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Abstract. By a celebrated theorem of Harbater and Pop, the regular inverse Galois problem is
solvable over any field containing a large field. Using this and the Mordell conjecture for function
fields, we construct the first example of a fieldK over which the regular inverse Galois problem can
be shown to be solvable, but such thatK does not contain a large field. The paper is complemented
by model-theoretic observations on the diophantine nature of the regular inverse Galois problem.
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Introduction

The regular inverse Galois problemover a fieldK is the problem to realize any finite
groupG regularly overK, i.e. to find a Galois extensionL/K(t) with groupG, wheret

is an indeterminate overK andL/K is regular. A fundamental theorem of Harbater–Pop
says that the regular inverse Galois problem is solvable over any large fieldK1 ([H], [P],
see also [HJ] and [CT]). This implies that the regular inverse Galois problem is solvable
for any fieldK containinga large fieldk: If t is transcendental overK and l/k(t) is a
Galois extension with groupG, regular overk, thenL := Kl/K(t) is a Galois extension
with groupG, regular overK.

In this note we shall construct a fieldK over which the regular inverse Galois problem
is solvable but which does not contain any large field (Theorem 2.1). It is based on a
reformulation of the theorem of Harbater–Pop mentioned above (Theorem 1.1) and on
the Mordell Conjecture over function fields ([M] in characteristic 0 with correction in
[C], and [G] and [S] in arbitrary characteristic).

The last part of the paper contains model-theoretic considerations on the diophantine
nature of the regular inverse Galois problem. More precisely, we show that for each finite

*Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft (KO 1962/1-2).

J. Koenigsmann: Mathematisches Institut der Universität Freiburg, Abteilung mathematische
Logik und Grundlagen der Mathematik, Eckerstr. 1, 79104 Freiburg, Germany;
e-mail: Jochen.Koenigsmann@unibas.ch

Mathematics Subject Classification (2000):Primary 12F12; Secondary 12E30, 12L12 14G05

1 Recall that a fieldK is large if K is existentially closed inK((x)), or, equivalently, if any
smooth curve overK with oneK-rational point has infinitely manyK-rational points.



426 Jochen Koenigsmann

groupG there is a sequence(REG(G, n))n∈N of first-order existential statements in the
language{+, ·, 0, 1} of rings such that for anyn, REG(G, n) implies REG(G, n + 1),
and such that for any fieldK,

G regularly realizable overK ⇔ K |= REG(G, n) for somen ∈ N.

The formulasREG(G, n) may be considered as a simple variant of the Hurwitz spaces
introduced in [FV]. Lacking their rich structure, however, our formulas have the advan-
tage of being easily and effectively constructed (using only quantifier elimination for
algebraically closed fields) and working simultaneously in all characteristics.

We illustrate this point of view by a slight generalization of the theorem of Harbater–
Pop (Observation 3.3) replacing the condition thatK be large by the weaker condition
that]C(K) = ∞ for any smooth curveC defined over the prime fieldk ⊆ K (sok = Q
or Fp) with C(k) 6= ∅. We should mention, however, that this generalization could also
be achieved without model theory by using the classical Bertini–Noether specialization
argument as used in the proof of Theorem B in [P] or as described in Section 4.2 of [DD].

1. Reformulating Harbater–Pop

The theorem of Harbater–Pop mentioned in the Introduction, in fact, says more than reg-
ular realizability of all finite groups over large fields. More generally, it asserts regular
proper solvability of all finite split embedding problems over such fields.

Recall that anembedding problemfor a field K is a pair of epimorphismsEPK =

(αK : GK →→ A, β : B →→ A) of profinite groups, whereGK := Gal(Ks/K) is the
absolute Galois group ofK. It is finite if B is finite, andsplit if β splits. A solutionof
EPK is a homomorphismγ : GK → B with αK = β ◦ γ . Whenγ is onto, it is aproper
solution. LetL be the fixed field of the kernel ofαK , i.e. L/K is a Galois extension
with groupA. If F/K is a field extension linearly disjoint fromL over K (e.g.F/K

regular) thenFL/F is again Galois with groupA, andEPK induces thelifted embedding
problemEPF = (αF := αK ◦ resF/K , β), where resF/K is the restriction homomorphism
GF → GK . A regular (proper) solutionof EPK is a (proper) solutionγ of the lifted
embedding problemEPK(t), wheret is transcendental overK, and the fixed field of kerγ
is a regular extension of the fixed field of kerαK(t) = L(t). If F/K is linearly disjoint
from L overK then any regular solution ofEPK lifts to a regular solution ofEPF .

The following version of the theorem of Harbater–Pop is certainly not new to the
experts. It follows the lines of [DD, Section 4.2], where the case of regular realizability of
a given finite groupB (i.e. embedding problems withA = {1}) is treated. It presents the
theorem as a general field-theoretic fact, no longer restricted to a special class of fields.

Theorem 1.1. Let K be a field and letEPK = (αK : GK →→ A, β : B →→ A) be a
finite split embedding problem forK. Then there is a function fieldF/K in one variable
with aK-rational place such that the lifted embedding problemEPF has a proper regular
solution overF .
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Proof. Let L = Fix ker(αK) be the fixed field of the kernel ofαK , soL is a finite Ga-
lois extension ofK with groupA. Let x be an indeterminate overK and letF ′ be a
henselization ofK(x) w.r.t. thex-adic valuation onK(x), i.e. F ′

= K((x)) ∩ K(x)s,
whereK(x)s denotes a separable algebraic closure ofK(x). ThenF ′/K is a regular ex-
tension of transcendence degree 1 andF ′ is large, having a non-trivial henselian valuation.
By Harbater–Pop, the lifted embedding problemEPF ′ has then a regular solution overF ′,
i.e. there is a Galois extensionE′/F ′(t) (t transcendental overF ′) containingF ′L and
regular overF ′L such that Gal(E′/F ′(t)) = B andβ is the restriction map

β : Gal(E′/F ′(t)) →→ Gal(F ′L/F ′) ∼= Gal(L/K) = A.

Now letF be a finite subextension ofF ′/K(x) such thatE′/F ′(t) is defined overF ,
i.e. there is a Galois extensionE/F(t) containingL with E′

= F ′E and Gal(E′/F ′(t))
∼= Gal(E/F(t)). As subfield ofK((x)), F is regular overK with aK-rational place, and
E/F(t) provides a proper regular solution of the lifted embedding problemEPF . ut

Remark 1.2. The above theorem is, indeed, a reformulation of the theorem of Harbater–
Pop, as the latter is also easily deduced from the former.

Proof. Let K be a large field and letEPK be a finite split embedding problem overK.
Then, by Theorem 1.1,EPF has a proper regular solution overF for some function field
F/K in one variable admitting aK-rational place. By Hensel’s Lemma,F can be embed-
ded inK((x)), wherex ∈ F is a uniformizing element of this place. SinceK((x))/F is
linearly disjoint fromFL overF , we can lift the embedding problemEPF and its regular
solution overF to K((x)).

As K is large, it is existentially closed inK((x)). To go down toK we can, therefore,
apply [P, Lemma 1.5], or, similar to the proof of Theorem 3.1, we can write down directly
the existential formulaφ with parameters fromK (defining the extensionL/K) such that
φ is satisfied by the coefficients fromK((x)) occurring in explicit polynomials describing
a regular solution ofEPK((x)) and such that any extensionF ′/K linearly disjoint fromL

overK and satisfyingφ allows a regular solution ofEPF ′ . As K is existentially closed in
K((x)), this is, in particular, the case forF ′

= K. ut

Remark 1.3. Note that the function fieldF in Theorem 1.1 can be chosen to be arational
function field iff EPK is regularly solvable overK.

Proof. This is because, by Bertini–Noether, regular solvability ofEPK and ofEPK(x) is
the same. ut

Remark 1.4. For regular realizability of a finite groupB (i.e. embedding problems with
A = {1}), the conclusion of Theorem 1.1 without the existence ofK-rational places on
F follows already from the existence of absolutely irreducible components in Hurwitz
spaces, at least in characteristic 0 (cf. Part 1 of the proof of Corollary 2 in [FV, p. 785]).
One has to use standard techniques for the descent from a higher dimensional function
field to the dimension 1 case though.
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2. New fields

So far the only examples of fields over which the regular inverse Galois problem could
be shown to be solvable were fields containing a large field. We shall now construct new
examples, using Theorem 1.1. In fact, we only use the conclusion of Theorem 1.1 without
existence of aK-rational place onF (cf. the above Remark 1.4).

Theorem 2.1. Let k be a field not containing a large field (e.g.k = Q or k = Fp). Then
there is a regular extensionK/k such that:

• K does not contain a large field,
• for every finite split embedding problemEPk overk the lifted embedding problemEPK

has a proper regular solution overK; in particular, the regular inverse Galois problem
is solvable overK,

• K is hilbertian.

Proof. Let EPk = {EPi
k | i ∈ I } be the set of (isomorphism classes of) all finite split

embedding problems overk. By Theorem 1.1, we find for eachi a function fieldFi/k in
one variable with ak-rational place such thatEPi

Fi
has a proper regular solution overFi .

We may choose the fieldsFi (i ∈ I ) such that eachFi is linearly disjoint overk from the
compositum of allFj with j 6= i. Now letK be the compositum of allFi (i ∈ I ).

Then, by construction, each lifted embedding problemEPi
K (i ∈ I ) has a proper

regular solution overK. It is also clear thatK/k is regular and thatK is hilbertian. We
have to show thatK does not contain any large field. But this is immediate from the
following lemma. ut

Lemma 2.2. Let k be a field not containing a large field. Let(Fi)i∈I be a family of
function fields overk, linearly disjoint overk (i.e. for eachi, Fi is linearly disjoint overk
from the compositum of allFj with i 6= j ∈ I ). LetK = FI be the compositum of allFi

(i ∈ I ). ThenK does not contain a large field.

Proof. Assume, to the contrary, thatK contains a large fieldL. Then, by assumption,
L 6⊆ k. So we may pick somex ∈ L \ k. As K/k is regular,x is transcendental overk.
Now let k0 be the prime field ofk and choose a smooth curveC of genus≥ 2 defined
overk0(x) with ak0(x)-rational pointP ∈ C(k0(x)), but such thatC is non-isotrivial over
any constant field extensionE/k0, i.e. C is not birationally equivalent (over some finite
extension ofE(x)) to a curve defined overE for any fieldE containingk0 over whichx

remains transcendental. Such curves always exist (take e.g. a smooth model of the curve
constructed in Example 2.3 below).

Now let I0 ⊆ I be the unique minimal finite subset ofI such thatx ∈ FI0, the
compositum of theFi with i ∈ I0. Let {x1, . . . , xn} be a transcendence base ofFI0 over
k and letE be the compositum ofk(x1, . . . , xn−1) with FI\I0. Thenx is transcendental
overE andK is a function field in one variable overE. As C is non-isotrivial overE,
the Mordell conjecture over function fields ([M], [C] in characteristic 0, [G] and [S] in
arbitrary characteristic) implies thatC(K) is finite. AsP ∈ C(k0(x)) ⊆ C(L) ⊆ C(K),
C(L) is non-empty, but finite, contradicting the largeness ofL. ut
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Example 2.3. Let k be a field of chark 6= 2 and letx be transcendental overk. Then the
curveC defined by the equation

Y 2
= g(X) := X(X − 1)(X − x)(X − x2)(X − x3)(X − x4)

is a geometrically irreducible curve of genus 2 defined overk(x) with smoothk(x)-
rational point(0, 0), but non-isotrivial to a curve overE for any field extensionE/k

linearly disjoint fromx overk.
If chark = 2, one has to modify the curve replacingY 2 by Y 2

− Y .

Proof. We treat here only the case chark 6= 2. By [CF, p. 1],C is a curve of genus 2, and
any curve of genus 2 over a fieldF of characteristic6= 2 is birationally equivalent overF
to a curve of the shape

Y 2
= g(X),

whereg ∈ F [X] is separable of degree 6, and this canonical form is unique up to a
fractional linear transformation ofX with associated transformation ofY :

X 7→
aX + b

cX + d
, Y 7→

eY

(cX + d)3
,

for somea, b, c, d ∈ F with ad − bc 6= 0 ande ∈ F×.
It is clear that(0, 0) is a smoothk(x)-rational point ofC. We have to show that for any

field extensionE/k with x still transcendental overE and any finite extensionF/E(x),
the curveC is not birationally equivalent overF to a curve defined overE.

Assume to the contrary thatF is a finite extension ofE(x) and thatC′ is such a
curve overE, F -birationally equivalent toC. We may assume thatC′ is in canonical form
overE, and hence, by the remarks above, there area, b, c, d ∈ F with ad − bc 6= 0 and
e ∈ F× such that the curveC′ is defined by

(eY )2
= (cX + d)6

· g

(
aX + b

cX + d

)
∈ E[X],

where the polynomial on the right is of degree 6 inX. Yet this proves impossible: the
polynomial on the right hand side is of the form

f ·

(
X−

b

a

)(
X−

b−d

a−c

)(
X−

b−dx

a−cx

)(
X−

b−dx2

a−cx2

)(
X−

b−dx3

a−cx3

)(
X−

b−dx4

a−cx4

)
,

wheref = a(a − c)(a − cx)(a − cx2)(a − cx3)(a − cx4) ∈ E×. This implies that the
following four elements are in the algebraic closureẼ of E:

α :=
b

a
, β :=

b − d

a − c
, γ :=

b − dx

a − cx
, δ :=

b − dx2

a − cx2
.

By elementary computations this implies a contradiction: The first two equations give

b = αa, d = (α − β)a + βc.
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Plugging this in the last two equations gives

c =
(α − β)x + (γ − α)

(γ − β)x
· a, c =

(α − β)x2
+ (δ − α)

(δ − β)x2
· a.

Note thatγ 6= β andδ 6= β asad − bc 6= 0. Those two expressions forc, however, yield
the equation

(α − β)(δ − β)x2
+ (γ − α)(δ − β)x = (α − β)(γ − β)x2

+ (δ − α)(γ − β),

which impliesα = γ = δ, asx is transcendental over̃E. But α = γ is only possible
whenad − bc = 0: contradiction. ut

Remark 2.4. Unfortunately, our construction in Theorem 2.1 does not lead to a fieldK

with the stronger property that every finite split embedding problemoverK has a proper
regular solution overK (and stillK not containing a large field). We do not know whether
such fields exist. The problem is that iteration of our construction may well lead to a field
containing a large field.

3. The diophantine nature of the regular inverse Galois problem

It is well known that realizability of a finite groupG as Galois group over a fieldK is an
elementary property ofK, expressible by a first-order sentence in the language of rings.
However, it is not a diophantine property, i.e. not expressible by an existential formula:
it is, in general, not preserved when passing to a larger field.Regularrealizability, in
contrast, is preserved under extensions, yet we do not know whether it can be expressed by
a single first-order formula. The best we can offer is an infinite disjunction of existential
first-order formulas:

Theorem 3.1. For any finite groupG there is a sequence(REG(G, n))n∈N of first-order
existential statements in the language{+, ·, 0, 1} of rings such that

• for all n ∈ N: REG(G, n) ⇒ REG(G, n + 1),
• for any fieldK, the groupG is regularly realizable overK iff REG(G, n) holds inK

for somen ∈ N.

The formulasREG(G, n) can be computed effectively.

Proof. For anyn, m ∈ N there is a quantifier-free formulaABSIRR(x00, . . . , xnm) in the
language of rings with free variable{xij | 0 ≤ i ≤ n, 0 ≤ j ≤ m} such that for all fields
K and for alla00, . . . , anm ∈ K:

K |= ABSIRR(a00, . . . , anm) ⇔ f (t, Y ) :=
∑n

i=0
∑m

j=0 aij t
iY j

∈ K[t, Y ]
is absolutely irreducible.

This is because irreducibility of a polynomial can be expressed by a first-order formula,
and by quantifier elimination over algebraically closed fields, irreducibility over the al-
gebraic closure is equivalent to a quantifier-free formula in the language of rings with
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constants for the coefficients of the polynomial. Moreover, this quantifier-free formula
can be computed effectively.

Now choose a finite groupG and consider an arbitrary fieldK and some indeterminate
t overK. Then the following statements are equivalent:

(i) G is regularly realizable overK.
(ii) There is a Galois extensionL/K(t) with groupG such thatL/K is a regular exten-

sion.
(iii) There is an absolutely irreducible polynomial

f (t, Y ) := Y |G|
+ g|G|−1(t)Y

|G|−1
+ · · · + g0(t) ∈ K[t, Y ]

such that the fieldL := Quot(K[t, Y ]/(f )) = K(t)(Y + (f )) is a Galois extension
of K(t) with groupG.

(iv) There are polynomialsgi(t) ∈ K[T ] (i = 0, . . . , |G| − 1) and rational functions
hσ,j (t) ∈ K(t) (j = 0, . . . , |G| − 1, σ ∈ G) such that

• f (t, Y ) := Y |G|
+ g|G|−1(t)Y

|G|−1
+ · · · + g0(t) ∈ K[t, Y ] is absolutely irre-

ducible,
• for all σ, τ ∈ G:

– f (t, Y ) dividesf (t, σ̂ (Y )) in K(t)[Y ],
– f (t, Y ) dividesσ̂ τ (Y ) − σ̂ (̂τ (Y )) in K(t)[Y ],
– σ 6= τ ⇒ σ̂ (Y ) 6= τ̂ (Y ),
– 1̂(Y ) = Y ,

where for eachσ ∈ G, σ̂ denotes theK(t)-algebra endomorphism ofK(t)[Y ]
with σ̂ (Y ) =

∑|G|−1
j=0 hσ,j (t)Y

j .

(v) For somen ∈ N the following statementREG(G, n) holds inK:

There are polynomialsgi, h
±

σ,j , r
±

σ,k, s
±

σ,τ,l ∈ K[T ] all having degree≤ n, where

i, j, k, l ∈ N with i, j < |G|, k, l < |G|
2 andσ, τ ∈ G satisfying the conditions:

• ABSIRR(coefficients off ),
• for all σ, τ ∈ G:

– f (t, Y ) · (
∑|G|

2
−1

k=0 rσ,k(t)Y
k) = f (t, σ̂ (Y )),

– f (t, Y ) · (
∑|G|

2
−1

l=0 sσ,τ,l(t)Y
l) = σ̂ τ (Y ) − σ̂ (̂τ (Y )),

– σ 6= τ ⇒ σ̂ (Y ) 6= τ̂ (Y ),
– 1̂(Y ) = Y ,

wheref and σ̂ are as in (iv) and wherep = p+/p−
∈ K(t) for any pair of

polynomialsp+, p−
∈ K[t ].

Note that in (ii),f being absolutely irreducible impliesL/K being regular, and that thegi

may be taken to be polynomials rather than rational functions (multiplyf by the|G|-th
power of the productd(t) of the denominators of thegi and replaceY by d(t) · Y ).

In (iv), the four conditions listed forσ, τ ∈ G say that̂σ(Y ) + (f ) is a zero off in
L := K(t)(Y + (f )) inducing somẽσ ∈ Aut(L/K(t)) with σ̃ τ = σ̃ ◦ τ̃ , σ̃ 6= τ̃ for
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σ 6= τ and̃1 = idL. So

G → Aut(L/K(t)), σ 7→ σ̃ ,

is an injective group homomorphism, and as degY f = |G|, L/K(t) is Galois and the
homomorphism is also onto.

Obviously,REG(G, n) can be expressed as an existential statement in the language of
rings asABSIRR was a quantifier-free formula and all the polynomial equations resp. in-
equalities are equivalent to a conjunction resp. disjunction of equations resp. inequalities
of the corresponding coefficients.

It is clear that this procedure is effective sinceABSIRR was obtained in an effective
way. And, finally,REG(G, n) gets weaker with increasingn. ut

We do not know whether then in the theorem can be uniformly bounded, i.e. whether,
given a finite groupG, there is a natural numbern = n(G) such that for anym ∈ N and
any fieldK,

K |= REG(G, m) ⇒ K |= REG(G, n).

If there is such a uniform bound, then the question whether or notG is regularly real-
izable over a given fieldK is an existential first-order question. It is effectively decidable
provided thatK has a decidable existential theory. This is, of course, the case e.g. ifK is
finite, but it is not known, e.g., whenK = Q.

If, on the other hand, there is no such uniform bound then for anym ∈ N, we find a
field Km with Km |= ¬REG(G, m). An ultraproduct of theseKm then gives a fieldK
over whichG is not regularly realizable.

Remark 3.2. The formulaREG(G, n) says nothing explicit about ramification data. Yet,
implicitly, it does: if K |= REG(G, n) thenG can be realized as the Galois group of an
extensionL/K(t), regular overK and ramified in at most 2n]G + 1 points.

Proof. This is because ramification only occurs at infinity or at points corresponding to
the divisors of the discriminant ofF which is a polynomial of degree≤ 2n]G in t . ut

As an illustration of this model-theoretic view on the regular inverse Galois problem
(RIGP) let us prove the following slight generalization of the RIGP-part of the Harbater–
Pop theorem (every finite group being regularly realizable over a large field). Again, this
is certainly known to the experts (cf. [DD, Theorem 4.2] for a variant with varieties in
place of curves).

Observation 3.3. LetK be a field such that every smooth curveC defined over the prime
field k of K (so k = Q or k = Fp) and having ak-rational point has infinitely many
K-rational points. Then the regular inverse Galois problem is solvable overK.

Proof. Choose an arbitrary finite groupG. By Theorem 1.1, there is a function fieldF/k

in one variable with ak-rational place such thatG is regularly realizable overF . So,
by Theorem 3.1,F |= REG(G, n) for somen ∈ N. Let C be a smooth curve overk
with function field F = k(C). ThenC(k) 6= ∅, and hence, by our hypothesis onK,
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|C(K)| = ∞. Therefore, any saturated elementary extensionK?
� K contains the coor-

dinates of a point onC which is generic overK and so also overk. This means thatK?

contains a copy ofF . Thus we have the implications

F |= REG(G, n) ⇒ K?
|= REG(G, n) ⇒ K |= REG(G, n).

Applying Theorem 3.1 once more, we conclude thatG is regularly realizable overK.
SinceG was chosen arbitrarily, the observation is proved. ut

We do not know whether the fieldK constructed in Theorem 2.1 satisfies the hypothesis
of the above observation. Yet, if one adjoins to the prime fieldk for each curveC overk
with C(k) 6= ∅ infinitely many independent generic points one obtains a fieldK satisfying
the hypothesis of the observation, and again by Lemma 2.2,K does not contain a large
field.

Rationality conditions

It should be mentioned that throughout the paper regular realizability of a finite groupG

over a fieldK may also be replaced by the stronger condition thatG be realizable as the
Galois group of a Galois extensionL/K(t) with L/K regularandL having aK-rational
place. This is because the theorem of Harbater–Pop in fact proves this stronger property
for largeK and because the extra condition is also expressible by an existential formula:
just add to the formulaREG(G, n) in Theorem 3.1 the formula ‘∃x, y f (x, y) = 0’. From
this it is clear that one obtains the following stronger version of Corollary 2 from [FV]:

Corollary 3.4. Let G be a finite group. Then for almost all finite fieldsk, G is regularly
realizable overk as the Galois group of an extensionL/k(t) with ak-rational place onL.

Acknowledgements.I would like to thank Pierre D̀ebes for encouraging me to write down this note.
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