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Abstract. Despite many notable advances the general problem of classifying ergodic measure pre-
serving transformations (MPT) has remained wide open. We show that the action of the whole
group of MPT’s on ergodic actions by conjugation is turbulent in the sense of G. Hjorth. The type
of classifications ruled out by this property include countable algebraic objects such as those that
occur in the Halmos—von Neumann theorem classifying ergodic MPT’s with pure point spectrum.
We treat both the classical caseZbas well as the case of general countable amenable groups.

1. Introduction

Dynamical systems are often studied from a probabilistic or statistical point of view by
finding an ergodic invariant probability measure on the space. This allows qualitative
descriptions of the dynamical system such as being “truly random” (e.g. Bernoulli) or
truly deterministic (e.g. O-entropy).

The probabilistic behavior of many classical dynamical systems has been character-
ized precisely by determining the invariant measure up to measure theoretic isomorphism.
This led to the general project of classifying measure preserving systems up to iso-
morphism. Despite dramatic successes, notably Ornstein’s theorem classifying Bernoulli
transformations in terms of entrogy [11], and the Halmos—von Neumann theorem classi-
fying ergodic translations on compact groups, this project largely remains unfulfilled.

Indeed, there has been some accumulation of evidence suggesting that such a classifi-
cation is impossible. The main result of this note is a precise statement of such a theorem.

As a corollary of the main result, it is impossible to effectively associate to members
of a generic collection of ergodic measure preserving transformations countable algebraic
structures (e.g. groups) in such a way that two transformations are isomorphic just in case
the associated algebraic objects are isomorphic. (In other words, there is no Borel functor
from the category of ergodic measure preserving transformations to the category of (say)
countable groups.)
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There have been some precursors to this result. For example Hjdrth ([8]) showed the
analogous result for measure distal transformations of height 2. We will use the notion of
turbulencedefined by Hjorth for our theorem.

We begin by giving some terminology.

Definition 1. Let X, Y be Polish spaces, anHl, F be equivalence relations aXi and Y
respectively. Theik is Borel reducibleto F (E <p F) iff there is a Borel measurable
function f : X — Y such that for allxy, x2 € X:

x1Exz iff  f(x1)Ff(x2).

In other words, any question aboft can be “reduced” viaf to a question abouf .
There is an obvious generalization of this notion to equivalence relations on Borel subsets
ACX,BCY.

In this language, the classical result that any two perfect Polish spaces are Borel iso-
morphic can be interpreted as saying that for all perfect PalistndY, there is a Borel
bijection f : X — Y such thatf reduces the relation of equality dhto the relation of
equality onY and £~ reduces equality oiif to equality onX. Thus the question of at-
taching complete invariants that come from an arbitrary Polish space is hot more general
than the issue of attaching complete numerical invariants.

If we let Eq be the equivalence relation of' Zinfinite sequences of 0's and 1's)
defined by setting ~ ¥ in case there is aw such thatx, = y, foralln > N, then
classical 0-1 laws show that there is no Borel reductiorEgfto equality on a Polish
space. (There are converses to this, ske [5].)

As remarked by Feldman(([1]) the following result implies that there can be no nu-
merical invariants attached t6-automorphisms:

Theorem (Ornstein—Shields). There is a Borel reduction ofg to the isomorphism
equivalence relation on thi-automorphisms.

In particular, there is no numerical invariant/6fautomorphisms analogous to entropy.

On the other hand, the Halmos—von Neumann theorem is considered to give a suit-
able structure theorem for the discrete spectrum transformations in spite of the fact that
the equivalence relatioAy is also reducible to isomorphism of discrete spectrum trans-
formations|2].

The Halmos—von Neumann theorem associates to each ergodic discrete spectrum
transformation a countable subset of the unit circle in such a way that two transforma-
tions are isomorphic iff the associated countable sets are equal. By using predicates for
rational intervals, one can effectively associate to each countable subset of the unit circle
a countable structure in a manner that reduces equality of countable sets to isomorphism
of the countable structures. Until this paper there was no clear result showing that this
was not possible for a collection of generic measure preserving transformations (e.g. the
weakly mixing transformations).

To establish such a result we use some notions of Hjblth [6]Skebe the group of
permutations olN with the topology of pointwise convergence. We will consider contin-
uous actions of, on Polish spaces.
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This example is chosen specifically because it includes the isomorphism relations on
countable algebraic objects. We illustrate this in a particular case:

Example 2. Let X be the space of functiong : N x N x N — 2 with the obvious
product topology. LeS, act onX by permuting all three copies of simultaneously. If
G is a countable group (say with univerSeand group operatio®) we can associate an
elementfs € X by setting

fG(l,m,n):l Iﬁ: l@”lzn

If we equip the space of functions : N x N x N — 2 with the “usual” topology
of pointwise convergence (i.e. tié x N x N product topology of the discrete space
2 = {0, 1}) then the collection of; for G a countable group is a denggset, and hence
the usual topology restricted to thfg’s is a Polish topology.

If G, H are two groups with univerds, thenG = H iff there is ag € S such that

efc = fu.

We leave it to the reader to see that isomorphism on countable rings, rings with an or-
dering, fields etc. are ali-actions. (Indeed, there is a universal such action]dabie
action)

To show that there is no way of computing isomorphism classes of countable struc-
tures as a complete invariant, it suffices to show that the associated equivalence relation is
not reducible to ar$-action. A mechanism for doing this was developed by Hjorth [6].

Definition 3. LetG be a Polish group acting continuously on a Polish spAcdhen the
action isturbulentiff:

(1) Every orbitis dense.
(2) Every orbitis meager.
(3) Forallx,y € X,V C X, U C G open, withx € V, 1 € U, there existyy € [y]c
and(g;);en C U, (x;)ien C V such that
(@) xo = x,
() xit1 = gixi,
(c) there is a subsequenggsuch thaty;, converges tgrp.

Hjorth proved the following result:

Theorem. Suppose that the action of on X is turbulent. Then the orbit equivalence
relation (x E'y iff there is ag € G such thatgx = y) cannot be reduced to afi,-action.

Hjorth’s result clearly implies that if the action @f is turbulent, there is no invariant
comeager set on which the orbit equivalence relation can be reduced $aagtion.
Hence the conclusion is “generic”.

The notion of turbulence almost exactly captures the combinatorial content of not
being anSy,-action: Hjorth showed that for a Borel equivalence relationE is not
reducible to anS,.-action just in case there is a turbulent action reducibl& t&Rather
embarassingly, we do not know whether isomorphism for ergodic measure preserving
transformations is a Borel equivalence relation.
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We will use the following lemma (whose proof is left to the reader), which gives a
sufficient condition that is easier to verify:

Lemma 4. Suppose tha€ is a Polish group acting continuously on a Polish space
Suppose further that:

(1) Every orbitis dense.

(2) Every orbitis meager.

(3) Forall x € X and all neighborhood¥p ¢ X of x and all neighborhood® C G with
1 e U thereisaV C Vg withx € V such that for ally € V and all neighborhoods
W of y, there are finite sequenceés;)i<y—1 C U, (x;)i<n—1 C V with
(@) xo = x,
(b) xiy1 = gixi,
(C) xy € W.

Then the action is turbulent.

In order to apply this technology we must describe a Polish group acting continuously on
a Polish space. (See e.g. [2] for a laborious development of this situation.)

Since every separable hon-atomic probability measure space is isomorphic to the unit
interval with Lebesgue measure, every ergodic, aperiodic measure preserving transforma-
tion on a probability space is isomorphic to an ergodic transformation,dij fhd gives
rise to a unitary operator ab?([0, 1]). (We identify measure preserving transformations
that agree on a set of full measure.) The space of unitary operators arising from mea-
sure preserving transformations is a Polish group when endowed with the weak operator
topology. Halmos ([4]) showed that the ergodic measure preserving transformations are
a densdjs subset of the measure preserving transformations, and hence form a Polish
space.

Moreover, the relation of isomorphism between measure preserving transformations
is given by the action of conjugacy of the measure preserving transformations on the
ergodic transformations.

This context can be generalized to show tha{ ifs a fixed countable amenable group
then there is a natural Polish topology on the spac# efctions on [01] by measure
preserving transformations. (We give details in Sedtion 4.) Moreover the action of con-
jugation by the group of measure preserving transformations on the spat@adions
again coincides with isomorphism.

We prove:

Theorem A. LetH be a countable amenable group. Débe the space of ergodic actions
of H on[0, 1]. LetG be the group of measure preserving transformations acting dy
conjugation. Then this action is turbulent.

An important special case of this is:

Theorem B. Let G be the group of measure preserving transformationfOofi] acting
by conjugation on¥, the space of ergodic measure preserving transformations. Then the
action ofG is turbulent.

We note that Hjorth [[7] has proved that it is possible to reduce a turbulent equivalence rela-
tion to the space of ergodic actions of any countable discrete group that is not “abelian-by-
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finite”. Hence it is not possible to classify the measure preserving actions of any countable
group by using countable algebraic objects.

We begin by proving Theorem B, and indicate how to strengthen the proof in Sefction 4.
The proof is somewhat different than the proof of the more general result, Theorem A.
We present it because it gives slightly more information than the proof of Theorem A.

We need to concretely describe a neighborhood basis for the measure preserving trans-
formations. The following description can be found[in [4].

Definition 5. For each measure preserving transformatibrand finite sequence of mea-
surable setsAg, ..., A,_1 ande > O, let N(Ag, ..., A,_1, €) be the collection of alS
such that for alli < n the measure a$(A;) A T(A;) is less thare.

Proposition 6. Let T be a measure preserving transformatiofj@f1]. Then the collec-
tion {N(Ao,...,A,_1,€) : A; is measurable{A;} is a partition of [0, 1] ande > 0}
forms a neighborhood basis fdt.

In [4], Halmos defines a metric on the space of measure preserving transformations by
settingd’ (S, T) to be the measure ¢k : S(x) # T (x)}. The topology of this metric is
finer than the Polish topology described above. Some of our results can be restated using
thed’ metric.

The prerequisites from ergodic theory are very mild. Throughout we will be assuming
our measure space is,[0] and we will denote the Lebesgue measureubyVe heavily
use the following fact:

Rokhlin’s Lemma |. LetT be an ergodic measure preserving transformatiorj@ri],
N € N, e > 0. Then there is a se® C [0, 1] such that:

(1) B, TB, T?B, ..., TN~1B are pairwise disjoint.
(2) The measure of J;,_, 7' B is at leastl — e.

As is standard, we will calB, TB, T?B, ..., TN~1B thelevelsof an (N, €) Rokhlin
towerwith baseB. We will call X\ | J;_y T’ B theremainderof the tower.

This lemma can be refined using the ergodic theorem to yield:

Rokhlin’s Lemma ll. LetT be an ergodic measure preserving transformatiori@ri],
€ > 0and{Ay, ..., A,} be subsets g, 1]. Then there is aM and for all N > M there
is a setB c [0, 1] such that:

(1) B,TB,T?B, ..., TN"1B are pairwise disjoint.
(2) The measure of J,_, 7' B is at leastl — e.
(3) Forally e Bandj < n,

[#i < N:T'y € Aj}/N — n(A))| <e.

Notation. For a pointy € [0, 1] and a transformatiod we will often write y' for the
pointT*y. We will confuse the reader by using absolute value symg|both for the
cardinality ofC if C is a set, and for the absolute valueff C is a number.
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2. A useful lemma

We start with a definition:

Definition 7. We will say that a measure preserving transformatitrhas the same or-
bits almost everywhere & doesif for almost all x the T'-orbit of x is equal to the
T -orbit of x.

In this section we prove:

Lemma 8. Suppose thal is ergodic,e > 0and{C;}; <, {D;}; <k are two measurable
partitions of[0, 1] such that for eacli < k, C; and D; have the same measure. Then
there is aT’ that has the same orbits almost everywher& asnd is such that for all the
measure ofl’(C;) A D; is less thare.

From this lemma and the definition of the basic open neighborhoods, it is easy to see:

Lemma 9. Let S, T be ergodic measure preserving transformations &hd neighbor-
hood ofS. Then there is &’ € U that has the same orbits almost everywheré as

Proof of Lemm4]8.Fix ane > 0 and partitions(C;};<k, {D;}i<k, and letN be large
enough and small enough that2k + 2)s + (2k + 4)/N < €. Choose afiN, §) Rokhlin
tower with baseBg and remaindeR such that for ally in the base andl < k, the number
of elements of”; N {y"}f":‘l2 differs from the number of elements B§ N {y"}f‘]:‘l2 by less
thansN.

We start by fixing an arbitrary in the base of the tower and building a sequence of
partial functionsg C 11 C - - C 1 from {y'}¥5? to {y"}¥5? such that

e 1 is a one-to-one partial function froty; _, C; to |, _; D; sending the elements ¢f,
in its domain to elements dp;.

e The graph of; contains no cycles.

e The domain of; contains more thay — k(8 + 1) N — 2 points.

This is done inductively by setting = ¢ and obtaining; from #,_; by takings; to be a
maximal extension of 1 such that; mapsC;_1 to D;_1 and has no cycles in its graph.

We note that there are at most % _1 N {y’ }f\’:‘12| —|Di—1N{y! }fvz_lzl +1, 1} points
of Ci_1N {yi}f":‘l2 left out of the domain of;. (If there were at least two points &f; not
in the range of; then it would be possible to extendvithout creating a cycle.) Since the
distributions ofC;_1 and D;_1 are equal except for an error of proporti&yy; is defined
onallofC;_1 N {y"}f":_l2 except perhap#’s + 1 points.

Let L; be the set of points af; N {y"}f\’:_l2 not in the domain of;. Thenl J,_, L; has
cardinality less thak(N$ + 1). Thus we have constructedas desired.

Now extendr to a total functiory, from {y'}¥ 2 to {y'} ;! with no cycles in its
graph such that¥~1(y) = yN~1. Defines, : {0,...,N —2} — {1,...,N — 1} by
settingsy (i) = j iff #,(y") = y/.

Since there are only finitely many sughs we can partition the bagéy of the Rokhlin
tower into measurable sets by settiBg= {y € Bg : 5, = s}.

Define a measure preserving transformafforas follows:
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(1) T'I(RUTN=1Bg) = T[(RUTN1By).
(2) Fory € Byandj < N — 1 we letT’(y/) = y*(,

In other words, on eacfi-fiber abovey € Bo we follow ¢, and outside the tower and
on the top level of the tower we follow. SinceT’ respects the columns of the Rokhlin
tower and the entry and exit levels of the tower, it must have the same orljits as

To see thaf”’ suffices: for eaclt, on eachB; the measure of the set of points C;
in the tower aboveB; whereT’x ¢ D; is at mostu(B;)(k(N§ + 1) + 2). Hence the total
measure of points € C; in the tower wherdl’x ¢ D; is at most(§ + 1/N) + 2/N.
Since the remaindeR has measure at mosthe total measure df (C;) A D; is at most
25 +2k(5+1/N) +4/N = (2k +2)§ + (2k + 4)/N. O

It is well known, and easily established by an exhaustion argument, that if sstsl B
have the same measure then there is a generalized powethat mapsA to B. Doing
this for two partitions yields an element in the full group Bf but its orbits will, in
general, only be finite parts of tl-orbits. The proof of Lemmp|8 can be extended to
prove the following:

Remark 10. Suppose thal is ergodic andC;};en, {D;}ien are two measurable parti-
tions of [0, 1] such that for each € N, C; and D; have the same measure. Then there is a
T’ such that for a.ex the T’-orbit of x is infinite and included in th&-orbit of x and is
such that for ali, T'(C;) = D;.

Proof (sketch). The main point is a refinement lemma:

Lemma 11. Let T be an ergodic measure preserving transformatior; 0, and/ € N.
Let{C; : i e N} and{D; : i € N} be two measurable partitions such that the measure
of C; is equal to the measure db;. There is aT’ which has the same orbits almost
everywhere ag' does and such that:

(1) Foralli,if x € C; andT (x) € D; thenT’(x) = T (x).
(2) Foralli <[ the measure of (C;) A D; is less thare.

This refinement lemma is proved analogously to Lerpfna 8. We choose a Rokhlin tower to
respect the distribution of the partitio(s; : i < I}U{[0, 1]\ |J;_; Ci} and{D; :i < I}U

{[0, I\ U; ; Di}. We then letG = {x : for all i, if x € C; thenT (x) € D;} and perform

the same construction, except that we start withG N {y'}¥ ;3 = T1(G N {y'} D).

(If y0 ¢ G, then each; has domain contained '{ly"}f’:‘lz, as before.)

To finish the proof of Remark 10, repeatedly use the refinement lemma to build a
sequence of transformatiofs, 71, ..., 7}, ... with ¢; — 0 and/; — oo, making sure
that7j.1[G; = T1G;, whereG; = {x :forall i, if x € C; thenTj(x) € D;}. LetT’ be
the measure preserving transformation such that foratidx € G;, 7'(x) = Tj(x). O

3. The main result

In this section we prove Theorem B.
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Theorem 12. Let G be the group of measure preserving transformationfol] acting
by conjugation on¥, the space of ergodic measure preserving transformations. Then the
action ofG is turbulent.

Corollary 13. There is no densg; subset of the measure preserving transformations on
which the equivalence relation of isomorphism can be reduced faaction.

Proof of Theorem 121In fact we will prove a stronger result about the met#ic

Claim 14. Suppose that,§ > 0, S, T are ergodic andS has the same orbits almost
everywhere ag does. Then there is a sequence of elemgnésG for i < n such that:

(1) {x: gi(x) # x} has measure less than

(2) if To =T, T;y1 = gT,; thenfor alli, {x : T;(x) ¢ {T(x), S(x)}} has measure less
thans,

3) {x: T,,(x) # S(x)} has measure less than

Using Lemma #, and assuming the claim, we now verify that the action is turbulent.

We note first that Rokhlin’s lemma implies that every transformatiod'islose to
periodic transformations of sufficiently large period and small remainder. Since any two
periodic transformations of the same period are conjugate, we see that every orbit is dense.

The fact that every orbit is meager follows easily from [9], where it is shown that for
ergodic transformation%, the collection of ergodic transformations disjoint frdfis
a densegjs. If there were a non-meager orbit, it would have to be comeager, since it is
invariant. But then a transformatidnin the orbit would have to be disjoint from itself, a
contradiction. In the next section we reprove this fact in a more general context.

We now check the last clause of the definition of turbulence.

Let U be a neighborhood of the identity @1, andVj be a neighborhood of an ergodic
transformation?. Let V. C Vg be a neighborhood df of the form N (Ao, ..., A, p).

Let S € V be ergodic andV be a neighborhood .

By Lemma[s}), we can replaceby anS’ € W that has the same orbits almost every-
where thatT" does and then replad® by a basic open neighborhoddd’ ¢ W of §'.
Hence without loss of generality we can assume $hlaés the same orbits almost every-
where asl" does.

Apply the claim. By choosing small enough, (1) ensures that eaghe U. If we
choose’ small enough, (2) guarantees that e@icke V and (3) guarantees that € W.

We now prove the claim. Choose now &hso large that the collectiohg of x for
which {Sx, S~1x} is not a subset of the partial ortfit’ =" +1x, 7-M+2x . T-1x,
x,Tx,..., T 1x} has measure less thaB.

Let N be so large that /N < §/3, and choose aW, §/3) Rokhlin tower with
baseB. Let L1 be the union of the first and a3t levels of the tower. Thell1 has
measure at mosY/3. Let L, be the collection ok not in the levels of the Rokhlin tower.
Then by assumption the measurelofis less thars/3 and hence the measure fof U
L1U Ly is less thars.

Lety € B.Thenforallx € {T'y : M <i < N — M} \ Lo, bothSx andS—1x belong
to{T'y:0<i<N —1}.
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We can choose a cyclic permutation of {0, ..., N — 1} such that for alli, j <
N —1,if S(T'y) = T/y, theno, (i) = j. For each permutatiom of {0, ..., N — 1}, the
collectionB, = {y : 0, = o} is measurable and the ség partition B.

Partition eachB, into setsB, «, k < ks, such that the measure of eaBh is less
thane/N. Let 7, be a permutation of0, ..., N — 1} such thatr,o ;! is the cyclic
permutation(0, 1, ..., N — 1) and definet, x onJ; _y T! B, x by setting

uek(T'y) = T Wy

fory € Box andug i (x) = x forx ¢ U, _y T' Bo k.

Letgi, ..., gn—1 €numerate the, x's (in any order). Note that it is clear that condi-
tion (1) is satisfied. Moreover, since the collectionscahoved by the various, ;’s are
pairwise disjoint, the:, ;'s commute.

By the choice ofr,, for allx € |y —;<y_p T'x \ Lo,

ok ()T (Vu 3 (x) = S(x),

hence forallk ¢ LoU L1 U Lo, T;(x) € {S(x), T(x)} and hence (2) is satisfied.
Moreover, for allx ¢ LoUL1U L2 that are moved by any;, we haveT;1(x) = S(x).
In particularT, (x) = S(x) except on a set of measure less tian O

We remark that a fact analogous to Cldim 14 is true for finitely generated amenable
groups.

4. General discrete groups

In this section we discuss this theorem in the context of countable discrete group actions

by measure preserving transformations. We will prove the result analogous to Theprem 12

for the case of monotilable amenable groups and discuss the situation for general groups.
We begin by fixing a countable groui. We put a topology on the space &f-

actions on [01] by measure preserving transformations. (As usual we will identify ac-

tions that agree on a set of full measure.) For efchction A on [0,1] andg € H

we will denote the measure preserving transformation determined by the actign and

as g”. Fix such an actiond. We describe a basic open neighborhood4fFor each

€ > 0,g1,...,g, € H and measurable partitiojy, ..., A;} we take as a basic open

neighborhoodV (A, g1, ..., gu, A1, ..., Ag, €) the set

{B: /L(giAAj A giBAj) < eforalli, j}.

(We note thatifH is finitely generated with generatdvs, . . ., i, }, then the collection of
neighborhoods determined by taking thés to be thei;’s forms a base for the topology.)

As before this is a Polish topology. The collection of free ergodic actions of a count-
able amenable groufl form a dens&j; set in the collection of all actions and hence a
Polish space (segl[3]).

If T is a measure preserving transformation ahis an H-action by measure pre-
serving transformation on [@] then we let4’ = T A be theH -action defined by setting
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g = TgAT1. (We will sometimes write this ad’ = T.AT~1.) This defines an action
of the group of measure preserving transformations on the spaleautions and the
orbits coincide with isomorphism classesHfactions.

Theorem 15. Suppose that{ is an amenable group. Then the action of the measure
preserving transformations on the ergodicactions is turbulent.

A closely related theorem is:

Theorem 16. Suppose that{ is an amenable group and is an ergodic action ofH.
Then the collection of action8 that have the same orbits almost everywhereladoes
is dense in the space éf-actions.

We now give the proof of this theorem in the case that the amenable group is monotilable.
The general result follows tediously using the quasi-tiling techniques_of [13]. We begin
by discussingnonotilablegroups. For an exposition about monotilable groups we refer
the reader ta [14].

Definition 17. An amenable groupi is monotilableiff there is a Fglner sequendgé, :
n € N) and a collection{c, : i,n € N} such that for each fixed, {F,c}, : i € N} is a
partition of H. The sequencéF), : n € N) will be called atiling sequenceA setB such
that there are{¢’ : i € N} such that{ B¢ : i € N} is a partition of H is called atiling set
and the{c’ : i € N} are thecentersof the tiling.

All elementary groups are monotilable and it is an open question whether every amenable
group is monotilable. For our purposes the main advantage of monotilability is an easily
usable version of Rokhlin’s Lemma.

If T, F c H, we will call the set{h € F : gh ¢ F forsomeg € I'} theinner I'-
boundaryof F. The T -interior of F is the collection of elements df not in the inner
boundary.

Rokhlin’s Lemma Il ([13]). Suppose thaH is a monotilable group acting freely and
ergodicly on[0, 1] by measure preserving transformations with tiling sequeffGe :

n € N). Then for allN large enoughe > 0 and any measurable subsét;, ..., A,} of
[0, 1] there is a seB C [0, 1] such that:

(1) The set4gB : g € Fy} are pairwise disjoint.
(2) The measure oUgeFN gBis atleastl —e¢.
(3) Forally e Bandj < n,

[#{g € Fn : g(y) € Aj}/IFn| — n(Aj)] < €.

We will call this an(Fy, €) Rokhlin towerfor {A4, ..., A,}. We will refer to B as the
baseandX \ U,cr, ¢B as theremainderof the tower.

Given an(F, €) Rokhlin tower with baseB, we will call the set J{4B : h is in the
inner I'-boundary ofF} the I'-boundaryof the tower, and the sét){hB : h is in the
[-interior of F'} theT"-interior of the tower. Clearly if the boundary is a small fraction of
F ande is small, the vast majority of the unit interval is in the interior of the tower.



Ergodic measure preserving transformations 287

Fix an(F, €) Rokhlin tower with bas&. Suppose thdt = {P; : T € S} is a partition
of the base o3 whereS is a collection of permutations of a subsetafFory € P; andh
in the domain of, let Tp(hy) = t(h)y, and letTp be the identity on the remainder of the
tower. ThenTp is a measure preserving transformation that locally permutes the levels of
the tower and preserves tleorbits inside the tower. We will calfp the transformation
induced by the partition anl. We will let 7; denote the restriction df to the collection
of F-orbits of P;.

Remark 18. For any.A the H-action A’ = Tp. ATp~1 has the same orbits almost every-
where asA does.

We now prove Theorenfs [L15 afid] 16 simultaneously, combining in one proof the two
explicit steps from the case @

Proof of Theorems 15 and 16.et H be an amenable group and ¥be the space of free
ergodic H-actions by measure preserving transformations oa][0As remarked above,
Glasner and King showed inl[3] that the free ergodic action® afre a dens€; set in
the space of all actions @. In particular, it is a Polish space with the induced topology.
We let the group of measure preserving transformations act,drj i conjugation.

Claim 19. Every orbit of a free action off is dense inX.

Proof. This follows immediately from Rokhlin’s Lemma: Ji andB are H-actions, fix a
neighborhood o8B, N (B, g1, - .., gu, A1, . .., A, €). Let Fy be an element of the tiling
sequence such that for all|g; Fx A Fn|/|Fy|l < €/2. Apply Rokhlin’s Lemma for
Fy, €/2 and the actiongl, B to find setsB 4, Bg. (For these purposes the last clause of
Rokhlin’s Lemma is irrelevant.) We can assume tBatand Bz have the same measure.
LetTo : B4 — Bp be measure preserving and extefydto | J, . r, g™ B4 by setting
To(g2y) = gBTo(y) for y € B4 andg e Fy. Finally, extendlp to a measure preserving
transformation? of [0, 1] on the remainder of the Rokhlin tower arbitrarily. Then for
eachi, the measure of the sét : Tg;“T‘l(x) # gB(x)}is less thar. In particular, for
alli, j, (TgAT~1)(A)) A gB(A;) has measure less than O

Claim 20. The orbit of everyH -action is meager.

Proof. (We note that this claim does not use monotilability for its proof.) Since every
orbit of H is invariant under the group of measure preserving transformations, and dense,
standard 0-1 laws show that a non-meager orbit must be comeager. (Sek e.q./[3] or [6] for
a proof of this classical result.)

Fix an actionA of the groupH. We recall the definition of entropy of the action. If
(Fa : n € o) is a Folner sequence fdéf, andP is a partition of [Q 1], we let\/ P be
the partition generated P : h € F,} and define

hn(AP) == {u@logu(@) :a € \/ /1.
Fu

Note thath, is a continuous function .



288 Matthew Foreman, Benjamin Weiss

The entropy of4 with respect tdP is defined byi(A, P) = lim,_, - h,(A, P) and
the entropy ofA is given byh(A) = suph(A, P) : Pis afinite partition.

Subclaim. Forall y > 0, {A : h(A) < y}is a dens&js set. In particular, the set of zero
entropy actions of an amenable group is a de@sset.

Proof. (This proof is due to Rudolph.) It can be shown that4, P) is a continuous
function of P in the sense that for al € N ande > 0 there is & > 0 such that if
P={P,..., P} andQ = {Q1, ..., Ok} are two partitions withy_ u(P; A Q;) < §
then |a(A, P) — h(A, Q)| < €. Moreover, entropy is monotone in the sense that if
refinesQ theni (A, Q) < h(A, P). From this we can deduce that

h(A) = suph(A, P) : Pis a finite partition with rational endpoirjts

From this it is routine to see that for all, {A : h(A) < y}is ags set.

For each positiver, choose a sequence, : n € N) of positive numbers such that
Y a, =1and-})", naxlog(a,) < y. This makesN into an atomic measure space and
if we endowX = N with the product measure we get a Lebesgue spaceHLatt on
N by hf(h) = f(h~1g). This action is ergodic and has entropy less than O

We will call the action off on N with the measure given above tBernoulli action
with coefficientda,}.

Del Junco proves the following result f@ractions, but the proof carries over directly
to amenable actions:

Theorem 21 (del Junco([9]) Suppose tha# is an H-action. Then{B : B is disjoint
from A} is aG; set.

Moreover, classical methods show thatdifhas zero entropy thed is disjoint from any
Bernoulli action.

We now finish the proof of Clairh 20. If4 were an action with non-meager orbit
then the orbit of4 would have to be comeager. In particuldmwould have to have zero
entropy. On the other hand, the transformations disjoint frbmre a non-empty; set
(because they contain Bernoulli actions). Since any non-empty, conjugation in@iant
set must be dense we see thatmust be disjoint from itself. This contradiction proves
Claim[20. |

We will prove the following:

Subclaim. Suppose that > 0 and letW = N(5, go, ..., &1, Bo, ..., Bx—1, 1) be
a basic open neighborhood. Then there ip and a sequence of measure preserving
transformations:;, i < p, such that:

(1) The sef{x : u; (x) # x} has measure less than

(2) If Ao = AandA; 11 = u; A theng/A" (x) € {g;.“(x), g/A”(X)} forall i, j, x.
(3) Ap(x) e W. ' '

(4) Each.A; has the same orbits almost everywheredadoes.
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To see the subclaim suffices for Theorffem 16: take any ergédi, and a neighborhood
W of B. Applying the subclaim, we see tha, has the same orbits almost everywhere
as.A does and is in the neighborhood®f

For the proof of Theorefn 15 we use the subclaim to check the last clause of the hy-
pothesis of Lemmp|4. Fix an actiof, a neighborhood = N (A, go, ..., &m. Ao, - . -,
Ar—1, p), an ergodic actior3 € V, a neighborhoodvV = N(B, ho, ..., hy, Bo, ...,
B;_1, n) and a neighborhood of the identity in the group of measure preserving trans-
formations. We note that without loss of generality we can assumenthat n, and
h; = gj for j < n. Moreover, the partitiodBy, ..., B;_1} refines{Ao, ..., Ax_1} and
n<p.

Applying the subclaim witke small enough we get a sequencea:gé such that each
u; belongs taU. If we takes small enough and use the fact tbgj belongs toV, clause
(2) of the subclaim shows that eagh belongs tov'.

To prove the subclaim, we begin by constructing an actidrvhich will eventually
becomeA, . Having done this the proof follows the proof of Clgim 14. The “prescription”
for finding.A" goes as follows: we take a very large elemgrdf a tiling Fglner sequence,
and two Rokhlin towers fo#, one for.A and one forB3. We “purify” by breaking the
bases of the towers into sets such that on eaclPsatd for eacth € F, hP is either
disjoint from or contained in the partition determined by this and thengi 's. We then

permuteF P by somer so thatd’ = T; AT,"! behaves exactly the same wayasloes
with respect to theB;’s and their images undgf. Since the vast majority of mass lies in
the interior of F P, A’ is in the neighborhoodV .

We now follow the prescription more formally. L&%y, be an element of the tiling
sequence fof such that for allj, |g; Fi A Fyl/|Fm| < n/6, i.e. the boundary of
has size less tham/6)| Fy|.

Let Q be the partition of [01] generated byBo, ..., Bi_1} and{ngBi ti <land

j < n}. Let B4 and BB be bases ofF);, n/6) Rokhlin towers for the partitior, and
the systemsd and 53 respectively. We can assume that the measurgs‘oind of BZ
are equal. We leLq be the remainder [] \ UheFM hABA. Let L1 be the boundary
of the tower. Then the measures of bdth and L1 are less than or equal tg/6 and
[0, 1]\ Lo U L1 is the interior of the tower.

For each atonu of Q andy € BA, |#h € Fy : hA(y) € a}/|Ful — n(a)| <
n/6 and similarly for ally € BB. By shrinking the bases* and B5, an arbitrarily
small amount, we can preserve the fact that we H@yg, n/6) Rokhlin towers and find
partitionsPy*, ..., PA and PP, ..., PB | of the bases and B® such that:

(1) Foralls < r the measure oP is equal to the measure .

(2) Foralls < r andh € Fy there are atoms, b of Q such that* P c a and
hBPB c b.

(3) For eacly, there is a permutatios = o (s) of Fy; such that for all but2n/6)|Fu|
manyh € Fy; and all atoms: of Q,

rAca iff o()BPBca.
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LetS = {o(s) : s < r}. Let T be the measure preserving transformation induced
by the partition{Pg,..., PA,} andS = {o(s) : s < r} (as in the remarks before
Remark 1B). Definel’ to beT AT 1. Then by Remark 184’ has the same orbits almost
everywhere asl does.

We now argue that!’ is in the neighborhoo® . For eacty, we consider the levels of
the Rokhlin tower aboveA. We will call a leveliA PAA badif for the atoma € Q with
hrAPA C a we haves,(h)BPB ¢ a.

For eachr in the interior of the tower above?, if x e g]f“’Bi A ngBi then eitherx
or (g;“’)—lx belongs to a bad level of the tower ovef*, or else(g;“’)—lx belongs talo.
Hence the measure of the intersection of the tower dy&mwith g]“-A/ B; AgJBB,- is at most

twice the measure of the union of the bad levels of the tower aBgV@lus the measure
of {x € Lo: g;“’(x) e PA).
Let L3 be the union of the bad levels of the tower ovef'. Then the measure of

L} is less than @/6)| Fy | (P). SincelJ; P* = BA, |, P;* has measure less than
1/|Fy|. ThusifLz = | J,_, L3 then the measure dfs is less than &/6).

Thus for eacty andi, the intersection of*' B; A P B; with the interior of the tower
UheFM hBA has measure at most?L3) + u(Lo) < 5(n/6). Hence the total measure
of g/ B A gP B; is less thanu(Lo) + p(L1) + 2u(L3) = 1.

Divide eachp; into finite partitions{ P}, such that the measure of eag}y is less
thane/|Fy|. Defineu,, by setting it equal tal' on the orbits ofP ; and the identity
otherwise. Then:

e The measure ofx : u,(x) # x} is less thar.
e Theu,,'s commute.
e T is equal to the product of all of the, ;.

In particular, if we enumerate the ;’s as(uo, u1, ..., u,-1), thenA, = A" and we have
proven the subclaim. O

4.1. General amenable groups

If the amenable groug@ is not known to be monotilable the proof is carried out by using
the quasi-tiling machinery of [13]. Roughly speaking, for any free action of an amenable
groupH on [0, 1] by measure preserving transformations, this machinery provides a finite
collection of disjoint Rokhlin towers parametrized by different Fglner sets that fill up most
of the space. The proof that we have given can then be carriethatdtis mutandiswith
these towers replacing the single tower of the monotilable case. We shall content ourselves
with formulating the generalization of the Rokhlin Lemma for the general case and leave
the details of the proof to the reader.

We will first formulate the basic Rokhlin lemma and then the version that is needed
which incorporates an application of the ergodic theorem.
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If we are given finite subsetk, F of H and a§ > 0, then we will say that is
(K, &)-invariantif |Jycx kF A F| < 8|F|. For K with K = K~! ande € K, this
definition is equivalent to the one given in [13].

Rokhlin’'s Lemma IV ([13]). Suppose thaH is an amenable group, and a finite subset
K of H and$, € > Oare given. Then there are s€igy, . .., F;} thatare(K, §)-invariant
and number;, ..., by € [0, 1] with > b; > 1 — € so that for any free ergodic action
of H on [0, 1] by measure preserving transformations there are §B1s. .., By} in the
unit interval that satisfy:

(1) For eachi the set{ fB; : f € F;} are disjoint.
(2) The set§F; B; : 1 <i < k} are pairwise disjoint.
(3) The measure af; B; is b;.

It is important to note that the sets depend only orK, § ande and not on the specific
action. Also the measure of each of theB; depends only onand not on the action. For
these addenda see the proof of Theorem 5 in 11.82 df [13] and Remark 3 in 11.83 there.
For the final version of the lemma assume that in addition to the actiéhwé are
also given a finite number of measurable subdetis [0, 1]. Then we have the following:

Rokhlin’s Lemma V ([13]). Suppose that/ is an amenable group, and a finite subset
K of H and$, € > Oare given. Then there are s€i&y, . . ., F;} that are(K, §)-invariant
and number$;, ..., by € [0, 1] with > b; > 1 — € so that for any free ergodic action
of H on|[0, 1] by measure preserving transformations there are §Bis. .., Bi} in the
unit interval that satisfy:

(1) For eachi the set{ fB; : f € F;} are disjoint.
(2) The set§F;B; : 1 < i < k} are pairwise disjoint.
(3) The measure of; B; is b;.

(4) Forally e | JB;andj < n,

[#{g € Fn : g(y) € Aj}/IFn| — (Aj)] < €.

As before we note that the sefs depend only ok, § ande and not on the specific
action as do the measures of thieB;.
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