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1. Introduction

The well-known Hardy–Sobolev inequality states that for any given domain� ⊂ Rn,
n ≥ 3 and anyu ∈ C∞

c (�),

K2
∫

�

u2

|x|2
≤

∫
�

|∇u|
2, (1)

whereK = (n − 2)/2. Though the constantK2 is optimal, in the sense that

K2
= inf

u∈C∞
c (�)\{0}

∫
�

|∇u|
2∫

�
u2/|x|2

,

equality in (1) is never achieved (by anyu ∈ H 1
0 (�)). This fact has led to the improvement

of the inequality in various ways: Brezis and Vázquez [BV] first showed that if� is
bounded then for someγ > 0,

γ

(∫
�

|u|
p

)2/p

+ K2
∫

�

u2

|x|2
≤

∫
�

|∇u|
2, (2)

with 1 ≤ p < 2n/(n − 2). Vázquez and Zuazua [VZ] were then able to replace theLp

norm on the left hand side of (2) by aW1,q norm forq < 2. Various improvements (in-
volving e.g. weightedLp or W1,p norms) were also obtained and we refer the interested
reader to [Da], [ACR], [FT], [BFT] and the references therein.

One of the consequences of inequality (2) is that the operatorL0 := −1 − µ/|x|
2

has a positive first eigenvalue, in the sense that

inf
‖u‖

L2(�)=1

∫
�

(
|∇u|

2
− µ

u2

|x|2

)
> 0,

wheneverµ ≤ K2.
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In the first part of this work, given a compact smooth boundaryless manifold6 ⊂ �

of codimensionk 6= 2, we look at operators of the form

L = −1 −
µ

d(x)2
,

whered(x) = dist(x, 6) andµ ∈ R, and wonder whether an inequality similar to (2)
holds.

The first results in this direction are due to Marcus, Mizel and Pinchover [MMP]
and Matskewich and Sobolevskii [MSo]. They showed that if� is a convex domain and
6 = ∂� then

1

4

∫
�

u2

d(x)2
≤

∫
�

|∇u|
2. (3)

The same authors showed that (3) did not hold in a general domain� and provided
examples of smooth domains� such that

inf
u6≡0

∫
�

|∇u|
2∫

�
u2/d2

<
1

4
.

Alternatively, Brezis and Marcus showed in [BM] that the following inequality remains
true on a general (smooth bounded) domain�:

1

4

∫
�

u2

d2
≤

∫
�

|∇u|
2
+ C

∫
�

u2,

whereC is some positive constant.
Finally, among many other results, Barbatis, Filippas and Tertikas [BFT, FT] extended

(3) to the case where6 ⊂ � is a smooth compact manifold of codimensionk, satisfying
some geometric condition: they showed that if1d2−k

≤ 0 inD′(� \ 6) then

γ

(∫
�

|u|
p

)2/p

+ H 2
∫

�

u2

d2
≤

∫
�

|∇u|
2,

whereH = (k − 2)/2 and 1≤ p < 2n/(n − 2).
Our goal here is to drop the assumption1d2−k

≤ 0. Our results are summarized in
the following two theorems:

Theorem 1. Let � ⊂ Rn be an open bounded set and6 ⊂ � be a compact smooth
manifold without boundary of codimensionk 6= 2. LetH = (k − 2)/2. Then there exist
C > 0, γ > 0 independent ofu such that for anyu ∈ C∞

c (� \ 6),

γ

(∫
�

|u|
p

)2/p

+ H 2
∫

�

u2

d2
≤

∫
�

|∇u|
2
+ C

∫
�

u2, (4)

whered(x) = dist(x, 6), 1 ≤ p < pk andpk is given by

1

pk

=
1

2
−

2

k(n − k + 2)
for k > 2,

1

p1
=

1

2
−

1

n + 1
if k = 1.
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Theorem 2. Under the assumptions of Theorem1, there existβ > 0 and a neighborhood
�β := {x ∈ � : d(x, 6) < β} of 6 in � such that for anyu ∈ C∞

c (�β \ 6),

H 2
∫

�

u2

d2
≤

∫
�

|∇u|
2. (5)

Remark 1. • If k ≥ 3 it follows by density that (4) and (5) hold for allu ∈ C∞
c (�),

respectivelyu ∈ C∞
c (�β).

• The exponentpk appearing in Theorem 1 is probably not optimal and we expect that
(4) holds for all 1≤ p < 2n/(n − 2). In fact Maz’ja [Ma, Corollary 3, Section 2.1.6]
proved this result when6 = {x ∈ Rn : x1 = x2 = · · · = xk = 0}.

As a direct consequence of Theorem 1, we see that the first eigenvalue of the operator
L = −1 − µ d−2 is finite, i.e.

λ1 := inf
‖u‖

L2(�)=1

∫
�

(
|∇u|

2
− µ

u2

d2

)
> −∞,

wheneverµ ≤ H 2. We proved in [DD] that in such circumstances there exists an eigen-
functionϕ1 associated toλ1, i.e. a solution (in a sense which we shall make precise soon)
of  −1ϕ1 −

µ

d2
ϕ1 = λ1ϕ1 in �,

ϕ1 = 0 on∂�.

Normalizingϕ1 by ‖ϕ1‖L2(�) = 1 andϕ1 > 0, we then investigate the behavior ofϕ1
near6 and show that in a neighborhood of6, there exist constantsC1, C2 > 0 such that

C1d(x)−α(µ)
≤ ϕ1 ≤ C2d(x)−α(µ), (6)

whereα(µ) = H −

√
H 2 − µ.

This result enables us to treat two model applications. First we consider the quantity

Jλ := inf
u6≡0

∫
�

|∇u|
2
− λ

∫
�

u2∫
�

u2/d2

and extend a result of Brezis and Marcus [BM] stating thatJλ is achieved if and only if
Jλ < H 2.

Our second application is a nonexistence result for positive solutions of the equation

−1u −
µ

d2
u = up

+ λ,

completing a study started in [DN]. See Section 4.2 for details.
The last purpose of this article is to extend some results in [DD]. This generalization

is necessary to include the case of potentialsa(x) = µ dist(x, 6)−2. More precisely, we
shall derive estimates for solutions of the linear equation{

−1u − a(x)u = f in �,

u = 0 on∂�,
(7)
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under the assumptions thata ∈ L1
loc(�), a is bounded below, i.e.

ess inf
�

a > −∞,

and

γ

(∫
�

|u|
r

)2/r

+

∫
�

a(x)u2
≤

∫
�

|∇u|
2
+ M

∫
�

u2, (8)

for somer > 2, γ > 0, M > 0.
Let us now clarify what we mean by a solution of (7).
We first define the Hilbert spaceH as the completion ofC∞

c (�) with respect to the
norm

‖u‖
2
H = (u|u)H :=

∫
�

(|∇u|
2
− a(x)u2

+ Mu2),

whereM is the same constant that appears in (8). Observe that the definition ofH does
not change if we replaceM by any larger constant.

Givenf ∈ H∗, we then say thatu ∈ H is a solution of (7) if

(u|v)H = 〈f, v〉H∗,H + M(u|v)L2(�) ∀v ∈ H.

It is convenient at this point to recall some facts that were proved in [DD]. We start
by mentioning thatH embeds compactly inL2(�). In particular

L = −1 − a(x)

has a first eigenvalueλ1, which is simple.λ1 is not necessarily positive (Theorem 1 pro-
vides examples of potentialsa(x) = H 2/d(x)2 for which in generalλ1 can be nonposi-
tive), but when it is, then forf ∈ H∗ problem (7) has a unique solutionu ∈ H.

We note here that uniqueness fails if one considers other classes of solutions (see an
example in [DD]).

The first eigenvalueλ1 has an associated positive eigenfunctionϕ1 (it is not only
positive a.e. but it also satisfiesϕ1 ≥ c dist(x, ∂�) for somec > 0).

Solutions inH of an equation like (7) are typically unbounded (see examples in [D,
DD, DN]). In [DD] we showed that ifλ1 > 0 andf ≥ 0, f 6≡ 0 then the solutionu ∈ H
of (7) is bounded below by a positive constant timesϕ1. We also proved that ifλ1 > 0
andf = 1, then the solutionu of (7) satisfiesu ≤ Cϕ1 for someC > 0.

Our main result is the following:

Theorem 3. Let0 < m < r and suppose that

p >
2r

m(r − 2)
and p ≥

r

r − m
.

Assume thatf ∈ H∗ satisfies‖ϕ1−m
1 f ‖Lp(�) < ∞ and thatu ∈ H is a solution of(7).

Then
|u(x)| ≤ C(‖ϕ1−m

1 f ‖Lp(�) + ‖u‖L2(�))ϕ1(x), a.e.x ∈ �.
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A simple corollary of this result, obtained by choosingm = 2, is the following:

Corollary 1. Assumef ∈ H∗ satisfiesf/ϕ1 ∈ Lp(�) for somep > r/(r − 2) and that
u ∈ H is a solution of(7). Then

|u(x)| ≤ C(‖f/ϕ1‖Lp(�) + ‖u‖L2(�))ϕ1(x), a.e.x ∈ �.

The paper is organized as follows: Section 2 is devoted to the proof of Theorems 1 and 2.
In Section 3 we derive (6) whereas Section 4 is dedicated to the aforementioned applica-
tions. Finally, we prove Theorem 3 in Section 5.

2. Hardy inequalities

2.1. Proof of Theorem 1

The object of this subsection is to prove Theorem 1. Our arguments are based on improve-
ments of the one-dimensional Hardy inequality inspired by [BM] and a decomposition of
L2 functions in spherical harmonics taken from [VZ].

We start with a series of three lemmas, which yield a refined version of the classical
Hardy inequality inRk (see (20)). The first lemma deals with radial functions:

Lemma 1. Letk 6= 2 andH = (k − 2)/2. There exists a constantC > 0 depending only
onk such that∫ 1/2

0

[(
du

dr

)2

− H 2u2

r2

]
rk−1 dr + C

∫ 1/2

0
u2rk−1 dr

≥

∫ 1/2

0

[(
du

dr

)2

+ H 2u2

r2

]
rk dr +

1

4

∫ 1/2

0
r

(
d

dr
(rH u(r))

)2

dr (9)

for all u ∈ C∞
c (0, 1/2).

Proof. Let u ∈ C∞
c (0, 1/2) andv(r) = rH u(r). A standard computation yields[(

du

dr

)2

− H 2u2

r2

]
rk−1

= r

(
dv

dr

)2

− H
d(v2)

dr
. (10)

Integrating, it follows that

A :=
∫ 1/2

0

[(
du

dr

)2

− H 2u2

r2

]
rk−1 dr =

∫ 1/2

0
r

(
dv

dr

)2

dr. (11)

Similarly, by (10) and an integration by parts,

B :=
∫ 1/2

0

[(
du

dr

)2

+ H 2u2

r2

]
rk dr

=

∫ 1/2

0
r2

(
dv

dr

)2

dr + 2H 2
∫ 1/2

0

u2

r2
rk dr − H

∫ 1/2

0
r

[
d(v2)

dr

]
dr

=

∫ 1/2

0
r2

(
dv

dr

)2

dr + (2H 2
+ H)

∫ 1/2

0
v2 dr. (12)
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Using integration by parts again, it follows that for givenε > 0, there existsC > 0 such
that∫ 1/2

0
v2 dr = −2

∫ 1/2

0
rv

dv

dr
dr ≤ C

∫ 1/2

0
v2r dr + ε

∫ 1/2

0

(
dv

dr

)2

r dr

= C

∫ 1/2

0
u2rk−1 dr + ε

∫ 1/2

0

(
dv

dr

)2

r dr. (13)

Collecting (11), (12) and (13), we obtain forε small enough

A − B ≥

∫ 1/2

0
r(1 − r − Cε)

(
dv

dr

)2

dr − C

∫ 1/2

0
u2rk−1 dr

≥
1

4

∫ 1/2

0
r

(
dv

dr

)2

dr − C

∫ 1/2

0
u2rk−1 dr. �

The next lemma will help us deal with the nonradial part of a given functionu : Rk
→ R.

Lemma 2. Let k 6= 2, H = (k − 2)/2 andc > c̄ > 0. There exist constantsC, τ > 0
depending only onk and c̄ such that∫ 1/2

0

[(
du

dr

)2

− (H 2
− c)

u2

r2

]
rk−1 dr + C

∫ 1/2

0
u2rk−1 dr

≥

∫ 1/2

0

[(
du

dr

)2

+ (H 2
+ c)

u2

r2

]
rk dr + τ

∫ 1/2

0

[(
du

dr

)2

+ c
u2

r2

]
rk−1 dr (14)

for all u ∈ C∞
c (0, 1/2).

Proof. It follows from (9) that if

D :=
∫ 1/2

0

[(
du

dr

)2

− (H 2
− c)

u2

r2

]
rk−1 dr + C

∫ 1/2

0
u2rk−1 dr (15)

and

E :=
∫ 1/2

0

[(
du

dr

)2

+ (H 2
+ c)

u2

r2

]
rk dr (16)

then

D − E ≥ c

∫ 1/2

0

u2

r2
(1 − r)rk−1 dr +

1

4

∫ 1/2

0
r

(
dv

dr

)2

dr

≥
c

2

∫ 1/2

0

u2

r2
rk−1 dr +

1

4

∫ 1/2

0
r

(
dv

dr

)2

dr. (17)
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We can also rewrite (10) as

rk−1
(

du

dr

)2

= H 2u2

r2
rk−1

+ r

(
dv

dr

)2

− H
d(v2)

dr

so that ifτ = min
(

c̄

4H2 , 1
4

)
, then

τ

∫ 1/2

0
rk−1

(
du

dr

)2

dr ≤
c̄

4

∫ 1/2

0

u2

r2
rk−1 dr +

1

4

∫ 1/2

0
r

(
dv

dr

)2

dr. (18)

It then follows from (17) and (18) that

D − E ≥ τ

∫ 1/2

0
rk−1

(
du

dr

)2

dr +
c

4

∫ 1/2

0

u2

r2
rk−1 dr. (19)

Hence (14) holds. �

Finally, the following lemma yields the improved Hardy inequality (inRk) that we
will be using in what follows.

Lemma 3. Letk 6= 2, H = (k − 2)/2 andβ > 0. LetBk
β denote the ball ofRk centered

at the origin and of radiusβ. There exist positive constantsC = C(β, k), τ = τ(k) and
α = α(β, k) such that∫

Bk
β

(
|∇u|

2
− H 2 u2

|y|2

)
dy + C

∫
Bk

β

u2 dy

≥
1

2β

∫
Bk

β

|y|

(
|∇u|

2
+H 2 u2

|y|2

)
dy+τ

∫
Bk

β

|∇(u − u0)|
2 dy+α

∫ β

0
r

(
dv0

dr

)2

dr (20)

for all u ∈ C∞
c (Bk

β \ {0}), whereu0(r) = u0(|y|) = −

∫
∂Bk

r
u dσ andv0(r) = rH u0(r).

Proof. Let {fi}
∞

i=0 be an orthonormal basis ofL2(Sk−1), composed of eigenvectors of
the Laplace–Beltrami operator1|Sk−1. The corresponding eigenvalues are given byci =

i(k + i − 2), i = 0, 1, 2, . . . (see e.g. [St]). Anyu ∈ C∞
c (Bk

1/2 \ {0}) can then be written
as

u(x) =

∞∑
i=0

ui(r)fi(θ)

where 1/2 > r > 0, θ ∈ Sk−1 andx = rθ .
Furthermore, forg ∈ C(R+, R),∫

Bk
1/2

|∇u|
2 g(|y|) dy =

∫ 1/2

0
rk−1g(r) dr

∫
Sk−1

[(
∂u

∂r

)2

+
1

r2
|∇θu|

2
]
dθ

=

∞∑
i=0

∫ 1/2

0
rk−1g(r)

[(
dui

dr

)2

+
ci

r2
u2

i

]
dr. (21)
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For i = 0, it follows from (9) that ifv0(r) = rH u0(r), then∫ 1/2

0

[(
du0

dr

)2

− H 2u2
0

r2

]
rk−1 dr + C

∫ 1/2

0
u2

0r
k−1 dr

≥

∫ 1/2

0

[(
du0

dr

)2

+ H 2u2
0

r2

]
rk dr +

1

4

∫ 1/2

0
r

(
dv0

dr

)2

dr, (22)

while (14) implies that fori ≥ 1,∫ 1/2

0

[(
dui

dr

)2

− (H 2
− ci)

u2
i

r2

]
rk−1 dr + C

∫ 1/2

0
u2

i r
k−1 dr

≥

∫ 1/2

0

[(
dui

dr

)2

+ (H 2
+ ci)

u2
i

r2

]
rk dr + τ

∫ 1/2

0

[(
dui

dr

)2

+ c
u2

i

r2

]
rk−1 dr. (23)

Using (22), (23) and (21) withg(r) ≡ 1 for terms involvingrk−1 andg(r) = r for terms
with rk, we deduce (20) forβ = 1/2. The general case is obtained by scaling. �

Next, we introduce some geometric notation that will be needed in the proof of Theo-
rem 1. Define

�β = { x ∈ � | dist(x, 6) < β }.

We will work only with β small enough so that the projectionπ : �β → 6 given by
|π(x) − x| = dist(x, 6) is well defined and smooth.

Let {Vi}i=1,...,m be a family of open disjoint subsets of6 such that

6 =

m⋃
i=1

V i, |V i ∩ Vj | = 0 ∀i 6= j.

We can also assume that:

(a) ∀i = 1, . . . , m there exists a smooth diffeomorphism

pi : Bn−k
1 → Ui,

whereUi ⊂ 6 is open andV i ⊂ Ui ;
(b) p−1

i (Vi), which is an open set inRn−k, has a Lipschitz boundary; and
(c) there is a smooth choice of unit vectorsN i

1(σ ), . . . , N i
k(σ ) for σ ∈ Ui which form an

orthonormal frame for6 onUi ⊂ Rn , i.e. for allσ ∈ Ui ,

N i
j (σ ) ∈ Rn, N i

j (σ ) · N i
k(σ ) = δjk, N i

j (σ ) · v = 0 ∀v ∈ Tσ 6.

Let Wi = p−1
i (Vi). For z ∈ Wi we will also write (abusing the notation)N i

j (z) =

N i
j (pi(z)). Let

Fi(y, z) = pi(z) +

k∑
j=1

yjN
i
j (z),

wherey = (y1, . . . , yk) ∈ Bk
β andz ∈ Wi , so thatFi is a smooth diffeomorphism between

Bk
β × Wi andT i

β , where

T i
β = π−1(Vi) ∩ �β . (24)
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�

6

Vi

T i
β

β

Fig. 1.

It follows from the condition|V i ∩ Vj | = 0 ∀i 6= j that |T i
β ∩ T

j
β | = 0 ∀i 6= j , and

hence, for anyf ∈ L1(�β) we have∫
�β

f =

m∑
i=1

∫
T i

β

f =

m∑
i=1

∫
Wi×Bk

β

f ◦ Fi(y, z) JFi(y, z) dy dz, (25)

whereJFi(y, z) stands for the Jacobian ofFi at (y, z). We claim that

JFi(y, z) = Gi(z)(1 + O(|y|)), (26)

whereO(|y|) denotes a quantity bounded by|y| (uniformly for z ∈ Wi) andGi(z) is a
smooth function which is bounded away from zero. More precisely

Gi(z) = Jpi(z) =
√

(Dpi(z))∗Dpi(z).

To prove (26) it suffices to observe thatJFi(y, z) is smooth and to compute it aty = 0:

JFi(0, z)2
= det(DFi(0, z)∗DFi(0, z))

= det([Dzpi |N
i
1, . . . , N

i
k]∗[Dzpi |N

i
1, . . . , N

i
k])

= det

[
(Dzpi)

∗Dzpi 0
0 I

]
.

Proof of Theorem 1.First, observe that it is sufficient to prove the theorem foru with
support near6. Indeed, following an idea of V́azquez and Zuazua [VZ], letη ∈ C∞

c (Rn)

be such thatη ≡ 1 in �β/2 and supp(η) ⊂ �β . Letu ∈ C∞
c (�\6) and writeu = u1+u2

whereu1 = ηu, u2 = (1− η)u. Suppose that the conclusion of the theorem holds foru1.
Then ∫

�

(
|∇u|

2
− H 2 u2

d2

)
=

∫
�

(
|∇u1|

2
− H 2 u2

1

d2

)
+

∫
�

(
|∇u2|

2
− H 2 u2

2

d2

)
+ 2

∫
�

(
∇u1 · ∇u2 − H 2u1u2

d2

)
. (27)
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Since 1/d is bounded away from6 we have∫
�

(
u2

2

d2
+

u1u2

d2

)
≤ C

∫
�

u2.

Also note that∫
�

∇u1 · ∇u2 =

∫
�

[η(1 − η)|∇u|
2
− |∇η|

2u2
+ u∇u · ∇η(1 − 2η)]

=

∫
�

[η(1 − η)|∇u|
2
− |∇η|

2u2] −
1

2

∫
�β\�β/2

u2
∇ · (∇η(1 − 2η))

≥ −C

∫
�

u2. (28)

It follows from (27), (28) that∫
�

[
|∇u|

2
− H 2 u2

d2

]
≥

∫
�

[
|∇u1|

2
− H 2 u2

1

d2

]
+

∫
�

|∇u2|
2
− C

∫
�

u2.

Using (4) withu1 we conclude that∫
�

[
|∇u|

2
− H 2 u2

d2

]
+ C

∫
�

u2
≥ γ

( ∫
�

|u1|
p

)2/p

+

∫
�

|∇u2|
2,

for someγ > 0 independent ofu. Hence the conclusion of the theorem foru follows
easily.

Let

Ii =

∫
T i

β

[
|∇u|

2
− H 2 u2

d2
+ u2

]
, (29)

whereT i
β was defined in (24). In what follows we will fixi and show that there arep > 2

andC > 0 independent ofu such that(∫
T i

β

|u|
p

)2/p

≤ CIi .

For simplicity, and sincei is fixed, we will drop the indexi from all the notation that
follows.

Let us introduce some additional notation:

ũ(y, z) = u(F (y, z)), (30)

ũ0(r, z) = −

∫
∂Br

ũ(y, z) ds(y), (31)

v0(r, z) = rH ũ0(r, z). (32)

Let us write
∇u = ∇N u + ∇T u
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where∇N u is the gradient ofu in the normal direction and∇T u is orthogonal to∇N u.
More precisely, for a pointx = F(y, z),

∇N u(x) =

k∑
j=1

∇u(x) · Nj (z) Nj (z).

Step 1.There existsC > 0 independent ofu such that

CI ≥

∫
W×Bk

β

|∇y ũ|
2
|y| dy dz +

∫
W×Bk

β

|∇y(ũ(y, z) − ũ0(y, z))|2 dy dz

+

∫
W

∫ β

0

(
∂v0

∂r

)2

r dr dz +

∫
W×Bk

β

|(∇T u) ◦ F |
2 dy dz. (33)

First note that by (25), there is a constantC > 0 such that

I ≥

∫
W×Bk

β

(
|∇N u(F (y, z))|2 − H 2 ũ2

|y|2

)
G(z) dy dz

− C

∫
W×Bk

β

(
|∇N u(F (y, z))|2 + H 2 ũ2

|y|2

)
G(z)|y| dy dz

+

∫
W×Bk

β

(|∇T u(F (y, z))|2 + ũ2)(1 − C|y|)G(z) dy dz. (34)

For fixedz we can apply Lemma 3 to the functionũ(·, z). Observe that

∂ũ(y, z)

∂yj

= ∇u(F (y, z)) · Nj (z)

and thus
|∇y ũ(y, z)|2 = |∇N u(F (y, z))|2.

Lemma 3 then yields∫
Bk

β

(
|∇N u(F (y, z))|2 − H 2 u2

|y|2

)
dy + C

∫
Bk

β

ũ2 dy

≥
1

2β

∫
Bk

β

|y|

(
|∇N u(F (y, z))|2 + H 2 ũ2

|y|2

)
dy

+ τ

∫
Bk

β

∣∣∇y(ũ − ũ0)
∣∣2 dy + α

∫ β

0
r

(
dv0

dr

)2

dr. (35)

We choose (and fix once for all)β > 0 small enough so that 1/(2β) ≥ C + 1. Then
multiplying (35) by G(z), integrating overW and combining the result with (34) we
conclude that (33) holds.
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Step 2.
‖∇v0‖

2
L2(W×B2

β )
≤ CI. (36)

By (33) the partial derivative∂v0/∂r is bounded inL2(W × B2
β) by CI . We just have to

control the derivatives∂v0/∂zi , i = 1, . . . , n − k. But

∂v0

∂zi

(r, z) = rH
−

∫
∂Br

∂ũ

∂zi

(y, z) ds(y)

and
∂ũ

∂zi

(y, z) = ∇u(F (y, z)) ·

[
∂p

∂zi

+

k∑
j=1

yj

∂Nj

∂zi

]
.

But note that∂p/∂zi is a tangent vector, hence

|∇zũ(y, z)| ≤ C|∇T u(F (y, z))| + C|y| |∇N u(F (y, z))|.

Integrating overW × Bk
β we have∫

W×Bk
β

|∇zũ(y, z)|2 dy dz ≤ CI, (37)

for someC independent ofu by (33). It follows that∫
W×B2

β

|∇zv0|
2 dy dz =

∫
W

∫ β

0
r2H+1

∣∣∣∣−∫
∂Br

∇zũ(y, z) ds(y)

∣∣∣∣2 dr dz

≤

∫
W

∫ β

0
rk−1

−

∫
∂Br

|∇zũ(y, z)|2 ds(y) dr dz

≤ C

∫
W×Bk

β

|∇zũ(y, z)|2 dy dz ≤ CI (38)

by (37).

Step 3.There isp > 2 such that

‖ũ0‖
2
Lp(W×Bk

β )
≤ CI. (39)

More precisely, fork ≥ 3 one can take any 2< p < pk wherepk is given by

1

pk

=
1

2
−

2

k(n − k + 2)
,

and fork = 1 one can take 2< p ≤ p1 wherep1 is given by

1

p1
=

1

2
−

1

n + 1
.
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Using Sobolev’s inequality (onW × B2
β ) combined with (36) we obtain

∫
W

∫ β

0
|v0|

qr dr dz ≤ CI q/2,

with q given by 1/q = 1/2 − 1/(n − k + 2). That is, in terms of̃u0 we have∫
W

∫ β

0
|ũ0|

qrqH+1 dr dz ≤ CI q/2. (40)

We want an estimate for
∫

|ũ0|
prk−1 dr dz for some suitable 2< p < q and for this we

use Ḧolder’s inequality, distinguishing two cases:

Casek ≥ 3. We have

∫
W

∫ β

0
|ũ0|

prk−1 dr dz =

∫
W

∫ β

0
|ũ0|

prαrk−2−αr dr dz

≤ C

(∫
W

∫ β

0
|ũ0|

q rαq/p+1 dr, dz

)p/q(∫ β

0
r

k−2−α
1−p/q

+1
dr

)1−p/q

. (41)

We then chooseα so that
α

p
= H =

k − 2

2
.

In order to have the second factor on the right hand side of (41) finite we need to impose

k − 2 − α

1 − p/q
> −2,

which is equivalent to the condition

α <
k

1 +
4

q(k−2)

.

Thus we needp = α/H < pk, wherepk is given by

pk =
2k

(k − 2)
(
1 +

4
q(k−2)

) ,

i.e.
1

pk

=
1

2
−

2

k(n − k + 2)
.

Observe thatpk > 2. Combining then (40) and (41) finishes this case.
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Casek = 1. In this caseq is given by 1/q = 1/2 − 1/n + 1, and we can choosep = q:∫
W

∫ β

0
|ũ0|

qrk−1 dr dz =

∫
W

∫ β

0
|ũ0|

q dr dz

≤

∫
W

∫ β

0
|ũ0|

qr−q/2+1 dr dz

=

∫
W

∫ β

0
|ũ0|

qrHq+1 dr dz

because−q/2 + 1 < 0.

Step 4.
‖ũ − ũ0‖

2
L2∗

(W×Bk
β )

≤ CI. (42)

This is a consequence of Sobolev’s inequality applied to the functionũ−ũ0 on the domain
W × Bk

β . (33) already provides a bound inL2(W × Bk
β) for ∇y(ũ − ũ0). Hence we only

need to obtain a bound for the derivative ofũ − ũ0 with respect toz. In the case of the
function ũ we have it already in (37). For̃u0 it is derived by a computation very similar
to that at the end of Step 2. Indeed,∫

W×Bk
β

|∇zũ0|
2 dy dz =

∫
W

∫ β

0
rk−1

∣∣∣∣−∫
∂Br

∇zũ(y, z) ds(y)

∣∣∣∣2 dr dz ≤ CI,

which we obtain as in (38).

Conclusion.By (39) and (42) we see that

‖ũ‖
2
Lp(W×Bk

β )
≤ CI

for someC independent ofu. Changing variables and reintroducing the indexi we have

‖u‖
2
Lp(T i

β )
≤ C

∫
T i

β

(
|∇u|

2
− H 2 u2

d2
+ u2

)
.

Adding these inequalities overi proves the statement of the theorem. �

2.2. A local version of the Hardy inequality

In this section, we show how to adapt the proof of Theorem 1 to obtain Theorem 2. We
first derive variants of Lemmas 1, 2, 3.

Lemma 4. Let k 6= 2 andH = (k − 2)/2. There exist constantsC, β0 > 0 such that for
0 < β ≤ β0,∫ β

0

[(
du

dr

)2

− H 2u2

r2

]
rk−1 dr ≥

∫ β

0

[(
du

dr

)2

+ H 2u2

r2

]
rk dr (43)

for all u ∈ C∞
c (0, β).
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Proof. Givenv ∈ C∞
c (0, 1/2), we have∫ 1/2

0
v2 dr = −2

∫ 1/2

0
rv

dv

dr
dr ≤ C

∫ 1/2

0
r2

(
dv

dr

)2

dr +
1

2

∫ 1/2

0
v2 dr.

Using this and (12) we obtain∫ 1/2

0

[(
du

dr

)2

+ H 2u2

r2

]
rk dr ≤ C

∫ 1/2

0
r2

(
dv

dr

)2

dr.

Changing variables, it then follows that foru ∈ C∞
c (0, β),∫ β

0

[(
du

dr

)2

+ H 2u2

r2

]
rk dr ≤ Cβk−2

∫ β

0
r2

(
dv

dr

)2

dr, (44)

while (11) becomes∫ β

0

[(
du

dr

)2

− H 2u2

r2

]
rk−1 dr = βk−2

∫ β

0
r

(
dv

dr

)2

dr. (45)

If we pick β small, (43) follows from (44) and (45). �

A straightforward corollary of the above lemma is:

Lemma 5. Let k 6= 2, H = (k − 2)/2 andc > 0. There exist constantsC, β0 > 0 such
that for0 < β ≤ β0,∫ β

0

[(
du

dr

)2

− (H 2
− c)

u2

r2

]
rk−1 dr ≥

∫ β

0

[(
du

dr

)2

+ (H 2
+ c)

u2

r2

]
rk dr (46)

for all u ∈ C∞
c (0, β).

Combining these two lemmas, we then obtain:

Lemma 6. Let k 6= 2, H = (k − 2)/2 andβ > 0. LetBk
β denote the ball ofRk centered

at the origin and of radiusβ. There exist positive constantsC, β0 such that forβ ≤ β0,∫
Bk

β

(
|∇u|

2
− H 2 u2

|y|2

)
dy ≥

C

β

∫
Bk

β

|y|

(
|∇u|

2
+ H 2 u2

|y|2

)
dy (47)

for all u ∈ C∞
c (Bk

β \ {0}), whereu0(r) = u0(|y|) = −

∫
∂Bk

r
u dσ andv0(r) = rH u0(r).

As in Lemma 3, for a fixed valueβ = β0 > 0 the proof is an application of the decompo-
sition of a function in spherical harmonics. A simple scaling then yields theβ-dependence
of the constant appearing in (47).

Proof of Theorem 2.Instead of (29), we now consider

Ji :=
∫

T i
β

[
|∇u|

2
− H 2 u2

d2

]
. (48)
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Using the notation of (30) we then have, by (25) and (26),

Ji ≥

∫
W×Bk

β

(
|∇N u(Fi(y, z))|2 − H 2 ũ2

|y|2

)
G(z) dy dz

− C

∫
W×Bk

β

|y|

(
|∇N u(Fi(y, z))|2 + H 2 ũ2

|y|2

)
G(z) dy dz ≥ 0,

where we used Lemma 6 withβ > 0 small in the last inequality. Adding the above
estimates overi yields the desired result. �

3. Remarks on the potentiala(x) = µ dist(x, 6)−2

For 0< µ ≤ H 2 we consider the potential

a(x) = µ/d(x)2

and letL denote the operator

Lu = −1u − a(x)u.

Note thata(x) andL depend onµ but we will omit this dependence from the notation.
Recall that we defined the Hilbert spaceH as the completion ofC∞

c (�) with respect
to the norm

‖u‖
2
H =

∫
�

(|∇u|
2
− a(x)u2

+ Mu2), (49)

whereM is the constant that appears in (8). Ifµ < H 2 then by Theorem 1,H coincides
with H 1

0 (�).
The main concern in this section is to obtain a precise description of the behavior near

6 of the first eigenfunctionϕ1 of the operatorL. Indeed, we shall prove:

Lemma 7. There are positive constantsC1, C2 such that

C1d(x)−α(µ)
≤ ϕ1(x) ≤ C2d(x)−α(µ) (50)

for x in a neighborhood of6, whereα(µ) is given by

α(µ) = H −

√
H 2 − µ. (51)

Note that whenµ = H 2 we have−α(µ) = 1 − k/2. Thusϕ1 6∈ H 1
0 (�) in this case.

Before proving the above lemma it will be necessary to show that ifµ = H 2 thend1−k/2

(appropriately modified so that it is zero on∂�) belongs toH. We prove this and a little
more next.
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Lemma 8. Letµ = H 2 and define

vs(x) = η(x)d(x)1−k/2(− logd(x))−s,

whereη ∈ C∞
c (�) is a cut-off function such thatη ≡ 1 in a neighborhood of6 and

η(x) = 0 for d(x) ≥ dist(6, ∂�)/2. Thenvs ∈ H if and only ifs > −1/2.

Remark 2. This lemma was stated in [VZ] in the case where6 is a point.

Proof. Let us recall and also introduce some notation:

�r = {x ∈ RN
| d(x) < r}, 6r = ∂�r = { x ∈ RN

| d(x) = r }.

By the Pappus theorems, the(N − 1)-dimensional area of6r is given by

|6r |n−1 = ωk−1r
k−1

|6|n−k,

whereωk−1 is the area of the unit sphere inRk and | · |j denotes thej -dimensional
Lebesgue measure.

First we prove thatvs ∈ H for s > −1/2. For this purpose it is enough to exhibit a
sequencefε ∈ H such that‖fε‖H ≤ C with C independent ofε and such thatfε → vs

a.e. asε → 0; we take

fε = ηd1−k/2+ε(− logd)−s, ε > 0.

Clearlyfε ∈ H 1
0 (�) ⊂ H,

∫
�

f 2
ε ≤ C andfε is smooth away from6. Thus to estimate

‖fi‖H it is sufficient to verify that for a fixedR > 0 small∫
�R

|∇fε|
2
− a(x)f 2

ε ≤ C (52)

with C independent ofε.
Near6, η ≡ 1 and

|∇fε|
2

= d−k+2ε
(
(1 − k/2 + ε)2(− logd)−2s

+ s(2 − k + 2ε)(− logd)−2s−1
+ s2(− logd)−2s−2).

so that

1

ωk−1|6|n−k

∫
�R

|∇fε|
2

= (1 − k/2 + ε)2
∫ R

0
r2ε−1(− logr)−2s dr

+ s(2 − k + 2ε)

∫ R

0
r2ε−1(− logr)−2s−1 dr

+ s2
∫ R

0
r2ε−1(− logr)−2s−2 dr.
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Note that the last integral on the right hand side above is bounded independently ofε for
s > −1/2, that is, ∫ R

0
r2ε−1(− logr)−2s−2 dr = O(1).

Therefore

1

ωk−1|6|n−k

∫
�R

(
|∇fε|

2
− H 2f 2

ε

d2

)
= ε(2 − k + ε)

∫ R

0
r2ε−1(− logr)−2s dr

+ s(2 − k + 2ε)

∫ R

0
r2ε−1(− logr)−2s−1 dr + O(1). (53)

Integrating by parts gives∫ R

0
r2ε−1(− logr)−2s dr =

1

2ε
R2ε(− logR)−2s

−
s

ε

∫ R

0
r2ε−1(− logr)−2s−1 dr

and substituting in (53) yields

1

ωk−1|6|n−k

∫
�R

(
|∇fε|

2
− H 2f 2

ε

d2

)
=

2 − k + ε

2
R2ε(− logR)−2s

+ εs

∫ R

0
r2ε−1(− logr)−2s−1 dr + O(1)

= εs

∫ R

0
r2ε−1(− logr)−2s−1 dr + O(1). (54)

Integrating by parts again shows that∫ R

0
r2ε−1(− logr)−2s−1 dr

=
1

2ε
R2ε(− logR)−2s−1

−
2s + 1

2ε

∫ R

0
r2ε−1(− logr)−2s−2 dr = O

(
1

ε

)
.

After substitution in (54) we finally obtain the estimate (52). Hencevs ∈ H for s > −1/2.
Our argument to show thatvs 6∈ H for s ≤ −1/2 relies on the intuitive idea that∫

(−1v − a(x)v + Mv)v = ‖v‖
2
H. To exploit this idea, let us first compute1vs near6,

whereη ≡ 1. Write
y(t) = t1−k/2(− log t)−s .

Then near6, since|∇d|
2

= 1,

1vs = y′′(d) + y′(d)1d.
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We recall here the fact (see [DN]) that

1d =
k − 1

d
+ g,

whereg ∈ L∞. Hence,

1vs = − H 2d−k/2−1(− logd)−s
+ s(s + 1)d−k/2−1(− logd)−s−2

+ (1 − k/2)gd−k/2(− logd)−s
+ sgd−k/2(− logd)−s−1

so that

1vs + H 2 vs

d2
= s(s + 1)d−k/2−1(− logd)−s−2

+ (1 − k/2)gd−k/2(− logd)−s
+ sgd−k/2(− logd)−s−1. (55)

Observe that1vs, vs/d
2

∈ L1(�) and that equation (55) holds in the sense of distribu-
tions. Since we also have∇vs ∈ L1(�), it follows that for anyϕ ∈ C∞

c (�),

(vs |ϕ)H =

∫
�

(
−1vs − H 2 v2

s

d2

)
ϕ + M

∫
�

vsϕ

= −

∫
�R

(s(s + 1)d−k/2−1(− logd)−s−2

+ (1 − k/2)gd−k/2(− logd)−s
+ sgd−k/2(− logd)−s−1)ϕ

+

∫
�\�R

(
−1vs − H 2 vs

d2

)
ϕ + M

∫
�

vsϕ. (56)

By density (56) also holds ifϕ is Lipschitz andϕ = 0 on∂�.
Let us consider first the cases 6= −1, so thats(s+1) 6= 0, and suppose thats < −1/2

andvs ∈ H. Then there existvn ∈ C∞
c (�) such thatvn → vs in H. Note that since the

injectionH ⊂ L2(�) is continuous, by passing to a subsequence we also havevn → vs

a.e. Recall from [DN, inequality (1.4) of Lemma 1.1] that foru ∈ H, we haveu+
∈ H

and‖u+
‖H ≤ ‖u‖H. As a consequencev+

n → vs in H and a.e. Usingv+
n in (56) we

conclude that ∫
�R

d−k/2−1(− logd)−s−2v+
n ≤ C

with C independent ofn. But then Fatou’s lemma implies that∫
�R

d−k(− logd)−2s−2 < ∞,

which is impossible fors < −1/2.
For the cases = −1 the argument above does not work. We see that in this case, if6

is flat andη ≡ 1 in an open set then actually

1w + H 2 w

d2
= 0
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in that open set, where
w := v(−1) = ηd1−k/2(− logd).

So we argue as follows: let−1/2 < s < 0. We are going to show that(L + M)vs ≥

(L + M)w near6. If we assume thatw ∈ H, then we can apply the maximum principle
and deduce thatvs ≥ εw near6, which is impossible. Indeed, by formula (55),

(L + M)w = −(1 − k/2)gd−k/2(− logd) + gd−k/2
+ Md1−k/2(− logd),

and

(L + M)vs = − s(s + 1)d−k/2−1(− logd)−s−2
− (1 − k/2)gd−k/2(− logd)−s

− sgd−k/2(− logd)−s−1
+ Md1−k/2(− logd)−s .

Thus, there is a neighborhood�R of 6 such that for anyε ∈ (0, 1),

(L + M)(εw − vs) ≤ 0 in �R. (57)

Pick ε > 0 such thatεw − vs ≤ 0 in ∂�R. Under the hypothesisw ∈ H we can use a
version of the maximum principle to deduce that

εw − vs ≤ 0 in �R.

Indeed, assumingw ∈ H, we have(εw − vs)
+

∈ H. Hence the function

z =

{
(εw − vs)

+ in �R,

0 in � \ �R,

also belongs toH. Let zn ∈ C∞
c (�) be such thatzn → z in H. Note that (57) holds in

the sense of distributions and hence testing (57) withz+
n we see that

(εw − vs |z
+
n )H ≤ 0.

Lettingn → ∞ we get
‖z‖H = (εw − vs |z)H ≤ 0.

Thusz ≡ 0, which implies thatεw ≤ vs in �R, concluding the proof of Lemma 8. �

Remark 3. To show thatvs ∈ H for s > −1/2 one may be tempted to use other approx-
imating sequences, and a very natural one is

fi = min(vs, i), i = 1, 2, . . . .

Again it would be sufficient to establish that for a fixedR > 0 small∫
�R

(|∇fi |
2
− a(x)f 2

i ) ≤ C

with C independent ofi. For i large letri > 0 be such that

r
1−k/2
i (− logri)

−s
= i
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so thatri → 0 asi → ∞. A computation (that we omit) shows that

1

wk−1

∫
�R

(|∇fi |
2
− a(x)f 2

i ) =
k − 2

4
(− logri)

−2s
−

k − 2

2
(− logR)−2s

+
s2

2s + 1
((− logR)−2s−1

− (− logri)
−2s−1).

We see that the above quantity remains bounded asi → ∞ only for s ≥ 0 !

Remark 4. The above example shows that form∈N there existsvm ∈H with ‖vm‖H=1
and

‖min(vm, m)‖H → ∞ asm → ∞.

Sincev = min(v, m) + (v − m)+ we also have

‖(vm − m)+‖H → ∞ asm → ∞.

H is thus quite different fromH 1
0 (�), in the sense that truncation operators like the one

above are not uniformly bounded inH whereas it is always true that for anyv ∈ H 1
0 (�),

min(v, m) → v in theH 1 topology.

Proof of Lemma 7.We will give a proof using a comparison argument with a suitable
function. First let us recall that in a neighborhood of6,

1d =
k − 1

d
+ g,

whereg is a bounded function. Hence

Ld−α
= −1d−α

− µ
d−α

d2
= −d−α−2(α2

− α(k − 2) + µ − αgd). (58)

Let α = α(µ) as given by (51). This implies thatα2
− α(k − 2) + µ = 0. Then

L(d−α
+C1d

−α+1) = −d−α−1[−αg +C1((α −1)2
− (α −1)(k −2)+µ− (α −1)gd)].

Instead of working with the operatorL = −1 − a(x) considerL + M, whereM is so
large that (8) holds (this is the sameM that we use in the definition of the spaceH). Then,
since(α − 1)2

− (α − 1)(k − 2) + µ > 0 we conclude that forC1 > 0 large enough

(L + M)(d−α
+ C1d

−α+1)

= −d−α−1[−αg + C1((α − 1)2
− (α − 1)(k − 2) + µ − (α − 1)gd)]

+ M(d−α
+ C1d

−α+1)

≤ 0 (59)

in some fixed neighborhood�R, R > 0, of 6. On the other hand, the first eigenfunction
ϕ1 of L satisfies

(L + M)ϕ1 = (λ1 + M)ϕ1 ≥ 0. (60)
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Now, both functionsϕ1 andd−α
+ C1d

−α+1 are smooth away from6 so that one can
find ε > 0 such thatε(d−α

+ C1d
−α+1) ≤ ϕ1 in ∂�R. We can now use the same version

of the maximum principle as in the previous lemma to deduce that

ε(d−α
+ C1d

−α+1) ≤ ϕ1 in �R.

For the estimateϕ1 ≤ C2d
−α(µ) we need a result from [DD].

Theorem 4. Let� be a bounded smooth domain. Assume thatã ∈ L1
loc(�), ã is bounded

below (i.e.inf� ã > −∞) and that it satisfies

γ

(∫
�

|u|
r

)2/r

+

∫
�

ã(x)u2
≤

∫
�

|∇u|
2

for someγ > 0 and r > 2. Let ϕ1 > 0 denote the first eigenfunction for the operator
L = −1 − ã(x) with zero Dirichlet boundary condition, normalized by‖ϕ1‖L2(�) = 1,
and letζ0 denote the solution of{

−1ζ0 − ã(x)ζ0 = 1 in �,

ζ0 = 0 on ∂�.

Then there existsC = C(�, γ (a), r) > 0 such that

C−1ζ0 ≤ ϕ1 ≤ Cζ0.

Proof of Lemma 7 continued.We use the above theorem withã = a −M. In view of this
result it suffices to show that

ζ0 ≤ Cd−α(µ).

Using (58) and takingα = α(µ) we have

(L + M)(d−α
− Cd−α+1)

= −d−α−1[−αg − C((α − 1)2
− (α − 1)(k − 2) + µ − (α − 1)gd)]

+ M(d−α
− Cd−α+1)

≥ 1

in �R if we chooseR > 0 small andC > 0 large enough. Now takeC1 so large that
ζ0 ≤ C1(d

−α
− Cd−α+1) in ∂�R. Using the maximum principle as before we deduce

thatζ0 ≤ C1(d
−α

− Cd−α+1), which finishes the proof. �

Remark 5. The fact thatd1−k/2
∈ H for µ = H 2 was used in the proof above at the point

where the maximum principle was applied. That argument requires that both functions
that one would like to compare are inH. In general, if one of these functions does not
belong toH then the maximum principle cannot be applied; see [DD] for an example.
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4. Some applications

4.1. Minimizers for the Hardy inequality

We start this section by extending a result of Brezis and Marcus [BM] regarding the
quantity

Jλ = inf
u∈C∞

c (�)\{0}

∫
�
(|∇u|

2
− λu2)∫

�
u2/d(x)2

, (61)

where as usuald(x) = dist(x, 6).
The case studied in [BM] corresponds to6 = ∂�, and an interesting feature that the

authors found in that work is the following, which we state in our situation:

Theorem 5. Fix λ ∈ R. Then the infimum in(61) is achieved (inH 1
0 (�)) if and only if

Jλ < H 2.

Proof. To prove that the conditionJλ < H 2 is sufficient for the infimum in (61) to be
achieved, one just needs to mimic the arguments in [BM] so we skip this step.

We prove the converse, that is, the claim that ifJλ = H 2 then the infimum is not
achieved, with an argument similar in spirit to that of [BM]. Suppose that the infimum
is achieved by a functionu ∈ H 1

0 (�), which we can assume to be nonnegative and not
identically zero. Assume also thatJλ = H 2. Thenu satisfies

−1u − H 2 u

d(x)2
= λu.

It follows that λ is the first eigenvalue for the operator−1 − H 2/d2 and thatu > 0.
Moreoveru has to be a multiple ofϕ1 (for this result see e.g. [DD, Lemma 2.3]). But by
(50) we know thatϕ1 ∼ d1−k/2. This shows on the one hand that

∫
�

u2/d2
= ∞. But

Hardy’s inequality (4) implies on the other hand that
∫
�

u2/d2 < ∞. �

4.2. Study of a semilinear problem

In this section, we return to the study of a semilinear problem studied in [DN]. Forp > 1,
0 < µ ≤ H 2 andλ > 0 consider the equation

−1u −
µ

d(x)2
u = up

+ λ in �,

u > 0 in �,

u = 0 on∂�,

(62)

where as usuald(x) = dist(x, 6). We showed in [DN] that (at least for small values of
µ > 0) there exists a critical exponent

p0 = 1 +
2

α(µ)
with α(µ) = H −

√
H 2 − µ
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such that (62) admits no solution (in any reasonable sense) forp > p0 andλ > 0, whereas
for someλ∗

= λ∗(p) solutions exist whenp < p0 and 0< λ ≤ λ∗ (and again no solution
exists whenλ > λ∗). However, the critical casep = p0 remained open. Using Lemma 7
in combination with Theorem 4, and following the proof of Proposition 6.1 of [DN], one
can prove the following:

Theorem 6. Given anyλ > 0, Problem(62)with p = p0 admits no solution.

5. Estimate for solutions of some singular equations

In what follows we will use the method developed in [DD] to prove Theorem 3. The idea
is to work withw = u/ϕ1, which satisfies an elliptic equation to which Moser’s iteration
technique can be applied. In the argument it is desirable to approximate the potentiala(x)

by bounded ones. In order to get the convergence of the corresponding solutions, it is
convenient to rewrite the equation (7) as

−1u − ã(x)u = C0u + f,

where

ã = a − C0

andC0 is chosen large enough, larger thanM in (8) (although it will be taken even larger
at one point below). We observe that now for anyh ∈ H∗ the equation{

−1v − ãv = h in �,

v = 0 on∂�,
(63)

has a unique solutionv ∈ H. Let us also note that the first eigenfunction for the operator
−1 − ã is still ϕ1.

Let us state a result which is a kind of Sobolev inequality with weight (see a proof in
[DD]).

Lemma 9. Assume thata satisfies(8). Then for any2 ≤ q ≤ r there is a constantC
depending only�, r andγ (a) such that( ∫

�

ϕs
1|w|

q

)2/q

≤ C

∫
�

ϕ2
1(|∇w|

2
+ w2) (64)

for all w ∈ C1(�), wheres is given by the relation

s

r
=

q − 2

r − 2
.
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Lemma 10. Let0 < m < r and suppose that

p >
2r

m(r − 2)
(65)

and
p ≥

r

r − m
. (66)

Then forf ∈ H∗, the unique solutionv to (63)satisfies

|v(x)| ≤ C‖ϕ1−m
1 h‖p ϕ1(x), a.e.x ∈ �.

Remark 6. If m ≥ 1, the assumptionh ∈ H∗ can be dropped since one can prove that
‖h‖H∗ ≤ C‖ϕ1−m

1 h‖p.

Proof of Remark 6.If ‖ϕ1−m
1 h‖p = +∞, there is nothing to prove. Otherwiseh is

locally integrable and forϕ ∈ C∞
c (�),∣∣∣∣∫

�

hϕ

∣∣∣∣ ≤ ‖hϕ1−m
1 ‖p‖ϕϕm−1

1 ‖p′ ≤ ‖hϕ1−m
1 ‖p‖ϕ1‖

m/m′

mp′ ‖ϕ‖mp′ ,

where we used Ḧolder’s inequality twice. Now (66) implies thatmp′
≤ r, so we end up

with ∣∣∣∣∫
�

hϕ

∣∣∣∣ ≤ C‖hϕ1−m
1 ‖p‖ϕ‖H ∀ϕ ∈ C∞

c (�),

which is the desired result. �

Proof of Lemma 10.First we note that it is sufficient to prove this result for a bounded
potentiala, as long as the constants that appear in the estimates only depend on the con-
stantsr, γ , C appearing in (8) and�. This is the same argument employed in [DD] and
we will just sketch it here. Considerãk = min(ã, k), and the first eigenfunctionϕk

1 and
solutionvk of (63) with the potentiala replaced byak. Thenϕk

1 → ϕ1 inH andvk → v.
Furthermore,̃ak satisfies

γ

(∫
�

|u|
r

)2/r

+

∫
�

ãk(x)u2
≤

∫
�

|∇u|
2, ∀u ∈ C∞

c (�).

So it is enough to establish the results forãk. We will assume then thatã is bounded. Then
all functions involved belong toC1,α(�).

By working withh+ andh− we can assume thath ≥ 0 and hencev ≥ 0. Set

w = v/ϕ1.

Thenw satisfies the equation

−∇ · (ϕ2
1∇w) = ϕ1h − (C0 + λ1)ϕ1v.
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Multiplying the equation byw2j−1 and integrating in� we find

2j − 1

j2

∫
�

ϕ2
1|∇wj

|
2

=

∫
�

ϕ1w
2j−1h − (C0 + λ1)

∫
�

ϕ1vw2j−1

=

∫
�

ϕ1w
2j−1h − (C0 + λ1)

∫
�

ϕ2
1w2j . (67)

Using the variant of Sobolev’s inequality (64) applied towj with s = mp′ we obtain( ∫
�

ϕ
mp′

1 wqj

)2/q

≤ C

∫
�

ϕ2
1(|∇wj

|
2
+ w2j ), (68)

whereq is given by

q = 2 + mp′
r − 2

r
.

We note that by (66) we havemp′
≤ r and therefore we can indeed apply Lemma 9.

Combining (67) with (68) we get( ∫
�

ϕ
mp′

1 wqj

)2/q

≤
Cj2

2j − 1

∫
�

ϕ1w
2j−1h + C

(
1 −

j2

2j − 1
(C0 + λ1)

) ∫
�

ϕ2
1w2j .

We makeC0 larger if necessary, so that forj ≥ 1 the second term on the right hand side
is negative. Therefore ( ∫

�

ϕ
mp′

1 wqj

)2/q

≤ Cj

∫
�

ϕ1w
2j−1h.

By Hölder’s inequality∫
�

ϕ1w
2j−1h ≤

( ∫
�

ϕ
mp′

1 w(2j−1)p′

)1/p′

‖ϕ1−m
1 h‖p

and therefore( ∫
�

ϕ
mp′

1 wqj

)1/(qj)

≤ (Cj)1/(2j)

( ∫
�

ϕ
mp′

1 w(2j−1)p′

)1/(2jp′)

‖ϕ1−m
1 h‖

1/(2j)
p . (69)

Observe now that condition (65) is equivalent toq > 2p′ and therefore a standard iter-
ation argument yields the result. Let indeedj0 = 1/2 + m/2 and fork ≥ 1, definejk

inductively by
(2jk − 1)p′

= qjk−1. (70)

One can easily show that{jk} is increasing and converges to+∞ ask → +∞, so that if

θk =

(∫
�

ϕ
mp′

1 wqjk

)1/(qjk)
(∫

�

ϕ
mp′

1

)(−1/qjk)

,
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then{θk}k is increasing and converges to‖w‖∞ ask → ∞. Observe in passing that since
ϕ1 ∈ H andmp′

≤ r, we have (∫
�

ϕ
mp′

1

)
< ∞.

Equation (69) then yields

θk ≤ (Cjk)
1/(2jk)

(∫
�

ϕ
mp′

1

)−1/(qjk)+1/(2jkp
′)

θ
qjk−1/(2jkp

′)

k−1

( ∫
�

ϕ
(1−m)p

1 hp

)1/(2jkp)

.

(71)
Now, either{θk}k remains bounded by(

∫
�

ϕ
(1−m)p

1 hp)1/p for all k, in which case passing
to the limit provides the desired inequality, or there exists a smallest integerk0 such that
for k ≥ k0 − 1,

θk ≥

( ∫
�

ϕ
(1−m)p

1 hp

)1/p

.

Using this inequality in (71), we obtain fork ≥ k0,

θk ≤ (Cjk)
1/(2jk)

( ∫
�

ϕ
mp′

1

) 1
jk

(− 1
q
+

1
2p′ )

θk−1. (72)

Applying (72) inductively, it follows that

‖w‖∞ ≤

∞∏
k=k0

[
(Cjk)

1/(2jk)

( ∫
�

ϕ
mp′

1

) 1
jk

(− 1
q
+

1
2p′ )

]
θk0−1. (73)

Starting from (70), a straightforward computation shows that for somec > 0,

jk =

(
q

2p′

)k

j0 +

( q
2p′

)k
− 1

q
2p′ − 1

∼ c

(
q

2p′

)k

ask → ∞.

Sinceq/(2p′) > 1, we then conclude that the infinite product on the right hand side of
(73) converges to some finite constant.

If k0 ≥ 2, applying again (71) fork = k0 − 1, we also have

θk0−1 ≤ Cθ
qjk0−2/(2jk0−1p

′)

k0−2

( ∫
�

ϕ
(1−m)p

1 hp

)1/(2jk0−1p)

≤ C

( ∫
�

ϕ
(1−m)p

1 hp

)1/p

,

(74)
where we used the minimality ofk0 in the last inequality. Combining (74) and (73) yields
the desired result.

If k0 = 1 then by (69),( ∫
�

ϕ
mp′

1 wqj0

)1/(qj0)

≤ C

( ∫
�

vr

)m/(2j0r)
( ∫

�

ϕ
(1−m)p

1 hp

)1/(2j0p)

, (75)
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where we used Ḧolder’s inequality and the fact thatmp′
≤ r, which follows from (66).

Now,

γ ‖v‖
2
r ≤ ‖v‖

2
H =

∫
�

hv ≤ ‖hϕ1−m
1 ‖p‖ϕm−1

1 v‖p′

≤ ‖hϕ1−m
1 ‖p‖w‖∞‖ϕm

1 ‖p′ ≤ C‖hϕ1−m
1 ‖p‖w‖∞. (76)

Using (73), (75) and (76), we obtain

‖w‖∞ ≤ C‖hϕ1−m
1 ‖

m
2(m+1)

+
1

m+1
p ‖w‖

m
2(m+1)
∞ ,

which after simplification yields the desired result. �

Lemma 11. Let 0 < m < r and suppose that

p <
2r

m(r − 2)
and p ≥

r

r − m
.

Then givenh ∈ H∗, the unique solutionv to{
−1v − ãv = h in �,

v = 0 on ∂�,
(77)

satisfies (∫
�

ϕ
mp′

1

∣∣∣∣ v

ϕ1

∣∣∣∣α)1/α

≤ C‖ϕ1−m
1 h‖p. (78)

for anyα ≥ 1 such that
1

α
≥

1

p
−

(
1 −

2

q

)
, (79)

where

q = 2 + mp′
r − 2

r
.

Proof. The computations of the previous lemma are valid up to (69). Now observe that
(69) yields an estimate for ( ∫

�

ϕ
mp′

1 wqj

)1/(qj)

if qj ≥ (2j − 1)p′, which is equivalent to

j ≤
p′

2p′ − q
.

Takeα satisfying (79) andj = α/q. By Hölder’s inequality∫
�

ϕ
mp′

1 w(2j−1)p′

≤

( ∫
�

ϕ
mp′

1 wα

)(2j−1)p′/α( ∫
�

ϕ
mp′

1

)1−(2j−1)p′/α

,

but observe that
∫
�

ϕ
mp′

1 < ∞ becausemp′
≤ r andϕ1 ∈ Lr . The previous inequality

together with (69) yields the result. �
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Remark 7. A direct consequence of the above lemma is that if instead of assuming

p <
2r

m(r − 2)

we assume that

p =
2r

m(r − 2)
,

then the conclusion is that for all 1≤ α < ∞,(∫
�

ϕ
mp′

1

∣∣∣∣ v

ϕ1

∣∣∣∣α)1/α

≤ C‖ϕ1−m
1 h‖p,

where the constantC may depend onα.

Remark 8. In contrast with what we observed in Remark 6,h need not be inH∗ for
‖hϕ1−m

1 ‖p to be finite. Hence, in light of inequality (78), one can define by density an
operator

T = (−1 − ã(x))−1 : Lp(�, ϕ1−m
1 dx) → Lα(�, ϕ

mp′/α−1
1 dx),

which restricted toh ∈ H∗ assigns the corresponding solutionv =: T (h) ∈ H of (77).
On the other hand, givenh ∈ L1(�), one can consider a weak solutionu ∈ L1(�) of

equation (77) in the sense that
∫
�

a(x)|u|dist(x, ∂�) < ∞ and∫
�

u(−1ϕ − ã(x)ϕ) =

∫
�

f ϕ

for all ϕ ∈ C2(�̄) with ϕ|∂� ≡ 0. If h ∈ Lp(�, ϕ1−m
1 dx) andu ∈ Lα(�, ϕ

mp′/α−1
1 dx),

is it true thatu = T (h) ?

Proof of Theorem 3.Consider nowu ∈ H satisfying (7) and letu1 be the solution of{
−1u1 − ãu1 = f in �,

u1 = 0 on∂�.

We remark that Lemma 10 implies that‖u1/ϕ1‖∞ ≤ C‖ϕ1−m
1 f ‖p. Thus( ∫

�

ϕ2
1

∣∣∣∣u1

ϕ1

∣∣∣∣l)1/l

≤ C‖ϕ1−m
1 f ‖p (80)

for anyl ≥ 1. Defineu2 = u − u1 so thatu = u1 + u2 andu2 ∈ H is the unique solution
of {

−1u2 − ãu2 = C0u in �,

u2 = 0 on∂�.
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Starting withp1 = 2 we shall construct a finite increasing sequencepk which will stop
at somek̄ such that

pk̄ ≥
r

r − 2

and such that for eachk = 1, . . . , k̄ the following inequality holds:( ∫
�

ϕ2
1

∣∣∣∣ u

ϕ1

∣∣∣∣pk
)1/pk

≤ C(‖ϕ1−m
1 f ‖p + ‖u‖2). (81)

Indeed, Lemma 11 applied tou2 with p = p1 = 2 andm1 = 1 implies( ∫
�

ϕ2
1

∣∣∣∣u2

ϕ1

∣∣∣∣p2
)1/p2

≤ C‖u‖L2, (82)

wherep2 is given by
1

p2
=

1

p1
−

(
1 −

2

q

)
andq = 2+2(r −2)/r. Inequality (80) combined with (82) shows that (81) holds forp2.

We continue this process using Lemma 11 repeatedly withp andm in that lemma
given by

1

pk+1
=

1

pk

−

(
1 −

2

q

)
, mk =

2(pk − 1)

pk

andq = 2 + 2(r − 2)/r. At each step we obtain (inductively)( ∫
�

ϕ2
1

∣∣∣∣u2

ϕ1

∣∣∣∣pk+1
)1/pk+1

≤ C

( ∫
�

ϕ2
1

∣∣∣∣ u

ϕ1

∣∣∣∣pk
)1/pk

≤ C(‖ϕ1−m
1 f ‖p + ‖u‖2).

This together with (80) proves that (81) holds forpk+1. We can continue in this way
provided

1

pk

−

(
1 −

2

q

)
> 0,

or equivalently

pk <
r

r − 2
.

Let k̄ be the first time that we find

pk̄ ≥
r

r − 2

so that (81) still holds for̄k. If pk̄ > r/(r − 2) then we can apply Lemma 10 directly and
conclude that

‖u2/ϕ1‖∞ ≤ C(‖ϕ1−m
1 f ‖p + ‖u‖2),

which would finish the proof of the theorem.
In the casepk̄ = r/(r − 2) we first use Remark 7 and then Lemma 10. �
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