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Exact boundary controllability of a nonlinear
KdV equation with critical lengths
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Abstract. We study the boundary controllability of a nonlinear Korteweg–de Vries equation with
the Dirichlet boundary condition on an interval with a critical length for which it has been shown
by Rosier that the linearized control system around the origin is not controllable. We prove that the
nonlinear term gives the local controllability around the origin.
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1. Introduction

Let us consider the following Korteweg–de Vries control system:

(KdV)

{
yt + yx + yxxx + yyx = 0,
y(t,0) = y(t, L) = 0.

For this control system,L > 0 is given, the state isy(·) : [0, L] → R, and for the control
one can take, for example,u(·) = yx(·, L) ∈ R. The Korteweg–de Vries equation serves
to model various physical phenomena (see e.g. [19]), for example the propagation of small
amplitude long water waves in a uniform channel. Let us recall that Bona and Winther
have pointed out in [3] that the termyx in (KdV) has to be added to model the water waves
whenx denotes the spatial coordinate in afixedframe. We are interested in the local con-
trollability of (KdV) around 0. Rosier has proved in [12] that the control system (KdV) is
locally controllable around 0 provided that the length of the spatial domain is not critical.

Theorem 1([12, Theorem 1.3]). LetT > 0, and assume that

L /∈ N :=

{
2π

√
j2 + l2 + j l

3
; j, l ∈ N∗

}
. (1.1)
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Then there existsr0 > 0 such that, for every(y0, yT ) ∈ L2(0, L)2 with ‖y0‖L2(0,L) < r0
and‖yT ‖L2(0,L) < r0, there exists

y ∈ C([0, T ], L2(0, L)) ∩ L2(0, T ,H 1(0, L))

satisfying(KdV) such thaty(0, ·) = y0 andy(T , ·) = yT .

The aim of this paper is to study the local exact controllability around 0 of the nonlinear
KdV equation whenL = 2kπ ∈ N (takej = l = k in (1.1)). Our main theorem is the
following one.

Theorem 2. Let k be a positive integer and letT > 0. There existsr1 > 0 such that,
for every(y0, yT ) ∈ L2(0,2kπ)2 with ‖y0‖L2(0,2kπ) < r1 and‖yT ‖L2(0,2kπ) < r1, there
exists

y ∈ C([0, T ], L2(0,2kπ)) ∩ L2(0, T ,H 1(0,2kπ))

satisfying(KdV) withL = 2kπ such thaty(0, ·) = y0 andy(T , ·) = yT .

WhenL = 2kπ the linearized control system of (KdV) around 0 is

(KdVL)

{
yt + yx + yxxx = 0,
y(t,0) = y(t,2kπ) = 0.

It has been shown by Rosier in [12] that this linear control system is not controllable. To
prove that the nonlinear termyyx gives the local controllability, a first approach could be
to use the exact controllability of the nonlinear equation around nontrivial stationary so-
lutions proved in [8] and to apply the method introduced in [6] (that is, the return method
[4, 5] together with quasi-static deformations; see also [7] for this last point). But, with
this method, it seems that one can only obtain the local exact controllability forlarge
time. To prove Theorem 2 we use a different strategy that we briefly describe now. We
first point out that in this theorem we may assume thaty0 = 0: this follows easily from
the invariance of (KdV) under the change of variablesτ = T − t , ξ = 2kπ − x. Then we
use the following result, due to Rosier, for the linearized control system (KdVL).

Theorem 3([12, Remark 3.6]). LetT > 0 and

H =

{
y ∈ L2(0,2kπ);

∫ 2kπ

0
(1 − cos(x))y dx = 0

}
.

For (y0, yT ) ∈ H × H , there existsy ∈ C([0, T ], L2(0,2kπ)) ∩ L2(0, T ,H 1(0,2kπ))
satisfying(KdVL) such thaty(0, ·) = y0 andy(T , ·) = yT .

Then, as we shall prove in Section 2, the nonlinear termyyx allows us to “go” in the
two directions±(1− cos(x)) which are missed by the linearized control system (KdVL).
Finally, in Section 3 we derive Theorem 2 from Section 2 by means of a fixed point
theorem.
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Remark 4. For the other critical lengths, we believe that the same result holds. Note that
the situation is more complicated in these other cases: there are now four noncontrollable
directions for the linearized control system around 0 (see [12, proof of Lemma 3.5 and
Remark 3.6]).

Remark 5. The method we use here (try to move in the directions which are missed by
the linearized control system) is classical to study the local controllability of a control
system in finite dimensions. Here we fix the time and perform a power series expansion,
with the same scaling on the state and on the control. In finite dimensions, much more
subtle tools have been introduced: for example different scalings on the components of
the control and of the state as well as scaling on time. See e.g. [1, 2, 9, 10, 17, 18, 20] and
the references therein.

Remark 6. One can find other results on the controllability of KdV control systems in
[11, 13–16] and the references therein.

2. Motion in the ±(1 − cos(x)) directions

Let L > 0. We first recall some properties proved by Rosier in [12] for the following
linear KdV Cauchy problem:

yt + yx + yxxx = f, (2.1)

y(t,0) = y(t, L) = 0, (2.2)

yx(t, L) = h(t), (2.3)

y(T0, x) = y0(x). (2.4)

We adopt the notations of [12]. LetA denote the operatorAw = −w′′′
− w′ defined on

D(A) := {w ∈ H 3(0, L); w(0) = w(L) = wx(L) = 0} and let(S(t)t≥0) denote the
semigroup of contractions associated withA (see [12, Proposition 3.1]). ForT0 < T1, let

BT0,T1 := C([T0, T1], L2(0, L)) ∩ L2(T0, T1, H
1(0, L))

endowed with the norm

‖y‖BT0,T1
= max{‖y(t, ·)‖L2(0,L); t ∈ [T0, T1]} +

(∫ T1

T0

‖y(t, ·)‖2
H1(0,L) dt

)1/2

.

Rosier has proved the following proposition.

Proposition 7 ([12, (Proofs of) Propositions 3.2 and 3.7]). Let T0 < T1. There exist
unique continuous linear maps9T0,T1 andδT0,T1

9T0,T1 : L2(0, L)× L2(T0, T1)× L1(T0, T1, L
2(0, L)) → BT0,T1,

(y0, h, f ) 7→ 9T0,T1(y0, h, f ),

δT0,T1 : L2(0, L)× L2(T0, T1)× L1(T0, T1, L
2(0, L)) → L2(T0, T1),

(y0, h, f ) 7→ δT0,T1(y0, h, f ),



370 Jean-Michel Coron, Emmanuelle Crépeau

such that, fory0∈D(A), h∈C2([T0, T1]) with h(T0)=0 andf ∈C1([T0, T1], L2(0, L)),

9T0,T1(y0, h, f ) is the unique classical solution of(2.1) to (2.4),

δT0,T1(y0, h, f )(t) = (9T0,T1(y0, h, f ))x(t,0).

The function9T0,T1(y0, h, f ) is called themild solutionof (2.1) to (2.4). For simplicity,
we writeB for BT0,T1 and9 for9T0,T1 when(T0, T1) = (0, T ). Note that the existence of
the continuous linear mapδT0,T1 shows that, withy := 9T0,T1(y0, h, f ), “yx(t,0)” makes
sense inL2(T0, T1). For simplicity we shall writeyx(t,0) instead ofδT0,T1(y0, h, f )(t).
Let f ∈ L2(T0, T1, L

2(0, L)). We say thaty : [T0, T1] × [0, L] → R is amild solutionof

yt + yx + yxxx = f, y(t,0) = y(t, L) = 0,

if there existsh ∈ L2(T0, T1) such thaty is the mild solution of (2.1) to (2.4) with
y0(x) := y(T0, x). Note that it follows from the proof of Theorem 3 given in [12] that
this theorem holds for mild solutions of (KdVL).

Until the end of this section we assume that

L ∈ {2kπ; k ∈ N∗
}. (2.5)

The aim of this section is to prove the following result.

Proposition 8. LetT > 0. There exists(u+, v+, w+) in L2(0, T )3 and(u−, v−, w−) in
L2(0, T )3 such that, ifα±, β±, γ± are the mild solutions of

α±t + α±x + α±xxx = 0, (2.6)

α±(t,0) = α±(t, L) = 0, (2.7)

α±x(t, L) = u±(t), (2.8)

α±(0, x) = 0, (2.9)

of

β±t + β±x + β±xxx = −α±α±x, (2.10)

β±(t,0) = β±(t, L) = 0, (2.11)

β±x(t, L) = v±(t), (2.12)

β±(0, x) = 0, (2.13)

and of

γ±t + γ±x + γ±xxx = −(α±β±)x, (2.14)

γ±(t,0) = γ±(t, L) = 0, (2.15)

γ±x(t, L) = w±(t), (2.16)

γ±(0, x) = 0, (2.17)

then

α±(T , x) = 0, β±(T , x) = 0, γ±(T , x) = ±(1 − cos(x)). (2.18)
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Remark 9. It would have been quite natural to look for the existence of(u+, v+) in
L2(0, T )2 and of (u−, v−) in L2(0, T )2 such that, ifα±, β± are the mild solutions of
(2.6) to (2.13), then

α±(T , x) = 0, β±(T , x) = ±(1 − cos(x)).

The existence of such(u±, v±) would have also implied Theorem 2. Unfortunately, as
proved in Corollary 19 below, such(u±, v±) do not exist. Roughly speaking, an expansion
to the 2nd order is not sufficient. We must go to the 3rd order to get local controllability.

In order to prove Proposition 8, let us first remark that(u+, v+, w+) has the required
properties if and only if(u−, v−, w−) := (−u+, v+,−w+) does. Moreover, in order to
prove the existence of(u+, v+, w+) it suffices to prove the existence of(u+, v+, w̃+)

in L2(0, T )3 such that, ifα+, β+ and γ̃+ are the mild solutions of (2.6) to (2.17) with
γ+ := γ̃+ andw+ := w̃+, then

α+(T , ·) = 0, β+(T , ·) = 0,
∫ L

0
γ̃+(T , x)(1 − cos(x)) dx = ‖1 − cos(x)‖2

L2(0,L).

Indeed, by Theorem 3 (for mild solutions), there existsw∗
+ in L2(0, T ) such that the mild

solutionγ ∗
+ of

γ ∗
+t + γ ∗

+x + γ ∗
+xxx = 0,

γ ∗
+(t,0) = γ ∗

+(t, L) = 0,

γ ∗
+x(t, L) = w∗

+(t),

γ ∗
+(0, x) = 0,

satisfies
γ ∗
+(T , ·) = −PH (γ̃+(T , ·)) ,

wherePH denotes the orthogonal projection onH for theL2-scalar product. Thenu+, v+
andw+ := w̃++w∗

+ have the properties required by Proposition 8 (withγ+ := γ̃++γ ∗
+).

Similarly, in order to prove the existence of(u−, v−, w−) it suffices to prove the existence
of (u−, v−, w̃−) in L2(0, T )3 such that, ifα−, β− andγ̃− are the mild solutions of (2.6)
to (2.17) withγ− := γ̃− andw− := w̃−, then

α−(T , ·) = 0, β−(T , ·) = 0,
∫ L

0
γ−(T , x)(1−cos(x)) dx = −‖1−cos(x)‖2

L2(0,L).

From (2.14), (2.15) and (2.17), one gets, using integration by parts (which can be
easily justified by density arguments),∫ L

0
γ±(T , x)(1 − cos(x)) dx =

∫ T

0

∫ L

0
γ±t (t, x)(1 − cos(x)) dx dt

=

∫ T

0

∫ L

0
(−γ±x − γ±xxx − (α±β±)x)(1 − cos(x)) dx dt

=

∫ T

0

∫ L

0
α±β± sin(x) dx dt.

Hence Proposition 8 is a consequence of the following proposition.
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Proposition 10. Let T > 0. There exists(u, v) in L2(0, T )2 such that, ifα, β are the
mild solutions of

αt + αx + αxxx = 0, (2.19)

α(t,0) = α(t, L) = 0, (2.20)

αx(t, L) = u(t), (2.21)

α(0, x) = 0, (2.22)

and of

βt + βx + βxxx = −ααx, (2.23)

β(t,0) = β(t, L) = 0, (2.24)

βx(t, L) = v(t), (2.25)

β(0, x) = 0, (2.26)

then

α(T , ·) = 0, β(T , ·) = 0, (2.27)∫ T

0

∫ L

0
αβ sin(x) dx dt 6= 0. (2.28)

Let T > 0. Letα1 ∈ B be a mild solution of

α1t + α1x + α1xxx = 0, (2.29)

α1(t,0) = α1(t, L) = 0, (2.30)

such that ∫ L

0
α1(0, x)(1 − cos(x)) dx = 0. (2.31)

Let us multiply (2.29) by 1−cos(x) and integrate the resulting equality on [0, T ]× [0, L].
Then, using integrations by parts together with (2.30) and (2.31), one gets∫ L

0
α1(T , x)(1 − cos(x)) dx = 0. (2.32)

By Theorem 3, (2.31) and (2.32),α1 can be extended to [−T ,2T ] × [0, L] in such a way
that this extension is still a mild solution of (2.29)–(2.30) and satisfies

α1(−T , x) = α1(2T , x) = 0.

Let β1 : [0, T ] × [0, L] → R be a mild solution of

β∗

1t + β∗

1x + β∗

1xxx = −α1α1x, (2.33)

β∗

1(t,0) = β∗

1(t, L) = 0. (2.34)
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By Theorem 3, there existsθ1 ∈ R and a mild solutionβ1 ∈ B−T ,2T of

β1t + β1x + β1xxx = −α1α1x, (2.35)

β1(t,0) = β1(t, L) = 0, (2.36)

such that

β1(t, x) = β∗

1(t, x)+ θ1(1 − cos(x)), ∀t ∈ [0, T ], (2.37)

β1(−T , x) = 0, PH (β1(2T , ·)) = 0. (2.38)

By Corollary 19 below, it follows that

β1(2T , x) = 0.

Let nowα2 : [0, T ] × [0, L] → R be a mild solution of

α2t + α2x + α2xxx = 0, (2.39)

α2(t,0) = α2(t, L) = 0, (2.40)

such that

α2(0, x) = α2(T , x) = 0. (2.41)

By Theorem 3, there exists a mild solutionβ2 : [0, T ] × [0, L] → R of

β2t + β2x + β2xxx = −α2α2x,

β2(t,0) = β2(t, L) = 0,

such that

β2(0, x) = 0, PH (β2(T , ·)) = 0.

By Corollary 19 again,

β2(T , x) = 0.

Similarly, by Theorem 3 and Corollary 19, there exists a mild solutionβ3 : [0, T ] ×

[0, L] → R of

β3t + β3x + β3xxx = −(α1α2)x, (2.42)

β3(t,0) = β3(t, L) = 0, (2.43)

such that

β3(0, x) = 0, β3(T , x) = 0. (2.44)

We extendα2, β2 andβ3 to [−T ,2T ] × [0, L] by requiring

α2(t, x) = β2(t, x) = β3(t, x) = 0, ∀t ∈ [−T ,0] ∪ [T ,2T ].



374 Jean-Michel Coron, Emmanuelle Crépeau

Let us consider, for(ρ1, ρ2) ∈ R2, α := ρ1α1 + ρ2α2 andβ := ρ2
1β1 + ρ2

2β2 + ρ1ρ2β3.
Let u(t) := αx(t, L), v(t) := βx(t, L) for t ∈ [−T ,2T ]. Then (2.19) to (2.21) and (2.23)
to (2.25) hold in the mild sense andα(−T , x) = β(−T , x) = α(2T , x) = β(2T , x) = 0.

Now, assume that Proposition 10 is false. Then, for every(ρ1, ρ2) ∈ R2,∫ 2T

−T

∫ L

0
αβ sin(x) dx dt

=

∫ T

0

∫ L

0
(ρ1α1 + ρ2α2)(ρ

2
1β1 + ρ2

2β2 + ρ1ρ2β3) sin(x) dx dt = 0. (2.45)

By looking at the coefficient ofρ2
1ρ2 in (2.45), we get∫ T

0

∫ L

0
(α1β3 + α2β1) sin(x) dx dt = 0. (2.46)

For the time being the functionsα1, β1, β2 andβ3 have been assumed to be real-valued.
But, looking at the real and imaginary parts and applying the same trick we have used
to get (2.46), we see that (2.46) also holds if these four functions take their values inC.
(Introduce arbitrary(ρ1, ρ2). If α1 = a1+ib1, consider̃α1 := ρ1a1+ρ2b1 etc.) Of course
one says thaty = y1

+ iy2 : [T0, T1] × [0, L] → C is a mild solution of

yt + yx + yxxx = f, y(t,0) = y(t, L) = 0,

with f = f 1
+ if 2

∈ L1(T0, T1, L
2(0, L,C)), if y1 andy2 are mild solutions of

y1
t + y1

x + y2
xxx = f1,

y2
t + y2

2x + y2
xxx = f 2,

y1(t,0) = y1(t, L) = 0,

y2(t,0) = y2(t, L) = 0.

Let λ ∈ C. Let yλ ∈ C∞([0, L],C) be such that

λyλ + yλx + yλxxx = 0, (2.47)

yλ(0) = yλ(L) = 0. (2.48)

We take, fort ∈ [0, T ] andx ∈ [0, L],

α1(t, x) = eλtyλ(x). (2.49)

From (2.47), (2.48) and (2.49), we get (2.29) and (2.30). Multiplying (2.47) by 1−cos(x),
integrating the resulting equality on [0, L] and using integrations by parts together with
(2.48), we get

λ

∫ L

0
(1 − cos(x))yλ dx = 0. (2.50)

By (2.49) and (2.50), if

λ 6= 0, (2.51)
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which will be assumed until the end of this section, (2.31) holds. LetÃ denote the operator
Aw = −w′′′

− w′ defined onD(Ã) := {w ∈ H 3(0, L); w(0) = w(L) = 0, wx(0) =

wx(L)}. TheniÃ is a self-adjoint operator onL2(0, L) with compact resolvent. Hence,
the spectrumσ(Ã) of Ã is a discrete subset ofiR. Assume that

λ 6∈ σ(Ã). (2.52)

Then there exists one (and only one)φλ ∈ C∞([0, L],C) such that

λφλ + φλx + φλxxx = yλ sin(x), (2.53)

φλ(0) = φλ(L) = 0, φλx(0) = φλx(L). (2.54)

We multiply (2.53) byyλ(L−x), integrate on [0, L], and use integrations by parts together
with (2.5), (2.47), (2.48) and (2.54) to get

φλx(L)(yλx(L)− yλx(0)) = 0. (2.55)

From now on we assume that

yλ 6= 0. (2.56)

By (2.47), (2.48), (2.52) and (2.56),

yλx(L) 6= yλx(0), (2.57)

which, together with (2.55), gives

φλx(L) = 0. (2.58)

From (2.42), (2.43), (2.49), (2.53), (2.54) and (2.58), we get

d

dt

∫ L

0
eλtφλβ3 dx =

∫ L

0
α1β3 sin(x) dx +

∫ L

0
α1α2φλxe

λt dx. (2.59)

We also assume that

2λ 6∈ σ(Ã). (2.60)

Then there also exists a uniquezλ ∈ C∞([0, L],C) such that

2λzλ + zλx + zλxxx = −yλyλx, (2.61)

zλ(0) = zλ(L) = 0, zλx(0) = zλx(L). (2.62)

Defineβ∗

1 by

β∗

1(t, x) = e2λtzλ(x). (2.63)
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From (2.49) and (2.49) to (2.63), (2.33) and (2.34) hold. Let also (use (2.60) again)ψλ ∈

C∞([0, L],C) be the unique solution of

2λψλ + ψλx + ψλxxx = zλ sin(x), (2.64)

ψλ(0) = ψλ(L) = 0, ψλx(0) = ψλx(L). (2.65)

Let
µ(x) = −

1
2x sin(x)+

1
12(1 − cos(2x)).

Then

µx + µxxx = (1 − cos(x)) sin(x), (2.66)

µ(0) = µ(L) = µx(0) = 0, (2.67)

µx(L) = −L/2. (2.68)

From (2.37), (2.39), (2.40), (2.53), (2.54) and (2.63) to (2.68), we get

d

dt

∫ L

0
(e2λtψλ + θ1µ)α2 dx = e2λtψλx(L)(α2x(t, L)− α2x(t,0))

−
L

2
θ1α2x(t, L)+

∫ L

0
α2β1 sin(x) dx. (2.69)

By (2.41) and (2.44),∫ T

0

(
d

dt

∫ L

0
((e2λtψλ + θ1µ)α2 + eλtφλβ3) dx

)
dt = 0. (2.70)

From (2.59), (2.69) and (2.70), we get∫ T

0

∫ L

0
(α1β3 + α2β1) sin(x) dx dt = −

∫ T

0

∫ L

0
eλtα1α2φλx dx dt

−

∫ T

0

(
e2λtψλx(L)(α2x(t, L)− α2x(t,0))−

L

2
θ1α2x(t, L)

)
dt. (2.71)

Let (see (2.60))δλ ∈ C∞([0, L],C) be the unique solution of

2λδλ + δλx + δλxxx = yλφλx, (2.72)

δλ(0) = δλ(L) = 0, δλx(0) = δλx(L). (2.73)

From (2.39), (2.40), (2.49), (2.72) and (2.73), we get

d

dt

∫ L

0
e2λtδλα2 dx = e2λtδλx(L)(α2x(t, L)− α2x(t,0))+

∫ L

0
eλtφλxα1α2 dx, (2.74)

which, together with (2.41), gives∫ T

0

∫ L

0
eλtφλxα1α2 dx dt +

∫ T

0
e2λtδλx(L)(α2x(t, L)− α2x(t,0)) dt = 0. (2.75)
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From (2.46), (2.71) and (2.75), we get∫ T

0

(
e2λt (δλx(L)− ψλx(L))(α2x(t, L)− α2x(t,0))+

L

2
θ1α2x(t, L)

)
dt = 0. (2.76)

Let us restrict ourselves to the case where

α2 = 0 on [3T/4, T ] × [0, L]. (2.77)

This allows us to perform a time translation ofε ∈ [0, T /4]: if we define

α2ε(t, x) := α2(t − ε, x), ∀t ∈ [ε, T ], (2.78)

α2ε(t, x) := 0, ∀t ∈ [0, ε], (2.79)

then α2ε also satisfies (2.39), (2.40) (in the mild sense) and (2.41). Hence, by (2.76)
associated toα2ε ,∫ T

0

(
e2λt (δλx(L)−ψλx(L))(α2x(t − ε, L)−α2x(t − ε,0))+

L

2
θ1α2x(t − ε, L)

)
dt = 0

for all ε ∈ [0, T /4], which is equivalent to∫ T

0

(
e2λ(t+ε)(δλx(L)− ψλx(L))(α2x(t, L)− α2x(t,0))+

L

2
θ1α2x(t, L)

)
dt = 0

for all ε ∈ [0, T /4]. This last property, together with (2.51), implies that

(δλx(L)− ψλx(L))

∫ T

0
(e2λt (α2x(t, L)− α2x(t,0))) dt = 0. (2.80)

Let a ∈ R \ [−1/
√

3,1/
√

3]. We takeλ := 2ia(4a2
− 1). Let

yλ(x) := κe(−
√

3a2−1−ia)x
+ (1 − κ)e(

√
3a2−1−ia)x

− e2iax (2.81)

with

κ :=
e2iaL

− e(
√

3a2−1−ia)L

e(−
√

3a2−1−ia)L − e(
√

3a2−1−ia)L
. (2.82)

One easily checks that such ayλ satisfies (2.53), (2.54) and (2.56). Let, withλ :=
2ia(4a2

− 1),

6 := {a ∈ R \ [−1/
√

3,1/
√

3]; λ 6∈ σ(Ã) and 2λ 6∈ σ(Ã)}.

Then the functionS : 6 → C, S(a) = δλx(L) − ψλx(L), is continuous (and even
analytic). In Appendix C we prove the following lemma:

Lemma 11. The functionS is not identically equal to0.
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This lemma and (2.80) imply that

α2x(t, L)− α2x(t,0) = 0. (2.83)

Indeed, letL : C → C, λ 7→
∫ T

0 (e
2λt (α2x(t, L) − α2x(t,0))) dt. The functionL is

holomorphic. Hence the zeros ofL are isolated ifL 6= 0. However, by Lemma 11, (2.80)
and the continuity ofS, there exists a nonempty open subset ofiR on whichL vanishes
(let us recall thatσ(Ã) is a discrete subset ofiR). HenceL = 0, which implies (2.83).

We multiply (2.39) byᾱ2, take the real part, and integrate on [0, L]. Then, using
integrations by parts and (2.40) together with (2.83), we get

d

dt

∫ L

0
|α2|

2 dx = 0,

which, combined with (2.41), implies that

α2 = 0. (2.84)

But, by Theorem 3 (for mild solutions), there are mild solutions of (2.39) and (2.40) satis-
fying (2.41) and (2.77) such that (2.84) does not hold. This ends the proof of Proposition
10 and therefore of Proposition 8.

3. Local exact controllability

In this section we still assume that (2.5) holds and we end the proof of Theorem 2. As
pointed out in Section 1, the invariance of the control system (KdV) under the change of
variablesτ = T − t , ξ = L − x allows us to prove only that, for everyT > 0, there
existsr ′1 > 0 such that, for everyyT ∈ L2(0, L) with ‖yT ‖L2(0,L) ≤ r ′1, there exists
u ∈ L2(0, T ) such that the mild solutiony of

yt + yx + yxxx + yyx = 0, (3.1)

y(t,0) = y(t, L) = 0, (3.2)

yx(t, L) = u(t), (3.3)

y(0, x) = 0, (3.4)

satisfiesy(T , ·) = yT . Of course, by “y is a mild solution of (3.1) to (3.4)”, we mean that
y is inB and is the mild solution of

yt + yx + yxxx = f, y(t,0) = y(t, L) = 0, yx(t, L) = u(t), y(0, x) = 0,

with f := −yyx (note that, ify is in B, thenyyx ∈ L1(0, T , L2(0, L))). We use similar
natural conventions until the end of this paper. It follows from Propositions 14 and 15
below that, for a givenu ∈ L2(0, T ), there exists at most one mild solution of (3.1) to (3.4)
and that such a solution exists if‖u‖L2(0,T ) is small enough (the smallness depending on
T andL).
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By (the proof of) Theorem 3, there exists a continuous linear map

0 : h ∈ H ⊂ L2(0, L) 7→ 0(h) ∈ L2(0, T ) (3.5)

such that the mild solution of

yt + yx + yxxx = 0, y(t,0) = y(t, L) = 0, yx(t, L) = 0(h)(t), y(0, x) = 0,

satisfiesy(T , x) = h(x). (One can take for0 the control obtained by means of HUM; see
[12, Remark 3.10].)

Let yT ∈ L2(0, L) be such that‖yT ‖L2(0,L) ≤ r, r > 0 to be chosen later, small
enough so that the maps introduced below are well defined in a neighborhood of 0. Let
TyT denote the map

TyT : L2(0, L) → L2(0, L), z 7→ z+ yT − F(G(z)),

with
F : L2(0, T ) → L2(0, L), u 7→ y(T , ·),

wherey is the mild solution of (3.1) to (3.4) andG : L2(0, L) → L2(0, T ) is defined as
follows. We decomposez = PH (z)+ ρ(z)(1 − cos(x)). Then

1. If ρ(z) ≥ 0, thenG(z) = 0(PH (z))+ ρ1/3(z)u+ + ρ2/3(z)v+ + ρ(z)w+.
2. If ρ(z) < 0, thenG(z) = 0(PH (z))+ |ρ(z)|1/3u− + |ρ(z)|2/3v− + |ρ(z)|w−.

(The functionsu±, v± andw± are fixed as in Proposition 8.)
Clearly, each fixed pointz∗ of TyT satisfiesF(G(z∗)) = yT , and the controlu =

G(z∗) is a solution to our problem.
Until the end of this paper, we adopt the following notations:

• For z ∈ L2(0, T ,H 1(0, L)), ‖z‖L2(H1) = ‖z‖L2(0,T ,H1(0,L)),

• For z ∈ L1(0, T , L2(0, L)), ‖z‖L1(L2) = ‖z‖L1(0,T ,L2(0,L)),
• BR = {z ∈ L2(0, L); ‖z‖L2(0,L) ≤ R}.

First of all we prove a lemma about the mapT0.

Lemma 12. There existC1 = C1(T , L) > 0 andε1 = ε1(T , L) > 0 such that, for every
z ∈ Bε1,

‖T0z‖L2(0,L) ≤ C1‖z‖
4/3
L2(0,L)

. (3.6)

Let z ∈ L2(0, L). Let (ũ, ṽ, w̃)=(u+, v+, w+) if ρ(z) ≥ 0 and(ũ, ṽ, w̃)=(u−, v−, w−)

if ρ(z) < 0. Lety be the mild solution of

yt + yx + yxxx + yyx = 0, (3.7)

y(t,0) = y(t, L) = 0, (3.8)

yx(t, L) = 0(PH (z))(t)+ |ρ(z)|1/3ũ(t)+ |ρ(z)|2/3ṽ(t)+ |ρ(z)|w̃(t), (3.9)

y(0, x) = 0. (3.10)
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By Propositions 14 and 15, there existε2 = ε2(T , L) > 0 andC2 = C2(T , L) > 0 such
that, for everyz ∈ L2(0, L) with ‖z‖L2(0,L) ≤ ε2, there exists a unique mild solution of
(3.7) to (3.10), and this mild solution satisfies

‖y‖B ≤ C2‖z‖
1/3
L2(0,L)

. (3.11)

Let ỹ, α̃, β̃, γ̃ be the mild solutions of

ỹt + ỹx + ỹxxx = 0, (3.12)

ỹ(t,0) = ỹ(t, L) = 0, (3.13)

ỹx(t, L) = 0(PH (z))(t), (3.14)

ỹ(0, x) = 0, (3.15)

α̃t + α̃x + α̃xxx = 0, (3.16)

α̃(t,0) = α̃(t, L) = 0, (3.17)

α̃x(t, L) = ũ(t), (3.18)

α̃(0, x) = 0, (3.19)

2β̃t + β̃x + β̃xxx = −α̃α̃x, (3.20)

β̃(t,0) = β̃(t, L) = 0, (3.21)

β̃x(t, L) = ṽ(t), (3.22)

β̃(0, x) = 0, (3.23)

γ̃t + γ̃x + γ̃xxx = −(α̃β̃)x, (3.24)

γ̃ (t,0) = γ̃ (t, L) = 0, (3.25)

γ̃x(t, L) = w̃(t), (3.26)

γ̃ (0, x) = 0. (3.27)

Let

φ := y − ỹ − |ρ(z)|1/3α̃ − |ρ(z)|2/3β̃ − |ρ(z)|γ̃ , (3.28)

a := ỹ + |ρ(z)|1/3α̃ + |ρ(z)|2/3β̃ + |ρ(z)|γ̃ , (3.29)

b := ỹỹx + (ỹ(|ρ(z)|1/3α̃ + |ρ(z)|2/3β̃ + |ρ(z)|γ̃ ))x

+ |ρ(z)|4/3(α̃γ̃ )x + |ρ(z)|4/3β̃β̃x + |ρ(z)|5/3(β̃γ̃ )x + |ρ(z)|2γ̃ γ̃x . (3.30)

By Proposition 7, (3.11) to (3.30) and standard estimates, there existsC3 = C3(T , L) > 0
such that, for everyz ∈ L2(0, L) with ‖z‖L2(0,L) ≤ ε2,

‖a‖B ≤ C3‖z‖
1/3
L2(0,L)

, (3.31)

‖b‖L1(L2) ≤ C3‖z‖
4/3
L2(0,L)

, (3.32)

‖φ‖B ≤ C3‖z‖
1/3
L2(0,L)

. (3.33)
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Similarly standard estimates give the existence ofC4 = C4(T , L) > 0 such that

‖(φa)x‖L1(L2) ≤ C4‖φ‖B‖a‖B . (3.34)

Note that, by (2.18), (3.7) to (3.10) and (3.12) to (3.28),

φ(T , ·) = F(G(z))− z = −T0z. (3.35)

Moreover, by (3.7) to (3.10) and (3.12) to (3.30),φ is a mild solution of

φt + φx + φxxx + φφx = −(φa)x − b, (3.36)

φ(t,0) = φ(t, L) = φx(t, L) = 0, (3.37)

φ(0, x) = 0. (3.38)

From (3.32), (3.34) to (3.37), (3.38) and Proposition 15, there existsC5 = C5(T , L) > 0
such that

‖φ‖
2
B ≤ (‖z‖

8/3
L2(0,L)

+ ‖φ‖
2
B‖a‖2

B)e
C5(1+‖φ‖

2
B ). (3.39)

From (3.31), (3.33) and (3.39), one gets the existence ofε3 = ε3(T , L) > 0 and of
C6 = C6(T , L) > 0 such that, for everyz ∈ L2(0, L) with ‖z‖L2(0,L) ≤ ε3,

‖φ‖B ≤ C6‖z‖
4/3
L2(0,L)

, (3.40)

which, together with (3.35), ends the proof of Lemma 12.

We now studyPH ◦ TyT on the spaceH . Forω ∈ R andyT ∈ L2(0, L), let

5 : H → H, g 7→ g + PH (yT )− PH (F (G(g + ωe))),

wheree(x) := 1−cos(x) andω ∈ R. (In fact we should write, for example,5yT ,ω, but for
simplicity we omit the indicesyT andω.) To prove the existence of a fixed point for5, we
apply the Banach fixed point theorem to the restriction of5 to the closed ballBR∩H , with
‖yT ‖L2(0,L)+|ω| ≤ R/3 and whereR > 0 small enough. Let(yT , ω) ∈ L2(0, L)×R be
such that‖yT ‖L2(0,L) + |ω| ≤ R/3. Letg, h ∈ H ∩ BR. With (3.6), we have, forR > 0
small enough,

‖5(g)‖L2(0,L) ≤ ‖yT ‖L2(0,L) + ‖g + ωe − F(G(g + ωe))‖L2(0,L)

≤ R/3 + 2R/3 = R. (3.41)

Hence, forR > 0 small enough,

5(BR ∩H) ⊂ BR ∩H. (3.42)
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Let us now look at the contracting property of5. Letω ∈ R, g ∈ H andh ∈ H . Let

(ũ, ṽ, w̃) =

{
(u+, v+, w+) if ω ≥ 0,
(u−, v−, w−) if ω < 0.

Let y, z, ỹ, z̃ be the mild solutions of the following problems:

yt + yx + yxxx + yyx = 0, (3.43)

y(t,0) = y(t, L) = 0, (3.44)

yx(t, L) = 0(g)(t)+ |ω|
1/3ũ(t)+ |ω|

2/3ṽ(t)+ |ω|w̃(t), (3.45)

y(0, x) = 0, (3.46)

zt + zx + zxxx + zzx = 0, (3.47)

z(t,0) = z(t, L) = 0, (3.48)

zx(t, L) = 0(h)(t)+ ω1/3ũ(t)+ ω2/3ṽ(t)+ ωw̃(t), (3.49)

z(0, x) = 0, (3.50)

ỹt + ỹx + ỹxxx = 0, (3.51)

ỹ(t,0) = ỹ(t, L) = 0, (3.52)

ỹx(t, L) = 0(g)(t), (3.53)

ỹ(0, x) = 0, (3.54)

z̃t + z̃x + z̃xxx = 0, (3.55)

z̃(t,0) = z̃(t, L) = 0, (3.56)

z̃x(t, L) = 0(h)(t), (3.57)

z̃(0, x) = 0. (3.58)

Letφ = y− ỹ andψ = z− z̃. Letγ = φ−ψ . By (3.43) to (3.58),γ is a mild solution of

γt + γx + γxxx + γ γx = −(γ a)x − b,

γ (t,0) = γ (t, L) = 0, γx(t, L) = 0, γ (0, x) = 0,

with

a = ψ + ỹ, b = (ψ(ỹ − z̃))x + ỹỹx − z̃z̃x .

Let us notice that there existsC7 = C7(T ) > 0 such that

‖b‖L1(L2) ≤ C7(‖z‖B + ‖ỹ‖B + ‖z̃‖B)‖ỹ − z̃‖B ,

‖(γ a)x‖L1(L2) ≤ C7(‖z‖B + ‖z̃‖B + ‖ỹ‖B)‖γ ‖B .
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Then, using again Propositions 14 and 15 as in the the proof of (3.40), we get the existence
of ε4 = ε4(T , L) > 0 such that, for every(g, h, ω) ∈ H ×H × R with

‖g‖L2(0,L) ≤ ε4, ‖h‖L2(0,L) ≤ ε4, |ω| ≤ ε4,

one has

‖γ ‖B ≤
1
2‖g − h‖L2(0,L). (3.59)

Note that (3.59) implies that

‖5(g)−5(h)‖L2(0,L) = ‖γ (T , ·)‖L2(0,L) ≤ ‖γ ‖B ≤ 1/2‖g − h‖L2(0,L). (3.60)

Therefore, by (3.42) and (3.60), there existsε5 = ε5(T , L) > 0 such that, forR ≤ ε5,
for every(yT , ω) ∈ L2(0, L) × R such that‖yT ‖L2(0,L) + |ω| ≤ R/3,5 has a unique
fixed pointh(yT , ω) in BR ∩H . Note that the maph is continuous in a neighborhood of
(0,0) ∈ H × R.

We now apply the intermediate value theorem to the map

τ : R → R, ω 7→ ρ(ωe + h(yT , ω)+ yT − F(G(h(yT , ω)+ ωe))).

By (3.6), there existsε6 = ε6(T , L) > 0 such that, if‖yT ‖L2(0,L) ≤ ε6
√

3L/8, then
τ([−ε6, ε6]) ⊂ [−ε6, ε6]. Hence, if‖yT ‖L2(0,L) ≤ ε6

√
3L/8, we deduce, by the interme-

diate value theorem, thatτ has at least one fixed pointω0. We have

F(G(h(yT , ω0)+ ω0e)) = yT ,

which ends the proof of Theorem 2.

Let us remark that it follows from our proof of Theorem 2 that the following theorem,
slightly more precise than Theorem 2, also holds.

Theorem 13. Let k be a positive integer and letT > 0. There existr1 > 0 andC > 0
such that, for every(y0, yT ) ∈ L2(0,2kπ)2 with ‖y0‖L2(0,2kπ) < r1 and‖yT ‖L2(0,2kπ)

< r1, there existsy ∈ C([0, T ], L2(0,2kπ)) ∩ L2(0, T ,H 1(0,2kπ)) satisfying, in the
mild sense,(KdV) withL = 2kπ such that

y(0, ·) = y0, y(T , ·) = yT ,

‖y‖B ≤ C

(
‖PH (y0)‖L2(0,2kπ) +

∣∣∣∣∫ 2kπ

0
(1 − cos(x))y0 dx

∣∣∣∣1/3
+ ‖PH (y1)‖L2(0,2kπ) +

∣∣∣∣∫ 2kπ

0
(1 − cos(x))y1 dx

∣∣∣∣1/3).
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A. Appendix: Existence and uniqueness of solutions to Cauchy problems for KdV
equations

We first prove the existence of solutions to the Cauchy problem for nonlinear KdV equa-
tions (with small data).

Proposition 14. LetL > 0 andT > 0. There existε > 0 andC > 0 such that, for every
f ∈ L1(0, T , L2(0, L)), everyu ∈ L2(0, T ) and everyy0 ∈ L2(0, L) such that

‖f ‖L1(L2) + ‖u‖L2(0,T ) + ‖y0‖L2(0,L) ≤ ε,

there exists at least one mild solutiony of
yt + yx + yxxx + yyx = f,

y(t,0) = y(t, L) = 0,
yx(t, L) = u(t),

y(0, x) = y0(x),

(A.1)

which satisfies

‖y‖B ≤ C(‖f ‖L1(L2) + ‖u‖L2(0,T ) + ‖y0‖L2(0,L)).

Proof. Let T > 0. Forf ∈ L1(0, T , L2(0, L)), u ∈ L2(0, T ) andy0 ∈ L2(0, L), define

Mf,u,y0 : B → B, y 7→ 9(y0, u, f − yyx).

A fixed point ofMf,u,y0 is a solution of (A.1). One easily gets the existence ofC8 =

C8(T ) > 0 such that, for every(y, z) ∈ B2,

‖yyx‖L1(L2) ≤ C8‖y‖
2
B ,

‖zzx − yyx‖L1(L2) ≤ C8(‖z‖B + ‖y‖B)‖z− y‖B .

Hence, by continuity of9 (see Proposition 7), there exists a constantC9 = C9(T , L) > 0
such that, for everyf ∈ L1(0, T , L2(0, L)), everyu ∈ L2(0, T ), everyy0 ∈ L2(0, L),
everyy in B and everyz in B,

‖Mf,u,y0(y)‖B ≤ C9(‖f ‖L1(L2) + ‖u‖L2(0,T ) + ‖y0‖L2(0,L) + ‖y‖2
B),

‖Mf,u,y0(z)−Mf,u,y0(y)‖B ≤ C9(‖z‖B + ‖y‖B)‖z− y‖B .

From these two inequalities and the Banach fixed point theorem, one sees that the asser-
tion of Proposition 14 holds with

ε :=
1

9C2
9

, C :=
3C9

2
.

(Note thatMf,u,y0(B̃)⊂ B̃ if B̃ :={y ∈ B; ‖y‖B ≤ 1/(3C9)}, ‖Mf,u,y0(z)−Mf,u,y0(y)‖B

≤ (2/3)‖z−y‖B for every(y, z)∈ B̃2, and‖y‖L2(0,L)(1−C9‖y‖L2(0,L))≤C9(‖f ‖L1(L2)

+ ‖u‖L2(0,T ) + ‖y0‖L2(0,L)) if y is a fixed point ofMf,u,y0.)

We now prove the uniqueness of the mild solution of the Cauchy problem for our
nonlinear KdV equation, together with estimates of this solution.
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Proposition 15. LetT > 0 and letL > 0. There existsC10 = C10(T , L) > 0 such that
for every(y0, z0) ∈ L2(0, L)2, (u, v) ∈ L2(0, T )2 and(f, g) ∈ L1(0, T , L2(0, L))2 for
which there exist mild solutionsy andz of

yt + yx + yxxx + yyx = f, (A.2)

y(t,0) = y(t, L) = 0, (A.3)

yx(t, L) = u(t), (A.4)

y(0, x) = y0(x), (A.5)

and of

zt + zx + zxxx + zzx = g, (A.6)

z(t,0) = z(t, L) = 0, (A.7)

zx(t, L) = v(t), (A.8)

z(0, x) = z0(x), (A.9)

one has the following inequalities:∫ T

0

∫ L

0
(zx(t, x)− yx(t, x))

2 dx dt

≤

(∫ L

0
(z0 − y0)

2 dx + ‖u− v‖2
L2(0,T ) + ‖f − g‖2

L1(L2)

)
· e
C10(1+‖y‖2

L2(H1)
+‖z‖2

L2(H1)
)
, (A.10)∫ L

0
(z(t, x)− y(t, x))2 dx

≤

(∫ L

0
(z0 − y0)

2 dx + ‖u− v‖2
L2(0,T ) + ‖f − g‖2

L1(L2)

)
· e
C10(1+‖y‖2

L2(H1)
+‖z‖2

L2(H1)
)
, (A.11)

for all t ∈ [0, T ].

Proof. Let

1 := z− y. (A.12)

Then1 is a mild solution of

1t +1x +1xxx = −y1x − zx1− (f − g), (A.13)

1(t,0) = 1(t, L) = 0, (A.14)

1x(t, L) = v(t)− u(t), (A.15)

1(0, x) = z0(x)− y0(x). (A.16)
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Formally, by integrating by parts in∫ L

0
2x1(1t +1x +1xxx + y1x + zx1+ (f − g)) dx = 0, (A.17)

using (A.14) and (A.15), we readily get

d

dt

∫ L

0
x12 dx + 3

∫ L

0
12
x =

∫ L

0
12 dx + L(v(t)− u(t))2 − 2

∫ L

0
xy11x dx

+2
∫ L

0
z12 dx + 4

∫ L

0
xz11x dx

−2
∫ L

0
x1(f − g) dx. (A.18)

(Note that the multiplierx1 for (A.13) has been introduced by Rosier in [12, p. 48].)
Even if (A.17) is only formal, using standard approximation arguments, one easily sees
that (A.18) always holds (in the sense of distributions).

By (A.3) and the continuous Sobolev embeddingH 1
0 (0, L) ⊂ C0([0, T ]), there exists

C11 = C11(L) > 0 such that

2

∣∣∣∣ ∫ L

0
xy11x dx

∣∣∣∣ ≤ C11‖yx‖L2(0,L)

∫ L

0
|x11x | dx.

Thus,

2

∣∣∣∣ ∫ L

0
xy11x dx

∣∣∣∣ ≤
1

2

∫ L

0
12
x dx +

C2
11

2
‖yx‖

2
L2(0,L)L

∫ L

0
x12 dx. (A.19)

Similarly,

4

∣∣∣∣ ∫ L

0
xz11x dx

∣∣∣∣ ≤
1

2

∫ L

0
12
x dx + 2C2

11‖zx‖
2
L2(0,L)

∫ L

0
x12 dx. (A.20)

We have the following lemma:

Lemma 16. For everyφ ∈ H 1(0, L) with φ(0) = 0, and everya ∈ [0, L],∫ L

0
φ2 dx ≤

a2

2

∫ L

0
φ2
x dx +

1

a

∫ L

0
xφ2 dx. (A.21)

Indeed,∫ L

0
φ2 dx =

∫ a

0
φ2 dx +

∫ L

a

φ2 dx ≤

∫ a

0

(∫ x

0
φx(s) ds

)2

dx +
1

a

∫ L

0
xφ2 dx

≤

∫ a

0

(∫ L

0
φ2
x(s) ds

)
x dx +

1

a

∫ L

0
xφ2 dx

≤
a2

2

∫ L

0
φ2
x dx +

1

a

∫ L

0
xφ2 dx.
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Thanks to Lemma 16, there existsC12 > 0 such that∫ L

0
12 dx ≤

1

2

∫ L

0
12
x dx + C12

∫ L

0
x12 dx. (A.22)

Moreover, by (A.7) and the Sobolev embeddingH 1
0 (0, L) ⊂ C0([0, T ]), there exists

C13 = C13(L) > 0 such that

2

∣∣∣∣ ∫ L

0
z12 dx

∣∣∣∣ ≤ C13‖zx‖L2(0,L)

∫ L

0
12 dx.

Hence, using (A.14) and Lemma 16 witha := min{C
−1/2
13 ‖zx‖

−1/2
L2(0,L)

, L}, there exists
C14 = C14(L) > 0 such that

2
∫ L

0
z12 dx ≤

1

2

∫ L

0
12
x dx + C14(1 + ‖zx‖

3/2
L2(0,L)

)

∫ L

0
x12 dx. (A.23)

Moreover,

2

∣∣∣∣ ∫ L

0
x1(f − g) dx

∣∣∣∣ ≤ 2
√
L ‖f − g‖L2(0,L)

(∫ L

0
x12 dx

)1/2

. (A.24)

Thus, by (A.20), (A.22), (A.23), and (A.24), there existsC15 = C15(L) > 0 such that

d

dt

∫ L

0
x12 dx +

∫ L

0
12
x dx

≤ L(v(t)− u(t))2 + 2
√
L ‖f − g‖L2(0,L)

(∫ L

0
x12 dx

)1/2

+C15(1 + ‖yx‖
2
L2(0,L) + ‖zx‖

2
L2(0,L))

∫ L

0
x12 dx. (A.25)

In particular,

d

dt

∫ L

0
x12 dx ≤ L(v(t)− u(t))2 + 2

√
L ‖f − g‖L2(0,L)

(∫ L

0
x12 dx

)1/2

+C15(1 + ‖yx‖
2
L2(0,L) + ‖zx‖

2
L2(0,L))

∫ L

0
x12 dx. (A.26)

Let us assume for the time being that the following lemma holds:

Lemma 17. Let T > 0. Let a, b and c be three nonnegative functions inL1(0, T ). Let
w ∈ C0([0, T ]) be a nonnegative function such that, in the sense of distributions,

ẇ ≤ a(t)+ b(t)
√
w(t)+ c(t)w(t).

Then

w(t) ≤ 3

(
w(0)+

∫ t

0
a(s) ds +

(∫ t

0
b(s) ds

)2)
e
∫ t

0 c(s) ds .



388 Jean-Michel Coron, Emmanuelle Crépeau

From (A.16), (A.26) and Lemma 17, we get, for everyt ∈ [0, T ],∫ L

0
x12(t, x) dx ≤ 3

(∫ L

0
x(z0 − y0)

2 dx + L‖u− v‖2
L2(0,T ) + 4L‖f − g‖2

L1(L2)

)
· e
C15(T+‖y‖2

L2(H1)
+‖z‖2

L2(H1)
)
. (A.27)

Using (A.12), (A.25) and (A.27), we get the existence ofC16 = C16(T , L) > 0 such that∫ T

0

∫ L

0
(zx(t, x)− yx(t, x))

2 dx dt

≤

(∫ L

0
(z0 − y0)

2 dx + ‖u− v‖2
L2(0,T ) + ‖f − g‖2

L1(L2)

)
· e
C16(1+‖y‖2

L2(H1)
+‖z‖2

L2(H1)
)
, (A.28)

which gives (A.10). Finally, in order to get (A.11), we multiply (A.13) by1 and integrate
on [0, L]. Using (A.14), (A.15) and integrations by parts, we get

1

2

d

dt

∫ L

0
12 dx +

1

2
12
x(t,0) =

1

2
(v(t)− u(t))2

−

∫ L

0
(y1x − 2z1x + f − g)1dx. (A.29)

Moreover

−

∫ L

0
(y1x − 2z1x)1 dx ≤

∫ L

0
12
x dx +

∫ L

0

(
1

2
y2

+ 2z2
)
12 dx. (A.30)

By (A.3), (A.7), (A.29), (A.30), and the continuous Sobolev embeddingH 1
0 (0, L) ⊂

C0([0, L]) there existsC17 = C17(L) > 0 such that

1

2

d

dt

∫ L

0
12 dx ≤

1

2
(v(t)− u(t))2 +

∫ L

0
12
x dx

+ ‖f (t, ·)− g(t, ·)‖L2(0,L)

(∫ L

0
12 dx

)1/2

+C17(‖yx‖
2
L2(0,L) + ‖zx‖

2
L2(0,L))

∫ L

0
12 dx,

which, combined with (A.16), (A.28) and Lemma 17, gives (A.11) forC10 = C10(T , L)

> 0 large enough.

It remains to prove Lemma 17. Considering

w̃(t) := w(t)e−
∫ t

0 c(s) ds,
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we easily see that, without loss of generality, we may assume thatc = 0. Moreover, we
may also assume that there existsε > 0 such that, for almost everys in [0, T ], a(s) ≥ ε.
Let

w̃(t) := max

(
w(t)−

∫ t

0
a(s) ds,0

)
.

Then, in the sense of distributions,

d

dt

(√
w̃(t)+

∫ t

0
a(s) ds

)
≤
b(t)

2
+

a(t)

2
√∫ t

0 a(s) ds

.

Integrating this inequality on [0, t ], we get√
w̃(t)+

∫ t

0
a(s) ds ≤

√
w(0)+

1

2

∫ t

0
b(s) ds +

√∫ t

0
a(s) ds,

which gives

w(t) ≤ 3

(
w(0)+

1

4

(∫ t

0
b(s) ds

)2

+

∫ t

0
a(s) ds

)
,

and ends the proof of Lemma 17.

B. Motion failure in the ±(1 − cos(x)) directions for a 2nd order power series
expansion

Throughout all this section, we again assume that (2.5) holds. We now denote byL2(0, L)
the space of measurablecomplex-valued functions such that

∫ L
0 |f |

2 dx < ∞. We use the
similar convention forC∞([0, L]), L2(0, T ), H , D(A), mild solutions etc. We also still
denote byPH the orthogonal projection onH ⊂ L2(0, L) for thehermitianproduct on
L2(0, L). The main result of this section is the following.

Proposition 18. Let z be a mild solution of

zt + zx + zxxx = 0, (B.1)

z(t,0) = z(t, L) = 0, (B.2)

z(0, x) = z(T , x) = 0, (B.3)

and lety be a mild solution of

yt + yx + yxxx = 0, (B.4)

y(t,0) = y(t, L) = 0, (B.5)

such that ∫ L

0
y(t, x)(1 − cos(x)) dx = 0, ∀t ∈ [0, T ]. (B.6)
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Then ∫ T

0

∫ L

0
yz sin(x) dx dt = 0. (B.7)

Before giving the proof of this proposition, let us first mention a corollary:

Corollary 19. LetT ,L, y andz be as in Proposition18. Letw ∈ B be a mild solution of

wt + wx + wxxx = −(yz)x, (B.8)

w(t,0) = w(t, L) = 0, (B.9)

such that

w(0, x) = 0, (B.10)

PH (w(T , ·)) = 0. (B.11)

Then

w(T , x) = 0. (B.12)

Indeed, from (B.8) and (B.9), we get

d

dt

∫ L

0
(1 − cos(x))w dx =

∫ L

0
yz sin(x) dx,

which, together with (B.7) and (B.10), gives∫ L

0
(1 − cos(x))w(T , x) dx = 0. (B.13)

Finally, (B.12) follows from (B.11) and (B.13).
Let us now prove Proposition 18 in two special cases, from which we will then deduce

the general case.
Let λ ∈ C \ σ(A). Then there exists a uniqueyλ ∈ C∞([0, L]) such that

λyλ + yλx + yλxxx = 0, (B.14)

yλ(0) = yλ(L) = 0, (B.15)

yλx(L) = 1. (B.16)

Let

Yλ(t, x) := eλtyλ(x). (B.17)

Then the following lemma holds:

Lemma 20. For λ ∈ C \ σ(A), the assertion of Theorem18holds if

y(t, x) := Yλ(t, x). (B.18)
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(Note that (B.14), (B.15), (B.17) and (B.18) imply (B.4) and (B.5).) Let us prove this
lemma. Sinceλ ∈ C \ σ(A), there exists a uniqueφ ∈ C∞([0, L]) such that

λφ + φx + φxxx = yλ sin(x), (B.19)

φ(0) = φ(L) = 0, (B.20)

φx(L) = 0. (B.21)

After some integrations by parts, we get, using (B.1), (B.2), (B.19), (B.20), (B.17) and
(B.18), ∫ L

0
yz sin(x) dx =

d

dt

∫ L

0
zφeλt − eλt [zxφx ]

L
0 ,

which, together with (B.3) and (B.21), gives (B.7) if

φx(0) = 0. (B.22)

We multiply (B.19) byyλ(L− x) to get, in view of (2.5),

∫ L

0
λφyλ(L− x)+

∫ L

0
(φx + φxxx)yλ(L− x) dx

=

∫ L

0
yλ(L− x)yλ(x) sin(x) dx = 0. (B.23)

Performing integrations by parts in (B.23), we get, using (B.14), (B.15) and (B.20),

φx(0)yλx(L) = 0,

which, together with (B.16), gives (B.22) and ends the proof of Lemma 20.
Let nowµ ∈ σ(Ã) andξ ∈ C∞([0, L]) be such that

µξ + ξx + ξxxx = 0, (B.24)

ξ(0) = ξ(L) = 0, (B.25)

ξx(L) = ξx(0). (B.26)

If µ = 0, we assume that ∫ L

0
(1 − cos(x))ξ dx = 0. (B.27)

Note that (B.27) is implied by (B.24) and (B.25) ifµ 6= 0. One has the following lemma.

Lemma 21. The assertion of Proposition18holds for

y(t, x) := eµtξ(x). (B.28)
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(Again (B.24) to (B.28) imply (B.4) to (B.6).) Let us prove this lemma. Let us first deal
with the case whereµ 6= 0. Then, since, by [12, Remark 3.6 (ii)],

σ(A) ∩ σ(Ã) = {0}, (B.29)

it follows thatµ 6∈ σ(A). Hence

(ξx(L) = 0) ⇒ (ξ = 0) (B.30)

and there exists a uniqueφ ∈ C∞([0, L]) such that

µφ + φx + φxxx = ξ sin(x),

φ(0) = φ(L) = 0,

φx(L) = 0.

We then proceed as in the proof of Lemma 20 to get the desired property.
Let us now turn to the case whereµ = 0. Then (B.24) to (B.27) imply the existence

of c ∈ C such that

ξ(x) = c sin(x). (B.31)

We now defineφ ∈ C∞([0, L]) by

φ(x) := 1
6(x − x cos(x)+

1
2 sin(2x)− sin(x)).

We have

φx + φxxx = sin2(x)−
1
3(1 − cos(x)),

φ(0) = φ(L) = φx(0) = φx(L) = 0,

which, together with (B.1) and (B.2), leads to∫ L

0
z sin2(x) dx =

1

3

∫ L

0
(1 − cos(x))z dx +

d

dt

∫ L

0
zφ. (B.32)

But, from (B.1) and (B.2), we get

d

dt

∫ L

0
(1 − cos(x))z dx = 0,

which, together with (B.3), gives∫ L

0
(1 − cos(x))z dx = 0. (B.33)

Equality (B.7) follows from (B.3), (B.28), (B.31), (B.32) and (B.33). This ends the proof
of Lemma 21.

Let E be the subspace ofL2(0, T )× L2(0, L) spanned by the following pairs:

• (Yλx(·, L), Yλ(0, ·)) with λ ∈ C \ σ(A),
• (eµtξx(L), ξ) with µ ∈ σ(Ã) andξ ∈ C∞([0, L]) satisfying (B.24) to (B.27).
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Let us point out that, as in Section 2, we still have (2.50). ThereforeE ⊂ L2(0, T )×H .
We have

Lemma 22. For everyT > 0, E is dense inL2(0, T )×H .

Let us prove this lemma. Letv ∈ L2(0, T ) andh ∈ L2(0, L) be such that(v, h) ∈ E⊥.
Thus, for allλ ∈ C \ σ(A),∫ T

0
v̄(t)eλt dt +

∫ L

0
h̄(x)yλ(x) dx = 0. (B.34)

Let us give an estimate onyλ in order to prove thatv = 0. We multiply (B.14) byȳλ,
take the real part and integrate on [0, L]. Then, using integrations by parts together with
(B.15) and (B.16), we get

2 Re(λ)
∫ L

0
|yλ|

2 dx = 1 − |yλx(0)|
2. (B.35)

From this equality we deduce that

‖yλ‖L2(0,L) ≤
1

2Re(λ)
if Re(λ) > 0. (B.36)

The same computations show that, ifw ∈ D(A) satisfiesAw = λw with λ ∈ C, then
2Re(λ)

∫ L
0 |w|

2 dx = −|wx(0)|2. Thereforeσ(A) ⊂ {λ ∈ C; Re(λ) ≤ 0}. Hence by

(B.34) and (B.36) the holomorphic functionλ ∈ C 7→
∫ T

0 v̄(t)eλt is bounded and con-
verges to 0 as Re(λ) tends to+∞. Therefore this holomorphic function is identically
equal to 0, which implies thatv = 0.

Let us now prove thath ∈ H⊥. We have∫ T

0
h̄ξ dx = 0 (B.37)

for everyξ ∈ C∞([0, L]) satisfying (B.24) for someµ ∈ σ(Ã) and (B.25) to (B.27). But,
sinceiÃ is selfadjoint with compact resolvent, it follows from the spectral decomposition
of such operators that the vector space spanned by suchξ is dense inH . Hence, by (B.37),
h ∈ H⊥.

Let us now end the proof of Proposition 18 by a density argument ony. Let z be as in
the hypotheses of Proposition 18. Let

F : L2(0, T )×H → C, (u, φ) 7→

∫ T

0

∫ L

0
yz dx dt,

wherey is the mild solution of

yt + yx + yxxx = 0, y(t,0) = y(t, L) = 0, yx(t, L) = u(t), y(0, x) = φ(x).

By Lemmas 20 and 21, this linear mapF vanishes onE . By Proposition 7,F is continu-
ous. HenceF vanishes on the closure ofE , which, by Lemma 22, is equal toL2(0, T )×H .
This ends the proof of Proposition 18.
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C. Proof of Lemma 11

Let b ∈ R \ [−1/
√

3,1/
√

3] be such that−2λ = 2ib(4b2
− 1). We have

y−2λ = ηe(−
√

3b2−1−ib)x
+ (1 − η)e(

√
3b2−1−ib)x

− e2ibx

with

η :=
e2ibL

− e(
√

3b2−1−ib)L

e(−
√

3b2−1−ib)L − e(
√

3b2−1−ib)L
.

After some integrations by parts, we get, using (2.47) for−2λ in place ofλ, (2.65) and
(2.73),∫ L

0
(2λ(δλ − ψλ)+ (δλ − ψλ)x + (δλxxx − ψλxxx))y−2λ dx

= −(δλx(L)− ψλx(L))(y−2λx(L)− y−2λx(0)).

Thus, by (2.64) and (2.72),∫ L

0
(zλ sin(x)− yλφλx)y−2λ dx = (δλx(L)− ψλx(L))(y−2λx(L)− y−2λx(0)).

Then, in order to prove Lemma 11, one just just needs to check that

a 7→

∫ L

0
(zλ sin(x)− yλφλx)y−2λ dx is not identically 0 on6. (C.1)

Straightforward computations give

φλ(x) = −
1

12a(2a + 1)(2a − 1)
[κ[(a + 1 − i

√
3a2 − 1)e(−

√
3a2−1−ia+i)x

+ (a − 1 − i
√

3a2 − 1)e(−
√

3a2−1−ia−i)x ]

+ (1 − κ)[(a + 1 + i
√

3a2 − 1)e(
√

3a2−1−ia+i)x

+ (a − 1 + i
√

3a2 − 1)e(
√

3a2−1−ia−i)x ]

+ [(2a − 1)e(2ia+i)x + (2a + 1)e(2ia−i)x ]]

+K1e
2iax

+K2e
(−

√
3a2−1−ia)x

+K3e
(
√

3a2−1−ia)x, (C.2)

with

K1 :=
1

3(2a + 1)(2a − 1)
, K2 :=

A

B
, K3 :=

C

D
,

where

A := (6ia2
− i + 2a

√
3a2 − 1)e−2iaL

+ (−6ia2
+ i − 2a

√
3a2 − 1)eL(−

√
3a2−1+ia)

+ (6ia2
− 2i − 2a

√
3a2 − 1)e4iaL

+ (−i − 4a
√

3a2 − 1)e2L(
√

3a2−1−ia)

+ (3i − 6ia2
+ 6a

√
3a2 − 1)eL(

√
3a2−1+ia),
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B := 6a(2a + 1)(2a − 1)(eL(−
√

3a2−1−ia)
− eL(

√
3a2−1−ia))

· ((−3ia +

√
3a2 − 1)e−L(

√
3a2−1+ia)

− 2
√

3a2 − 1e2iaL
+ (3ia +

√
3a2 − 1)eL(

√
3a2−1−ia)),

C := (−i + 4a
√

3a2 − 1)eL(−
√

3a2−1−ia)
+ (6ia2

− i − 2a
√

3a2 − 1)eL(
√

3a2−1−ia)

+ (−6ia2
+ 2i − 2a

√
3a2 − 1)e2iaL][eL(−

√
3a2−1−ia)

− e2iaL],

D := 6a(2a + 1)(2a − 1)(eL(−
√

3a2−1−ia)
− eL(

√
3a2−1−ia))

· ((−3ia +

√
3a2 − 1)e−L(

√
3a2−1+ia)

− 2
√

3a2 − 1e2iaL
+ (3ia +

√
3a2 − 1)eL(

√
3a2−1−ia)).

We also have

zλ(x) = k1(x)+

(
−k1(0)+

k1(L)− k1(0)

e(
√

3b2−1+ib)L − e(−
√

3b2−1+ib)L

)
e(−

√
3b2−1+ib)x

−
k1(L)− k1(0)

e(
√

3b2−1+ib)L − e(−
√

3b2−1+ib)L
)e(

√
3b2−1+ib)x

+Mλ(−e
2ibx

+ η̄e(−
√

3b2−1+ib)x
+ (1 − η̄)e(

√
3b2−1+ib)x), (C.3)

whereMλ ∈ C is a constant and

k1(x) := −
κ2i(−

√
3a2 − 1 − ia)

2(24a3 − 9a + 3i
√

3a2 − 1)
e(−2

√
3a2−1−2ia)x (C.4)

−
(1 − κ)2i(

√
3a2 − 1 − ia)

2(24a3 − 9a − 3i
√

3a2 − 1)
e(2

√
3a2−1−2ia)x

+
κ(1 − κ)

12a2 − 3
e−2iax

+
e4iax

24a2
−
κi(−

√
3a2 − 1 + ia)

2(12a3 − 3a)
e(−

√
3a2−1+ia)x

−
i(1 − κ)(

√
3a2 − 1 + ia)

2(12a3 − 3a)
e(

√
3a2−1+ia)x . (C.5)

Since∫ L

0
(−e2ibx

+ η̄e(−
√

3b2−1+ib)x
+ (1 − η̄)e(

√
3b2−1+ib)x)y−2λ sin(x) dx

=

∫ L

0
ȳ−2λy−2λ sin(x) dx = 0, (C.6)

one does not need to knowMλ to compute the integral in (C.1). Let

Q := E

∫ L

0
(zλ sin(x)− yλφλx)y−2λ dx,
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with

E = (eL(−
√

3a2−1−ia)
− eL(

√
3a2−1−ia))(eL(

√
3b2−1+ib)

− eL(−
√

3b2−1+ib))

· ((−3ia +

√
3a2 − 1)e−L(

√
3a2−1+ia)

− 2
√

3a2 − 1e2iaL

+ (3ia +

√
3a2 − 1)eL(

√
3a2−1+ia)).

ThenQ is a finite sum of terms of the formPc(a)e(c1
√

3a2−1+c2ia+c3

√
3b2−1+c4ib)L where

Pc(a) is a rational function ofa, b,
√

3a2 − 1 and
√

3b2 − 1 andc := (c1, c2, c3, c4) ∈

Z4. (There are 110 such terms.) It is easy to prove that (C.1) is identically 0 (if and) only
if everyPc is identically 0.

We look atP(3,1,2,2). After lengthy but straightforward computations, we get

P(3,1,2,2)(a) = −(3ia +

√
3a2 − 1)(f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9)

+
6ia2

− i − 2a
√

3a2 − 1

6a(2a + 1)(2a − 1)
(f10 + f11), (C.7)

with

f1 =
(
√

3a2 − 1 − ia)i

48a3 − 18a − 6i
√

3a2 − 1

(
1

(2
√

3a2 − 1 − 2ia +
√

3b2 − 1 − ib)2 + 1

−
1

(2
√

3a2 − 1 − 2ia + 2ib)2 + 1

)
,

f2 =
−1

24a2

(
1

(4ia +
√

3b2 − 1 − ib)2 + 1
−

1

(4ia + 2ib)2 + 1

)
,

f3 =
(
√

3a2 − 1 + ia)i

24a3 − 6a

(
1

(
√

3a2 − 1 + ia +
√

3b2 − 1 − ib)2 + 1

−
1

(
√

3a2 − 1 + ia + 2ib)2 + 1

)
,

f4 =
1

12a(2a + 1)(2a − 1)

·

[(
a + 1 + i

√
3a2 − 1

2
√

3a2 − 1 − 2ia + i +
√

3b2 − 1 − ib

+
a − 1 + i

√
3a2 − 1

2
√

3a2 − 1 − 2ia − i +
√

3b2 − 1 − ib

)
−

(
a + 1 + i

√
3a2 − 1

2
√

3a2 − 1 − 2ia + i + 2ib
+

a − 1 + i
√

3a2 − 1

2
√

3a2 − 1 − 2ia − i + 2ib

)]
,
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f5 = −
1

12a(2a + 1)(2a − 1)

·

[(
a + 1 + i

√
3a2 − 1

√
3a2 − 1 + ia + i +

√
3b2 − 1 − ib

+
a − 1 + i

√
3a2 − 1

√
3a2 − 1 + ia − i +

√
3b2 − 1 − ib

)
−

(
a + 1 + i

√
3a2 − 1

√
3a2 − 1 + ia + i + 2ib

+
a − 1 + i

√
3a2 − 1

√
3a2 − 1 + ia − i + 2ib

)]
,

f6 =
i

12a

[(
1

√
3a2 − 1 + ia + i +

√
3b2 − 1 − ib

+
1

√
3a2 − 1 + ia − i +

√
3b2 − 1 − ib

)
−

(
1

√
3a2 − 1 + ia + i + 2ib

+
1

√
3a2 − 1 + ia − i + 2ib

)]
,

f7 =
−i

12a

[(
1

4ia + i +
√

3b2 − 1 − ib
+

1

4ia − i +
√

3b2 − 1 − ib

)
−

(
1

4ia + i + 2ib
+

1

4ia − i + 2ib

)]
,

f8 =
−2ia

3(2a + 1)(2a − 1)

·

[
1

√
3a2 − 1 + ia +

√
3b2 − 1 − ib

−
1

√
3a2 − 1 + ia + 2ib

]
,

f9 =
2ia

3(2a + 1)(2a − 1)

[
1

4ia +
√

3b2 − 1 − ib
−

1

4ia + 2ib

]
,

f10 = −(
√

3a2 − 1 − ia)

·

[
1

2
√

3a2 − 1 − 2ia +
√

3b2 − 1 − ib
−

1

2
√

3a2 − 1 − 2ia + 2ib

]
,

f11 = (
√

3a2 − 1 − ia)

[
1

√
3a2 − 1 + ia +

√
3b2 − 1 − ib

−
1

√
3a2 − 1 + ia + 2ib

]
.

As a → +∞, one concludes thatP(3,1,2,2)(a) ∼ p/a with

p :=
(
√

3 − i)(6i − 2
√

3)

24

(
−

1

2
√

3 − 2i + 21/3
√

3 + i21/3
+

1

2
√

3 − 2i − i24/3

+
1

√
3 + i + 21/3

√
3 + i21/3

−
1

√
3 + i − i24/3

)
6= 0.

In particularP(3,1,2,2) is not identically equal to 0.
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