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Abstract. We study a continuous time growth process ondkiimensional hypercubic lattic#,

which admits a phenomenological interpretation as the combustion reactio® — 2A, where

A represents heat particles aBdinert particles. This process can be described as an interacting
particle system in the following way: at time 0 a simple symmetric continuous time random walk
of total jump rate one begins to move from the origin of the hypercubic lattice; then, as soon as
any random walk visits a site previously unvisited by any other random walk, it creates a new
independent simple symmetric random walk starting from that site Phebe the law of such a
process ancﬂg(z) the set of sites visited at time We prove that there exists a bounded, non-
empty, convex se€; C R such that for every > 0, Pz-a.s. eventually in, the setsg(z) is

within aner distance of the set];], where forA c R¢ we define i] := A N Z4. Furthermore,
answering questions posed by M. Bramson and R. Durrett, we prove that the empirical density of
particles converges weakly to a product Poisson measure of parameter one, and moredver, for
large enough, we establish that the Ggtis not a ball under the Euclidean norm.

Keywords. Random walk, Green function, subadditivity

1. Introduction

In this article we consider a stochastic growth process associated with a system of inter-
acting random walks on the lattié . Attime s = 0 a continuous time simple symmetric
random walk of total jump rate one begins to move from the origin 0. Then, as soon as
any random walk visits a site previously unvisited by any other random walk, it creates
a new independent simple symmetric random walk. Thus, th&f}:se)t of visited sites at
time ¢, for the d-dimensional process starting with one random walk at the origin, is a
random connected cluster which is growing in time.

A natural interpretation for this process can be given in terms of a chemical reaction
associated to the steady-state burning of a homogeneous solid. Here heat is conducted into
the solid from a reaction region raising its temperature and deflagrating it. This is the situ-
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ation for example of combustion in solid propellant rocket motors (see Chapter 9 of [W]).
A very simplified description of this phenomenon can be given by a system composed of
two types of particles: active particlésrepresenting diffusing heat, and passive particles
B representing inert combustible molecules (see Section 1.3 and Chaptér 4 of [BE] for a
description of this phenomenon in terms of partial differential equations).

The system starts with one heat partidleat the origin and one passive at any other
site. Then, whenever an active partidleeaches a passive partidke the passive particle
is “burned” becoming active, and the following chemical reaction takes place:

A+B—> A+ A.

This process can be viewed as well as a dependent long-range version of first-passage
percolation. In fact, here to each sitec Z¢ we can associate the countable collection
{tc,y 1y € 7%} of passage times, wherg , represents the first hitting time of sije
by a continuous timé-dimensional simple symmetric random walk starting from site
and of total jump rate 1. Then, given poinise Z¢, 1 < i < n, and the corresponding
pathr = (x1, ..., x,) we can define its passage time7ag) = Zf’;ll by xip1- NEXt, this
gives us, as in first-passage percolation, the travel i@ x) := inf{T(») : r a path
from O tox}, from site O to sitex. Thus, the set of sites visited at times represented
assg(t) = {y € Z? : T(0,y) < r}. This representation will not be explicitly used in
this paper, though first-passage percolation type techniques will recurrently appear in the
proofs. On the other hand, our model presents some similarities to problems of random
walks in random potentials and it can be viewed as an opposite of the Internal DLA
(seel[LBG] and[|[BRY]), where particles are killed when visiting an unvisited site. For this
reason, some aspects of the analysis that will be presented show similarities with the
study of Internal DLA, where elementary potential theory and some spectral estimates
are used.

The first problem which we address about this process, which we calbthbustion
growth processis the asymptotic behavior in time of the §§(t) of sites visited at time
t and its geometric properties. The first result of this paper gives a partial answer to this
guestion, stating that to leading ordiﬁ(t) approaches a linearly growing deterministic
shape. Moreover, for large enough dimensidnshe setSf}(t) is not a ball under the
Euclidean norm. This is the content of the following theorem, whigres the probability
measure associated to thiadimensional combustion growth process, and for any subset
A Cc R4, we define i] = AN Z4.

Theorem 1.1. There is a closed convex bounded suliet- R¢, symmetric under per-
mutations of the coordinate axes and with non-empty interior, such that for everg,
P;-a.s. eventually im one has

[Cat(L—e)] C S%(t) C [Cat(X+€)]. (L1
Furthermore, ford large enough(y is not a ball under the Euclidean norm.

Remark 1.1. The fact that for large enough dimensiafsthe setC, is not a ball, is a
corollary of Theoreni 7]1 of Section 7. There it is actually shown that for large enough
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dimensions, the asymptotic speed of growtkS@(t) in the axial direction is larger than

Cd—1/3~¢ for everye > 0 and for some constafit(e), while in the diagonal direction it
is smaller thani /2,

In spite of the fact that the proof of the linear growth|[of {1.1) has a technical character,
itis possible to give an informal heuristic argument providing some insight into the mech-
anism taking place. Indeed, by definition the number of particles in thé set Sg(t)
is equal to its cardinality. If we assume that this distribution is close to uniform, then
the number of particles in the interior boundar§ of S should be close to something
proportional to the cardinality of this interior boundary. This can be expressed as

das
— =const- 9S.
dt

Thus, if S is approximately proportional to some boundedGetc R?, the above equa-
tion shows that this scaling has to be linear, so that const. Ct¢.

The non-isotropy statement of Theorem|1.1 is an effect of the random walk structure
on the discrete lattice. This can be seen from the fact that in high dimensions of the
lattice Z¢, the number of steps necessary to move a fixed Euclidean distance in a diagonal
direction is much larger than of those needed to move in an axial direction. We could
consider for instance a model where there are particles represented by balls of a fixed
radius inR¢ and centers having a Poisson distribution. Initially a single particle moves
so that its center travels like a Brownian motion. Then, every time a particle hits the
boundary of another inert ball, the latter is activated and begins to follow a Brownian
motion trajectory. We expect that in such a model there will be no non-isotropy effects.

The second result of this paper answers a question posed by M. Bramson and
R. Durrett several years ago concerning the behavior of the empirical density of ran-
dom walks within the seff}(t). We denote by, () the total number of random walks at
sitex € Z¢ at timer and refer to the quantity(r) = {1, (r) : x € Z%} as theoccupation
field of random walks at time. Then letu.(7) be the distribution of the empirical density
n(¢) underP,. Theorenp 1.2 below shows that the occupation field distribution of particles
insidesg(t) converges to a product Poisson measure of parameter 1. To state this result

let us endowM := NZ* with the product topology and the BoretalgebraC.

Theorem 1.2. Letv be the product Poisson measure of paraméten (M, C). Then
Jim w@) =v,

where the convergence is in the sense of the weak topology.on

Remark 1.2. Given a probability measure on (M, C), and some subset c Z¢, de-

note bya, the restriction ofx to M, := N* endowed with its Boreb-algebra. With

a modification of the method used to prove the above theorem, it can be proved that for
every finiteA ¢ Z¢ and O< o < 1 one has lim., o [|it(t)ien — viep |l = 0, Where| - |
denotes the total variation norm ot 4 .
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Theoren] 1.2 is a corollary of Theorgm1.1. In fact, once one knows the presence of
a growing connected cluster of activated sites growing linearly in time, it is possible to
reduce the problem to the study of the occupation field of particles of a set of independent
simple random walks on the groﬂizgl\,+l defined as the direct product éfcopies of the
group of integers modulo/ + 1, with N = [+%/®], and having as initial condition one
random walk per site. The reduction is achieved by first observing that random walks at a
distance larger tha@ (/) (as is the case fa?/2) do not affect what happens within some
finite setA at timet. Thus, the behavior gf 5 (r) can be approximated by the behavior
of the corresponding marginal of a version of the combustion growth process defined on

Z‘2’N+l with N = [+%/3]. Next, one observes that particles within some small enough cen-

tral region ofsg(t) are born at times which are small enough comparedsithat it is
irrelevant if one approximates their birth time by 0. This is a consequence of the fact that
the linear growth osg(t) is much larger than the typical distange traveled by a random
walk at timer. Once this is proved, the convergence follows via standard methods of ap-
proximation by Poisson product measures. Here we rely on Laplace transform techniques.
The proof of Theorern 1] 1 is more involved. The basic idea is to apply the subadditive
ergodic theorem (see Kesten! [K] or Liggett[Li]). Its use is not new, and one of its first
applications was to prove shape theorems in the context of first-passage percalation ([R],
[CD], [K], [BG]). Here we apply it to show linear growth in for the set of first passage
times T (0, nz), wherez € Z¢ is arbitrary. This proves that the &ég(t) grows linearly
in the direction defined by. An appropriate pasting and continuity argument enables us
to finish the proof of Theorein 1.1. The most serious difficulty is the verification of the
hypothesisE;(T (0, z)) < oo needed to apply the subadditive ergodic theorem, whgre
denotes expectation with respectRg. If one remarks that the hitting time of a site by a
simple random walk is not integrable, it becomes clear that to pEN& (0, z)) < oo
it is necessary to control both the number of active random walks and their distance to
One wants to show that at timehere are “many” random walks “close” to
An important idea of this paper is the use of induction on dimension to obtain lower
bounds on the number of random walks at some given time. This captures the natural
intuition that since the amount of space somehow grows with dimension, it is conceivable
that if we consider random walks whose total jump rate in dimengisr, thenSg”(t)
is larger tharSg(t) in a certain sense. More precisely, we construct a coupling between the
d-dimensional process and th# + 1)-dimensional process which shows that if the total
jump rate of the walks in dimensiahis d, then with probability oneSg“(t) > 54(1).
Hence, once a linear shape theorem is proved in dimemsigith a good enough control
on the slowdown deviations from this linear growth, we know modulo this slowdown
deviation probability that the number of random walks at tinredimensiond + 1 must
be at least of the order of , which corresponds to the order of the vqumeSQtt).
A separate argument shows that the distance of these random walks timer cannot
be larger than. Therefore, with a probability tending to one as> oo, we know that
in dimensiond + 1, at timer/4 we have at least’/* random walks. Then using the fact
that+1/4 = o(/1), classical random walk hitting time probability estimates show that in
dimensiond + 1, the probability that at time site z has not been visited by any random

walk is smaller tharil — consy r@—2/4y""* ~ exp(—t2/4), which is integrable.



Asymptotic behavior of a growth process 297

It is interesting to note some similarities of this problem with upper bound compu-
tations for the slowdown deviations of the so called marginal nestling and plain nestling
random walks in random environment, defined in Sznitrnani[Sz2], which are subexponen-
tial. When optimal upper bounds of this kind have to be computed, usually it is helpful
to use renormalization methods (see Piztora, Povel and Zeifouni [PPZ] for the so called
positive and zero drift case in dimensidn= 1). In our case, crude upper bounds are
enough, so that it is not necessary to introduce any sophisticated machinery and a simple
block argument does the job. We would like to remark that independently, and by dif-
ferent means, recently Alves, Machado and Popov [AMP1] proved a result analogous to
the first part of Theorefn 11.1 (existence of the asymptotic shape) obtained in the context
of a discrete time dynamics, which is slightly easier to handle than the original continu-
ous time model, even though the structure of the process is essentially the same in both
cases (see also [AMP2] for other related work of these authors). In contrast to the method
of [AMP1], our method is based on, and makes precise, some ideas related to the depen-
dence of growth on dimension, and to the knowledge of the authors it has not been applied
in this form previously in growth problems originating from first-passage percolation.

The proof of the non-isotropy result of Theorém|1.1, stating that the conve;set
is not a ball for large enough dimensiodsgis influenced by the approach of Hara and
Slade [[HS] for self-avoiding random walks. Similar ingredients can also be found in the
non-isotropy proof for large dimensions in first-passage percoldtion [K]. Namely, at a
heuristic level, as the dimension increases the hypercubic lattice becomes richer in terms
of connections and locally it has a structure similar to that of a tree. The proof of the
non-isotropy result is contained in Theorgm|7.1, where it is proved that the asymptotic
axial speed is larger thaid—1/3~¢ for large dimensions and eveey > 0 and some
constantC (¢), and the asymptotic diagonal speed smaller thal?. For the upper bound
in the diagonal direction, we essentially use the fact that asymptotically, the maximum
number of sites that a rate one random walk can visit at tiisebounded by (1 + ¢),
for somee > 0. Then, the time it takes for the combustion growth process to visit the
sitez1 := (1, ..., 1) of thed-dimensional hypercubic lattice is at least of ordeSince
the Euclidean distance ef to the origin isv/d, our process moves at most at a speed of
d—1/2 Euclidean units per unit time. The lower bound in the axial direction uses the large
space in terms of connections which is available for large dimensions. This is contained
in Lemma[ 7.2, where it is proved that in dimensiénat timed'/3 there are at least
~ d?/3+¢ moving random walks, for some > 0, at a unit distance from a hyperplane
orthogonal to one of the axes. Since the probability for each of these random walks to hit
this hyperplane by time is of orders/d whent « d, it follows that the probability of
not hitting it by timed%/3-¢/2 is of order(1 — d¥/3-/2/a)?**>** ~ exp{—d</?}, which
goes to zero a8 — oo. In Section 7, these ideas are developed in order to obtain the
corresponding bounds for the expectations of the passage and passage to line times.

Before closing this introduction, we would like to say some words in relation to the
boundary fluctuations of the sﬁf(t) of visited sites. This problem will not be touched
here and remains beyond the scope of this article. A challenging question would be to
settle whether or not the combustion growth process falls in the same universality class
of growth models described by the KPZ theory, where in dimendienl the boundary
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fluctuations are normal, and in dimensidn= 2 the longitudinal fluctuations of the
boundary follow a power law with exponenf3 (see Krug—Spohn_[KS] for a detailed
discussion about these issues). Presumably standard first-passage percolation processes
belong to this class/([K][[NP]). We do not, however, have any strong indication to believe
that the combustion growth process should fall in the KPZ universality class.

Let us describe the organization of this paper. Sections 2 to 7 contain the proof of
Theoren L]L. In Section 2 we construct the process and show in LEmjma 2.1 that the fam-
ily {T(x,y) : x,y € Z%} of travel times has a subadditivity property. In Section 3 we
obtain, under an assumption on the tail probabilities for the travel times, slowdown devi-
ation estimates on the growth of the clusﬂg(t) in a fixed direction. This is needed to
implement the induction argument explained previously. In Section 4 a coupling between
dimensiond and dimensio + 1 is constructed. The properties we need about this cou-
pling are stated in Lemnja 4.1. This is then used in Lerfnmia 4.2 to prove that if a “weak”
shape theorem is satisfied in dimensibthen the travel times in dimensieh+ 1 have
small enough tails. In Section 5 itis shown in Lenmg 5.1 how to obtain the first estimates
for the induction argument in dimension 1. In Section 6, Thedrein 1.1 is proved using the
previous results. The convex s&f of Theorenj 1.]1 is defined and its properties verified.
Here, a pasting technique requiring a continuity property of the growth is used to com-
plete the proof. This is the content of Lemfma]6.3. In Section 7, the non-isotropy result
is proven. Section 8 contains the proof of the second result of this paper, THeoiem 1.2,
showing how to obtain it as a corollary from Theoren 1.1. One appendix has been added,
with results of a more technical character. In Theofenj A.1 of the appendix some precise
estimates on the hitting probabilities of random walks are obtained. These estimates are
stronger than what is needed for the proof of Thedrer 1.1, but have been kept in their
present form for completeness.

2. Construction of the process and its properties

We will construct the combustion growth process in the hypercubic lafiicewhere
d > 1is the space dimensionality. L¥t = {X* : x € Z?} be a family of independent
random walks, each beingé&dimensional continuous time simple symmetric random
walk starting at siter of total jump rate 1, and& will stand for the corresponding prob-
ability measure on the spa€g; = D([0, c0); (ZHNy of right-continuous functions with
left limits, endowed with the Skorokhod topology and with its Baredlgebral3,.

The combustion growth process starting at thexsigeZZ¢ will be defined as a function
of X. It will be convenient for our purposes to represent this process as a kind of branching
process: we start with a single random walk from sitand once it jumps to an unvisited
site of Z¢ it creates another random walk, which moves independently; next, once one of
the two independent random walks jumps to a site previously unvisited by any of them
it will create a third independent random walk, etc. Our first concern is the asymptotic
growth of the set of visited sites.

Now we will make the above construct formal. Fixe Z¢ and letz] = X*. In
particle terminologyZ; represents the first moving particle of the process starting at
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Setr; = 0 and defines); (1) := {Z](r1)} and

= JQB“ DZy() # x},

which represents the first time when the particleleaves the site. The superscripf in
S77 refers to the dimension and will later be helpful when constructing a coupling between
dimensions. Next we define

Z50) = Zi;gff)) ffO <t=<1,
X1 (t —1p) ift > 1,
which represents the second moving particle of the process created at th¢(siteat
time 2. Here, for technical reasons, we have defined the dynamics of this second particle
from timet = 0 and set it coinciding with the dynamics of the first created particle up to
time 7. We define

$3(2) = {71 (11), Z3(12)}.

Now we proceed inductively on > 3 and recursively define the successive creation
times
. i P . 7X X _
T, = 15'/2',?71%'2{1“ D Zi() ¢ Sy(n— 1)}, (2.1
which represent the first time when some of the partidgs. .., Z)_; leaves the set
S7(n — 1), and the indices

kpn ={k<n-1 :t inf {Z; () ¢ S;(n — 1D} = 1.}, (2.2
>Tp—1
which for eachn are R-a.s. unique, and show which one among the partizigs . .,

77 _, leaves the sef) (n — 1) at timet,. Next we define the correspondiogeatedpar-
ticle,

Z¥ (tn) if0 <t =<1,
Zy = 78 ) 2.3)
XZa ™ — 1) ift>1,,
and set
a(n) '=1{Z1(71), Z3(%2), ..., Z, (ta)}.
Finally, we define
Sy3(t) = S8;(m) ifr, <t <711, (2.4

which is the set of sites ¢£¢ which have been visited by timeat least by one moving
particle. The familyZ* = {Z : n € N} of random walks with a distribution constructed
from the law R of the random walksX will be called thecombustion growth process
starting at sitex. We will denote byP; the canonical probability measure &y, By)
corresponding to the proceg$ and refer taP; as the probability measure defined@ﬁd
endowed with its Borek-algebra and corresponding to the fanlly= {Z* : x € Z%} of

combustion growth processes. The construction above [egs. [2.1)—(2.3)) defines a version
of a coupling between the familiesandZ.
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In order to construct a reasonable filtration for the combustion growth process, so that
for example the random variablés, : n € N} become stopping times, it is necessary to
introduce a branching process associated.tohis branching process will also be useful
to prove rough estimates on the growth of the&jetn Lemm. Fixx € Z¢ and let
Y = Z7. DefineY5 (t) := Z (1) if t < 12, While Y5 (t) := Z5(¢) if t > 12. Then define
recursively, fom > 3,

Yi () if0 <t <1,

25
Zi0) i1, (&

Y () = {

We will call the family Y~ := {Y;' : n € N} of random walks theombustion branching
process Note that due to right-continuity of*, the random variableg, : n € N} are
stopping times with respect to the minimal filtratipf* : ¢ € [0, oo)} in (4, Bg), where
Fri=0(Y*(s) :s €[0,1]) is theo-algebra generated by the proc&ssbetween times
s =0ands = 1.

In the rest of the section we will prove two important and useful properties of the
process. The first is the subadditivity of travel times.

Definition 2.1. For any pair of sitest, y € Z¢, we define théravel timeby

T(x,y):= rigg{t ty e S} (2.6)

In other words,T (x, y) is the first time when the site € Z¢ is visited by some particle
of the process beginning at the site

It follows from the definition and from the processgsbeing right-continuous that
T(x,y), x,y € Z%, are stopping times. Moreover, the fam{l§ (x, y) : x, y € Z%} has
the following subadditivity property:

Lemma 2.1. For anyx, y, z € Z¢,

Tx,y) <T(x,2)+T(z,y) Pg-as. 2.7)
Proof. For anyx, y € Z¢ definet, , = inf{s : X*(s) = y}, which is the hitting time
of y by the random walkx* starting atx. A sequencgxo,...,x.}, L = 1,2,..., of

distinct sites withvg = x andx; = y will be called achain (of length L) connectingx
to y. Then one can check that

L
T(x,y) =it ty s, (2.8)

i=1
where the infimum is taken over all chains of lengthL. = 1, 2, ..., connectingx to y.

The inequality[(2.]7) follows immediately frorp (2.8). |
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3. Slowdown deviations from linear growth

In this section we will derive the first step of the inductive procedure explained in the
introduction: we will show that if the tails of the distribution of the travel tinte®, z)

for some fixedz € Z? decay polynomially fast, then the probability that the S%\tt)

of sites visited at time does not contain a ball of radius, wherer is small enough,
also decays polynomially. We lde; : 1 < i < d} be the canonical basis &¢,

wy = 21%/2/(dT(d/2)) the volume of ai-dimensional ball of radius one, arfd); the
expectation with respect to the mease Also, givenx € Z¢ we denote byx| its
Euclidean norm and define far > 0 the Euclidean ball centered atof radiusr as
B(x,r):={yeZ:|y—x|<r}.

Proposition 3.1. Letn € N. Assume that there is a constantn, d) such that for every
t >0,

C
Pa(T(0.e1) 2 1) < . 3.1
Then, for every such that < 1/(dE4[T (0, e,)]) andz > 0,
Pa(BO.r1) € $9(1) = 1- 2. 3.2)
where
c1(n, d)

co(n,d) =dw

(A ZEf(T(0, en))yntdpn’
The proof of Proposition 3.1 relies on the following lemma.

Lemma 3.1. Letn € N. Assume that there is a constant(n, d) such that for every
t >0,

€3
Pa(T Q. e)) 2 1) = S5y (3.3)
Then, for every > Oandt > 0,
C
Pa(T (O, 2] - )) > 1(E4(T (0, €y)) +6)) < 84;;", (34

whereca(n, d) := 6c3(n, d)4" + 24(d + n)8d+m,

Before proving Lemm@ 3]1 we will establish two rather standard estimates which will
be used at various steps of the proof. We define lthenorm for pointsx € Z<¢ by

Ix|1 ;= |x1| + - - - + |xq|, wherex;, 1 < i < d, denote the coordinates of Forx € Z¢

andr > 0, we letBy(x,r) := {x € Z¢ : |x|1 < r} be the open ball in th&; metric.
Moreover, given any subsdt of Z¢, we will denote by A| its cardinality.

Lemma 3.2. For everye > 0,d > 1andt > O we have

[+ e)]?
elle)

wherel : R — [0, co) is defined by (x) := (14 x) log(1 + x)/e + 1.

Pi(S%(t) € B1(0, (1 +€)r)) = 1 — (3.5)
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Proof. Here it will be useful to express the ﬁ(r) in terms of the combustion branching
processr? := (Y9 : n e N} defined in ). In fact note thaf(t) = U, ., <, (¥2(ta)},
wherert, as defined in Section 2 represents the birth time ofitile born random walk
Z9. We can then clearly write

9o = | @)

n.t, <t

Lety =14 ¢.Then

Pa(s3() € B1O.y0) = Pa( () (¥2(@) € B1(0.y0)}) (36)

n:t,<t

Now letM := {M, : x € Z¢} be a set of independent rate one Poisson processes indexed
by the hypercubic lattice. Furthermore assume lthas independent of;. Now for each

x € Z4 define the processe¥, (-) as follows. Givery > 0, if there is am > 1 such
thatr, < randx = Yno(l',,) we let N, (¢) := total number of jumps up to timeof Y, (¢).
Otherwise we defind/, (1) := M, (r). Note that for every € Z¢ andr > 0, the random
variable N, (+) has a Poisson distribution of parametekower bounding the right hand
side of [3.6), we now conclude that

Pa(s30 c BuOyo) = P () N < v1))
x€B1(0,y1)

=1-r( J o> yn)

x€B1(0,y1)
> 1—|B1(0, y1)| Pa(No(t) > yt).

By an elementary large deviation bound we find tRat(No(¢) > yt) < exp{—tI(¢)}.

Furthermore, since for > 0 we have|B1(0, r)| = ([r]fr’ffl), where [] is the integer

part of r, and(”jn’”) < n™ for n,m € N, it follows that|B1(0, y1)| < (y1)¢. Thus,
Py(S3(t) C B1(0, y1)) = 1— (yt)d exp{—t1(e)}. O

At the next step we will introduce criteria characterizing “weak dependence” of the evo-
lution in far apart space-time regions. Informally, having estimatg (3.5) on the growth
of SS([), it becomes natural to expect that conditioned on the whole evolution up to
time ¢, the random variables (x1, y1) andT (x2, y2) are “basically independent” when-
ever mir{|x1 — x2|, |y1 — y2|} is much larger than'*< for somee > 0, in a sense to be
made precise.

To make this precise, we will define independent families of independent symmetric
random walks. For each € Z¢ define the familyXy 1= {X] 1 x € 74} of independent
random walks, where eacty; is a random walk starting from sitedistributed likeXx*.

The families{X, : y € Z9} andX = {X* : x € Z?} are taken independent of each other,
and their joint distribution will be denoted @
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With each given paity,r), y € Z¢, r > 0, andx € Z¢, we associate the random
variable defined as follows:

X)C

(v - @7

X* iflx—yl<n
X;f if |lx—y|>r,

and the new familyX, ) 1= {X¢, ) 1 x € Z4). From [3.7) it follows that undeR the
family X, -y has the same law a. Moreover, with the Tfandom walks we associate
the corresponding combustion growth procgsand with each family, ) we associate
another combustion growth procesg, ,) constructed using the procedure of Section 2,
taking the familyX, ) as the underlylng free random walks. We will denotengthe
joint law of the processel&, ) . y € 7} andz underR, when taken as the canonical
coordinate process. As before, we defiéy, z) as the time of the first visit to the site
by a moving particle of this process. From (3.7) it follows tiiaty1, y1) is independent
of T, (x2, y2) if |x1 — x2| > 2r, since the familieX,, ) andX(,, ) are then independent
of each other. This is so sine&y, ) is defined using random walks from two different
classes: random walkX™ : |x1—x| < r} from the familyX and random walks frorK, .

To defineX(,.») we use the random walksX* : |x2 — x| < r}, again fromX, and
random walks fronK,,. Since|x; — x2| > 2r, the sets of indicegr : [x1 — x| < r} and

{x : |x2 — x| < r} do not intersect, which implies that all random walks involved in the
above construction are mutually independent, and thus we get independexgg, 9f
andX(xN).

Lemma3.3. Foranyy > 1,x,y € Z4, andt > 0, we have

Py(T(x,y) # Tyi(x, ), T(x.y) <1) < (y)? exp(—t1 (y — 1)). (3.8
Proof. Observe that the occurrence of the evehtx, y) # T, (x, )} N{T(x,y) < 1}
implies that before time at least one random walk of the process which is constructed
using the familyX = {X* : x e Z?) visits the complement of the bali(x, y¢). Thus,
the event{T (x, y) # Ty:(x,y)} N {T(x,y) < t} is contained in(S} () C B(x, y1)}°.
The result now follows fron{ (3]5). o
Proof of Lemma 3.1To simplify notation we setf := E4(T(0,e1)) and T (k) :=
T (ke1, (k+De1), T1(k) := T,ya(key, (k+1ey) for k € N. Assume tha{ (3]3) is satisfied.
Define the event&; = {T'(j) = T1(j)}. Using subadditivity we get

- LtJ_l —
Pa(T(O, |t]e1) > t(E +9)) < Pd( Z T (k) > [tI(E +8)), (3.9
k=0

and decomposing according to the occurrence or anﬂ;ﬁgl G; and using transla-
tion invariance, we bound the right hand side[of 3.9y By(T (0, e1) # T;1/4(0, e1)) +
P Y7ik) > [£1(E + 8)), which, due to the estimat.8) with= 1, and the
assumed validity of (3]3), is smaller than

lr]—-1
P Y ) — By > 1)) + 1@V exp—it + B D (aag)

k=0
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Next we will estimate the first term of the last expression. It follows from the Chebyshev
inequality that

-t i Eq((C MM Tk — E))2m)
Pd< l;)(Tl(k)_E) >5|_tJ) (SLIJ)Z’" ’

(3.12)

with m to be chosen equal to:2and whereE, denotes the expectation with respect to
the measureé®;. Now,

lr]—1 lr]—1 2m

L((Y@mw-b)")= Y E([Joe)-Db). @12

k=0 k1o k=0 j=1

Observe that ik;e; is not in B(k;ex, 2t1/4) then the random varlablé$1/4(k e1, y1) and
T,ya(kje1, y2) are independent for ally, y, € 74, and moreoverEd(Tlm(O e1)) —

= 0. This immediately implies that all terms on the right hand side of the last equality
which contain at least one indéxsuch thak;e; ¢ B(k;e1, 2t/4) for all j # i will van-

ish. On the other hand, the number of non-zero terms in the above sum is bounded from
above by the number of ways of selectimgpairs of indices;, k; € {0,1,..., [¢] — 1},

with the property thateik; — e1k;| < 2t1/4, This immediately |mpl|es that on the right
hand side of[(3.12) there are at mostl/"' L#])™ terms different from zero. Thus contin-

uing (3.12), we have

lr]—-1

((Z(Tl(“ E)) ) =2m54 sup Ed(ﬁ(T1<kj)—E)).
j=1

0<kq,....kon <|t]

By the Holder inequality, the right hand side is boundedﬁyfﬁl Eq(T1(kj)— E)2myL/2m
= E4((T(0,e1) — E)?™). From the inequalitfa — b)" < a" + b", valid for a and
b positive andn € N, it follows that E;((T'(0, e1) — E)?") < 2E4(T (0, e1)®™). This
estimate together with the assumptipn [3.3) shows B@t7 (0, e1) — E)?") < 3cs,
where we have chosem = 2n. Substituting these estimates|in (3.11) we obtain

l1]-1 n
Pa( Z (Tyk) — ) > 611]) = ";fjfn .

Inserting this into the bounfI (3.]10), we see tRatT (O, [7]-e1) > 1 (Eq(T (0, e1))+6)) <
12tV o=t 4 ea /i 4 3c3d /(8447). Sincee™ < (Z)"forx € Randn € N, the first
term of this bound can be estimated (244 )4+4n+d L This proves Lemm@.l.

Proof of Proposition 3]1.0bserve that

PaBOr) € $30) = Pa( () (T©0.2) <1)).
zeB(O,rt)
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Now, by subadditivity, this last quantity can be lower bounded by
d
1= > (X710 ze) = 1),
z€B(0,rt) i=1

wherez; denote the coordinates of Therefore, using the fact thgtjle T, zie;) <
dmax<i<a T(0, z;e;), and

Py(d 1m-a)sz(O’ ziej) > t) > dPy(T (0, z1e1) > t/d),
we see thay(B(0,rt) C S3(1) > 1—d Y. g Pa(T(0.z11) > t/d). But then,
from the hypothesis < 1/(dE; (T (0, e1))) and ), we get the lower bound

ci(n, d)
‘ (£ — Eq(T(0, ex)))Antd)pnyn’

1—dw

which ends up the proof. O

4. Tail probabilities for infection times

In this section we will show that an inverse polynomial bound on the probability that
Sg(t) does not contain a ball of radius for » small enough implies an inverse polyno-
mial bound on the decay of the tails of the random variables, y) : x,y € Z%} in
dimensiond + 1. The main tool needed for this is the construction of a coupling between
the combustion growth processes in dimensiandd + 1 which will enable us to con-
trol the number of live particles in thé+ 1-dimensional process in terms of the number
of live particles in theZ-dimensional process. That is the content of Lethmé 4.1 below.
This lets us conclude that if there is a reasonable shape theorem in diméns$ian

the number of live particles in dimensian+ 1 is at least the number of live particles in
dimensiond (modulo the probability of deviating from thedimensional shape). In what
follows, given a subsef ¢ Z4*+1, we will denote by?C its projection on the firsl
coordinates, so that (x1, . .., x4, Xa41) = (x1, . .., x4). Recall thatP? denotes the law

of ad-dimensional combustion growth process starting from the origin.

Lemma 4.1. For eachd > 1, there exists a probability measugg; defined on the Carte-
sian product?; x 2441 endowed with its Boret-algebra, such that

(i) Qu(A x Qui1) = PY(A) for everyA e By,
(i) Qua(Qat1x A) = PJ,,(A)foreveryA € By,
(iii) foranyt >0,

d
0 0 /
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Proof. In the processes to be considered, it will be helpful to exhibit explicitly the di-
mension of the underlying hypercubic lattice. We will thus considet-dimensional
combustion grovvth process starting at the origift? = {ZOd n > 1}, and the family
X4 = (X4 : x e 7% of underlyingd-dimensional independent random walks. More-
over consider a familx?+! = {x*4+1 : x ¢ 7Z4*1} of d 4 1-dimensional independent
random walks, which are also independent of the farfily-¢}. All these random walks
are simple symmetric of total jump rate one.

Now we will construct a combustion procea8?+1 = cn > 1} on g1,
as a function ofX¢, Z%¢ andX“*1, in such a way that the joint distribution @®¢ =
{297 : n e N} andz0%9+1 = (z%9*1 ., € N}, denoted byQ,, has properties (i)—(iii) of
the lemma. ~ _

First we will define another familx4+1 = {x*4+1: x ¢ 74} of random walks as a
function of X¢ andX“+1, by setting

~ d
Xx,d+l(_) — <Xx,d< . m) ;ffl( )) (42)

wherergflJrl denotes the + 1-coordinate of the random wak*-¢*+1, andx*4(-4t1)
denotes the-dimensional random walk*-¢ with time reduced by a factor af/(d + 1).

In a way similar to what was done in Section 2, we deiﬁ?é”l — X%4+1 Observe that
the firstd coordinates of this random walk coincide wtﬂf’d We then set; = 0 and

T2 = infisoft 1 Z Od+1(t) # 0}. Moreover, we will need to introduce an extra sequence
of random variables whose first two terms will be givenday= 0 ando> = inf;>off :
7979444 (1) # 0}, whereoy represents the first time when the random wafk’**
moves in a direction orthogonal to thet 1-th coordinate axis. Now, define

{ZO ,d+1 .

0,d+1 .
x4 (@ d+l T2 < 09,

yZ 0d+1(rz) d+1 . {

~ 0,d+1 )
X% @A+l it 1 —

and finally define the second random walk of the infection process,

0,d+1 i
Zo’d+l(l‘) = Z 0d+1(t ? o=
2 YZi (12),d+1(t —1) ifr> 1.

In other words, the first activated partiﬁ““rl evolves coupled to thé-dimensional
process if the first jump 022’””rl is orthogonal to thel + 1-th direction, and it evolves
independently of this process otherwise. Now,38t,(2) := {23 (zp), 23" (r)}
and Ietnde,’H(Z) be its projection. Proceeding inductively, fer> 3 we recursively
define

. 0d+1
T, ;= min inf {r: t S n—
pi=,min nf | (1) & SQa(n = D),

. . _d0d+1 d 0
0, = min inf {r:n%Z, t) ¢ T¢S n—1211.
ni= min tzrn_l{ e ¢ a1( )}
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Moreover, we lek, ‘= {k <n —1:inf> {Z;(t) ¢ S;(n — 1} = 7,}, which a.s. has a
unique element. So we define the random walk

70441 gy xZa' NEdtl i o, <o,
Y Zen (o) = S0y a1 (4.3

X%k (W), if 7, = oy,

and then-th particle of the process

ety _ |2 @) if 1 < 7, »
n (t) - Zd‘*'l(r ),d+1 . ( . )

Ykn AT — 1)) if > 1o,

; ) 0.d+1 0,d+1 0,d+1
Finally, we letS9, ;(n) == {Z) (1), Zy T (12), ... Zo ()}, and S, (n)

the corresponding projection.

Speaking informally, the above construction couplesdtftimensional process with
thed + 1-dimensional process in the following way: we begin in dimengianl with a
particle whose firsé coordinates evolve as those of the first particle indkdimensional
process with time reduced by the factif(d + 1), and thed + 1-th coordinate evolves
according to an independent one-dimensional random walk of total jump faiet+11).

Now, if some active particle activates a new one by performing a jump parallel to the
d + 1-th coordinate axis, this new activated particle will evolve according to an indepen-
dentd + 1-dimensional random walk, initially associated with a given site. If the new
particle at sitex € Z4+1 is activated by some already active particle, which performs a
jump in a direction orthogonal to th&+ 1-th axis, but the projection of the firgtcoordi-
nates ofx are in the set already visited by tHedimensional process (with time reduced
by the factord/(d + 1)), then this new particle will evolve according to an independent
d + 1-dimensional random walk, initially associated with a given site. And only if a new
particle at sitey € Z¢+1 is activated by some already active particle, which performs a
jump in a direction orthogonal to the+ 1-th axis, and the projection of the fikgtcoor-
dinates ofy are not in the set already visited by #ielimensional process then the figst
coordinates of this new particle will evolve as those of the particle initdenensional
process, associated to the sitéy, and thed + 1-th coordinate will evolve according to

an independent one-dimensional random walk associated with the site

Thus properties (i) and (iii) are immediate consequences of the construction. On the
other hand, all “underlying” random walks involved in the construction of the family
z20d+1 — {Z,?’d+l . n € N} are independent of each other. Moreover a given random
walk is used to represent the motion of one and only one particle. Finally, since the choice
of the random walk which will be used to describe the evolution of the particle activated
at timer depends only on the state of the infection proags$o time t we conclude that
the constructed familg ®4+1 = {Z,?’””rl : n € N} has the distribution of the infection
process starting at the origin, which proves (ii). O

We are now ready to state the main result of this section.
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Lemma4.2. Letn > 1 be a natural number. Assume that there is a constant 0O
independent o and the dimensiod and a constants(n, d) depending om andd such
that for everyr > 0,

PO(B(O.rt) C S%t)) > 1— 5—5 (4.5)

Then for every e Z4*! there is a constants(n, z, d + 1), depending om, the sitez
and the dimensiod, such that for every > 0,

PO (T(0,2)>1) < t% (4.6)
Proof. Let
4 \4
va(r) = wdrd<d—+1> .
Note that by Lemmp4]1,

PR 1018911 (0] < va(Mt?) < PR(ISY(1/(d + 1) < va(r)i?).
A combination of this fact and the hypothesis {4.5) gives

d+1\" ,d
PO 10150, 1 ()] < va(rt) < (7) =l @.7)

Now lete < 1/2. Then

P (T(0,2) > 1) < PQ1(1S9,1(t™)| < va(r)t?®)
+ P4 (T(0,2) > 1,189, 1) > va(r)t?®)
- cs(d + )"
- dntnot
+ P A(T(0,2) > 1, |89 1 (t™)| = va()t™, 89,1(t*) C B(O, (e — 1)1%)). (4.8)

+ ((e — D)L exp(—1%)

Here, in the second inequality we used inequality|(4.7) and Lenma 3.2withe — 1
together with the fact thag1(0, r) ¢ B(O, r) for r > 0. The last term on the right hand
side of ) is smaller than the probability thair)r?* independent random walks born
at times< r* and at sites within Euclidean distan@e— 1):* from the origin do not hit
sitez at timer. Then

PO (T(0,2) > 1, 1S9 41 (t™)| = va(r)r™, S9,1(t%) C B(O, (e — 1)t*))
<( sup P> (49

x|x—z|<(e—D)r“
wherer is the first hitting time of the origin by d + 1-dimensional simple symmetric
random walk of total jump rate one starting from sitand P, is its law. Now, ford + 1
= 2 andr large enough, we can use Theorem]A.1(iii) of the appendix, the fact that
Pi(t > 1) < Py(r > t)if |[x|1 < |yl1 and thate < 1/2 to bound the right hand

side of ) by(2cx’)”1’“/ = exp(—v1|log(2a’)|t""), wherea’ is some number such that
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a < o’ < 1/2. We then conclude that for every > 1 there is a constant/(n, z, 2)
(depending om, the sitez, and where the 2 indicates that it corresponds to a bound for
d + 1 = 2 and that it will also be defined fat + 1 > 3) such that7(n, z, 2)/t"/* is a
bound for the right hand side gf (4.9). Finallydf+ 1 > 3, as in the casé + 1 = 2, we

can use Theorem A.1(iv) to get fotarge enough the bound

va (r)rde @
1 cg(z, d) < expf - vgcgt ’
(Zt)(d—l)a 2(d—1)0¢
wherecsg(z, d) is a constant depending only erandd. For everyn > 1, this is in any

case at mosty(n, z, d+1)/1"/* for an appropriate constast. Combining these estimates
with (4.8) we see that

d+n" 1 4 o+l e, 7L d+ D)

0
Pd+1(T(O’ ) >1)=cs ar ho /4

Choosinge = 1/4, we deduce the existence of a consw@it, z, d + 1) depending on
n, z andd such that[(4]6) is satisfied. i

5. One-dimensional estimates

The objective of this section is to obtain good enough estimates on the tail probabilities of
the stopping time$T (x, y) : x, y € Z} in dimensiond = 1. This will enable us to apply
Propositiorf 3.l and then Lemrpa}4.2 to begin the induction argument. To obtain the tail
estimates we will first need the following lemma which gives us control on the number of
live particles at time.

Lemma 5.1. There is a constantg such that for ever) < o < 1/3,

1 _
Pr(IS2(1)| < 1) < exp(—étl"‘) whenever > cg/ ‘™%,

Proof. Let A1, = 1,41 — T, Where{r, : n € N} are the stopping times corresponding
to the birth times of the successive particles of the combustion growth process defined in
(2.7). First note that for & « < 1/2 andr > 0,

L*)
PUISYO < 1) = PR(xyeyia > 1) < e EY([Ter2™), (51
k=1

where in the last inequality we have used the Chebyshev inequality; recalkthiat
the expectation with respect #®,. Now, let 7, be theo-algebra of events prior to the
stopping timer,,. Then, by the strong Markov property,

L]
E](_)( 1—[ e"ATk) < E](-)(errlEg(erl’z . Eg(grqﬂwrlj |‘7:|20‘J) - | _73'](.)))’ (52)
k=1
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where{]—“t0 .t € [0, 00)} as defined in Section 2 is the filtration generated by the asso-
ciated one-dimensional combustion branching prod€saVe now claim that there is a
constantg > 1 such that for every naturaland real such that < 3/(2k),

EQ(e™ | F) ) <y (5.3)

This is enough to prove the lemma. Indeed, using the fac@ihiﬂlk = %[t“](1+[t°‘]) <
[2%] and substituting[ (5]3) irf (5]2), anfi (5.2) in (6.1), we obtaip|s2()| < 1) <
e~"et™ Nc10 whenever < 3/(2([t*] + 1)). Hence, choosing = 3/(2:%) we conclude
that
P10(|Sg(t)| <t% < e I =5t

Therefore, the statement of the lemma follows if we chagse In c1p.

Thus, it remains to provg (§.3). Recall that= 0 while we haveP{(ti 41 > 1| FD) <
Po(T > )k for k > 1, whereT is the first-exit time of a random walk from the set
Sk := [—k, k], and Py is its law. Then from standard estimates (dee [A]lor][BR]) we
obtain

PP(try1 > 1| FQ) < (c110(Sp)t + D2 0Nk

for k > 1, wherec11 > 1is a constant. Here, for any intervalc Z with [ = |1], A(I) =
1- cos(li—l) is the principal Dirichlet eigenvalue of the normalized discrete Laplacian on
I defined asAf(y) i= 5 Y g oe1(f (X + €) — f(x)) for functions f : Z — R which
vanish outsidd . Thus,

o

EQ(e | By < 1+ ckir / (St + DY 2e2Snk gy (5.4)
0
forall k > 1. Now, for|x| < 1 we have
2 2
1
2>1_cosk > (1-) > 242
X = =3 = 3)(3
Hence, sinceS;| = 2k + 1 we have

7T2>A(S)>NZ1 1 1 2
a2 =" =gzt L2\ as2)

2 . 1 1 2 .
Butz< > 9.8 Wh||e@ > 111 and 1— # > 0.99if k > 10, SO

2 2
1 1 1

T - 1- = > — if k> 10.
8 k2 (1+ £)2 482 ) = k2

It follows that 2/k2 > A(Sx) > 1/k2if k > 10. Making the substitution = ¢/k2 in the
integral of [5.4) we get

]
EQ(e"™4 | FQ) < 14 cfyrk® f (2x + DN/2e™ AR gy (5.5)
0
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wheneverk > 10. Looking at inequality[ (5]4) directly again, it is easy to see that the
conditional expectatiomff(e”k+1 |]—",9) is bounded by some constant independerit ibf

1 < k < 9. Therefore, provided we change the constanif necessary, inequality (5.5)
continues to be valid for every> 1. Now, if r < 1/(2k), we have

/OO(Zx + 1)](/287)6]((1710') d.x
0

< (20412 ooxk/zeka/z dx — L/z Ooxk/Zefx dx
- 0 (k/2)k/2+1 [y
202 [k 20)K/2 (| \M? 8
(k/2)k/2+ 2 (k/2)k/2+1\ 2¢ vk
< 8x 2K/?,

HereI'(x) is the gamma function. Substituting this estimate ifto] (5.5) we conclude that
E(e" ™ | FP) < 14 8rk?(c11v/2)F < 1+ 4k(c11v/2)x.

Finally, from the inequalitye < e* we see that the clainf (3.3) is true wheneves >
dec11V/2. O

Now we state the main result of this section.

Lemma 5.2. There is a constant;2 > 0 such that

(174

Pi(TO,1) >1) < 2<tm> whenever > cio. (5.6)

Proof. Let 0 < o < 1/3. From Lemma 5]1 we conclude that there is a constant O
such that whenevers cg/ =%,

PUTO, D) > 1) <e 12 L py(T(0,1) > 1, |S(t/2)] = 1%/2%)

<e AL sup Ptz t/2) %
70 |z| <14 j2¢

<e AL sup Pu(to=t/2) 1%,
z:|z|<2+41% /2%

where for every sitey, Py is the law of a random walk starting from andz, is the
hitting time of y. Now, by Theorenj AJi(ii), the right hand side above is bounded by
(20/1Y/2=)"/2* for ¢ > 2141/ g0 that choosing = 1/4 andci2 > maxce, 2°/4} we

get [5.6). |
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6. Proof of the shape theorem

First note that by Lemnja§.2, far= 1, the hypothesi$ (3.1) of Propositjon[3.1 is satisfied
for everyn. In other words, for every € N, there is a constant;(n, 1) (where the 1
stands for dimension one) such tHa(T (0, e1) > t) < c1(n, 1)/t*"*2 for everyr > 0.
Hence, an application of Propositipn 3.1 shows that for eveey1/(E1[T (0, e1)]) and

n € N, there is a constanb(n, 1) such thatP1(B(0, rt) C Sg(t)) > 1—co(n,1)/t"

for all r > 0. Therefore, the hypothes|s (4#.5) of Lemma| 4.2 witk- 1 is satisfied, and

we deduce that in dimensiah = 2, for everyn € N andz e Z? there is a constant
c1(n, z, 2) such thatPo(T (0, z) > 1) < c1/t"/* for everyr > 0. We continue in this way

by induction ond, applying Propositioh 3]1 and Lemina}4.2 alternately, to conclude that
foreveryd > 1,r < 1/(dE4(T (0, e1))) andn € N there is a constamb(n, d) such that

Pa(B(O, r1) C $3(1)) = 1— CZ(Z; D 6.1)

and that for everyl > 1,n € N andz € Z¢ there is a constant (1, z, d) such that
c1
Py(T(0,z) > 1) < o (6.2)

In particular, for every/ > 1 andz € Z¢,
E4 (T (0, z)) < oo. (6.3)

We will now proceed to prove some ergodic properties of the collection of stopping times
{T(x,y) : x,y e Z%)} that will enable us to apply the subadditive ergodic theorem.

Lemma 6.1. Consider the collectiof7 (x, y) : x, y € Z%} of travel times.

(i) Foreachz € Z¢ — {0}, {T((k — 1)z, kz) : k > 1} is a stationary ergodic process.
(i) Foreachz e Z¢ —{0yandj € N, {T(jz,(j +k)z) : k = O} = {T((j + Dz,
(j + 14 k)z) : k > 0} in distribution.

Proof. Let z # 0. Part (ii) is a consequence of translation invariance. Note that the sta-
tionarity of part (i) is a consequence of translation invariance. To prove ergodicity, note
that it is enough to show that for any pair of Borel subsgt® of [0, c0),

k”m Pa(T((k —1)z,kz) € A, T(0,2) € B) = Py(T(0,2) € A)P4(T (0, 2) € B).
— 00
Now let us remark that for any @ R < 19, the event

=[50 ) < oo e 50 )} o i) <2 (04750
Ak_{Sd <40>CB<(I< e R—= ) 10154 25) € B0 R

k k
N {T((k — 1)z, zk) < ﬂ)} N {T(O, 7)< ﬂ)}
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decouples the random variablB§(k — 1)z, kz) andT (0, z) for k large enough. Therefore,
Py(T((k — Dz, kz) € A, T(0,2) € B) = Py(T((k — Dz, kz) € A, T(0,2) € B, Ay)
+Pa(T((k — Dz, kz) € A, T(0,2) € B, A).

Now, by decoupling the events,, the first term of the right hand side above can be
expanded as

Py(T((k—1)z,kz) € A, Ap)Py(T(0,z) € B, Ap)
= Py(T(0,z) e A)P;(T (0, z) € B)
— Py(T(0,z) e A, Az)P(T(O, z) € B)
— Py(T((k — Dz, kz) € B, A Pa(T(0,2) € A).

Thus, if 19> R > 2, by the estimatd (3.5) of Lemrha B.2, which establishes that the set
of visited sites is contained in some ball, and estinfatq (6.2), fomaayN andk large
enough,

|Pa(T ((k—1)z,kz) € A, T(0,z) € B) — P;(T(0,z) € A)P4(T(0,2) € B)| < 3P;(A})

< 6<(2k)de—kI(R—l)/40+ %)

which completes the proof of part (i). O
We are now in a position to apply the subadditive ergodic theorem (see Liggett [Li]).
In fact, fix z € Z4, z # 0, and consider the family of random variablg&(nz, mz) :
n,m € N}. By Lemmg 2.1l this family is subadditive. Then by the stationarity and ergodic

properties proved in Lemnja .1 and the finite expectation of each of them expressed in
the bound[(6J3), we conclude thBj-a.s.,

T (0, nz)

lim

n— oo

= 1d(2), (6.4

where

pa(z) = inflM _ jim Ea(T©.n2))

n n— oo n

(6.5)

Note thatuy(nz) = nuq(z) for everyz € Z4 andn € N, anduy(0) = 0. This leads to
the following definition:

Definition 6.1. For eachg € Q¢ — {0}, letn, be the smallest positive natural number
such thaygn € Z¢, and definey, := gn,. Now for anyg € Q let

Md(zq) .
lq1 ifg #0,
wa(q) = 1241 (6.6)
0 if g =0,

wherey, (z) is defined ir6.5). We refer to the sefuq(q) : ¢ € Q7} as thetime constants
associated to the combustion growth process.



314 A. F. Ranirez, V. Sidoravicius

A similar quantity can be defined in the context of first-passage percolation (see Kesten
[K]) and is analogous to the Lyapunov exponents introduced by Szniimah [Sz1] to study
some large deviation principles of Brownian motion among Poissonian obstacles. In our
context, the quantityi,;(g) represents the time needed for the S%U) to reach the
pointq. We continue with the following linearity and subadditivity properties of the time
constants.

Lemma 6.2. For anygq, r,s € Q¢,

D walsq) = sualq), 6.7
(D) palg +r) = palq) + pa(r). (6.8)

This is a simple consequence of the definitipn](6.6) of the time constants, and of the
subadditivity of the famil{T (x, y) : x, y € Z4}.

Let us now begin with the proof of Theorém 1.1, defining the set that will correspond
to the limiting shape of the set of visited sites in the combustion growth process.

Corollary 6.1. Consider the following subset &:
Ci=1q € Q' palq) < 1,

where{uq(q) : g € Q¢} are the time constants associated to the combustion growth pro-
cess. LeC, be the closure of § in R4, ThenC, is a closed convex bounded subseRéf
symmetric under permutations of the coordinate axes and with a non-empty interior.

Proof. By definition, C, is closed. To prove it is convex, it is enough to show ifigtis
convex as a subset @¢. But this is a trivial consequence of the linearity and subadditivity
properties expressed in Lemfnal6.2. Next note thyde;) > 0 by Lemm4 3.p. This shows
thatC, is bounded along each coordinate axis. Combined with the convexdy,ahis
implies its boundedness. Sinég (7 (0, ¢;)) is independent of k i < d, it follows that

C, is symmetric under permutations of the axes. Finally, the factEh€ér (0, ¢;)) < oo

and convexity imply tha€,; has a non-empty interior. O

We now proceed to complete the proof of Theofem 1.1. As a preliminary step, which will
be used as a fill-up technique, we prove the following.

Lemma 6.3. Lets be such that < 1/(3dE;(T (0, e1))). Then for every: > 0O, P;-a.s.
eventually ire, we have
(S(1))as: C SY(t + at),

where forA ¢ Z¢ andb > 0, we defined, := {x € Z% : infyca |x — y| < b}, the
b-neighborhood ofA in the Euclidean norm.

Proof. We will essentially use three elements: the subadditivityZad, y) : x, y € Z%)
(Lemmg 2.1); the internal balls assured by inequafity|(6.1) witarge enough; and the
external balls, giving an upper bound on the speed of growth (Lgmrha 3.2). We first need
to consider the event that the boundary of thesg(at) of sites visited at timeis contained
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in a ring whose size is proportional toSo letr > 0 be such that < 1/(dE4(T (0, e1)))
and

E, :={B(0,rt) C $9(r) C B(O, 2r)}. (6.9)
By Lemmg 3.2 and (6]1) we know that for everyhere is a constanb(n, ) such that
c2 (20

DefineR, := {x € Z% : x € B(0,2t + ast), x ¢ B(0,rt)}. Leta’ > 0. Now cover
R; by a finite numbev (independent of) of balls of radiusa’s. We can suppose that
these balls ar€B(tx;,a’t) : x; € Ry for 1 <i < N}. For every ball from this collection
which intersectsSg (¢), we choose one point; € Sd(t) N B(tx;, d't). Define F, =

E: N UlNzl{B(tyi, 3a't) C Sg(3a’t/r)}. Then, by ),9) and translation invariance,
for everyn there is a constanb(n, d) such that

cor (2n)?
(Sa/t)” etl(2) :

Pa(FS) < f—z rN (6.10)
On the other hand, i € Sg(t)a/,, then there is a; such thaty — y;| < 3a’. Therefore,
sincey; € Sg(t),whenevelF, occurs we hav& (0, y) < T(0, y;)+T (y;, y) < t+3d't/r.
In other wordsS{)’ ®)a: C Sg’ (t +3a’t/r) C F,. lf we choose:r’ = as, an application of
Borel-Cantelli together with the estimafe (§.10) proves the lemma. O

Now, the following lemma together with Corolldry 6.1 finishes the proof of Thegremn 1.1.
Lemma 6.4. For everye > 0, P;-a.s. there is ag > 0 such that
[Cat(1—€)] € S%(t) C [Cat(L+€)] whenever > 1.

Proof. Forr = (r1,...,rq) € R, we define f] := ([r1], ..., [r4]) € Z¢. Lete > 0.
First we will show thatP;-a.s. eventually in we have

[Cat(L—€)] C S4(2). (6.11)

We remark that for any > 0, if ¢ € Q¢ — {0} and Zq € 7% is given by Defini-
tion[6.1, then §z,/ua(zy)] = [sq/1a(@)]. AlSO, (z9)ils/1a(zg)] < [(zg)is/1a(zq)] <
(zg)i([s/ma(zg)] + D forl <i <d.Finally,ify € 74 differs fromz, at most by one in
each coordinate, then reformulatirig (6.6) we find thatlim 7'(0, y[t/ua(»)]D/t = 1
P;-a.s. Combining these three facts we conclude that for eyeey Q¢ ande’ > 0,
P;-a.s. eventually im,

T(0,[qt(1—2€")/pa(@)]) <1(1—¢€). (6.12)

Thus, for everyg € Q¢ ande’ > 0, P;-a.s. eventually irr, the point fr(1 — 2¢')]
belongs toSf}(t(l—e’)). Since k], = B(x, a) for x € Z¢ anda > 0, choosing’ = ¢/2,
by Lemmd 6.8 we conclude that there isran- 0 such that for every e Z9, P;-a.s.
eventually inz,

B(lqt(1— €)/na(q)], rte/2) C S(). (6.13
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Now, choose a numbed = M (¢), depending om, of pointsga, . .., i € Q7 such that
given any pointp € Q¢, we have

. i re
inf P LI A

. 6.14
1<i<M | pa(p)  pa(qi) 3 .

In other wordsye-neighborhoods of the pointg, normalized to be on the boundary of
Cq, cover the boundary daf;. By (6.13) we conclude thak;-a.s. eventually im one has
Ut<jep Blait(L—e)/ualgi)], rte/2) C Sg(t), where we have used the fact that the set
of pointsgz, . . ., gum is finite. Now, again by Lemnia 8.3 (or also directly frdm {6.1)) we
conclude that it = maxi<ij<m |gil/1a(qi), thenPz-a.s. there is & such that

BO,wov)U | ) |J BUais(L—e)/nata], rse/2) c $3() (6.15)

fo<s<t 1<i<M

whenever > ro. But by the definition o, and by [(6.1I4),
[Cat—e] c BO U | ) |J Blair@—e)/malg)], rie/2).

fo<s<t 1<i<M

Hence, by[(6.15) we obtain the lower boupd ($.11).
To finish the proof one has to show that-a.s. eventually in,

Sq(t) C [Cat(L+ O)]. (6.16)

First, let us remark that as i12), one can show that for eyeeyQ? ande’ > 0,
Pj-a.s. eventually in,

t(1+€) =T, [gt(1+2€)/na(@D. (6.17)

Let us now choos@/ (¢) andqs, . .., g as in [6.1#), and define the ragg, (1) = {x ¢
Cyt(1+e€) : x = vg; for somev > 0}. Then, choosing’ = €/2in (6.17), we see tha-
a.s. eventually im, (U ;<[ Ry, (t(L+€)]) NSt (1+€/2)) = #. Now, by Lemma 63
there is an- > 0 such thatP;-a.s. eventually im one has(Sf}(t))ret/z C Sg(t(l +€/2)).
ThereforeP,;-a.s. eventually in,

(S9Dretj2N | [Ry(t(1+€)] =0.
1<i<M

By the above an4), there can be no poinfj(r) at a distance smaller thatzr/2
to the raysk,,, 1 <i < M. It follows that P;-a.s. eventually im,

59(1) ch—( U [Rq,-(t(1+e))]) :
1<i<M ret/2

But again by[(6.14), the right hand side above is containedim(L + €)]. This proves
(©18). D
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7. Non-isotropy under the Euclidean norm

We proceed to prove that for high enough dimensignthe limiting shape’y is not a

ball under the Euclidean norm. It is enough to show that to leading order in time, for high
enough dimensions the growth &f(¢) is faster in the axial direction than in the diagonal
one. We state this more precisely in terms of the time constants in the following theorem.

Theorem 7.1. Consider a combustion proce28 starting from the origin in the-dimen-
sional lattice, and the corresponding time constapis(z) : z € Z¢} defined i). Let
z1=(@1,...,1) e Z%ande; = (1,0,...,0) € Z4.

(i) Foreverye > Othere is a constant (¢) > 0 such that
paler) < CdY3¢  wheneved > C(e).
(i) Ford > 1, we have

1

——pa(z1) = dY2.

|zl
To prove (i) we will need to introduce some quantities and prove a couple of lemmas.
First, it will be necessary to define the so calleoint-to-plane passage time&iven
n € N, we define

U@©,n):= inf {T(0,2): mz =m},
zeZ4

where for 1< i < d, ;z denotes thé-th coordinate of. U (0, n) represents the first time
the hyperplaner1z = n is visited. The following property of the point-to-plane passage
times will be useful.

Lemma 7.1.

ple1) = inflw _ im EaWO@.nm)

n n—oo n
Proof of Lemm& 7]1 Note that for any natural we haveU (0, n) < T (0, z) if w1z = n.
It follows from the integrability of the travel times that(0, n) is integrable. Now, it is
easy to verify that the family of functiong(n) := E;(U (0, n)), indexed by naturat, is
subadditive. The existence of lim -, E;(U (0, n))/n and the second equality are conse-
guences of this property. The first equality follows easily from the definition of the time
constaniu(e1) together with the convexity of the limiting sé€y;. O

Denote byH, = {x € Z¢ : m1x = n} the hyperplane orthogonal to the first coordinate
axis and passing through= (, 0, ..., 0). Our second lemma is a key step in the proof

of Theoren{ 7.]1(i). It gives an estimate on the number of visited sites in the hyperplane
Hy for times which are short compared with the dimension.

Lemma 7.2. For everyl/5 < 8 < 2/5and0 < € < 8 — 1/5there is a constan€ (¢)

such that

dﬁ d4ﬂ726
d oz

Py(|Ho N $9(d?)| > d?#~¢) > 1 — 102 wheneved > C(e).
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Proof of Lemma 712 The proof consists basically of two steps. First, we will show that
with a high enough probability which decreases withany single random walk in di-
mensiond large enough visits sites by timer. Hence, by some timg® with « < 8,
there arel* random walks. In the second step we will show that if we wait an additional
time of orderd?, then each one of these random walks will in turn vigitnew sites,
producing a total o/t random walks by tim&* + 4#. A key feature of this proof will

be the fact that the dimensiahis much larger than the ordéf of the times involved.

First recall that the family of combustion growth processes can be constructed from
the family of underlying free random walké := {X* : x € Z?} (see Section 2). We
denote byC, (7) the set of visited sites of* up to timer. Our first step will be to obtain
a uniform estimate on the cardinality 6§(¢) intersected with a collection of sets of high
enough cardinality. More precisely, we will prove that

inf (|Co(t) — Al > L) exp{ (7.2

t
ACZA 1 |A|<d*/5 100 100}

whenevew > 4 and:r < d/2. So for the moment fixd ¢ Z? such thaiA| < d*/°. Set
A:={i:1<i<dand|mz|] = 1forsome; € A}.

Note that sincdA| < d%°, also|A| < d*¥®. Now, we can estimate the cardinality of
Co(t)— A in terms of the number of coordinates of the random vilkhat have changed
up to timer and do not belong tal. In fact,

ICo) — Al = D (1—6;(t)),
icAC

where A denotes the complement gfin {1, ..., d} andé; (r) denotes the random vari-
able which has the value 0 X¥° has performed a jump in theth coordinate, and 1
otherwise. Therefore,

! c
<|Co(t) —Al = 1_00> > Pd<i§: 6i(1) < d(A°) — 1—00) (71.2)

whered (A°) := | A¢|. Now, by the Chebyshev inequality for every- 0,
P 0 t >d AC o < E )‘ZIEACOO) A.(d(.A() t/lOO)
d(ZA (1) = d(A°) 100) ale Je~
— ((1 _ e—[/d) + e—l/de}»)d(Ac)e—)\(d(.Ac)—1/100)’ (73)
where we have used the independence of the random variatdesl the fact they have
a Bernoulli distribution of parameter /4. Now, using the bounds™ < 1 — x + x2

and 1— ¢* < x, valid for x > 0, we can conclude thafl — e='/4) 4+ ¢~ "/de* <
t/d + (1 —1t/d + (t/d)®)e*. Hence, we can upper bound the left hand sid@ (7.3) by

d(A°) c
AR A1/100 [ d(A°) o
(1 <1 p e )d) e < exp{ (1 p e ) p t+)h100 (7.4)
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Now, sinced > 4, we have - 1/d/®> > 0.2. On the other hand, sinece< d/2 we have
1—1/d —e 1> 1/2—-2/5=1/10. Hence, using the fact thdt.A) > d — d*/°> we

conclude that
d(A°) t 1 1 1 1 1
1—— — >(1-—==])(=- > —.
d ( a ¢ )= as)\27¢ )= 50

Therefore, for. = 1, the left hand side of (7.4) can be upper bounded by-ex{100}.
Substituting this back iff (7.4) and (7.2), we obt&in{7.1).

We are now ready for the second step of the proof. Let® < 8 < 2/5 andd > 4.
By (7.1), we know that with a very high probability, at tir#&, the first random walk
Zg of the combustion process, which starts from the origin, has vigit¢d00 sites. If
d is large enough, thed? >> d* in the sense that lipL, o d%/d? = 0. We want to
argue that each of the random walzg, n > 1, created by the first onég between
times 0 andZ?, will visit about 4# /100 different sites, making a total @f**+# /10000
new random walkers. First, let us linearly order the site&fThen each subset @
inherits this order and we can writéy(d%) = {x1, ..., x»}, Wwheren = |Co(d%)| and
x1=0<x3 < --- < x,. Now, given any subset c Z¢ andm € N we denote byA),,
the firstm sites of A according to this order i < |A[, while (A),, = A if m > |A|. We
then make the following recursive definition. First, ket := Co(d*) and

Az = Cy, (dP) — (A1)ys.

Note thatA; is a subset of the set of sites visited by the random \katkup to timed”
and which do not belong t@A1) ;6. We then define recursively, for2 k£ < n,

k—1
Ak = Crpp (@) = | (A s
i=1

Now let E1 be the event thatCo(d®)| > d*/100, and for 2< i < n, E; the event that
|A;] > d#/100. Furthermore, defing; as the event that the random watl® has not
exited the hyperplanély before timed®, and F»> as the event that at leastA d* — 2
random walks from the set @afA d* — 1 random walkg X*2, X*3, ..., X*»nd*} have not
exited the hyperplangly before timed”?. Note that

nAd®
U (Aas c S%(a* +aP).
i=1

Since by definition, the collectiof{A;) s : i > 1} of sets is disjoint, and A d* — 2 >
d®/100— 2, we have the lower bound

nAd®

d” d?
Py( 1Ho N S%(d* + d® — —2)— ) > P;({FANELN E;NF). (15
d(| 0N 59 +d>|z<1oo )100)2 a(1FL0 En) N 2). (7.5)
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Using the estimat®;(A N B) > P;(A) + P;(B) — 1 for any eventsi, B, we can lower
bound the right hand side of the above expression by

nAd®
Py (F10 E1N Fy) + Pd< N E,») —1 (7.6)
i=1
Now, note thatP;(F1NE1NF?) = P;(F2| F1NE1) P;(F1NE1). Butthe probability offy
is the probability that a one-dimensional random walk of total jump radedbes not exit
the origin by timed“. Thus,P;(F1) = exp{—d%/d}, andP;(F1 N E1) > exp{—d®* /d} +
P4(E1) — 1. Similarly, if we defineY as thes-algebra generated by the random wal
andp :=n Ad“ — 1, we have

Py(F2| F1NE1) = Eq(Eq(F2| X) | F1N E)
—dP —dP _ 4P
= Eq(Ea((e™ /)P + pe™ /P11 — ey | FL 0 EY)).
Butsince 1— x < e * < 1 —x 4+ x2/2for 0 < x < 1, the argument of the expectation
above is lower bounded by
d? a 4%
1—19(17—1)?4-[7(19—1)? Pz Z

wheneverp > 1. But onF; we haved®/100— 1 < p < d“. Thus, ifd > 200%%, we
obtain the lower bound
d2a+2,3
Pa(F2| F1NEp) = 1— 7

Using again the estimate* > 1 —xforO<x < 1, and inequalitl), we see that

d20!+2f3 4 4 dP d20(+2f3

Py(FINEINF) > (1- l—e 10— —)>1-(1+400H— — ——
a(F1N Ey 2)_< 72 )( e d)‘ 1+ )d 72
wheneved > max2007¢, (100(1 — «)/a)Y/?}, where we used the fact that?“/100 <
400%d® /d for d > (100(1 — ) /a)Y* and that(1l — &) /o < 4 for 1/5 < o < 2/5.
To estimate the second term(ﬂl@fﬁ E;) of ), since for anyn < d“, we have

|UM (A gs| < d*HP < d*/5 (because O< o < B < 2/5), we can apply recursively,
via conditional expectation, inequalify (¥.1) to conclude that

nadP
Pa(([) Bi) 2 @— @101 — o~ 100", 7.7
i=1

Now, for anyy > O we have - 1/y < e™YY < 1—1/(1+ y). Therefore,

B dP
_ _dPj100,dP o dar o dar
(1-e O > exp{ 2dP /100 _ 1} 21 2dP/100 _ 1
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But sincee® > x for x > 0, we havee?’ /190 > 4(5/100%/% for any$ > 0. Therefore,
¢4°/100 -1=> $d(8/100Y% wheneverd > 2(100/8)Y°. Hence, from ) and the
supposition thag > « > 1/5, we see that

nadP l/a B 1/8 B
1/100 d? (100 d
r(8)= (3(0) )G (F) )=

i=1

whenever > 2 x 500°. Putting togethef (7]5)~(7.7) we obtain

b dP dB J2et2s
1 s - = (g 2) ) = 15506~

wheneverd > 101, where we used the fact that:-2500° < 10, Finally, choosing
a = B — ¢ we obtain the desired conclusion. O

Proof of Theorer 7]1. Proof of part (i\We will make use of Lemm@a 7.1, so that good
enough lower bounds on the tail probabilitig(U (0, 1) > ¢) of the point-to-plane pas-
sage times will prove the theorem. First fixX®2> y > 8 > 1/5and O< ¢ < 8 — 1/5.
Note that

Py(U0,1) < d”)
= P4(U(0,1) <d” ||HoN S%dP)| = d® =€) Py(|Ho N S%(aP)| > d?~). (7.8

The probability P, (U (0,1) > d” ||Ho N $%(d#)| > d?=<) can be bounded above by
the probability that?#—< independent random walks in the hyperpldigat time d#

do not hit the hyperplanéf; by time d”. If t; := d” — dP, this bound is given by
P(t > td)dzﬁ_é , WhereP is the law of a one-dimensional simple symmetric random walk
x; of total jump rate ld starting from the origin 0, and is the first hitting time to 1.
Now, P(t > t4) < P(x;, < 0). On the other hand?(x,, <0) = Q(N,, — M;, <0) =
Yoo Q(N;, < m)Q(M,, = m), whereN; and M,, s > 0, are independent Poisson
processes of rate/12d), and Q is their joint law. We therefore have

o0 1 m
P(t > tg) < e 14/(2d)e™"/PD N " Q(N;, <m + 1) (’i)

P = m + D1\ 24
cotald LM (14l
se Ut =t \utad 2a)

where in the last inequality we used the fact that/” < 1 — 1/(1+ y) for y > 0. But
ford > 2/2-Y) we have; < d” < d/2 and hence;/(ty +d) > %td/d, so that
fa _ta Lt
tg+d 2d ~ 6d
It follows that wheneved > 21/(1-¥) then

1,
P tg) <1———.
(t>14) < 64
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Thus, wheneved > 21/1~7) we have

2B—¢
115\¢
Py(U(0,1) > d” | |HoN $3(aP)| < d*P~¢) < (1 — (—33")

And sincer; > d? /2 whend > 21/ =) we see that it/ > max(2¥/—#) 21/A-r)}

then
d2ﬁ—s

11
v L 2p—¢ ==
Py(U(0,1) > d” ||HoN S3(d")| = d™™%) < (1 12d1_y>

Plugging this estimate into inequalify (¥.8) and using Lerima 7.2 with p < 2/5 to
bound the second factor of the right hand sid¢ of|(7.8), we get

2B—¢
11\ df  a%2
P 1 "> (1-(1- =———_ (1-10t2—
1 (U (0, )Sd)_< ( 12d1—V) > ( y 72 >

1 dZﬂ—e dﬁ d4/3—26
>(1- - = (1-102= —
—( exp{ 12 4 }> < PR )
wheneverd > C’(e, B, ), whereC’'(e, B, y) is some constant depending only eng
andy. Choosing8 = 1/3+ ¢, y = 1/3+ 2¢, ande > 0 small enough, we see that

the exponential in the above inequality decreases to zero like-@¢g>}. Hence, for
d > C"(e), whereC”(¢) is a constant depending only enwe have

dl/3+2€
Py(U(0,1) > d¥/3t2%) < ZT. (7.9

On the other hand, it is not difficult to see, using a similar argument and Théorém A.1(ii),
that there is a constat > 0 such that

1/2 df~¢
Py(UO,1) >1) < <CW> (7.10

whenever > d'*¢. From estimates (7.9) and (7]10) we easily conclude that there is a
constaniC””(¢) such that

E4(U(0,1)) = E4(U(0,1), U(0, 1) < d¥/3+%)
+ E4(U(0,1),dY3% < U (0, 1) < d*)
+ Eq(U(0,1), U0, 1) > d*+)
< qV/3+2 4 033 | (Y3,
whenever > C"(e). Now Lemmd 7.]l completes the proof of part (i).
Proof of part (ii). Lete > 0 andn € N. Note thatP;(T (0, [(1 + 2¢)n] - z1) < nd) <
1— Py(S%(nd) C Ba(0, (1+ €)nd)). Hence, by[(3),

(A + e)nd)?

Py(T (0, [(1+ 2¢)n] - z1) < nd) < ndl(€)
e
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We then have
E (T(O,[(A+42¢)n] -z1)) = nd - (1 = Py(T(0, A+ e)n - z1) < nd))

d
an.<1_w).

ondl(€)

Dividing this inequality byz, and lettingz — oo ande — 0, we conclude that;(z1) > d
ford > 1. ]

8. Proof of the density theorem

Let us define the empirical measure of particles at tifr@ssociated to the combustion
growth process starting from site 0,@8) := {1, (1) : x € Z¢}, where

ne(t) ==Y L (Z2(0))
n=0

represents the total number of particles at sitd timer and1, (y) is the indicator func-
tion of the sitex e Z?. The empirical measure is a measure on the space= NZd,
endowed with its Boreb-algebraC. Let us recall the following notation introduced in
RemarK 1.p: given a measuredefined on(M, C) and some subset c Z¢, we denote
by« the restriction ofr to M, := N* endowed with its Bore¥-algebra. In this section
we will prove Theorerp T]2. Namely,

Theorem 1.2. Letv be the product Poisson measure of paraméten (M, C). Then
im w@) =v,
—00

where the convergence is in the sense of the weak topologxt.on

The first step in the proof is a comparison result between the combustion growth process
and a periodic combustion growth process defined below. For a nafui@nsider the
groupZyy-1 of integers modulo ¥ + 1. We denote b)ZgNH the direct product ofl

copies of this group. Consider the homomorphism Z¢ — ZZNH which maps; =

(21, -...2a) € ZY1Oh(z) i= ((z1), ... (za)) € Z4y. 1, Where for 1<i < d, (z;) is the
equivalence class af modulo 2V + 1. Note that undek the setA y := [N, N]¢ c Z¢

can be identified Wich‘ZJNJrl and both are isomorphic if a proper addition operation is
defined onA . We recall the notatiofe; : 1 < i < d} for the canonical basis &¢. We

will similarly denote by{e; : 1 < i < d} the canonical generators of the gr(ﬂ@\,ﬂ.

In analogy with the construction of Section 2, it is possible to define a periodic com-
bustion growth process on thledimensional grouﬁ)gNH, starting from the origin. Thus,
initially there is a simple symmetric continuous time total jump rate one random walk at
Oe Z‘2’N+1, and thereafter, each time a random walk visits an unvisited site, it branches.
As in Section 2, this can be formalized by defining first a fanXly := {X7}, @ x € 7%
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of independent random walks;, on Z‘Z’N+1, each being simple, symmetric of total jump
rate one and such that), starts from sitex ¢ ZgNH. We letR,; v be the corresponding
probability measure defined on the Skorokhod sph@fe: D(J0, o0); ZgN+1), endowed
with its Borela—algebraB;’}’ . We denote by, n the expectation associatedRg . Then
we define the successive random waklsy, n > 1, so that the initial on&g y = X?v
starts from the origin, and the next ones have the dynamics given by the random walk
from the family X y starting from the same site. Furthermore, following|(2.1), we,Jgt,

n > 1, denote the successive creation times of the random Walks as in [2.2) we let
kn.N, n > 1, denote the index of the random walk within the 88t v, ..., Z,_1n},
which createdZ, y; and as in) we Ieig,N(t) denote the set of sites ﬁijH visited
by timez. Finally, we call the seZy = {Z, ~ : n € N} of random walks theeriodic
combustion growth process at scale starting from the origin. Define theccupation
field at timer for this process ag” (1) := (Y () : x € ZgNH}, where

(@N+1)4

0= Y L(Zun®).

n=0

The above sum stops @&N + 1)¢ because no more thaBN + 1)¢ random walks can be
created. Due to the identification ﬁﬁNH with Ay, given any local functiory on NZ!

with supportA c Z4, for N such thatd ¢ Ay the quantityf (") is well defined. The

next lemma tells us that at a certain scale, the occupation field of the combustion growth
process is close to that of the periodic combustion growth process.

Lemma 8.1. Let f be some local function oM = NZ'. LetN : [0, 00) — [0, 00) be
an increasing function. If there is an> 0 such thatV (r) > 11/2+¢ then

Nim Ea(f(0(®) = Ea.neo (f 0¥ @)] = 0.

Proof. To simplify notation we will shorterV(r) to N. Note that for eachr € Z3,_,,

the quantityz (X*) € Z‘Z’NH, wherer is the homomorphism defined above, has the same
law as the random walKy,, where(x) = x. Now, letA be the support of . Then clearly,
iMoo |Ea(f (1)) — Eq.ny (f VD (2))] is smaller than sup 4 | £ (x)|, which is finite
becaus# is finite (f being local), times the probability that some random witkhas
traveled from some sitg ¢ Ay to the supportd of f in a time smaller tham. Since

N > t1/2+¢ for somee > 0, from Theorerh AJL(i) controlling the hitting probabilities of
random walks, we see that this probability goes to 0. O

In the second step of our proof we will establish a relationship involving the multi-
parametric Laplace transform of the occupation field of the periodic combustion growth
process at scal& on a subsetA C ZgN-i-l’ which will enable us to decouple those
particles which contribute in the computation of the Laplace transform (those born in a
J/t-neighborhood of\) from those which do not (born in-gz-neighborhood of\).
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Lemma8.2. LetN € NandA C Zj,_,. Consider a family. := {i, : x € A} of
parameters indexed by. Then

Ed’N(eXp{ — Z )\.xniv(l‘)}) = T(2N+1)d_1 o T(2N+l)d—2 O-++0 Tl (e} To(i) (81)

xeA

Here, for eactD < k < (2N + 1)? — 1, the operatorT; : C§ — CJ, whereC} is the
space of real-valued functions QQf}’)N, is defined by
T(@W) = Ean(@Zn) exp=23, o Zin, - Zanpi—g-1.n) (W)
8.2
w e ()N, witha? := i, for x € A and0 otherwise, and. e ()N is the constant
function equal tdL.

2N+1

d
Proof. First observe thal" ., A,.nY (1) = 32+ Ay - Therefore,

_@N+D? 4 A
Yne2 )LZ,LN(t) |Zl,N)e )‘Zl_N(t)).

Ean(exp| =Y 1nl 0}) = Ean(Eante

xeA

lterating this conditioningv¢ — 1 times, we obtair] (8]1). o

At this point we need the following version of Theorfm|1.1, in the context of the periodic
combustion growth process. Here, for any subset R<, we define f]y = A N
[-N,N]9nzd.

Proposition 8.1. There is a closed convex bounded sultetc R?, symmetric under
permutations of the coordinate axes and with non-empty interior, such that for every
€ > 0, and every functiory : [0, co) — [0, c0) with lim;_, o, f(#) = co and f(¢) < t,

one has

timoo Ra([Caf®) (1 —e)] C SS,[,] (f) clCafOA+)]) =1 (8.3)
Furthermore, ford large enough(y is not a ball under the Euclidean norm.
Remark 8.1. The setC, is the same subset of Theorgm]|1.1.

Proof. Let x € Z“. Note that whenever € Ay and X* is a random walk which has
not exited Ay in the time interval [07], then the random walk(X*) = X" '® in
ZgNH is in the same position a%* in the sense that given integdis : 1 < i < d}

we haveX* = Y% ne; if and only if X" ') = Y% n;z;. It follows that whenever
f(@) x diam(Cy) < t, where dianiC,) is the diameter ofC;, then the event of the
right hand side ol) occurs if and only if the eveay[f (1)(1 — ¢)] C Sg(f(t)) C
[Caf()(1+ €)] occurs in the standard combustion growth process. But the probability
P, of such occurrence tends to one by Theorerh 1.1. o
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We continue with the proof of Theorgm 1.2 via another lemma, which shows that in the
recursion formula[(8]1) of Lemnja 8.2 we can eliminate those particles which are born
very far away from the subset (at a distance larger thayr). This time whenever we
have a subset c Z¢ and a naturaN such thatA c [—N, N]¢ we will identify A with

the corresponding subset ﬁgNH and denote it by the same symbol. In analogy with
the definition prior to Proposition 3.1, we defineZﬂéNH a ball centered at € ZZNH

of radiusr asB(x,r)y = {y € ZgNH : |y — x| < r}, where| - | is the natural
Euclidean metric irZ3,,_,, defined by|z| = I (@)2 for z = Y0, &. For the
following lemmas, we need to introduce two important eventsr| Rtands be positive

real numbers. We first define the event that at tinthe set of visited sites of the periodic
combustion process at scalecontains a Euclidean ball of radius

Inrs = {BO,r)y C S9 y(5)}. (8.4)

Secondly, we define the event that at timehe set of visited sites of the periodic com-
bustion process at scalé is contained in a Euclidean ball of radigs

On.rs = {S9y (5) C B(O, R)y}. (8.5)

Finally, in what follows we will denote byr; := suf{|x| : x € Cy4} andry = inf{|x]| :
x ¢ Cg4} the outer and inner radius, respectively, of the convexXget

Lemma 8.3. Let A c Z? be some fixed subset. Consider a family of parameters
{Ay 1 x € A}. LetN :=[¢]. Then

. _ N =
zi@o'Ed’N(e > ren AN ([))_T(2N+1)dfl°T(2N+l)d72°'"OTNdfM(1)| =0, (8.6)

whereM := [¢121/3], ¢ is an arbitrary constant and fd® < k < (2N + 1)¢ — 1, T, and
1 e ()N are defined in Lem.

Proof. Fix k so thatM < k < (2N + 1)4. If ptN(x, y) is the probability that a simple
symmetric random walk of total jump rate one ﬁfZ‘INH starting fromx € Z‘2’N+1 is at
sitey € Z4,.,, attimer, we have

A N -8
Eqn(e "N Zun, o ZieaN) = D Pl (Zen (o), x)e
XLy 1y

=1+ Y pN_ o (Zen@mn). 0 —1). 87

xeA

Now fix four positive realsy, s2, r1 andr,. Note that if the evenOy ,, 5, occurs then
every random walk of the periodic combustion growth process which starts from some
site outside the balB(0, r1)y is born at a time larger than or equalsto On the other
hand, ifIy , s, On.r.s, OCCUrS, then every random wallg y such thak > |B(0, o) |

is born outsideB (0, r1)x. Thus, ifOn .5y N IN, .5, OnN,ry. 5, OCCUTS, then every random
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walk Z; y such thatt > |B(0, rp) x| is born at a distance larger thapfrom the origin.
In other words,

(2N+1)?
ONrist VN sy NV ONrasy € [ 1 Zew (ren)| = 71l
k=[wqrd]

Let us now choose, so that ary] = M = [ct?/3] andry = rp/2. Also we let

s1 = ro/(4Ry). Thus, we choose, = cl/dt2/3/wj/d. With these choices of;, r» andsy
and an appropriate choice of, Propositio@l yields lim, oo Ry, N (ON 51 N IN .55 N
ON.r,.5,) = 1 and hence

imoo Ryn(Ay) =1 (8.8)

for Ay = N (1Zen ()| = arr?3) anday = M4 jwl/”.

Now, a simple estimate (for example a local central limit theorem for a periodic ran-
dom walk like Theorer A]1(i)) shows that oty for x € A andk such thatM < k <
(2N + 1)?, we have

Pl (Zen(m).x) < Ke K
for some constank’. Substituting this back int¢ (8.7) we conclude that4mn,
A
Eqnte 201z, .zl =" pl_ (V@) xe ™
xeTﬁ

=14 02(t), (8.9

where|oz(1)| < Ke K%, Thus, iteratingg) fromh = (2N +1)? tok = M and using
Lemmg 82 together with the fact that the probability4of tends to one (seg (8.8)), we
finish the proof of|[(8.6). O

The following lemma enables us to decouple the dynamics of those particles born be-
fore times~t%/3. In order to have a reasonable filtration, we will also need to introduce
a branching process analogous to the prodgssefined in ). Thus for each fixed
natural N, we perform a construction analogous¥8 and define geriodic branch-

ing combustion procesgy = {Y, n : n € N} so that eaclt, n is a random walk

on Z[21N+1 starting from the origin. We now lefy = {F .y : t € [0,00)}, where

Fin =0 (Yn(s):s €[0,r]) is theo-field generated by y between times = 0 and

s = t. In what follows, given an everf of the Borelo-algebra of2/Y, we denote byl g

its indicator function.

Lemma 8.4. Let A c Z? be some fixed subset. Consider a family of parameters

{Ay 1 x € A}. Letr be a positive constant such thak inf{|x| : x ¢ C;} = r4. Then
[wdrdt2d/3]

. (1 -
im |Eq.p(e™ D cen MDY Oy _ Eq[q (1At . Eq[n(e Mg | Fros [t]))‘ =0,
—0o0 ’

(8.10)
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whereA; := I 253 23, and as defined i8.4), I, .23 ;23 is the event that the set of
sites visited at time?3 contains a Euclidean ball of radius?/3.

Proof. Note that Lemm@ 8|3 implies that
[wdrdIZd/S]

Ed,[,]<exp{— Z\A(x)n)[f] (t)}) = Ed,[,](exp{— kzl )\%k‘[t](t)}) + o).
xe =

Now, by Proposition 8.1 we know th&, [;j (A7) = o(t). Hence,
Eagn(exp|= 3 aonll0})
xXeA
[wdrdIZd/3] A

— A
= Eq (L4, - Eqn(e k=1 Zk, [ ® |~7:12/3,[z])) +o(t). (8.11)

Now, in the eventd, we havery [ < %3 for k < wgrdt?/3, Thus, at timer?/3 in

the eventa,, all particlesZ; [ with k < w,r?t?!/3 have been born, and hence their
dynamics become independent f when conditioned on the-field 7,2 [,;. Hence,

the conditioning on the right hand side pf (8.11) decouples the sum in the exponential, so
that

[wdrdIZd/s]
Eq(La, - Eqpe” 2=t P00 Fpg 1))
[wdrdIZd/3]
=Ed,[t](1Ar' I1 Ed,[t](e_AA(Zk’[’](t))|.7:,2/31[t])>. (8.12)
k=1
This completes the proof of the lemma. O

In order to prove Theorefn 1.2 we will need to define two events. For this purpase let
be any positive constant chosen so they4 < inf{|x| : x ¢ C4}. The first event is

Bt = 1[1],rdr’12/3,2r’12/3 N 0[[],4Rdr’12/3,2r’t2/3
= {B(O, rar't*®)) C 83 4(271?/3) C B0, 4Rqr'1?3)). (8.13)

Note that Proposition 8.1 implies that
lim Ry 1(B;) =0. (8.19
11— 00

The eventB, defined in|[(8.18), ensures thatrifis chosen so thatRyr’ < r < inf{|x| :

x ¢ Cy4}, then the random walkg, ;) of the right hand side of (8.10) are born from a set
of sites containing a Euclidean ball of radiys-'r%/3. Furthermore,4) ensures that
this happens with a probability converging to one. Next, choosiag above, we define
the second event as

[wardr?/3]

Co= () 1Zn™® = Zig@pl < %)
k=1
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In other words(; is the event that at time?/3, none of the firstg,r?1%/3] born random
walks has moved a distance larger th&# from its point of departure. This time note that
the probability ofC; is upper bounded by the probability that there is some random walk
from a set of fvsr¢1%/3] independent simple symmetric random walksZsh which is at

a distance larger tharf’® from its point of departure at time?/3. Now, from Theorem
[A.1(i), we know that the probability that a single random walk is at a distance larger than
/9 from its point of departure at timé/3 is bounded above bie—*2""° for appropriate
constants: andk,. Here we have used the fact that the quantity®/®/r) behaves like
18/9-1 — +2/9 times a slowly varying function when— co. We thus conclude that

Ra[1 (C;C) < kl[wdrdt2/3]e—k2t1/9’

and hence that
lim Rd’[t](CtC) =0. (8.15)
11— 00

Let us now remark that in order to prove Theoifenj 1.2 it is enough to show that for every
finite A c Z¢ and a family of parametefs., : x € A},

tll)ngo Ed(exp{— Z Axnx(t)]) = exp{— H(e_)\* — 1)}. (8.16)
XEA xeA

Indeed, the right hand side is the multi-parametric Laplace transform of the product Pois-
son measure of parameter 1&rt. Hence|(8.16) implies that lim, o, 14(r) = v weakly.

But by Lemmas$ 8]1 ar{d §.4 and By (§.14) gnd (B.15), it is enough to prove that

[wdrdtZd/?»] A .
zILrgo Eqn (1/4: 1p, -1, - llj[l Eqp(e 2en® |‘E2/3,[T])) — ¢ eale™ 1),
(8.17)
which in turn we will do by showing that
[wdrdIZd/3] _AA B
lim sup 1_[ Eq (e Zk, [ O | Fr23 [t])(w) —e [Treate Ax*l)‘ =0.
=30 e A,NBNC; =1 '
(8.18)

In fact, (8.17) follows from([(8.18)[ (8.14], (8.]15) and the fact that lig, Ry,[1(Af) = O.
So let us now turn tq (8.18). First note that fore A, and 1< k < [wyr?t%?/3] we can

write

A

_AA _
Eqpile 09| Fan ) = Y pl 0 o(Zig(0¥3), x)e

d
x€Zoy 41

Combining this with the fact that oB;, the random Walkikglgwith 1<k <[wgrdt?/3]
are born from a set of sites containing a ball of radiwss%/3, and the fact that o,
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none of those random walks is at a distance larger tf{@rfrom its point of departure at
time +2/3, we conclude that fow € A, N B, N C,,

[wardt?/3]

a4
l_[ Eq(e 1Y | Fas ) (w)
k=1

= [1 [ > p,[’_],Z/s(X;VV(tZ/3)+xy,x)]

142/3 d
yeB(0,ryr't2/3) xe€Zdy .y

XH[ > p,[t_],2/3(zk,[t](l2/3),x)], (8.19)

d
kes x SZ v

wherex,(w) € Z4,, are random sites such that,| < ¥° and S(w) is a random

subset of the set of indices & k < [wyr?r?/3] such that the corresponding random
walks Zy [, are born from sites outside a ball of raditg’+?/3. A computation similar

to the proof of Lemma@ 8]4 shows that the second factor of the right hand side df (8.19)
converges to 1 uniformly im. On the other hand, using the local central limit theorem,

it is easy to compute that the first factor converges uniformlytblxea©™* =D This

proves|(8.1B).

9. Appendix

This section has a technical character; we derive some asymptotic estimates for the prob-
ability that a random walk starting from a site, depending on time, hits the origin

by timet. The estimates are more precise than what is needed for the proof of Theorem
[L.3, but are included here for completeness. We do not claim any originality about them
whatsoever, but considering that they are elementary to derive and we were unable to
find proper references up to this precision, we have decided to include them here (see
Lemma 2 of Bramson, Cox and Le Gall [BCL] for similar estimates).

Theorem A.1. Lett be the first hitting time of the origin by a continuous time symmetric
simple random wall¥ (r) of total jump rate one, starting from € Z¢, and letP, be the
corresponding probability measure.

(i) Ifd > 1andmini<;<4 |x;| = C\/(t/d)log((t/d)? + 1) for someC > 0, then
Pz <1) <2 min SR/ DI I/t)}

1=i=d /277 a1/q,x; (1 — e~ I'(Nil/D)

where foru > 0, I(u) = usinh () — V1+uZ + 1, I'w) = sinh ), ar,, =

(12 + u®Y* and|Ro(t, u)| < 30C (4 logay/q..)~°.
(i) If d =1and|x| < Y% ¢ for somee > 0, then

2|x|
PX(T > l) = W [1+ R]_(t)] N (91)

[1+ Ro(t, x)],

where|R1(r)| < 8:~¢/4.
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(iii) If d =2and|x| < Y2~ for somee > 0, then

ologlx|
I

Pi(t>1) = [1 + R2(x)], 9.2
wherelim|y| o R2(x) =0
(iv) Ifd > 3and|x| < (t/d)?~€ for somee > 0, then

Pt > 1) =1— —2_[1+ Rax, d)], ©.3)
|x|d—2

whereay = (d/2)T'(d/2—1)7 =2 and R3(x, d) is an error depending od and x|

which satisfiedim y|—oo R3(x,d) =0

Proof. The following estimate will prove useful. Let z € Z be sites which may even-
tually depend om, anda, , = (1> 4+ z%)Y/4. Then

1 / Tarz . d
PoY(t) =z+y) = = eV (Z/f)*fl(Z/f)/ e*lW/dz.z*%uerRz(u) Zu’ (9.4)

at,z —may

where Ro(u) is an error term satisfyingo(u) = fiusza; 2 + O@u®) with |0 <
214u4at . The proof of this estimate, which involves a decomposition into Poisson pro-
cesses and the use of Fourier transform, can be found in the proof of Llenjma 4.2 6f [BOR].
Part (i) corresponds to Lemrpa j.2 of [BOR].

Let us next prove part (ii). First note th&t (t > t) = Po(—|x| < Y (¢) < |x]). So let

—|x| <y < |x|. Then, from[(9.}) witlt = O, we have
Po(Y(t) =y) = - exp{ —my/\/_— —u + O 4)} (9.5)
\/— —NT

where|O ()| < szut~1. Let I, be the above integral restricted te [ogt Iogt] and

I the integral over the rest. Expressingv/27 as the sum of IO%’g[exp( u?) 4% and

2 fiog1 exp(—3u?) 44, and using the boun® (u*) < Lu*~1, we can eaS|Iy get

1 |y|logt (Iogt)4> I 2
- — logt + + (logt) /4'
1 \/_ < 109 < «/; p 4

Now, since|y| < |x| < t¥/2¢, this last expression is bounded Bgg¢) - 3/¢€/2. On the
other hand, using again the bound on the e@¢#*), we can bound/s| by 4/¢(109/40,
Plugging these estimates in@Q.S) we see Myl (1) = y) = \/%[1 + R1(1)], where
|R1(1)| < 8/1¢/%. SummingPo(Y (1) = y) over—|x| < y < |x|, we get[(9.1).

Let us now prove parts (iii) and (iv). We first consider the cdse 3 of (iv). Let us
state the following estimate for the Green functiGix) = fO°° Po(Y(t) = x)dt of a
d-dimensional random walk of total jump rate 1 whén- 3 andx € Z<:

aq
G0 = 5 [L+ Ratx, )]
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where|R4(x, d)| < ci100(d)/|x| for some dimension dependent constegi(d). This

can be deduced from (i) and (ii) (see also Theorem 1.5.4 df [La], observing that the
continuous and discrete time Green functions coincide). Nowy etinf{r > 0: Y(¢) €

{0} U B(O, (t/d)Y/%=¢/2)c}. As in Proposition 1.5.9 of [[a], it can be shown using the
Green function estimate that

1 1
P =0 =ai( i - ) R, 99

where|Rs(x, d)| < c13(d)/|x|?~1 and c13(d) is some constant. Next, far > 0, let
T, =inf{t > 0:|Y ()| = v}. Then

PX(T < t) > Px(f < T(t/d)(lfe)/Z) - Px(t < T(t/d)(l—e)/Z). (97)

But P.(t < T ga-o2) < P(SURy<s<, [Y1(9)| < (1/d)179/2), whereY; is the first
coordinate ofY, and in turn this isc14((At/d)? + 1)e='/4 wherex is the princi-

pal Dirichlet eigenvalue of the discrete Laplacian en(d/d)*=/2, (1/d)1~9/?] N Z

and c14 is a positive constant. Here we have used a standard estimate_(see [BR] or
the Brownian motion version in Theorgm 1.2, Chapter 3/ of [Sz1]). On the other hand,
A > 3/(t/d)Y¢. Therefore, from the boung/x + 1 < exp{x/2}, valid for x > 0, we get

Pe(t < Ty pgya-o/2) < crae~ /D7 Substituting this int7) we see that

1
Px(f < T(t/d)(lfe)/Z)

_ €/2
P.(t <t)> <1— crae” /D >Px(l' < Ty jaya-ar2)-

Now, from ) and the assumptian| < 1(¢/d)Y/?~<, we get the lower bound

1 (aqlx|
P.(t < T(t/d)l—e)/z) > W T —C13]).

Combining this estimate wit (9.6) again we get

aq

PX(T < t) Z |_x|d72

[1+ Rs(x,d)],
where limy o R3(x, d) = 0. To finish the proof of (iv) we now remark th&t (z < 1) <
G(x)/G(0) = aq/|x|"2 + Re(x, d), where lim,| . Re(x,d) = 0.

The proof of part (iii) follows a similar scheme. However, instead of relying on the
Green function, here we need a potential kernel estim&ig,= (2/x)(log|x| 4+ R7(x)),
wherea(x) = f0°°(P0(Y(t) = 0)— Po(Y (t) = x)) dt is the potential kernel and®g(x)| <
c15/|x| for some constant;s > 0. Again, this is a consequence of (i) and (ii) (see also
Proposition 1.6.2 of [Lla]). Next, as in Proposition 1.6.7/ofl[La], using the potential kernel
estimate we deduce that

log|x| + R7(x)
P(Y())=0)=1— —————""2 4+ Rg(t),
¥ () ) log: + Rs(?)
where|Rg(1)| < (logr)~2. Finally, a calculation analogous to the one of part (iv) finishes
the proof. O
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