion of solutionsifs smooth.
It may be checked that, if a viscosity solution exists, then

inf H(x,0) < C < supH(x, 0),

by applying the definition t¢p = 0 andyyg, successively, a local maximum or minimum
of u.

Moreover, sinced,, (x, p) tends to infinity with|| p||, viscosity solutions are Lipschitz
and share a common Lipschitz constant. Indeed, congideh = K ||x — y||, and apply
the definition. Assume that — ¢, has a local maximum at # x; then

y—x
Hw(x,K >§C,
ly —xI|

which is not possible iK has been chosen large enough. Thusg, attains its maximum
atx, which means that

u(y) —u(x) < Klx —yll.

The definition of viscosity solution also holds, with obvious modifications, for the
evolutive Hamilton—Jacobi equation

oru + H,(x,dyu) =0.

We are in the situation wheH,,(x, p) is C2, superlinear inp, strictly convex. In this
case, given a continuous initial conditiap, the solutionu, is unique ([Ba94, Theorem
2.8]), and given by the expression

0

ur(x) = igf {M(V(—t)) + | Loy (s), )?(S))dS},

—t
where the inf is taken over all curves: [—¢, 0] — V with square integrable derivatives,
and such thay (0) = x. Moreoveru, is Lipschitz inx for all ¢t > 0 ([Fa97-1)).

The semi-groug7,” ),>0 on C(T¢, R), defined by
0

T u(x) = i]f)f {M(J/(—t)) + | Lo(y(s), ?(S))dS},

—t

is called the Hopf—Lax or Lax—Oierik semi-group, according to sources.
There is also a second semi—gro(ﬂp*),zo,

t
Tz+v(x) = sup {v(y(t)) —/ Loy (s), )?(s))ds},
y:i[0,]]->T9, y (O)=x 0
which gives the opposite of the solutions of the equation
a[l/l + Hw(x, —dxu) = O,

corresponding to reversal of time.
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Notice thatu is a viscosity solution of the stationary (HJ) equation if and only if
u — Ct is a solution of the evolutive equation. Thus, looking for solutions of the stationary
equation is the same as solving the fixed point problem

T, u=u+Ct,

for all 7. The existence of such fixed points is given by a theorem of Fathi, called the
“weak KAM theorem”:

Theorem 5.0.1 ([F&], [Fa97-1]) For a unique constant = c(w) € R, there exist contin-
uous functions _ andu onT¢ which are solutions to the following fixed point problems:

T u_=u_+ct, TTuy=us—ct.
They are Lipschitz, and have the following two properties:

— forall Ctcurvesy : [0,1] — V,

t
ut(y (@) —u+(y(0) < /0 Loy (s), y(s))ds + c(w)t,

— for all x € V, there exist two curveg_ : (—oo0, 0] — V andy; : [0, 00) — V with
y—(0) = y4+(0) = x such that, for alk > 0,

0
u_(x) —u_(y— (=) = | Loy—(s), y—(s))ds + c(w)t

—t

and
t

U (Y1) —uyp(x) = /O Lo(y4(s), y+(8))ds + c()t.

Note that the theorem does not assert the uniqueness of solutions. Obviausdyaiso-
lution, then so ist+ K for all K € R, but there may even be solutions which do not differ
by a constant.

Of course, the existence of viscosity solutions of the stationary (HJ) equation was
known before this theorem. It was usually proved by the “vanishing viscosity method”,
which consists, first, in finding a solutian for (HJV), then lettinge — 0 and proving
a “stability” result: any limit ofu. in the uniform topology is a viscosity solution of the
nonviscous (HJ) equatior ([CEL84, Theorem 3.1]).

If u_ is, as above, a (Lipschitz) viscosity solution &f,(x, d,u) = C, then it is
differentiable almost everywhere: the graph

Graphdu_) c T¢ x R?

is a graph lying over a set of full Lebesgue measurg4nand positively invariant under
the Hamiltonian flow. Similarly, ifu. is as above, then Graphdu,) c T¢ x R is

a graph over a set of full Lebesgue measur&y and negatively invariant under the
Hamiltonian flow (se€ [Ha]).
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Applying Theorenj 5.0]1 to various's, one obtains weak solutions to the problem of
finding invariant Lagrangian graphs.

Mather theory. The starting point of Mather theory is the remark thaty if R — T¢
is a trajectory of the Euler—Lagrange flow, lying in an invariant Lagrangian torus of the
form GrapHw + du), theny is aglobal minimizer of the action, meaning that

b b
/ﬁwm,y})drs/ Lo ) dt

foralla < b and all¢ : [a, b)] — T¢ of classC?! such that (a) = y(a), £(b) = y(b)
e T?. Note that this notion of action-minimizing trajectory dependsegrin contrast
to the definition of the Euler-Lagrange flow. It would be more appropriate to speak of
“w-action-minimizing” trajectories.

Thus, even if an invariant Lagrangian graph associated does not exist, one may
still look for action-minimizing trajectories. Or, if we are only interested in invariant
measures of the flow, fowf)action-minimizing measures: these are defined as probability
measures on the phase space, invariant under the flow, and realizing the minimum of the
integral

/ ﬁw(-xv U) dﬂ(% U)
Td x R4
over the set of all invariant probability measures.

Theorem 5.0.2 ([Ma91]). (a)For eachw, action-minimizing measures do exist.
(b) For eachw, define the Mather set,, c T¢ x R? as the (closure of) the union of
the supports of-action-minimizing measures:

Mo=|J suppu.

/L act. min.

ThenM,, is a compact set, invariant under the Euler—Lagrange flow.

(c) A probability measure, invariant under the Euler—Lagrange flow-iction-minim-
izing if and only if its support lies in the Mather s&t,,.

(d) A probability measure, invariant under the Euler—Lagrange flow)-igction-minim-
izing if and only if the trajectories in its support atgaction-minimizing.

(e) (The Graph Theorem) The projectionr : T¢ x RY — T9, restricted toM,,, is
injective. Its inverse, defined on

Ma) = n(/\;lw)’
is Lipschitz.

The links with the theory of viscosity solutions have been made explicit in the (still
mostly unpublished) work of Fathi_([IFa], [Fa97-1], [Fa97-2]). For instancegtiaetion-
minimizing trajectories of the Euler—Lagrange flow, when carried by Legendre duality
to the cotangent bundle, are thempletetrajectories of the Hamiltonian flow lying in
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Graphdu), for some viscosity solution of H,(x, dyu) = c(w) (recall that Graptdu)
is, a priori, only positively invariant under the Hamiltonian flow). The Mather/s&
(transported by Legendre duality to the cotangent bundle) is contained in @raghbr
any suchu. Finally, the value ot(w) is

c(w) = —inf { / L, (x,v)dv(x, v) : v ag-invariant probability measu%e
Td xRd

The constant(w), called the effective Hamiltonian in PDE, is called the Mather func-
tion (seen as a function @f) by others; or sometimes, M@’s critical value for the La-
grangian’,,.

Let us end this section by a proposition, due to Fathi, which will be useful later.

Proposition 5.0.3(JFa97-2]) For each fixed poini_ of the semi-groug?, —c(w)t);>0,

there exists a unique fixed point of the semi-groug?,” + c(w)t);>0 such that._ and
uy coincide onM,,. They satisfyi_ > u_. The fixed pointa_ andu_ are then called
conjugate.

The Schrddinger equation, the viscous Hamilton—Jacobi equation, and the associ-
ated stochastic processGiven a scalag, we consider the Schdinger operator ofR¢:

Hg V,

= W +
and we define
Hy = e P o g o P,

Although we do not specify for the moment on which space it acts, we can note that, for
any B, Hg preserves (formally) the set @ -periodic functions. Fog = i /A (T being
the Planck constant), the opera’taig‘ is the quantization of the classical Hamiltonidp
defined earlier. In this paper, however, we consider the case g/hef.

We will use the following properties of the operatdg, proved for instance in [AS82],
[Si79, 11.6] (for the moment, without the change of gage represented) by

The operatorHg is essentially self-adjoint, bounded from above. By using func-
tional calculus, one can define the semi-graqepp(r8Hg)) >0 of bounded operators
on L2(R?). For everyr > 0, exptBHg) is an integral operator, with a positive ker-
nel K (x, y) depending continuously of1, x, y) € (0,00) x R? x R?, given by the
Feynman—Kac formula([AS82], [Si¥9, I1.6]):

Kg(x,y) =f

B Jo V(v du AWESD (),
C([0,7],R4)

wheredw[%(t’]"y) denotes the Brownian bridge betweeandy. It is a positive measure

on the set of continuous patlig[0, ], R?); its definition is recalled a bit later.
From this formula, and the fact that

B.(x,y) B sy
/\dW[O’,t]’ (y) = (%) e Y )
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one sees in particular that

‘ e[ BN iy
Kh(x,y) <e —_— e PIxX—Y ,
/3( y) < <2 l‘)

whereM is an upper bound oW.

We nowdefineexp(t,BH‘/g) as

exppHy) = e PN o expltpHp) o e ).
For eachr > 0, it is a kernel operator, with a continuous kernel given by
Kf o) = e P9 K (r, )b,
It also acts as a kernel operator on the sét6periodic functions.

Remark 5.0.4. When writing this paper for the first time, the author was not aware that
the Feynman—Kac formula also holds (with necessary modifications) in the presence of
a magnetic field, i.e. whem is replaced by a nonclosed 1-form: see [$i79, V.15]. This
seems to indicate that all the results below also hold in the presence of a magnetic field.

We can apply the results of Section 2 to the opera@r: exp(t/Sng). There exist
positive,Z?-continuous functiongrg andlp;, and a real numbekg, such that

expiBHY Vg = e yg (5.0.1)
and
expUBHY)*Yh = Py, (5.0.2)
for all r. For eachr > 0, ¢'#*# is the spectral radius of e(mﬁ?-{%)) in L2(T%), and it is
a simple eigenvalue.
(More precisely, the proof of Section 2 would allow us to find sygh % andag for
each giverr. But since the operators e@qﬁH‘é’) commute and sincegyg, ¥; andig are

defined uniquely by equatiorfs (5.0.1), (5]0.2), they must be the same for all
Moreover, the differentiation of equatidn (5.0.1) with respect to time yields

HEvp = rp¥p (5.0.3)

in the sense of distributions. Since the Laplace operator is elliptic, this implieg that
of classC? (at least) and that (5.0.3) holds in the strong sense. Similagys of class
C?, and

B g = hpvrg. (5.0.4)
logyg logys : .
If we letug = ——5+ andvg = ——5=, a simple computation shows that
Au Av
_£+Hw(xadxu)=)"ﬂ’ _ﬁ"'Hw(x’_dxv):)&ﬂa

in other wordsyg is a solution of (HJV) with viscosity coefficieny/, andvg is a solu-
tion of (HJV) for the reversed orientation of time.
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Remark 5.0.5. We have seen thdlg) is a uniformly Lipschitz family, and thati)g
is bounded. It follows from the stability result for viscosity solutions ([CEL84, Theorem
3.1]) that any limit point: of ug in the uniform topology is a viscosity solution of

Ha)(xv dxu) = Ca

whereC is a limit point of 4. Since we know (Theorefn 5.0.1) that this equation has
solutions forC = c¢(w) only, this implies that

Ag —> c().
B—o00

We are now interested in the behaviour of the measure

dpf(x) = Yp(x)yh(x) dx,
which we normalize to give a probability measure on the torus.

Theorem 5.0.6. Let
A

_ g Blox)
H%}_e wxo(zﬂz

+ V(x)) ol X and Hy* = Hg®.

Let yg, W,’g“ be theC? positive eigenfunctions, defined above. Thengas> oo, the

measure
o Yp)px)dx
K6 T sV dy

onT9 concentrates on the Mather s&f,,.

Assume the system has the properties), (A2), (A3) below. mgo is a limit point
of (/Lg), and o is the corresponding action-minimizing measurélnx R?, then s,
maximizes the functional

1 4
=3[, (4 ew) dutrw

amongst all action-minimizing measures.

The fact thatugo can be lifted in a unique way to an action-minimizing measure comes
from the Graph Theorem (Theorg¢m 5]0.2(f)).

In the theoremfi4 () stands for the metric entropy of the invariant measgungith
respect to the Euler-Lagrange flgg; ), and the){“(x, v) stand for the nonnegative Lya-
punov exponents dfc, v) under the action of the flow. See Section 4.2 for a definition of
Lyapunov exponents.

Remark 5.0.7. The first point of the theorem (i.e. the concentration on the Mather set)
was already known to a number of people, see for instence [Go02, Sect. 8] where the
measuresug appear under the name of “stochastic Mather measures”. The point in the
theorem is the variational principle satisfied fys.
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Before going on, we need to introduce notations for various path spaces and for the
Wiener measure(s).

We denote byHo ;) the Hilbert space of paths [6] — R? with L? derivative. For
x,y € RY, H[0 1 denotes the affine subspace of paths starting andH[o 11 the space

of paths with endpoints, y. The spacd{[o p) is endowed with the scalar product

t
(. ) =/0 (s £a)

We denote byCio ;; the space of continuous paths {p — R?. The topology is that
of uniform convergencec[ 1 andCO (0.1 are, respectively, the affine subspaces of paths
starting atr, and with endpoints, y.

Cr = C(R,R?) is the space of continuous paths frdrto R?, endowed with the
topology of uniform convergence on compact intervals.

We letZ< act onC (R, R?) or Cpp ;] by

(s.y)(u) =y +s

forallu e R, s € Z¢, y € C(R,R?). The quotient spac€ (R, R?)/Z¢ (respectively
Co..1/Z%) is naturally identified with the space of continuous paths- T¢ (respectively
[0, /] — T¢), and denotedV (resp.Wo ).

There is also a natural action Bfby translation of time o (R, R?) or on W:

o' (Y) @) =yu+1)

fory e C(R,RY) or W.

Later, we will be interested in measures©(R, R¢) or W. When we speak of mea-
sures, let us specify that the Boreffield on path spaces is the smallest for which all the
mapsy > y, are measurable.

Measures o will be naturally identified with measures ai(R, R?), invariant
under the action af.“.

The spacéV, ,] can be endowed with the Wiener measure starting atprobability
measure denotd(d/[0 ,] and carried orW[0 q The Brownian brldge’\/[o b1:3) g a positive
measure carried oW, o. , and whose definition is recalled hereafter. The parangetel0
is the inverse of the di usion coefficient.

We refer to[[Si79, 11.4,5] for the construction of Wiener processesxEore R?, the
Brownian bridgewﬁéfj;’]” with diffusion coefficient ¥ 8, starting atc and ending ab, in

the time interval fo, 1,,] is defined as the unique positive measuredfro, 1,], R?) such
that

Blizip1-2i 112

n - 20t —1;)
) e i+17h
W@ = [ [1
Z

dz;
A€Brzn 1By 1 (2T (g1 — 1) /B)42

forallto <11 <--- <t,andallB C C([to, t,], RY) of the formB = {y : y,, € B;, Vi =
1,...,n — 1}, where theB;’s are measurable subsetsis.
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The Wiener measure starting,atw[%f], is related to the Brownian bridgw[%_(t’]c’y)

by
Wi (B) = / W (B) dy
for every measurabls.
We now state Assumptions (A1), (A2), (A3).

Assumptions. Recall that we have defined the action of a path[0, ] — R? as

t
Aly) = /0 L(ys, vs) ds.

Assumption (A1). For alln and all endpointgo, £, € R?, the minima of the actiotd

in the spacell[%"f]" are nondegenerate (we mean thereby that the Hessignatfeach

minimum is invertible as an operator in the Hilbert spaiif%%]). Moreover, the number
of minimizers is bounded, independentlymafty, &, . '

Assumption (A2). There existssg > 0 such that, for all 0< ¢ < &g, there exists
a sequenceér,) € [0, 1]N satisfying:

— lim, 29 _ o,

n

— foralln > 0 and allyg, y, € R¢ such that

lvo — &oll < cue, lyn —&nll < cue

for some trajectory: in the Mather set (lifted t®R?), there exists a minimizep of
A: H[%O’f]" — Rsuch that|y;y — & <eforall0 <k <n.

Change of gage.lt follows from the weak KAM theore.l that there existé%
periodic, Lipschitz functior, and a constant, such that the functional

Y = A(y) —u(y) + u(yo) + ct

is nonnegative otif[p ;] for all 7, and vanishes i is a portion of a trajectory in the Mather

set. In all the definitions given above, we can replace the agtibg this new functional,
without changing the definition of Euler—Lagrange flow, Mather set, etc. The faat that

is not smooth is not really a problem, since we only need to differentiate the action func-
tional with respect to variations of the path leaving endpoints fixed. As far a&olger
operators are concerned, this change in the choice of the action functional would amount
to replacing the kernek;, , (x, y) by e P'e PO K (x, y)eP*, which would lead to
replacingys(x) by ¥5(x)e #*® and 5 (x) by w;(x)e_ﬁ“(x). Eventually, the measure

Mg would remain unchangeth the rest of this part, we renormalize the action functional

so that it is nonnegative, and vanishes on the Mather set.

After this modification of the action, we introduce the function
hy(x,y) = inf A,

Hgy

defined orR¥ x R,
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Assumption (A3). There exists a sequendg > 0 satisfying lim, 'OgTB” = 0 such that,
for all n,

Supﬁd/z efﬂhn(VOsVn) dyn < Bn'

Y0 R4

The nondegeneracy of minima of the action is necessary for the Laplace method (Sec-

tion 6); the second part of (A1), about the number of minimizers, seems less crucial. As-
sumptions (A2), (A3) are not very easy to interpret although we check in 6.4 that they
are always satisfied when = 0. (A3) says something about the behaviout:pfnear
its minima,uniformly inn. We formulate a conjecture about a different assumption under
which the theorem could hold:

Conjecture. These assumptions can be replaced by the assumption that the Mather set is
a uniformly hyperbolic set for the action of the Euler—Lagrange flow.

Of course, this assumption is not easier to check on examples than the previous ones,
but it is more conceptual. A proof seems close at hand for discrete time systems (i.e. the
situation of twist maps described in Section 4), but not for continuous time systems.

In Section 6.4, we show that (A2) and (A3) are always satisfied in the«was®. In
this case, the theorem seems to be part of the folklore in the study of the tunnelling effect
in semi-classical mechanics:

Corollary 5.0.8. LetHy, = h2A /2 + V, and letyy, be the uniquéZ?-periodic positive
eigenfunction, corresponding to the largest eigenvalu gfn L2(T¢). Then, agi — 0,
the probability measure
Y2(x) dx
Jra WEG) dy
concentrates on the maxima vbf

Assume furthermore that the system satigfeg. If we consider the expansion &f
in orthonormal coordinates near a maximug in the form

1
V(xo+y) = Vo) = 5 Y laio)ly? + 0%,

then the measurag(x) dx concentrates on thosg’s for which the quantity

> lai(xo)l

is the smallest.

Note that the maxima are not assumed to be nondegenerate nor isolated. The same result
(assuming nondegenerate maxima) is contained, but hidden amongst deeper theorems, in
Section 4.4 of[[He88], wher&_ |a; (xo)| appears as the bottom of the spectrum of the
guantum harmonic oscillator:

A1
—12S 45 ) laixo) 2y,
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and the result is obtained by BKW estimates. Corollary 5.0.10 is in agreement with the
results therein, if we change the sign in front of the Laplacian and replace the word “max-
imum” by “minimum”.

As in Part |, Theorem 0.0/2< 5.0.6) is proved by associating to the Saftinger
equation (5.0.3), (5.0.4) a stationary stochastic process with initial dlstrlbuﬁoﬁ' his

process is the Markov process with initial dlstnbutmgl and with transition semi-group

fe Py f= exptHE. (Vg f).

1
lﬂ)»ﬁ,‘//

Sinceyrg andgb; satisfy (5.0.1), (5.0.2)/,Lg is indeed the invariarit¢-periodic distribu-
tion.

The process corresponds to a meagyy®n the path spac€(R, R?), defined by the
formula

ug(y *vo. € K}

e—tﬂk/g / 4
=" v (o) dyo ( / P Jo Vs Bl y=10) () dWE °(y>)
f’IFd Vg JyoeTd g Yio.1€K s 041

whenKk is a measurable subsetGf, ).
Sinceug is invariant under the transition semi-group, the meagyas invariant

under the translations of tim@’),cr, as well as under the action @f on C(R, RY).
Thus, it defines a probability measuytg on the quotient

CR,RY /7% =CR, T =W

6. Proof of Theorem[0.0.P

6.1. Preliminary results

Lemma 6.1.1. For each sequengg, — oo, there exists a subsequenggy), and a prob-
ability measureu,, on W, such that, forall e Nand alls; < --- < 1,

Bk (g(ylla ) VI/)) kjgo Moo(g(th, cees Vz,)),
for every bounded continuous functigron (R%)! /Z4.
In this case, we shall say that the sequeficg,,,) converges tQux.

Proof. Fix T > 0. To get rid of some constants, assume that < 1 and|V| < 1. We
denote byug(-|yo = x) the measurgg conditioned with respect tgy.
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ForallO< ¢ < T and allx € R,

wallyr — volloo = 4t | yo = x)

B Jo V(rs) ds+B(.y—x) dwﬂ'f](y)

 Jepy Yiv—xinzane o,

) V() ds+Blw,vi— B,
Jews eP o VO dstplon=x) Wi (y)

_ 8,
_ Jwioa Wiy —xloezan €TI0 aWGT ()
- — - B.x

Sy € PO AWE ()

2
B P [oa Wy an PV I-BIIZ/2 gy
- Ja e—PIyI=BlIyIZ/2t gy

— 2
- Pt fRd Wy o=ane Blivl©/4t dy
T fpa e PUNIFINIZ20 gy

5 C(t)e—ﬁﬂtﬂ(d—l)/z

for all + > 0 andp large enough; we have used the following estimate on the tail of
a Gaussian distribution dR?:

1 2
=lyl</2
e dy < 2d
(Zﬂ)d/z /|y||oc>8 v =

as well as the fact that

/ BI04y id/ o~ I+I12/280 gy o €
RY B Jra B

2
o—82/2

aspB — oo. As aconsequence, forall®s <t < T,
sy = vslloo =4 —5)) S Ct = s)e” U= gl=b/2, (6.1.1)

This implies in particular the tightness of the lawsgptinder(ug) g0, for all . Thus,
we can find a subsequengg) — oo, and a probability measuye,, on Wo rjnq@, such
that, forallsy < --- <5, €[0, T] NQ,

W, ) (& Wiys -+ Vi) — Moo (Wiys -+ -5 V1))
k—o00

for every bounded continuous functigron (R?)!/Z¢. But actually, thanks to inequality
(6.1.1), the convergence will take place foralk --- < # € [0, T], and every bounded
continuous functiorg on (R)!/Z4. o
Proposition 6.1.2. (a) Lety, v; satisfy), )Then the families of functions
(—% log wﬁ?ﬁ>0, (—% logy5) ,_, are equilipschitz.
(b) If B — oo is a sequence such that
1
Bk

in the uniform topology, for some continuous functiansand v_, thenT, u, =
uy —c(w)ytandT; v— = v_ + c(w)t, forall ¢t > 0.

l %
logyg, — —uy and & logyrg, — v
k
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(c) LetJ =inf(v— — uy), so that
logyrp, +logys log [y (MY (v)dy
— +
Br Br

and letu_ be the fixed point of7,” — ¢(w)t) which is conjugate ta. Thenu_ <
_—J.

— v —uqp —J,

Proof. Assertion (a) was proved in Section 5 (remember théﬂog Yg and— Iog TP,Z
are solutions of viscous Hamilton—Jacobi equations).

Assertion (b) follows from the stability result for viscosity solutioris ([CEL84, Theo-
rem 3.1]).

The fact that

log [ ¥ (¥}, () dy
Br

follows from Lemmg 3.1}4. As to the last assertion, it is a consequence of the inequality
v_—u4—J > 0, and the characterization®f as the smallest fixed point 6f,” —c(w;))
satisfyingu_ — u4 > 0 ([Fa97-2]). O

Proposition 6.1.3 (Large deviation upper bound)ets > 0. Then for any subse&k; C
Wio.1, closed for the uniform topology,

Ilmsupﬁ logug({y : Vo, € Ki})

<—inf inf (u (vo) + AW[o,1) — u+ () +te(w))

yeK: (u—_,uy)
where the seconiaf is taken over the set of conjugate fixed points of the Hopf—Lax semi-
groups.

Corollary 6.1.4. If o is a limit point of g, it is carried by action-minimizing trajecto-
ries of the Euler—Lagrange flow.

Proof of Propositior 6.1]3Recall the expression gfs({y : y|j0.;] € K,}) for a measur-
ableK; C W q:

e—tﬁkﬂ
uply 1 yo. € Ki}) = fd%slﬂ f I/IE(Vo)dVo
T B JroeT

> (f B Jo V() ds+Bl.vi—yo) Iﬁﬂ()/t)dwo 0] (y)>_ (6.1.2)
Yio.n€K:

We have seen thaty — c(w) asp — oco. We also recall that, iK; is closed, then, for
all x € T¢,

|,msup log B lo V) dst+Bl@.i—v0), ﬁu(yt)dwﬂ 1)
Yo.1€K:

<—_inf  (Ap.) +u(n) (6.1.3)
Y0, €Kz, vo=x
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for every continuous function on T¢. This follows from an application of the large
deviation result of Schilder([Sc66], [DZB2, Theorem 5.2.3]) combined with “Varadhan’s
lemma” ([Va67], [DZ92, Theorem 4.3.1)]).

Finally, let us consider a sequengge — oo such thaté logug, ({y : vijo.q € K:})
converges iR U {—oo}. Keeping the notations of Proposition 6.1.2, we may also assume
(after further extractions) that

1
——logyg, — —uy
B

! logvy;, —
—_—— V—
Br Bk

and
1
— o / pen—
B J Td vevs

with v_ — J larger than the function_ conjugate ta:, .
Combining this with (6.1.2), we get

. 1
lim SUDE log g ({y < vio.1) € Ki})

<— inf (v_(y0) + AWWjj0.1]) — u+(vy) +tc(w) —J)
V0. €K:

<— inf (u-(yo) + Ao, — u+(¥1) + tc(w))
Y|[0.:1€K:

=—_inf inf (u_(y0) + A(y|0.]) — u+ (1) +tc(w)).
V0. €EK: (u—,uy)

Since this is true for every subsequeiizewe have proved Proposition 6.1.30

Proof of Corollary[6.1.4.Let K be a closed subset &f, andK its projection oniwjo ;).
Then

up(K) < pug({y v, € Ki})

and, by Propositiop 6.1].3, the measurekoWill go to zero exponentially fast unless

inf inf )(M—(J/O) + Ao, — u+(y) +te(w)) =0,

yeK; (u_,uy

for all . But, for a pathy|jo,1],

u—(yo) + Ayo.) — u+(yy) +te(w) =0

implies that
Ao, = AWo.1)
for every patte such thaty = yp andé; = y;.

We have thus proved that, is carried by action-minimizing trajectories of the
Euler-Lagrange flow. O
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The measurge,, as a measure dif carried by action-minimizing trajectories and invari-
ant undenr translation of time’),cr, can be naturally identified to an action-minimizing
measure off? x R?. The identification takes place via the map

{y : R — T : trajectories of the E-L flov— T¢ x RY, y — (30, 30),

which is a conjugacy between the translation of ti@mé) and the Euler—Lagrange flow.
In particular, the measupe2, onT¢, defined by

13 (A) = pooly € Wi yo € Al

is carried by the seM,,. We have thus proved the first assertion of Thedrem5.0.6: the
measurmg concentrates of,,.

6.2. Sketch of proof

Definition of the Hessian of the action, and of its determinant.Let x, y € R?. The
action A : H[)é’j] — R is twice differentiable, and its second derivative at a pgint

d?A(y), is a symmetric bilinear form oH[%”?]; one may write it as

d*Aly) £.& = (A'()E, &)

whereA” (y) is a self-adjoint operator o, the Hessian ofd aty .
Remembering the expression.df one can actually write

A'(yy =1+ f,
f being defined by
t
(fE, &) = /O VI () . d.

This last bilinear form may be extended to a continuous symmetric bilinear fori;on
and this implies thaf is a trace operator ([Ku75, p. 83]): the sum of the eigenvalues of
f, (M)ieN, is absolutely convergent.

Thus, one may define the determinantof f as [I + f] := [[;cn(1+ Ai), which
is well defined (possibly zero). This determinant will be nonzero if and ondylifis not
an eigenvalue of , that is, if and only if the operatod” (y) is invertible in H ).

If y is a critical point ofA : H[f)’,f] — R such thatd” (y) is invertible, we will say
thaty is anondegenerate critical poirdf A : H[’(‘)”f] — R.

As in Part |, ify € Hp . for somer’ > t, then we will denote by,[A”(y)] the
determinant of the Hessian @f(y|j0.) : Hy,} — Raty.

We prove the following proposition, which is the direct transposition of Theprem]0.0.1
in continuous time:
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Proposition 6.2.1. Let ., be alimit point of(ug) asp — oo, and letu be as-invariant
probability measure orWW, carried by action-minimizing trajectories of the Euler—La-
grange flow. Then, under AssumptidAd), (A2) and(A3),

1(. 1 1[0, 1
ho (1) — 5/“5“ A log[; A" ()] du(y) < ho(foo) — E/III;H A log[; A" ()] d oo ().

The proof of Propositiof 6.2.1 goes along the same lines as that of Thgorein 0.0.1. The
main difference is a higher degree of technicality in the Laplace method for estimating
path integrals. We do not rewrite the proof in its entirety, but indicate how to adapt Sec-
tion 3.2 to the new situation.

To simplify notations we consider again the cdse- 1. The proof starts, as in Sec-
tion 3.2, with the construction of a partitiah of C([0, 1], R):

Py ={y € C(I0,1},R) : yp € [ie, (i + De), y1 € [je, (j + De)}
for|j —i| < M/e,and
Piso ={y 1 yo € lie, (i + Do), 3j,|j —il = M/e, 1 € [je, (j + De)}.

If ¢ is the inverse of an integer, the partition passes to the quatigny = C ([0, 1], R)/Z,
and gives a finite partitio® of W.
The proof is then identical to that of Theor¢m 0]0.1 until the statement of Lemma

[3.2.3(a). The integrands
ﬁ (nil)/z n—1
(§> e~ B2iZo Livvivn) dyr...dyn-1
just need to be replaced by

6/3 Jo V(¥s) ds+B{w.yi—yo) dw[%’(n)im)/n)(y)'

We now indicate how to adapt Lemina 3]2.3.

Laplace method (fixed time interval). Lemma3.2.B(b), which is a consequence of the
superlinear growth of the Lagrangian, can be obtained from the estimate

t BMt B az Bl 1272t Bllwl-I I
—Bllx—y oll-lx—y
Kﬁ’w(x,y)fe (27”) e Y e I

mentioned in Section 5.

As to Lemm4 3.2]3(a), it comes from the following:
Theorem 6.2.2 ([Be8€], [BDS93]) Letyo, y; € R?. Assume that the actiod : Hgi!
— R has only one minimurfi, which is nondegenerate, and Btbe a neighbourhood
of v in the uniform topology. Then
e—BAG)

B(fy V (vs)ds+(®,yi—yo)) B, (vo,v1) _
/wz";f‘”me Do) = LG

[
For fixedr and K, theo(2) is uniform on the sefly; — yo| < K}.

1+ o).
B—00
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Let us give a general idea of how this estimate may be obtained (the reader is referred
to [Be88], [BDS93] for a complete proof). Exactly as in the case of an integral over
a finite-dimensional space, one begins by applying the Taylor expansion of order 2 of the
function

t
V'—>f0 V(ys)ds + (o, yr — o)

at the minimizer of the actiofi, and in the spacw[go’ti”:

B LV (ys) d B0, Vi
/Wvo,yrmge oV YdVV[O,t] l(y)
[0.1]

_ Bl Vs / N P 0 Vi =P ds+ 3 Vi =70)? ds+BR(y=7) AWET T ()
Vi )
Wiy N2
~ _ 5 é t " _ 5 2 _ 5
eﬂ()’s;ys Vs)+ fo V);S~()/s Vs)“ds+BR(y—y) dw[%lt/]OaV/ (J/)

_ SRVGAs /

Yo-vt
Wi e

_ o B L R24B 3V G ds / o o2 Jo Vi 2 ds+BR() dw%’g]xm(y)’ (6.2.1)
W[O,z] nQ—y

where the last line is obtained by the Cameron—Martin formula ([Ku75, p. 111]), and the
line before comes from the fact thatis a critical point of the action.

The remaindeR(y), given by Taylor’s integral formula, is bounded (independently
of n) by C||y||§, whereC is a bound on the third derivative &f; and actually, ifQ2 is
a uniform neighbourhood of radiusaroundy, thenR(y) is bounded bst||y||§. One
shows that this remainder does not interfere in the estimate of Thé&orer 6.2.2.

The final ingredient is the formula

— ,0,0 _
/Woo e BUYY) dWﬁ),t] ) =1+ f] 1/2

[0.1]

valid if (f-, -} is a continuous symmetric bilinear form aq%?] which admits a continu-

ous extension t(W%’? . It is obtained by diagonalization g¢f in an orthonormal basis for
(-,-). Ityields Theoren 6.2]2 when applied to

t
(fv.7) =/O Vi yids.

Lemma[3.Z.4 is unchanged, with necessary modifications in the expression of path
integrals, as explained earlier. We now need to adapt Lemmg 3.2.8.

Laplace method (lower bound, independent of the time interval).In order to adapt
the result of Lemmp 3.2.8, the point is to find a lower bound of (5.2.1), independent of
We can take = n € N. As before, le be the minimizer of the action di[’gf;]’”. Lemma

[3.2.8 is replaced by:
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Lemma 6.2.3. Lete > 0, ands < ¢. Then there exists = p(¢) such that, for allz,

/ W58 VL FHBR®) 1,800
Iy oo [

]

> (1— e PPP/2n=11 4 (1)1
p—o00

By y2-BCe [ ys2ds— n—1yy02
X/ o2 0 Vi vPBCe [ vs P ds—pe T 1y dW&t}ﬁ)
Wio.n)

= (1— —ﬂp252/2 l’l—ll 1 n—1 ;
(e S ) LA + 266,11

(6.2.2)

whereb, is the quadratic form Om[(oo,}? given by

n n—1
bu(y,y) = c/o Wds+ 3 Iyl
=1

andC is an upper bound on the third derivative bf

Proof. We know that|R(y)| < CliylI3 < Celyl3 < Cellyl + e X1 lyl? =
eb, (v, y). Thus,

B nyn .2 By 2
/ o2 Jo Vi TTHIRD) 1y 00 f o2 Jo Vi TG 00 (6.2.3)
¥ llo<é ' ¥ lloo<8 ’

Let us consider the action (associated to a nonautonomous Lagrangian)

i TR N A Lo
AWio,1) =/ ds——/ Vi .y ds+C£f lysl©ds
o 2 2Jo 0

forr <n,andy € H[%"?l]. Let us also introduce the functions &3:

x2+y2
2

Q.= _inf _ A0y ) +e

Yi=X,Vj+1

for 0 < j < n — 1. They are quadratic forms d@&?.
If we condition the last term of (6.2.3) with respecttg . . ., y,—1, and apply a Lap-
lace estimate (Theor.2) for fixed . . ., y,—1 and for the actior4, we get

/ o5 I3 VE Y2 Beb () 000
ly loo=e [0.]

> (1+ o(D)"

p—o00

¢=5 Q0O yD+++0,-1(71-1,0)
/ dyl M dynfl,
Iy loo=e

[T=olA71
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where [47] is the determinant of the Hessian 4f H[’;’ Jy_f;ﬁ — R at a minimum, and

does not depend on the endpoipfsy; 1, since the actiod is a quadratic form in the
path. Thus, the problem is reduced to estimating integrals over finite-dimensional spaces.
But now,

(Q(VJJ e Vn—l)» (7/15 e Vn—1)> = Q0(07 7/1) + QZ(VL )/2) +- 4+ Qn—l(yl’l—lv O)

is a quadratic form iny1, ..., y,—1) € R"L, which satisfies all the assumptions of

Lemmd3.2.B.
Thus, we can use Lemrpa 3.R.9 to finduch that

¢—B(QoO.y)++0y 1(7-1,0))
/ = cdyn-1
Iy lloo =8 [TLA7]
B
_*(QO(QV)"‘"'+Qn—1(anlsO))
_Bp252 _ e 2
> (1— e Pro/2y 1/ — dyy...dy,-1
Ri-1 H[Aj]
—Bp2s2 - V” b (v, ,(0,0
_ (1 o PeP2yn 1/W o B IR VA= Bebar0) gy 00

T [0 n]
(1 _ Bp<s /Z)n

- [n-A”(VO, Yn) + 2C8bn]1/2.

Lemma 3.2.10 can now be proved the same way as in Section 3.2, and the estimates of
the end of Section 3.2 can be performed the same way to yield Prop@sitioh 6.2.1.

The last point in the proof of Theordm 0.D.2 is to draw a link between the determinant
of the Hessian of4, and Lyapunov exponents. We have seen in Section 4.2 how it works
for a discrete time system. What we need is the analogue of L¢mm# 4.2.1 for a continuous
time system. It is known as the Levit—Smilansky formula:

O

6.3. The Levit—-Smilansky formula

Theorem 6.3.1. Lety : [0, 1] — R be a critical point of the action

t > 2
A@mp=/(m§ —Wmom
0

on the affine Hilbert spacH[ = {&£ € Hp, - é0 = x, & = y},whose tangent space
H[%’?] is endowed with the scalar product

t
@m=/amm.
0

Then the Hessianl” (y), a self-adjoint operator orH% ?], has a well defined determinant
—the infinite product of its eigenvalues. And this determinant coincides with the determi-
nant of the linear endomorphism & sendingy, € R? to y,/t, wherey, € T, R?
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(s € [0, ¢]) is the solution of the linearized equation:

Vs + V'(y).ys =0,

yo=0, Jo=p
We refer the reader tG [LSB5] for a proof; there also exists a more conceptual proof by
Colin de Verdere ([CV99)).

The Levit—Smilansky formula, combined with the Oseledets theorem, implies the fol-
lowing proposition, analogous to Propositjon 4]2.2:

Proposition 6.3.2. Let 1 be ac-invariant probability measure oW, carried by action-
minimizing trajectories of the Euler—Lagrange flow. Then the Iiiinit% log[, A" (¥)]
exists foru-almost every, and is equal to

d
> o, v0),
i=1

where thaj(yo, yp) are the firstd (nonnegative) Lyapunov exponentqaf, yo) under
the Euler—Lagrange flow.

Proposition 6.2]1, associated with Proposifion 6.3.2, impliesithatthat we have iden-
tified to an action-minimizing measure @ x R? at the end of Section 6.1), maximizes

1 d
W (i) — —/ A G, v) du(x, v)
¢ 2 ’Jl'ded; '

over the set of action-minimizing measures.
This is equivalent to Theorejn 5.0.6, sinee is the action-minimizing lift ofcd, .

6.4. Proof of Corollary [0.0.3. We can assume that m& = 0. Wheno = 0, the
Mather setM is the sef(x, 0) € T x R : V(x) = 0}.

Action-minimizing measures have zero entropy since the Mather set consists of fixed
points of the Euler-Lagrange flow. Moreover, if we consider the expansidn iafor-
thonormal coordinates near a maximug; in the form

1
Vxo+y) ~ Vo) = 5D lai(xo)lPy? + 0%,

then the Lyapunov exponents of the fixed pdity, 0) are thex|a;|. To prove Corollary
[0.0.3, it remains to check that:

Lemma 6.4.1. Whenw = 0, AssumptiongA2) and (A3) are automatically satisfied.

Proof. AssumptiofA2). Let V(xp) = 0, lete > 0, and letyy, v, satisfy|yo— xoll < cue
and|y, — xoll < c,e for somec, € [0, 1].
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We haveh,, (yo, Yn) < cﬁez; indeed, this last quantity is the action of a curve joining
yo t0 xg in the time interval [01], staying atyg in the time interval [1n — 1], and going
from xg to y,, in the time interval§ — 1, n].

On the other hand, the action of any cugpv@ining yg to y,, in the time interval [Qn],
and such thafty, — xo|| > & for somer, is larger thar(1— ¢,)%¢2/2n, which is the energy
needed to leave the bali(xo, ) in time n. Thus, if we taker, = n~2, the minimizer
of the action joiningyg to y,, must stay inside the baB (xg, €), and Assumption (A2) is
satisfied.

Assumption(A3). Since ma¥’ = 0, no change of gage is necessary to ensure that
Lo > 0 andLg vanishes on the Mather set. Singe< 0, it follows thath,, (yo, v,) >
lvo — yall?/2n, so that

g2 [ =Bluror) gy, < gd/2 | g=Blro=nal?/2n g, — (Drp)d/2 —: B O

Exactly the same way, we can prove

Lemma 6.4.2. Let L(yo, 1) = lly1 — woll?2/2 — V (y0), whereV is aZ?-periodic poten-
tial. Then the assumptior{82), (A3) of Theoreni0.0.]are satisfied.
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