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Abstract. By a celebrated theorem of Harbater and Pop, the regular inverse Galois problem is
solvable over any field containing a large field. Using this and the Mordell conjecture for function
fields, we construct the first example of a figldover which the regular inverse Galois problem can

be shown to be solvable, but such tikatloes not contain a large field. The paper is complemented
by model-theoretic observations on the diophantine nature of the regular inverse Galois problem.
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Introduction

The regular inverse Galois probleraver a fieldK is the problem to realize any finite
groupG regularly overk, i.e. to find a Galois extensiah/K (¢) with groupG, wheret
is an indeterminate ovek andL /K is regular. A fundamental theorem of Harbater—Pop
says that the regular inverse Galois problem is solvable over any Iargel(ﬁ}a(l[ll—lj, [P1,
see also[[HJ] and [CT]). This implies that the regular inverse Galois problem is solvable
for any field K containinga large fieldk: If ¢ is transcendental ovet andi/k(¢) is a
Galois extension with grou@, regular ovek, thenL := KI/K (¢) is a Galois extension
with groupG, regular overk .

In this note we shall construct a fiekd over which the regular inverse Galois problem
is solvable but which does not contain any large field (Thedrem 2.1). It is based on a
reformulation of the theorem of Harbater—-Pop mentioned above (Thdorém 1.1) and on
the Mordell Conjecture over function fields ([M] in characteristic 0 with correction in
[C], and [G] and[[$] in arbitrary characteristic).

The last part of the paper contains model-theoretic considerations on the diophantine
nature of the regular inverse Galois problem. More precisely, we show that for each finite

*Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft (KO 1962/1-2).

J. Koenigsmann: Mathematisches Institut der Univatskreiburg, Abteilung mathematische
Logik und Grundlagen der Mathematik, Eckerstr. 1, 79104 Freiburg, Germany;
e-mail: Jochen.Koenigsmann@unibas.ch

Mathematics Subject Classification (200Byimary 12F12; Secondary 12E30, 12L12 14G05

1 Recall that a fieldk is large if K is existentially closed ink ((x)), or, equivalently, if any
smooth curve ovek with oneK -rational point has infinitely mani -rational points.



426 Jochen Koenigsmann

groupG there is a sequend®EG(G, n)), <y Of first-order existential statements in the
language{+, -, 0, 1} of rings such that for any, REG(G, n) impliesREG(G, n + 1),
and such that for any field ,

G regularly realizable ovek < K = REG(G, n) for somen € N.

The formulasREG(G, n) may be considered as a simple variant of the Hurwitz spaces
introduced in[[EV]. Lacking their rich structure, however, our formulas have the advan-
tage of being easily and effectively constructed (using only quantifier elimination for
algebraically closed fields) and working simultaneously in all characteristics.

We illustrate this point of view by a slight generalization of the theorem of Harbater—
Pop (Observatioh 3.3) replacing the condition tRabe large by the weaker condition
thatiC(K) = oo for any smooth curv€ defined over the prime field C K (sok = Q
or IF,) with C(k) # . We should mention, however, that this generalization could also
be achieved without model theory by using the classical Bertini-Noether specialization
argument as used in the proof of Theorem E'in [P] or as described in Section 4.2]of [DD].

1. Reformulating Harbater—Pop

The theorem of Harbater—Pop mentioned in the Introduction, in fact, says more than reg-
ular realizability of all finite groups over large fields. More generally, it asserts regular
proper solvability of all finite split embedding problems over such fields.

Recall that arembedding problerfor a field K is a pair of epimorphismgEPg =
(g : Gk —> A, B: B —> A) of profinite groups, wher& g := Gal(K*/K) is the
absolute Galois group of . It is finite if B is finite, andsplit if 8 splits. A solutionof
EPk is a homomorphisny : Gk — B with ag = 8 o y. Wheny is onto, it is aproper
solution. LetL be the fixed field of the kernel afg, i.e. L/K is a Galois extension
with group A. If F/K is a field extension linearly disjoint fromy over K (e.g. F/K
regular) thenF L/ F is again Galois with groug, andEPg induces thdifted embedding
problemEPr = (ar := ag oresg )k, B), where reg, ¢ is the restriction homomorphism
Gr — Gg. A regular (propen solutionof E Pk is a (proper) solutiory of the lifted
embedding probler&Pk ), wherer is transcendental ovef, and the fixed field of kep
is a regular extension of the fixed field of keg,) = L(¢). If F/K is linearly disjoint
from L over K then any regular solution &Py lifts to a regular solution oEPf.

The following version of the theorem of Harbater—Pop is certainly not new to the
experts. It follows the lines of [DD, Section 4.2], where the case of regular realizability of
a given finite groupB (i.e. embedding problems with = {1}) is treated. It presents the
theorem as a general field-theoretic fact, no longer restricted to a special class of fields.

Theorem 1.1. Let K be a field and leEPx = (ag : Gk —> A, 8: B —> A)bea
finite split embedding problem fd€. Then there is a function fiel#/ K in one variable
with a K -rational place such that the lifted embedding problERy: has a proper regular
solution overF.
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Proof. Let L = Fixker(ag) be the fixed field of the kernel afx, soL is a finite Ga-
lois extension ofK with group A. Let x be an indeterminate ovet and letF’ be a
henselization ofK (x) w.r.t. thex-adic valuation onkK (x), i.e. F/ = K((x)) N K(x)S,
whereK (x)® denotes a separable algebraic closur& ¢f). ThenF’/K is a regular ex-
tension of transcendence degree 1 &his large, having a non-trivial henselian valuation.
By Harbater—Pop, the lifted embedding problEf has then a regular solution ovEf,

i.e. there is a Galois extensidif/F'(¢) (¢ transcendental ovef’) containingF’L and
regular overF’ L such that GalE’/ F’(t)) = B andp is the restriction map

B:Gal(E'/F'(t)) = Gal(F'L/F") = Gal(L/K) = A.

Now let F be a finite subextension @t' /K (x) such thatt’/ F'(t) is defined overr,
i.e. there is a Galois extensidfy F (¢) containingL with E’ = F'E and GalE'/F' (1))
= Gal(E/F(r)). As subfield ofK ((x)), F is regular ovelK with a K -rational place, and
E/F(t) provides a proper regular solution of the lifted embedding prol#&ns. O

Remark 1.2. The above theorem is, indeed, a reformulation of the theorem of Harbater—
Pop, as the latter is also easily deduced from the former.

Proof. Let K be a large field and |€EPx be a finite split embedding problem ovkr.
Then, by Theoreth I EPr has a proper regular solution overfor some function field
F/K in one variable admitting & -rational place. By Hensel's Lemm&,can be embed-
ded inK ((x)), wherex € F is a uniformizing element of this place. Sinkg(x))/F is
linearly disjoint fromF L over F, we can lift the embedding probleBPy and its regular
solution overF to K ((x)).

As K is large, it is existentially closed ik ((x)). To go down toK we can, therefore,
apply [R, Lemma 1.5], or, similar to the proof of Theorem 3.1, we can write down directly
the existential formula with parameters fronk (defining the extensioh/K) such that
¢ is satisfied by the coefficients froki((x)) occurring in explicit polynomials describing
aregular solution oEPg ((x)) and such that any extensidti/K linearly disjoint fromL
over K and satisfyingp allows a regular solution &Py . As K is existentially closed in
K ((x)), this is, in particular, the case fét' = K. O

Remark 1.3. Note that the function fiel& in Theoreni_ L.l can be chosen to bagonal
function field iff EPg is regularly solvable ovek'.

Proof. This is because, by Bertini-Noether, regular solvabilit{®f and ofEPg () is
the same. O

Remark 1.4. For regular realizability of a finite group (i.e. embedding problems with

A = {1}), the conclusion of Theorefn 1.1 without the existenc&efational places on

F follows already from the existence of absolutely irreducible components in Hurwitz
spaces, at least in characteristic O (cf. Part 1 of the proof of Corollary(2in [FV, p. 785]).
One has to use standard techniques for the descent from a higher dimensional function
field to the dimension 1 case though.
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2. New fields

So far the only examples of fields over which the regular inverse Galois problem could
be shown to be solvable were fields containing a large field. We shall now construct new
examples, using Theorgm [L.1. In fact, we only use the conclusion of Thgorem 1.1 without
existence of & -rational place orf' (cf. the above Remafk1.4).

Theorem 2.1. Letk be a field not containing a large field (eljg= Q or k =IF,). Then
there is a regular extensiok / k such that:

e K does not contain a large field,

o for every finite split embedding problegf; overk the lifted embedding probleEP
has a proper regular solution ove¥; in particular, the regular inverse Galois problem
is solvable oveK,

e K is hilbertian.

Proof. Let EP; = {EP;'( | i € I} be the set of (isomorphism classes of) all finite split
embedding problems ovér By Theorenj 1.]1, we find for eagha function fieldF; / k in
one variable with &-rational place such thﬁP}l_ has a proper regular solution over.
We may choose the field§ (i € I) such that eacl#; is linearly disjoint overk from the
compositum of allF; with j # i. Now let K be the compositum of alt; (i € I).

Then, by construction, each lifted embedding problERi, (i € I) has a proper
regular solution oveK. It is also clear thaK /k is regular and thak is hilbertian. We
have to show thak does not contain any large field. But this is immediate from the
following lemma. O

Lemma 2.2. Let k be a field not containing a large field. L&F;);c; be a family of
function fields ovek, linearly disjoint overk (i.e. for each, F; is linearly disjoint overk

from the compositum of alf; withi # j € I). LetK = F; be the compositum of ali;

(i € I). ThenK does not contain a large field.

Proof. Assume, to the contrary, th& contains a large field.. Then, by assumption,
L Z k. So we may pick some € L \ k. As K/k is regularx is transcendental ovér.
Now let kg be the prime field ok and choose a smooth cur@eof genus> 2 defined
overko(x) with akg(x)-rational pointP € C(ko(x)), but such thaf is non-isotrivial over
any constant field extensiafi/ ko, i.e.C is not birationally equivalent (over some finite
extension ofE (x)) to a curve defined ovef for any field E containingkg over whichx
remains transcendental. Such curves always exist (take e.g. a smooth model of the curve
constructed in Examp[e 2.3 below).

Now let Ip € I be the unique minimal finite subset éfsuch thatr € Fy,, the
compositum of theF; with i € Io. Let {xy, ..., x,} be a transcendence baself over
k and letE be the compositum of(xy, ..., x,—1) with Fp\ ;. Thenx is transcendental
over E and K is a function field in one variable oveéf. As C is non-isotrivial overE,
the Mordell conjecture over function fields ([M], [C] in characteristic[Q] [G] and [S] in
arbitrary characteristic) implies th@{(K) is finite. AsP € C(ko(x)) € C(L) € C(K),
C(L) is non-empty, but finite, contradicting the largenesg of O
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Example 2.3. Let k be a field of chak # 2 and letx be transcendental ovér Then the
curveC defined by the equation

Y2=g(X):=X(X - DX —x)(X —xO)(X — (X —xY

is a geometrically irreducible curve of genus 2 defined duan with smoothk(x)-
rational point(0, 0), but non-isotrivial to a curve oveE for any field extensiorE/k
linearly disjoint fromx overk.

If chark = 2, one has to modify the curve replaciiig by Y2 — Y.

Proof. We treat here only the case clag 2. By [CH, p. 1],C is a curve of genus 2, and
any curve of genus 2 over a field of characteristic 2 is birationally equivalent ovef
to a curve of the shape

Y2 =g(X),

whereg € F[X] is separable of degree 6, and this canonical form is unique up to a
fractional linear transformation of with associated transformation Bf

aX +b eY
>— Y —
cX +d (cX +d)3

for somea, b, c,d € F withad — bc # 0 ande € F*.

Itis clear that(0, O) is a smoottk(x)-rational point ofC. We have to show that for any
field extensionE / k with x still transcendental oveE and any finite extensiof’/ E (x),
the curveC is not birationally equivalent ovef to a curve defined ovek.

Assume to the contrary thdt is a finite extension of(x) and thatC’ is such a
curve overE, F-birationally equivalent t@. We may assume thét is in canonical form
over E, and hence, by the remarks above, therezate ¢, d € F with ad — bc # 0 and
e € F* such that the curvé’ is defined by

aX +b

2 _ 6
) =(cX +d) g(cX+d

) < £x)

where the polynomial on the right is of degree 6Xn Yet this proves impossible: the
polynomial on the right hand side is of the form

b b—d b—dx b—dx? b—dx3 b—dx*
flx—)(x- X— X— 5 ) X- 5 ) X- )

a a—c¢ a—cx a—cx a—cx a—cx
wheref = a(a — ¢)(a — cx)(a — cx?)(a — cx3)(a~— cx®) € E*. This implies that the
following four elements are in the algebraic clos@ref E:

b - b—d ~ b—dx ~ b—dx?
o=—, B:= , y = , 6= 5
a a—=c¢ a—cx a —cx

By elementary computations this implies a contradiction: The first two equations give

b=aa, d=(a—-pB)a+ Bec.
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Plugging this in the last two equations gives
(@=Bx+ (- (@ =B+ (6~
c= -a, c= 5 -a
(y —B)x (6—pB)x

Note thaty # g ands # B asad — bc # 0. Those two expressions forhowever, yield
the equation

(@—B)S— B>+ (y —a)( — B)x = (@ — B)(y — B)x>+ (8 — a)(y — B),

which impliese = y = §, asx is transcendental ove. Buta = y is only possible
whenad — be = 0: contradiction. O

Remark 2.4. Unfortunately, our construction in Theor¢m|2.1 does not lead to a Kield
with the stronger property that every finite split embedding prolieer K has a proper
regular solution ovek (and still K not containing a large field). We do not know whether
such fields exist. The problem is that iteration of our construction may well lead to a field
containing a large field.

3. The diophantine nature of the regular inverse Galois problem

It is well known that realizability of a finite grou@ as Galois group over a fieldl is an
elementary property ok, expressible by a first-order sentence in the language of rings.
However, it is not a diophantine property, i.e. not expressible by an existential formula:

it is, in general, not preserved when passing to a larger fieégyularrealizability, in
contrast, is preserved under extensions, yet we do not know whether it can be expressed by
a single first-order formula. The best we can offer is an infinite disjunction of existential
first-order formulas:

Theorem 3.1. For any finite groupG there is a sequena®EG(G, n)),cn of first-order
existential statements in the language, -, 0, 1} of rings such that

e foralln e N: REG(G, n) = REG(G,n + 1),
o for any fieldK, the groupG is regularly realizable oveK iff REG(G, n) holds inK
for somen € N.

The formulafREG(G, n) can be computed effectively.

Proof. For anyrn, m € N there is a quantifier-free formulsBSIRR (xqo, . . . , Xnm) in the
language of rings with free variable;; | 0 <i <n, 0 < j < m} such that for all fields
K and for allaqo, . .., aun € K:

K = ABSIRR (400, - - - anm) € f(1,Y) =3[ > L gaijt' Y/ € K[t, Y]
is absolutely irreducible.

This is because irreducibility of a polynomial can be expressed by a first-order formula,
and by quantifier elimination over algebraically closed fields, irreducibility over the al-
gebraic closure is equivalent to a quantifier-free formula in the language of rings with
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constants for the coefficients of the polynomial. Moreover, this quantifier-free formula
can be computed effectively.

Now choose a finite grou@ and consider an arbitrary fiekl and some indeterminate
t over K. Then the following statements are equivalent:

(i) G isregularly realizable ovek .
(ii) There is a Galois extensioh/K (¢) with groupG such thatL /K is a regular exten-
sion.
(i) There is an absolutely irreducible polynomial

f@,Y) =Y 4 g6-10)Y'91 4. 4 go(r) € K1, Y]

such that the field. := Quot(K [z, Y]/(f)) = K(@)(Y + (f)) is a Galois extension
of K (¢) with groupG.

(iv) There are polynomialg;(r) € K[T] (i = O, ...,|G| — 1) and rational functions
he jt) e K1) (j=0,...,|G| = 1,0 € G) such that

o f(1,Y) = YO 4 gi6_1(0)YIC171 ... 4 go(t) € K[z, Y] is absolutely irre-
ducible,
e forallo, t € G:

— f(t,Y) dividesf(z,o(Y)) in K()[Y],

— f(t,Y) dividesaz(Y) —a(T(Y)) in K ()[Y],
—oa#1=0(Y) #T(Y),

1Y) =Y,

where for eacly € G, ¢ denotes theX (r)-algebra endomorphism & (¢)[Y]
with3(¥) = Y170 g j ()Y
(v) For somen e N the following statemenREG(G, n) holds inK:

; + o+ o+ ;
There are polynomialg;, hy i ToksSory € K[T] all having degree< n, where

i, j.k,l e Nwithi, j < |G|, k,1 <|G|?ando, t € G satisfying the conditions:

e ABSIRR (coefficients off),
e forallo, t € G:
IGI2-1

—f(t.Y) - Qly rex (YR = f(1,5(Y)),

IG|2-1 N = =
—f&.Y)- Qs Seca®Y') =0T(Y) -0 (T(Y)),

—a#1=0(Y) #T(Y),

1Y) =Y,

where f and are as in (iv) and where = p*/p~ € K(¢) for any pair of
polynomialsp™, p~ € K[t].

Note that in (i), f being absolutely irreducible implids/ K being regular, and that thg
may be taken to be polynomials rather than rational functions (mulgigby the|G|-th
power of the produci (¢) of the denominators of thg and replac&” by d(¢) - Y).

In (iv), the four conditions listed fos, T € G say thato (Y) + (f) is a zero off in
L := K(@)(Y + (f)) inducing somes € Aut(L/K (t)) with 6T = 6 07,5 # T for
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o # randl=id;. So
G — Aut(L/K()), oo,

is an injective group homomorphism, and as ©dg¢g= |G|, L/K(¢) is Galois and the
homomorphism is also onto.

Obviously,REG(G, n) can be expressed as an existential statement in the language of
rings asABSIRR was a quantifier-free formula and all the polynomial equations resp. in-
equalities are equivalent to a conjunction resp. disjunction of equations resp. inequalities
of the corresponding coefficients.

It is clear that this procedure is effective silSBSIRR was obtained in an effective
way. And, finally,REG(G, n) gets weaker with increasing O

We do not know whether the in the theorem can be uniformly bounded, i.e. whether,
given a finite groups, there is a natural number= n(G) such that for anyz € N and
any fieldK,

K = REG(G,m) = K = REG(G, n).

If there is such a uniform bound, then the question whether o6ristregularly real-
izable over a given fiel& is an existential first-order question. It is effectively decidable
provided thatk has a decidable existential theory. This is, of course, the case &.gsiif
finite, but it is not known, e.g., whek = Q.

If, on the other hand, there is no such uniform bound then foranry N, we find a
field K,, with K, = =REG(G, m). An ultraproduct of thes&,, then gives a field
over whichG is not regularly realizable.

Remark 3.2. The formulaREG(G, n) says nothing explicit about ramification data. Yet,
implicitly, it does: if K &= REG(G, n) thenG can be realized as the Galois group of an
extensionL /K (¢), regular overk and ramified in at most2G + 1 points.

Proof. This is because ramification only occurs at infinity or at points corresponding to
the divisors of the discriminant df which is a polynomial of degreg 2»£G in ¢. O

As an illustration of this model-theoretic view on the regular inverse Galois problem
(RIGP) let us prove the following slight generalization of the RIGP-part of the Harbater—
Pop theorem (every finite group being regularly realizable over a large field). Again, this
is certainly known to the experts (cf._[DD, Theorem 4.2] for a variant with varieties in
place of curves).

Observation 3.3. Let K be a field such that every smooth cuésdefined over the prime
field k of K (sok = Q or k = F,) and having ak-rational point has infinitely many
K -rational points. Then the regular inverse Galois problem is solvable &ver

Proof. Choose an arbitrary finite group. By Theorenj 1]1, there is a function fiel) k
in one variable with &-rational place such thaf is regularly realizable oveF. So,
by Theoren| 3)1F = REG(G, n) for somen € N. Let C be a smooth curve over
with function field F = k(C). ThenC(k) # @, and hence, by our hypothesis @&h
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|C(K)| = oo. Therefore, any saturated elementary exten&on- K contains the coor-
dinates of a point o@ which is generic oveK and so also ovet. This means thak*
contains a copy of'. Thus we have the implications

F = REG(G,n) = K* =REG(G,n) = K = REG(G, n).

Applying Theorenj 3]1 once more, we conclude thats regularly realizable ovek .
SinceG was chosen arbitrarily, the observation is proved. O

We do not know whether the field constructed in Theorem 2.1 satisfies the hypothesis
of the above observation. Yet, if one adjoins to the prime fteldr each curve® overk

with C(k) # ¢ infinitely many independent generic points one obtains a Ketdtisfying

the hypothesis of the observation, and again by Lefnmak.@pes not contain a large
field.

Rationality conditions

It should be mentioned that throughout the paper regular realizability of a finite gtoup
over a fieldK may also be replaced by the stronger condition théie realizable as the
Galois group of a Galois extensidry K (t) with L/K regularand L having akK -rational

place This is because the theorem of Harbater—Pop in fact proves this stronger property
for large K and because the extra condition is also expressible by an existential formula:
just add to the formulREG(G, n) in Theorenj 3.]1 the formula, y f(x, y) = 0. From

this it is clear that one obtains the following stronger version of Corollary 2 from [FV]:

Corollary 3.4. LetG be a finite group. Then for almost all finite fieltlsG is regularly
realizable ovek as the Galois group of an extensi@r k(¢) with ak-rational place onL.

Acknowledgementd.would like to thank Pierre Bbes for encouraging me to write down this note.
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