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Abstract. We develop a potential theoretic approach to the problem of metastability for reversible
diffusion processes with generators of the formA + V F(-)V onR¢ or subsets oR?, whereF is

a smooth function with finitely many local minima. In analogy to previous work on discrete Markov
chains, we show thahetastable exit timesom the attractive domains of the minima Bfcan be
related, up to multiplicative errors that tend to one gs0, to the capacities of suitably constructed

sets. We show that these capacities can be computed, again up to multiplicative errors that tend to
one, in terms of local characteristics Bfat the starting minimum and the relevaaiddle points

As a result, we are able to give the first rigorous proof of the clasEigahg—Kramers formulan
dimension larger than 1. The estimates on capacities make use of their variational representation
and monotonicity properties of Dirichlet forms. The methods developed here are extensions of our
earlier work on discrete Markov chains to continuous diffusion processes.
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1. Introduction

In this paper and a follow-up papér [BGK] we investigate reversible diffusion processes
X(2), given as solutions of andtstochastic differential equation

dX.(t) = —VF(Xc(t))dt +~2edW (1) (1.1)
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on a regular domaif € R?, where the driftV F is generated by a potential function that
is sufficiently regular. We are interested in the case when the funétien has several
local minima. We always assume tht is killed on Qe if it exists.

This problem is a special case of the more general classafl random perturba-
tions of dynamical systenssudied since the early 1970s by Freidlin and Wentzell (see
their standard text [FW]) using large deviation methods. However, investigations into this
problem can be traced back much further in the physical and chemical litefature [Ey, Kra].
One of the earliest textbook sources is the book by Eyring et al. [GLE]. Typical questions
related to this problem are:

e What are the typical times to reach the neighborhoods of minimgtarting from a
minimumb of the functionF? (average, distribution).

e What are typical paths for such a process?

o What is the nature of the low-lying spectrum of the generator of this process? What are
the eigenfunctions associated to small eigenvalues?

It should come as no surprise that these questions are well understood on a qualitative
level. However, there is at present still a considerable gap betmea#gmematically rigor-
ousandheuristicresults. Rigorous results are mostly based on the theory of large devia-
tions developed in this context by Freidlin and Wentzell. They are very flexible and apply
in a variety of situations well beyond the setting[of {1.1). However, they yield generally
only rough asymptotic estimates in the parametglogarithmic equivalence”) for expo-
nentially small (or large) quantities such as escape times or small eigenvalues. A second,
very natural approach that was initiated very early in the physical and chemical literature
is based on what is callesemi-classical analysisr WKB-theory(for a very recent re-
view on these methods, see e.g. [Kolo]). These methods présinel asymptotic series
expansions ire and can be seen as an infinite-dimensional version of the saddle point
method. In many cases, such expansions can today be justified by what has become to
be calledmicrolocal analysiswhich was mainly developed to solve quantum mechanical
tunneling problems [HS1, HS2, HS3, HS4]. Unfortunately, the stochastic tunneling prob-
lem between potential wells corresponds to a particularly intricate quantum mechanical
problem, called “tunneling through non-resonant wells”. In this situation, classical WKB
theory breaks down, since it is not possible to find a global solution based on a single
power-series ansatz. On a formal level, these problems can be solved using matched se-
ries expansions where different atee in different domains are matched in overlapping
regions to determine coefficients (see in particular [MatSch1, BuMal, BuMa2, MS1]).
Justifying these expansions is, however, far from trivial and constitutes, as Kolokoltsov
[Kaolo] points out, “one of the main and still open questions of the theory”, except in the
cased = 1 where considerable simplifications occur [KoMak, BuMal, BuMa2] KN].
Indeed, while it appears clear that the methods introduced in the third paper on quantum
mechanical tunneling by Helffer and@jtrand [[HSB] should in principle allow solving
this problem, this program has not been carried out in this context yet.

Here we take a new look at this old problem using neither large deviations nor semi-
classical expansions, but some rather classical ideasdovemtial theory The deep con-
nection between Markov processes and potential theory has been well known since at
least the work of Kakutani [Kaku] and is the subject of numerous textbooks (see in par-
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ticular the fundamental monograph by Dopb [Doo]). This connection has found numerous
and widespread applications (see €.0./[DS,ISzni] and references therein).

The particular approach we present here is distinguished by the fact that it largely
avoids the attempt to solve the boundary value problems that arise in this connection by
straightforward PDE methods, but tries to reduce most problems to that of the computa-
tion of Newtonian capacitiesrhich are then estimated usingriational principlesand
monotonicity propertiesin this, it is close in spirit to the “electric network” approach
used extensively in the study of recurrence and transience properties of Markov chains
[NS,[DS]. This approach to the metastability problem was initiated in fact in two pre-
ceding papers [BEGK 1, BEGK?] in the contextdicreteMarkov chains, including, in
particular (in [BEGK1]), discrete versions ¢f (1.1). In fact, the discrete setting offers (as
we shall point out in due place) several advantages for this approach and makes it appear
probabilistically much more transparent than in the diffusion setting. We suspect that this
may have been the reason why the ideas to study the spectral problem of generators of
Markov chains presented in the 1973 paper of WentZzell [Wen] and that are somewhat
similar to our approach have apparently not been developed in the direction we are go-
ing. While the diffusion case makes probabilistic interpretations more complicated, the
present paper may clarify our approach as it forces us to develop in much more detail the
fundamental potential theoretic background from a purely analytic point of view. Let us
mention that in our view the approach presented here offers two main advantages over the
microlocal approach. First, it is technically considerably simpler, as we hope these papers
will demonstrate, and second, it is more flexible and can be applied in a broad range of
discrete and continuous Markov processes. Its drawback, on the other hand, is that it may
not readily be extended to yield systematic asymptotic expansions to all ordeslgo,
we make strong use of the fact that we are investigating a stochastic (or substochastic)
operator, and our method cannot be extended to arbitrary elliptic operators.

We will now formulate our assumptions d@hin a precise way.

Assumptions (H.1)

(i) F e C3(),Q c RYopen and connected.
(ii) If 2 isunbounded, then
(ii.1) liminf,_ o |[VF(x)| = o0, and
(ii.2) iminf oo (|VF(x)| — 2AF (x)) = o0.
For any two setgl, B C €, define théheight of the saddle betweehand B by

F(A,B) = inf sup F(w(t)), 1.2
( ) w:w(O)eA,w(l)eBle[()E] (w( )) ( )

where the infimum is over all continuous pathén .

Remark. Condition (H.1) ensures that the resolvent of the genetatas compact for
¢ sufficiently small. Moreover, it implies that has exponentially tight level sets in the
sense that for alt € R,

/ e FO/e gy < cema/e, 1.3)
y:F(y)za

whereC = C(a) < oo is uniformine < 1.
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In the following, the notion of saddle points &f will be crucial. The set of saddle
points is intuitively the subset of the 98tA, B) = {z : F(z) = f(A, B)} that cannot be
avoided by any pathe that try to stay as low as possible. In general we have to define
this set as follows:

Definition 1.1. Let’P(A, B) denote the set ghinimal pathdrom A to B,
P(A,B)={we(C(0,1],2) : w(0) € A, (1) € B, sup F(w(t)) = F(A, B)}.
]

t€[0,1
(1.4)
A gateG(A, B) is a minimal subset af (A, B) with the property that all minimal paths
intersectG (A, B). Note thatG (A, B) is in general not unique. Then the s&tA, B) of
saddle pointss the union over all gate§ (A, B).

To avoid complications that are not our main concern here, we will make the general
assumption that all saddle points we will deal with are non-degenerate in the following
sense:

Assumption (ND)

(0) The setM, of local minima ofF is finite, and for any two local minima, y of F, the
setG(x, y) is uniquely defined and consists of a finite set of isolated pejrts y).

() The Hessian matrix of" at all local minimax; € M and all saddle points; is
non-degenerate (i.e. has only non-zero eigenvalues).

When dealing with domain® with non-empty boundary we will encounter situations
where saddle points iBQ2 are relevant. While this does not lead to serious problems per
se, there appears rather naturally a great variety of cases that makes the formulation of
general results rather cumbersome. We prefer to avoid having to discuss these issues by
dealing exclusively with situations in which the boundary is never reached by the process,
i.e. we make the further

Assumption (IB). For any sequence of pointg €  such that lifyex; € 9%,
IimiToo F(x;) = oo.

Assumptions (H1), (ND), and (IB) will be assumed to hold throughout this paper.

Remark. For many of the results of this paper, these conditions can be relaxed consid-
erably. In particular, one may consider functidfis= F. depending orz, and one may

also consider cases with infinitely many minima. This may, however, lead to different
guestions and different results, and we prefer to explain our methods in a simple and
well-confined setting.

Our main interests are the distribution of stopping times
ta=inf{r>0:X(@) € A} (1.5)

for the process starting at one minimum, sag M, of F, whenA = B,(y) is a small
ball of radiusp around another minimuny, € M. It will actually become apparent that
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the precise choice of the hitting set is often not important, and that the problem is virtually
equivalent to considering the escape from a suitably chosen neighborhepgrofiided
this neighborhood contains the relevaatidle pointgonnectinge andy.

In this paper we will study the mean values of such stopping times. Our approach will
consist of two distinct steps:

(i) Using variational principles, we will give very sharp estimates on some relezant
pacities

(i) We will then show that the expected times of interest can be expressed in terms of
these capacities arajuilibrium potentials

In the follow-up paper [BGK] we will consider the associated spectral problems. A corol-
lary will then show that metastable exit times have an asymptotically exponential distri-
bution.

To be able to state our results, we need to recall a number of key concepts from
potential theory which will allow us to establish some notation.

2. Some basic background on potential theory

In this section we collect notations and formulas from potential theory that will be used
throughout the paper. All of these results are standard and can be found in the classical
textbooks on potential theory, e.g. [BluGet, Doo. $zni].

The generators of our diffusion processes are linear elliptic operatan§the form

Le = —eefO/eye Oy = —_e A+ (VF(), V) (2.1)

defined (a priori) onC2(2), whereQ € R?, andF e C%(R). The set®2, and in fact

all subsets ofR? that we will consider in this paper will be regular (a setc R¢ is
calledregular if its complement is a region with continuously differentiable boundary).
By construction L. is symmetric on.2(2, e~ /€ 4x) with Dirichlet boundary condi-
tions onQ°.

Green’s function. Consider fora € C the Dirichlet problem

Le—MNfx)=gkx), xeQ,

fx) =0, x € QF°. (2:2)

The associated Dirichlet Green functi(i??r2 (x, y) is the kernel of the inverse of the oper-
atorL. — A, i.e. for anyg € Co(R),

fx) = /Q G&(x, )g(y) dy. (2.3)

Note that the Green function is symmetric with respect to the meastirté)/<dx, i.e.

Golx, y) = e TOGG(y, x)e" e, (2.4)
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Recall that the spectrum @f, (more precisely the Dirichlet spectrum of the restriction of
L. to ©, which we will sometimes denote W) is the complement of the set of values
A for which G, defines a bounded operator.

Poisson kernel. Consider for. € C the boundary value problem

(Le =2 f(x) =0, x €L,
f(x) =¢x), xeQ.

We denote by‘{g the associated solution operator which can be represented in the form

(2.5)

fx) = (H5p)(x) = —¢ fa . e FOI=F@Ney (1)d, 0, Gh (v, x)dog(y),  (2.6)

wheredog denotes the Euclidean surface measurg@@nanda, ) denotes the derivative
in the direction of theexteriornormal vector ta2 at y, acting on the first argument of
the functionGg,(y, x).

The relation between the opera’rﬁg and the Green functio.6) is a consequence
of the two Green identities that here take the form

/Q dx e PO/ eV (x) - Vi (x) — Y (x)(Ledp) (x))

= / e PO Y (X) a0 (1) dog(x)  (2.7)
R

(first Green identityand
/Q e PO dx (@ () (Le — MY (x) — Y (x)(Le — M) (x))
=c /B . e FOVE Y ()80 (x) — P (X)) ¥ (X)) dog(x)  (2.8)

(second Green identitywhereg, ¢ € C3(R).

Equilibrium potential and equilibrium measure. Let A, D ¢ R? be regular and such
that(AUD)¢ ¢ dom(F). Then theequilibrium potentialof thecapacitor(A, D)), hfLA,D’
is defined as the solution of the Dirichlet problem

(Le — MR}y p(x) =0, x € (AUD),
Wy p(x) =1 x €A, (2.9)
h)/“’D(x) =0, xeD.

Note that) has a unique solution provideid not in the spectrum oltgAUB)C.
Theequilibrium measur;eeﬁ\,D, is defined as the uniqgue measuresenhsuch that

hi,D(x) = /3A Ghe(x,y) eﬁLD(dy), (2.10)



Metastability in reversible diffusion processes 405

If we considerL. as a map fronH" () to H" (), (2.10) may also be written as

i pdy) = (Le — M) p(y). (2.11)

where of course both sides are to be interpreted as measures equipped with the weak
topology. A simple computation using the second Green identity and the Poisson kernel
representatiorj (2.6) allows us to compute the right hand side of| (2.11) as

(Le = M)y p(x) = €dninyhy p(x)doaup(x) — A adx. (2.12)

Capacity. Given a capacitoA, D), andi € R, thei-capacityof the capacitor is defined
as

CapZ(D) = /3A e_F(y)/éeﬁyD(dy). (2.13)
Using [2.12) and the second Green identity, one deduces (2.13) that
_F(x A
cap; (D) = e/(A ” dx e F( >/6[||wl§\’,)(x)||§ - g(hﬁw(x))z] = O(4upye (Wi p)-
uD)<

(2.14)
<1>é2 is called theDirichlet form (or energy for the operatof., — A on 2.
A fundamental consequence pf (2.14) is the variational representation of the capacity
if R > A <0, namely
cap (D) = ,nt 40y (h), (2.15)

whereH 4, p denotes the set of functions
Hap=1{heW'2(Q):h(x) =0forx € D, h(x) = 1forx € A}. (2.16)

whereW* " (€2) denotes the space bitimes weakly differentiable functions whose deriv-
atives of order k are inL" (Q2).

Probabilistic interpretation: equilibrium potential. Note thatL. generates a Markov
diffusion processX.(¢t) on @ (killed on 9<2). If » = 0, the equilibrium potential has a
natural probabilistic interpretation in terms of hitting probabilities of this process, namely,

hap(x) =h3 p(x) =Pt4 < 7p]. (2.17)
The equilibrium measure also has an interpretation, namely

eapdy) = |ti% 17, Px, y[tp < Taldy (2.18)

(see e.g.[[Szhi, Section 2.3]). While this gives in principle a probabilistic interpretation
of the capacity as well, this is much less useful than in the discrete space, discrete time
setting (se€ [BEGKZ2]).

If » < 0, the equilibrium potential still has a probabilistic interpretation in terms of
the substochastic proce¥s (r) obtained by killing the process, (¢) with rate— (and
on Q). If  denotes the time wheki* is killed, we have

Wy p(¥) =Pi[ta < tp AT]. (2.19)
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More importantly, for general we have
Wy p(x) = Exe*™1r, o)) (2.20)

for x € (A U D), whenever the right-hand side exists, so thlatcan be seen as the
Laplace transform of the hitting timey of the process starting atand killed inD.
Note that[(Z.2D) implies that

d ,_
d—thjg(x) =E tals, <1p. (2.21)

Differentiating the defining equation MA,D then implies that the function

C
wa,p(x) = {E”AETND’ x € (AU DY, (2.22)

0, x€AUD,

solves the inhomogeneous Dirichlet problem (to simplify notation, we set from now on
ha.p =hS p, etc)

Lewa,p(x) =ha px), xe€(AUD),

(2.23)
wa,p(x) =0, x € AUD.

Therefore, the mean hitting time i of the process killed irD can be represented in
terms of the Green function as

Extale,<rp = / dy Giavmy (2 Wha D). (2.24)
(AUD)®

Note that in the particular case whén= ¢, we get the familiar Dirichlet problem

Lawa(x) =1, x e A,

(2.25)
walx) =0, xeA,

and the representation
Eyta = / dy G sc(x, y). (2.26)
AC

The full beauty of all this comes out when combinifig (2.10) with (R.24), résp.]|(2.26).
Namely, letB, (x) be the ball of radiug centered at. Then, by Fubini's theorem,

/ e F@Ie E;taep,x).4(d2) =/ dyefF(y)/E/ Gac(y, z) eB,(x).a(d2)
3B, (x) Ac 3B, (x)

=/ dye FOhp (o a() (2.27)
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and

/ e’F(Z)/EEZTA]er«D €Bp(x),AUD(dZ)
9B, (x)

=/ dye_F(y)/Eth(x),AUD(y)hA,D()’)' (2.28)
(AUD)¢

Notice that in the case of discrete Markov processes, we can replace tig, ballby

the single point. In that case{(2.27) anf (2]28) yield directly formulae for mean hitting
times in terms of capacities and equilibrium potentials. In this context they provided the
basis for connecting in a precise way capacities and mean exit times, and, ultimately,
eigenvalues ol [BEGK?Z]. In the diffusion case, the usefulness of these equations will
become apparent only when we have some a priori regularity estimates for the mean times
as functions of the starting point.

3. Results

We are now ready to state the main results of this paper. The basis for the success of our
approach is the fact that capacities can be estimated very sharply.

Theorem 3.1. Assume tha#t, B c R? are closed and

(i) dist(S(A, B), AU B) > § > 0for somes independent of,
(i) both A and B contain a closed ball of radius at least

Then, ifS(A, B) = {z},.... z}},

(2re)d/2 K A1)

2r i3 JIdetV2F ()|

where)] (z}) denotes the negative eigenvalue of the Hessiati.at

cap, (B) = e~ FE /e 1+ 0Welne), (3.1)

Remark. In cases when some saddle points are degenerate, one can also obtain precise,
but somewhat less explicit expressions, as will be clear from the proof.

Our next result concerns the mean metastable exit times from a minknum
Theorem 3.2. Letx; be a minimum of” and letD be any closed subset®&f such that:

@) if M; = {y1,..., yx} C M enumerates all those minima &f such thatF(y;) <
F(x;), thenJs_; B (y)) C D,
(i) dist(S(x;, M;), D) > § > 0for somes independent of.

Then
2 el F@)—F(xp)]/e

det(VeF (xi) 3 ;1 |det(V2/F(Zf))|

1+ O0(Wellnel)) (3.2)

]Ex;TD =
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Remark. Inthe case when there is a single saddle pginthis reduces to the classical
Eyring formula [GLE! MS1]
2 *
E.tp = 27T* V]det(V4F (z ))|€[F(z*)7F(Xj)]/€
21z /det(V2F (x;))

Note that the coefficient/2 differs from ther that is found in[[MS1] by a factor 2 since
we consider the transition through, and not just the arrival at the saddle point.

1+ 0EY?|Ine))). (3.3)

4. Some useful tools and a priori estimates

This section collects a number of tools and a priori estimates that extend the simple prob-
abilistic instruments used in the discrete context of [BEGK2] to the diffusion setting.

Regularity estimates. To be able to pass from the discrete setting of [BEGK1, BEGK2]
to the setting of diffusion processes, we will need some a priori control on the regular-
ity properties of solutions of the Dirichlet problems introduced before. Fortunately, this
theory is well developed in the general setting of second order linear elliptic differential
equations, and we can draw on standard results.

The following two key lemmata are taken from [GT], more precisely Corollaries 9.24
and 9.25. They concern second order elliptic operatotsa;; (x) D;; + b; (x) D; + c(x),
wherea;; € CO(Q), b;, c € L®(£2). Assume that

A, &) > (£,a(x)E) > A(£,6) >0 Vg e RY, (4.1)

let moreovery = A/, and choose such that(||b]|/2)2 < v, and|c|/A < v. Let

W2 () denote the Banach space of two-times (weakly) differentiable functions whose
derivatives of ordek 2 are inL" ().

Lemma 4.1 (Corollary 9.25 in[[GT]) If u € W2"(Q) is positive and satisfiebu = 0
in , then for any ballB2g (y) C 2,

sup u(z) <C inf u(z), (4.2)
z€BR(Y) z€BR(y)

where the constar@ = C(n, y, vR?) < oo depends only opr andvR2.

Lemma 4.2 (Corollary 9.24 in[[GT]) If u € W2"(Q) is positive and satisfiebu = f
in a ball Bg,(x), then for any ballBg(x), R < Ro,

R o
0SGg (4 < C (—) (0SGg () 4 + Roll f — cttlln, Bry(x))> (4.3)
Ro (o 0

whereosc, u = supy u — inf4 u and the constante = a(n, y, vRS) > 0andC =
C(n,y,vR) < oo depend only oty andvR3.
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The way we will use these lemmata is to consider domains dependirgcbosen in
such a way that the numerical constattsand « are independent of. Since for the
operatorL. we haveA = A = g, it follows thaty = 1, and we can choose =

€72supcq IVFIZ.

An analytic renewal estimate.In this section we consider only the case= 0 and we
omit the superscript 0. One of the most useful formulas applied in our analysis of discrete
Markov chains is theenewal equation

P[4 < tpux]

P [taup < 7] (4-4)

]Px[TA < TD] =

obtained from decomposing the evéni < tp} according to whether the process visits
x before going taA or not and using the Markov property. While this formula is still true
in the diffusion case (i > 1), itis useless, since the denominator equals one and the nu-
merator equals the left-hand side. A natural idea in this situation would be to decompose
not according to whether the starting poinis revisited, but whether a suitably chosen
small neighborhood of is revisitedafter a suitably chosen short time, or not (in analogy
to the probabilistic representation of capacity). However, any such procedure runs quickly
into problems, as it is impossible to obtain an exact renewal argument.

Fortunately, it is rather easy to obtain a useful analogu¢ of (4.4) by purely analytic
considerations. In fact we will prove the following proposition:

Proposition 4.3. Let A, D be disjoint closed sets whose complements are regular, and
letx € (A U D) be such thatlist(x, A U D) > ce. Let B,(x) denote the ball of radius

o centered atc. Then for anyp < ce, ¢ < o0, there exists a finite positive constant
(depending only on and on the value dfV F (x)||~) such that

ca (A)
hap() < CoBe'D) (4.5)
capo(x)(D)
Proof. We begin by proving the following lemma.
Lemma 4.4. With the notation of the proposition,
/’LA,D()C) < Ssup G(AUD)C(L )C)eF()C)/5 / eiF(y)/geDqu(x),A(dy)a
2€3B, (x) 3B, (x) 4.6)

ha,p(x) > inf G(AuD)C(Z,X)eF(X)/E/ E_F(y)/geDqu(x),A(dy)’
) 3B, (x)

z€0B, (x
whereeup, , (x) is the equilibrium measure defined@10Q)

Proof. Let © be a regular domain, and I¢tbe a function defined ob<2. Recall that the
operatorHg = H§=° defined in ) can be seen as mapping a funcfictefined orv 2
to a harmonic function (with respect to the operdtpy on 2. We call Hg, f theharmonic
extensiorof f.
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Choosing2 = (A U D)€, we see that the equilibrium potential p has the mean-
value property

ha,p(x) = Hiaupycha,p(x). 4.7)

Now letC C (A U D)€ be a regular neighborhood of Sincek 4 puc andh 4 p coincide
ond(A U D), itis obvious that

ha,p = Haupyeha,puc (4.8)

on (A U D U C)“. Using the first Green identity (3.7) f& = I' = (AU D U )¢,
o= G(AUD)C(xa Jandy = ha,.puc,we get

Haupycha,puc(x)

= —e/ eFO=FEODER 4 buc ()8 Gaupye (v, X) doaup(y)
3(AUD)
= —e/ FO=FEOEG 4upye (v, X)dnnyha, puc () doc ()
ac
= —/ eFOIEOEG 4upye (v, x) e, puc(dy), (4.9)
aC

wheren(y) is the inner unit normal at € (A U D U C). Here we have used the fact that
h 4 puc vanishes o C and that the Green function vanishes whea d(A U D). The
last equality follows from[(2.72) together with (2]11).

We now choos& = B, (x). If we could replace5 aup) (v, x) by a constant value
on aB,(x), we could extract this value from the integral; the remaining integral would
then be some partial capacity. In fact, in the discrete case we could choose instead of the
ball B, (x) just the pointx, and then this problem was absent, and we would readily get
(4.4). In the present situation we still get two bounds, namely

hA,D(-x) Z _ Sup G(AUD)C(Z,X)EF(X)/S/ e—F(y)/S €A,Dqu(x)(dy),
Z€9B,(x) 0B, (x) (4 10)

ha,p(x) <— inf G(Aup)v(z,x)eF(x)/E/ e FO/e €A.DUB,(x)(dYy).
2€0B,(x) 3B, (x)

But, trivially, haup,c = 1 — hc,aup, and hence, by (2.11) with = 0, —eaup,c =
ec,aus, which implies[(4.5). O

At this point it is clear that we will need to be able to control the Green function near the
diagonal. Before turning to these estimates, we biing [4.10) in a slightly more suitable
form. Namely we will show that

Lemma 4.5. In the situation of the previous lemma,

hap(x) < sSUp Gaupy(z, x)el /e

capg, (1) (A). (4.11)
2€3B,(x)



Metastability in reversible diffusion processes 411

Proof. By @), itis obvious thatpug, (r).a(dy) < ep,(x).a(dy). Butthen
/ e FOVE epup n,a(dy) < / e T/ ep aldy) = capg () (A). (4.12)
9B, (x) 3B, (x)

Thus the upper bound ifi (4.6) implig¢s (4.11). o

At this point we also want to express the Green function in the bounds of L¢mina 4.4 in
terms of capacities. We proceed agin (P.27) to get this time

eF(x)/G/ e PG aupye (x, 7) €B,(x),Aun(dz)
9B, (x)
= / G (aup)(z, X) B, (x),Aup(dz) = hp,(x),aup(x) = 1.  (4.13)
9B, (x)

This implies that

F(x)/e

1>e inf G(AUD)” (x,2) dz e—F(z)/e EBp(x),Aup(dZ)

ZEBy(x) B, (x)
=™/ inf Gaupye(x, z)capg () (AU D), (4.14)

ZE€By(x)

eF(x)/E inf G(AUD)r(x,Z)S

—_—. (4.15)
Z€B,(x) capg, () (AU D)

It is clear at this point that we cannot continue unless we can compare the infimum and
the supremum of5 aup)<(z, x) with z € B,(x). But such a result is provided by the
Harnack inequalities.

Lemma 4.6. If p = ce for somec < oo, then there exists a constafitdepending only
onc such that
sup Gupy(z,x) < C inf Gaupy(z, x). (4.16)
Z€B,(x)

Z€B, (x)

Proof. We will apply Lemmg 4JL. If we choosR < ¢, we can us€ (4]2) with a constant
that does not depefidne.

Note thatu(z) = Gaupyc(z, x) is harmonic in(A U D)“\x. Thus ifp > 2R, thenu
is harmonic inBag (z) for anyz € dB,(x). Now leta, b € 9B, (x). Assume that is such
that SUPeyB, (x) U(2) = u(a), and infeyp, (x) u(z) = u(b). Then we can find < np/R
pointsxy, ..., x;y € dB,(x) suchthaty = a, b € Br(xi), andBr(x;) N Br(x;4+1) # 9.

1 |f x is a (quadratic) critical point of, then we can even chooge= ¢1/2.
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Clearly then
u@) <C inf <cC inf u(@ <C sup u(z) <C? inf u(z)
z€BR(a) z€BR(a)NBR(x2) 2€Br(x2) 2€Br(x2)
<= osup u() = CFinf u(z) = ub). (4.17)
z€BR(xk) ZE€BR(xx)

Thusu(a) < CP/Ru(b). Therefore, ifo = ce for some finite constant, andR = ¢,
then sup and inf are related by at most a firitedependent constant. This proves the
lemma. O

Combining now Lemmpa 416 with Lemrja 4.5 and (4.14), we arrive at the assertion of the
proposition. O

A priori bounds on capacities. To make use of the renewal estimate (4.5) we need of
course some bounds on the capacities. The next proposition provides a first set of rough
bounds, which provide the necessary estimates in the equilibrium potential that will later
be used to get sharp bounds on capacities.

Proposition 4.7. Let D be a closed set, and € D¢. Denote by:* = z*(x, D) a point
such that

F(Z%) = sup [F (y ()], (4.18)

in
v v (O=x,y(DeD t¢[0,1]
where the infimum is over all continuous paths leading froto D. Suppose thap <
ce/|IVF (z%)]lco- Then there is a constaiit > 0 such that

capy (D) = CUIVF (%) lloo + /) p? e F /e, (4.19)
capy, (D) < eCp?=2e FEI/E, (4.20)

Proof. To prove the lower bound we use the variational representation of capdcitigs (2.15)
and some obvious monotonicity properties. We begin by choosing a smoott gathg

from x to D in such a way that it remains in the level gétz) < F(z*), with equality
holding only when passing*. In fact, the canonical path can be constructed using pieces
of the deterministic trajectory of the unperturbed equatioh (1) = —VF (X((¢)) dt
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in rather obvious manner, but this is not important at the moment. Given this path, we
parametrize it by arc-length, so thab(z)||2 = 1 for all time.
Givenw(r), we construct the tube of width aroundw (¢),

o’ ={zeRY: g0 1) o) — zll2 < p}. (4.21)

Let us denote by, thed — 1-dimensional disk of radiugs centered at the origin. The
important point to notice is that

d 2
IVA(@ () +z0)13 = [Eh(a)(r) + u)} : (4.22)
Therefore we may bound the Dirichlet form by
|l d 2
Do(h) > € / dz) / dt eF@O+z/e [Eh(w(t) + zL)} . (4.23)
D, 0

The minimization problem is now trivial, i.e. it decomposes for each fixethto a one-
dimensional problem whose solution is well known. In fact, the minimizexr) is the
solution of the 1-dimensional Dirichlet problem

d dF dh =0
el 4 LR @M +20) | She, () =0,

a 4.24
hZJ_ (O) = 1» ( ' )
hz, (lo]) =0,

whose solution is readily found to be
[lel gs eF®+zn)/e
he (1) ==t . (4.25)
féw\ ds eF@E)+z1)/e
Inserting this solution into the lower bour{d (423) yields
o] -1
capy, 1y (D) = e/D dzi [/0 dteF(‘”(’H“)/e] . (4.26)
P

Now the stated lower bounds results follow from simple saddle point evaluations of the
integral in the denominator.

To prove the upper bound, just note that in the case wtiea x, we can always
choose a function that is equal to one 08, (x) and that decays to zero over a distapce
Then||[Vh|l2 < 1/p on a set of volumeCp?, and zero elsewhere. The upper bound
(4.20) follows immediately. I£* # x, we choose a trial function that changes from 0
to 1 in ap-neighborhood of the saddtg; away fromz* the change takes place in a set
whereF (y) > F(z*), so that the resulting additional contribution to the Dirichlet form is
exponentially suppressed. This also yie[ds (4.20). |
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Remark. This estimate is in general quite poor, in particular whieg: x. We will prove

sharp results in that case in Section 6. The crude bounds serve two purposes: 1) to yield
an a priori bound on the equilibrium potential (in conjunction with Proposjtioh 4.3) that
will then be used to prove a sharp estimate on capacities, and 2) to get an a priori estimate
on the spectrum of certain Dirichlet operators.

Bounds on the equilibrium potential. Combining the renewal bound on the equilibrium
obtained in Propositign 4.5 with the bound on capacities from Propogitibn 4.7 yields very
sharp estimates on the equilibrium potential in the level set of the saddle between the sets
A andD.

Corollary 4.8. Let A and D be closed sets and assume thatA, D) ¢ A U D. Then
there is a finite positive constagtsuch that, forx € A U D, andz*(x, D) # x,

ha p(x) < Ce Y2 IFE@@mAN=FE x.D/e (4.27)

Remark. This bound is useful only wheR'(z*(x, D)) > F(x). If this is not the case

one may use the fact thaty p(y) = 1 — hp a(y) and apply[(4.27) ok p 4(y). This
yields good control whenevaris below the level set of the saddi&(A, D).

Proof of Corollary 4.8. The proof is straightforward. We just insert the bounds on capaci-
ties of Propositiofi 4]7 into the renewal bound on the equilibrium potential of L§mrha 4.5,
choosingo = Ce. O

5. Sharp estimates on capacities

In this section we show how to get coinciding upper and lower bounds on the relative
Newtonian capacity of two balls of radiys centered at the local minime, y of the
function F. We assume that is so small that*(x, y) is not contained in these b@]s
and that the radii are at leastLet us denote these sets By and B,, respectively.

We denote byS, , the set of points that realize the minimax in the definition of
F(x,y) (cf. (L.2)). We will assume that, , is a (finite) set of points.

Theorem 5.1. Letsy, ..., si denote the saddle points connectindo y, and suppose

that AssumptiorfND) holds forS, ,. Let1](s/) denote the unique negative eigenvalue
of the Hessian of" ats*. Then, under the above hypothesis on the fundtipn

ey Qre)i2 & AL (s

2riH [1detV2F(sp))|

2 It will become clear from the proof that the precise form of these sets is irrelevant for the result.

cap; (B,) = e 1+ 0(/ellne)). (5.1)




Metastability in reversible diffusion processes 415

Proof. The capacity cap (B,) satisfies the Dirichlet principl@S),
capg (By) = inf ®(h 5.2
Ps, (By) nery (h) (5.2)

(for simplicity we abbreviate = Q(Bxugy)f), where?-@ is the function space
Hy ={he WH R, e T/ dy)  h(z) €[0,1], hyp, = 1, hjp, = 0}. (5.3)

For simplicity we consider the case of a single saddle peinfirst. Without restric-
tion of generality we can choose coordinates suchsthat 0 and

*

F(z) = F(0) - 21 +Z Z+ 0(lz13) (5.4)

for small||z||2. Define a neighborhood of zero by

E[—a/ A%, 8/ |x§|]x]i[[—2a/ AE. 28 /\jf]. (5.5)
i=2

Since we have assumed that there is a single saddle point at the communication height
betweenx andy, it is possible to choosé& > 0 so small that there exists a stdjy of

width 25/\/@ containing 0 and separatingandy in the sense that any path connecting
these points must crosk, and that for alt € Ss\Cs, F(z) > 8°. Let D, andD, be the
connected components Bf \ Ss containingr andy, respectively.

The upper bound. To prove an upper bound on the capacity we just choose a function
h for our convenience. We will make the choice

h+(Z)=1’Z€DX’ h+(Z)=O,Z€Dy,
h* on 85\C; arbitrary, exceptVha™ |2 < ¢,/IA}1/8, (5.6)
ht(z) = f(z1) for z € Cs,

where f is the solution of the one-dimensional Dirichlet problem

(— iJriF( 0))—f( ) =
dzz  du ;0. “

f( 5/ /131 ) —1, (5.7)
f (+5/ |,\;|) —0.
The solution of this problem is obviously

fﬁ/«/lk’{l F(,0)/e gy

f(z1) = . (5.8)
' f‘s/«/"\_* oFLOV/e g

—38/4/ 1271
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Inserting this function intd (5]2), we see that

28/ /7% za/f N
dzo .. / dzg ([

caps (By) <€ / dZ1e—F<Z>/f||f’<m>||2>

—28//%5 25//%% —38/4/125]
+ecs™? / dz e F@/e, (5.9)
Ss5\Cs

The second term is bounded bys—2¢—%°/ . const by assumption of.
The first term is given by

fC5 dz efF(z)/eeZF(zl,O)/e

Oc, (hT) =€ ) 5.10
e () (fﬁ/«/ll_il eF(t,O)/Edl)z ( )
YN
Now onCs we have
A 22+ A5 4+ a%Z2
Fz) = F(O) + = 1121+ 455 d 1 o(|1zlI3) (5.11)

2
and thus

IN¥|22 4+ A5z2 4 -+ A%Z2
101 T2 22 d 4 o(zI3).  (5.12)

But on Cs, ||lzll2 < C’s and if we choosé = K./e[In¢| for some constank, the
numerator in[(5.7]0) satisfies the bound

* 2
/ dz e~ F@/e2FGLO/e - e—F(O)/eeCel/2||n6|3/2/ exp(—Ml'Zl ‘H‘dzd)dz
Cs R4 2¢

—FO)/e (Zne)
e, A7

Similarly, the integral in the denominator is bounded from below by

EYNATE] 1/2
/ V1M F6O/e g > eCel/z|ne|3/ze+F(O)/e<(2ﬂ6) / . 2/00 dt e|x{|z2/e>

F(z) —=2F (21,00 = —F(0) +

1+ 0Y?|Inel?/?y). (5.13)

—8/5/ 121l m /]
_s2
- e—Cel/z\Ine|3/26+F(O)/e (27'[6)1/2 3 e 8%/€
= S e
_ HFOEYZE 4 o 2Ine¥2)). (5.14)

o

Combining the estimatef (5]13), (5.14), gnd](5.9), we arrive at the upper bound

)\.*
¢, (ht) < e FO/€(27¢)d/? A1 1+ 0(Y?|Ine)®?)).  (5.15)
|det(V2F(0))]




Metastability in reversible diffusion processes 417

Since this results coincides with the heuristic results, we may expect to get a correspond-
ing lower bound.

The lower bound. For the lower bound we will consider a different domain

G = [—25/ A%, 25/ |x’;|] x ﬁ [—8/\/(d — 1k, 5/\/(61 _ m;f]
=2
- [_25/ A%, 25/ |x’;|] x Cf. (5.16)

Let#* denote the minimizer of the variational problgm {5.2), i.e. the equilibrium potential
of the capacito(By, By). Then

inf ®(h) = ®(h* D (h"). 5.17
hl ; (h) (h*) = Ca( ) ( )
Obviously,

Cs

2
e rr (242

Dg, (h) = D, (h) = e/ ™

26/ /T 2
:e/ dzL(/ Vs dzye F@/e Ohas, 21) )
Ci —28/. /T3] 0z1

_ 28/ /1351
> E/A dZJ_( inf f
Cy [ f( &S/ IMD=h*(E8//1A1D =28/ /1A7]

The minimization problem for fixed values of is of course the solution of the Dirichlet
problem

d11e_F(Z)/‘||f/(11)||2). (5.18)

¢ )L =0
—€— -5 ) - =Y,
dzi du1 oL dz1 Zl

f<—28/ |,\§|)=h* (—25/ I)»‘l‘l,zL>, (5.19)
f (+23/ |x;|) = (25/ |x;|,u).

The solution of this Dirichlet problem is readily obtained: set= h*(—25/,/IA1], z1)
andb = h*(25/,/1A31, z1), andg(z1) = F(z1, z1). The general solution of the differen-
tial equation in[(5.19) is

f@)=c / 80/ gy, (5.20)
where the constantsands are determineduby the boundary conditions, i.e.
c/s e8W/€qr = q,
gkl (5.21)

c/ 8D/ gy = p,
28//1A]
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from which we get

a
= — . (5.22)
f—Zé/ ,_|}»1| e8(/€ gt
while s is determined through the equation
s t
Jay g € _? (5.23)
fzﬁ/\/ |)L g(t)/e d[-'—fs @g(t)/é dt o a .
28/ /1231 25// 1211
or
28/ /IN%
/ 20l g — b s e8W/€ gy, (5.24)
28/ /1751 a—>bJ 25 /7]
and thus
28/,/|A1\
f esWle gy = ¢ / e8 /e gy, (5.25)
28/ /51 =28/ /]

Inserting this solution intd (5.18) yields

23/«/|)»* e~ Fuz)/ep* (=25 A* 2,2F (z1.z1)/€
<I>(h)>e/ dz/ (h*(=25/\/IA1l, z1))

21
25/, /w (fS(ZZSL/) eFt.z)/e g1)2
fcl dz; (h*(=25/ /5], z1) — h*(zs/m, 21))? 526
fZ(Z;/«/_/MM* eFt.z1)/e 4t
But using again (5]4), we see that
25/ /1N 28/ /T
/ / /—l ! erenre gy (et Z2ME/29 1 o /e))/ WAL epirreo
_25/ |)L?|F_| 25/ /|)t*
V2 x
< \/%E—FZ?ZZAI'Z?/(ZG) + 0(83/6) (527)
1
and so
6|)x* d *Zz
Pz, (") = \/;exp< > ’26’ +0(53/e)>
i=2

x/@ldu_ (n (~28/1231. 20) = b (28 W1<|,ZL))2. (5.28)

Now we use the fact that* (z) = P.[zp, < ] = hs, 5,(z). Then CorollarEIB implies
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Lemma 5.2. Uniformly inz, € Cy,

1w (=25 /1rfl, 21 ) = Ce M2/,
, (5.29)
h* (25//1). 21) = CeH2em /0,

As an immediate consequence, we see that

@, ") > (1— C671/26782/(4e))2670(53/6)

d/2 * — d-1
2roT” VM (1_V€(d - 52) . (5.30)

i 2@=Te
- *
Z2LO | PAv O/ 8

Choosing as beforé? = Ce|ln¢|, we see that to leading ord30) coincides with the
upper bound (5.15), which proves the theorem in the ¢asel.

The generalization of this estimate to the case when several saddle points exist on the
communication height is completely straightforward and will be left to the reader. The
result is the formula stated in the theorem. O

6. Metastable exit times and capacities

In this section we compute the mean value of certagtastable exit time terms of
capacities. This will be largely analogous to the results on mean transition times obtained
in [BEGKZ, [ BEGKZ2]. The only new ingredient needed is the following sharpening of
(2.27), resp[(2.28) when a process starts at a local minimufm of

Proposition 6.1. Letx be a (non-degenerate quadratic) critical point®fand letA, D
be closed sets. Then there exists 0 such that

[pedye T hp () p(y)
capg, () (D)

Eytp = 1+ 0(*?) (6.1)

and

/, cdye FOenp (o pua(hp A(Y)
Extpley g, = “22 a 1+ 0.  (6.2)
capBE(x)(A U D)

Proof. The proofs of[(6.]l) and (6.2) are completely analogous, and we will only consider
the former. Let us writavp(y) = Ey1p, y € D°. Recall thatwp(y) solves the inho-
mogeneous Dirichlet problem (2]25) (with = ¢). We will consider this function on

a ball Bg,(x), wherex is a critical point of F. This implies that for some constaft,

SUR e, (x) IVF(y)lleoc < KR (if Rois small). Thus the Blder and Harnack inequali-

ties Lemmata 4.2 and 4.1 have uniform constaniif< |/e.
Now note first that due tg (2.26)p(y) inherits from Lemmé 416 the uniform Har-
nack bound

sup wp(y) =C __inf wp(y). (6.3)
YEB fe(x) veB )
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Now use Lemma 4.1 witlR = ¢, sincewp solvesL.wp = 1. This yields

/2

0SG, (x) Wp < Ce”“( sup wp(y)+ Ro). (6.4)

YEBRy(x)
This implies immediately that

sup wp(y) < wp(x) + C%*?wp(x) + Ce¥/?He/2,
YEB:(x)

inf wp(y) > wp(x) — C2%*?wp(x) — Ce¥/?te/2,
YE€B:(x)

(6.5)

Using these estimates in (2]27) with= € resp. [[2.2B) proves the proposition. o

By the preceding proposition, all we need to know in order to compute the mean arrival
times are the capacities and the equilibrium potential. The latter is quite well controlled
by Propositiont 43 and the rough estimates on capacities (Propgsitjon 4.7), and this will
allow us to get already quite remarkable formulae.

Theorem 6.2. Letx;, j = 1,...,n, be the local minima of. LetS; = Uf-‘zl B, (xi)
be the union of a collection of ballB, (x;) wherep > ¢ and no ball contains any other
minimum or saddle point df . Assume moreover that for a givgpand alli > k,i # j,
either

F(z*(xi, xj)) — F(xj) F(z*(xi, Sx)) — F(x;) (6.6)
or
F(z"(xi, x)) < F(z"(xi, S)). (6.7)
Then, forj > k,
Eyts, = — _ @l ree
CaNg (4) (S) ;. p (o (. SIZ F (2 (i) ¥ ABUVZF (x7)
(14 0(€Y?|Inel, €¥/?)), . (6.8)

whereO(A, B) = O(max(A, B)). Note that the sum always includes the térm j. In
particular, if F(x;) > F(x;) forall i > k, then

1 (2me)d/?

E, ts, =
3 Sk capg, () (Sk) \/det(V2F (x;))

e P14+ 0P lInel, /%), (6.9)

Remark. A transition to a seD for which (6.9) holds will be called anetastable exit
and the formulg[(6]9) is the mean metastable exit time from the minighum

Proof. Consider the sdt; = {y : F(y) > F(z*(xj, M)) +§} for some sufficiently small
8 > 0. LetI';(i) denote the connected componentpfthat contains;. Note that some
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of these sets may be empty, and some may coincide{IL&l)}; be an enumeration of
the distinct non-empty members of this collection. Let us write

/S dye™ " hp, ).5,00) = /F dy e " hp,(1),5,(9)
k J
+ f dye "W g )5, (»). (6.10)
7 Y O\Sk

The first integral is bounded bg exp(—[F (z*(x;, M)) + 8]/¢) and will be negligi-
ble. The remaining contributions will be split into those for whigtiz* (x;, Sx)) >
F(z*(x;, x;)) and those for which the contrary is true. The point is that for the for-
mer hp, x5 () is close to one, while for the latter, it is typically very small. Here
we make use of the fact that if € T';(1), and F(z*(x;, Sx)) > F(z*(x, xj)), then
2*(y, Sk) = z"(x;, Sk) andz*(y, xj) = z*(x7, xj). Then

> /  dye TR ) s, ()
71 F(2* (. 80)> F (2% () Y T O\Sk

= Z / dy eﬁF(y)/e(l_hSk,BE(xj)(y)) (611)
TP (2 0. S0)> F (2 (x,x)) ¥ T D\Sk
Now by Corollary[4.8,
0 < hp, (.5 (y) < Ce V2 IFE . SN=FE Gl e (6.12)
< hp. ). < ’ |
which by assumption is exponentially small. On the other hand i the absolute mini-

mum of F within T; (1), and if the Hessiarly2F (x;), at this minimum is non-degenerate,
then

dJ2
/ dye FO/e = —(271'6) /
T (O\Sk det(V2F (x;))

by standard Laplace asymptotics. Thus

e FOD/E (1 4+ 0(eY?|Ine))) (6.13)

/~ dy e "Oehp, ()5,
01 F (2 (0, 80)> F (2 () ¢ T O\Sk

dj2
- > BT releay 0 Y?Inel)). (6.14)

I F e S F (2 () Y GEUVAF (X))

The remaining terms cannot be computed as precisely; however, often the upper bound
will show that they are totally negligible (but this is not always the case). Using again
Corollar, wherF (z*(x;, Sk)) < F(z*(x3, xj)), we obtain

/ dye " hp ()5
T (O\Sk

<ce 2 / dy e~ FOVe PG () =FE (0.8l e
T (O\Sk
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_ 12 / dy e F@G@x)/e | ce=Y2,—F /e
T (O\Sk :2*(y.Sp)=y

: dy e IFO=FG0)/e p=[FE* (xp.x)) = F ()= F (* (. S+ F ()] fe
T O\Sk:z* (v, Sp) #y

= Ce V2= FExiD/e | r, \Sk = 2% (v, Sk) = ¥}
+ Ce~V2,=F(xj)/e p=[F @ (. xj) = F (x))—F (* (x7. S+ F (xp)] /e

dj2
L ZOT 14 0 ne)), (6.15)

Vet V2F (x;))
The first summand is always exponentially negligible compared to the principle terms,
since of course’(z*(x;, xj)) > F(x;). The second summand is negligible only when
(6.6) holds, which will be the case in the main applications. This imglie$ (6.8){ar|d (6.9)
is an immediate consequence. O

Proof of Theorerf 3]2The proof of Theorerp 32 is immediate by inserting the formula
for the capacity of Theorefn 3.1 info (6.8), except for the error terms of efd@mwhich
we will now show can be removed easily. Namely, note that nothing changes in the proof
of Theoren@]z if we replace the starting poiptby some pointt € B z(y). Also,
inspecting the proof of Theorem 5.1 one sees that the difference betwe;;r(lx_/gask)
and cag,_(,(Sk) for x € B (y)1s in fact much smaller than the error terms. Thus in
fact we get

0SGe o (xnEaTs, < C(€¥/?+V?IneDEy s, (6.16)

which improves the input in the éider estimate by a factef'/?, which in turn allows us
to improve the error estimates in Theo@ 6.2 frgt? to €. Iterating these procedure,
we can reduce these errors until they are of the same order a¥'tfie ¢| terms. This
proves Theorern 3.2. o
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