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1. Introduction

The well-known Hardy—Sobolev inequality states that for any given doiftain R”,

n > 3 and any € C2°(RQ),
u2
KZ/ v 5/ Vul2, )
Q x| Q

whereK = (n — 2)/2. Though the constark? is optimal, in the sense that

Jo IVul?

K?= S
ueCE @\ [ u?/|x|2’

equality in[) is never achieved (by amye Hol(Q)). This fact has led to the improvement
of the inequality in various ways: Brezis andaxfuez|[[BV] first showed that if2 is
bounded then for some > 0,

2/p u2
y(/ |u|"> +1<2/ —25/ Vul?, )
Q o |x| Q

withl < p < 2n/(n — 2). Vazquez and Zuazua [VZ] were then able to replacelthe
norm on the left hand side df](2) byW%*¢ norm forg < 2. Various improvements (in-
volving e.g. weighted.” or W1 norms) were also obtained and we refer the interested
reader to[[DA],[[ACR],[[ET],[IBET] and the references therein.

One of the consequences of inequality (2) is that the opelatae= —A — w/|x|?
has a positive first eigenvalue, in the sense that

M2
inf /<|W|2— —2) > 0,
lull 21 /2 | x|
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In the first part of this work, given a compact smooth boundaryless marifatd 2
of codimensiork # 2, we look at operators of the form

M
d(x)?’

whered(x) = dist(x, ¥) andp € R, and wonder whether an inequality similar fd (2)
holds.

The first results in this direction are due to Marcus, Mizel and Pinchaver [MMP]
and Matskewich and Sobolevskii [MSo]. They showed th&t i a convex domain and

¥ =0 then )
1 u 2
- < Vul“. 3
4/Qd<x)2—/g' ! 3)

The same authors showed that (3) did not hold in a general dofaand provided
examples of smooth domaigssuch that

Vul> 1
i JoVel® 1
uz£0 fQ uz/dz 4

L=-A

Alternatively, Brezis and Marcus showed in [BM] that the following inequality remains
true on a general (smooth bounded) dom@in

1/u2</|v|2+c/2
Z | = u uc,
4 Jqd?~ Jg Q

whereC is some positive constant.

Finally, among many other results, Barbatis, Filippas and Terlikas|[BET, FT] extended
to the case wherE C Q is a smooth compact manifold of codimensigrsatisfying
some geometric condition: they showed thatif?>~* < 0inD’(2\ ¥) then

2/p 5 u2 5
y/W) +H/—§/|Vu|,
<Q q d? Q

whereH = (k—2)/2and 1< p < 2n/(n — 2).
Our goal here is to drop the assumptiag?—* < 0. Our results are summarized in
the following two theorems:

Theorem 1. Let @ c R" be an open bounded set aitl C Q2 be a compact smooth
manifold without boundary of codimensiénz 2. Let H = (k — 2)/2. Then there exist
C > 0,y > Oindependent of such that for any € C°(Q2\ %),

2/p u2
y(/ |u|"> +H2/ —25/ |Vu|2+C/u2, (4)
Q od Q Q

whered (x) = dist(x, ), 1 < p < p and py is given by

1 1 2 1 1 1
—=- - fork>2 —==-
pr 2 k(n—k+2 pr 2 n+1

if k=1.
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Theorem 2. Under the assumptions of Theor@hthere exisp > 0and a neighborhood
Qp:={x € Q:dx, X) < B}of X in Q such that for any: € C° (25 \ %),

H{/”2</WV|2 5)
— < ul“.
q d? Q

Remark 1. e If k > 3 it follows by density that{(4) and[5) hold for all € C2°(2),
respectively: € C°(2g).

e The exponenp; appearing in Theorefr] 1 is probably not optimal and we expect that
(@ holds for all 1< p < 2n/(n — 2). In fact Maz'ja [M&, Corollary 3, Section 2.1.6]
proved this result wheR = {x e R" : x1 = x2 = --- = x; = O}

As a direct consequence of TheorBn 1, we see that the first eigenvalue of the operator
L =—A—ud ?isfinite, i.e.

2

. ; 2 u
A= inf / <|Vu| - [L—2> > —00,

”u”LZ(Q):l Q d

wheneverw < H2. We proved in[[DD] that in such circumstances there exists an eigen-
functiong; associated ta1, i.e. a solution (in a sense which we shall make precise soon)
of

n .
—Ag1 — 2= g1 in €,
p1=0 ono.
Normalizinge1 by ll¢1ll 2y = 1 ande1 > 0, we then investigate the behavior @f
nearXx and show that in a neighborhood Bf there exist constant$;, C> > 0 such that
C1d(x) ™™ < g1 < Cad(x)~*W, (6)
wherea(n) = H — VH? — .
This result enables us to treat two model applications. First we consider the quantity
Vul? — & [, u?
5 o= inf 2V~ g
uz0 fQu /d
and extend a result of Brezis and Marcus [BM] stating thais achieved if and only if

J < H?2.
Our second application is a nonexistence result for positive solutions of the equation

—Au — :—Zu =uf + 2,
completing a study started in [DN]. See Secfior] 4.2 for details.
The last purpose of this article is to extend some resul{s_in [DD]. This generalization
is necessary to include the case of potentid@s = u dist(x, ¥)~2. More precisely, we
shall derive estimates for solutions of the linear equation

{ —Au—ax)u=f inQ,

7
u=0 o0nod, 0
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under the assumptions thak L;- .(R2), a is bounded below, i.e.

1
loc

essinfa > —oo,
Q

2/r
y(/ |u|r> +fa<x)uzs/ |Vu|2+Mfu2, (8)
Q Q Q Q

forsomer > 2,y > 0,M > 0.

Let us now clarify what we mean by a solution pf (7).

We first define the Hilbert spade as the completion of’2°(£2) with respect to the
norm

and

lullZ, = )y = /Q(IVulz—a(x)u2+Mu2),

whereM is the same constant that appearg in (8). Observe that the definitigrdoés
not change if we replac¥ by any larger constant.
Given f € H*, we then say that € H is a solution of[(}) if

vy = (fi I n + Mulv)2q VYveH.

It is convenient at this point to recall some facts that were proved in [DD]. We start
by mentioning that{ embeds compactly ih2(2). In particular

L=—-A—a)

has a first eigenvaluke;, which is simple i1 is not necessarily positive (Theoré¢fn 1 pro-
vides examples of potentialgx) = H?/d(x)? for which in generak; can be nonposi-
tive), but when it is, then foy € * problem[(7) has a unique solutiane H.

We note here that uniqueness fails if one considers other classes of solutions (see an
example in[[DD]).

The first eigenvalue.; has an associated positive eigenfunctign(it is not only
positive a.e. but it also satisfies > ¢ dist(x, 3Q2) for somec > 0).

Solutions inH of an equation like[(7) are typically unbounded (see exampléeslin [D,
DD [DN]). In [DD] we showed thatift; > 0 andf > 0O, f # 0 then the solutiom € H
of (7) is bounded below by a positive constant tinggsWe also proved that if; > 0
and f = 1, then the solution of (7) satisfies: < Cy1 for someC > 0.

Our main result is the following:

Theorem 3. Let0 < m < r and suppose that

2r and > L
> .
m@r — 2) p_r—m

p

Assume thaf € H* satisfies|gi ™ fllzr@) < oo and thatu € M is a solution of (7).
Then

)| < CUler ™™ fllr + lull 2@ er(x),  aex e Q.
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A simple corollary of this result, obtained by choosing= 2, is the following:

Corollary 1. Assumef € H* satisfiesf/p1 € LP(2) for somep > r/(r — 2) and that
u € H is a solution of(7). Then

lu()| < CAlf/erliLr@ + lull2@)ei(x), ae.x e Q.

The paper is organized as follows: Section 2 is devoted to the proof of Theorem§]1 and 2.
In Section 3 we derivé [6) whereas Section 4 is dedicated to the aforementioned applica-
tions. Finally, we prove Theorenj 3 in Section 5.

2. Hardy inequalities
2.1. Proof of Theorein1

The object of this subsection is to prove Theofém 1. Our arguments are based on improve-
ments of the one-dimensional Hardy inequality inspired by [BM] and a decomposition of
L2 functions in spherical harmonics taken from [VZ].

We start with a series of three lemmas, which yield a refined version of the classical
Hardy inequality inR* (see[(2D)). The first lemma deals with radial functions:

Lemma 1. Letk # 2andH = (k — 2)/2. There exists a constaft > 0 depending only
onk such that

Y2F / du\ 2 2 1/2
/ |:<_u) —qu—21|rk_ldr+C/ u’rktdr
0 dr r 0
1/2 du 2 l/t2 1 1/2 d 2
2 k H
Z/o |:<d_r> + H r—2:|r dr—i—Z/(; r(d—r(r u(r))) dr 9

forall u € C°(0, 1/2).
Proof. Letu € C2°(0,1/2) andv(r) = rHu(r). A standard computation yields

2 2 2 2
[(d_”> - qu_z]rk—l = r(d—v> el (10)
dr r dr dr

Integrating, it follows that

Y20 / du\ 2 2 Y2/ agv\2
A :=/ ay qu— rF=Lar =/ r av dr. (12)
0 dr r2 0 dr

Similarly, by {I0) and an integration by parts,

V2T / du\ 2 2
B = / au —i—HZM— vk dr
0 dr r2
Y2/ dv\2 12,2 12 T 4(y2
:/ r2<—v> dr+2H2f —r dr—H/ [ (@ )]
0 dr 0

12/ au\2 1/2
- f r2<—v) dr+(2H2+H)/ v2dr. (12)
0 dr 0
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Using integration by parts again, it follows that for givern- 0, there exist& > 0 such
that

1/2 _— 2 g0 1/2 5 12/ g\ 2
vedr = — rv—dr <C virdr + ¢ — | rdr
0 0 dr 0 0 dr

1/2 12 / gu\ 2
= C/ uzrk_ldr—i—s/ (_v) rdr. (13)
0 0 dr

Collecting [11), [(IR) and (13), we obtain fersmall enough

1/2 dv\ 2 1/2
A—BZ/ r(l—r—Cs)(—U> dr—C/ ulrk=1 gy
0 dr 0

1 (Y2 /dv\2? 1/2
> —/ r(—v> dr — C/ wrk=1 gy, O
4 0 dl" 0

The next lemma will help us deal with the nonradial part of a given funatio®* — R.

Lemma 2. Letk # 2, H = (k — 2)/2andc¢ > ¢ > 0. There exist constants, t > 0
depending only ok andc¢ such that

1/2 d 2 2 1/2
/ |:<_u> — (H2 — c)u—2:|rkldr + C/ ulrk=1ar
0 dr r 0

21 / du\? 2 121 / du\ 2 2
z/ e R r"dr+r/ L) 1 4 tar 4
0 dr r2 0 dr r2

forall u € C°(0, 1/2).

Proof. It follows from (9) that if

Y21 / g\ 2 2 12
D= / [(d—u) — (H? - C)M—2i|l’k_1 dr + C/ u?rk=t dr (15)
0 r r 0

and )
1/2 d 2
£ :=/ [(_u) +(H2-I-C)u—2:|rkdr (16)
0 dr r
then
1/2 ,,2 1 1/2 d 2
D—E>c/ -1 ryrk 1dr+Z/(; r(d—:) dr
1/2 2 1 (Y2 /gp\2
c u 4 v
> — — d - — | dr. 17
_2/0 rzr r+4/0 r<r>r a7
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We can also rewritd (10) as

2 2 2 2
fh-1 du _ g2kl dv _Hd(v )
dr r2

so that ift = min (# %), then

1/2 d 2 =~ rl/2 2 1 1/2 d 2
7:/ pk=1 a dr < E/ u—rk_1 dr + —f r av dr. (18)
0 dr 4 0 Vz 4 0 dr

It then follows from [[I}) and (18) that

1/2 du\ 2 12 2
D—E > r/ e [l I + E/ Y1y, (29)
0 dr 4 0 2

Hence [(IH) holds. O

Finally, the following lemma yields the improved Hardy inequality Fif) that we
will be using in what follows.

Lemma 3. Letk #2, H = (k—2)/2andg > 0. LetB’g denote the ball ofR* centered
at the origin and of radiug. There exist positive constarfs= C(8, k), T = (k) and
a = a(B, k) such that

2
/ Vul? - H2 2 dy—i—C/ u2dy
BX [yl BK

B B

1 u? B (dvg\?
> — |y|(|Vu|2+H2—2)dy+t/ |V(u—uo)|2dy+a/ r(—0> dr (20
2 Jgl [yl B 0 dr

forallu e CSO(BE \ {O}), whereug(r) = ug(ly]) = fan udo andvo(r) = rug(r).

Proof. Let {f;}2, be an orthonormal basis @f?(sk-1), composed of eigenvectors of
the Laplace—Beltrami operatat| ¢i-1. The corresponding eigenvalues are giver: oy
itk+i—2),i=0,1,2,... (seee.g/[5t]). Any € C;"J(B’l‘/2 \ {0}) can then be written

as
o0

u(x) =Y ui(r) fi(0)

i=0
where ¥2 > r > 0,0 € S*"Tandx = r6.
Furthermore, fog € C(R™, R),

1/2 Ju 2 1
/ IVul? g(ly]) dy =/ r"*lgo»)dr/ — ) + 5IVoul®|do
Bk 0 Sk-1 ar r

1/2
00 1/2 du: 2 .

= Z/ rk_lg(r)[(%) + c—lzu121| dr. (21)
i—0Y0 r r
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Fori = 0, it follows from [9) that ifu(r) = r#uo(r), then
Y2[ / duo\ 2 2 12
/ [<ﬂ> —qu—gi|rkldr+C/ u%rkildr
0 dr r 0
Y21/ dug\ 2 u? 1 (Y2 [duo\?
> e H?>-% |k d -/ =) dr, (22
—/0 [(m) + r2:|r rtg)y @) A @2

while (I4) implies that fo¥ > 1,

V2 / du: \ 2 2 1/2
/ |:<£> —(H? - c,')u—lz]rkldr + C/ ul-zrkfldr
0 dr r 0

V2T /g 2 2 V2F fguN\? w2
z/ ) L m e r"dr+r/ ) f et g (23)
0 dr rZ 0 dr I‘2

Using ), ) aglgl) witlg (r) = 1 for terms involving”*~1 andg(r) = r for terms

with ¥, we deduce (20) fo = 1/2. The general case is obtained by scaling. O

Next, we introduce some geometric notation that will be needed in the proof of Theo-
rem[1. Define
Qg ={x e Qldist(x, %) < B}.
We will work only with 8 small enough so that the projectian: Qg — X given by
| (x) — x| = dist(x, X) is well defined and smooth.
=« be a family of open disjoint subsets Bfsuch that

m
E:UVi, VinV;|=0 Vi#j.
i=1

We can also assume that:
(@) Vi =1, ..., mthere exists a smooth diffeomorphism
pi: B:’Llik — U;
whereU; C ¥ is open and/; C U;;
(b) plfl(v,-), which is an open set iR" %, has a Lipschitz boundary; and

(c) there is a smooth choice of unit vecto@(a), el N,ﬁ(a) for o € U; which form an
orthonormal frame fok onU; Cc R" ,i.e. forallo € U;,

Nj(0) eR",  Ni(0)-Ni(0)=8p, Nj(©@)-v=0 YweT,X.
Let W, = pi_l(V,-). Forz € W; we will also write (abusing the notationY]?(z) =
N} (pi(2)). Let

k
Fi(y.2) = pi(@+ Y_yN ().

j=1
wherey = (y1, ..., ) € Bg andz € W;, so thatF; is a smooth diffeomorphism between
B’lg x W; andTé, where

Tj =7~ (V;) N Q. (24)
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Fig. 1.

It follows from the conditionV; N V;| = 0Vi # j that |T;'3 N Tg| =0Vi # j, and
hence, for anyf € L1(Qp) we have

= = F;(y,2) JF;(y,2)dydz, 25
fgﬁf ;/Té_f ;/WixB’gfo (v, 2) JFi(y, 2)dy dz (25)

whereJ F;(y, z) stands for the Jacobian &f at (y, z). We claim that
JFi(y,2) = Gi(2)(1+ O(|y])), (26)

whereO(]y|) denotes a quantity bounded by (uniformly for z € W;) andG;(z) is a
smooth function which is bounded away from zero. More precisely

Gi(z) = Jpi(z) = V(Dpi(2))*Dpi(2).
To prove [26) it suffices to observe thaF; (y, z) is smooth and to compute it at= 0:
JFi(0,2)* = det(DF;(0,2)* DFi(0, 2))
=det[D,p:|NL, ..., NJ*[D,piINi, ..., Ni])
_ (szi)*DzPi 0
= det[ 0 7l

Proof of Theorem]1First, observe that it is sufficient to prove the theoremifawith
support neak. Indeed, following an idea of &quez and Zuazua [VZ], lgte C2°(R")
be such tha = 1in Qg and suppn) C Q2. Letu € C°(2\ %) and writey = u14u>
whereu; = nu, u2 = (1 — n)u. Suppose that the conclusion of the theorem holds for

Then
2 2 2
vl — g2t :/ V2 — g2t / Vo2 — g2"2
/Q(| ul d2) (v =122 ) + [ (1Val? — 1222

4 2/Q<vu1 Yy — HZ“;ZZ). 27)
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Since ¥d is bounded away frorx we have
/ u% n UU2 < C/ 2
-y u-.
o\d?  d? )~ " Jg

/nVM.Vup=/fm1—nMVuF—|vm%2+uVu~vm1—2m]
Q Q

1
2

Also note that

=/[n(1—n)|Vu|2— IV2u?] — / WV - (Vi(l—2n))
£ Qp\Q2p/2

z—gLf. (28)

It follows from (27), [28) that

2 2”2 2 2“% 2 2
|Vul — H —] Z/[quﬂ —H —:|+/ |Vuo| —C/ u-.
/;z[ d? Q d? Q Q

Using [4) withu; we conclude that

5 2uz 5 2/p )
/[IWI o —2]+Cfu zy(/ |u1|1’> + [ 1vual,
Q d Q Q Q

for somey > 0 independent ofi. Hence the conclusion of the theorem fofollows
easily.
Let
uz 2
1,-:/ [|W|2—H2—2+u } (29)
T d
WhereTé was defined i4). In what follows we will fixand show that there aye> 2
andC > 0 independent of such that

2/p
(/_|M|p> < CI,.

B

For simplicity, and sincé is fixed, we will drop the index from all the notation that
follows.
Let us introduce some additional notation:

u(y,z) = u(F(y, ), (30)

%mmzf i(y.2) ds(y), (31)
JdB,

vo(r, 2) = rfliig(r, 2). (32)

Let us write
Vu =Vyu+ Vru
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whereVy u is the gradient of: in the normal direction an®; u is orthogonal tovy, u.
More precisely, for a point = F(y, z),

k
Vyu(x) =Y Vu(x) - Nj(2) Nj(2).
j=1

Step 1.There exist€” > 0 independent ai such that

Cl= / IV ul Iyldyd2+/ IV (@i (y, 2) — do(y, 2))|* dy dz
WXBE

f f <—) rdrdz +/ |(Vyu)o F|?dydz. (33)
W><B’/§
First note that by[(25), there is a constaht- O such that

Iz/ (WNM(F(y D - HE |2>G(Z)dydz
W x

By
a2
—C/ <|VNM(F(y )P+ H? 2)G(z)lyldydz
W x B |yl

+/W Bk(IVTu(F(y,z))|2+zz2)(1—C|y|)G(z)dydz. (34)
*Bp

For fixedz we can apply Lemmg] 3 to the functiait-, z). Observe that

i (y,
% = Vu(F(y.2)) - N;(2)
Vi
and thus
IVyii(y. )2 = [y u(F (y, 2)I2.
Lemmd 3 then yields
2
/ <|VNM(F(y )% — H? 2>dy+Cf i’ dy
B Iyl B
_— ||(|v (F(y. 2|2 + H? 2>d
> — u z
28 y N Vs | |2 y

B /d 2
+z/ |Vv(ﬁ—ﬂo)|2dy+a/ r<ﬂ) dr.  (35)
B 0 dr

We choose (and fix once for aly > 0 small enough so that/128) > C + 1. Then
multiplying (35) by G(z), integrating overW and combining the result with (B4) we
conclude tha{(33) holds.
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Step 2.

2
Vol

L2(WxB§) =CIL (36)

By (33) the partial derivativévo/dr is bounded inL?(W x B) by C1. We just have to
control the derivative8vg/dz;,i = 1,...,n — k. But

dvg

ou
—(r,2) = r”][ —(y,2)ds(y)
9z 3B, 0Zi

and
dii P & 31\’1}
— 0, 20)=VulF(,2)- | — + i— |-
5 (09 = Vu(F(y.2) [% j;y] .
But note thabp/dz; is a tangent vector, hence
IVau(y, 2| < CIVpu(F(y, )| + Clyl [y u(F(y, 2))|.
Integrating ovev x Bg we have

/ IVai(y. )P dydz < CIL (37)
WxBﬁ

for someC independent of: by (33). It follows that

B
/ |Vzvo|2dydz=// p2H+L
W x B2 w Jo

B
B
5// rk_l][ |Vzﬁ(y,z)|2ds(y)drdz
wJo 3B,

< cf Vai(y, 2)2dydz < CI (38)
WXBE

2
][ V.i(y,z)ds(y)| drdz
3B,

by (37).

Step 3.There isp > 2 such that

IIﬁolli,,(Wng) <CIL (39)

More precisely, fok > 3 one can take any 2 p < p; wherepy is given by

1 1 2

w2 kn—k+2)
and fork = 1 one can take Z p < p1 wherep; is given by

1 1 1

p1_2 n+1
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Using Sobolev’s inequality (ol x B§) combined With) we obtain

b 2
f/ lvol?r drdz < CI19/2,
w JO

with ¢ given by /g =1/2 — 1/(n — k + 2). That s, in terms ofig we have
B
/ / liio|7rf*+ ar dz < 1972, (40)
w Jo
We want an estimate fof |iio|?r*=1 dr dz for some suitable 2 p < ¢ and for this we

use Hilder’s inequality, distinguishing two cases:
Casek > 3. We have

P p
/ f |ﬁ0|prk—1drdz=/ / |’/~‘0|prark_2_ardrdz
wJOo w Jo
B Pl B ko 1-p/q
= C(f / |iig|? r“q/p+ldr, dz) (/ 074 +1dr) . (41)
wJo 0

We then choose so that

k—2—«a
1-p/q 2
which is equivalent to the condition
ook
4

Thus we neegp = a/H < pi, wherepy is given by

B 2k
k=2(1+ i)

Pk

s

1 1 2

e 2 kn—k+2)
Observe thap, > 2. Combining ther{ (40) anfl (41) finishes this case.



348 J. Davila, L. Dupaigne

Casek = 1. In this case is given by ¥g = 1/2 — 1/n + 1, and we can chooge= q:

B B
// |ﬁo|qu71drdz=// litg|? dr dz
w JO w JO
B
5// liiol?r—2%* 1 dr dz
w JO

B
=// lio|?rftt dr dz
w Jo

because-¢/2+ 1 < 0.
Step 4.
it — aouiz*(mz) <CL (42)

This is a consequence of Sobolev’s inequality applied to the fungtiaiy on the domain
W x Bg. ) already provides a bound If (W x B’é) for V(@i — iip). Hence we only
need to obtain a bound for the derivativeiof- iig with respect taz. In the case of the
functionz we have it already i (37). Fai it is derived by a computation very similar
to that at the end of Step 2. Indeed,

B
f |Vzﬁo|2dydz=// rk=1
Wng w Jo

which we obtain as irf (38).
Conclusion.By (39) and[(4R) we see that

2
][ V.i(y,z)ds(y)| drdz <CI,
3B,

~n2
112, 3 gty = €1

for someC independent ofi. Changing variables and reintroducing the inde¥e have

2
2 2 g2t 2
luelZp g, = C/Té<|Vu| H? 5 +u )

Adding these inequalities ovemproves the statement of the theorem. O

2.2. Alocal version of the Hardy inequality

In this section, we show how to adapt the proof of Thedrém 1 to obtain Thgdrem 2. We
first derive variants of Lemmas$[1,[4, 3.

Lemma 4. Letk # 2and H = (k — 2)/2. There exist constants, o > 0 such that for
0 < B < po,

Bl (du\? Lu?] g BT (du\? N

forall u e C°(0, B).
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Proof. Givenv € C2°(0, 1/2), we have

1/2 12 g4 1/2 dv\? 1 L2
/ vdr = — f rv—vdr§C/ 2 av dr~|——/ v2 dr.
0 0 d}’ 0 dr 2 0

Using this and[(12) we obtain

1/2 d 2 2 1/2 d 2
/ au +H2u— rk drng r2 av dr.
0 dr r2 0 dr

Changing variables, it then follows that fere C2°(0, 8),

BT /d 2 2 B d 2
/ o + H2Y |k dr < CﬁkiZ/ P22 dr, (44)
0 dr r2 0 dr

while (17) becomes

P 2 2 B 2
R A

If we pick g small, [43) follows from[(4}4) and (45). O
A straightforward corollary of the above lemma is:

Lemmab. Letk # 2, H = (k — 2)/2 andc¢ > 0. There exist constants, o > 0 such
that forO < 8 < By,

B 2 2 Ji 2 2
/[(d—”> —(H2—c)”—}r’<1drz/ [(d—”) +(H2+c)”—}r"dr (46)
0 dr r2 0 dr r2

forall u € C°(0, B).
Combining these two lemmas, we then obtain:

Lemma6. Letk # 2, H = (k—2)/2andg > 0. LetB’/; denote the ball oR* centered
at the origin and of radiug. There exist positive constants 8o such that for8 < Bo,

2 2 u? c 2 2 u?
[Vul — H*— |dy = — IyI{ IVul®+ H"— |dy (47)
B [yl B JBk [yl

forallu C(?O(Bg \ {0}), whereug(r) = up(]y|) = JC{)Bk udo andvg(r) = rug(r).

k
B

As in Lemmd 3, for a fixed valug = o > 0 the proof is an application of the decompo-
sition of a function in spherical harmonics. A simple scaling then yieldgtdependence
of the constant appearing in {47).

Proof of Theorerfi|2Instead of[(2P), we now consider

u2
Ji = /T,-['V”'Z_ Hzﬁ}. (48)

B
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Using the notation of (30) we then have, py](25) dnd (26),

: . 2 2 ii?
Ji > [y u(Fi(y, )| — H —
W x BX

Z)G(z)dydz
p Iyl

~2
u

- Cf |y|(|vNu(Fi<y, P+ HZ—Z)G@ dydz =0,
W x BY Iyl

where we used Lemnfd 6 with > 0 small in the last inequality. Adding the above
estimates over yields the desired result. O

3. Remarks on the potentiala(x) = u dist(x, £) 2

For 0< u < H? we consider the potential
a(x) = pn/d(x)?
and letL denote the operator
Lu =—Au—a(x)u.

Note thata(x) andL depend oru but we will omit this dependence from the notation.
Recall that we defined the Hilbert spakeas the completion of 2°(2) with respect
to the norm

lull3, =f9(|w|2—a(x)u2+Mu2), (49)

whereM is the constant that appears|ifi (8)ulf< H? then by Theorerﬁ]]?,-[ coincides
with H} ().

The main concern in this section is to obtain a precise description of the behavior near
% of the first eigenfunctiow; of the operatod.. Indeed, we shall prove:

Lemma 7. There are positive constantg, C» such that
C1d(0) ™" < g1(x) < Cod(x)"*W (50)
for x in a neighborhood o&, wherea (w) is given by
a(p)=H —H2—p. (51)

Note that whern = H? we have—a(n) = 1 — k/2. Thusg: ¢ HX(S) in this case.
Before proving the above lemma it will be necessary to show thatf H? thend—*/2
(appropriately modified so that it is zero 6&) belongs toH. We prove this and a little
more next.
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Lemma 8. Lety = H? and define
v (x) = n(x)d ()% (—logd (x))~,

wheren € CZ°(R2) is a cut-off function such thaf = 1 in a neighborhood o= and
n(x) = 0ford(x) > dist(Z, 9Q2)/2. Thenvy € H if and only ifs > —1/2.

Remark 2. This lemma was stated in [VZ] in the case whé&rés a point.

Proof. Let us recall and also introduce some notation:
Q=xeRV|dx)<r}, =, =0Q ={xeR"|dx)=r).
By the Pappus theorems, tt¥ — 1)-dimensional area at, is given by
1B -1 = k1" B,

where w;_1 is the area of the unit sphere &" and| - |; denotes thej-dimensional
Lebesgue measure.

First we prove that, € H fors > —1/2. For this purpose it is enough to exhibit a
sequence, € H such thaf] f: || < C with C independent of and such thaf, — vy
a.e. ag — 0; we take

fo = nd ¥ (—logd)*, &> 0.

Clearly f; € H&(Q) CH [ ff < C and f; is smooth away fronE. Thus to estimate
| fi Il it is sufficient to verify that for a fixedk > 0 small

/ V2 —a@)f2<cC (52)
Qr

with C independent of.
Nearx,n =1and

IV fel? = d 4% (L= k/2+ £)*(~logd) >
+52—k+2¢)(—logd) >t 4+ s%(— logd) > 72).

so that

R
—/ IV f.|? = (1—k/2+s)2/ r*~(—logr)~% dr
@k—1|Zn—k Jag 0

R
+ 52—k + 2¢) / r*~Y(—logr)~%*tar
0

R
+52f r®*~Y(—logr)=*"24r.
0
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Note that the last integral on the right hand side above is bounded independentty of
s > —1/2, that is,

R
/ r#~Y(—logr)~*2dr = 0(1).
0

Therefore

1 2
—/ (|Vfg|2—H2f—;>
o1 Zln—k Jag d

R
= a(2—k—|—8)/ r*~Y(—logr)=* dr
0

R
+s@—k+ 28)/ r*Y(—logr)™®* Ydr+ 01). (53)
0
Integrating by parts gives
R 1 s R
/ r*Y(—logr)™®dr = —R%*(—logR)™% — -/ r®~Y(—logr)=*1ar
0 2¢ e Jo

and substituting i (§3) yields

1 12 2—k+e , 5
— IV |2—H2—8> = ————R“(=logR)~~
k-1 Zln—k /QR( fe d? 2 9

R
+gs/ r® (—logr)~*Ydr + 0(1)
0
R
= es/ r* Y(—logr)™*Ydr+ 0(1). (54)
0

Integrating by parts again shows that

R
/ r*~Y(—logr)~*1ar
0

1 2s+1 (R 1
= ZR®(—logR) 21212 / r#7L(—logr)™*2dr = 0( = ).
2¢ 2 Jo e

After substitution in[(5}#) we finally obtain the estimdte|(52). Hence H fors > —1/2.
Our argument to show that, ¢ H for s < —1/2 relies on the intuitive idea that
J(=Av — a(x)v + Mv)v = [|v]|3,. To exploit this idea, let us first computev, nearx,
wheren = 1. Write
y(t) = 12— logr) .

Then neaix, since|Vd|? = 1,

Avy = y'(d) + ' (d)Ad.
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We recall here the fact (see [[DN]) that

k—1
Ad ="y,
a T8

whereg € L°°. Hence,
Avg = — H?d™*?"H(—logd) ™ + s(s + 1)d "> H(~logd)~*~?
+ (1 —k/2)gd*?(—logd)™ + sgd*/?(—logd)~*~1
so that
Av, + HZ% — 5(s + 1)d~H2"1(— logd) 2
+ (1 —k/2)gd*?(—logd)™ +sgd*/?(—logd) L. (55)

Observe that\vy, v /d? € LY(Q) and that equati05) holds in the sense of distribu-
tions. Since we also havév, € L1(Q), it follows that for anyy e CX (),

2
v
(vsl)n = /(—Avs—Hz—d2>w+M/ Vs
Q Q

= — | (s(s+Dd ¥ L(—logd)™~2

Qr

+ (1 - k/Z)gd—k/Z(_ |Og d)_s + Sgd_k/z(_ |Ogd)_s_l)(p

+/ (‘Avf N sz—sz>¢ + M/ (2 (56)
Q\Qp d Q

By density [(56) also holds if is Lipschitz andy = 0 ond<2.

Let us consider first the case# —1, so that (s +1) # 0, and suppose that< —1/2
andv, € H. Then there exist, € C°(2) such thaw, — v, in H. Note that since the
injectionH c L2(2) is continuous, by passing to a subsequence we alsoljave v,
a.e. Recall from[[DN, inequality (1.4) of Lemma 1.1] that forc ‘H, we haveut € H
andflut|l3 < lluly. As a consequencel — v, in H and a.e. Using;’ in (56) we
conclude that

/ d~*?Y(—logd)—* "%} < C
Qr

with C independent of. But then Fatou’s lemma implies that
/ d7¥(=logd)™%7? < o0,
QR

which is impossible fos < —1/2.
For the case = —1 the argument above does not work. We see that in this case, if
is flat andy = 1 in an open set then actually

2w
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in that open set, where
w = v = nd**2(~logd).

So we argue as follows: let1/2 < s < 0. We are going to show th&l. + M)v; >
(L + M)w nearX. If we assume thab € H, then we can apply the maximum principle
and deduce that, > sw nearX, which is impossible. Indeed, by formu[a{55),

(L + Myw = —(1—k/2)gd*/*(—logd) + gd~*/* + Md*"/*(~logd),
and
(L+ M)vy = —s(s + 1)d*?L(—logd)™* =% — (1 — k/2)gd*/?(— logd)~*
— sgd *?(—logd) ™"t + Md**/?(—logd)~*.
Thus, there is a neighborho6z} of  such that for any € (0, 1),
(L+M)(ew—1v5) <0 inQg. (57)

Picke > 0 such thakw — vy < 0in dQg. Under the hypothesi® € H we can use a
version of the maximum principle to deduce that

ew—v; <0 InQpg.
Indeed, assuming < H, we have(sw — v;)* € H. Hence the function

_ (ew —vg)T in Qg,
1o inQ\ Qx,

also belongs td{. Letz, € C°(2) be such that, — z in H. Note that[(5[) holds in
the sense of distributions and hence tes{ing (57) wjtiwe see that

(ew — vslz))H < 0.

Lettingn — oo we get
lzllx = (ew — vs2)p = 0.

Thusz = 0, which implies thatw < vy in Qg, concluding the proof of Lemnjg 8. O

Remark 3. To show that, € H fors > —1/2 one may be tempted to use other approx-
imating sequences, and a very natural one is

fi=min(vg, i), i=12....
Again it would be sufficient to establish that for a fix®d> 0 small
| avar-atms? <c
Qg
with C independent of. Fori large letr; > 0 be such that

rilfk/z(— logri)™ =i
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so thatr; — 0 asi — oo. A computation (that we omit) shows that

1 k—2 k—2
— | (VfilP—a@) f?) = ——(=logr)~* — —=(—logR)~*
Wk—-1 JQp 4 2
2
s _ —25—1 _ N=25—1
+ 5, 7(-10gR) (—logr) =71,

We see that the above quantity remains bounded-asoco only fors > 0!

Remark 4. The above example shows that fee N there exists,, € H with ||v,, |l =1
and
Imin(v,,, m)||y — o0 asm — oo.

Sincev = min(v, m) + (v — m)* we also have
(v —m) |y = 00 asm — oo.

‘H is thus quite different frorrHc}(Q), in the sense that truncation operators like the one
above are not uniformly bounded i whereas it is always true that for anye Hol(Q),
min(v, m) — v in the H! topology.

Proof of Lemma[7.We will give a proof using a comparison argument with a suitable
function. First let us recall that in a neighborhoodf

k-1
Ad=~"Z 4,
a8

whereg is a bounded function. Hence
—
-0 __ —

Leta = a(u) as given by|[(5]). This implies thaf — a(k — 2) + ; = 0. Then

=—d "%’ —ak—2) +pn—agd). (58)

Ld™%+C1d ) = —a* —ag+ C1((a = 1% — (@ = D) (k= 2) + 1 — (@ — D)gd)].

Instead of working with the operatdr = —A — a(x) considerL + M, whereM is so
large that[(B) holds (this is the samethat we use in the definition of the spe&#. Then,
since(a — 1)2 — (¢ — 1)(k — 2) + u > 0 we conclude that fo€; > 0 large enough

(L + M)(d™® + C1d— 11

= —d O —ag+ C1((@ — 1% — (@ — D)k — 2) + u — (¢ — D)gd)]
+ M(d™* + C1d—*1)
<0 (59)

in some fixed neighborhoa@g, R > 0, of £. On the other hand, the first eigenfunction
@1 of L satisfies
(L + M)p1 = (A1 + M)p1 > 0. (60)



356 J. Davila, L. Dupaigne

Now, both functionsp; andd—% 4+ C1d~*** are smooth away frorx so that one can
finde > 0 such that(d—* + C1d—*T1) < ¢1 in 9Q2k. We can now use the same version
of the maximum principle as in the previous lemma to deduce that

ed™®+C1d™ ™) <1 InQg.
For the estimatey < Cod~*) we need a result from [DD].

Theorem 4. Let2 be a bounded smooth domain. Assume&hatLlloc(Q), a is bounded
below (i.einfg a > —o0) and that it satisfies

2/r
y(/ |u|’) +[€z<x>u25/ Vul?
Q Q Q

for somey > Oandr > 2. Lety; > 0 denote the first eigenfunction for the operator
L = —A — a(x) with zero Dirichlet boundary condition, normalized 1|, 2o, = 1,
and letzp denote the solution of

—Afp—a(x)to=1 inQ,
Zo=0 onoQ.

Then there exist§ = C(2, y (a), r) > 0such that
C Y0 < 91 < Ceo.

Proof of Lemma@]7 continued/Ve use the above theorem with= a — M. In view of this
result it suffices to show that

o< Cd—*W.
Using [58) and taking = «(u) we have

(L + M)d®*—Ccd**h
= —d* —ag - Clla —1D?— (@ — Dk —2) +p — (@ — 1)gd)]
+ M(d—a _ Cd—oH—l)
>1

in Qg if we chooseR > 0 small andC > 0 large enough. Now tak€; so large that
fo < C1(d™® — Cd~**1y in 8Qg. Using the maximum principle as before we deduce
thatzo < C1(d—% — Cd—**1), which finishes the proof. O

Remark 5. The factthati=*/2 € H for u = H? was used in the proof above at the point
where the maximum principle was applied. That argument requires that both functions
that one would like to compare are Hi. In general, if one of these functions does not
belong toH then the maximum principle cannot be applied; §eel[DD] for an example.
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4. Some applications
4.1. Minimizers for the Hardy inequality

We start this section by extending a result of Brezis and Marcus [BM] regarding the
guantity
\V/ 2 _ A 2
h= inp  alVeFZte) (61)
ueCR (N0 [o u?/d(x)
where as usual(x) = dist(x, X).
The case studied in [BM] correspondsXo= 9£2, and an interesting feature that the
authors found in that work is the following, which we state in our situation:

Theorem 5. Fix A € R. Then the infimum ig61) is achieved (inH () if and only if

J, < HZ.

Proof. To prove that the conditiod; < H? is sufficient for the infimum in[(g1) to be
achieved, one just needs to mimic the arguments inl/[BM] so we skip this step.

We prove the converse, that is, the claim thafif= H? then the infimum is not
achieved, with an argument similar in spirit to that lof [BM]. Suppose that the infimum
is achieved by a function € Hol(sz), which we can assume to be nonnegative and not
identically zero. Assume also that = H2. Thenu satisfies

u —
d(x)?
It follows that A is the first eigenvalue for the operaterA — H?/d? and thatu > 0.

Moreoveru has to be a multiple ap; (for this result see e.d. [DD, Lemma 2.3]). But by
(50) we know thatp; ~ d%~*/2. This shows on the one hand thgju2/d? = co. But

Hardy’s inequality) implies on the other hand thfgtu?/d? < oo. O

—Au — H? AU,

4.2. Study of a semilinear problem

In this section, we return to the study of a semilinear problem studiéd inh [DN]p Feorl,
0 < u < H? andx > 0 consider the equation

“m p .
— — = AN,
d(x)zu ut” +
u>0 inQ, (62)
u=~0 onoag,

where as usual(x) = dist(x, X). We showed in[[DN] that (at least for small values of
u > 0) there exists a critical exponent

2 .
po=14+—— with a(u)=H—H2—p
a(w)
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such thaf{(6R) admits no solution (in any reasonable sensg)fop andi > 0, whereas
for somer* = A*(p) solutions exist whep < pgand O< A < A* (and again no solution
exists when. > 1*). However, the critical casp = pg remained open. Using Lemra 7
in combination with Theorein 4, and following the proof of Proposition 6.1 of [DN], one
can prove the following:

Theorem 6. Given anyA > 0, Problem(62) with p = pg admits no solution.

5. Estimate for solutions of some singular equations

In what follows we will use the method developed(in [DD] to prove Thedrgm 3. The idea
is to work withw = u/¢1, which satisfies an elliptic equation to which Moser’s iteration
technique can be applied. In the argument it is desirable to approximate the petential

by bounded ones. In order to get the convergence of the corresponding solutions, it is
convenient to rewrite the equatidr (7) as

—Au —a(x)u = Cou + f,
where
a=a—Cp

andCy is chosen large enough, larger thhin (although it will be taken even larger
at one point below). We observe that now for ang H* the equation

—Av—av=h IinQ,

63
v=0 o0nos, (63)

has a unique solution € H. Let us also note that the first eigenfunction for the operator
—A —ais still ¢1.

Let us state a result which is a kind of Sobolev inequality with weight (see a proof in
[DD)).

Lemma 9. Assume that satisfies(§). Then for any2 < ¢ < r there is a constan€
depending onl\2, r andy (a) such that

2/q
(/ ¢i|w|‘1> < C/ P2(IVw|? + w?) (64)
Q Q

for all w € C1($2), wheres is given by the relation
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Lemma 10. LetO < m < r and suppose that

2r
p > Y 2 (65)

and
,

p= (66)

r—m’
Then forf € H*, the unique solution to (63) satisfies
)| < CllgY ™A, p1(x), aexeQ.

Remark 6. If m > 1, the assumptioh € H* can be dropped since one can prove that
Ihlle < Cllgr"hllp-

Proof of RemarIﬂG.lf ||<p%"”h||p = +o00, there is nothing to prove. Otherwidgeis
locally integrable and fop € C2°(€2),

[
Q

where we used Blder’s inequality twice. Now[(G6) implies thatp’ < r, so we end up

/
Q

which is the desired result. O

1— -1 1— m/m’
< ke " lIpllee] "Il < llhey m||p||<P1||m£/ lellmp

< Clhei™pllpllzy Yo € C(S),

Proof of Lemma4 Tl0 First we note that it is sufficient to prove this result for a bounded
potentiala, as long as the constants that appear in the estimates only depend on the con-
stantsr, y, C appearing in[(8) an&. This is the same argument employed[in |[DD] and

we will just sketch it here. Considéy, = min(a, k), and the first eigenfunctioqzl’lc and
solutionwy of @) with the potentiak replaced byz. Then<p’1‘ — @1 in H andvy — v.
Furthermoreg,, satisfies

2/r
y(/ |u|’) +/Zlk(x)u2§/ IVul?,  Vu e CX(RQ).
Q Q Q

Soitis enough to establish the resuﬂsa‘ere will assume then thatis bounded. Then
all functions involved belong ta1-* ().
By working with 2+ andh™ we can assume that> 0 and hence > 0. Set

w=v/¢1.
Thenw satisfies the equation

—V - (92Vw) = g1h — (Co + r)g1v.
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Multiplying the equation byw? —1 and integrating ir2 we find

2j—1 ; - -
- / P2V’ |? = / @1w? "Lh — (Co + A1) / prow?/ 1
J Q Q Q

- f o1w? ~th — (Co + A1) f p2w? (67)
Q Q

Using the variant of Sobolev's inequali64) applieditd with s = mp’ we obtain

. N\?%4 . .
( fg or'? w‘”) <C /Q 2(IVw/ |2+ w?), (68)

whereg is given by
;=2
q=2+mp —

We note that by[(66) we havep’ < r and therefore we can indeed apply Lemna 9.
Combining [[67) with[(6B) we get

2 . .
(/ @Tp/wqj> : = ¢” / prw? ~h +C<1— i (Co—i-?»l))/ pZw?/.
Q ~2j-1Jq 2j-1 Q

We makeCy larger if necessary, so that fgr> 1 the second term on the right hand side
is negative. Therefore

AN ,
( f 01" wW) <Cj f p1w?/ " h.
Q Q

By Holder's inequality

/

, ;o NLp
/ prw? 1 < ( / o1 w@‘””) 1™ hllp
Q Q
and therefore

-\ V@) iy o' 25Dy veir) Y@
(/Qsalf’w‘”) < (cHt ”(/le”w( i ”’) oy Al “. (69)

Observe now that conditioh (5) is equivalengto- 2p’ and therefore a standard iter-
ation argument yields the result. Let indegd= 1/2 + m/2 and fork > 1, defineji
inductively by

Qjk = Dp' = qjr-1. (70)
One can easily show théj,} is increasing and convergestao ask — +0o0, so that if

o A\ V@i A —1/qjk)
o= (o) (L)
Q Q
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then{6;} is increasing and converges|ta || ask — oo. Observe in passing that since
@1 € Handmp’' < r, we have
(/ ‘PTP,> < 00.
Q
Equation [(6D) then yields
e I Lo 1/Qjkp)
Ok < (Cji)"¢ J“( /Q ¢1P> i ( /Q %) Ph”) :

(71)
Now, either{6; }; remains bounded by, {*~™”h7)1/? for all k, in which case passing
to the limit provides the desired inequality, or there exists a smallest intggerch that

fork > ko —1,
1/p
O = (/ cp{l""”’hﬁ) .
Q

Using this inequality in[(7]1), we obtain far> ko,

1-1+54
. N\ Jk a2
O < (Cjk)l/(zj")(/gﬁlp) " G (72)
Applying (72) inductively, it follows that
0 " - it
lwieo < ] [(Cjk) / f“( f ¢1p> }eko_l. (73)
Q

k=ko
Starting from[(7D), a straightforward computation shows that for some,
k gk 1 k
. q . (Zp’) ( q )
Jh=\z=)Jjo+—FF7 ~c| ask — oo.
<2p/> 7 —1 2p’

Sinceq/(2p’) > 1, we then conclude that the infinite product on the right hand side of
(73) converges to some finite constant.
If ko > 2, applying agair (41) fot = ko — 1, we also have

. . , 1/@jkg-1pP) 1/p
2/ 2jkn— _ 0 _
i1 < COLT0y? o ””( /Q o "””h") < c< /Q oy ’””’h!’) :

(74)
where we used the minimality & in the last inequality. Combining (Y4) ar{d {73) yields
the desired result.

If ko = 1 then by[(ED),

;A\ Yjo) m/(2jor) 1) 1/@2jop)
(/ or" w’“0> < C(/ v’) (/ 2 ph”) . (75)
Q Q Q



362 J. Davila, L. Dupaigne

where we used Blder’s inequality and the fact thatp’ < r, which follows from [66).
Now,

2 2 1- -1
yIvllz = llvllg, =/ hv < lhoy " lplley vl
Q

< lhoi ™ Iplwlloollgf Il < ClgE ™ Iy lwlloo- (76)
Using [73), [(7b) and (16), we obtain
oy Tt 2
lwlleo < Cllags™™ 177" Jlw| 7,
which after simplification yields the desired result. O

Lemma 11. Let0 < m < r and suppose that

r

— and > .
<m(r—2) p_r—m

Then giverh € H*, the unique solution to

p

—Av—av=~h inQQ,
(77)
v=0 o0nos,
satisfies
, a\ 1/a
( / e ) < Cllgr " hllp. (78)
Q ®1
for anyo > 1 such that
1 1 2
rzo-(1-2) (79)
(o4 P q
where 2
g=2+ mp/r —

—
Proof. The computations of the previous lemma are valid ug td (69). Now observe that

(69) yields an estimate for
;o \Ya@h)
()
Q

if gj > (2j — 1)p’, which is equivalent to

/

p
2p'—q
Takea satisfying [[79) and = «/q. By Holder’s inequality

' (2ie 1)y - @j-Dp'/a - 1-2j-1p' Ja
/(plpw(J_)p §</¢lpwa) </¢lp) ’
Q Q Q

but observe thaf, <pr/ < oo becausenp’ < r andgy € L. The previous inequality
together with[(6P) yields the resuilt. O

J=



Hardy-type inequalities 363

Remark 7. A direct consequence of the above lemma is that if instead of assuming

2r
< —_—
P=nr—2
we assume that
. 2r
P e =2

then the conclusion is that for all4 « < oo,

(o
Q

where the constartf may depend on.

1
) " < Cllgs™™hll,
¥1

Remark 8. In contrast with what we observed in Remétki6need not be irf{* for
||h(p%_m||p to be finite. Hence, in light of inequality (¥8), one can define by density an
operator

T=(—A—a(x) " : LP(Q, " dx) —> LY, 7" L dx),
which restricted td € H* assigns the corresponding solutioa=: T'(h) € H of (77).

On the other hand, givelne L1($2), one can consider a weak solutiore L1($2) of
equation[(7]) in the sense thgj a(x)|u|dist(x, 32) < oo and

/u(—Aw—d(X)¢)=/ fo
Q Q

for all g € C2(Q) with glyq = 0. 1fh € LP(Q, 9} dx) andu € L (R, ¢! /" dx),
is ittrue thatu = T'(h) ?

Proof of Theorer|3.Consider now: € H satisfying (T) and let be the solution of

—Auy—aui = f IinQ,
u1 =0 onoQ.

We remark that Lemn@.o implies thiaty/¢1lc0 < C||go%""f||p. Thus

(L

for any! > 1. Defineu, = u — uy so thatu = u1 + up andu, € H is the unique solution
of

ui

I)M <Cllgs™ £l (80)
@1

—Aup —aus = Cou in Q,
up =0 onog.
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Starting withp1 = 2 we shall construct a finite increasing sequepgavhich will stop

at somek such that ,

r—2
and such that for eadh= 1, ..., k the following inequality holds:

(Lels

o

Pi =

P\ 1/ pk 1
) < Cler™" fllp + llull2). (81)

Indeed, Lemmp 11 applied t@ with p = p1 = 2 andmy = 1 implies
k2

2
¢
(Ll

1 1 2
2-2-(-
p2 P q

andg = 24 2(r —2)/r. Inequality [80) combined with ($2) shows that|(81) holdser
We continue this process using Lemma 11 repeatedly witndm in that lemma

given by
1 1 ( 2) 2(pr — 1)
—=——(1-=), m==—=

P+l Dk q Pk

andg = 2+ 2(r — 2)/r. At each step we obtain (inductively)

5 Pi+1\ 1/ pr+1 o u
(2™ el
Q Q

o1
This together with[(80) proves thdt (81) holds fer 1. We can continue in this way
provided

p2\ 1/ p2
) < Cllul 2, (82)

whereps is given by

uz

Pi\ 1/ pk 1
o1 ) < Cler™" fllp + llull2).

or equivalently

Let k be the first time that we find
-

r—2

so that[(81) still holds fok. If p; > r/(r — 2) then we can apply Lemnja[L0 directly and
conclude that

Pi =

luz/@1lloe < Cllor™ £l + llll2),

which would finish the proof of the theorem.
In the casep; = r/(r — 2) we first use RemaiK 7 and then Lemma 10. O
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