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Abstract. Despite many notable advances the general problem of classifying ergodic measure pre-
serving transformations (MPT) has remained wide open. We show that the action of the whole
group of MPT’s on ergodic actions by conjugation is turbulent in the sense of G. Hjorth. The type
of classifications ruled out by this property include countable algebraic objects such as those that
occur in the Halmos–von Neumann theorem classifying ergodic MPT’s with pure point spectrum.
We treat both the classical case ofZ as well as the case of general countable amenable groups.

1. Introduction

Dynamical systems are often studied from a probabilistic or statistical point of view by
finding an ergodic invariant probability measure on the space. This allows qualitative
descriptions of the dynamical system such as being “truly random” (e.g. Bernoulli) or
truly deterministic (e.g. 0-entropy).

The probabilistic behavior of many classical dynamical systems has been character-
ized precisely by determining the invariant measure up to measure theoretic isomorphism.
This led to the general project of classifying measure preserving systems up to iso-
morphism. Despite dramatic successes, notably Ornstein’s theorem classifying Bernoulli
transformations in terms of entropy [11], and the Halmos–von Neumann theorem classi-
fying ergodic translations on compact groups, this project largely remains unfulfilled.

Indeed, there has been some accumulation of evidence suggesting that such a classifi-
cation is impossible. The main result of this note is a precise statement of such a theorem.

As a corollary of the main result, it is impossible to effectively associate to members
of a generic collection of ergodic measure preserving transformations countable algebraic
structures (e.g. groups) in such a way that two transformations are isomorphic just in case
the associated algebraic objects are isomorphic. (In other words, there is no Borel functor
from the category of ergodic measure preserving transformations to the category of (say)
countable groups.)
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There have been some precursors to this result. For example Hjorth ([8]) showed the
analogous result for measure distal transformations of height 2. We will use the notion of
turbulencedefined by Hjorth for our theorem.

We begin by giving some terminology.

Definition 1. LetX, Y be Polish spaces, andE, F be equivalence relations onX andY

respectively. ThenE is Borel reducibleto F (E ≤B F ) iff there is a Borel measurable
functionf : X → Y such that for allx1, x2 ∈ X:

x1Ex2 iff f (x1)Ff (x2).

In other words, any question aboutE can be “reduced” viaf to a question aboutF .
There is an obvious generalization of this notion to equivalence relations on Borel subsets
A ⊂ X, B ⊂ Y .

In this language, the classical result that any two perfect Polish spaces are Borel iso-
morphic can be interpreted as saying that for all perfect PolishX andY , there is a Borel
bijectionf : X → Y such thatf reduces the relation of equality onX to the relation of
equality onY andf −1 reduces equality onY to equality onX. Thus the question of at-
taching complete invariants that come from an arbitrary Polish space is not more general
than the issue of attaching complete numerical invariants.

If we let E0 be the equivalence relation on 2N (infinite sequences of 0’s and 1’s)
defined by settingEx ∼ Ey in case there is anN such thatxn = yn for all n > N , then
classical 0-1 laws show that there is no Borel reduction ofE0 to equality on a Polish
space. (There are converses to this, see [5].)

As remarked by Feldman ([1]) the following result implies that there can be no nu-
merical invariants attached toK-automorphisms:

Theorem (Ornstein–Shields).There is a Borel reduction ofE0 to the isomorphism
equivalence relation on theK-automorphisms.

In particular, there is no numerical invariant ofK-automorphisms analogous to entropy.
On the other hand, the Halmos–von Neumann theorem is considered to give a suit-

able structure theorem for the discrete spectrum transformations in spite of the fact that
the equivalence relationE0 is also reducible to isomorphism of discrete spectrum trans-
formations [2].

The Halmos–von Neumann theorem associates to each ergodic discrete spectrum
transformation a countable subset of the unit circle in such a way that two transforma-
tions are isomorphic iff the associated countable sets are equal. By using predicates for
rational intervals, one can effectively associate to each countable subset of the unit circle
a countable structure in a manner that reduces equality of countable sets to isomorphism
of the countable structures. Until this paper there was no clear result showing that this
was not possible for a collection of generic measure preserving transformations (e.g. the
weakly mixing transformations).

To establish such a result we use some notions of Hjorth [6]. LetS∞ be the group of
permutations ofN with the topology of pointwise convergence. We will consider contin-
uous actions ofS∞ on Polish spaces.
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This example is chosen specifically because it includes the isomorphism relations on
countable algebraic objects. We illustrate this in a particular case:

Example 2. Let X be the space of functionsf : N × N × N → 2 with the obvious
product topology. LetS∞ act onX by permuting all three copies ofN simultaneously. If
G is a countable group (say with universeN and group operation�) we can associate an
elementfG ∈ X by setting

fG(l, m, n) = 1 iff l � m = n.

If we equip the space of functionsf : N × N × N → 2 with the “usual” topology
of pointwise convergence (i.e. theN × N × N product topology of the discrete space
2 = {0, 1}) then the collection offG for G a countable group is a denseGδ set, and hence
the usual topology restricted to thefG’s is a Polish topology.

If G, H are two groups with universeN, thenG ∼= H iff there is ag ∈ S∞ such that

gfG = fH .

We leave it to the reader to see that isomorphism on countable rings, rings with an or-
dering, fields etc. are allS∞-actions. (Indeed, there is a universal such action, thelogic
action.)

To show that there is no way of computing isomorphism classes of countable struc-
tures as a complete invariant, it suffices to show that the associated equivalence relation is
not reducible to anS∞-action. A mechanism for doing this was developed by Hjorth [6].

Definition 3. LetG be a Polish group acting continuously on a Polish spaceX. Then the
action isturbulentiff:

(1) Every orbit is dense.
(2) Every orbit is meager.
(3) For all x, y ∈ X, V ⊂ X, U ⊂ G open, withx ∈ V , 1 ∈ U, there existy0 ∈ [y]G

and〈gi〉i∈N ⊂ U , 〈xi〉i∈N ⊂ V such that
(a) x0 = x,
(b) xi+1 = gixi ,
(c) there is a subsequencein such thatxin converges toy0.

Hjorth proved the following result:

Theorem. Suppose that the action ofG on X is turbulent. Then the orbit equivalence
relation (xEy iff there is ag ∈ G such thatgx = y) cannot be reduced to anS∞-action.

Hjorth’s result clearly implies that if the action ofG is turbulent, there is no invariant
comeager set on which the orbit equivalence relation can be reduced to anyS∞-action.
Hence the conclusion is “generic”.

The notion of turbulence almost exactly captures the combinatorial content of not
being anS∞-action: Hjorth showed that for a Borel equivalence relationE, E is not
reducible to anS∞-action just in case there is a turbulent action reducible toE. Rather
embarassingly, we do not know whether isomorphism for ergodic measure preserving
transformations is a Borel equivalence relation.
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We will use the following lemma (whose proof is left to the reader), which gives a
sufficient condition that is easier to verify:

Lemma 4. Suppose thatG is a Polish group acting continuously on a Polish spaceX.
Suppose further that:

(1) Every orbit is dense.
(2) Every orbit is meager.
(3) For all x ∈ X and all neighborhoodsV0 ⊂ X ofx and all neighborhoodsU ⊂ G with

1 ∈ U there is aV ⊂ V0 with x ∈ V such that for ally ∈ V and all neighborhoods
W of y, there are finite sequences〈gi〉i≤N−1 ⊂ U , 〈xi〉i≤N−1 ⊂ V with
(a) x0 = x,
(b) xi+1 = gixi ,
(c) xN ∈ W .

Then the action is turbulent.

In order to apply this technology we must describe a Polish group acting continuously on
a Polish space. (See e.g. [2] for a laborious development of this situation.)

Since every separable non-atomic probability measure space is isomorphic to the unit
interval with Lebesgue measure, every ergodic, aperiodic measure preserving transforma-
tion on a probability space is isomorphic to an ergodic transformation on [0, 1] and gives
rise to a unitary operator onL2([0, 1]). (We identify measure preserving transformations
that agree on a set of full measure.) The space of unitary operators arising from mea-
sure preserving transformations is a Polish group when endowed with the weak operator
topology. Halmos ([4]) showed that the ergodic measure preserving transformations are
a denseGδ subset of the measure preserving transformations, and hence form a Polish
space.

Moreover, the relation of isomorphism between measure preserving transformations
is given by the action of conjugacy of the measure preserving transformations on the
ergodic transformations.

This context can be generalized to show that ifH is a fixed countable amenable group
then there is a natural Polish topology on the space ofH -actions on [0, 1] by measure
preserving transformations. (We give details in Section 4.) Moreover the action of con-
jugation by the group of measure preserving transformations on the space ofH -actions
again coincides with isomorphism.

We prove:

Theorem A. LetH be a countable amenable group. LetX be the space of ergodic actions
of H on [0, 1]. LetG be the group of measure preserving transformations acting onX by
conjugation. Then this action is turbulent.

An important special case of this is:

Theorem B. Let G be the group of measure preserving transformations of[0, 1] acting
by conjugation onX, the space of ergodic measure preserving transformations. Then the
action ofG is turbulent.

We note that Hjorth [7] has proved that it is possible to reduce a turbulent equivalence rela-
tion to the space of ergodic actions of any countable discrete group that is not “abelian-by-
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finite”. Hence it is not possible to classify the measure preserving actions of any countable
group by using countable algebraic objects.

We begin by proving Theorem B, and indicate how to strengthen the proof in Section 4.
The proof is somewhat different than the proof of the more general result, Theorem A.
We present it because it gives slightly more information than the proof of Theorem A.

We need to concretely describe a neighborhood basis for the measure preserving trans-
formations. The following description can be found in [4].

Definition 5. For each measure preserving transformationT and finite sequence of mea-
surable setsA0, . . . , An−1 andε > 0, let N(A0, . . . , An−1, ε) be the collection of allS
such that for alli < n the measure ofS(Ai) 4 T (Ai) is less thanε.

Proposition 6. LetT be a measure preserving transformation of[0, 1]. Then the collec-
tion {N(A0, . . . , An−1, ε) : Ai is measurable,{Ai} is a partition of [0, 1] and ε > 0}

forms a neighborhood basis forT .

In [4], Halmos defines a metric on the space of measure preserving transformations by
settingd ′(S, T ) to be the measure of{x : S(x) 6= T (x)}. The topology of this metric is
finer than the Polish topology described above. Some of our results can be restated using
thed ′ metric.

The prerequisites from ergodic theory are very mild. Throughout we will be assuming
our measure space is [0, 1] and we will denote the Lebesgue measure byµ. We heavily
use the following fact:

Rokhlin’s Lemma I. Let T be an ergodic measure preserving transformation on[0, 1],
N ∈ N, ε > 0. Then there is a setB ⊂ [0, 1] such that:

(1) B, T B, T 2B, . . . , T N−1B are pairwise disjoint.
(2) The measure of

⋃
i<N T iB is at least1 − ε.

As is standard, we will callB, T B, T 2B, . . . , T N−1B the levelsof an (N, ε) Rokhlin
towerwith baseB. We will call X\

⋃
i<N T iB theremainderof the tower.

This lemma can be refined using the ergodic theorem to yield:

Rokhlin’s Lemma II. LetT be an ergodic measure preserving transformation on[0, 1],
ε > 0 and{A1, . . . , An} be subsets of[0, 1]. Then there is anM and for allN > M there
is a setB ⊂ [0, 1] such that:

(1) B, T B, T 2B, . . . ,T N−1B are pairwise disjoint.
(2) The measure of

⋃
i<N T iB is at least1 − ε.

(3) For all y ∈ B andj < n,

|#{i < N : T iy ∈ Aj }/N − µ(Aj )| < ε.

Notation. For a pointy ∈ [0, 1] and a transformationT we will often writeyi for the
pointT iy. We will confuse the reader by using absolute value symbol “|C|” both for the
cardinality ofC if C is a set, and for the absolute value ofC if C is a number.



282 Matthew Foreman, Benjamin Weiss

2. A useful lemma

We start with a definition:

Definition 7. We will say that a measure preserving transformationT ′ has the same or-
bits almost everywhere asT doesif for almost all x the T ′-orbit of x is equal to the
T -orbit of x.

In this section we prove:

Lemma 8. Suppose thatT is ergodic,ε > 0 and {Ci}i<k, {Di}i<k are two measurable
partitions of [0, 1] such that for eachi < k, Ci and Di have the same measure. Then
there is aT ′ that has the same orbits almost everywhere asT and is such that for alli the
measure ofT ′(Ci) 4 Di is less thanε.

From this lemma and the definition of the basic open neighborhoods, it is easy to see:

Lemma 9. Let S, T be ergodic measure preserving transformations andU a neighbor-
hood ofS. Then there is aT ′

∈ U that has the same orbits almost everywhere asT .

Proof of Lemma 8.Fix an ε > 0 and partitions{Cl}l<k, {Dl}l<k, and letN be large
enough andδ small enough that(2k + 2)δ + (2k + 4)/N < ε. Choose an(N, δ) Rokhlin
tower with baseB0 and remainderR such that for ally in the base andl < k, the number
of elements ofCl ∩ {yi

}
N−2
i=1 differs from the number of elements ofDl ∩ {yi

}
N−2
i=1 by less

thanδN .
We start by fixing an arbitraryy in the base of the tower and building a sequence of

partial functionst0 ⊂ t1 ⊂ · · · ⊂ tk from {yi
}
N−2
i=1 to {yi

}
N−2
i=1 such that

• tl is a one-to-one partial function from
⋃

j<l Cj to
⋃

j<l Dj sending the elements ofCj

in its domain to elements ofDj .
• The graph oftl contains no cycles.
• The domain oftk contains more thanN − k(δ + 1)N − 2 points.

This is done inductively by settingt0 = ∅ and obtainingtl from tl−1 by takingtl to be a
maximal extension oftl−1 such thattl mapsCl−1 to Dl−1 and has no cycles in its graph.

We note that there are at most max{|Cl−1∩{yi
}
N−2
i=1 |−|Dl−1∩{yi

}
N−2
i=1 |+1, 1} points

of Cl−1 ∩ {yi
}
N−2
i=1 left out of the domain oftl . (If there were at least two points ofDi not

in the range oftl then it would be possible to extendtl without creating a cycle.) Since the
distributions ofCl−1 andDl−1 are equal except for an error of proportionδ, ti is defined
on all ofCl−1 ∩ {yi

}
N−2
i=1 except perhapsNδ + 1 points.

Let Ll be the set of points ofCl ∩ {yi
}
N−2
i=1 not in the domain oftl . Then

⋃
l<k Ll has

cardinality less thank(Nδ + 1). Thus we have constructedtk as desired.
Now extendtk to a total functionty from {yi

}
N−2
i=0 to {yi

}
N−1
i=1 with no cycles in its

graph such thattN−1(y) = yN−1. Definesy : {0, . . . , N − 2} → {1, . . . , N − 1} by
settingsy(i) = j iff ty(y

i) = yj .
Since there are only finitely many suchsy ’s we can partition the baseB0 of the Rokhlin

tower into measurable sets by settingBs = {y ∈ B0 : sy = s}.
Define a measure preserving transformationT ′ as follows:
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(1) T ′�(R ∪ T N−1B0) = T �(R ∪ T N−1B0).
(2) Fory ∈ Bs andj < N − 1 we letT ′(yj ) = ys(j).

In other words, on eachT -fiber abovey ∈ B0 we follow ty , and outside the tower and
on the top level of the tower we followT . SinceT ′ respects the columns of the Rokhlin
tower and the entry and exit levels of the tower, it must have the same orbits asT .

To see thatT ′ suffices: for eachk, on eachBs the measure of the set of pointsx ∈ Ci

in the tower aboveBs whereT ′x /∈ Di is at mostµ(Bs)(k(Nδ + 1) + 2). Hence the total
measure of pointsx ∈ Ci in the tower whereT ′x /∈ Di is at mostk(δ + 1/N) + 2/N .
Since the remainderR has measure at mostδ the total measure ofT (Ci) 4 Di is at most
2δ + 2k(δ + 1/N) + 4/N = (2k + 2)δ + (2k + 4)/N . ut

It is well known, and easily established by an exhaustion argument, that if setsA andB

have the same measure then there is a generalized power ofT that mapsA to B. Doing
this for two partitions yields an element in the full group ofT , but its orbits will, in
general, only be finite parts of theT -orbits. The proof of Lemma 8 can be extended to
prove the following:

Remark 10. Suppose thatT is ergodic and{Ci}i∈N, {Di}i∈N are two measurable parti-
tions of [0, 1] such that for eachi ∈ N, Ci andDi have the same measure. Then there is a
T ′ such that for a.e.x theT ′-orbit of x is infinite and included in theT -orbit of x and is
such that for alli, T ′(Ci) = Di .

Proof (sketch). The main point is a refinement lemma:

Lemma 11. Let T be an ergodic measure preserving transformation,ε > 0, andl ∈ N.
Let {Ci : i ∈ N} and {Di : i ∈ N} be two measurable partitions such that the measure
of Ci is equal to the measure ofDi . There is aT ′ which has the same orbits almost
everywhere asT does and such that:

(1) For all i, if x ∈ Ci andT (x) ∈ Di thenT ′(x) = T (x).
(2) For all i < l the measure ofT (Ci) 4 Di is less thanε.

This refinement lemma is proved analogously to Lemma 8. We choose a Rokhlin tower to
respect the distribution of the partitions{Ci : i < l}∪{[0, 1]\

⋃
i<l Ci} and{Di : i < l}∪

{[0, 1]\
⋃

i<l Di}. We then letG = {x : for all i, if x ∈ Ci thenT (x) ∈ Di} and perform
the same construction, except that we start witht0�(G ∩ {yi

}
N−2
i=0 ) = T �(G ∩ {yi

}
N−2
i=0 ).

(If y0 /∈ G, then eachti has domain contained in{yi
}
N−2
i=1 , as before.)

To finish the proof of Remark 10, repeatedly use the refinement lemma to build a
sequence of transformationsT0, T1, . . . , Tj , . . . with εj → 0 andlj → ∞, making sure
thatTj+1�Gj = T �Gj , whereGj = {x : for all i, if x ∈ Ci thenTj (x) ∈ Di}. Let T ′ be
the measure preserving transformation such that for allj andx ∈ Gj , T

′(x) = Tj (x). ut

3. The main result

In this section we prove Theorem B.
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Theorem 12. LetG be the group of measure preserving transformations of[0, 1] acting
by conjugation onX, the space of ergodic measure preserving transformations. Then the
action ofG is turbulent.

Corollary 13. There is no denseGδ subset of the measure preserving transformations on
which the equivalence relation of isomorphism can be reduced to anS∞-action.

Proof of Theorem 12.In fact we will prove a stronger result about the metricd ′:

Claim 14. Suppose thatε, δ > 0, S, T are ergodic andS has the same orbits almost
everywhere asT does. Then there is a sequence of elementsgi ∈ G for i < n such that:

(1) {x : gi(x) 6= x} has measure less thanε,
(2) if T0 = T , Ti+1 = giTi then for all i, {x : Ti(x) /∈ {T (x), S(x)}} has measure less

thanδ,
(3) {x : Tn(x) 6= S(x)} has measure less thanδ.

Using Lemma 4, and assuming the claim, we now verify that the action is turbulent.
We note first that Rokhlin’s lemma implies that every transformation isd ′-close to

periodic transformations of sufficiently large period and small remainder. Since any two
periodic transformations of the same period are conjugate, we see that every orbit is dense.

The fact that every orbit is meager follows easily from [9], where it is shown that for
ergodic transformationsT , the collection of ergodic transformations disjoint fromT is
a denseGδ. If there were a non-meager orbit, it would have to be comeager, since it is
invariant. But then a transformationT in the orbit would have to be disjoint from itself, a
contradiction. In the next section we reprove this fact in a more general context.

We now check the last clause of the definition of turbulence.
Let U be a neighborhood of the identity inG, andV0 be a neighborhood of an ergodic

transformationT . Let V ⊂ V0 be a neighborhood ofT of the formN(A0, . . . , Al, ρ).
Let S ∈ V be ergodic andW be a neighborhood ofS.

By Lemma 9, we can replaceS by anS′
∈ W that has the same orbits almost every-

where thatT does and then replaceW by a basic open neighborhoodW ′
⊂ W of S′.

Hence without loss of generality we can assume thatS has the same orbits almost every-
where asT does.

Apply the claim. By choosingε small enough, (1) ensures that eachgi ∈ U . If we
chooseδ small enough, (2) guarantees that eachTi ∈ V and (3) guarantees thatTn ∈ W .

We now prove the claim. Choose now anM so large that the collectionL0 of x for
which {Sx, S−1x} is not a subset of the partial orbit{T −M+1x, T −M+2x, . . . , T −1x,

x, T x, . . . , T M−1x} has measure less thanδ/3.
Let N be so large that 2M/N < δ/3, and choose an(N, δ/3) Rokhlin tower with

baseB. Let L1 be the union of the first and lastM levels of the tower. ThenL1 has
measure at mostδ/3. LetL2 be the collection ofx not in the levels of the Rokhlin tower.
Then by assumption the measure ofL2 is less thanδ/3 and hence the measure ofL0 ∪

L1 ∪ L2 is less thanδ.
Let y ∈ B. Then for allx ∈ {T iy : M ≤ i ≤ N − M} \ L0, bothSx andS−1x belong

to {T iy : 0 ≤ i ≤ N − 1}.
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We can choose a cyclic permutationσy of {0, . . . , N − 1} such that for alli, j <

N − 1, if S(T iy) = T jy, thenσy(i) = j . For each permutationσ of {0, . . . , N − 1}, the
collectionBσ = {y : σy = σ } is measurable and the setsBσ partitionB.

Partition eachBσ into setsBσ,k, k < kσ , such that the measure of eachBσ,k is less
than ε/N . Let τσ be a permutation of{0, . . . , N − 1} such thatτσ στ−1

σ is the cyclic
permutation(0, 1, . . . , N − 1) and defineuσ,k on

⋃
i<N T iBσ,k by setting

uσ,k(T
iy) = T τσ (i)y

for y ∈ Bσ,k anduσ,k(x) = x for x /∈
⋃

i<N T iBσ,k.
Let g1, . . . , gn−1 enumerate theuσ,k ’s (in any order). Note that it is clear that condi-

tion (1) is satisfied. Moreover, since the collections ofx moved by the variousuσ,k ’s are
pairwise disjoint, theuσ,k ’s commute.

By the choice ofτσ , for all x ∈
⋃

M≤i≤N−M T ix \ L0,

uσ,k(x)T (x)u−1
σ,k(x) = S(x),

hence for allx /∈ L0 ∪ L1 ∪ L2, Ti(x) ∈ {S(x), T (x)} and hence (2) is satisfied.
Moreover, for allx /∈ L0∪L1∪L2 that are moved by anygi , we haveTi+1(x) = S(x).

In particularTn(x) = S(x) except on a set of measure less thanδ. ut

We remark that a fact analogous to Claim 14 is true for finitely generated amenable
groups.

4. General discrete groups

In this section we discuss this theorem in the context of countable discrete group actions
by measure preserving transformations. We will prove the result analogous to Theorem 12
for the case of monotilable amenable groups and discuss the situation for general groups.

We begin by fixing a countable groupH . We put a topology on the space ofH -
actions on [0, 1] by measure preserving transformations. (As usual we will identify ac-
tions that agree on a set of full measure.) For eachH -actionA on [0, 1] andg ∈ H

we will denote the measure preserving transformation determined by the action andg

asgA. Fix such an actionA. We describe a basic open neighborhood ofA. For each
ε > 0, g1, . . . , gn ∈ H and measurable partition{A1, . . . , Ak} we take as a basic open
neighborhoodN(A, g1, . . . , gn, A1, . . . , Ak, ε) the set

{B : µ(gAi Aj 4 gBi Aj ) < ε for all i, j}.

(We note that ifH is finitely generated with generators{h1, . . . , hn}, then the collection of
neighborhoods determined by taking thegi ’s to be thehi ’s forms a base for the topology.)

As before this is a Polish topology. The collection of free ergodic actions of a count-
able amenable groupH form a denseGδ set in the collection of all actions and hence a
Polish space (see [3]).

If T is a measure preserving transformation andA is anH -action by measure pre-
serving transformation on [0, 1] then we letA′

= TA be theH -action defined by setting
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gA
′

= T gAT −1. (We will sometimes write this asA′
= TAT −1.) This defines an action

of the group of measure preserving transformations on the space ofH -actions and the
orbits coincide with isomorphism classes ofH -actions.

Theorem 15. Suppose thatH is an amenable group. Then the action of the measure
preserving transformations on the ergodicH -actions is turbulent.

A closely related theorem is:

Theorem 16. Suppose thatH is an amenable group andA is an ergodic action ofH .
Then the collection of actionsB that have the same orbits almost everywhere asA does
is dense in the space ofH -actions.

We now give the proof of this theorem in the case that the amenable group is monotilable.
The general result follows tediously using the quasi-tiling techniques of [13]. We begin
by discussingmonotilablegroups. For an exposition about monotilable groups we refer
the reader to [14].

Definition 17. An amenable groupH is monotilableiff there is a Følner sequence〈Fn :
n ∈ N〉 and a collection{ci

n : i, n ∈ N} such that for each fixedn, {Fnc
i
n : i ∈ N} is a

partition ofH . The sequence〈Fn : n ∈ N〉 will be called atiling sequence. A setB such
that there are{ci : i ∈ N} such that{Bci : i ∈ N} is a partition ofH is called atiling set
and the{ci : i ∈ N} are thecentersof the tiling.

All elementary groups are monotilable and it is an open question whether every amenable
group is monotilable. For our purposes the main advantage of monotilability is an easily
usable version of Rokhlin’s Lemma.

If 0, F ⊂ H , we will call the set{h ∈ F : gh /∈ F for someg ∈ 0} the inner 0-
boundaryof F . The0-interior of F is the collection of elements ofF not in the inner
boundary.

Rokhlin’s Lemma III ([13]). Suppose thatH is a monotilable group acting freely and
ergodicly on[0, 1] by measure preserving transformations with tiling sequence〈Fn :
n ∈ N〉. Then for allN large enoughε > 0 and any measurable subsets{A1, . . . , An} of
[0, 1] there is a setB ⊂ [0, 1] such that:

(1) The sets{gB : g ∈ FN } are pairwise disjoint.
(2) The measure of

⋃
g∈FN

gB is at least1 − ε.
(3) For all y ∈ B andj < n,

|#{g ∈ FN : g(y) ∈ Aj }/|FN | − µ(Aj )| < ε.

We will call this an(FN , ε) Rokhlin towerfor {A1, . . . , An}. We will refer toB as the
baseandX \

⋃
g∈FN

gB as theremainderof the tower.
Given an(F, ε) Rokhlin tower with baseB, we will call the set

⋃
{hB : h is in the

inner 0-boundary ofF } the 0-boundaryof the tower, and the set
⋃

{hB : h is in the
0-interior ofF } the0-interior of the tower. Clearly if the boundary is a small fraction of
F andε is small, the vast majority of the unit interval is in the interior of the tower.
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Fix an(F, ε) Rokhlin tower with baseB. Suppose thatP = {Pτ : τ ∈ S} is a partition
of the base ofB whereS is a collection of permutations of a subset ofF . Fory ∈ Pτ andh

in the domain ofτ , letTP(hy) = τ(h)y, and letTP be the identity on the remainder of the
tower. ThenTP is a measure preserving transformation that locally permutes the levels of
the tower and preserves theF -orbits inside the tower. We will callTP the transformation
induced by the partition andS. We will let Tτ denote the restriction ofT to the collection
of F -orbits ofPτ .

Remark 18. For anyA theH -actionA′
= TPATP−1 has the same orbits almost every-

where asA does.

We now prove Theorems 15 and 16 simultaneously, combining in one proof the two
explicit steps from the case ofZ:

Proof of Theorems 15 and 16.Let H be an amenable group and letX be the space of free
ergodicH -actions by measure preserving transformations on [0, 1]. As remarked above,
Glasner and King showed in [3] that the free ergodic actions ofH are a denseGδ set in
the space of all actions ofH . In particular, it is a Polish space with the induced topology.
We let the group of measure preserving transformations act on [0, 1] by conjugation.

Claim 19. Every orbit of a free action ofH is dense inX.

Proof. This follows immediately from Rokhlin’s Lemma: IfA andB areH -actions, fix a
neighborhood ofB, N(B, g1, . . . , gn, A1, . . . , Ak, ε). Let FN be an element of the tiling
sequence such that for alli, |giFN 4 FN |/|FN | < ε/2. Apply Rokhlin’s Lemma for
FN , ε/2 and the actionsA,B to find setsBA, BB. (For these purposes the last clause of
Rokhlin’s Lemma is irrelevant.) We can assume thatBA andBB have the same measure.
Let T0 : BA → BB be measure preserving and extendT0 to

⋃
g∈FN

gABA by setting

T0(g
Ay) = gBT0(y) for y ∈ BA andg ∈ FN . Finally, extendT0 to a measure preserving

transformationT of [0, 1] on the remainder of the Rokhlin tower arbitrarily. Then for
eachi, the measure of the set{x : T gAi T −1(x) 6= gB(x)} is less thanε. In particular, for
all i, j , (T gAi T −1)(Aj ) 4 gBi (Aj ) has measure less thanε. ut

Claim 20. The orbit of everyH -action is meager.

Proof. (We note that this claim does not use monotilability for its proof.) Since every
orbit of H is invariant under the group of measure preserving transformations, and dense,
standard 0-1 laws show that a non-meager orbit must be comeager. (See e.g. [3] or [6] for
a proof of this classical result.)

Fix an actionA of the groupH . We recall the definition of entropy of the action. If
〈Fn : n ∈ ω〉 is a Følner sequence forH , andP is a partition of [0, 1], we let

∨
Fn

P be
the partition generated by{hP : h ∈ Fn} and define

hn(A, P) = −

∑ {
µ(a) log(µ(a)) : a ∈

∨
Fn

P
}
/|Fn|.

Note thathn is a continuous function inA.
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The entropy ofA with respect toP is defined byh(A, P) = limn→∞ hn(A, P) and
the entropy ofA is given byh(A) = sup{h(A, P) : P is a finite partition}.

Subclaim. For all γ ≥ 0, {A : h(A) < γ } is a denseGδ set. In particular, the set of zero
entropy actions of an amenable group is a denseGδ set.

Proof. (This proof is due to Rudolph.) It can be shown thath(A, P) is a continuous
function of P in the sense that for allk ∈ N andε > 0 there is aδ > 0 such that if
P = {P1, . . . , Pk} andQ = {Q1, . . . ,Qk} are two partitions with

∑
µ(Pi 4 Qi) < δ

then |h(A, P) − h(A, Q)| < ε. Moreover, entropy is monotone in the sense that ifP
refinesQ thenh(A, Q) ≤ h(A, P). From this we can deduce that

h(A) = sup{h(A, P) : P is a finite partition with rational endpoints}.

From this it is routine to see that for allγ , {A : h(A) < γ } is aGδ set.
For each positiveγ , choose a sequence〈an : n ∈ N〉 of positive numbers such that∑
an = 1 and−

∑
n∈N an log(an) < γ . This makesN into an atomic measure space and

if we endowX = NH with the product measure we get a Lebesgue space. LetH act on
NH by hf (h) = f (h−1g). This action is ergodic and has entropy less thanγ . ut

We will call the action ofH onNH with the measure given above theBernoulli action
with coefficients{an}.

Del Junco proves the following result forZ-actions, but the proof carries over directly
to amenable actions:

Theorem 21 (del Junco [9]). Suppose thatA is an H -action. Then{B : B is disjoint
fromA} is aGδ set.

Moreover, classical methods show that ifA has zero entropy thenA is disjoint from any
Bernoulli action.

We now finish the proof of Claim 20. IfA were an action with non-meager orbit
then the orbit ofA would have to be comeager. In particularA would have to have zero
entropy. On the other hand, the transformations disjoint fromA are a non-emptyGδ set
(because they contain Bernoulli actions). Since any non-empty, conjugation invariantGδ

set must be dense we see thatA must be disjoint from itself. This contradiction proves
Claim 20. ut

We will prove the following:

Subclaim. Suppose thatε > 0 and letW = N(B, g0, . . . , gn−1, B0, . . . , Bk−1, η) be
a basic open neighborhood. Then there is ap and a sequence of measure preserving
transformationsui , i < p, such that:

(1) The set{x : ui(x) 6= x} has measure less thanε.

(2) If A0 = A andAi+1 = uiAi theng
Ai

j (x) ∈ {gAj (x), g
Ap

j (x)} for all i, j, x.
(3) Ap(x) ∈ W .
(4) EachAi has the same orbits almost everywhere asA does.
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To see the subclaim suffices for Theorem 16: take any ergodicA,B, and a neighborhood
W of B. Applying the subclaim, we see thatAp has the same orbits almost everywhere
asA does and is in the neighborhood ofB.

For the proof of Theorem 15 we use the subclaim to check the last clause of the hy-
pothesis of Lemma 4. Fix an actionA, a neighborhoodV = N(A, g0, . . . , gm, A0, . . . ,

Ak−1, ρ), an ergodic actionB ∈ V , a neighborhoodW = N(B, h0, . . . , hn, B0, . . . ,

Bl−1, η) and a neighborhoodU of the identity in the group of measure preserving trans-
formations. We note that without loss of generality we can assume thatm = n, and
hj = gj for j < n. Moreover, the partition{B0, . . . , Bl−1} refines{A0, . . . , Ak−1} and
η < ρ.

Applying the subclaim withε small enough we get a sequence ofui ’s such that each
ui belongs toU . If we takeδ small enough and use the fact thatAp belongs toV , clause
(2) of the subclaim shows that eachAi belongs toV .

To prove the subclaim, we begin by constructing an actionA′ which will eventually
becomeAp. Having done this the proof follows the proof of Claim 14. The “prescription”
for findingA′ goes as follows: we take a very large elementF of a tiling Følner sequence,
and two Rokhlin towers forF , one forA and one forB. We “purify” by breaking the
bases of the towers into sets such that on each setP and for eachh ∈ F , hP is either
disjoint from or contained in the partition determined by theBi ’s and thegBj Bi ’s. We then

permuteFP by someτ so thatA′
= TτAT −1

τ behaves exactly the same way asB does
with respect to theBi ’s and their images undergBj . Since the vast majority of mass lies in
the interior ofFP ,A′ is in the neighborhoodW .

We now follow the prescription more formally. LetFM be an element of the tiling
sequence forH such that for allj , |gjFM 4 FM |/|FM | < η/6, i.e. the boundary ofFM

has size less than(η/6)|FM |.
LetQ be the partition of [0, 1] generated by{B0, . . . , Bl−1} and{gBj Bi : i < l and

j < n}. Let BA andBB be bases of(FM , η/6) Rokhlin towers for the partitionQ, and
the systemsA andB respectively. We can assume that the measures ofBA and ofBB

are equal. We letL0 be the remainder [0, 1] \
⋃

h∈FM
hABA. Let L1 be the boundary

of the tower. Then the measures of bothL0 andL1 are less than or equal toη/6 and
[0, 1] \ L0 ∪ L1 is the interior of the tower.

For each atoma of Q andy ∈ BA, |#{h ∈ FM : hA(y) ∈ a}/|FM | − µ(a)| <

η/6 and similarly for ally ∈ BB. By shrinking the basesBA andBB, an arbitrarily
small amount, we can preserve the fact that we have(FM , η/6) Rokhlin towers and find
partitionsPA0 , . . . , PAr−1 andPB0 , . . . , PBr−1 of the basesBA andBB such that:

(1) For alls < r the measure ofPAs is equal to the measure ofPBs .
(2) For all s < r andh ∈ FM there are atomsa, b of Q such thathAPAs ⊂ a and

hBPBs ⊂ b.
(3) For eachs, there is a permutationσ = σ(s) of FM such that for all but(2η/6)|FM |

manyh ∈ FM and all atomsa of Q,

hAPAs ⊂ a iff σ(h)BPBs ⊂ a.
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Let S = {σ(s) : s < r}. Let T be the measure preserving transformation induced
by the partition{PA0 , . . . , PAr−1} and S = {σ(s) : s < r} (as in the remarks before
Remark 18). DefineA′ to beTAT −1. Then by Remark 18,A′ has the same orbits almost
everywhere asA does.

We now argue thatA′ is in the neighborhoodW . For eachs, we consider the levels of
the Rokhlin tower abovePAs . We will call a levelhAPAs bad if for the atoma ∈ Q with
hAPAs ⊂ a we haveσs(h)BPBs 6⊂ a.

For eachx in the interior of the tower abovePAs , if x ∈ gA
′

j Bi 4 gBj Bi then eitherx

or (gA
′

j )−1x belongs to a bad level of the tower overPAs , or else(gA
′

j )−1x belongs toL0.

Hence the measure of the intersection of the tower overPAs with gA
′

j Bi 4gBj Bi is at most

twice the measure of the union of the bad levels of the tower abovePAs plus the measure
of {x ∈ L0 : gA

′

j (x) ∈ PAs }.

Let Ls
3 be the union of the bad levels of the tower overPAs . Then the measure of

Ls
3 is less than 2(η/6)|FM |µ(PAs ). Since

⋃
s PAs = BA,

⋃
s PAs has measure less than

1/|FM |. Thus ifL3 =
⋃

s<r Ls
3 then the measure ofL3 is less than 2(η/6).

Thus for eachj andi, the intersection ofgA
′

j Bi 4 gBj Bi with the interior of the tower⋃
h∈FM

hBA has measure at most 2µ(L3) + µ(L0) < 5(η/6). Hence the total measure

of gA
′

j Bi 4 gBj Bi is less thanµ(L0) + µ(L1) + 2µ(L3) = η.

Divide eachPs into finite partitions{Ps,t }t such that the measure of eachPs,t is less
thanε/|FM |. Defineus,t by setting it equal toT on the orbits ofPs,t and the identity
otherwise. Then:

• The measure of{x : us,t (x) 6= x} is less thanε.
• Theus,t ’s commute.
• T is equal to the product of all of theus,t .

In particular, if we enumerate theus,t ’s as〈u0, u1, . . . , up−1〉, thenAp = A′ and we have
proven the subclaim. ut

4.1. General amenable groups

If the amenable groupH is not known to be monotilable the proof is carried out by using
the quasi-tiling machinery of [13]. Roughly speaking, for any free action of an amenable
groupH on [0, 1] by measure preserving transformations, this machinery provides a finite
collection of disjoint Rokhlin towers parametrized by different Følner sets that fill up most
of the space. The proof that we have given can then be carried out,mutatis mutandis, with
these towers replacing the single tower of the monotilable case. We shall content ourselves
with formulating the generalization of the Rokhlin Lemma for the general case and leave
the details of the proof to the reader.

We will first formulate the basic Rokhlin lemma and then the version that is needed
which incorporates an application of the ergodic theorem.
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If we are given finite subsetsK, F of H and aδ > 0, then we will say thatF is
(K, δ)-invariant if |

⋃
k∈K kF 4 F | < δ|F |. For K with K = K−1 ande ∈ K, this

definition is equivalent to the one given in [13].

Rokhlin’s Lemma IV ([13]). Suppose thatH is an amenable group, and a finite subset
K of H andδ, ε > 0 are given. Then there are sets{F1, . . . , Fk} that are(K, δ)-invariant
and numbersb1, . . . , bk ∈ [0, 1] with

∑
bi > 1 − ε so that for any free ergodic action

of H on [0, 1] by measure preserving transformations there are sets{B1, . . . , Bk} in the
unit interval that satisfy:

(1) For eachi the sets{f Bi : f ∈ Fi} are disjoint.
(2) The sets{FiBi : 1 ≤ i ≤ k} are pairwise disjoint.
(3) The measure ofFiBi is bi .

It is important to note that the setsFi depend only onK, δ andε and not on the specific
action. Also the measure of each of theFiBi depends only oni and not on the action. For
these addenda see the proof of Theorem 5 in II.§2 of [13] and Remark 3 in II.§3 there.

For the final version of the lemma assume that in addition to the action ofH we are
also given a finite number of measurable subsetsAj in [0, 1]. Then we have the following:

Rokhlin’s Lemma V ([13]). Suppose thatH is an amenable group, and a finite subset
K of H andδ, ε > 0 are given. Then there are sets{F1, . . . , Fk} that are(K, δ)-invariant
and numbersb1, . . . , bk ∈ [0, 1] with

∑
bi > 1 − ε so that for any free ergodic action

of H on [0, 1] by measure preserving transformations there are sets{B1, . . . , Bk} in the
unit interval that satisfy:

(1) For eachi the sets{f Bi : f ∈ Fi} are disjoint.
(2) The sets{FiBi : 1 ≤ i ≤ k} are pairwise disjoint.
(3) The measure ofFiBi is bi .
(4) For all y ∈

⋃
Bi andj < n,

|#{g ∈ FN : g(y) ∈ Aj }/|FN | − µ(Aj )| < ε.

As before we note that the setsFi depend only onK, δ andε and not on the specific
action as do the measures of theFiBi .
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